Science.gov

Sample records for active layer material

  1. Layered materials

    NASA Astrophysics Data System (ADS)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  2. Active millimeter wave detection of concealed layers of dielectric material

    NASA Astrophysics Data System (ADS)

    Bowring, N. J.; Baker, J. G.; Rezgui, N. D.; Southgate, M.; Alder, J. F.

    2007-04-01

    Extensive work has been published on millimetre wave active and passive detection and imaging of metallic objects concealed under clothing. We propose and demonstrate a technique for revealing the depth as well as the outline of partially transparent objects, which is especially suited to imaging layer materials such as explosives and drugs. The technique uses a focussed and scanned FMCW source, swept through many GHz to reveal this structure. The principle involved is that a parallel sided dielectric slab produces reflections at both its upper and lower surfaces, acting as a Fabry-Perot interferometer. This produces a pattern of alternating reflected peaks and troughs in frequency space. Fourier or Burg transforming this pattern into z-space generates a peak at the thickness of the irradiated sample. It could be argued that though such a technique may work for single uniform slabs of dielectric material, it will give results of little or no significance when the sample both scatters the incident radiation and gives erratic reflectivities due to its non-uniform thickness and permittivity . We show results for a variety of materials such as explosive simulants, powder and drugs, both alone and concealed under clothing or in a rucksack, which display strongly directional reflectivities at millimeter wavelengths, and whose location is well displayed by a varying thickness parameter as the millimetre beam is scanned across the target. With this system we find that samples can easily be detected at standoff distances of at least 4.6m.

  3. Material properties and field-effect transistor characteristics of hybrid organic/graphene active layers

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun; Lee, Jongho; Chowdhury, Sk. Fahad; Akinwande, Deji; Dodabalapur, Ananth

    2012-10-01

    We report on the material properties and device characteristics of field-effect transistors (FETs) consisting of hybrid mono-layer graphene/organic semiconductor active layers. By capping with selected organic and polymeric layers, transformation of the electronic characteristics of mono-layer graphene FETs was observed. The off-state current is reduced while the on-state current and field-effect mobility are either unaffected or increased after depositing π-conjugated organic semiconductors. Significantly, capping mono-layer graphene FETs with fluoropolymer improved the on-off current ratio from 5 to 10 as well as increased the field-effect mobility by factor of two compared to plain graphene FETs. Removal of π-conjugated organic semiconductors or fluoropolymer from graphene FETs results in a return to the original electronic properties of mono-layer graphene FETs. This suggests that weak reversible electronic interactions between graphene and π-conjugated organic semiconductors/fluoropolymer favorably tune the material and electrical characteristics of mono-layer graphene.

  4. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition

    NASA Astrophysics Data System (ADS)

    Lei, T.; Engelbrecht, K.; Nielsen, K. K.; Neves Bez, H.; Bahl, C. R. H.

    2016-09-01

    Magnetocaloric materials (MCM) with a first order phase transition (FOPT) usually exhibit a large, although sharp, isothermal entropy change near their Curie temperature, compared to materials with a second order phase transition (SOPT). Experimental results of applying FOPT materials in recent magnetocaloric refrigerators (MCR) demonstrated the great potential for these materials, but a thorough study on the impact of the moderate adiabatic temperature change and strong temperature dependence of the magnetocaloric effect (MCE) is lacking. Besides, comparing active magnetic regenerators (AMR) using FOPT and SOPT materials is also of fundamental interest. We present modeling results of multi-layer AMRs using FOPT and SOPT materials based on a 1D numerical model. First the impact of isothermal entropy change, adiabatic temperature change and shape factor describing the temperature dependence of the MCE are quantified and analyzed by using artificially built magnetocaloric properties. Then, based on measured magnetocaloric properties of La(Fe,Mn,Si)13H y and Gd, an investigation on how to layer typical FOPT and SOPT materials with different temperature spans is carried out. Moreover, the sensitivity of variation in Curie temperature distribution for both groups of AMRs is investigated. Finally, a concept of mixing FOPT and SOPT materials is studied for improving the stability of layered AMRs with existing materials.

  5. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung

    2014-09-01

    Cow dung is one of the most abundant wastes generated on earth and has been traditionally used as fertilizer and fuel in most of the developing countries. In this study activated carbon is synthesized from cow dung by a modified chemical activation method, where partially carbonized cow dung is treated with KOH in different ratio. The synthesized activated carbon possesses irregular surface morphology with high surface area in the range of 1500-2000 m2 g-1 with proper amount of micropore and mesopore volume. In particular, we demonstrate that the surface morphology and porosity parameters change with increase in KOH ratio. These activated carbons are tested as electrode material in two-electrode symmetric supercapacitor system in non-aqueous electrolyte and found to exhibit high specific capacitance with excellent retention of it at high current density and for long term operation. In particular, the activated carbon synthesized at 2:1 ratio of KOH and the pre-carbonized char shows the best performance with specific capacitance of 124 F g-1 at 0.1 A g-1 and retains up to 117 F g-1 at 1.0 A g-1 current density. The performance is attributed to high surface area along with optimum amount of micropore and mesopore volume.

  6. Layer like porous materials with hierarchical structure.

    PubMed

    Roth, Wieslaw J; Gil, Barbara; Makowski, Wacław; Marszalek, Bartosz; Eliášová, Pavla

    2016-06-13

    Many chemical compositions produce layered solids consisting of extended sheets with thickness not greater than a few nanometers. The layers are weakly bonded together in a crystal and can be modified into various nanoarchitectures including porous hierarchical structures. Several classes of 2-dimensional (2D) materials have been extensively studied and developed because of their potential usefulness as catalysts and sorbents. They are discussed in this review with focus on clays, layered transition metal oxides, silicates, layered double hydroxides, metal(iv) phosphates and phosphonates, especially zirconium, and zeolites. Pillaring and delamination are the primary methods for structural modification and pore tailoring. The reported approaches are described and compared for the different classes of materials. The methods of characterization include identification by X-ray diffraction and microscopy, pore size analysis and activity assessment by IR spectroscopy and catalytic testing. The discovery of layered zeolites was a fundamental breakthrough that created unprecedented opportunities because of (i) inherent strong acid sites that make them very active catalytically, (ii) porosity through the layers and (iii) bridging of 2D and 3D structures. Approximately 16 different types of layered zeolite structures and modifications have been identified as distinct forms. It is also expected that many among the over 200 recognized zeolite frameworks can produce layered precursors. Additional advances enabled by 2D zeolites include synthesis of layered materials by design, hierarchical structures obtained by direct synthesis and top-down preparation of layered materials from 3D frameworks. PMID:26489452

  7. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response

    NASA Astrophysics Data System (ADS)

    Wang, Wenbin; Zhang, Fujun; Bai, Huitao; Li, Lingliang; Gao, Mile; Zhang, Miao; Zhan, Xiaowei

    2016-03-01

    A series of polymer photodetectors (PPDs) are fabricated based on P3HT as an electron donor and fullerene-free material DC-IDT2T as an electron acceptor. The only difference among these PPDs is the P3HT:DC-IDT2T doping weight ratios from 2 : 1 to 150 : 1. The PPDs with P3HT:DC-IDT2T (100 : 1, w/w) as the active layers exhibit champion external quantum efficiency (EQE) of 28 000% and 4000% corresponding to 390 nm and 750 nm light illumination at -20 V bias, respectively. The photomultiplication (PM) phenomenon should be attributed to the enhanced hole tunneling injection due to the interfacial band bending, which is induced by the trapped electrons in DC-IDT2T near the Al cathode. The high EQE value in the long wavelength range is due to the effect of DC-IDT2T photon harvesting and exciton dissociation on the interfacial trap-assisted hole tunneling injection. Meanwhile, the PPDs with DC-IDT2T as the electron acceptor exhibit superior stability compared with the PPDs with PC71BM as the electron acceptor.A series of polymer photodetectors (PPDs) are fabricated based on P3HT as an electron donor and fullerene-free material DC-IDT2T as an electron acceptor. The only difference among these PPDs is the P3HT:DC-IDT2T doping weight ratios from 2 : 1 to 150 : 1. The PPDs with P3HT:DC-IDT2T (100 : 1, w/w) as the active layers exhibit champion external quantum efficiency (EQE) of 28 000% and 4000% corresponding to 390 nm and 750 nm light illumination at -20 V bias, respectively. The photomultiplication (PM) phenomenon should be attributed to the enhanced hole tunneling injection due to the interfacial band bending, which is induced by the trapped electrons in DC-IDT2T near the Al cathode. The high EQE value in the long wavelength range is due to the effect of DC-IDT2T photon harvesting and exciton dissociation on the interfacial trap-assisted hole tunneling injection. Meanwhile, the PPDs with DC-IDT2T as the electron acceptor exhibit superior stability compared with the PPDs

  8. FINAL REPORT. EXTRACTION AND RECOVERY OF MERCURY AND LEAD FROM AQUEOUS WASTE STREAMS USING REDOX-ACTIVE LAYERED MATERIALS

    EPA Science Inventory

    The goals of this program have been to develop a series of new compounds that act as redox-recyclable heavy metal ion selective materials. This has been a preliminary exploration into the viability of creating materials that act as selective exchange media. We have historically b...

  9. Ultrasonic classification of thin layers within multi-layered materials

    NASA Astrophysics Data System (ADS)

    Hägglund, F.; Carlson, J. E.; Andersson, T.

    2010-01-01

    Methods for non-destructive inspection of layered materials are becoming more and more popular as a way of assuring product integrity and quality. In this paper, we present a model-based technique using ultrasonic measurements for classification of thin bonding layers within three-layered materials. This could be, for example, an adhesive bond between two thin plates, where the integrity of the bonding layer needs to be evaluated. The method is based on a model of the wave propagation of pulse-echo ultrasound that first reduces the measured data to a few parameters for each measured point. The model parameters are then fed into a statistical classifier that assigns the bonding layer to one of a set of predefined classes. In this paper, two glass plates are bonded together with construction silicone, and the classifiers are trained to determine if the bonding layer is intact or if it contains regions of air or water. Two different classification methods are evaluated: nominal logistic regression and discriminant analysis. The former is slightly more computationally demanding but, as the results show, it performs better when the model parameters cannot be assumed to belong to a multivariate Gaussian distribution. The performance of the classifiers is evaluated using both simulations and real measurements.

  10. Magnetic Moment Distribution in Layered Materials

    NASA Astrophysics Data System (ADS)

    Nicholson, D. M. C.; Zhang, X.-G.; Wang, Y.; Shelton, W. A.; Butler, W. H.; Stocks, G. M.; MacLaren, J. M.

    1996-03-01

    Thin layers of magnetic material surrounded by non-magnetic layers display a reduced moment per atom relative to the bulk magnetic material. Plots of sturation magnetization versus magnetic layer thickness can be explained in terms of magnetically dead layers at interfaces. First principles calculations indicate a more complex distribution of magnetic moments. Moment distributions calculated in the local density approximation restricted to colinear spins and with unrestricted spin orientations will be presented for Cu/Ni/Cu, Cu/permalloy/Cu, and Mo/Ni/Mo structures. Work supported by Division of Materials Science, the Mathematical Information and Computational Science Division of the Office of Computational Technology Research, and by the Assistant Secretary of Defence Programs, Technology Management Group, Technology Transfer Initiative, US DOE under subcontract DEAC05-84OR21400 with Martin-Marietta Energy Systems, Inc.

  11. Understanding Radionuclide Interactions with Layered Materials

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  12. Nanoscale buckling deformation in layered copolymer materials

    PubMed Central

    Makke, Ali; Perez, Michel; Lame, Olivier; Barrat, Jean-Louis

    2012-01-01

    In layered materials, a common mode of deformation involves buckling of the layers under tensile deformation in the direction perpendicular to the layers. The instability mechanism, which operates in elastic materials from geological to nanometer scales, involves the elastic contrast between different layers. In a regular stacking of “hard” and “soft” layers, the tensile stress is first accommodated by a large deformation of the soft layers. The inhibited Poisson contraction results in a compressive stress in the direction transverse to the tensile deformation axis. The hard layers sustain this transverse compression until buckling takes place and results in an undulated structure. Using molecular simulations, we demonstrate this scenario for a material made of triblock copolymers. The buckling deformation is observed to take place at the nanoscale, at a wavelength that depends on strain rate. In contrast to what is commonly assumed, the wavelength of the undulation is not determined by defects in the microstructure. Rather, it results from kinetic effects, with a competition between the rate of strain and the growth rate of the instability. PMID:22203970

  13. Bioinspired layered materials with superior mechanical performance.

    PubMed

    Cheng, Qunfeng; Jiang, Lei; Tang, Zhiyong

    2014-04-15

    Nature has inspired researchers to construct structures with ordered layers as candidates for new materials with high mechanical performance. As a prominent example, nacre, also known as mother of pearl, consists of a combination of inorganic plates (aragonite calcium carbonate, 95% by volume) and organic macromolecules (elastic biopolymer, 5% by volume) and shows a unique combination of strength and toughness. Investigations of its structure reveal that the hexagonal platelets of calcium carbonate and the amorphous biopolymer are alternatively assembled into the orderly layered structure. The delicate interface between the calcium carbonate and the biopolymer is well defined. Both the building blocks that make up these assembled layers and the interfaces between the inorganic and organic components contribute to the excellent mechanical property of natural nacre. In this Account, we summarize recent research from our group and from others on the design of bioinspired materials composed by layering various primitive materials. We focus particular attention on nanoscale carbon materials. Using several examples, we describe how the use of different combinations of layered materials leads to particular properties. Flattened double-walled carbon nanotubes (FDWCNTs) covalently cross-linked in a thermoset three-dimensional (3D) network produced the materials with the highest strength. The stiffest layered materials were generated from borate orthoester covalent bonding between adjacent graphene oxide (GO) nanosheets, and the toughest layered materials were fabricated with Al2O3 platelets and chitosan via hydrogen bonding. These new building blocks, such as FDWCNTs and GO, and the replication of the elaborate micro-/nanoscale interface of natural nacre have provided many options for developing new high performance artificial materials. The interface designs for bioinspired layered materials are generally categorized into (1) hydrogen bonding, (2) ionic bonding, and (3

  14. Molecular models and simulations of layered materials.

    SciTech Connect

    Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.

    2008-11-01

    The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites.

  15. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  16. Layered zeolite materials and methods related thereto

    DOEpatents

    Tsapatsis, Michael; Maheshwari, Sudeep; Bates, Frank S; Koros, William J

    2013-08-06

    A novel oxide material (MIN-I) comprising YO.sub.2; and X.sub.2O.sub.3, wherein Y is a tetravalent element and X is a trivalent element, wherein X/Y=O or Y/X=30 to 100 is provided. Surprisingly, MIN-I can be reversibly deswollen. MIN-I can further be combined with a polymer to produce a nanocomposite, depolymerized to produce predominantly fully exfoliated layers (MIN-2), and pillared to produce a pillared oxide material (MIN-3), analogous to MCM-36. The materials are useful in a wide range of applications, such as catalysts, thin films, membranes, and coatings.

  17. Incorporating microorganisms into polymer layers provides bioinspired functional living materials

    PubMed Central

    Gerber, Lukas C.; Koehler, Fabian M.; Grass, Robert N.; Stark, Wendelin J.

    2012-01-01

    Artificial two-dimensional biological habitats were prepared from porous polymer layers and inoculated with the fungus Penicillium roqueforti to provide a living material. Such composites of classical industrial ingredients and living microorganisms can provide a novel form of functional or smart materials with capability for evolutionary adaptation. This allows realization of most complex responses to environmental stimuli. As a conceptual design, we prepared a material surface with self-cleaning capability when subjected to standardized food spill. Fungal growth and reproduction were observed in between two specifically adapted polymer layers. Gas exchange for breathing and transport of nutrient through a nano-porous top layer allowed selective intake of food whilst limiting the microorganism to dwell exclusively in between a confined, well-enclosed area of the material. We demonstrated a design of such living materials and showed both active (eating) and waiting (dormant, hibernation) states with additional recovery for reinitiation of a new active state by observing the metabolic activity over two full nutrition cycles of the living material (active, hibernation, reactivation). This novel class of living materials can be expected to provide nonclassical solutions in consumer goods such as packaging, indoor surfaces, and in biotechnology. PMID:22198770

  18. Scanning Tunneling Microscopy of Layered Materials

    NASA Astrophysics Data System (ADS)

    Qin, Xiaorong

    This dissertation describes studies of the surfaces of layered materials, including graphite intercalation compounds, transition-metal-dichalcogenides, and single layers of MoS_2. with scanning tunneling microscopy (STM). In order to understand how tunneling images reflect the atomic nature of sample surfaces, the electronic and structural properties of intercalated graphite surfaces imaged with STM have been investigated theoretically. The corrugation amplitude (CA) and carbon site asymmetry (CSA) are sensitive to the number of graphite layers covering the first intercalate layer, to the amount and distribution of the charge transferred from intercalate to host and to the surface subband structure. The CA and CSA can be used to map the stage domains across a freshly cleaved surface. The STM images of the surfaces of both donor and acceptor graphite intercalation compounds are discussed. The theory successfully explained the available experimental results, and yielded some predictions which have been verified in recent experiments. A STM system for operation in air was assembled. The crystalline surfaces of graphite and three transition-metal -dichalcogenides (2H-MoS_2, WTe _2 and ReSe_2) have been studied with the STM system. Single layers of MoS_2 can be obtained by the exfoliation of lithium-intercalated MoS_2 powder in water and in several alcohols. In the STM observations, the samples were prepared by depositing either an aqueous or butanol suspension of single-layer MoS_2 on graphite substrates to form restacked films with two monolayers of solvent molecules included between the layers of MoS_2 . The real-space images obtained from the films all showed the existence of an approximate 2 x 1 superstructure on the surfaces, although the 2 x 1 pattern can be modulated by the interface interaction between the MoS_2 layer and the solvent molecules. These results, in conjunction with existing x-ray diffraction and Raman results, imply that the single layers of MoS_2

  19. Ripplocations: A Novel Defect in Layered Materials

    NASA Astrophysics Data System (ADS)

    Gruber, Jacob; Lang, Andrew; Griggs, Justin; Tucker, Garritt; Barsoum, Michel

    Recently, a new defect, the ripplocation, the mechanical buckling of a single atomic layer, was proposed to explain the behavior of two dimensional materials. Leveraging atomistic simulations, this concept is extended to bulk layered materials. Unlike dislocations, ripplocations do not possess a Burgers vector and do not have polarity. In graphite, ripplocations are attracted both to vacancies, where they can annihilate, and other ripplocations, forming larger complexes and eventually kink boundaries. While some ripplocation behavior can be described by dislocation complexes, the failure of these models to explain core interactions suggests that ripplocations are a fundamentally new class of defect. Furthermore, TEM examination of nanoindented Ti3SiC2, where dislocation theory does not provide a complete description of behavior, reveals the presence of defects with no Burgers vector and with rotation and strain fields similar to those predicted in simulation, suggesting the presences of buckled basal planes. Ripplocations have profound implications for the deformation of plastically anisotropic solids, including graphite, layered silicates and the MAX phases.

  20. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto; Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  1. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  2. Layered Atom Arrangements in Complex Materials

    SciTech Connect

    K.E. Sikafus; R.W.Grimes; S.M.Corish; A.R. Cleave; M.Tang; C.R.Stanek; B.P. Uberuaga; J.A.Valdez

    2005-04-15

    In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M{sup 1+}) to tetravalent (M{sup 4+}). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida). We demonstrate that as a function of increasing oxidation state (from M{sup 1+} to M{sup 4+}), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M{sub r}O, MO{sub r/s}O{sub u/v}, MOO (where M and O represent fully dense triangular atom nets and r/s and u/v are fractions used to describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R{bar 3}.

  3. Computational Discovery, Characterization, and Design of Single-Layer Materials

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Hennig, Richard G.

    2014-03-01

    Single-layer materials open up tremendous opportunities for applications in nanoelectronic devices and energy technologies. We first review the four components of a materials science tetrahedron for single-layer materials. We then provide a theoretical perspective of characterizing single-layer materials. This leads to a general data-mining process to predict and computationally characterize emerging single-layer materials. Finally, we comment on limitations and possible improvements of current computational procedures for the discovery, characterization, and design of single-layer materials.

  4. Radionuclide separations using pillared layered materials

    SciTech Connect

    Schroeder, N.C.; Wade, K.L.; Morgan, D.M.

    1998-12-31

    This is the final report of a two-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Pillared Layered Materials (PLMs) are layered inorganic ion exchangers propped apart by metal oxide pillars. PLMs have been synthesized to sorb strontium from liquid nuclear wastes. A study that compared over 60 sorbers for their ability to sorb strontium from Hanford simulants showed that PLMs were the best sorbers; strontium distribution coefficients ({sup Sr}K{sub d}) > 20000 mL/g were obtained. In addition, PLMs showed a high degree of selectivity for strontium over cesium, transition metals, lanthanides and actinides. The sorption of strontium is, however, inhibited by complexants (EDTA); {sup Sr}K{sub d} values drop to <20 mL/g when they are present. The most promising PLMs were the Cr, Ti, Zr, and Si pillared tantalum tungstate. The K{sub d} values for Sr{sup 2+} and Ba{sup 2+} show a strong pH dependence; K{sub d} values increase to >10{sup 4} above pH 12. The general surface complexation mechanism explains the sorption of these cations on PLMs.

  5. Methods for making thin layers of crystalline materials

    DOEpatents

    Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy

    2013-07-23

    Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.

  6. Active Biological Materials

    PubMed Central

    Fletcher, Daniel A.; Geissler, Phillip L.

    2011-01-01

    Cells make use of dynamic internal structures to control shape and create movement. By consuming energy to assemble into highly organized systems of interacting parts, these structures can generate force and resist compression, as well as adaptively change in response to their environment. Recent progress in reconstituting cytoskeletal structures in vitro has provided an opportunity to characterize the mechanics and dynamics of filament networks formed from purified proteins. Results indicate that a complex interplay between length scales and timescales underlies the mechanical responses of these systems and that energy consumption, as manifested in molecular motor activity and cytoskeletal filament growth, can drive transitions between distinct material states. This review discusses the basic characteristics of these active biological materials that set them apart from conventional materials and that create a rich array of unique behaviors. PMID:18999991

  7. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    DOEpatents

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  8. Atomic layer deposition of metal sulfide materials.

    PubMed

    Dasgupta, Neil P; Meng, Xiangbo; Elam, Jeffrey W; Martinson, Alex B F

    2015-02-17

    CONSPECTUS: The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application

  9. Antitumoral materials with regenerative function obtained using a layer-by-layer technique

    PubMed Central

    Ficai, Denisa; Sonmez, Maria; Albu, Madalina Georgiana; Mihaiescu, Dan Eduard; Ficai, Anton; Bleotu, Coralia

    2015-01-01

    A layer-by layer technique was successfully used to obtain collagen/hydroxyapatite-magnetite-cisplatin (COLL/HAn-Fe3O4-CisPt, n=1–7) composite materials with a variable content of hydroxyapatite intended for use in the treatment of bone cancer. The main advantages of this system are the possibility of controlling the rate of delivery of cytostatic agents, the presence of collagen and hydroxyapatite to ensure more rapid healing of the injured bone tissue, and the potential for magnetite to be a passive antitumoral component that can be activated when an appropriate external electromagnetic field is applied. In vitro cytotoxicity assays performed on the COLL/HAn-Fe3O4-CisPt materials obtained using a layer-by layer method confirmed their antitumoral activity. Samples with a higher content of hydroxyapatite had more antitumoral activity because of their better absorption of cisplatin and consequently a higher amount of cisplatin being present in the matrices. PMID:25767374

  10. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  11. Tailoring nanoporous materials by atomic layer deposition.

    PubMed

    Detavernier, Christophe; Dendooven, Jolien; Sree, Sreeprasanth Pulinthanathu; Ludwig, Karl F; Martens, Johan A

    2011-11-01

    Atomic layer deposition (ALD) is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. The self-limiting nature of the chemical reactions ensures precise film thickness control and excellent step coverage, even on 3D structures with large aspect ratios. At present, ALD is mainly used in the microelectronics industry, e.g. for growing gate oxides. The excellent conformality that can be achieved with ALD also renders it a promising candidate for coating porous structures, e.g. for functionalization of large surface area substrates for catalysis, fuel cells, batteries, supercapacitors, filtration devices, sensors, membranes etc. This tutorial review focuses on the application of ALD for catalyst design. Examples are discussed where ALD of TiO(2) is used for tailoring the interior surface of nanoporous films with pore sizes of 4-6 nm, resulting in photocatalytic activity. In still narrower pores, the ability to deposit chemical elements can be exploited to generate catalytic sites. In zeolites, ALD of aluminium species enables the generation of acid catalytic activity. PMID:21695333

  12. Assessing Layered Materials in Gale Crater

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    2001-01-01

    The recent analysis of high resolution Mars Orbiter Camera (MOC) images of layered outcrops in equatorial regions reinforces two important ideas, which will probably eventually become paradigms, about Mars: 1) It has had a long, complex geologic history marked by change, as manifested in the different layers observed, and 2) Standing bodies of water existed for substantial lengths of time, indicating clement conditions possibly conducive to life. Although observations of layering and evidence for lakes and oceans has been reported for years based on Mariner 9 and Viking data, the MOC data show that this layering is much more pervasive and complex than previously thought. These layered sites are ideal for studying the geologic, and possibly biologic, history of Mars. Here, a layered site within Gale Crater is advocated as a Mars Exploration Rover (MER) target. This is one of the few layered areas within closed depressions (e.g., other craters and Vallis Marineris) that meets the landing site constraints and is accessible to both MER A and B.

  13. Mechanically Active Electrospun Materials

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee M.

    Electrospinning, a technique used to fabricate small diameter polymer fibers, has been employed to develop unique, active materials falling under two categories: (1) shape memory elastomeric composites (SMECs) and (2) water responsive fiber mats. (1) Previous work has characterized in detail the properties and behavior of traditional SMECs with isotropic fibers embedded in an elastomer matrix. The current work has two goals: (i) characterize laminated anisotropic SMECs and (ii) develop a fabrication process that is scalable for commercial SMEC manufacturing. The former ((i)) requires electrospinning aligned polymer fibers. The aligned fibers are similarly embedded in an elastomer matrix and stacked at various fiber orientations. The resulting laminated composite has a unique response to tensile deformation: after stretching and releasing, the composite curls. This curling response was characterized based on fiber orientation. The latter goal ((ii)) required use of a dual-electrospinning process to simultaneously electrospin two polymers. This fabrication approach incorporated only industrially relevant processing techniques, enabling the possibility of commercial application of a shape memory rubber. Furthermore, the approach had the added benefit of increased control over composition and material properties. (2) The strong elongational forces experienced by polymer chains during the electrospinning process induce molecular alignment along the length of electrospun fibers. Such orientation is maintained in the fibers as the polymer vitrifies. Consequently, residual stress is stored in electrospun fiber mats and can be recovered by heating through the polymer's glass transition temperature. Alternatively, the glass transition temperature can be depressed by introducing a plasticizing agent. Poly(vinyl acetate) (PVAc) is plasticized by water, and its glass transition temperature is lowered below room temperature. Therefore, the residual stress can be relaxed at room

  14. Enforced Layer-by-Layer Stacking of Energetic Salts towards High-Performance Insensitive Energetic Materials.

    PubMed

    Zhang, Jiaheng; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2015-08-26

    Development of modern high-performance insensitive energetic materials is significant because of the increasing demands for both military and civilian applications. Here we propose a rapid and facile strategy called the "layer hydrogen bonding pairing approach" to organize energetic molecules via layer-by-layer stacking, which grants access to tunable energetic materials with targeted properties. Using this strategy, an unusual energetic salt, hydroxylammonium 4-amino-furazan-3-yl-tetrazol-1-olate, with good detonation performances and excellent sensitivities, was designed, synthesized, and fully characterized. In addition, the expected unique layer-by-layer structure with a high crystal packing coefficient was confirmed by single-crystal X-ray crystallography. Calculations indicate that the layer-stacking structure of this material can absorb the mechanical stimuli-induced kinetic energy by converting it to layer sliding, which results in low sensitivity. PMID:26262555

  15. Novel solutions for thin film layer deposition for organic materials

    NASA Astrophysics Data System (ADS)

    Keiper, Dietmar; Long, Michael; Schwambera, Markus; Gersdorff, Markus; Kreis, Juergen; Heuken, Michael

    2011-03-01

    Innovative systems for carrier-gas enhanced vapor phase deposition of organic layers offer advanced methods for the precise deposition of complex thin-film layer stacks. The approach inherently avoids potential short-comings from solvent-based polymer deposition and offers new opportunities. The process operates at low pressure (thus avoiding complex vacuum setups), and, by employing AIXTRON's extensive experience in freely scalable solutions, can be adapted to virtually any production process and allows for R&D and production systems alike. Deposition of organic layers and stacks recommends the approach for a wide range of organic small molecule and polymer materials (including layers with gradual change of the composition), for conductive layers, for dielectric layers, for barrier systems, for OLED materials, and surface treatments such as oleophobic / hydrophobic coatings. With the combination of other vapor phase deposition solutions, hybrid systems combining organic and inorganic materials and other advanced stacks can be realized.

  16. Intercalation of ethylene glycol into yttrium hydroxide layered materials.

    PubMed

    Xi, Yuanzhou; Davis, Robert J

    2010-04-19

    Intercalation of ethylene glycol into layered yttrium hydroxide containing nitrate counterions was accomplished by heating the reagents in a methanol solution of sodium methoxide under autogenous pressure at 413 K for 20 h. The resulting crystalline material had an expanded interlayer distance of 10.96 A, confirming the intercalation of an ethylene glycol derived species. Characterization of the material by FT-IR spectroscopy, thermogravimetric analysis, and the catalytic transesterification of tributyrin with methanol was consistent with direct bonding of ethylene glycolate anions (O(2)C(2)H(5)(-)) to the yttrium hydroxide layers, forming Y-O-C bonds. The layers of the material are proposed to be held together by H-bonding between the hydroxyls of grafted ethylene glycol molecules attached to adjacent layers. Glycerol can also be intercalated into yttrium hydroxide layered materials by a similar method. PMID:20302308

  17. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  18. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOEpatents

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2016-07-26

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  19. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOEpatents

    Doe, Robert E.; Downie, Craig M.; Fischer, Christopher; Lane, George H.; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin A.; Eaglesham, David

    2016-01-19

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  20. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    SciTech Connect

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  1. Measurement and modeling of terahertz spectral signatures from layered material

    NASA Astrophysics Data System (ADS)

    Kniffin, G. P.; Schecklman, S.,; Chen, J.; Henry, S. C.; Zurk, L. M.; Pejcinovic, B.; Timchenko, A. I.

    2010-04-01

    Many materials such as drugs and explosives have characteristic spectral signatures in the terahertz (THz) band. These unique signatures hold great promise for potential detection utilizing THz radiation. While such spectral features are most easily observed in transmission,real life imaging systems will need to identify materials of interest from reflection measurements,often in non-ideal geometries. In this work we investigate the interference effects introduced by layered materials,whic h are commonly encountered in realistic sensing geometries. A model for reflection from a layer of material is presented,along with reflection measurements of single layers of sample material. Reflection measurements were made to compare the response of two materials; α-lactose monohydrate which has sharp absorption features,and polyethylene which does not. Finally,the model is inverted numerically to extract material parameters from the measured data as well as simulated reflection responses from the explosive C4.

  2. Layer-by-layer nanoencapsulation of camptothecin with improved activity

    PubMed Central

    Parekh, Gaurav; Pattekari, Pravin; Joshi, Chaitanya; Shutava, Tatsiana; DeCoster, Mark; Levchenko, Tatyana; Torchilin, Vladimir; Lvov, Yuri

    2014-01-01

    160 nm nanocapsules containing up to 60% of camptothecin in the core and 7–8 polyelectrolyte bilayers in the shell were produced by washless layer-by-layer assembly of heparin and block-copolymer of poly-L-lysine and polyethylene glycol. The outer surface of the nanocapsules was additionally modified with polyethylene glycol of 5 kDa or 20 kDa molecular weight to attain protein resistant properties, colloidal stability in serum and prolonged release of the drug from the capsules. An advantage of the LbL coated capsules is the preservation of camptothecin lactone form with the shell assembly starting at acidic pH and improved chemical stability of encapsulated drug at neutral and basic pH, especially in the presence of albumin that makes such formulation more active than free camptothecin. LbL nanocapsules preserve the camptothecin lactone form at pH 7.4 resulting in triple activity of the drug toward CRL2303 glioblastoma cell. PMID:24508806

  3. Anisotropic layers with through-thickness thermal and material variations

    SciTech Connect

    Ferrari, M. )

    1992-09-01

    The thermoelastic problem of an inhomogeneous anisotropic layer with material properties that vary smoothly through the thickness is examined. The problem is solved via a semiinverse technique, relying on the assumptions of the simply-connectedness of the body. The solution is applicable to the analysis of materials with chemical composition gradients and/or temperature-dependent material properties. 14 refs.

  4. Interface crack problems in layered orthotropic materials

    NASA Astrophysics Data System (ADS)

    Erdogan, F.; Wu, Binghua

    1993-05-01

    T HE PRIMARY objective of this paper is to study the influence of the structure and thickness of the interfacial regions on the strain energy release rate in bonded isotropic or orthotropic materials containing collinear interface cracks. The problem is formulated in terms of a system of singular integral equations of the second kind which is solved by using a relatively simple and efficient technique. A number of examples are given for various crack geometries and material combinations. The results show that the effect of the properties and the relative thickness of the interfacial region on the stress intensity factors and the strain energy release rate can be highly significant.

  5. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  6. Advanced Lithium Ion Battery Materials Prepared with Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Cavanagh, Andrew S.

    As the world consumes the dwindling supply of fossil fuels, an alternative to gasoline powered vehicles will become necessary. Lithium ion batteries (LIBs) are emerging as the dominant power source for portable electronics, and are seen as a promising energy source in the development of electric vehicles. Current LIB technology is not well suited for vehicles, increases in the energy density, power density and durability are needed before LIB are ready for widespread use in electric vehicles. LiCoO2 and graphite are the dominant cathode and anode active materials, respectively in LIBs. On the cathode side, instabilities in LiCoO 2 can lead to the deterioration of the LIB. Decomposition of electrolyte on the graphite anode surface to form a solid-electrolyte interphase (SEI) consumes lithium from the cathode resulting in a lower battery capacity. Instabilities in the in the SEI can result in catastrophic battery failure. Previous studies have employed metal oxides films, typically grown with wet chemical techniques, to stabilize LiCoO2 and mitigate the formation of the SEI on graphite. The thicknesses of films grown with wet chemical techniques was typically ˜50--1000 A. In order to achieve higher power densities, the particle size of LIB active materials is being scaled down. As active materials get smaller the mass contribution of a protective film can become a significant fraction of the total mass. Atomic layer deposition (ALD) has been used to grow ultra thin films of Al2O3 on LiCoO2 and graphite. By altering the interaction between the active material and the battery electrolyte it was possible to improve the stability of both LiCoO2 and graphite electrodes in LIBs. In the case of graphite, the Al2O3 film may be thought of as an artificial SEI. During the initial charge-discharge cycle of a LIB, the electrolyte decomposes on the anode to form the SEI. The formation of the SEI is believed to prevent further decomposition of the electrolyte on the anode surface

  7. Sand dune materials and polar layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Thomas, P.; Weitz, C.

    1989-09-01

    The possible place of sand in the Martian polar layered deposits is examined. The erosional features in layered deposits and the morphologic relationship of dunes and the layered deposits are discussed. The colors of the polar dunes are shown to be similar to the colors of dunes at other latitudes, suggesting that the polar dunes can be explained without any special or exotic mechanism. Consideration is given to mixing and segregation of materials by eolian processes observed on Mars, showing that sand was probably carried to the polar regions during part of the formation of the layered deposits.

  8. Method for depositing layers of high quality semiconductor material

    DOEpatents

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  9. Tunable Bragg filters with a phase transition material defect layer.

    PubMed

    Wang, Xi; Gong, Zilun; Dong, Kaichen; Lou, Shuai; Slack, Jonathan; Anders, Andre; Yao, Jie

    2016-09-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities. PMID:27607643

  10. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  11. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials.

    PubMed

    Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander; Malik, Rahul; Kang, ShinYoung; Ceder, Gerbrand

    2016-07-01

    Lithium-ion batteries are now reaching the energy density limits set by their electrode materials, requiring new paradigms for Li(+) and electron hosting in solid-state electrodes. Reversible oxygen redox in the solid state in particular has the potential to enable high energy density as it can deliver excess capacity beyond the theoretical transition-metal redox-capacity at a high voltage. Nevertheless, the structural and chemical origin of the process is not understood, preventing the rational design of better cathode materials. Here, we demonstrate how very specific local Li-excess environments around oxygen atoms necessarily lead to labile oxygen electrons that can be more easily extracted and participate in the practical capacity of cathodes. The identification of the local structural components that create oxygen redox sets a new direction for the design of high-energy-density cathode materials. PMID:27325096

  12. Hole transporting material 5, 10, 15-tribenzyl-5H-diindolo[3, 2-a:3‧, 2‧-c]-carbazole for efficient optoelectronic applications as an active layer

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Qiong; J. Potscavage, William, Jr.; Zhang, Jian-Hua; Wei, Bin; Huang, Rong-Juan

    2015-02-01

    In order to explore the novel application of the transparent hole-transporting material 5,10,15-tribenzyl-5H-diindolo[3,2-a:3‧,2‧-c]-carbazole (TBDI), in this article TBDI is used as an active layer but not a buffer layer in a photodetector (PD), organic light-emitting diode (OLED), and organic photovoltaic cell (OPV) for the first time. Firstly, the absorption and emission spectra of a blend layer comprised of TBDI and electron-transporting material bis-(2-methyl-8-quinolinate) 4-phenylphenolate (BAlq) are investigated. Based on the absorption properties, an organic PD with a peak absorption at 320 nm is fabricated, and a relatively-high detectivity of 2.44 × 1011 cm·Hz1/2/W under 320-nm illumination is obtained. The TBDI/tris (8-hydroxyquinoline) aluminum (Alq3) OLED device exhibits a comparable external quantum efficiency and current efficiency to a traditional 4, 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (α-NPD)/Alq3 OLED. A C70-based Schottky junction with 5 wt%-TBDI yields a power conversion efficiency of 5.0%, which is much higher than 1.7% for an α-NPD-based junction in the same configuration. These results suggest that TBDI has some promising properties which are in favor of the hole-transporting in Schottky junctions with a low-concentration donor. Project supported by the Funding Program for World-Leading Innovative R & D on Science and Technology (FIRST) from JSPS, the Fund from the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 14DZ2280900 and 14XD1401800), and the Natural Science Foundation of Shanghai (Grant No. 15ZR1416600).

  13. Two-Dimensional Layered Materials-Based Spintronics

    NASA Astrophysics Data System (ADS)

    Su, Guohui; Wu, Xing; Tong, Wenqi; Duan, Chungang

    2015-12-01

    The recent emergence of two-dimensional (2D) layered materials — graphene and transition metal dichalcogenides — opens a new avenue for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. Here, we provide a brief review of experimental achievements concerning electrical spin injection, spin transport, graphene nanoribbons spintronics and transition metal dichalcogenides spin and pseudospins. Future research in 2D layered materials spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including pseudospins-valley phenomena in graphene and other 2D materials.

  14. Analysis of the Formation of Multi-Layer Carbon Nanotubes in the Process of Mechanical Activation of the Pyrolysis Products of Vegetable Raw Materials

    NASA Astrophysics Data System (ADS)

    Reva, V. P.; Filatenkov, A. E.; Yagofarov, V. U.; Gulevskii, D. A.; Kuryavyi, V. G.; Mansurov, Yu N.

    2016-04-01

    The carbon nanotubes are formed by pyrolytic and mechanochemical technology. Amorphous carbon is produced at 950°C and then subjected to mechanochemical treatment in a planetary mill for 1–46 h. Analysis ofinfluence of duration of mechanical activation of amorphous carbon on the morphology of moldable multilayer carbon nanotubes. It is demonstrated that prolonged mechanical activation of carbon composite in a vario-planetary mill promotes to formation of aggregates and amorphous carbon and to loss of thermal stability of nanotubeswith furtherconduct of vacuum annealing.

  15. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics

    SciTech Connect

    Doggart, P.; Bristow, N.; Kettle, J.

    2014-09-14

    The influence of indium tin oxide [(In{sub 2}O{sub 3}:Sn), ITO] material properties on the output performance of organic photovoltaic (OPV) devices has been modelled and investigated. In particular, the effect of altering carrier concentration (n), thickness (t), and mobility (μ{sub e}) in ITO films and their impact on the optical performance, parasitic resistances and overall efficiency in OPVs was studied. This enables optimal values of these parameters to be calculated for solar cells made with P3HT:PC{sub 61}BM and PCPDTBT:PC{sub 71}BM active layers. The optimal values of n, t and μ{sub e} are not constant between different OPV active layers and depend on the absorption spectrum of the underlying active layer material system. Consequently, design rules for these optimal values as a function of donor bandgap in bulk-heterojunction active layers have been formulated.

  16. Ultra-thin Materials from Atomic Layer Deposition for Microbolometers

    NASA Astrophysics Data System (ADS)

    Eigenfeld, Nathan Thomas

    This research focuses on the incorporation of atomic layer deposition (ALD) materials into microbolometer devices for infrared (IR) imaging. Microbolometers are suspended micro-electromechanical (MEMS) devices, which respond electrically to absorbed IR radiation. By minimizing the heat capacity (thermal mass) of these devices, their performance may be substantially improved. Thus, implementing ultra-thin freestanding ALD materials into microbolometer devices will offer a substantial reduction in the overall heat capacity of the device. A novel nanofabrication method is developed to produce robust ultra-thin suspended structures from ALD generated materials including W, Ru and Al2O 3. Unique aspects of ALD such as high conformality offer the ability to create 3-dimensional structures with mechanical reinforcement. Additionally, the ability to tune residual stresses via atomically precise thickness control enables the fabrication of flat suspended structures. Since microbolometer elements are electro-thermally active, the electro-thermal properties of ultra-thin ALD W, Ru and Al2O3 are investigated. Several distinct deviations from bulk electro-thermal properties of resistivity, temperature coefficient of resistance, thermal conductivity and specific heat capacity are identified and interpreted with traditional nanoscale transport modeling and theory. For example, for ALD W, the electrical resistivity is increased by up to 99%, thermal conductivity is reduced by up to 91% and specific heat capacity increased 70% from bulk. Finally, the developed ALD nano-fabrication process and measured ALD material properties are combined to fabricate an industrial level, state-of-the-art microbolometer pixel structure with 1.4X performance improvement. Further microbolomter performance enhancements based on the developed nanofabrication methods and electro-thermal measurements are discussed.

  17. Material parameter computation for multi-layered vocal fold models

    PubMed Central

    Schmidt, Bastian; Stingl, Michael; Leugering, Günter; Berry, David A.; Döllinger, Michael

    2011-01-01

    Today, the prevention and treatment of voice disorders is an ever-increasing health concern. Since many occupations rely on verbal communication, vocal health is necessary just to maintain one’s livelihood. Commonly applied models to study vocal fold vibrations and air flow distributions are self sustained physical models of the larynx composed of artificial silicone vocal folds. Choosing appropriate mechanical parameters for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In the present work, a combination of experimental and numerical approaches to compute material parameters for synthetic vocal fold models is presented. The material parameters are derived from deformation behaviors of excised human larynges. The resulting deformations are used as reference displacements for a tracking functional to be optimized. Material optimization was applied to three-dimensional vocal fold models based on isotropic and transverse-isotropic material laws, considering both a layered model with homogeneous material properties on each layer and an inhomogeneous model. The best results exhibited a transversal-isotropic inhomogeneous (i.e., not producible) model. For the homogeneous model (three layers), the transversal-isotropic material parameters were also computed for each layer yielding deformations similar to the measured human vocal fold deformations. PMID:21476672

  18. Layered material characterization using ultrasonic transmission. An inverse estimation methodology.

    PubMed

    Messineo, María G; Rus, Guillermo; Eliçabe, Guillermo E; Frontini, Gloria L

    2016-02-01

    This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments. PMID:26456278

  19. Designing high-performance layered thermoelectric materials through orbital engineering.

    PubMed

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043

  20. Designing high-performance layered thermoelectric materials through orbital engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-03-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  1. Designing high-performance layered thermoelectric materials through orbital engineering

    PubMed Central

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043

  2. Visibility of two-dimensional layered materials on various substrates

    SciTech Connect

    Müller, M. R. E-mail: knoch@iht.rwth-aachen.de; Gumprich, A.; Ecik, E.; Kallis, K. T.; Winkler, F.; Kardynal, B.; Petrov, I.; Kunze, U.; Knoch, J. E-mail: knoch@iht.rwth-aachen.de

    2015-10-14

    For the investigation of 2D layered materials such as graphene, transition-metal dichalcogenides, boron nitride, and their heterostructures, dedicated substrates are required to enable unambiguous identification through optical microscopy. A systematic study is conducted, focusing on various 2D layered materials and substrates. The simulated colors are displayed and compared with microscopy images. Additionally, the issue of defining an appropriate index for measuring the degree of visibility is discussed. For a wide range of substrate stacks, layer thicknesses for optimum visibility are given along with the resulting sRGB colors. Further simulations of customized stacks can be conducted using our simulation tool, which is available for download and contains a database featuring a wide range of materials.

  3. Materials Science and Engineering with Two-dimensional Atomic Layers

    NASA Astrophysics Data System (ADS)

    Ajayan, Pulickel M.

    There has been tremendous interest in recent years to study two-dimensional atomic layers which form building blocks of many bulk layered materials and devices. This talk will focus on the materials science aspects of 2D atomic layer, in particular the emerging structures based on transition metal chalcogenides. Several aspects that include synthesis, characterization and device fabrication will be explored with the objective of achieving all 2D functional structures for future technologies. The concept of nanoscale engineering and the goal of creating new artificially stacked van der Waals solids will be discussed through a number of examples. The challenges involved in scalable synthesis, doping, defect engineering, surface modifications of monolayers and the controlled creation of stacked structures and in-plane junctions from multiple compositions will be discussed. Some of anticipated applications of these materials will also be discussed.

  4. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    SciTech Connect

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; Ling, Xi; Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.

  5. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    DOE PAGESBeta

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; Ling, Xi; Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attractedmore » great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.« less

  6. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials.

    PubMed

    Lin, Jingjing; Liang, Liangbo; Ling, Xi; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Sumpter, Bobby G; Meunier, Vincent; Tong, Lianming; Zhang, Jin

    2015-12-16

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structures, including orthorhombic black phosphorus (BP) and triclinic rhenium disulfide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions between the 2D materials and molecules are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials. PMID:26583533

  7. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. PMID:25536861

  8. Porous Materials with Tunable Structure and Mechanical Properties via Templated Layer-by-Layer Assembly.

    PubMed

    Ziminska, Monika; Dunne, Nicholas; Hamilton, Andrew R

    2016-08-31

    The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer-nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials. PMID:27513218

  9. LayerOptics: Microscopic modeling of optical coefficients in layered materials

    NASA Astrophysics Data System (ADS)

    Vorwerk, Christian; Cocchi, Caterina; Draxl, Claudia

    2016-04-01

    Theoretical spectroscopy is a powerful tool to describe and predict optical properties of materials. While nowadays routinely performed, first-principles calculations only provide bulk dielectric tensors in Cartesian coordinates. These outputs are hardly comparable with experimental data, which are typically given by macroscopic quantities, crucially depending on the laboratory setup. Even more serious discrepancies can arise for anisotropic materials, e.g., organic crystals, where off-diagonal elements of the dielectric tensor can significantly contribute to the spectral features. Here, we present LayerOptics, a versatile and user-friendly implementation, based on the solution of the Maxwell's equations for anisotropic materials, to compute optical coefficients in anisotropic layered materials. We apply this tool for post-processing full dielectric tensors of molecular materials, including excitonic effects, as computed from many-body perturbation theory using the exciting code. For prototypical examples, ranging from optical to X-ray frequencies, we show the importance of combining accurate ab initio methods to obtain dielectric tensors, with the solution of the Maxwell's equations to compute optical coefficients accounting for optical anisotropy of layered systems. Good agreement with experimental data supports the potential of our approach, in view of achieving microscopic understanding of spectroscopic properties in complex materials.

  10. CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer

    PubMed Central

    Xu, Toby; Tekes, Coskun; Degertekin, F. Levent

    2014-01-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786

  11. CMUTs with high-K atomic layer deposition dielectric material insulation layer.

    PubMed

    Xu, Toby; Tekes, Coskun; Degertekin, F

    2014-12-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786

  12. Activity measurements of radon from construction materials.

    PubMed

    Fior, L; Nicolosi Corrêa, J; Paschuk, S A; Denyak, V V; Schelin, H R; Soreanu Pecequilo, B R; Kappke, J

    2012-07-01

    This work presents the results of radon concentration measurements of construction materials used in the Brazilian industry, such as clay (red) bricks and concrete blocks. The measurements focused on the detection of indoor radon activity during different construction stages and the analysis of radionuclides present in the construction materials. For this purpose, sealed chambers with internal dimensions of approximately 60×60×60 cm3 were built within a protected and isolated laboratory environment, and stable air humidity and temperature levels were maintained. These chambers were also used for radon emanation reduction tests. The chambers were built in four major stages: (1) assembly of the walls using clay (red) bricks, concrete blocks, and mortar; (2) installation of plaster; (3) finishing of wall surface using lime; and (4) insulation of wall surface and finishing using paint. Radon measurements were performed using polycarbonate etched track detectors. By comparing the three layers applied to the masonry walls, it was concluded that only the last step (wall painting using acrylic varnish) reduced the radon emanation, by a factor of approximately 2. Samples of the construction materials (clay bricks and concrete blocks) were ground, homogenized, and subjected to gamma-ray spectrometry analysis to evaluate the activity concentrations of 226Ra, 232Th and 40K. The values for the index of the activity concentration (I), radium equivalent activity (Raeq), and external hazard index (Hext) showed that these construction materials could be used without restrictions or concern about the equivalent dose limit (1 mSv/year). PMID:22280793

  13. Adhesion layer for etching of tracks in nuclear trackable materials

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A method for forming nuclear tracks having a width on the order of 100-200 nm in nuclear trackable materials, such as polycarbonate (LEXAN) without causing delamination of the LEXAN. The method utilizes an adhesion film having a inert oxide which allows the track to be sufficiently widened to >200 nm without delamination of the nuclear trackable materials. The adhesion film may be composed of a metal such as Cr, Ni, Au, Pt, or Ti, or composed of a dielectric having a stable surface, such as silicon dioxide (SiO.sub.2), silicon nitride (SiN.sub.x), and aluminum oxide (AlO). The adhesion film can either be deposited on top of the gate metal layer, or if the properties of the adhesion film are adequate, it can be used as the gate layer. Deposition of the adhesion film is achieved by standard techniques, such as sputtering or evaporation.

  14. Ultralight Weight Optical Systems Using Nano-Layered Synthesized Materials

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckinridge, James

    2014-01-01

    Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthesized materials that enable the development and fabrication of ultralight weight optical device systems that enable many NASA missions to collect science data imagery using small satellites. In addition to significantly reducing weight, the nano-layered synthesized materials offer advantages in performance, size, and cost.

  15. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-07-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morpho-dynamics and for measuring and predicting bed load transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to re-work the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three-dimensions. Normalizing active layer thickness and dividing into 10 sub-layers we show that all grain sizes occur with almost equal frequency in all sub-layers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bed load prediction a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  16. Molecular Beam Epitaxy of Layered Material Superlattices and Heterostructures

    NASA Astrophysics Data System (ADS)

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace

    2014-03-01

    Stacking of various layered materials is being pursued widely to realize various devices and observe novel physics. Mostly, these have been limited to exfoliation and stacking either manually or in solution, where control on rotational alignment or order of stacking is lost. We have demonstrated molecular beam epitaxy (MBE) growth of Bi2Se3/MoSe2 superlatticeand Bi2Se3/MoSe2/SnSe2 heterostructure on sapphire. We have achieved a better control on the order of stacking and number of layers as compared to the solution technique. We have characterized these structures using RHEED, Raman spectroscopy, XPS, AFM, X-ray reflectometry, cross-section (cs) and in-plane (ip) TEM. The rotational alignment is dictated by thermodynamics and is understood using ip-TEM diffraction patterns. Layered growth and long range order is evident from the streaky RHEED pattern. Abrupt change in RHEED pattern, clear demarcation of boundary between layers seen using cs-TEM and observation of Raman peaks corresponding to all the layers suggest van-der-waals epitaxy. In our knowledge this is a first demonstration of as grown superlattices and heterostuctures involving transition metal dichalcogenides and is an important step towards the goal of stacking of 2D crystals like lego blocks.

  17. Atomic Layer Deposition for the Conformal Coating of Nanoporous Materials

    DOE PAGESBeta

    Elam, Jeffrey W.; Xiong, Guang; Han, Catherine Y.; Wang, H. Hau; Birrell, James P.; Welp, Ulrich; Hryn, John N.; Pellin, Michael J.; Baumann, Theodore F.; Poco, John F.; et al

    2006-01-01

    Amore » tomic layer deposition ( ALD ) is ideal for applying precise and conformal coatings over nanoporous materials. We have recently used ALD to coat two nanoporous solids: anodic aluminum oxide ( AAO ) and silica aerogels. AAO possesses hexagonally ordered pores with diameters d ∼ 40 nm and pore length L ∼ 70 microns. The AAO membranes were coated by ALD to fabricate catalytic membranes that demonstrate remarkable selectivity in the oxidative dehydrogenation of cyclohexane.dditional AAO membranes coated with ALD Pd films show promise as hydrogen sensors. Silica aerogels have the lowest density and highest surface area of any solid material. Consequently, these materials serve as an excellent substrate to fabricate novel catalytic materials and gas sensors by ALD .« less

  18. Elastic properties of nanostructured materials with layered grain boundary structure

    NASA Astrophysics Data System (ADS)

    Karakasidis, T. E.; Charitidis, C. A.; Skarakis, D.; Chouliaras, F.

    2007-08-01

    Atomistic calculations of the elastic constants for a bulk nanostructured material that consists of a layered structure where alternating layers meet along high angle grain boundaries and where atoms interact via a Lennard-Jones potential are presented. The calculations of the elastic constants were performed in the frame of homogeneous deformations for a wide range of layer widths ranging from 2.24 up to 74.62 nm. The results showed that the relaxation of the atomic structure affects the elastic constants for the cases where more than 5% of atoms are located in the GB region. Also it was found that the way that external stresses are applied on the system affects the values of the obtained elastic properties, with the elastic constants related to the characteristic directions of the grain boundary being the most affected ones. The findings of this work are of interest for the fabrication methods of nanostructured materials, the measurement methods of their elastic properties as well as multiscale modeling schemes of nanostructured materials.

  19. Active material based active sealing technology: Part 1. Active seal requirements vs. active material actuator properties

    NASA Astrophysics Data System (ADS)

    Henry, Christopher P.; Carter, William; Herrera, Guillermo A.; McKnight, Geoffrey P.; Browne, Alan L.; Johnson, Nancy L.; Bazzi, Imad F.

    2010-04-01

    Current seals used for vehicle closures/swing panels are essentially flexible, frequently hollow structures whose designs are constrained by numerous requirements, many of them competing, including door closing effort (both air bind and seal compression), sound isolation, prevention of water leaks, and accommodation of variations in vehicle build. This paper documents the first portion of a collaborative research study/exploration of the feasibility of and approaches for using active materials with shape and stiffness changing attributes to produce active seal technologies, seals with improved performance. An important design advantage of an active material approach compared to previous active seal technologies is the distribution of active material regions throughout the seal length, which would enable continued active function even with localized failure. Included as a major focus of this study was the assessment of polymeric active materials because of their potential ease of integration into the current seal manufacturing process. In Part 1 of this study, which is documented in this paper, potential materials were evaluated in terms of their cost, activation mechanisms, and mechanical and actuation properties. Based on these properties, simple designs were proposed and utilized to help determine which materials are best suited for active seals. Shape memory alloys (SMA) and electroactive polymers (EAP) were judged to be the most promising.

  20. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  1. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  2. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  3. Melanin as an active layer in biosensors

    SciTech Connect

    Piacenti da Silva, Marina Congiu, Mirko Oliveira Graeff, Carlos Frederico de; Fernandes, Jéssica Colnaghi Biziak de Figueiredo, Natália Mulato, Marcelo

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  4. Melanin as an active layer in biosensors

    NASA Astrophysics Data System (ADS)

    Piacenti da Silva, Marina; Fernandes, Jéssica Colnaghi; de Figueiredo, Natália Biziak; Congiu, Mirko; Mulato, Marcelo; de Oliveira Graeff, Carlos Frederico

    2014-03-01

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  5. Theoretical fracture criterion of the layered elastic composite materials

    NASA Astrophysics Data System (ADS)

    Ćilli, A.

    2016-03-01

    The theoretical fracture limit in compression of a composite material with two isotropic homogeneous elastic layers is studied using the piecewise homogeneous body model with the three-dimensional theory of elasticity. We assumed the layers have the initial local imperfections and these imperfections are moved with respect to each other by the same length which is expressed by the angle β. The aim of the investigations was to study the influence of this length on the values of the theoretical fracture criterion limit. The numerical results for the influence of the initial local imperfections on the values of fracture limit are presented. It is therefore concluded that the values of the theoretical fracture limit increase with the length of the shifting.

  6. Materials design of ceramic-based layer structures for crowns.

    PubMed

    Lawn, B R; Deng, Y; Lloyd, I K; Janal, M N; Rekow, E D; Thompson, V P

    2002-06-01

    Radial cracking has been identified as the primary mode of failure in all-ceramic crowns. This study investigates the hypothesis that critical loads for radial cracking in crown-like layers vary explicitly as the square of ceramic layer thickness. Experimental data from tests with spherical indenters on model flat laminates of selected dental ceramics bonded to clear polycarbonate bases (simulating crown/dentin structures) are presented. Damage initiation events are video-recorded in situ during applied loading, and critical loads are measured. The results demonstrate an increase in the resistance to radial cracking for zirconia relative to alumina and for alumina relative to porcelain. The study provides simple a priori predictions of failure in prospective ceramic/substrate bilayers and ranks ceramic materials for best clinical performance. PMID:12097438

  7. Studies of layered and pillared manganese oxide materials

    NASA Astrophysics Data System (ADS)

    Ma, Ying

    Synthetic Birnessite, an octahedral layered manganese oxide material called OL-1 was synthesized with Na+, K+, Na +/Mg2+, K+/Mg2+, Na +/K+ ions as interlayer cations by redox reactions between permanganate and alcohols in a strong basic media. Chromia pillared OL-1s were prepared under reflux conditions using trinuclear chromium hydroxyl acetate as a pillaring agent followed by calcination in a N2 atmosphere at 200°C. Vanadium oxide pillared OL-1s were obtained by intercalating neutral vanadyl acetylacetonate (VOacac) or vanadium acetylacetonate (Vacac) into the interlayer of OL-1 and subsequently calcining in air at 300°C. The synthesis procedures were monitored using X-ray diffraction studies. The resultant materials were characterized by XRD, X-ray absorption, X-ray photoelectron spectra, FTIR, UV-VIS, inductively coupled plasma, transmission electron spectroscopy, scanning electron microscopy with energy dispersive X-ray analysis, potentiometric titration, thermal analyses, TPD measurements, BET surface area and pore size distribution measurements. OL-1 materials prepared using this alcohol route showed enhanced thermal stabilities and increased Mg accommodation compared to OL-1s prepared with other methods. Based on the analysis methods developed here, Na-OL-1 exhibited recoverable and reversible structural and surface O2 oxygen species while K-OL-1 showed higher stability. Na-OL-1 had predominantly Bronsted acid sites resulting from OH groups bonded to Mn on Na-OL-1 surfaces, while the Na/Mg-OL-1 had mainly Lewis acid sites. Large porosity was obtained in chromia pillared OL-1 materials with a narrow pore size distribution centered around 18 A. Although these materials remained "amorphous" as determined by XRD after calcination, TEM morphology studies suggest that the materials were still layered. EXAFS studies indicated the formation of Cr-O-Mn bonds in the resultant materials via comer-shared linkages of CrO6 and MnO6 octahedra. Good crystallinity in

  8. Nanoscale engineering materials by supercritical fluid and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Peng, Qing

    With the development of material science and technology, modification of substrates, which have random geometry and high aspect ratio three dimensional (3D) complex structures, with desired functional, reactive and stable coatings becomes important and challenging. The ability to fabricate mono- or multi-layers of functional materials with precisely controlled dimensions, finely tuned composition and molecular structures, attracts significant interests in materials science and is the key to construct such devices and structures at nano- and micro-scale with desired properties. In this study, supercritical carbon dioxide (scCO2) has been studied as an alternative route for modifying substrates due to the unique gas-like (low viscosity, high diffusivity and zero surface tension) and liquid-like properties (high density). (1) The reaction kinetics of metal oxides thin film deposition from pyrolysis of metal organics in scCO2 was studied in detail. This method was demonstrated as a powerful technique to coat oxides, including Al2O3, Ga2O3 and others, into 3D high aspect ratio complex structure of carbon nanotubes (CNTs) forest. (2) The low temperature scCO 2 based hydrogenolysis process was developed as a useful way to functionalize aligned CNTs forest with dense Nickel nanoparticles. On the second part of this work, atomic layer deposition (ALD)/molecular layer deposition (MLD), as a vapor phase, stepwise and self-limiting vacuum based deposition process, was demonstrated as a powerful way to form highly conformal and uniform film onto substrates, even into highly complex 3D complex structures. In this study, (4) Metal oxide ALD is applied onto 3D electrospun polymer microfiber mats template to illustrate an effective and robust strategy to fabricate long and uniform metal oxide microtubes with precisely controllable wall thickness. Designer tubes of various sizes and different materials were demonstrated by using this method. (5) By further extending this technique

  9. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-12-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morphodynamics, and for measuring and predicting bedload transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to rework the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs (digital elevation models) of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three dimensions. By normalizing active layer thickness and dividing into 10 sublayers, we show that all grain sizes occur with almost equal frequency in all sublayers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bedload prediction, a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  10. First-charge instabilities of layered-layered lithium-ion-battery materials.

    PubMed

    Croy, Jason R; Iddir, Hakim; Gallagher, Kevin; Johnson, Christopher S; Benedek, Roy; Balasubramanian, Mahalingam

    2015-10-01

    Li- and Mn-rich layered oxides with composition xLi2MnO3·(1 -x)LiMO2 enable high capacity and energy density Li-ion batteries, but suffer from degradation with cycling. Evidence of atomic instabilities during the first charge are addressed in this work with X-ray absorption spectroscopy, first principles simulation at the GGA+U level, and existing literature. The pristine material of composition xLi2MnO3·(1 -x)LiMn0.5Ni0.5O2 is assumed in the simulations to have the form of LiMn2 stripes, alternating with NiMn stripes, in the metal layers. The charged state is simulated by removing Li from the Li layer, relaxing the resultant system by steepest descents, then allowing the structure to evolve by molecular dynamics at 1000 K, and finally relaxing the evolved system by steepest descents. The simulations show that about ¼ of the oxygen ions in the Li2MnO3 domains are displaced from their original lattice sites, and form oxygen-oxygen bonds, which significantly lowers the energy, relative to that of the starting structure in which the oxygen sublattice is intact. An important consequence of the displacement of the oxygen is that it enables about ⅓ of the (Li2MnO3 domain) Mn ions to migrate to the delithiated Li layers. The decrease in the coordination of the Mn ions is about twice that of the Ni ions. The approximate agreement of simulated coordination number deficits for Mn and Ni following the first charge with analysis of EXAFS measurements on 0.3Li2MnO3·0.7LiMn0.5Ni0.5O2 suggests that the simulation captures significant features of the real material. PMID:26334949

  11. Failure modes and materials design for biomechanical layer structures

    NASA Astrophysics Data System (ADS)

    Deng, Yan

    Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa

  12. Gate induced superconductivity in layered material based electronic double layer field effect transistors

    NASA Astrophysics Data System (ADS)

    Ye, J. T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y.

    2010-12-01

    Applying the principle of field effect transistor to layered materials provides new opportunities to manipulate their electronic properties for interesting sciences and applications. Novel gate dielectrics like electronic double layer (EDL) formed by ionic liquids are demonstrated to achieve an electrostatic surface charge accumulation on the order of 1014 cm-2. To realize electric field-induced superconductivity, we chose a layered compound: ZrNCl, which is known to be superconducting by introducing electrons through intercalation of alkali metals into the van der Waals gaps. A ZrNCl-based EDL transistor was micro fabricated on a thin ZrNCl single crystal made by mechanical micro-cleavage. Accumulating charges using EDL gate dielectrics onto the channel surface of ZrNCl shows effective field effect modulation of its electronic properties. Sheet resistance of ZrNCl EDL transistor is reduced by applying a gate voltage from 0 to 4.5 V. Temperature dependence of sheet resistance showed clear evidence of metal-insulator transition upon gating, observed at a gate voltage higher than 3.5 V. Furthermore, gate-induced superconductivity took place after metal-insulator transition when the transistor is cooled down to about 15 K.

  13. Layer-by-layer polyelectrolyte deposition: a mechanism for forming biocomposite materials

    PubMed Central

    Tan, YerPeng; Yildiz, Umit Hakan; Wei, Wei; Waite, J. Herbert; Miserez, Ali

    2014-01-01

    Complex coacervates prepared from poly-Aspartic acid (polyAsp) and poly-L-Histidine (polyHis) were investigated as models of the metastable protein phases used in the formation of biological structures such as squid beak. When mixed, polyHis and polyAsp form coacervates whereas poly-L-Glutamic acid (polyGlu) forms precipitates with polyHis. Layer-by-layer (LbL) structures of polyHis-polyAsp on gold substrates were compared with those of precipitate-forming polyHis-polyGlu by monitoring with iSPR and QCM-D. PolyHis-polyAsp LbL was found to be stiffer than polyHis-polyGlu LbL with most water evicted from the structure but with sufficient interfacial water remaining for molecular rearrangement to occur. This thin layer is believed to be fluid and like preformed coacervate films, capable of spreading over both hydrophilic ethylene glycol as well as hydrophobic monolayers. These results suggest that coacervate-forming polyelectrolytes deserve consideration for potential LbL applications and point to LbL as an important process by which biological materials form. PMID:23600626

  14. Thin-Layer Chromatography: Four Simple Activities for Undergraduate Students.

    ERIC Educational Resources Information Center

    Anwar, Jamil; And Others

    1996-01-01

    Presents activities that can be used to introduce thin-layer chromatography at the undergraduate level in relatively less developed countries and that can be performed with very simple and commonly available apparati in high schools and colleges. Activities include thin-layer chromatography with a test-tube, capillary feeder, burette, and rotating…

  15. Improvement of lithium storage performance of Sn-alloy anode materials by a polypyrrole protective layer

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Wen, Zhaoyin; Liu, Yu; Jin, Jun

    2015-01-01

    The SnO2-based anode with improved reversible capacity and cyclability was achieved by employing a protective layer composed of crosslinked polypyrrole nanowires. Scanning electron microscopy measurement was performed to characterize the surface and cross section morphology of electrodes before and after cycling. The crosslinked polypyrrole nanowire protective layer with good elasticity adhered to the SnO2 surface could form a network, leading to buffer the volumetric swelling of active materials during the lithiation/delithiation process. A good cycling stability and an excellent rate capability of the modified electrode were achieved.

  16. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  17. Characterization and optimization of OLED materials and layer sequences

    NASA Astrophysics Data System (ADS)

    Kowalsky, Wolfgang; Becker, Edo; Benstem, Torsten; Johannes, Hans-Hermann; Metzdorf, Dirk; Neuner, H.; Schoebel, Joerg

    2001-02-01

    In recent years, considerable effort has been put into the development of light emitting devices based on evaporated layers of organic semiconductors. To date, matrix displays consisting of organic light emitting diodes (OLEDs) have been brought into marketable commodity. OLED matrix displays offer high contrast, wide viewing angle and a broad temperature range at low power consumption. In contrast to polymer devices, OLEDs are processed in ultrahigh vacuum systems. The organic source materials are sublimated from effusion cells. Due to the sensitivity of organic thin films, device structuring by conventional etching techniques is not feasible and alternative structuring techniques were developed. Electrical current in organic devices is limited by the low conductivity of organic semiconductors and by energy barriers at the metal-organic semiconductor interface. Photoelectric measurements facilitate the determination of barrier height differences between various electrode setups. Further insight in the energy band alignment at organic heterointerfaces are gained by ultraviolet photoelectron spectroscopy (UPS). In addition to widely employed electrical (I-V, C-V) and optical (P-I) measurements, thermally stimulated current (TSC) and luminescence (TSL) allow the characterization and a more detailed understanding of carrier traps and charge transport in organic devices. Energy transfer in a doped OLED emitting layer can be investigated by time-resolved photoluminescence measurements.

  18. Layered cathode materials for lithium ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  19. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  20. Large-scale simulations of layered double hydroxide nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Thyveetil, Mary-Ann

    Layered double hydroxides (LDHs) have the ability to intercalate a multitude of anionic species. Atomistic simulation techniques such as molecular dynamics have provided considerable insight into the behaviour of these materials. We review these techniques and recent algorithmic advances which considerably improve the performance of MD applications. In particular, we discuss how the advent of high performance computing and computational grids has allowed us to explore large scale models with considerable ease. Our simulations have been heavily reliant on computational resources on the UK's NGS (National Grid Service), the US TeraGrid and the Distributed European Infrastructure for Supercomputing Applications (DEISA). In order to utilise computational grids we rely on grid middleware to launch, computationally steer and visualise our simulations. We have integrated the RealityGrid steering library into the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 1 . which has enabled us to perform re mote computational steering and visualisation of molecular dynamics simulations on grid infrastruc tures. We also use the Application Hosting Environment (AHE) 2 in order to launch simulations on remote supercomputing resources and we show that data transfer rates between local clusters and super- computing resources can be considerably enhanced by using optically switched networks. We perform large scale molecular dynamics simulations of MgiAl-LDHs intercalated with either chloride ions or a mixture of DNA and chloride ions. The systems exhibit undulatory modes, which are suppressed in smaller scale simulations, caused by the collective thermal motion of atoms in the LDH layers. Thermal undulations provide elastic properties of the system including the bending modulus, Young's moduli and Poisson's ratios. To explore the interaction between LDHs and DNA. we use molecular dynamics techniques to per form simulations of double stranded, linear and plasmid DNA up

  1. Organic thin film transistors: from active materials to novel applications

    NASA Astrophysics Data System (ADS)

    Torsi, L.; Cioffi, N.; Di Franco, C.; Sabbatini, L.; Zambonin, P. G.; Bleve-Zacheo, T.

    2001-08-01

    In this paper, a bird's eye view of most of the organic materials employed as n-channel and p-channel transistor active layers is given along with the relevant device performances; organic thin film transistors (OTFT) operation regimes are discussed and an interesting perspective application of OTFT as multi-parameter gas sensor is proposed.

  2. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  3. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  4. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    PubMed

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material. PMID:27252003

  5. Aggregation and sinking behaviour of resuspended fluffy layer material

    NASA Astrophysics Data System (ADS)

    Ziervogel, Kai; Forster, Stefan

    2005-09-01

    The influence of pelagic diatom addition ( Skeletonema costatum) on aggregation dynamics of resuspended fluffy layer material containing natural microorganism assemblages (bacteria and pennate diatoms) was studied during two roller table experiments. Sediment samples were taken at a fine sand site (16 m water depth) located in Mecklenburg Bight, south-western Baltic Sea. Fluff was experimentally resuspended from sediment cores and aggregation processes with and without S. costatum were studied in rotating tanks. Total particulate matter was incorporated into artificial aggregates in equal shares after both roller table experiments. However, biogenic parameters (particulate organic carbon, particulate organic nitrogen, and carbohydrate equivalents), as well as cell numbers of bacteria and pennate diatoms were found in higher percentages in S. costatum aggregates compared to aggregates without S. costatum. Transparent exopolymer particles were apparently irrelevant in the aggregation process during both experiments. Settling velocities of S. costatum aggregates exceeding 1000 μm in diameter showed a significantly higher mean settling velocity compared to aggregates without S. costatum of the same size. The pronounced effect of pelagic diatoms on aggregation processes of fluff in terms of particle attributes, size, and therewith sinking velocities could be demonstrated and may lead to further insight into near bed particle transport in coastal waters.

  6. Antifouling and Antibacterial Multifunctional Polyzwitterion/Enzyme Coating on Silicone Catheter Material Prepared by Electrostatic Layer-by-Layer Assembly.

    PubMed

    Vaterrodt, Anne; Thallinger, Barbara; Daumann, Kevin; Koch, Dereck; Guebitz, Georg M; Ulbricht, Mathias

    2016-02-01

    The formation of bacterial biofilms on indwelling medical devices generally causes high risks for adverse complications such as catheter-associated urinary tract infections. In this work, a strategy for synthesizing innovative coatings of poly(dimethylsiloxane) (PDMS) catheter material, using layer-by-layer assembly with three novel functional polymeric building blocks, is reported, i.e., an antifouling copolymer with zwitterionic and quaternary ammonium side groups, a contact biocidal derivative of that polymer with octyl groups, and the antibacterial hydrogen peroxide (H2O2) producing enzyme cellobiose dehydrogenase (CDH). CDH oxidizes oligosaccharides by transferring electrons to oxygen, resulting in the production of H2O2. The design and synthesis of random copolymers which combine segments that have antifouling properties by zwitterionic groups and can be used for electrostatically driven layer-by-layer (LbL) assembly at the same time were based on the atom-transfer radical polymerization of dimethylaminoethyl methacrylate and subsequent partial sulfobetainization with 1,3-propane sultone followed by quaternization with methyl iodide only or octyl bromide and thereafter methyl iodide. The alternating multilayer systems were formed by consecutive adsorption of the novel polycations with up to 50% zwitterionic groups and of poly(styrenesulfonate) as the polyanion. Due to its negative charge, enzyme CDH was also firmly embedded as a polyanionic layer in the multilayer system. This LbL coating procedure was first performed on prefunctionalized silicon wafers and studied in detail with ellipsometry as well as contact angle (CA) and zetapotential (ZP) measurements before it was transferred to prefunctionalized PDMS and analyzed by CA and ZP measurements as well as atomic force microscopy. The coatings comprising six layers were stable and yielded a more neutral and hydrophilic surface than did PDMS, the polycation with 50% zwitterionic groups having the largest

  7. Process for forming one or more substantially pure layers in substrate material using ion implantation

    DOEpatents

    Musket, Ronald G.; Brown, David W.; Munir, Zuhair A.

    1990-01-01

    A process is disclosed for forming a substantially pure layer of an implantable element in a substrate material by (a) selecting an implantable element and a substrate material to be implanted which, at the temperatures to be used, have limited mutual solubility in one another and do not form any intermediate phases with one another; (b) implanting a sufficient amount of the implantable element in the substrate material to permit formation of the desired substantially pure layer of the implantable element in the substrate material; and (c) annealing the implanted substrate material to form the desired layer. The annealing step may not be required if the desired layer was formed during the implantation.

  8. Advertising Content in Physical Activity Print Materials.

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.

    2002-01-01

    Evaluated the advertising content contained in physical activity print materials. Analysis of print materials obtained from 80 sources (e.g., physicians' offices and fitness events) indicated that most materials contained some form of advertising. Materials coming from commercial product vendors generally contained more advertising than materials…

  9. Sporadic Layer es and Siesmic Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid; Blokhin, Alexandr; Kalashnikova, Tatyana

    2016-07-01

    To determine the influence of seismogenic disturbances on the calm state of the iono-sphere and assess the impact of turbulence development in sporadic-E during earthquake prepa-ration period we calculated the variation in the range of semitransparency ∆fES = f0ES - fbES. The study was based primarily on the ionograms obtained by vertical sounding of the ionosphere at Dushanbe at nighttime station from 15 to 29 August 1986. In this time period four successive earthquakes took place, which serves the purpose of this study of the impact of seis-mogenic processes on the intensity of the continuous generation of ionospheric turbulence. Analysis of the results obtained for seismic-ionospheric effects of 1986 earthquakes at station Dushanbe has shown that disturbance of ionospheric parameters during earthquake prepa-ration period displays a pronounced maximum with a duration of t = 1-6 hours. Ionospheric effects associated with the processes of earthquake preparation emerge quite predictably, which verifies seismogenic disturbances in the ionosphere. During the preparation of strong earthquakes, ionograms of vertical sounding produced at station Dushanbe - near the epicenter area - often shown the phenomenon of spreading traces of sporadic Es. It is assumed that the duration of manifestation of seismic ionospheric precursors in Du-shanbe τ = 1 - 6 hours may be associated with deformation processes in the Earth's crust and var-ious faults, as well as dissimilar properties of the environment of the epicentral area. It has been shown that for earthquakes with 4.5 ≤ M ≤ 5.5 1-2 days prior to the event iono-spheric perturbations in the parameters of the sporadic layer Es and an increase in the value of the range of semitransparency Es - ΔfEs were observed, which could lead to turbulence at altitudes of 100-130 km.

  10. Electrochemical reactions of layered niobate material as novel anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Nakayama, Hideki; Nose, Masafumi; Nakanishi, Shinji; Iba, Hideki

    2015-08-01

    The electrochemical performances of layered niobium oxide materials were investigated for the first time as novel anode active materials for the sodium-ion battery. The layered niobate with the formula KNb3O8 was synthesized by a solid-state reaction and has been evaluated as an anode electrode by a cyclic voltammetry technique and galvanostatic charge/discharge tests. The crystal structure of KNb3O8 contains the NbO6 octahedral units and potassium alkali-metal ions interlayer to form the layered structure. KNb3O8 has a redox reaction around 1 V vs. Na/Na+ and has a reversible capacity of 104 mAh/g corresponding to the 1.7 Na+ insertion/extraction in the KNb3O8 structure. The Nb K-edge X-ray absorption near edge structure (XANES) shows that the Nb oxidation state is converted from Nb5+ to Nb4+ during the Na+ insertion stage, and reversibly recovered to Nb5+ during the Na+ extraction stage. This is the first report that the layered niobate of KNb3O8 reversibly reacts with Na+ at the potential around 1 V vs. Na/Na+ via the Nb5+/4+ redox reaction.

  11. Exoemissive noise activity of different metallic materials

    NASA Astrophysics Data System (ADS)

    Bichevin, V.; Käämbre, H.; Sammelselg, V.; Kelle, H.; Asari, E.; Saks, O.

    1996-11-01

    A method is proposed for testing the exoemission activity of different metals, used as materials in high sensitivity electrometry (attoammetry). The presented test results allow us to select materials with weaker exoelectron spurious currents.

  12. Analysis of Charge Carrier Transport in Organic Photovoltaic Active Layers

    NASA Astrophysics Data System (ADS)

    Han, Xu; Maroudas, Dimitrios

    2015-03-01

    We present a systematic analysis of charge carrier transport in organic photovoltaic (OPV) devices based on phenomenological, deterministic charge carrier transport models. The models describe free electron and hole transport, trapping, and detrapping, as well as geminate charge-pair dissociation and geminate and bimolecular recombination, self-consistently with Poisson's equation for the electric field in the active layer. We predict photocurrent evolution in devices with active layers of P3HT, P3HT/PMMA, and P3HT/PS, as well as P3HT/PCBM blends, and photocurrent-voltage (I-V) relations in these devices at steady state. Charge generation propensity, zero-field charge mobilities, and trapping, detrapping, and recombination rate coefficients are determined by fitting the modeling predictions to experimental measurements. We have analyzed effects of the active layer morphology for layers consisting of both pristine drop-cast films and of nanoparticle (NP) assemblies, as well as effects on device performance of insulating NP doping in conducting polymers and of specially designed interlayers placed between an electrode and the active layer. The model predictions provide valuable input toward synthesis of active layers with prescribed morphology that optimize OPV device performance.

  13. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  14. Construction and evaluation of nitric oxide generating vascular graft material loaded with organoselenium catalyst via layer-by-layer self-assembly.

    PubMed

    An, Jun; Chen, SiYuan; Gao, JingChen; Zhang, Xu; Wang, YuanYuan; Li, YanDong; Mikhalovsky, Sergey; Kong, DeLing; Wang, ShuFang

    2015-08-01

    A new biomimetic material for artificial blood vessel with in situ catalytic generation of nitric oxide (NO) was prepared in this study. Organoselenium immobilized polyethyleneimine as NO donor catalyst and sodium alginate were alternately loaded onto the surface of electrospun polycaprolactone matrix via electrostatic layer-by-layer self-assembly. This material revealed significant NO generation when contacting NO donor S-nitrosoglutathione (GSNO). Adhesion and spreading of smooth muscle cells were inhibited on this material in the presence of GSNO, while proliferation of endothelial cells was promoted. In vitro platelet adhesion and arteriovenous shunt experiments demonstrated good antithrombotic properties of this material, with inhibited platelet activation and aggregation, and prevention of acute thrombosis. This study may provide a new method of improving cellular function and antithrombotic property of vascular grafts. PMID:26014212

  15. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  16. Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Gao, Zhe; Zhang, Bin; Zhao, Shichao; Qin, Yong

    2016-05-01

    In this work, graphene is coated with nitrogen-doped carbon layer, which is produced by a carbonization process of aromatic polyimide (PI) films deposited on the surfaces of graphene by molecular layer deposition (MLD). The utilization of MLD not only allows uniform coating of PI layers on the surfaces of pristine graphene without any surface treatment, but also enables homogenous dispersion of doped nitrogen atoms in the carbonized products. The as-prepared N-doped carbon layer coated graphene (NC-G) exhibited remarkable capacitance performance as electrode materials for supercapacitor, showing a high specific capacitance of 290.2 F g-1 at current density of 1 A g-1 in 6 M KOH aqueous electrolyte, meanwhile maintaining good rate performance and stable cycle capability. The NC-G synthesized by this way represents an alternative promising candidate as electrode material for supercapacitors.

  17. Activation of porous MOF materials

    DOEpatents

    Hupp, Joseph T; Farha, Omar K

    2014-04-01

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  18. Activation of porous MOF materials

    DOEpatents

    Hupp, Joseph T; Farha, Omar K

    2013-04-23

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  19. Mono-layer BC2 a high capacity anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hardikar, Rahul; Samanta, Atanu; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek

    2015-04-01

    Mono-layer of graphene with high surface area compared to the bulk graphite phase, shows less Li uptake. The Li activity or kinetics can be modified via defects and/or substitutional doping. Boron and Nitrogen are the best known dopants for carbonaceous anode materials. In particular, boron doped graphene shows higher capacity and better Li adsorption compared to Nitrogen doped graphene. Here, using first principles density functional theory calculations, we study the spectrum of boron carbide (BCx) mono-layer phases in order to estimate the maximum gravimetric capacity that can be achieved by substitutional doping in graphene. Our results show that uniformly boron doped BC2 phase shows a high capacity of? 1400 mAh/g, much higher than previously reported capacity of BC3. Supported by Korea Institute of Science and Technology.

  20. Design and synthesis of a new layered thermoelectric material LaPbBiS3O.

    PubMed

    Sun, Yun-Lei; Ablimit, Abduweli; Zhai, Hui-Fei; Bao, Jin-Ke; Tang, Zhang-Tu; Wang, Xin-Bo; Wang, Nan-Lin; Feng, Chun-Mu; Cao, Guang-Han

    2014-10-20

    A new quinary oxysulfide LaPbBiS3O was designed and successfully synthesized via a solid-state reaction in a sealed evacuated quartz tube. This material, composed of stacked NaCl-like [M4S6] (where M = Pb, Bi) layers and fluorite-type [La2O2] layers, crystallizes in the tetragonal space group P4/nmm with a = 4.0982(1) Å, c = 19.7754(6) Å, and Z = 2. Electrical resistivity and Hall effect measurements demonstrate that it is a narrow gap semiconductor with an activation energy of ∼17 meV. The thermopower and the figure of merit at room temperature were measured to be -52 μV/K and 0.23, respectively, which makes LaPbBiS3O and its derivatives be promising for thermoelectric applications. PMID:25272272

  1. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide.

    PubMed

    Khan, A I; Lei, L; Norquist, A J; O'Hare, D

    2001-11-21

    A series of pharmaceutically active compounds including diclofenac, gemfibrozil, ibuprofen, naproxen, 2-propylpentanoic acid, 4-biphenylacetic acid and tolfenamic acid can be reversibly intercalated into a layered double hydroxide, initial studies suggest that these materials may have application as the basis of a novel tuneable drug delivery system. PMID:12240066

  2. Noise and vibration level reduction by covering metal structures with layers of damping materials. [considering viscoelastic insulation layers

    NASA Technical Reports Server (NTRS)

    Rugina, I.; Paven, H. T. O.

    1974-01-01

    One of the most important methods of reducing the noise and vibration level is the damping of the secondary sources, such as metal plates, often used in vehicle structures, by means of covering materials with high internal viscosity. Damping layers are chosen at an optimum thickness corresponding to the frequency and temperature range in which a certain structure works. The structure's response corresponding to various real situations is analyzed by means of a measuring chain including electroacoustical or electromechanical transducers. The experimental results provide the dependence of the loss factor and damping transmission coefficient as a function of the damping layer thickness or of the frequency for various viscoelastic covering materials.

  3. Microstrip antennas on/in anisotropic material layers

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Yu; Castaneda, Jesse A.; Nakatani, Akifumi

    1992-11-01

    Accurate fullwave analyses of microstrip dipoles on multi-layer substrates with generalized anisotropic permittivity and permeability have been developed. The solution to the problem of microstrip dipoles on/in gyrotropic substrates has been obtained. The potential of electronically shaped, scanned, and gain enhanced element factors with ferrite substrates has been theoretically demonstrated. The scattering and radiation problems were solved. The use of biased ferrite substrates to simultaneously reduce RCS and preserve antenna in-band gain has also been described. Infinite phased arrays of microstrip dipoles and probe-fed patches on general anisotropic multi-layer substrates have been analyzed. All the solutions involve the dyadic Green's function for the anisotropic layered structure and the application of the method of moments to an electric field integral equation.

  4. Layer response theory: Energetics of layered materials from semianalytic high-level theory

    NASA Astrophysics Data System (ADS)

    Dobson, John F.; Gould, Tim; Lebègue, Sébastien

    2016-04-01

    We present a readily computable semianalytic layer response theory (LRT) for analysis of cohesive energetics involving two-dimensional layers such as BN or graphene. The theory approximates the random phase approximation (RPA) correlation energy. Its RPA character ensures that the energy has the correct van der Waals asymptotics for well-separated layers, in contrast to simple pairwise atom-atom theories, which fail qualitatively for layers with zero electronic energy gap. At the same time, our theory is much less computationally intensive than the full RPA energy. It also gives accurate correlation energies near the binding minimum, in contrast to Lifshitz-type theory. We apply our LRT successfully to graphite and to BN, and to a graphene-BN heterostructure.

  5. Final Report: Imaging of Buried Nanoscale Optically Active Materials

    SciTech Connect

    Appelbaum, Ian

    2011-07-05

    This is a final report covering work done at University of Maryland to develop a Ballistic Electron Emission Luminescence (BEEL) microscope. This technique was intended to examine the carrier transport and photon emission in deeply buried optically-active layers and thereby provide a means for materials science to unmask the detailed consequences of experimentally controllable growth parameters, such as quantum dot size, statistics and orientation, and defect density and charge recombination pathways.

  6. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  7. Improving the efficiency of organic solar cells by varying the material concentration in the photoactive layer

    NASA Astrophysics Data System (ADS)

    Latimer, Kevin Anthony

    Polymer-fullerene bulk heterojunction solar cells have been a rapidly improving technology over the past decade. To further improve the relatively low energy conversion efficiencies of these solar cells, several modifications need to be made to the overall device structure. Emerging technologies include cells that are fabricated with interfacial layers to facilitate charge transport, and tandem structures are being introduced to harness the absorption spectrum of polymers with varying bandgap energies. When new structures are implemented, each layer of the cell must be optimized in order for the entire device to function efficiently. The most volatile layer of these devices is the photoactive layer solution of poly-3(hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC 61BM). Even slight variations in pre-application and post-treatment will lead to large variations in the electrical, physical, and optical properties of the solar cell module. To improve the effectiveness of the photoactive layer, the material concentration of P3HT and PC61BM in the liquid phase, prior to application, was altered. The weight ratio of P3HT to PC61BM was kept at a constant 1 to 0.8, while the amounts of each dissolved in 2 mL of chlorobenzene were varied. Solar cells were fabricated, and J-V characterizations were performed to determine the electrical traits of the devices. Atomic force microscopy (AFM) measurements were done on the photoactive layer films to determine the physical characteristics of the films such as overall surface topology and RMS roughness. Also, variable angle spectroscopic ellipsometry (VASE) was used to determine film thickness and extinction coefficient of the active layers. To further understand the optical properties of the polymer-fullerene blend, the absorption spectrum of the films were calculated through UV-VIS spectrophotometry. It was found that an increased concentration of the polymer-fullerene blend prior to application

  8. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity.

    PubMed

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-09-15

    Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl-Ti3O7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10(-2)min(-1), which is about 9 and 4 times higher than its precursors H2Ti3O7 and ZnAl-LDH, respectively. Based on UV-vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior. PMID:25151238

  9. Operando Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction

    DOE PAGESBeta

    Liu, Haodong; An, Ke; Venkatachalam, Subramanian; Qian, Danna; Zhang, Minghao; Meng, Ying Shirley

    2016-04-06

    Neutron diffraction under operando battery cycling is used to study the lithium and oxygen dynamics of high Li-rich Li(Lix/3Ni(3/8-3x/8)Co(1/4-x/4)Mn(3/8+7x/24)O2 (x = 0.6, HLR) and low Li-rich Li(Lix/3Ni(1/3-x/3)Co(1/3-x/3)Mn(1/3+x/3)O2 (x = 0.24, LLR) compounds that exhibit different degrees of oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show largely contrasting changes for the two cathodes where the LLR exhibits larger movement of oxygen and lattice contractions in comparison to the HLR that maintains relatively constant lattice parameters and oxygen position during the high voltage plateau until the end of charge. Density functional theory calculations show the presencemore » of oxygen vacancy during the high voltage plateau; changes in the lattice parameters and oxygen position are consistent with experimental observations. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer, and transition metal layer is related to the different charge and discharge characteristics. At the beginning of charging, the lithium extraction predominately occurs within the lithium layer. The lithium extraction from the lithium layer slows down and extraction from the transition metal layer evolves at a faster rate once the high voltage plateau is reached.« less

  10. Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials.

    PubMed

    Song, Gyujin; Ryu, Jaegeon; Ko, Seunghee; Bang, Byoung Man; Choi, Sinho; Shin, Myoungsoo; Lee, Sang-Young; Park, Soojin

    2016-06-01

    Surface modification of electrode active materials has garnered considerable attention as a facile way to meet stringent requirements of advanced lithium-ion batteries. Here, we demonstrated a new coating strategy based on dual layers comprising antimony-doped tin oxide (ATO) nanoparticles and carbon. The ATO nanoparticles are synthesized via a hydrothermal method and act as electronically conductive/electrochemically active materials. The as-synthesized ATO nanoparticles are introduced on natural graphite along with citric acid used as a carbon precursor. After carbonization, the carbon/ATO-decorated natural graphite (c/ATO-NG) is produced. In the (carbon/ATO) dual-layer coating, the ATO nanoparticles coupled with the carbon layer exhibit unprecedented synergistic effects. The resultant c/ATO-NG anode materials display significant improvements in capacity (530 mA h g(-1) ), cycling retention (capacity retention of 98.1 % after 50 cycles at a rate of C/5), and low electrode swelling (volume expansion of 38 % after 100 cycles) which outperform that of typical graphite materials. Furthermore, a full-cell consisting of a c/ATO-NG anode and an LiNi0.5 Mn1.5 O4 cathode presents excellent cycle retention (capacity retention of >80 % after 100 cycles). We envision that the dual-layer coating concept proposed herein opens a new route toward high-performance anode materials for lithium-ion batteries. PMID:27027583

  11. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned

  12. Interannual active layer thermal and dynamics evolution at the crater Lake CALM site, Deception Island (Antarctica).

    NASA Astrophysics Data System (ADS)

    Ramos, Miguel; Vieira, Gonzalo; Ángel De Pablo, Miguel; Molina, Antonio; Abramov, Andrey

    2015-04-01

    Deception Island, is an active strato-volcano on South Shetland Archipelago of Antarctica (62° 55' 0″ S, 60° 37' 0″ W), is a cold region with harsh remote and hostile environmental conditions. The permafrost and active layer existence, and the cold climate conditions together with volcanic material with height water content inside made this region of the Earth a perfect site to study the active layer and permafrost evolution involved in the Circumpolar Active Layer South (CALM-S) program. The active layer is measured in late January or firs february (during the end of the thaw period) at the "Crater Lake" CALM site (62°58'06.7''; 60°40'44.8'') on Deception Island, Antarctica, at the period 2006 to 2014 we obtained a mean annual value of 29,7±2 cm. In this paper, we describe the spatial active layer thickness distribution and report the reduction on the mean thickness between February 2006 and 2014. Below the active layer, permafrost could be also reported (with a mean thickness of 4.5± 0.5 m.) based on the temperature data acquired by sensors installed at different depth inside the soil; three different shallow boreholes was drilled (1.0 m., 1.6 m., 4.5 m. in depth) and we have been registered its temperature gradient at the 2010 to 2013 period. Here we use all those data 1) to describe the thermal behavior of the permafrost at the CALM site, and 2) to describe its evolution (aggradation/degradation) along fourteen years of continuous measurements. We develop this study, to known the thermal behavior of the permafrost and the active layer related with the air/soil interaction being one of the most important factors the snow layer that was measured by the installation of termo-snowmeters with the complement of an automatic digital camera during the 2008 to 2014 period. On the other hand, the pyroclastics soil materials has a very high values of water content then the latent heat in the freezing/thawing process controls the active layer evolution and the

  13. Effect of layered composite meta-structures on the optical activity and ellipticity of structural biomolecules

    NASA Astrophysics Data System (ADS)

    Khoo, E. H.; Hor, Y. Li; Leong, Eunice S. P.; Liu, Y. J.

    2014-09-01

    In this paper, we design layered composite meta-structures to investigate its' effect on the optical activity and circular dichroism (CD). The layered composite meta-structures consist of thin gammadion nanostructure with thickness λ/10, where λ is the incident wavelength. The layered meta-structures are alternate between a dielectric and gold (AU) material. Each layered composite meta-gammadion is arranged together in an array of pitch 700 nm. In the first case, 3 layers of meta-gammadion, with metal-insulator-metal (MIM) and insulator-metal-insulator (IMI) configuration are simulated with material properties from optical hand book. There are 3 modes in the CD spectrum, which can be characterized into Bloch CD mode and hybrid CD modes. Compared with the CD spectrum of whole structure of gammadion in gold with same total height, the CD of the MIM layered composite are larger. When the number layer increase to 5, it is observed that the CD is reduced by 30% and there is a red shift in the Bloch CD mode and a slight blue shift in the hybrid CD modes. By further increasing the number of layers to 7, we observed further CD increment and larger wavelength shift in the CD modes. The layered composite meta-gammadion is fabricated using template stripping method. Experimental results also show excellent agreement with the simulation results for CD and wavelength shift. We submerge the layered meta-gammadion into a solution of chiral molecules. The CD spectrum of the meta-gammadion shows a larger wavelength shift compared to pure metal structures. This indicate a more sensitive and robust detection of chiral molecules.

  14. Process for forming one or more substantially pure layers in substrate material using ion implantation

    DOEpatents

    Musket, Ronald G.; Brown, David W.; Munir, Zuhair A.

    1992-01-01

    A process is disclosed for forming a substantially pure monocrystalline layer of an implantable element in a monocrystalline substrate material by (a) selecting an implantable element and a monocrystalline substrate material to be implanted which, at the temperatures to be used, have limited mutual solubility in one another and do not form any intermediate phases with one another; (b) implanting a sufficient amount of the implantable element in the substrate material to permit formation of the desired substantially pure layer of the implantable element in the substrate material; and (c) annealing the implanted substrate material to form the desired layer. The annealing step may not be required if the desired layer was formed during the implantation. Also disclosed is an article made by the process.

  15. Process for forming one or more substantially pure layers in substrate material using ion implantation

    DOEpatents

    Musket, R.G.; Brown, D.W.; Munir, Z.A.

    1990-12-11

    A process is disclosed for forming a substantially pure layer of an implantable element in a substrate material by (a) selecting an implantable element and a substrate material to be implanted which, at the temperatures to be used, have limited mutual solubility in one another and do not form any intermediate phases with one another; (b) implanting a sufficient amount of the implantable element in the substrate material to permit formation of the desired substantially pure layer of the implantable element in the substrate material; and (c) annealing the implanted substrate material to form the desired layer. The annealing step may not be required if the desired layer was formed during the implantation. 2 figs.

  16. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    PubMed

    Stefik, Morgan

    2016-07-01

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting. PMID:27246652

  17. Spray-assisted layer-by-Layer (LbL) assembly of anisotropic materials

    NASA Astrophysics Data System (ADS)

    de, Souvik; Suarez Martinez, Pilar; Kavarthapu, Avanti; Lutkenhaus, Jodie

    2015-03-01

    Layer-by-layer (LbL) assembly has gained tremendous interest as it allows one to incorporate a large variety of molecules with nano-scale precision and very good reproducibility. In addition to charged polymers, the technique has become extremely popular to fabricate tailor-made thin films containing anisotropic nanomaterials (e.g., graphene oxide sheets). The challenge is that a standard protocol to fabricate ``all-polyelectrolyte'' LbL films may not necessarily give rise to satisfactory film growth when applied to LbL assembly where one of the adsorbing components is an anisotropic nanomaterial. Therefore, in this contribution, we combine polymers and anisotropic nanomaterials via dip- and spray-assisted LbL assembly and investigate the effect of charge density, exfoliation, concentration etc. of the components on the growth behavior and the film quality. The end result is a conformal, pin-hole free coating on model substrates (glass, silicon, metal) over a large area.

  18. Three-dimensional textures and defects of soft material layering revealed by thermal sublimation

    PubMed Central

    Yoon, Dong Ki; Kim, Yun Ho; Kim, Dae Seok; Oh, Seong Dae; Smalyukh, Ivan I.; Clark, Noel A.; Jung, Hee-Tae

    2013-01-01

    Layering is found and exploited in a variety of soft material systems, ranging from complex macromolecular self-assemblies to block copolymer and small-molecule liquid crystals. Because the control of layer structure is required for applications and characterization, and because defects reveal key features of the symmetries of layered phases, a variety of techniques have been developed for the study of soft-layer structure and defects, including X-ray diffraction and visualization using optical transmission and fluorescence confocal polarizing microscopy, atomic force microscopy, and SEM and transmission electron microscopy, including freeze-fracture transmission electron microscopy. Here, it is shown that thermal sublimation can be usefully combined with such techniques to enable visualization of the 3D structure of soft materials. Sequential sublimation removes material in a stepwise fashion, leaving a remnant layer structure largely unchanged and viewable using SEM, as demonstrated here using a lamellar smectic liquid crystal. PMID:24218602

  19. Radionuclide separations using pillared layered materials. Final report

    SciTech Connect

    Clearfield, A.

    1995-08-31

    The objective of this project is to prepare an all inorganic strontium specific sorbent or ion exchanger for the removal of highly alkaline nuclear waste solutions. A series of clays and layered titanates were pillared and calcined to convert their essentially two dimensional structure to three dimensional porous structures with high surface areas. The pillaring agents were alumina, zirconia, chromia and silica based. The pillared clays, particularly those containing Zr pillars, achieved moderate (Kd as high at 13,700 ml/g with V:m = 28) selectivities for Sr{sup 2+}. In contrast, the silica pillared titanates showed exceptional affinities for Sr{sup 2+} with Kd values in excess of 100,000 ml/g in 5M NaNO{sup 3} + 1M NaOH. These latter results suggest a more detailed study of the pillared titanates in the presence of simulants closely resembling real waste solutions.

  20. Development of high-performance tri-layer material

    NASA Astrophysics Data System (ADS)

    Owe-Yang, D. C.; Yano, Toshiharu; Ueda, Takafumi; Iwabuchi, Motoaki; Ogihara, Tsutomu; Shirai, Shozo

    2008-03-01

    As chip size and pattern size continue to shrink, the thickness of photo resist is getting thinner and thinner. One of the major reasons is to prevent the small resist features from collapse. It's very challenging to get enough etch resistance from such thin resist thickness. An approach of Si-tri-layer stack which consists of resist, Si ARC (Si contenting anti-reflection coating), organic underlayer from top to bottom has been adopted by many IC makers in the manufacturing of 45 nm node. Even higher resist etching selectivity is needed for 32 nm node. Si ARC, of Si content as high as 43%, provides good etch selectivity. At the same time, tri-layer also provides good control over reflectivity in high NA immersion lithography. However, there are several well know issues concern Si-rich ARC. Resist compatibility and shelf life are on top of the list. An aim of our development work was to overcome those issues in order to produce manufacturing-worthy Si-rich ARC. Several synthesis methods were investigated to form Si-rich ARC film with different properties. Collapse of resist patterns is used as an indicator of lithographic compatibility. Lithographic performance was checked by accelerated shelf life tests at high temperature in order to predict the shelf life at room temperature. It was found that adhesion between resist and Si-rich ARC is improved when contact angle of Si-rich ARC is increased to more than 60 degree. Certain synthesis methods improve shelf life. After optimization of film properties and synthesis methods of Si-rich ARC, SHB-A940 series have best litho compatibility and shelf life is six months at storage temperature below 10°C.

  1. Local and Sustained Activity of Doxycycline Delivered with Layer-by-Layer Microcapsules.

    PubMed

    Luo, Dong; Gould, David J; Sukhorukov, Gleb B

    2016-04-11

    Achieving localized delivery of small molecule drugs has the potential to increase efficacy and reduce off target and side effects associated with systemic distribution. Herein, we explore the potential use of layer-by-layer (LbL) assembled microcapsules for the delivery of doxycycline. Absorbance of doxycycline onto core dextran sulfate of preassembled microcapsules provides an efficient method to load both synthetic and biodegradable microcapsules with the drug. Application of an outer layer lipid coat enhances the sustained in vitro release of doxycycline from both microcapsule types. To monitor doxycycline delivery in a biological system, C2C12 mouse myoblasts are engineered to express EGFP under the control of the optimized components of the tetracycline regulated gene expression system. Microcapsules are not toxic to these cells, and upon delivery to the cells, EGFP is more efficiently induced in those cells that contain engulfed microcapsules and monitored EGFP expression clearly demonstrates that synthetic microcapsules with a DPPC coat are the most efficient for sustain intracellular delivery. Doxycycline released from microcapsules also displayed sustained activity in an antimicrobial growth inhibition assay compared with doxycycline solution. This study reveals the potential for LbL microcapsules in small molecule drug delivery and their feasible use for achieving prolonged doxycycline activity. PMID:26967921

  2. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Kane, D.L.

    1986-01-01

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  3. Computational synthesis of single-layer GaN on refractory materials

    SciTech Connect

    Singh, Arunima K.; Hennig, Richard G.

    2014-08-04

    The synthesis of single-layer materials relies on suitable substrates. In this paper, we identify suitable substrates for the stabilization and growth of single-layer GaN and characterize the effect of the substrate on the electronic structure of single-layer GaN. We identify two classes of epitaxial substrates, refractory metal diborides and transition-metal dichalcogenides. We find that the refractory diborides provide epitaxial stabilization for the growth and functionalization of single layer GaN. We show that chemical interactions of single layer GaN with the diboride substrates result in n-type doping of the single-layer GaN. Transition-metal dichalcogenides, on the other hand, although epitaxially matched, cannot provide sufficient thermodynamic stabilization for the growth of single layer GaN. Nonetheless, energy band alignments of GaN/metal chalcogenides show that they make good candidates for heterostructures.

  4. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  5. a Spatio-Temporal Framework for Modeling Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Streletskiy, D. A.; Nelson, F. E.; Apanasovich, T. V.

    2015-07-01

    The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems. This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation. The simplest model's stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naïve model, against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best stochastic spatio-temporal model increases predictive accuracy, compared to the naïve model, of 33.3%, 36.2% and 32.5% on average across the three error metrics at the key sites for a one-year hold out period.

  6. Three-layer knitted materials for protective clothing

    NASA Astrophysics Data System (ADS)

    Mielicka, E.; Janicka, J.; Kozminska, R.; Walak, A.

    2016-07-01

    The results of investigating multifunctional 3D knitted materials dedicated for protective clothing were presented. The 3D design structures were made on a circular knitting machine using yarns with flame retardant or electrostatic properties. The functionality imparted to each of the assortments developed was verified during the tests in accredited laboratories as well as by assessing their biophysical properties. Based on the analysis of the test results, a beneficial effect of the raw materials and the 3D structure of knitted fabrics were demonstrated. Designed garments could be useful as individual protection clothing for workers exposed to harmful occupational environment factors, such as heat and static electricity. The study was conducted within the project EUREKA E! 5799 BATAN “Multifunctional knitted fabrics with barrier properties for clothing”.

  7. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  8. Synthesis, characterization, and application of novel microporous mixed metal oxides, and nanostructured layered material-polymer films

    NASA Astrophysics Data System (ADS)

    Jeong, Hae-Kwon

    Zeolites are microporous crystalline aluminosilicates with pores and cavities of molecular dimension. They consist of interconnected aluminum and silicon tetrahedra to build a variety of 3D open framework structures. Due to their structure, stability, and activity, zeolites have been widely used in a broad variety of applications in industry. It is, therefore, of great interest to make new structures with potentially novel properties. In this regard, there has recently been a growing interest in the synthesis of novel mixed metal oxides with octahedral and tetrahedral units owing to the possibility to find unique electronic and optical properties. Hence, these materials can find advanced applications as well as conventional applications, just like zeolites. Research efforts have led to the discovery of several mixed octahedral and tetrahedral metal oxides with novel crystal structures including titanium silicates and cerium silicate. Layered materials with transport paths along the thickness of the layers are of particular interest due to potential usage as selective layers of nanometer scale in nanocomposite membranes. A new layered silicate (we call AMH-3) has been synthesized under hydrothermal conditions. The crystal structure solution via powder X-ray diffraction has revealed its unique layer structure of three dimensional microporosity within layers. Layered materials with porous layers will open up new areas of applications, such as selective nanocomposite separation membranes. Polymer/selective-flake nanocomposite membranes have been fabricated for the first time, which can, in principle, be scaled down to submicrometer structures. A layered aluminophosphate with a porous net layer is used as a selective phase and a polyimide as a continuous phase. The microstructures of the nanocomposite membranes were investigated using various characterization techniques. Nanocomposite membranes with 10 wt% layered aluminophosphate show substantial enhancement in

  9. Layer-by-layer assembly of zeolite imidazolate framework-8 as coating material for capillary electrochromatography.

    PubMed

    Qu, Qishu; Xuan, Han; Zhang, Kehua; Ding, Yi; Xu, Qin

    2016-08-01

    In this work, open-tubular capillary column coated with zeolite imidazolate framework-8 (ZIF-8) nanocrystals was prepared by a layer-by-layer method. The coating was formed by growing ZIF-8 nanocrystals on either bare fused silica capillary wall or the capillary column premodified with amino groups. The shape and the thickness of the coating formed by using these two methods were almost the same. However, the coverage of the ZIF-8 crystals on the bare fused silica capillary wall was higher than that on the capillary column premodified with amino groups. The ZIF-8 coated capillary column was evaluated for open-tubular capillary electrochromatography. The effect of pH value, buffer concentration, and applied voltage on the separation of phenols was investigated. Good separation of nine phenolic isomers was achieved because of the strong interaction between unsaturated Zn sites and phenols. The column performance for o-nitrophenol was as high as 208 860 plates m(-1) . The run-to-run, day-to-day, and column-to-column reproducibility of retention time and resolution for p-nitrophenol and o-nitrophenol were very good with RSDs of less than 6.5%. PMID:27174427

  10. Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control

    NASA Technical Reports Server (NTRS)

    Heyliger, P. R.; Ramirez, G.; Pei, K. C.

    1994-01-01

    The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when

  11. Advanced nanostructured carbon materials for electrical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Jänes, A.; Kurig, H.; Thomberg, T.; Lust, E.

    2007-12-01

    Thermodynamical and electrochemical characteristics for the non-aqueous electrolyte mid nanostructured carbide-derived carbon (CDC), activated carbon cloth (ACC) or commercial activated nanoporous carbon RP-20 (from Kuraray Chemical Co.) interface have been established by XRD, Raman spectroscopy, BET, cyclic voltammetry and electrochemical impedance spectroscopy. The gas adsorption measurement data have been used for the obtaining the specific surface area, pore size distribution, nanopore volume and other characteristics, dependent on the nanostructured carbon used (nanopores are pores in the range of 2 nm and below — i.e. micropores according to IUPAC classification).

  12. Electrochemical Effects of Atomic Layer Deposition on Cathode Materials for Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Scott, Isaac David

    One of the greatest challenges of modern society is to stabilize a consistent energy supply that will meet our growing energy demand while decreasing the use of fossil fuels and the harmful green house gases which they produce. Developing reliable and safe solutions has driven research into exploring alternative energy sources for transportation including fuel cells, hydrogen storage, and lithium-ion batteries (LIBs). For the foreseeable future, though, rechargeable batteries appear to be the most practically viable power source. To deploy LIBs in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Unfortunately, the power capability of LIBs is generally hindered by Li+-ion diffusion in micrometer-sized materials and the formation of an insulating solid electrolyte interface (SEI) layer on the surface of the active material. In addition, degradation of the battery material due to chemical and electrochemical reactions with the electrolyte lead to both capacity fade and safety concerns both at room and higher temperatures. The current study focuses on mitigating these issues for high voltage cathode materials by both using nanoscale particles to improve Li+-ion diffusion and using ultrathin nanoscale coatings to protect the battery materials from undesirable side reactions. The electrode material is coated with Al2O3 using atomic layer deposition (ALD), which is a method to grow conformal thin films with atomic thickness (angstrom level control) using sequential, self-limiting surface reactions. First, nano-LiCoO 2 is employed to demonstrate the effectiveness of ALD coatings and demonstrates a profound increase in rate performance (>250% improvement) over generally employed micrometer-sized particles. Second, the cathode materials LiNi 0.8Co0.15Al0.05O2, LiNi0.33Mn 0.33Co0.33O2, LiMn2O4, and LiNi0.5Mn1.5O4 were used to demonstrate the benefits ALD coatings have on thermal runaway. The results show a

  13. Vibration control of cylindrical shells using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  14. Manifestation of optical activity in different materials

    NASA Astrophysics Data System (ADS)

    Konstantinova, A. F.; Golovina, T. G.; Konstantinov, K. K.

    2014-07-01

    Various manifestations of optical activity (OA) in crystals and organic materials are considered. Examples of optically active enantiomorphic and nonenantiomorphic crystals of 18 symmetry classes are presented. The OA of enantiomorphic organic materials as components of living nature (amino acids, sugars, and proteins) is analyzed. Questions related to the origin of life on earth are considered. Examples of differences in the enantiomers of drugs are shown. The consequences of replacing conventional left-handed amino acids with additionally right-handed amino acids for living organisms are indicated.

  15. Geologic Evolution of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    NASA Technical Reports Server (NTRS)

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate we just don't know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering.

  16. Novel composite materials synthesized by the high-temperature interaction of pyrrole with layered oxide matrices

    NASA Astrophysics Data System (ADS)

    Pavel, Alexandru Cezar

    The initial goal of the research presented herein was to develop the very first synthetic metal---high-temperature superconductor ceramic composite material, in the specific form of a polypyrrole---Bi2Sr2CaCu 2O8+delta nanocomposite. In the course of scientific investigation, this scope was broadened to encompass structurally and compositionally similar layered bismuthates and simpler layered oxides. The latter substrates were prepared through novel experimental procedures that enhanced the chance of yielding nanostructured morphologies. The designed novel synthesis approaches yielded a harvest of interesting results that may be further developed upon their dissemination in the scientific community. High-temperature interaction of pyrrole with molybdenum trioxide substrates with different crystalline phases and morphologies led to the formation of the first members of a new class of heterogeneous microcomposites characterized by incomplete occupancy by the metal oxide core of the volume encapsulated by the rigid, amorphous permeable polymeric membrane that reproduces the volume of the initial grain of precursor substrate. The method may be applied for various heterogeneous catalyst substrates for the precise determination of the catalytically active crystallographic planes. In a different project, room-temperature, templateless impregnation of molybdenum trioxide substrates with different crystalline phases and morphologies by a large excess of silver (I) cations led to the formation of 1-D nanostructured novel Ag-Mo-O ternary phase in what may be the simplest experimental procedure available to date that has yielded a 1-D nanostructure, regardless the nature of the constituent material. Interaction of this novel ternary phase with pyrrole vapors at high reaction temperatures led to heterogeneous nanostructured composites that exhibited a silver nanorod core. Nanoscrolls of vanadium pentoxide xerogel were synthesized through a novel, facile reflux-based method that

  17. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  18. Low-frequency interlayer vibration modes in two-dimensional layered materials

    NASA Astrophysics Data System (ADS)

    Ji, Jianting; Dong, Shan; Zhang, Anmin; Zhang, Qingming

    2016-06-01

    Two-dimensional (2D) layered materials have been attracted tremendous research interest because of their novel photoelectric properties. If a single atomic layer instead of individual atoms is taken as a rigid motion object, two unique interlayer vibrations, i.e. compression/breathing and shear motions, at ultra-low frequencies can be expected and actually have been observed in many layered materials. The vibrations stem from the interlayer van der Waals interaction and can be well described by a conventional linear-chain model in most cases. The vibration frequencies strongly depend on layer thickness, which enables an accurate determination of layer numbers. A quick and nondestructive determination of flake thickness is particularly important for the materials, since the physical properties can be dramatically changed in the cases of several atomic layers. As a measure of interlayer coupling, the low-frequency modes are also sensitive to the stacking methods of atomic layers and the overlapping of different kinds of 2D materials. This allows the modes to play a key role in the applications like van der Waals heterojunctions. In this paper, we will give a brief review on the experimental observations and theoretical understanding of the interlayer modes in several typical 2D systems, as well as their actual and potential applications.

  19. Anomalous elastic buckling of layered crystalline materials in the absence of structure slenderness

    NASA Astrophysics Data System (ADS)

    Ren, Manrui; Liu, Yilun; Zhe Liu, Jefferson; Wang, Lifeng; Zheng, Quanshui

    2016-03-01

    Layered crystalline materials, such as graphene, boron nitride, tungsten sulfate, phosphorene, etc., have attracted enormous attentions, due to their unique crystal structures and superior mechanical, thermal, and physical properties. Making use of mechanical buckling is a promising route to control their structural morphology and thus tune their physical properties, giving rise to many novel applications. In this paper, we employ molecular dynamics (MD) simulations and theoretical modeling to study the compressive buckling of a column made of layered crystalline materials with the crystal layers parallel to the compressive direction. We find that the mechanical buckling of the layered crystalline materials exhibits two anomalous and counter-intuitive features as approaching the zero slenderness ratio. First, the critical buckling strain εcr has a finite value that is much lower than the material's elastic limit strain. A continuum mechanics model (by homogenizing the layered materials) is proposed for the εcr, which agrees well with the results of MD simulations. We find that the εcr solely depends on elastic constants without any structural dimension, which appears to be an intrinsic material property and thus is defined as intrinsic buckling strain (IBS), εcrIBS , in this paper. Second, below a certain nanoscale length, l0, in the compressive direction (e.g., about 20 nm for graphite), the critical buckling strain εcr shows a size effect, i.e., increasing as the column length L decreases. To account for the size effect, inspired by our recently developed multi-beam shear model (Liu et al., 2011), a bending energy term of individual crystal layer is introduced in our continuum model. The theoretical model of εcr agrees well with the size effects observed in MD simulations. This study could lay a ground for engineering layered crystalline materials in various nano-materials and nano-devices via mechanical buckling.

  20. Surface activation of CNT Webs towards layer by layer assembly of biosensors.

    PubMed

    Musameh, Mustafa; Huynh, Chi P; Hickey, Mark; Kyratzis, Ilias Louis

    2016-04-25

    Several surface activation methods such as chemical, electrochemical and plasma have been used for enhancing the electrochemical performance of carbon based electrodes for various applications. However, some of these surface activation methods may not be useful depending on the chemical and physical properties of the activated surface. Herein we investigate the surface activation of carbon nanotube (CNT) webs by electrochemical and plasma techniques to enhance their electrochemical performance and enable the fabrication of a biosensor using the layer-by-layer (LBL) approach. The pretreated CNT webs were characterized by SEM, TEM, Raman, XPS and electrochemical methods. TEM images and Raman analysis showed an increase in the level of surface defects upon pretreatment with higher number of defects after electrochemical pretreatment. XPS analysis showed an increase in the level of oxygen functional groups after pretreatment (4 to 5 times increase) which resulted in enhanced water wettability especially for plasma pretreated CNT webs. The pretreated CNT web electrodes also showed an enhanced electrochemical activity towards the oxidation and reduction of different redox probes with higher sensitivity for the electrochemically pretreated CNT web electrode that was accompanied by a higher level of noise in amperometric measurements. A highly linear response was obtained for the untreated and the electrochemically pretreated CNT web electrodes towards the amperometric detection of NADH (R(2) of 0.9996 and 0.9986 respectively) while a non-linear response was observed for the plasma pretreated CNT web electrode (R(2) of 0.8538). The pretreated CNT web electrodes enabled the fabrication of a LBL biosensor for alcohol detection with highest operational stability obtained for the plasma pretreated CNT web surface. PMID:26818435

  1. Research on resistance properties of conductive layer materials of microchannel plate film dynode

    NASA Astrophysics Data System (ADS)

    Peng, Ling-ling; Duanmu, Qingduo; Yang, Ji-kai; Wang, Guo-zheng

    2015-03-01

    Silicon Microchannel Plate - MCP - is a new image multiplier devices based semiconductor process technology. Compared with the traditional glass MCP, Silicon MCP has an advantage in technology that the dynode materials and the substrate materials are separate. At the same time, the dynode preparation process and the microchannel arrays are also separate. Two different dynode conductive layer films are prepared: polysilicon conductive films prepared by low pressure chemical vapor deposition (LPCVD) and AZO thin films coated by atomic layer deposition (ALD). The conductive films coated by ALD are superior to dynode conductive films prepared by LPCVD. By comparing the resistivity of conductive polysilicon thin film and AZO thin film of different Al concentrations doped, AZO thin film of different Al concentrations doped is a more suitable conductive layer dynode material to satisfy the MCP conductive layer resistivity requirements.

  2. Catalytically active single-atom niobium in graphitic layers.

    PubMed

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J; Chisholm, Matthew F

    2013-01-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability. PMID:23715283

  3. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  4. An analysis of creep crack growth of interface cracks in layered/graded materials

    SciTech Connect

    Biner, S.B.

    1997-07-01

    In this study, the growth behavior of interface cracks in bimaterials and in layered materials resulting from the creep cavitation was studied. The growth model includes the effects of material deposition resulting from the growth of creep cavities on the crack tip stress fields. The results indicate that in layered materials under identical applied loading, the location of the interface crack strongly influence the amplitude of the stress field at steady-state. Due to large variation in the distribution of the stresses ahead of the interface cracks at creep regime, depending upon the crack location, the creep crack growth rates will be significantly different from each other under identical loading for a given layered material.

  5. Active Layer Thermal Response to Stream Water Temperatures

    NASA Astrophysics Data System (ADS)

    Cozzetto, K.; McKnight, D.

    2004-12-01

    The hyporheic zone is comprised of sediments below and adjacent to a stream through which stream water flows in and out. In polar regions, the shape, dimensions, physical and chemical characteristics of this zone are affected by the seasonal freezing and thawing of the active layer. One factor that may influence the active layer temperature regime is stream water temperature, both its absolute value and cyclic variations in its value. Many of the glacial meltwater streams in Taylor Valley in the McMurdo Dry Valleys of Antarctica, exhibit daily temperature patterns with lows of 0 or 1° C and highs of 10 or, on occasion, 15° C. Because the viscosity of water decreases significantly with increasing temperature, these daily maxima may increase infiltration and the exchange of water and heat between the stream and the hyporheic zone. To investigate the influence of stream water temperature and flow paths on the active layer temperature regime and vice versa, two conservative tracer injection experiments were conducted. Both took place in the same 200-meter reach, which was instrumented with temperature and conductivity probes. Both also took place at the same time of day during which the stream reaches its temperature maximum. However, in one experiment snow from a nearby patch was added to the stream to suppress the temperature maximum by 3° C from 10 to 7° C. The temperature data show that the snow addition slowed the rate of hyporheic zone warming and suppressed temperature increases in the hyporheic zone by 1-3° C when compared with the non-perturbation experiment. The electrical conductivity data indicate that during the snow addition experiment, the stream neither gained nor lost water while during the non-perturbation experiment, the stream lost water. These results suggest that the stream water cooling decreased infiltration and heat transfer into the hyporheic zone.

  6. Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine).

    PubMed

    Li, Ben; Liu, Wanpeng; Jiang, Zhongyi; Dong, Xiao; Wang, Baoyi; Zhong, Yurong

    2009-07-01

    We demonstrate that dopamine is able to self-polymerize and adhere firmly onto the substrate, which can create a hierarchical structure comprising an ultrathin active layer and a porous support layer. Such an approach opens a novel way to fabricating highly efficient and stable composite materials including composite membranes. More specifically, in this study the composite membranes are fabricated by simply dipping microporous substrate in aqueous dopamine solution under mild conditions. Nanoindentation measurement reveals the tight adhesion of dopamine onto microporous substrate, which is ascribed to numerous pi-pi and hydrogen-bonding interactions. The chemical composition of the active layer is analyzed by XPS, which demonstrates the self-polymerization of dopamine. The water contact angle of the dopamine coated membranes is reduced remarkably compared with that of the uncoated counterpart. Stylus profiler measurements display that the poly(dopamine) thickness increases as the coating time increases. FESEM images of the membranes' cross section show that an active layer (<100 nm) is deposited on the porous polysulfone (PS) substrate. Positron annihilation spectroscopy (PAS) is introduced to probe the fractional free volume properties throughout the cross section of the composite membranes and reveal that after dopamine double-coating the active layer becomes thicker and more compact. Moreover, pH and concentration of the dopamine solution exert notable influence on the fractional free volume of the composite membranes. The as-prepared membranes are tentatively employed for pervaporative desulfurization and exhibits satisfying separation performance as well as durability. This facile, versatile, and efficient approach enables a promising prospect for the wide applications of such novel kinds of ultrathin composite materials. PMID:19366196

  7. Air-Coupled Piezoelectric Transducers with Active Polypropylene Foam Matching Layers

    PubMed Central

    Gómez Álvarez-Arenas, Tomás E.

    2013-01-01

    This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1–3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl). These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the λ/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz), then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers) are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range. PMID:23666129

  8. Experiments on the active control of transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  9. Improving impact resistance of ceramic materials by energy absorbing surface layers

    NASA Technical Reports Server (NTRS)

    Kirchner, H. P.; Seretsky, J.

    1974-01-01

    Energy absorbing surface layers were used to improve the impact resistance of silicon nitride and silicon carbide ceramics. Low elastic modulus materials were used. In some cases, the low elastic modulus was achieved using materials that form localized microcracks as a result of thermal expansion anisotropy, thermal expansion differences between phases, or phase transformations. In other cases, semi-vitreous or vitreous materials were used. Substantial improvements in impact resistance were observed at room and elevated temperatures.

  10. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    PubMed Central

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  11. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials.

    PubMed

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-03-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%-99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3--N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  12. Active Nuclear Material Detection and Imaging

    SciTech Connect

    Daren Norman; James Jones; KevinHaskell; Peter E. Vanmier; Leon Forman

    2005-10-01

    An experimental evaluation has been conducted to assess the operational performance of a coded-aperture, thermal neutron imaging system and its detection and imaging capability for shielded nuclear material in pulsed photonuclear environments. This evaluation used an imaging system developed by Brookhaven National Laboratory. The active photonuclear environment was produced by an operationallyflexible, Idaho National Laboratory (INL) pulsed electron accelerator. The neutron environments were monitored using INL photonuclear neutron detectors. Results include experimental images, operational imaging system assessments and recommendations that would enhance nuclear material detection and imaging performance.

  13. Contribution of material's surface layer on charge state distribution in laser ablation plasma.

    PubMed

    Kumaki, Masafumi; Steski, Dannie; Ikeda, Shunsuke; Kanesue, Takeshi; Okamura, Masahiro; Washio, Masakazu

    2016-02-01

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C(6+) ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation. PMID:26931982

  14. A new type of clear orthodontic retainer incorporating multi-layer hybrid materials

    PubMed Central

    Ahn, Hyo-Won; Kim, Kyung A

    2015-01-01

    Clear thermoplastic retainers have been widely used in daily orthodontics; however, they have inherent limitations associated with thermoplastic polymer materials such as dimensional instability, low strength, and poor wear resistance. To solve these problems, we developed a new type of clear orthodontic retainer that incorporates multi-layer hybrid materials. It consists of three layers; an outer polyethylenterephthalate glycol modified (PETG) hard-type polymer, a middle thermoplastic polyurethane (TPU) soft-type polymer, and an inner reinforced resin core. The resin core improves wear resistance and mechanical strength, which prevent unwanted distortion of the bucco-palatal wall of the retainer. The TPU layer absorbs impact and the PETG layer has good formability, optical qualities, fatigue resistance, and dimensional stability, which contributes to increased support from the mandibular dentition, and helps maintain the archform. This new type of vacuum-formed retainer showed improved mechanical strength and rate of water absorption. PMID:26445722

  15. Direct grafting of anti-fouling polyglycerol layers to steel and other technically relevant materials.

    PubMed

    Weber, Theresa; Bechthold, Maren; Winkler, Tobias; Dauselt, John; Terfort, Andreas

    2013-11-01

    Direct grafting of hyperbranched polyglycerol (PG) layers onto the oxide surfaces of steel, aluminum, and silicon has been achieved through surface-initiated polymerization of 2-hydroxymethyloxirane (glycidol). Optimization of the deposition conditions led to a protocol that employed N-methyl-2-pyrrolidone (NMP) as the solvent and temperatures of 100 and 140 °C, depending on the substrate material. In all cases, a linear growth of the PG layers could be attained, which allows for control of film thickness by altering the reaction time. At layer thicknesses >5 nm, the PG layers completely suppressed the adhesion of albumin, fibrinogen, and globulin. These layers were also at least 90% bio-repulsive for two bacteria strains, E. coli and Acinetobacter baylyi, with further improvement being observed when the PG film thickness was increased to 17 nm (up to 99.9% bio-repulsivity on silicon). PMID:23856542

  16. Optical pumping of generalized laser active materials.

    PubMed

    Fry, F H

    1967-11-01

    Results are presented of a computer-based study on the rate of excitation in the active cores of two types of optically pumped lasers as a function of a number of parameters of the active core. The absorption bands of the active materials are generated by Lorentzian and Gaussian functions. The excitation rate of the active core is proportional to the width of the absorption band at all depths of penetration. The plots of excitation rate as a function of frequency show curves similar to line reversal spectra and emphasize the importance of excitation some distance from the center of the absorption band in the slab model. In the cylindrical model, this wing pumping is even more important due to focusing. The effect of refractive index on the excitation rate is also described. PMID:20062337

  17. Analysis of Photothermal Characterization of Layered Materials: Design of Optimal Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    In this paper numerical calculations are presented for the steady-periodic temperature in layered materials and functionally-graded materials to simulate photothermal methods for the measurement of thermal properties. No laboratory experiments were performed. The temperature is found from a new Green s function formulation which is particularly well-suited to machine calculation. The simulation method is verified by comparison with literature data for a layered material. The method is applied to a class of two-component functionally-graded materials and results for temperature and sensitivity coefficients are presented. An optimality criterion, based on the sensitivity coefficients, is used for choosing what experimental conditions will be needed for photothermal measurements to determine the spatial distribution of thermal properties. This method for optimal experiment design is completely general and may be applied to any photothermal technique and to any functionally-graded material.

  18. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, G.N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.

  19. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, Gary N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  20. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOEpatents

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  1. Different materials as a cathode modification layer on the impact of organic solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Jian; Huang, Qiuyan; Yu, Junsheng; Jiang, Yadong

    2010-10-01

    Organic thin film solar cells based on conjugated polymer or small molecules have showed an interesting approach to energy conversion since Tang reported a single donor-accepter hetero-junction solar cell. The power conversion efficiency of organic solar cells has increased steadily over last decade. Small-molecular weight organic double heterojunction donor-acceptor layer organic solar cells (OSC) with a structure of indium-tin-oxide (ITO)/CuPc(200Å)/C60(400Å)/x/Ag(1000Å), using CuPc(copper Phthalocyanine)as donor layer, and Alq3(8-Hydroxyquinoline aluminum salt), BCP(Bromocresol purple sodium salt) and Bphen(4'7-diphyenyl-1,10-phenanthroline) as cathode modification layer, respectively were fabricated. The performance of OSC was studied as a function of the different materials as an cathode modification layer to optimize the structure. The current-voltage characteristic of the solar cell under AM1.5 solar illumination at an intensity of 100 mw/cm2 showed that the power conversion efficiency (PCE) was dependent of the different materials of the cathode modification layer. the efficiency along with the different materials as an cathode modification layer will diminish under that standard solar illumination(AM1.5)was obtained. Using a double heterostructure of ITO/CuPc(200Å)/C60(400Å)/Alq3(60Å)/Ag(1000Å) with high-vacuum evaporation technology, the efficiency was 0.587%.the efficiency was 0.967% when the material of the cathode modification layer was BCP, with the structure of ITO/CuPc(200Å)/C60(400Å)/BCP(35Å)/Ag(1000Å), and the efficiency was 0.742% when the material of the cathode modification layer was Bphen, with the structure of ITO/CuPc(200Å)/C60(400Å)/ Bphen(50Å)/Ag(1000Å).Using different materials as a cathode modification layer, it can be seen that the material which matches the energy level could even eventually be able to improve the energy conversion efficiency more.

  2. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters

    PubMed Central

    Yu, Woo Jong; Li, Zheng; Zhou, Hailong; Chen, Yu; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    The layered materials such as graphene have attracted considerable interest for future electronics. Here we report the vertical integration of multi-heterostructures of layered materials to enable high current density vertical field-effect transistors (VFETs). An n-channel VFET is created by sandwiching few-layer molybdenum disulfide (MoS2) as the semiconducting channel between a monolayer graphene and a metal thin film. The VFETs exhibit a room temperature on-off ratio >103, while at same time deliver a high current density up to 5,000 A/cm2, sufficient for high performance logic applications. This study offers a general strategy for the vertical integration of various layered materials to obtain both p- and n-channel transistors for complementary logic functions. A complementary inverter with larger than unit voltage gain is demonstrated by vertically stacking the layered materials of graphene, Bi2Sr2Co2O8 (p-channel), graphene, MoS2 (n-channel), and metal thin film in sequence. The ability to simultaneously achieve high on-off ratio, high current density, and logic integration in the vertically stacked multi-heterostructures can open up a new dimension for future electronics to enable three-dimensional integration. PMID:23241535

  3. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jitsui, Yusuke; Ohtani, Naoki

    2012-10-01

    We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co- N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found.

  4. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes.

    PubMed

    Jitsui, Yusuke; Ohtani, Naoki

    2012-01-01

    We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co-N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found. PMID:23095451

  5. High Efficiency Alternating Current Driven Organic Light Emitting Devices Employing Active Semiconducting Gate Layers

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Xu, Junwei; Carroll, David

    2015-03-01

    In this work, we describe the role of semiconductor-polymer interfaces in alternating current (AC) driven organic electroluminescent (EL) devices. We implement inorganic semiconducting materials between the external contact and the active layers in organic light EL devices. Precise control of capacitance and charge injection is required to realize bright and efficient large area AC driven devices. We show how this architecture results in active gating to the polymer layers, resulting in the novel ability to control the capacitance and charge injection characteristics. We propose a model based on band bending at the semiconductor-polymer interface. Furthermore, we elucidate the influence of the semiconductor-polymer interface on the internally coupled magnetic field generated in an alternating current driven organic light emitting device configuration. Magnetic fields can alter the ratios of singlet and triplet populations, and we show that internal generation of a magnetic field can dramatically alter the efficiency of light emission in organic EL devices.

  6. Process for forming one or more substantially pure layers in substrate material using ion implantation

    SciTech Connect

    Musket, R.G.; Brown, D.W.; Munir, Z.A.

    1990-12-31

    The method comprises selecting an implantable element and a substrate material to be implanted which, at the implant/anneal temperatures, have limited mutual solubility and have no intermediate phases formed. In an example, Be is implanted with 11 {times}10{sup 17} Al/cm{sup 2} at 200 keV and then annealed for 1 h at 500 C. Rutherford backscattering shows that layer formation occurred during the anneal. SEM shows rectangular Be defects in the Al layer. Other examples of implantable elements and suitable substrate materials are tabulated. 6 figs, 1 table. (DLC)

  7. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  8. The activity of nanocrystalline Fe-based alloys as electrode materials for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Müller, Christian Immanuel; Sellschopp, Kai; Tegel, Marcus; Rauscher, Thomas; Kieback, Bernd; Röntzsch, Lars

    2016-02-01

    In view of alkaline water electrolysis, the activities for the hydrogen evolution reaction of nanocrystalline Fe-based electrode materials were investigated and compared with the activities of polycrystalline Fe and Ni. Electrochemical methods were used to elucidate the overpotential value, the charge transfer resistance and the double layer capacity. Structural properties of the electrode surface were determined with SEM, XRD and XPS analyses. Thus, a correlation between electrochemical and structural parameters was found. In this context, we report on a cyclic voltammetric activation procedure which causes a significant increase of the surface area of Fe-based electrodes leading to a boost in effective activity of the activated electrodes. It was found that the intrinsic activity of activated Fe-based electrodes is very high due to the formation of a nanocrystalline surface layer. In contrast, the activation procedure influences only the intrinsic activity of the Ni electrodes without the formation of a porous surface layer.

  9. Investigation of Materials for Boundary Layer Control in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Braafladt, Alexander; Lucero, John M.; Hirt, Stefanie M.

    2013-01-01

    During operation of the NASA Glenn Research Center 15- by 15-Centimeter Supersonic Wind Tunnel (SWT), a significant, undesirable corner flow separation is created by the three-dimensional interaction of the wall and floor boundary layers in the tunnel corners following an oblique-shock/ boundary-layer interaction. A method to minimize this effect was conceived by connecting the wall and floor boundary layers with a radius of curvature in the corners. The results and observations of a trade study to determine the effectiveness of candidate materials for creating the radius of curvature in the SWT are presented. The experiments in the study focus on the formation of corner fillets of four different radii of curvature, 6.35 mm (0.25 in.), 9.525 mm (0.375 in.), 12.7 mm (0.5 in.), and 15.875 mm (0.625 in.), based on the observed boundary layer thickness of 11.43 mm (0.45 in.). Tests were performed on ten candidate materials to determine shrinkage, surface roughness, cure time, ease of application and removal, adhesion, eccentricity, formability, and repeatability. Of the ten materials, the four materials which exhibited characteristics most promising for effective use were the heavy body and regular type dental impression materials, the basic sculpting epoxy, and the polyurethane sealant. Of these, the particular material which was most effective, the heavy body dental impression material, was tested in the SWT in Mach 2 flow, and was observed to satisfy all requirements for use in creating the corner fillets in the upcoming experiments on shock-wave/boundary-layer interaction.

  10. Experimental flame speed in multi-layered nano-energetic materials

    SciTech Connect

    Manesh, Navid Amini; Basu, Saptarshi; Kumar, Ranganathan

    2010-03-15

    This paper deals with the reaction of dense Metastable Intermolecular Composite (MIC) materials, which have a higher density than conventional energetic materials. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The in-plane speed of propagation of the reaction was experimentally determined using a time of- flight technique. The experiment shows that the reaction is completely quenched for a silicon substrate having an intervening silica layer of less than 200 nm. The speed of reaction seems to be constant at 40 m/s for silica layers with a thickness greater than 1 {mu}m. Different substrate materials such as glass and photoresist were also used. (author)

  11. A novel nanocomposite material prepared by intercalating photoresponsive dendrimers into a layered double hydroxide

    SciTech Connect

    Tanaka, Toshiyuki; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Matsukawa, Junpei; Fujita, Yasuhiko; Takaguchi, Yutaka; Matsuda, Motohide; Miyake, Michihiro

    2010-02-15

    A novel combination for an inorganic-organic nanocomposite material was demonstrated. Anthryl dendron, i.e., poly(amidoamine) dendron with an anthracene chromophore group at the focal point, was incorporated in the interlayer space of ZnAl-NO{sub 3} type layered double hydroxide (LDH) through an anion-exchange reaction. The photoabsorption and fluorescence properties of the resulting material were different from those of the bare anthryl dendron molecule. It was suggested that the change in photochemical properties was due to the organization and pi-pi interaction of anthracene chromophores within the interlayer of the LDH. - Graphical abstract: A novel inorganic-organic nanocomposite material, a layered double hydroxide (LDH) containing photoresponsive dendrimers in the interlayer space, was successfully prepared through an ion-exchange reaction. The resulting material exhibited unique photochemical properties, compared to those of the bare photoresponsive dendrimer molecule.

  12. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    DOEpatents

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  13. Mixed-layered bismuth--oxygen--iodine materials for capture and waste disposal of radioactive iodine

    DOEpatents

    Krumhansl, James L; Nenoff, Tina M

    2015-01-06

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  14. Nanotubes from Misfit Layered Compounds: A New Family of Materials with Low Dimensionality.

    PubMed

    Panchakarla, Leela S; Radovsky, Gal; Houben, Lothar; Popovitz-Biro, Ronit; Dunin-Borkowski, Rafal E; Tenne, Reshef

    2014-11-01

    Nanotubes that are formed from layered materials have emerged to be exciting one-dimensional materials in the last two decades due to their remarkable structures and properties. Misfit layered compounds (MLC) can be produced from alternating assemblies of two different molecular slabs with different periodicities with the general formula [(MX)1+x]m[TX2]n (or more simply MS-TS2), where M is Sn, Pb, Bi, Sb, rare earths, T is Sn, Nb, Ta, Ti, V, Cr, and so on, and X is S, Se. The presence of misfit stresses between adjacent layers in MLC provides a driving force for curling of the layers that acts in addition to the elimination of dangling bonds. The combination of these two independent forces leads to the synthesis of misfit layered nanotubes, which are newcomers to the broad field of one-dimensional nanostructures and nanotubes. The synthesis, characterization, and microscopic details of misfit layered nanotubes are discussed, and directions for future research are presented. PMID:26278742

  15. Activated oil sands fluid coke for electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Kirk, Donald W.; Jia, Charles Q.; Tong, Shitang

    2014-12-01

    Electrochemical capacitors are important energy storage devices that have high power density, rapid charging cycles and are highly cyclable. In this study, activated fluid coke has demonstrated high surface area, improved capacitive properties, and high energy density. Fluid coke is a by-product generated from continuous high temperature bitumen upgrading, resulting in the formation of nearly spherical particles with concentric carbon layers. The residual sulphur impurities in fluid coke may enhance its energy storage performance. The activated coke samples have high specific surface areas, up to 1960 m2 g-1, and show promising capacitive performance, in 4 M KOH electrolyte, with high gravimetric and specific capacitances of 228-257 F g-1 and 13-14 μF cm-2, respectively. These results are comparable to other top performing activated carbon materials [1-3]. The activated fluid coke maintains high performance at fast charging rates, greater than 160 F g-1 at a current density of 7500 mA g-1. Activated fluid coke's high capacitance and promising rate performance are potentially associated with its unique layered, and the moderate sulphur content in the chemical structure. Activated fluid coke is a unique opportunity to use a limited use by-product to generate activated carbon that has a high surface area and promising energy storage properties.

  16. Active vibration damping using smart material

    NASA Technical Reports Server (NTRS)

    Baras, John S.; Yan, Zhuang

    1994-01-01

    We consider the modeling and active damping of an elastic beam using distributed actuators and sensors. The piezoelectric ceramic material (PZT) is used to build the actuator. The sensor is made of the piezoelectric polymer polyvinylidene fluoride (PVDF). These materials are glued on both sides of the beam. For the simple clamped beam, the closed loop controller has been shown to be able to extract energy from the beam. The shape of the actuator and its influence on the closed loop system performance are discussed. It is shown that it is possible to suppress the selected mode by choosing the appropriate actuator layout. It is also shown that by properly installing the sensor and determining the sensor shape we can further extract and manipulate the sensor signal for our control need.

  17. High temperature materials synthesis without heat: Oxide layer growth on electronic materials using high-kinetic-energy atomic oxygen

    SciTech Connect

    Hoffbauer, M.A.; Cross, J.B.; Archuleta, F.A.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors examined thin-film materials-synthesis processes in which chemical reactions are initiated using high-kinetic-energy neutral atomic species instead of high temperatures. The research is aimed at producing device-quality insulating oxide layers on semiconductor materials. Thick, uniform, and fully oxidized insulating layers of unprecedented quality are formed on gallium arsenide by exposure of wafer substrates to a high kinetic-energy ({approximately}3eV) neutral atomic-oxygen beam. The nonthermal oxidation process does not disrupt the crystalline order of the substrate and no detectable elemental arsenic is produced at the oxide/gallium arsenide interface.

  18. Free-edge stress analysis of functionally graded material layered biocomposite laminates.

    PubMed

    Huang, Bin; Kim, Heung Soo

    2014-10-01

    A stress function based theory is proposed to obtain free-edge stress distributions for three-dimensional, orthotropic, linearly elastic rectangular biocomposite laminates with surface-bonded functionally graded materials (FGM). The assumed stress fields automatically satisfy the pointwise equilibrium equation, as well as traction-free and free edge boundary conditions. The complementary virtual work principle, followed by the general eigenvalue solution procedure, is used to obtain 3-D free edge stress states. A typical stacking sequence of composite laminate is used as numerical investigation with surface bonded FGMs. It is shown that with proper exponential factor of FGMs, the interlaminar stresses at the FGM layer interface can be reduced significantly, in return to prevent debonding of FGM layers. This approach can be useful in the design of functionally graded material layered biocomposite structures. PMID:25942808

  19. A generic, computerized nuclear materials accountability system (NucMAS) and its layered products

    SciTech Connect

    Davis, Jr, J M

    1989-01-01

    NucMAS provides a material balance area with a computerized data management system for nuclear materials accountability. NucMAS is a generic application. It handles the data management and reporting functions for different processing facilities by storing all process-specific information as data rather than procedure. A NucMAS application is configured for each facility it supports. NucMAS and its layered products are compatible with three types of data clients. Core NucMAS has a screen-oriented user interface to support the accountability clerk as a client. Accountability clerks enter data from operating logs and laboratory analyses one to three days after actual processing. Layered products support process operators and automated systems as near-real-time and real-time data clients. The core and layered products use a data-driven approach which results in software that is configurable and maintainable. 3 refs., 5 figs.

  20. A fluorescent, photochromic and thermochromic trifunctional material based on a layered metal-viologen complex.

    PubMed

    Wan, Fang; Qiu, Li-Xia; Zhou, Liang-Liang; Sun, Yan-Qiong; You, Yi

    2015-11-14

    The azide anion as an energy acceptor and an electron donor has been introduced into a metal-viologen compound to form a 2D layered viologen-based trifunctional material, which exhibits the rare discolored function of reversible photochromism and thermochromism. Interestingly, its fluorescence can be switched by visible light irradiation and heating in air. PMID:26445888

  1. Combustion of layers inorganic systems under rotation to produce composite and gradient materials

    NASA Astrophysics Data System (ADS)

    Nurakhmetov, B.; Sergaziyev, A.; Sabirov, N.; Baideldonova, A.; Mukhina, L.; Ksandopulo, G.

    2016-04-01

    The new way of production of gradient materials is presented. Course of self-propagating high-temperature synthesis reactions in layered systems under the influence of centrifugal force and some methods of analysis of the process and products of reaction is described.

  2. Active infrared materials for beam steering.

    SciTech Connect

    Brener, Igal; Reno, John Louis; Passmore, Brandon Scott; Gin, Aaron V.; Shaner, Eric Arthur; Miao, Xiaoyu; Barrick, Todd A.

    2010-10-01

    The mid-infrared (mid-IR, 3 {micro}m -12 {micro}m) is a highly desirable spectral range for imaging and environmental sensing. We propose to develop a new class of mid-IR devices, based on plasmonic and metamaterial concepts, that are dynamically controlled by tunable semiconductor plasma resonances. It is well known that any material resonance (phonons, excitons, electron plasma) impacts dielectric properties; our primary challenge is to implement the tuning of a semiconductor plasma resonance with a voltage bias. We have demonstrated passive tuning of both plasmonic and metamaterial structures in the mid-IR using semiconductors plasmas. In the mid-IR, semiconductor carrier densities on the order of 5E17cm{sup -3} to 2E18cm{sup -3} are desirable for tuning effects. Gate control of carrier densities at the high end of this range is at or near the limit of what has been demonstrated in literature for transistor style devices. Combined with the fact that we are exploiting the optical properties of the device layers, rather than electrical, we are entering into interesting territory that has not been significantly explored to date.

  3. Thermophysical Properties of Mars' North Polar Layered Deposits and Related Materials from Mars Odyssey THEMIS

    NASA Technical Reports Server (NTRS)

    Vasavada, A. R.; Richardson, M. I.; Byrne, S.; Ivanov, A. B.; Christensen, P. R.

    2003-01-01

    The presence of a thick sequence of horizontal layers of ice-rich material at Mars north pole, dissected by troughs and eroding at its margins, is undoubtedly telling us something about the evolution of Mars climate [1,2] we just don t know what yet. The North Polar Layered Deposits (NPLD) most likely formed as astronomically driven climate variations led to the deposition of conformable, areally extensive layers of ice and dust over the polar region. More recently, the balance seems to have fundamentally shifted to net erosion, as evidenced by the many troughs within the NPLD and the steep, arcuate scarps present near its margins, both of which expose layering. We defined a number of Regions of Interest ROI) for THEMIS to target as part of the Mars Odyssey Participating Scientist program. We use these THEMIS data in order to understand the morphology and color/thermal properties of the NPLD and related materials over relevant (i.e., m to km) spatial scales. We have assembled color mosaics of our ROIs in order to map the distribution of ices, the different layered units, dark material, and underlying basement. The color information from THEMIS is crucial for distinguishing these different units which are less distinct on Mars Orbiter Camera images. We wish to understand the nature of the marginal scarps and their relationship to the dark material. Our next, more ambitious goal is to derive the thermophysical properties of the different geologic materials using THEMIS and Mars Global Surveyor Thermal Emission Spectrometer TES) data.

  4. Plasmonic Biofoam: A Versatile Optically Active Material.

    PubMed

    Tian, Limei; Luan, Jingyi; Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2016-01-13

    Owing to their ability to confine and manipulate light at the nanoscale, plasmonic nanostructures are highly attractive for a broad range of applications. While tremendous progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures, their integration with other materials and application in solid-state is primarily through their assembly on rigid two-dimensional (2D) substrates, which limits the plasmonically active space to a few nanometers above the substrate. In this work, we demonstrate a simple method to create plasmonically active three-dimensional biofoams by integrating plasmonic nanostructures with highly porous biomaterial aerogels. We demonstrate that plasmonic biofoam is a versatile optically active platform that can be harnessed for numerous applications including (i) ultrasensitive chemical detection using surface-enhanced Raman scattering; (ii) highly efficient energy harvesting and steam generation through plasmonic photothermal heating; and (iii) optical control of enzymatic activity by triggered release of biomolecules encapsulated within the aerogel. Our results demonstrate that 3D plasmonic biofoam exhibits significantly higher sensing, photothermal, and loading efficiency compared to conventional 2D counterparts. The design principles and processing methodology of plasmonic aerogels demonstrated here can be broadly applied in the fabrication of other functional foams. PMID:26630376

  5. Antimicrobial activity of filling materials used in primary teeth pulpotomy.

    PubMed

    Pimenta, Hévelin Couto; Borges, Álvaro Henrique; Bandeca, Matheus Coelho; Neves, Ana Thereza Sabóia; Fontes, Rodrigo Gusmão; da Silva, Priscila Vieira; Aranha, Andreza Maria Fábio

    2015-04-01

    The aim of this study was to investigate the antibacterial activity of pulp capping materials used in primary teeth (formocresol [FC], zinc oxide and eugenol cement [ZOE], ZOE mixed with FC [ZOEFC], mineral trioxide aggregate [MTA] and calcium hydroxide [CH]) against cariogenic bacteria. The agar plate diffusion test was used for the cultures, including saline solution as a negative control. A base layer of 15 mL of brain heart infusion agar was inoculated with 300 mL of each inoculum. Twelve wells were made and completely filled with one of the testing materials for each bacteria strain. The plates were incubated at 37°C for 48 h. Zones of microbial inhibition and material diffusion were measured and photographed. The results obtained were analyzed by Kruskal-Wallis and Mann-Whitney non-parametric tests. Respectively, the medium zones of bacteria inhibition of FC, ZOE, ZOEFC, MTA and CH against Streptococcus mutans growth were 28.5, 15.2, 20.8, 9.3 and 11.6; against Lactobacillus acidophilus growth were 28.7, 14.8, 15.3, 15.2 and 20.0, and against Actinomyces viscosus growth were 13.6, 13.5, 14.7, 10.0 and 13.6. We might confirmed the high antibacterial activity of FC solution, especially against S. mutans and L. acidophilus, as wells as, the low inhibitory effect of MTA cement on the cariogenic bacteria studied. PMID:25954072

  6. Antimicrobial Activity of Filling Materials Used in Primary Teeth Pulpotomy

    PubMed Central

    Pimenta, Hévelin Couto; Borges, Álvaro Henrique; Bandeca, Matheus Coelho; Neves, Ana Thereza Sabóia; Fontes, Rodrigo Gusmão; da Silva, Priscila Vieira; Aranha, Andreza Maria Fábio

    2015-01-01

    The aim of this study was to investigate the antibacterial activity of pulp capping materials used in primary teeth (formocresol [FC], zinc oxide and eugenol cement [ZOE], ZOE mixed with FC [ZOEFC], mineral trioxide aggregate [MTA] and calcium hydroxide [CH]) against cariogenic bacteria. The agar plate diffusion test was used for the cultures, including saline solution as a negative control. A base layer of 15 mL of brain heart infusion agar was inoculated with 300 mL of each inoculum. Twelve wells were made and completely filled with one of the testing materials for each bacteria strain. The plates were incubated at 37°C for 48 h. Zones of microbial inhibition and material diffusion were measured and photographed. The results obtained were analyzed by Kruskal–Wallis and Mann–Whitney non-parametric tests. Respectively, the medium zones of bacteria inhibition of FC, ZOE, ZOEFC, MTA and CH against Streptococcus mutans growth were 28.5, 15.2, 20.8, 9.3 and 11.6; against Lactobacillus acidophilus growth were 28.7, 14.8, 15.3, 15.2 and 20.0, and against Actinomyces viscosus growth were 13.6, 13.5, 14.7, 10.0 and 13.6. We might confirmed the high antibacterial activity of FC solution, especially against S. mutans and L. acidophilus, as wells as, the low inhibitory effect of MTA cement on the cariogenic bacteria studied. PMID:25954072

  7. Effect of base layer materials on physiological and perceptual responses to exercise in personal protective equipment.

    PubMed

    Smith, Denise L; Arena, Logan; DeBlois, Jacob P; Haller, Jeannie M; Hultquist, Eric M; Lefferts, Wesley K; Russell, Tim; Wu, Annie; Fehling, Patricia C

    2014-05-01

    Ten men (non-firefighters) completed a 110 min walking/recovery protocol (three 20-min exercise bouts, with recovery periods of 10, 20, and 20 min following successive bouts) in a thermoneutral laboratory while wearing firefighting personal protective equipment over one of four base layers: cotton, modacrylic, wool, and phase change material. There were no significant differences in changes in heart rate, core temperature, rating of perceived exertion, thermal discomfort, and thermal strain among base layers. Sticking to skin, coolness/hotness, and clothing humidity sensation were more favorable (p < 0.05) for wool compared with cotton; no significant differences were identified for the other 7 clothing sensations assessed. Separate materials performance testing of the individual base layers and firefighting ensembles (base layer + turnout gear) indicated differences in thermal protective performance and total heat loss among the base layers and among ensembles; however, differences in heat dissipation did not correspond with physiological responses during exercise or recovery. PMID:23849898

  8. Photonic crystals with active organic materials

    NASA Astrophysics Data System (ADS)

    Wu, Yeheng

    The concept of photonic crystals, which involves periodically arranged dielectrics that form a new type of material having novel photonic properties, was first proposed about two decades ago. Since then, a number of applications in photonic technology have been explored. Specifically, organic and hybrid photonic crystals are promising because of the unique advantages of the organic materials. A one-dimensional (1D) photonic crystal (multilayer) has high reflectance across a certain wavelength range. We report on studies of 1D multilayer polymer films that were fabricated using spin-coating, free film stacking, and co-extrusion techniques. For example, a stack fabricated by placing a laser dye-doped gain medium between two multilayer reflecting polymer films forms a micro-resonator laser or distributed Bragg laser. The resulting laser system is made entirely of plastic and is only several tens of micrometers in thickness. When the gain, a dye-doped medium, comprises one type of a two-type multilayer film, it results a laser exhibiting distributed feedback. At the edge of the photonic band, the group velocity becomes small and the density of photon states becomes high, which leads to laser emission. Such distributed feedback lasers were fabricated using the co-extrusion technique. The refractive indices and the photonic lattice determine the photonic band gap, which can be tuned by changing these parameters. Materials with Kerr nonlinearity exhibit a change in refractive index depending on the incident intensity of the light. To demonstrate such switching, electrochemical etching techniques on silicon wafers were used to form two-dimensional (2D) photonic crystals. By incorporating the nonlinear organic material into the 2D structure, we have made all-optical switches. The reflection of a beam from the 2D photonic crystal can be controlled by another beam because it induces a refractive index change in the active material by altering the reflection band. A mid

  9. Electrical and materials characterization of tungsten-titanium diffusion barrier layers and alloyed silver metallization

    NASA Astrophysics Data System (ADS)

    Bhagat, Shekhar Kumar

    With the constant miniaturization of semiconductor devices, research is always ongoing to obtain the best materials and/or materials systems which fulfill all the requirements of an ideal interconnect. Silver (Ag) and silver based alloys are front runners among other metals and alloys being investigated. Ag has a low electrical resistivity (1.59 micro-ohm-centimeters for bulk), very high thermal conductivity (4.25 Watt per centimeters per Kelvin), and has better electromigration resistance than aluminum (Al). In the pure form, however, it has several drawbacks (e.g., a tendency to diffuse in silicon substrate at higher temperatures, inadequate adhesion to silicon dioxide, poor corrosion resistance, and agglomeration at higher temperatures). These drawbacks can be circumvented by the addition of diffusion barrier layers and/or alloying in silver. The present study investigates both routes to make silver a legitimate interconnect material. Initially this study focuses on thermal stability and behavior of tungsten-titanium (W-Ti) barrier layers for Ag metallization. It is shown that Ag thin films are thermally stable up to 650 degrees centigrade with the presence of W-Ti under layers. The effect of a W-Ti layer on the {111} texture formation in Ag thin film is also evaluated in detail. Insertion of a thin W-Ti over layer on Ag thin films is investigated with respect to their thermal stability. This research also evaluates the diffusion of Ag into silicon dioxide and W-Ti barriers. This project shows that W-Ti is an effective barrier layer for silver metallization. Later, the study investigates the effect of Cu addition in silver metallization and its impact on electromigration resistance. It is shown that Cu addition enhances the electromigration lifetime for silver metallization.

  10. Magnetic, thermoelectric, and electronic properties of layered oxides and carbon materials

    NASA Astrophysics Data System (ADS)

    Caudillo, Roman

    The structure and physical properties of layered oxides and carbon materials were studied. Two layered carbon materials were studied: carbon nanotubes (CNTs) synthesized by electron irradiation from amorphous carbon in situ in a transmission electron microscope (TEM) and a carbon and silver nanocomposite consisting of graphitic carbon nanospheres encapsulating Ag nanoparticles. In the CNT experiments, the effect of electron irradiation in the TEM is shown to alter drastically their structure and properties, even being able to transform amorphous carbon into a CNT. This suggests a possible alternative synthesis technique for the production of CNTs, in addition to providing a method for tailoring their properties. The structure and magnetic properties of the carbon and silver nanocomposite was characterized with x-ray diffraction, scanning and transmission electron microscopy techniques, and magnetic susceptibility measurements with a superconducting quantum interference device (SQUID) magnetometer. While the sp2 bonding gives a graphene sheet its mechanical properties, the p pi electrons are responsible for its electronic and magnetic properties. In a flat graphene sheet the ppi electrons are itinerant, but in a narrow ppi band. The introduction of curvature to the graphene sheets that encapsulate the Ag nanoparticles is demonstrated to narrow the ppi band sufficiently to result in "ferromagnetic" behavior. A model that is able to explain spin localization and ferrimagnetic spin-spin interactions in graphitic materials with positive curvature is presented. Layered oxides from the family of the P2 NaxCoO 2 structure were synthesized and their properties studied. Na xCoO2 has a rich phase diagram ranging form a promising Na-rich thermoelectric composition to the hydrated Na-poor composition Na 0.33CoO2 1.3H2O that is superconductive. Intermediate to these two Na compositions exists an insulating phase with x ≈ 0.5 that presents a variety of interesting structural

  11. Embedding dynamical mean-field theory for superconductivity in layered materials and heterostructures

    NASA Astrophysics Data System (ADS)

    Petocchi, Francesco; Capone, Massimo

    2016-06-01

    We study layered systems and heterostructures of s -wave superconductors by means of a suitable generalization of dynamical mean-field theory. In order to reduce the computational effort, we consider an embedding scheme in which a relatively small number of active layers is embedded in an effective potential accounting for the effect of the rest of the system. We introduce a feedback of the active layers on the embedding potential that improves on previous approaches and essentially eliminates the effects of the finiteness of the active slab allowing for cheap computation of very large systems. We extend the method to the superconducting state, and we benchmark the approach by means of simple paradigmatic examples showing some examples on how an interface affects the superconducting properties. As examples, we show that superconductivity can penetrate from an intermediate coupling superconductor into a weaker coupling one for around ten layers, and that the first two layers of a system with repulsive interaction can turn superconducting by proximity effects even when charge redistribution is inhibited.

  12. Metallic layered composite materials produced by explosion welding: Structure, properties, and structure of the transition zone

    NASA Astrophysics Data System (ADS)

    Mal'tseva, L. A.; Tyushlyaeva, D. S.; Mal'tseva, T. V.; Pastukhov, M. V.; Lozhkin, N. N.; Inyakin, D. V.; Marshuk, L. A.

    2014-10-01

    The structure, morphology, and microhardness of the transition zone in multilayer metallic composite joints are studied, and the cohesion strength of the plates to be joined, the mechanical properties of the formed composite materials, and fracture surfaces are analyzed. The materials to be joined are plates (0.1-1 mm thick) made of D16 aluminum alloy, high-strength maraging ZI90-VI (03Kh12N9K4M2YuT) steel, BrB2 beryllium bronze, and OT4-1 titanium alloy. Composite materials made of different materials are shown to be produced by explosion welding. The dependence of the interface shape (smooth or wavelike) on the physicomechanical properties of the materials to be joined is found. The formation of a wavelike interface is shown to result in the formation of intense-mixing regions in transition zones. Possible mechanisms of layer adhesion are discussed.

  13. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials

    PubMed Central

    Yu, Woo Jong; Liu, Yuan; Zhou, Hailong; Yin, Anxiang; Li, Zheng; Huang, Yu

    2014-01-01

    Layered materials of graphene and MoS2, for example, have recently emerged as an exciting material system for future electronics and optoelectronics. Vertical integration of layered materials can enable the design of novel electronic and photonic devices. Here, we report highly efficient photocurrent generation from vertical heterostructures of layered materials. We show that vertically stacked graphene–MoS2–graphene and graphene–MoS2–metal junctions can be created with a broad junction area for efficient photon harvesting. The weak electrostatic screening effect of graphene allows the integration of single or dual gates under and/or above the vertical heterostructure to tune the band slope and photocurrent generation. We demonstrate that the amplitude and polarity of the photocurrent in the gated vertical heterostructures can be readily modulated by the electric field of an external gate to achieve a maximum external quantum efficiency of 55% and internal quantum efficiency up to 85%. Our study establishes a method to control photocarrier generation, separation and transport processes using an external electric field. PMID:24162001

  14. Dark material in the polar layered deposits and dunes on Mars

    USGS Publications Warehouse

    Herkenhoff, K. E.; Vasavada, A.R.

    1999-01-01

    Viking infrared thermal mapping and bistatic radar data suggest that the bulk density of the north polar erg material is much lower than that of the average Martian surface or of dark dunes at lower latitudes. We have derived a thermal inertia of 245-280 J m-2 s-1/2 K-1 (5.9-6.7 ?? 10-3 cal cm-2 s-1/2 K-1) for the Proctor dune field and 25-150 J m-2 s-1/2 K-1 (0.6-3.6 ?? 10-3 cal cm-2 s-1/2 K-1) for the north polar erg. The uniqueness of the thermophysical properties of the north polar erg material may be due to a unique polar process that has created them. The visible and near-infrared spectral reflectance of the erg suggests that the dark material may be composed of basalt or ferrous clays. These data are consistent with the dark material being composed of basaltic ash or filamentary sublimate residue (FSR) particles derived from erosion of the layered deposits. Dark dust may be preferentially concentrated at the surface of the layered deposits by the formation of FSR particles upon sublimation of water ice. Further weathering and erosion of these areas of exposed layered deposits may form the dark, saltating material that is found in both polar regions. Dark FSR particles may saltate for great distances before eventually breaking down into dust grains, re-mixing with the global dust reservoir, and being recycled into the polar layered deposits via atmospheric suspension. Copyright 1999 by the American Geophysical Union.

  15. Effects of Soil Property Uncertainty on Projected Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Coon, E.; Painter, S. L.; Wilson, C. J.; Romanovsky, V. E.; Liljedahl, A.

    2014-12-01

    Uncertainty in future climate is often assumed to contribute the largest uncertainty to active layer thickness (ALT) projections. However, the impact of soil property uncertainty on these projections may be significant. In this research, we evaluate the contribution of soil property uncertainty on ALT projections at the Barrow Environmental Observatory, Alaska. The effect of variations in porosity, thermal conductivity, saturation, and water retention properties of peat and mineral soil are evaluated. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) is used to model multiphase thermal and hydrological processes in the subsurface. We apply the Null-Space Monte Carlo (NSMC) algorithm to identify an ensemble of soil property combinations that produce simulated temperature profiles that are consistent with temperature measurements available from the site. ALT is simulated for the ensemble of soil property combinations for four climate scenarios. The uncertainty in ALT due to soil properties within and across climate scenarios is evaluated. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  16. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  17. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil's physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  18. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil`s physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  19. Microbial diversity in European alpine permafrost and active layers.

    PubMed

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. PMID:26832204

  20. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  1. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  2. First insight into catalytic activity of anionic iron porphyrins immobilized on exfoliated layered double hydroxides.

    PubMed

    Nakagaki, Shirley; Halma, Matilte; Bail, Alesandro; Arízaga, Gregório Guadalupe Carbajal; Wypych, Fernando

    2005-01-15

    Mg-Al layered double hydroxide (LDH) intercalated with glycinate anions was synthesized through co-precipitation and exfoliated in formamide and the single-layer suspension was reacted with aqueous iron porphyrin solutions (Fe(TDFSPP) and Fe(TCFSPP)). The obtained materials were characterized by X-ray powder diffraction, UV-vis, and electron paramagnetic resonance and investigated in the oxidation reaction of cyclooctene and cyclohexane using iodosylbenzene as oxidant. The iron porphyrin seems to be immobilized at the surface of the glycinate intercalated LDH. The catalytic activities obtained in heterogeneous media for iron porphyrin, Fe(TDFSPP), was superior to the results obtained under homogeneous conditions, but the opposite effect was observed on the Fe(TCFSPP), indicating that, instead of the structural similarity of both iron porphyrins (second-generation porphyrins), the immobilization of each one produced different catalysts. The best catalytic activity of the Fe(TDFSPP)/Gly-LDH, compared to Fe(TCFSPP)/Gly-LDH, can be explained by the easy access of the oxidant and the substrate to the catalytic sites in the former, probably located at the surface of the layered double hydroxide pillared with glycinate anions. A model for the immobilization and a mechanism for the oxidation reaction will be discussed. PMID:15571697

  3. Neutron activation analysis of some building materials

    NASA Astrophysics Data System (ADS)

    Salagean, M. N.; Pantelica, A. I.; Georgescu, I. I.; Muntean, M. I.

    1999-01-01

    Concentrations of As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mo, Na, Nd, Rb, Sb, Sc, Sr, Ta, Tb, Th, U. Yb, W and Zn in seven Romanian building materials were determined by the Instrumental Neutron Activation Analysis (INAA) method using the VVR-S Reactor of NIPNE- Bucharest. Raw matarials used in cement obtaining ≈ 75% of limestone and ≈ 25% of clay, cement samples from three different factories, furnace slag, phosphogypsum, and a type of brick have been analyzed. The brick was compacted from furnace slay, fly coal ash, phosphogypsum, lime and cement. The U, Th and K concentrations determined in the brick are in agreement with the natural radioactivity measurements of226Ra,232Th and40K. These specific activities were found about twice and 1.5 higher than the accepted levels in the case of226Ra and232Th, as well as40K, respectively. By consequence, the investigated brick is considered a radioactive waste. The rather high content of Co, Cr, K, Th, and Zh in the brick is especially due to the slag and fly ash, the main componets. The presence of U, Th and K in slag is mainly correlated with the limestone and dolomite as fluxes in matallurgy.

  4. Optical fiber sensor layer embedded in smart composite material and structure

    NASA Astrophysics Data System (ADS)

    Pan, Xiao Wen; Liang, Da Kai; Li, Dongsheng

    2006-10-01

    A composite structure health monitoring system with optical fiber sensors is an important development in smart materials and structures. But it is difficult to embed a network of distributed optical fiber sensors in a smart composite structure, and the most effective method would be integrating the network of sensors with the polyimide film as a layer, called the optical fiber sensor layer, and then embedding the layer with optical fiber sensors in the composite material. This paper introduces three methods of making a distributed optical fiber sensor layer with polyimide. The first is to sandwich optical fiber sensors in two polyimide films. The second is to deposit the network of sensors in polyimide solution, and dry the polyimide solution. The last is to build thin-film optical waveguides and optical sensors by using fluorinated polyimide, which is expected to have high integration and high reliability. Some tests indicate that there is a little influence on the mechanical performance of the structure; however, optical fiber sensor built-in polyimide films work very well.

  5. Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation

    PubMed Central

    Han, Joong Tark; Jang, Jeong In; Kim, Haena; Hwang, Jun Yeon; Yoo, Hyung Keun; Woo, Jong Seok; Choi, Sua; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Cho, Kilwon; Lee, Geon-Woong

    2014-01-01

    Layered materials must be exfoliated and dispersed in solvents for diverse applications. Usually, highly energetic probe sonication may be considered to be an unfavourable method for the less defective exfoliation and dispersion of layered materials. Here we show that judicious use of ultrasonic cavitation can produce exfoliated transition metal dichalcogenide nanosheets extraordinarily dispersed in non-toxic solvent by minimising the sonolysis of solvent molecules. Our method can also lead to produce less defective, large graphene oxide nanosheets from graphite oxide in a short time (within 10 min), which show high electrical conductivity (>20,000 S m−1) of the printed film. This was achieved by adjusting the ultrasonic probe depth to the liquid surface to generate less energetic cavitation (delivered power ~6 W), while maintaining sufficient acoustic shearing (0.73 m s−1) and generating additional microbubbling by aeration at the liquid surface. PMID:24875584

  6. New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mu, Lin-Qin; Hu, Yong-Sheng; Chen, Li-Quan

    2015-03-01

    In order to achieve better Na storage performance, most layered oxide positive electrode materials contain toxic and expensive transition metals Ni and/or Co, which are also widely used for lithium-ion batteries. Here we report a new quaternary layered oxide consisting of Cu, Fe, Mn, and Ti transition metals with O3-type oxygen stacking as a positive electrode for room-temperature sodium-ion batteries. The material can be simply prepared by a high-temperature solid-state reaction route and delivers a reversible capacity of 94 mAh/g with an average storage voltage of 3.2 V. This paves the way for cheaper and non-toxic batteries with high Na storage performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 51222210 and 11234013) and the One Hundred Talent Project of the Chinese Academy of Sciences.

  7. Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic Cavitation

    NASA Astrophysics Data System (ADS)

    Han, Joong Tark; Jang, Jeong In; Kim, Haena; Hwang, Jun Yeon; Yoo, Hyung Keun; Woo, Jong Seok; Choi, Sua; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Cho, Kilwon; Lee, Geon-Woong

    2014-05-01

    Layered materials must be exfoliated and dispersed in solvents for diverse applications. Usually, highly energetic probe sonication may be considered to be an unfavourable method for the less defective exfoliation and dispersion of layered materials. Here we show that judicious use of ultrasonic cavitation can produce exfoliated transition metal dichalcogenide nanosheets extraordinarily dispersed in non-toxic solvent by minimising the sonolysis of solvent molecules. Our method can also lead to produce less defective, large graphene oxide nanosheets from graphite oxide in a short time (within 10 min), which show high electrical conductivity (>20,000 S m-1) of the printed film. This was achieved by adjusting the ultrasonic probe depth to the liquid surface to generate less energetic cavitation (delivered power ~6 W), while maintaining sufficient acoustic shearing (0.73 m s-1) and generating additional microbubbling by aeration at the liquid surface.

  8. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  9. Single-Layered Hittorf's Phosphorus: A Wide-Bandgap High Mobility 2D Material.

    PubMed

    Schusteritsch, Georg; Uhrin, Martin; Pickard, Chris J

    2016-05-11

    We propose here a two-dimensional material based on a single layer of violet or Hittorf's phosphorus. Using first-principles density functional theory, we find it to be energetically very stable, comparable to other previously proposed single-layered phosphorus structures. It requires only a small energetic cost of approximately 0.04 eV/atom to be created from its bulk structure, Hittorf's phosphorus, or a binding energy of 0.3-0.4 J/m(2) per layer, suggesting the possibility of exfoliation in experiments. We find single-layered Hittorf's phosphorus to be a wide band gap semiconductor with a direct band gap of approximately 2.5 eV, and our calculations show it is expected to have a high and highly anisotropic hole mobility with an upper bound lying between 3000-7000 cm(2) V(-1) s(-1). These combined properties make single-layered Hittorf's phosphorus a very good candidate for future applications in a wide variety of technologies, in particular for high frequency electronics, and optoelectronic devices operating in the low wavelength blue color range. PMID:27110837

  10. Single-Layered Hittorf's Phosphorus: A Wide-Bandgap High Mobility 2D Material

    NASA Astrophysics Data System (ADS)

    Schusteritsch, Georg; Uhrin, Martin; Pickard, Chris J.

    2016-05-01

    We propose here a two-dimensional material based on a single layer of violet or Hittorf's phosphorus. Using first-principles density functional theory, we find it to be energetically very stable, comparable to other previously proposed single-layered phosphorus structures. It requires only a small energetic cost of approximately $0.04~\\text{eV/atom}$ to be created from its bulk structure, Hittorf's phosphorus, or a binding energy of $0.3-0.4~\\text{J/m}^2$ per layer, suggesting the possibility of exfoliation in experiments. We find single-layered Hittorf's phosphorus to be a wide band gap semiconductor with a direct band gap of approximately $2.5$~eV and our calculations show it is expected to have a high and highly anisotropic hole mobility with an upper bound lying between $3000-7000$~cm$^2$V$^{-1}$s$^{-1}$. These combined properties make single-layered Hittorf's phosphorus a very good candidate for future applications in a wide variety of technologies, in particular for high frequency electronics, and optoelectronic devices operating in the low wavelength blue color range.

  11. Layer-dependent wall properties of abdominal aortic aneurysms: Experimental study and material characterization.

    PubMed

    Sassani, Sophia G; Kakisis, John; Tsangaris, Sokrates; Sokolis, Dimitrios P

    2015-09-01

    Mechanical testing and in-depth characterization of the abdominal aortic aneurysm wall from fifteen patients undergoing open surgery was performed to establish the layer-dependent tissue properties that are non-available in the literature. Quantitative microscopic evaluation was performed to identify the spatial organization of collagen-fiber network. Among a number of candidate models, the four-fiber family (microstructure-motivated) model, especially that including dispersions of fiber angles about the main directions, was superior to the Fung- and Gasser-type models in the fitting quality allowed, though it presented a practical difficulty in parameter estimation, so that an analysis was conducted aiding the identification of a more specific diagonal- and circumferential-fiber family model for all three layers. The adventitia was stiffer and stronger than the other layers, owing to its increased collagen content, and its contribution to the response of the intact wall was augmented being under greater residual tension than the media, whereas the intima was under residual compression. All layers were stiffer circumferentially than longitudinally, due to preferential collagen arrangement along that axis. The histologically-guided material characterization of layered wall presented herein is expected to assist clinical decision, by developing reliable criteria to predict the rupture risk of abdominal aortic aneurysms, and optimize endovascular interventions. PMID:26011656

  12. Review on the Raman spectroscopy of different types of layered materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Tan, Qing-Hai; Wu, Jiang-Bin; Shi, Wei; Tan, Ping-Heng

    2016-03-01

    Two-dimensional layered materials, such as graphene and transition metal dichalcogenides (TMDs), have been under intensive investigation. The rapid progress of research on graphene and TMDs is now stimulating the exploration of different types of layered materials (LMs). Raman spectroscopy has shown its great potential in the characterization of layer numbers, interlayer coupling and layer-stacking configurations and will benefit the future explorations of other LMs. Lattice vibrations or Raman spectra of many LMs in bulk have been discussed since the 1960s. However, different results were obtained because of differences or limitations in the Raman instruments at early stages. The developments of modern Raman spectroscopy now allow us to revisit the Raman spectra of these LMs under the same experimental conditions. Moreover, to the best of our knowledge, there were limitations in detailed reviews on the Raman spectra of these different LMs. Here, we provide a review on Raman spectra of various LMs, including semiconductors, topological insulators, insulators, semi-metals and superconductors. We firstly introduce a unified method based on symmetry analysis and polarization measurements to assign the observed Raman modes and characterize the crystal structure of different types of LMs. Then, we revisit and update the positions and assignments of vibration modes by re-measuring the Raman spectra of different types of LMs and by comparing our results to those reported in previous papers. We apply the recent advances on the interlayer vibrations of graphene and TMDs to these various LMs and obtain their shear modulus. The observation of the shear modes of LMs in bulk facilitates an accurate and fast characterization of layer numbers during preparation processes in the future by a robust layer-number dependency on the frequencies of the shear modes. We also summarize the recent advances on the layer-stacking dependence on the intensities of interlayer shear vibrations

  13. Analysis of Counterfeit Coated Tablets and Multi-Layer Packaging Materials Using Infrared Microspectroscopic Imaging.

    PubMed

    Winner, Taryn L; Lanzarotta, Adam; Sommer, André J

    2016-06-01

    An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm. PMID:27068491

  14. Preparation of thin layer materials with macroporous microstructure for SOFC applications

    NASA Astrophysics Data System (ADS)

    Marrero-López, D.; Ruiz-Morales, J. C.; Peña-Martínez, J.; Canales-Vázquez, J.; Núñez, P.

    2008-04-01

    A facile and versatile method using polymethyl methacrylate (PMMA) microspheres as pore formers has been developed to prepare thin layer oxide materials with controlled macroporous microstructure. Several mixed oxides with fluorite and perovskite-type structures, i.e. doped zirconia, ceria, ferrites, manganites, and NiO-YSZ composites have been prepared and characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and mercury porosimetry. The synthesised materials are nanocrystalline and present a homogeneous pore distribution and relatively high specific surface area, which makes them interesting for SOFC and catalysis applications in the intermediate temperature range.

  15. Hybrid organic inorganic materials: Layered hydroxy double salts intercalated with substituted thiophene monomers

    NASA Astrophysics Data System (ADS)

    Tronto, Jairo; Leroux, Fabrice; Dubois, Marc; Taviot-Gueho, Christine; Valim, João Barros

    2006-05-01

    The present paper describes the synthesis and characterization of Layered Hydroxy Double Salts (HDSs) containing substituted thiophene anions (2-thiophenecarboxylate, 3-thiophenecarboxylate, and 3-thiopheneacetate). The HDSs host was synthesized via hydrothermal method and the organic anions were incorporated between the sheets by anion-exchange reaction. The materials were characterized by powder X-ray diffraction (PXRD), thermal gravimetric (TG) analysis and electron spin resonance (ESR) spectroscopy. For the 2D-hybrid materials, the basal spacing is found to be consistent with the formation of bilayers of the intercalated organic monomers. For the hybrid material formed after intercalation of 3-thiopheneacetate anion, the ESR signals suggest that the monomers connect each other directly forming small oligomers, whereas this process is not occurring for the two other monomers presenting short alkyl chain. The TG analyses show different stages of thermal decomposition between HDSs host and 2D-hybrid materials, underlining the enhanced thermal stability of the hybrid assembly.

  16. [Abrasion resistance of dental materials. 3. Surface quality study of Evicrol by wear measurements at different layer depths].

    PubMed

    Tappe, A; Eichhorn, T

    1980-04-01

    Abrasion determinations in various layer depths showed that the layer of the filling material Evicrol directly under the matrix-hardened surface is more abrasion-resistant than the matrix- hardened surface. From this it is concluded that it is good practice to overfill in making restorations of Evicrol and to remove a certain layer of material (approximately 0.25 mm, according to Fraunhofer). PMID:6935842

  17. Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kim, Yu Geun; Kwon, Ki Chang; Le, Quyet Van; Hong, Kootak; Jang, Ho Won; Kim, Soo Young

    2016-07-01

    Atomically thin two-dimensional materials such as MoS2, WS2, and graphene oxide (GO) are used as hole extraction layers (HEL) in organolead halide perovskites solar cells (PSCs) instead of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HEL. MoS2 and WS2 layers with a polycrystalline structure were synthesized by a chemical deposition method using a uniformly spin-coated (NH4)MoS4 and (NH4)WS4 precursor solution. GO was synthesized by the oxidation of natural graphite powder using Hummers' method. The work functions of MoS2, WS2, and GO are measured to be 5.0, 4.95, and 5.1 eV, respectively. The X-ray diffraction spectrum indicated that the synthesized perovskite material is CH3NH3PbI3-xClx. The PSCs with the p-n junction structure were fabricated based on the CH3NH3PbI3-xClx perovskite layer. The power conversion efficiencies of the MoS2, WS2, and GO-based PSCs were 9.53%, 8.02%, and 9.62%, respectively, which are comparable to those obtained from PEDOT:PSS-based devices (9.93%). These results suggest that two-dimensional materials such as MoS2, WS2, and GO can be promising candidates for the formation of HELs in the PSCs.

  18. Potential active materials for photo-supercapacitor: A review

    NASA Astrophysics Data System (ADS)

    Ng, C. H.; Lim, H. N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N. M.

    2015-11-01

    The need for an endless renewable energy supply, typically through the utilization of solar energy in most applications and systems, has driven the expansion, versatility, and diversification of marketed energy storage devices. Energy storage devices such as hybridized dye-sensitized solar cell (DSSC)-capacitors and DSSC-supercapacitors have been invented for energy reservation. The evolution and vast improvement of these devices in terms of their efficiencies and flexibilities have further sparked the invention of the photo-supercapacitor. The idea of coupling a DSSC and supercapacitor as a complete energy conversion and storage device arose because the solar energy absorbed by dye molecules can be efficiently transferred and converted to electrical energy by adopting a supercapacitor as the energy delivery system. The conversion efficiency of a photo-supercapacitor is mainly dependent on the use of active materials during its fabrication. The performances of the dye, photoactive metal oxide, counter electrode, redox electrolyte, and conducting polymer are the primary factors contributing to high-energy-efficient conversion, which enhances the performance and shelf-life of a photo-supercapacitor. Moreover, the introduction of compact layer as a primary adherent film has been earmarked as an effort in enhancing power conversion efficiency of solar cell. Additionally, the development of electrolyte-free solar cell such as the invention of hole-conductor or perovskite solar cell is currently being explored extensively. This paper reviews and analyzes the potential active materials for a photo-supercapacitor to enhance the conversion and storage efficiencies.

  19. Application of the thin electrolyte layer technique to corrosion testing of dental materials

    NASA Astrophysics Data System (ADS)

    Ledvina, Martin

    Proper simulation of the oral environment for the corrosion testing of dental materials is crucial for determining corrosion rates and mechanisms correctly. In this study, the thin electrolyte layer technique (TET) was characterized and employed to investigate the importance of the chemical composition of the testing environment on the outcome of electrochemical tests. The thickness of the electrolyte layer in TET is only 0.5 mm and contains only 20 muL of electrolyte. This arrangement simulates the physical characteristics of the oral environment and facilitates testing in human saliva. Oxygen availability for reduction on the sample surface was determined, using cathodic polarization of Pt in borate buffer, to be lower in TET than in traditional (bulk electrolyte) techniques. Appreciable differences were found during polarization experiments on 316 L SS in saline and artificial saliva. Oxygen content was found to play a significant role in the corrosivity of various species contained in artificial saliva. Potentiodynamic polarization employing human saliva in TET on 316L SS proved to be very different from tests performed in artificial saliva. This was believed to be due to the presence of organic species, specifically proteins, contained in human saliva. This was further confirmed by cyclic polarization and corrosion current measurements of four commercial nickel-chromium (NiCr) alloys with varying amounts of Be. For this phase of the experiment, artificial saliva (AS), AS with 1% albumin, AS with 1% of mucin and parotid human saliva were employed as electrolytes. The results obtained in the various electrolytes depended on the composition, microstructure, stability of passive film, and the presence of casting porosity of the alloys tested. Proteins had insignificant effect on alloys with highly stable passive films, whereas, corrosion rates increased substantially in those alloys with compromised passive film formation. Proteins, especially mucin, lowered the

  20. Light activated nitric oxide releasing materials

    NASA Astrophysics Data System (ADS)

    Muizzi Casanas, Dayana Andreina

    The ability to control the location and dosage of biologically active molecules inside the human body can be critical to maximizing effective treatment of cardiovascular diseases like angina. The current standard of treatment relies on the metabolism of organonitrate drugs into nitric oxide (NO), which are not specific, and also show problems with densitization with long-term use. There is a need then to create a treatment method that gives targeted release of NO. Metal-nitrosyl (M-NO) complexes can be used for delivery of NO since the release of NO can be controlled with light. However, the NO-releasing drug must be activated with red light to ensure maximum penetration of light through tissue. However, the release of NO from M-NO complexes with red-light activation is a significant challenge since the energy required to break the metal-NO bond is usually larger than the energy provided by red light. The goal of this project was to create red- sensitive, NO-releasing materials based on Ru-salen-nitrosyl compounds. Our approach was to first modify Ru salen complexes to sensitize the photochemistry for release of NO after red light irradiation. Next, we pursued polymerization of the Ru-salen complexes. We report the synthesis and quantitative photochemical characterization of a series of ruthenium salen nitrosyl complexes. These complexes were modified by incorporating electron donating groups in the salen ligand structure at key locations to increase electron density on the Ru. Complexes with either an --OH or --OCH3 substituent showed an improvement in the quantum yield of release of NO upon blue light irradiation compared to the unmodified salen. These --OH and --OCH3 complexes were also sensitized for NO release after red light activation, however the red-sensitive complexes were unstable and showed ligand substitution on the order of minutes. The substituted complexes remained sensitive for NO release, but only after blue light irradiation. The Ru

  1. New Material Development for Surface Layer and Surface Technology in Tribology Science to Improve Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Ismail, R.; Tauviqirrahman, M.; Jamari, Jamari; Schipper, D. J.

    2009-09-01

    This paper reviews the development of new material and surface technology in tribology and its contribution to energy efficiency. Two examples of the economic benefits, resulted from the optimum tribology in the transportation sector and the manufacturing industry are discussed. The new materials are proposed to modify the surface property by laminating the bulk material with thin layer/coating. Under a suitable condition, the thin layer on a surface can provide a combination of good wear, a low friction and corrosion resistance for the mechanical components. The innovation in layer technology results molybdenum disulfide (MoS2), diamond like carbon (DLC), cubic boron nitride (CBN) and diamond which perform satisfactory outcome. The application of the metallic coatings to carbon fibre reinforced polymer matrix composites (CFRP) has the capacity to provide considerable weight and power savings for many engineering components. The green material for lubricant and additives such as the use of sunflower oil which possesses good oxidation resistance and the use of mallee leaves as bio-degradable solvent are used to answer the demand of the environmentally friendly material with good performance. The tribology research implementation for energy efficiency also touches the simple things around us such as: erasing the laser-print in a paper with different abrasion techniques. For the technology in the engineering surface, the consideration for generating the suitable surface of the components in running-in period has been discussed in order to prolong the components life and reduce the machine downtime. The conclusion, tribology can result in reducing manufacturing time, reducing the maintenance requirements, prolonging the service interval, improving durability, reliability and mechanical components life, and reducing harmful exhaust emission and waste. All of these advantages will increase the energy efficiency and the economic benefits.

  2. Structural factors affecting lithium transport in lithium-excess layered cathode materials

    NASA Astrophysics Data System (ADS)

    Fell, Christopher R.

    Lithium ion batteries have drawn significant attention as the principle energy storage device powering today's mobile electronic equipment. Despite the increased usage, the performance of current lithium ion battery technology falls short of the requirements needed for large format applications such as electric vehicles. The layered lithium-excess oxide compounds Li[NixLi1/3-2x/3Mn2/3-x/3]O2 are of interest as a new generation of cathode materials for high energy density lithium ion batteries. Efforts to achieve a better understanding of the electrochemistry of lithium-excess materials require the connection of crystal structure to electrochemical properties. In this dissertation, a combination of advanced characterization techniques was used as a tool to understand the intercalation mechanism of the layered lithium-excess transition metal oxide Li[NixLi1/3-2x/3Mn 2/3-x/3]O2. The research identified that synthesis influences the structure of the material specifically the surface of the particles. The formation of a hydroxide rich surface film decreases the electrochemical performance. Post synthesis modifications including high pressure and high temperature leads to the formation of a second layered phase in the bulk; however, the treated samples display good electrochemical properties. This result underlines the flexibility of the structure of Li[NixLi1/3-2x/3Mn 2/3-x/3]O2, a feature uncommon to other layered transition metal oxides. Surface characterization of the layered lithium-excess cathodes following electrochemical cycling revealed the formation of a new surface phase 1 to 5 nm thick as well as insight to the complex cation rearrangement process and phase transformation. This part of the research identified that significant changes occurred during electrochemical cycling; however did not identify when the transformations occurred. Investigation using in situ techniques during the first electrochemical cycle shows that the structure undergoes irreversible

  3. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    PubMed Central

    2011-01-01

    Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET) reaction cascades of cytochrome c (cyt c) immobilized by the use of modified silica nanoparticles (SiNPs) to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS), Fourier transformed infrared spectroscopy (FT-IR), Zeta-potential and transmission electron microscopy (TEM). The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the influence of particle size are

  4. Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

    DOE PAGESBeta

    Abellán, Gonzalo; Jordá, Jose Luis; Atienzar, Pedro; Varela, María; Jaafar, Miriam; Gómez-Herrero, Julio; Zamora, Félix; Ribera, Antonio; García, Hermenegildo; Coronado, Eugenio

    2014-12-04

    In this study, a hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl–LDH ferromagnetic layers intercalated with thermoresponsive 4-(4 anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In situ variable temperature XRD of these thin hybrids shows thatmore » the reversible change into the two tautomers is reflected in a shift of the position of the diffraction peaks at high temperatures towards lower interlayer spacing for the hydrazone form, as well as a broadening of the peaks reflecting lower crystallinity and ordering due to non-uniform spacing between the layers. These structural variations between room temperature (basal spacing (BS) = 25.91 Å) and 100 °C (BS = 25.05 Å) are also reflected in the magnetic properties of the layered double hydroxide (LDH) due to the variation of the magnetic coupling between the layers. Finally and in conclusion, our study constitutes one of the few examples showing fully reversible thermo-responsive breathing in a 2D hybrid material. In addition, the magnetic response of the hybrid can be modulated due to the thermotropism of the organic component that, by influencing the distance and in-plane correlation of the inorganic LDH, modulates the magnetism of the CoAl–LDH sheets in a certain range.« less

  5. Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

    SciTech Connect

    Abellán, Gonzalo; Jordá, Jose Luis; Atienzar, Pedro; Varela, María; Jaafar, Miriam; Gómez-Herrero, Julio; Zamora, Félix; Ribera, Antonio; García, Hermenegildo; Coronado, Eugenio

    2014-12-04

    In this study, a hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl–LDH ferromagnetic layers intercalated with thermoresponsive 4-(4 anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In situ variable temperature XRD of these thin hybrids shows that the reversible change into the two tautomers is reflected in a shift of the position of the diffraction peaks at high temperatures towards lower interlayer spacing for the hydrazone form, as well as a broadening of the peaks reflecting lower crystallinity and ordering due to non-uniform spacing between the layers. These structural variations between room temperature (basal spacing (BS) = 25.91 Å) and 100 °C (BS = 25.05 Å) are also reflected in the magnetic properties of the layered double hydroxide (LDH) due to the variation of the magnetic coupling between the layers. Finally and in conclusion, our study constitutes one of the few examples showing fully reversible thermo-responsive breathing in a 2D hybrid material. In addition, the magnetic response of the hybrid can be modulated due to the thermotropism of the organic component that, by influencing the distance and in-plane correlation of the inorganic LDH, modulates the magnetism of the CoAl–LDH sheets in a certain range.

  6. Unpinning the Open-Circuit Voltage in Organic Solar Cells through Tuning Ternary Blend Active Layer Morphology

    NASA Astrophysics Data System (ADS)

    Khlyabich, Petr; Thompson, Barry; Loo, Yueh-Lin

    2015-03-01

    The use of ternary, as opposed to binary, blends having complementary absorption in active layers of organic bulk heterojunction solar cells is a simple approach to increase overall light absorption. While the open-circuit voltage (Voc) of such solar cells have generally been shown to be pinned by the smallest energy level difference between the donor and acceptor constituents, there have been materials systems, that when incorporated into active layers of solar cells, exhibit composition dependent and tunable Voc. Herein, we demonstrate that this Voc tunability in ternary blend solar cells is correlated with the morphology of the active layer. Chemical compatibility between the constituents in the blend, as probed by grazing-incidence X-ray diffraction (GIXD) measurements, affords Voc tuning. The constituents need not ``co-crystallize'' limited miscibility between the constituents in the active layers of solar cells affords Voc tunability. Poor physical interactions between the constituent domains within the active layers, on the other hand, result in devices that exhibit an invariant Voc that is pinned by the smallest energy level difference between the donor(s) and the acceptor(s). Our morphological studies thus support the proposed alloying model that was put forth originally.

  7. Temperature distribution in a layer of an active thermal insulation system heated by a gas burner

    SciTech Connect

    Maruyama, Shigenao . Inst. of Fluid Science); Shimizu, Naotaka . Dept. of Mechanical Engineering)

    1993-12-01

    The temperature distribution in a layer of an active thermal insulation system was measured. A semitransparent porous layer was heated by a gas burner, and air was injected from the back face of the layer. The temperature in the layer was measured by thermocouples. The temperature distributions were compared with numerical solutions. The thermal penetration depth of the active thermal insulation layer with gas injection can be reduced to 3 mm. When the surface temperature of a conventional insulation layer without gas injection reached 1,500 K, the temperature at the back surface of a 10-mm-thick layer reached 600 K. The transient temperature of the active thermal insulation reached a steady state very quickly compared with that of the conventional insulation. These characteristics agreed qualitatively with the numerical solutions.

  8. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  9. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure

    NASA Astrophysics Data System (ADS)

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-01

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on.Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. Electronic supplementary information (ESI) available: SEM image of hexagonal silicon pillar templates, AFM images of clay platelets on a silicon substrate, photographs of free-standing gels, X-ray diffraction profiles for dried materials, FTIR and TGA of the samples, and

  10. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and

  11. MoO3 as a Cathode Buffer Layer Material for the Improvement of Planar pn-Heterojunction Organic Solar Cell Performance

    NASA Astrophysics Data System (ADS)

    Kageyama, Hiroshi; Kajii, Hirotake; Ohmori, Yutaka; Shirota, Yasuhiko

    2011-03-01

    The use of MoO3 as a cathode buffer layer inserted between LiF and Al improved the power conversion efficiency (PCE) of planar pn-heterojunction organic solar cells (OSCs) by reducing exciton quenching at the interface between the n-type organic active layer and the electrode. The cell using an amorphous molecular material, tris[4-(5-phenylthiophen-2-yl)phenyl]amine, as a p-type organic semiconductor, C70 as an n-type organic semiconductor and MoO3 as a cathode buffer layer exhibited a PCE of 3.3% under AM1.5G illumination (100 mW cm-2), which is of the highest level among those for planar pn-heterojunction OSCs using amorphous molecular materials as donor materials.

  12. Large-Area Quality Control of Atomically-Thin Layered Materials

    NASA Astrophysics Data System (ADS)

    Nolen, Craig Merten

    Fast progress in chemical vapor deposition of graphene and other quasi-two-dimensional layered materials such as topological insulators call for development of a reliable high-throughput method of layered materials identification and quality control. The number of atomic planes in graphene or other ultra-thin films has to be determined very fast and over large wafer-scale areas. The previously existed methods of accurate counting of the number of atomic planes in few-layer graphene were primarily based on micro-Raman spectroscopy. These methods were local, slow, and could not be scaled up to characterize the whole wafers. In this dissertation research I proposed and developed an automatic approach for graphene inspection over the wafer-size areas. The proposed method can be scaled up for industrial use. It is based on the image processing analysis of the pseudo-color contrasts uniquely assigned to each few-layer graphene region characterized by a specific number of atomic planes. The initial calibration of the technique is performed with the help of micro-Raman spectroscopy. The image processing is also used to account for the lighting non-uniformity of the samples. Implementation of the technique developed in this dissertation research reduces the cost and time required for graphene identification and quality assessment, and can become the next major impetus for practical applications of graphene, few-layer graphene and other atomically-thin films. The technique was tested on mechanically exfoliated graphene and then extended to the chemical-vapor-deposited graphene, and to bismuth telluride topological insulator thin films. The second part of the dissertation research deals with development of the electrostatic transfer process. The investigated approach allows one to transfer the patterned few-layer graphene films controllably to Si3N4 substrates compatible with other materials. The large-area quality control and graphene transfer techniques developed in this

  13. Review on the Raman spectroscopy of different types of layered materials.

    PubMed

    Zhang, Xin; Tan, Qing-Hai; Wu, Jiang-Bin; Shi, Wei; Tan, Ping-Heng

    2016-03-28

    Two-dimensional layered materials, such as graphene and transition metal dichalcogenides (TMDs), have been under intensive investigation. The rapid progress of research on graphene and TMDs is now stimulating the exploration of different types of layered materials (LMs). Raman spectroscopy has shown its great potential in the characterization of layer numbers, interlayer coupling and layer-stacking configurations and will benefit the future explorations of other LMs. Lattice vibrations or Raman spectra of many LMs in bulk have been discussed since the 1960s. However, different results were obtained because of differences or limitations in the Raman instruments at early stages. The developments of modern Raman spectroscopy now allow us to revisit the Raman spectra of these LMs under the same experimental conditions. Moreover, to the best of our knowledge, there were limitations in detailed reviews on the Raman spectra of these different LMs. Here, we provide a review on Raman spectra of various LMs, including semiconductors, topological insulators, insulators, semi-metals and superconductors. We firstly introduce a unified method based on symmetry analysis and polarization measurements to assign the observed Raman modes and characterize the crystal structure of different types of LMs. Then, we revisit and update the positions and assignments of vibration modes by re-measuring the Raman spectra of different types of LMs and by comparing our results to those reported in previous papers. We apply the recent advances on the interlayer vibrations of graphene and TMDs to these various LMs and obtain their shear modulus. The observation of the shear modes of LMs in bulk facilitates an accurate and fast characterization of layer numbers during preparation processes in the future by a robust layer-number dependency on the frequencies of the shear modes. We also summarize the recent advances on the layer-stacking dependence on the intensities of interlayer shear vibrations

  14. Role of core support material in veneer failure of brittle layer structures.

    PubMed

    Hermann, Ilja; Bhowmick, Sanjit; Lawn, Brian R

    2007-07-01

    A study is made of veneer failure by cracking in all-ceramic crown-like layer structures. Model trilayers consisting of a 1 mm thick external glass layer (veneer) joined to a 0.5 mm thick inner stiff and hard ceramic support layer (core) by epoxy bonding or by fusion are fabricated for testing. The resulting bilayers are then glued to a thick compliant polycarbonate slab to simulate a dentin base. The specimens are subjected to cyclic contact (occlusal) loading with spherical indenters in an aqueous environment. Video cameras are used to record the fracture evolution in the transparent glass layer in situ during testing. The dominant failure mode is cone cracking in the glass veneer by traditional outer (Hertzian) cone cracks at higher contact loads and by inner (hydraulically pumped) cone cracks at lower loads. Failure is deemed to occur when one of these cracks reaches the veneer/core interface. The advantages and disadvantages of the alumina and zirconia core materials are discussed in terms of mechanical properties-strength and toughness, as well as stiffness. Consideration is also given to the roles of interface strength and residual thermal expansion mismatch stresses in relation to the different joining methods. PMID:17078086

  15. Intensifying the Casimir force between two silicon substrates within three different layers of materials

    NASA Astrophysics Data System (ADS)

    Seyedzahedi, A.; Moradian, A.; Setare, M. R.

    2016-04-01

    We investigate the Casimir force for a system composed of two thick slabs as substrates within three different homogeneous layers. We use the scattering approach along with the Matsubara formalism in order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection matrices and then we calculate the Casimir force for a water-lipid system. According to the conventional use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO2, mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate's role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good candidates for designing nanomechanical devices.

  16. InAs/GaInSb strained layer superlattice as an infrared detector material: an overview

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey L.

    2000-04-01

    The investigation of the InAs/Ga1-xInxSb strained layer superlattice (SLS) has been largely motivated by the promise of overcoming limitations of current mature high-performance IR detectors, such as those using HgCdTe and extrinsic silicon. It also offers fundamentally superior performance over other newly emerging III-V bandgap- engineered materials such as QWIPs. The inherent properties of the InAs/GaInSb SLS have identified it as an attractive alternative for niche VLWIR applications requiring high performance under low backgrounds at operating temperatures > 40K. If this material system proves to meet the stringent demands of VLWIR applications, it will most certainly play a significant role as an alternative materials for photovoltaic focal pane arrays operating in the LWIR and MWIR regimes as well. This paper is an overview of SLS technology development, and focuses on critical development needs as seen from the perspective of the IR detector industry.

  17. Strain-displacement relations for strain engineering in single-layer 2d materials

    NASA Astrophysics Data System (ADS)

    Midtvedt, Daniel; Lewenkopf, Caio H.; Croy, Alexander

    2016-03-01

    We investigate the electromechanical coupling in single-layer 2d materials. For non-Bravais lattices, we find important corrections to the standard macroscopic strain-microscopic atomic-displacement theory. We put forward a general and systematic approach to calculate strain-displacement relations for several classes of 2d materials. We apply our findings to graphene as a study case, by combining a tight binding and a valence force-field model to calculate electronic and mechanical properties of graphene nanoribbons under strain. The results show good agreement with the predictions of the Dirac equation coupled to continuum mechanics. For this long wave-limit effective theory, we find that the strain-displacement relations lead to a renormalization correction to the strain-induced pseudo-magnetic fields. A similar renormalization is found for the strain-induced band-gap of black phosphorous. Implications for nanomechanical properties and electromechanical coupling in 2d materials are discussed.

  18. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties.

    PubMed

    Zhao, Zhisheng; Wang, Erik F; Yan, Hongping; Kono, Yoshio; Wen, Bin; Bai, Ligang; Shi, Feng; Zhang, Junfeng; Kenney-Benson, Curtis; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-01-01

    Type-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains. Under hydrostatic compression, bulk, shear and Young's moduli decrease anomalously with pressure, reaching minima around 1-2 GPa, where Poisson's ratio approaches zero, and then revert to normal behaviour with positive pressure dependences. Controlling the concentration, size and shape of fullerene-like spheroids with tailored topological connectivity to graphene layers is expected to yield exceptional and tunable mechanical properties, similar to mechanical metamaterials, with potentially wide applications. PMID:25648723

  19. Preparation of thin layer materials with macroporous microstructure for SOFC applications

    SciTech Connect

    Marrero-Lopez, D.; Ruiz-Morales, J.C.; Pena-Martinez, J.; Canales-Vazquez, J.; Nunez, P.

    2008-04-15

    A facile and versatile method using polymethyl methacrylate (PMMA) microspheres as pore formers has been developed to prepare thin layer oxide materials with controlled macroporous microstructure. Several mixed oxides with fluorite and perovskite-type structures, i.e. doped zirconia, ceria, ferrites, manganites, and NiO-YSZ composites have been prepared and characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and mercury porosimetry. The synthesised materials are nanocrystalline and present a homogeneous pore distribution and relatively high specific surface area, which makes them interesting for SOFC and catalysis applications in the intermediate temperature range. - Graphical abstract: Thin films materials of mixed oxides with potential application in SOFC devices have been prepared with macroporous microstructure using PMMA microspheres as pore formers. Display Omitted.

  20. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries.

    PubMed

    Lin, Feng; Markus, Isaac M; Nordlund, Dennis; Weng, Tsu-Chien; Asta, Mark D; Xin, Huolin L; Doeff, Marca M

    2014-01-01

    The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales. PMID:24670975

  1. Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium-Sulfur Batteries.

    PubMed

    Zhang, Qianfan; Wang, Yapeng; Seh, Zhi Wei; Fu, Zhongheng; Zhang, Ruifeng; Cui, Yi

    2015-06-10

    Although the rechargeable lithium-sulfur battery system has attracted significant attention due to its high theoretical specific energy, its implementation has been impeded by multiple challenges, especially the dissolution of intermediate lithium polysulfide (Li2Sn) species into the electrolyte. Introducing anchoring materials, which can induce strong binding interaction with Li2Sn species, has been demonstrated as an effective way to overcome this problem and achieve long-term cycling stability and high-rate performance. The interaction between Li2Sn species and anchoring materials should be studied at the atomic level in order to understand the mechanism behind the anchoring effect and to identify ideal anchoring materials to further improve the performance of Li-S batteries. Using first-principles approach with van der Waals interaction included, we systematically investigate the adsorption of Li2Sn species on various two-dimensional layered materials (oxides, sulfides, and chlorides) and study the detailed interaction and electronic structure, including binding strength, configuration distortion, and charge transfer. We gain insight into how van der Waals interaction and chemical binding contribute to the adsorption of Li2Sn species for anchoring materials with strong, medium, and weak interactions. We understand why the anchoring materials can avoid the detachment of Li2S as in carbon substrate, and we discover that too strong binding strength can cause decomposition of Li2Sn species. PMID:25961805

  2. Few layer epitaxial germanene: a novel two-dimensional Dirac material

    NASA Astrophysics Data System (ADS)

    Dávila, María Eugenia; Le Lay, Guy

    2016-02-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing.

  3. Few layer epitaxial germanene: a novel two-dimensional Dirac material.

    PubMed

    Dávila, María Eugenia; Le Lay, Guy

    2016-01-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing. PMID:26860590

  4. Few layer epitaxial germanene: a novel two-dimensional Dirac material

    PubMed Central

    Dávila, María Eugenia; Le Lay, Guy

    2016-01-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing. PMID:26860590

  5. Suitability of polystyrene as a functional barrier layer in coloured food contact materials.

    PubMed

    Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy

    2015-01-01

    Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act. PMID:25569333

  6. Visibility of atomically-thin layered materials buried in silicon dioxide.

    PubMed

    Simsek, Ergun; Mukherjee, Bablu

    2015-11-13

    Recently, the coating of thin oxide or nitride film on top of crystals of atomically-thin layered material (ATLM) has been introduced, which benefits optical and electrical properties of the materials and shields them from environmental contact, and has important implications for optoelectronics applications of layered materials. By calculating the reflection contrast, we show the possibility of using an additional oxide film on top of ATLM with good average optical color contrast in broad- and narrow-band wavelength ranges. Our work presents a more comprehensive map of optical color contrast of various ATLMs including graphene, MoS2, MoSe2, WS2, and WSe2 when kept in a sandwich structure between two thin SiO2 films on a Si substrate. The average color contrasts of ATLMs with varying thicknesses of SiO2 films at three different wavelength ranges (i.e. broadband range, range for green filtering and range for red filtering) have been discussed with a summary of optimized thicknesses of the top and bottom oxide films in order to achieve the highest color contrast from the sandwich structures. PMID:26472489

  7. Investigation of negative coercivity in one layer formation of soft and hard magnetic materials

    NASA Astrophysics Data System (ADS)

    Tho, Luu Van; Kim, Cheol Gi; Kim, Chong Oh

    2008-04-01

    A single layer consists of CoFe soft and LaCoFeO hard magnetic materials was deposited using the cosputtering method. Microstructure analysis of the layer demonstrated that CoFe particles were surrounded by a LaCoFeO shell and the ratio of the thicknesses was dependent on the amount of La and on the O2/(Ar+O2) gas flow ratio used during sputtering. When the O2/(Ar+O2) gas flow ratio was increased from 7% to 13%, coercivity (Hc) along the hard axis decreased from 11.3Oe at 7% to -9.1Oe at 11%. At a gas flow ratio of 13%, the coercivity increased to 11.7Oe. The results of the present study show that negative coercivity Hc<0 is caused by interactions between two single domains of soft and hard magnetic materials. This interaction was modeled and described in detail using an extension of Heisenberg's model to the case of two domains. The results of the present study, demonstrating the conditions required to obtain negative Hc, can be applied to other pairs of soft-hard magnetic materials.

  8. Finite Element Analysis of Layered Fiber Composite Structures Accounting for the Material's Microstructure and Delamination

    NASA Astrophysics Data System (ADS)

    Stier, Bertram; Simon, Jaan-Willem; Reese, Stefanie

    2015-04-01

    The present paper focuses on composite structures which consist of several layers of carbon fiber reinforced plastics (CFRP). For such layered composite structures, delamination constitutes one of the major failure modes. Predicting its initiation is essential for the design of these composites. Evaluating stress-strength relation based onset criteria requires an accurate representation of the through-the-thickness stress distribution, which can be particularly delicate in the case of shell-like structures. Thus, in this paper, a solid-shell finite element formulation is utilized which allows to incorporate a fully three-dimensional material model while still being suitable for applications involving thin structures. Moreover, locking phenomena are cured by using both the EAS and the ANS concept, and numerical efficiency is ensured through reduced integration. The proposed anisotropic material model accounts for the material's micro-structure by using the concept of structural tensors. It is validated by comparison to experimental data as well as by application to numerical examples.

  9. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    SciTech Connect

    Zhuang, Chunqiang; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.

  10. Backside defect printability for contact layer with different reticle blank material

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Holfeld, Christian; Fischer, Daniel; Ackmann, Paul; Holfeld, Andre; Kurth, Karin; Sczyrba, Martin; Hertzsch, Tino; Seltmann, Rolf; Ho, Angeline; GN, Fang H.

    2012-11-01

    Backside defects are out of focus during wafer exposure by the mask thickness and cannot be directly imaged on wafer. However, backside defects will induce transmission variation during wafer exposure. When the size of backside defect is larger than 200 microns, the shadow of such particles will locally change the illumination conditions of the mask patterns and may result in a long range critical dimension (CD) variation on wafer depending on numerical aperture (NA) and pupil shape. Backside defects will affect both wafer CD and critical dimension uniformity (CDU), especially for two-dimensional (2D) structures. This paper focuses on the printability of backside defects on contact layer using annular and quadrupole illumination mode, as well as using different reticle blank material. It also targets for gaining better understanding of critical sizes of backside defects on contact layer for different reticle blanks. We have designed and manufactured two test reticles with repeating patterns of 28nm and 40nm technology node of contact layers. Programmed chrome defects of varying size are placed on the backside opposite to the repeating front side patterns in order to measure the spatial variation of transmission and wafer CD. The test mask was printed on a bare silicon wafer, and the printed features measured for size by spatial sampling. We have investigated two contact layers with different illumination conditions. One is advance binary with single exposure; another is phase shift mask with double exposure. Wafer CD variation for different backside defect sizes are demonstrated for the two contact layers. The comparison between backside defect size with inter-field and intra-field CD variation is also discussed.

  11. Raman and Photoluminescence Studies of In-plane Anisotropic Layered Materials

    NASA Astrophysics Data System (ADS)

    Pant, Anupum

    This thesis presents systematic studies on angle dependent Raman and Photoluminescence (PL) of a new class of layered materials, Transition Metal Trichalcogenides (TMTCs), which are made up of layers possessing anisotropic structure within the van-der-Waals plane. The crystal structure of individual layer of MX3 compounds consists of aligned nanowire like 1D chains running along the b-axis direction. The work focuses on the growth of two members of this family - ZrS3 and TiS3 - through Chemical Vapor Transport Method (CVT), with consequent angle dependent Raman and PL studies which highlight their in-plane optically anisotropic properties. Results highlight that the optical properties of few-layer flakes are highly anisotropic as evidenced by large PL intensity variation with polarization direction (in ZrS3) and an intense variation in Raman intensity with variation in polarization direction (in both ZrS3 and TiS3). Results suggest that light is efficiently absorbed when E-field of the polarized incident excitation laser is polarized along the chain (b-axis). It is greatly attenuated and absorption is reduced when field is polarized perpendicular to the length of 1D-like chains, as wavelength of the exciting light is much longer than the width of each 1D chain. Observed PL variation with respect to the azimuthal flake angle is similar to what has been previously observed in 1D materials like nanowires. However, in TMTCs, since the 1D chains interact with each other, it gives rise to a unique linear dichroism response that falls between 2D and 1D like behavior. These results not only mark the very first demonstration of high PL polarization anisotropy in 2D systems, but also provide a novel insight into how interaction between adjacent 1D-like chains and the 2D nature of each layer influences the overall optical anisotropy of Quasi-1D materials. The presented results are anticipated to have impact in technologies involving polarized detection, near-field imaging

  12. Electronic and material characterization of silicon-germanium and silicon-germanium-carbon epitaxial layers

    NASA Astrophysics Data System (ADS)

    Peterson, Jeffrey John

    This dissertation presents results of material and electronic characterization of strained SiGe and SiGeC epitaxial layers grown on (100) silicon using Atmospheric Pressure Chemical Vapor Deposition and Reduced Pressure Chemical Vapor Deposition. Fabrication techniques for SiGe and SiGeC are also presented. Materials characterization of epitaxial SiGe and SiGeC was done to characterize crystallinity using visual, microscopic, and Rutherford Backscattering (RBS) characterization. Surface roughness was characterized and found to correspond roughly with epitaxial crystal quality. Spectroscopic ellipsometry was used to study epitaxial layer composition and thickness, requiring development of models for nSiGe and nSiGeC versus composition (the first published for nSiGeC) and generation of ellipsometric nomograms. X-ray diffraction (XRD) measurements of epitaxial strain and relaxation showed Ge composition dominates the stress, although strain compensation due to C was observed. XRD, Raman, and Fourier Transform Infrared (FTIR) characterization were done to characterize substitutional C in SiGeC epitaxial layers, finding that C incorporation into SiGeC saturates for C contents >1%. Fabrication techniques for SiGe and SiGeC were examined. Low thermal budget processing of strained layers were investigated as well as fabrication techniques using advantageous material properties of SiGe and SiGeC. Ti/Al contacts were developed and characterized for electrical contact to SiGe and SiGeC. Schottky contacts of Pt silicide on SiGe and SiGeC was done; formation and resistivity were characterized. Four separate resistivity characterization structures have been fabricated using mesa-etch and Si etch-stop techniques. A NPN Heterojunction Bipolar transistor has been fabricated using successive mesa-etches and SiGe (or SiGeC) etch-stops. Electronic characterization of in-situ doped SiGe and SiGeC epitaxial layers was done to determine resistivity, mobility, and bandgap. Resistivities

  13. Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio

    2010-07-01

    In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.

  14. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    PubMed

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing. PMID:19540649

  15. Polymer-layered silicate nanocomposite materials: Morphological studies and potential applications

    NASA Astrophysics Data System (ADS)

    Kurian, Mary

    Polymer-layered silicate nanocomposites, materials where layered silicates are molecularly dispersed in suitable polymer matrices, are of both scientific and commercial significance. The dramatic enhancements in tensile strength, heat and solvent resistance, as well as the decrease in gas permeability of the neat polymer matrix that can be achieved through the incorporation of small amounts of a suitable layered silicate are intricately linked to the nanocomposite morphology. In the current work, the morphological behavior of nanocomposite materials has been investigated by the fabrication and extensive characterization of a series of model experimental systems. The results from the experimental systems that were developed based on one of the theoretical models for morphology prediction in nanocomposites, provide useful insight into controlling nanocomposite morphology by tailoring various system parameters. The unique properties of nanocomposites also make them promising materials for use as electrolytes in lithium polymer batteries. Though an all-solid-state lithium polymer battery is attractive due to characteristics such as low safety risks in comparison with the conventional systems that contain liquid electrolytes, several challenges related to materials design have to be overcome in order to create materials that have good mechanical properties. Our work focuses on the development of a new class of nanocomposite electrolytes where the incorporation of lithium cation-exchanged nanoscale clay sheets into a suitable polymer matrix is expected to impart the inherent favorable characteristics of nanocomposites to the electrolyte. Additionally, this modification is expected to substantially eliminate the need for lithium salt dopants that are currently used to achieve significant conductivities and form what are essentially single-ion conductors. Extensive characterization of these electrolytes showed that properties were strongly dependent on nanocomposite

  16. Topology optimization of magnetorheological fluid layers in sandwich plates for semi-active vibration control

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaopeng; Kang, Zhan

    2015-08-01

    This paper investigates topology optimization of the magnetorheological (MR) fluid layer in a sandwich plate for improving the semi-active vibration control performance. Therein, a uniform magnetic field is applied across the MR fluid layer to provide a semi-active damping control effect. In the optimization model, the pseudo-densities describing the MR fluid material distribution are taken as design variables, and an artificial magneto-rheological fluid model (AMRF) with penalization is proposed to suppress intermediate density values. For reducing the vibration level under harmonic excitations, the dynamic compliance under a specific excitation frequency, or the frequency-aggregated dynamic compliance in a given frequency band, is taken as the objective function to be minimized. In this context, the adjoint-variable sensitivity analysis scheme is derived. The effectiveness and efficiency of the proposed method are demonstrated by numerical examples, in which the structural dynamic performance can be remarkably improved through optimization. The influences of several key factors on the optimal designs are also explored. It is shown that the AMRF model is effective in yielding clear boundaries in the final optimal solutions without use of additional regularization techniques.

  17. Design and Optimization of Passive UHF RFID Tag Antenna for Mounting on or inside Material Layers

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    There is great desire to employ passive UHF RFID tags for inventory tracking and sensing in a diversity of applications and environments. Owing to its battery-free operation, non-line-of sight detection, low cost, long read range and small form factor, each year billions of RFID tags are being deployed in retail, logistics, manufacturing, biomedical inventories, among many other applications. However, the performance of these RFID systems has not met expectations. This is because a tag's performance deteriorates significantly when mounted on or inside arbitrary materials. The tag antenna is optimized only for a given type of material at a certain location of placement, and detuning takes place when attached to or embedded in materials with dielectric properties outside the design range. Thereby, different customized tags may be needed for identifying objects even within the same class of products. This increases the overall cost of the system. Furthermore, conventional copper foil-based RFID tag antennas are prone to metal fatigue and wear, and cannot survive hostile environments where antennas could be deformed by external forces and failures occur. Therefore, it is essential to understand the interaction between the antenna and the material in the vicinity of the tag, and design general purpose RFID tag antennas possessing excellent electrical performance as well as robust mechanical structure. A particularly challenging application addressed here is designing passive RFID tag antennas for automotive tires. Tires are composed of multiple layers of rubber with different dielectric properties and thicknesses. Furthermore, metallic plies are embedded in the sidewalls and steel belts lie beneath the tread to enforce mechanical integrity. To complicate matters even more, a typical tire experiences a 10% stretching during the construction process. This dissertation focuses on intuitively understanding the interaction between the antenna and the material in the

  18. Atomic layer deposition-based functionalization of materials for medical and environmental health applications

    PubMed Central

    Narayan, Roger J.; Adiga, Shashishekar P.; Pellin, Michael J.; Curtiss, Larry A.; Hryn, Alexander J.; Stafslien, Shane; Chisholm, Bret; Shih, Chun-Che; Shih, Chun-Ming; Lin, Shing-Jong; Su, Yea-Yang; Jin, Chunming; Zhang, Junping; Monteiro-Riviere, Nancy A.; Elam, Jeffrey W.

    2010-01-01

    Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications. PMID:20308114

  19. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications. PMID:23171130

  20. Proper restorative material selection, digital processes allow highly esthetic shade match combined with layered porcelain.

    PubMed

    Kahng, Luke S

    2014-03-01

    Today's digital technologies are affording dentists and laboratory technicians more control over material choices for creating restorations and fabricating dental prostheses. Digital processes can potentially enable technicians to create ideal marginal areas and account for the thickness and support of layering porcelain over substructures in the design process. In this case report of a restoration of a single central incisor, a number of issues are addressed that are central to using the newest digital technology. As demonstrated, shade selection is a crucial early step in any restorative case preparation. PMID:24773196

  1. Understanding the Origin of Enhanced Performances in Core-Shell and Concentration-Gradient Layered Oxide Cathode Materials.

    PubMed

    Song, Dawei; Hou, Peiyu; Wang, Xiaoqing; Shi, Xixi; Zhang, Lianqi

    2015-06-17

    Core-shell and concentration-gradient layered oxide cathode materials deliver superior electrochemical properties such as long cycle life and outstanding thermal stability. However, the origin of enhanced performance is not clear and seldom investigated until now. Here, a specific structured layered oxide (LiNi0.5Co0.2Mn0.3O2) consisting of concentration-gradient core, transition layer, and stable outer shell, is designed and achieved from double-shelled precursors to overcome the great challenge by comparison with the normal layered LiNi0.5Co0.2Mn0.3O2. As expected, the specific structured layered oxide displays excellent cycle life and thermal stability. After numerous cycles, the valence state of Ni and Co at normal layered oxide surface tends to a higher oxidation state than that of the specific structured oxide, and the spinel phase is observed on particle surface of normal layered oxide. Also, the deficient spinel/layered mixed phases lead to high surface film and charge-transfer resistance for normal layered oxide, whereas the specific structured one still remains a layered structure. Those results first illustrate the origin of improved electrochemical performance of layered core-shell and concentration-gradient cathode materials for lithium-ion batteries. PMID:26017733

  2. Layer-by-layer engineered nanocapsules of curcumin with improved cell activity.

    PubMed

    Kittitheeranun, Paveenuch; Sajomsang, Warayuth; Phanpee, Sarunya; Treetong, Alongkot; Wutikhun, Tuksadon; Suktham, Kunat; Puttipipatkhachorn, Satit; Ruktanonchai, Uracha Rungsardthong

    2015-08-15

    Nanocarriers based on electrostatic Layer-by-layer (LbL) assembly of CaCO3 nanoparticles (CaCO3 NPs) was investigated. These inorganic nanoparticles was used as templates to construct nanocapsules made from films based on two oppositely charged polyelectrolytes, poly(diallyldimethylammonium chloride), and poly (sodium 4-styrene-sulfonate sodium salt), followed by core dissolution. The naked CaCO3 NPs, CaCO3 NPs coated with the polyelectrolytes and hollow nanocapsules were found with hexagonal shape with average sizes of 350-400 nm. A reversal of the surface charge between positive to negative zeta potential values was found, confirming the adsorption of polyelectrolytes. The loading efficiency and release of curcumin were controlled by the hydrophobic interactions between the drug and the polyelectrolyte matrix of the hollow nanocapsules. The quantity of curcumin released from hollow nanocapsules was found to increase under acidic environments, which is a desirable for anti-cancer drug delivery. The hollow nanocapsules were found to localize in the cytoplasm and nucleus compartment of Hela cancer cells after 24 h of incubation. Hollow nanocapsules were non-toxic to human fibroblast cells. Furthermore, curcumin loaded hollow nanocapsules exhibited higher in vitro cell inhibition against Hela cells than that of free curcumin, suggesting that polyelectrolyte based-hollow nanocapsules can be utilized as new carriers for drug delivery. PMID:26143232

  3. Materials based on carbon-filled porous layers of PVC cyclam derivatives cross-linked with the surfaces of asbestos fabric fibers

    NASA Astrophysics Data System (ADS)

    Tzivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardishev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.

    2016-08-01

    The synthesis of bilayer materials with porous upper layers composed of PVC hydroxyethylcyclam derivatives filled with carbon and a layer consisting of hydroxyethylcyclam, cross-linked via Si-O-C groups with the silica chains of a developed surface of asbestos fabric, is described. The aza-crown groups in these materials are bound with aqua complexes of H2SO4 or NaOH. The structure of the materials is examined, their adsorption characteristics are determined, and the rate of motion of H+ or OH- ions in electrochemical bridges is measured, while the formation of H2 and O2 in their cathodic and anodic polarization is determined as a function of voltage. It is shown that the upper layer of these materials is adsorption-active and electronand H+- or OH-- conductive, while the bottom layer is only H+- or OH-- conductive; through it, the upper layer is supplied with the H+ or OH- ions needed for the regeneration of the aqua complexes broken down to H2 and O2 on carbon particles.

  4. From spent Mg/Al layered double hydroxide to porous carbon materials.

    PubMed

    Laipan, Minwang; Zhu, Runliang; Chen, Qingze; Zhu, Jianxi; Xi, Yunfei; Ayoko, Godwin A; He, Hongping

    2015-12-30

    Adsorption has been considered as an efficient method for the treatment of dye effluents, but proper disposal of the spent adsorbents is still a challenge. This work attempts to provide a facile method to reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II (OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washed with acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that the carbonization could be well achieved above 600°C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000°C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption-desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m(2)/g and 1.67 cm(3)/g for the sample carbonized at 800°C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH. PMID:26257095

  5. OPTIMIZING A PORTABLE MICROWAVE INTERFERENCE SCANNING SYSTEM FOR NONDESTRUCTIVE TESTING OF MULTI-LAYERED DIELECTRIC MATERIALS

    SciTech Connect

    Schmidt, K. F. Jr.; Little, J. R. Jr.; Ellingson, W. A.; Green, W.

    2010-02-22

    The projected microwave energy pattern, wave guide geometry, positioning methods and process variables have been optimized for use of a portable, non-contact, lap-top computer-controlled microwave interference scanning system on multi-layered dielectric materials. The system can be used in situ with one-sided access and has demonstrated capability of damage detection on composite ceramic armor. Specimens used for validation included specially fabricated surrogates, and ballistic impact-damaged specimens. Microwave data results were corroborated with high resolution direct-digital x-ray imaging. Microwave interference scanning detects cracks, laminar features and material properties variations. This paper presents the details of the system, the optimization steps and discusses results obtained.

  6. Holographic recording characteristics and applications of single-layer panchromatic dichromated gelatin material

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Xu, Min; Chen, Ligong; Guo, Yongkang; Guo, Lurong

    2005-09-01

    A high-quality single-layer panchromatic dichromated gelatin material is achieved successfully by employing new types of multi-color photosensitizers and photochemical promoters to conventional photo-crosslinking gelatin system. Its holographic recording characteristics such as spectral response, the photosensitivity of three primary colors, spectral selectivity of volume reflection hologram, angular and wavelength selectivity of volume transmission hologram, are studied in detail. Using red, green and blue lasers, namely three primary colors, the bright volume transmission and reflection holograms can be recorded on the panchromatic material at the exposure level of 30 mJ/cm2. Some preliminary results of space, angle and wavelength multiplexing holographic storage for storing multiple binary and grey-tone optical images, are also reported in this paper.

  7. Comprehensive study on the light shielding potential of thermotropic layers for the development of new materials.

    PubMed

    Gruber, D P; Winkler, G; Resch, K

    2015-01-10

    In recent years thermotropic overheating protection glazings have been the focus for both solar thermal collector technology and architecture. A thermotropic glazing changes its light transmittance from highly transparent to light diffusing upon reaching a certain threshold temperature autonomously and reversibly. In thermotropic systems with fixed domains (TSFD) the scattering domains are embedded in a polymer matrix, which exhibits a sudden change of the refractive index upon reaching a threshold temperature. The aim of the present study was to comprehensively investigate the light shielding characteristics and potential of TSFD materials by applying simulation of light scattering in particle-filled layers. In random walk simulations a variety of parameters were varied systematically, and the effect on the light transmission behavior of TSFD was studied. The calculation steps of the simulation process are shown in detail. The simulations demonstrate that there is great potential for the production of functional materials with high overheating protection efficiency. PMID:25967611

  8. Rational design of new electrolyte materials for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin

    2016-09-01

    The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.

  9. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    SciTech Connect

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.; CERN RD-48 ROSE Collaboration

    1997-12-01

    Epitaxial grown thick layers ({ge} 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 {times} 10{sup 12} cm{sup {minus}3}) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E{sub p} = 24 GeV) with a fluence of 1.5 {times} 10{sup 11} cm{sup {minus}2}, no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ``sinking`` process, however, becomes non-effective at high radiation fluences (10{sup 14} cm{sup {minus}2}) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 {times} 10{sup 14} cm{sup {minus}2} the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 {times} 10{sup 12} cm{sup {minus}3} after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon.

  10. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    SciTech Connect

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.

    1997-11-01

    Epitaxial grown thick layers (>100 {mu}m) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2{center_dot}10{sup 12} cm{sup {minus}3}) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E{sub p} = 24 GeV) with a fluence of 1.5{center_dot}10{sup 11} cm{sup {minus}2}, no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects, in epitaxial layers. The {open_quotes}sinking{close_quotes} process, however, becomes non-effective at high radiation fluences (10{sup 14} cm{sup {minus}2}) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1{center_dot}10{sup 14}cm{sup {minus}2} the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3{center_dot}10{sup 12} cm{sup {minus}3} after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon.

  11. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor

    PubMed Central

    Rusi; Chan, P. Y.; Majid, S. R.

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm-2. The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg-1 at current density of 1.85 Ag-1 in 0.5M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5M KOH and 0.5M KOH/0.04M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 103 Fg-1 and an energy density of 309 Whkg-1 in a 0.5MKOH/0.04MK3Fe(CN) 6 electrolyte at a current density of 10 Ag-1. The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications. PMID:26158447

  12. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron

    PubMed Central

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E.

    2016-01-01

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  13. Emission Spectroscopic Boundary Layer Investigation during Ablative Material Testing in Plasmatron.

    PubMed

    Helber, Bernd; Chazot, Olivier; Hubin, Annick; Magin, Thierry E

    2016-01-01

    Ablative Thermal Protection Systems (TPS) allowed the first humans to safely return to Earth from the moon and are still considered as the only solution for future high-speed reentry missions. But despite the advancements made since Apollo, heat flux prediction remains an imperfect science and engineers resort to safety factors to determine the TPS thickness. This goes at the expense of embarked payload, hampering, for example, sample return missions. Ground testing in plasma wind-tunnels is currently the only affordable possibility for both material qualification and validation of material response codes. The subsonic 1.2MW Inductively Coupled Plasmatron facility at the von Karman Institute for Fluid Dynamics is able to reproduce a wide range of reentry environments. This protocol describes a procedure for the study of the gas/surface interaction on ablative materials in high enthalpy flows and presents sample results of a non-pyrolyzing, ablating carbon fiber precursor. With this publication, the authors envisage the definition of a standard procedure, facilitating comparison with other laboratories and contributing to ongoing efforts to improve heat shield reliability and reduce design uncertainties. The described core techniques are non-intrusive methods to track the material recession with a high-speed camera along with the chemistry in the reactive boundary layer, probed by emission spectroscopy. Although optical emission spectroscopy is limited to line-of-sight measurements and is further constrained to electronically excited atoms and molecules, its simplicity and broad applicability still make it the technique of choice for analysis of the reactive boundary layer. Recession of the ablating sample further requires that the distance of the measurement location with respect to the surface is known at all times during the experiment. Calibration of the optical system of the applied three spectrometers allowed quantitative comparison. At the fiber scale

  14. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  15. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems. PMID:27124717

  16. Activation of materials proposed for use in superconducting linac applications

    SciTech Connect

    Hanson, A.L.; Snead, C.L.; Greene, G.A.; Chan, K.C.D.; Safa, H.

    1998-01-01

    Samples of construction materials proposed for use in both superconducting and conventional high-power linear accelerators have been activated with 800 and 2,000 MeV protons to study the decay characteristics of these activated materials. Irradiation times ranged from 10 minutes to 18.67 hours. The decay characteristics of these activated materials were measured and compared to calculated decay curves based on simplified assumptions.

  17. A transverse aperture-integral equation solution for edge diffraction by multiple layers of homogeneous material

    NASA Astrophysics Data System (ADS)

    Pearson, L. W.; Whitaker, R. A.

    1991-02-01

    The transverse-aperture/integral-equation method provides a means of computation for diffraction coefficients at blunt edges of a broad class of stratified layers, including sheet-anisotropy models for conducting composites. This paper concentrates on the application of the method when the material profile comprises layers of homogeneous, potentially lossy material. The method proceeds from defining an artificial aperture perpendicular to a semiinfinite, planar, stratified region and passing through the terminal edge of the region. An integral equation is formulated over this infinite-extent aperture, and the solution to the integral equation represents the influence of the edge. The kernel in the integral equation is a weighted sum of the Green functions for the respective half spaces lying on either side of the aperture plane. The vector wave equation is separable in each of these half spaces, resulting in Green functions that are expressible analytically. The Green function for the stratified half space is stated in terms of a Sommerfeld-type integral.

  18. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics.

    PubMed

    Xia, Fengnian; Wang, Han; Jia, Yichen

    2014-01-01

    Graphene and transition metal dichalcogenides (TMDCs) are the two major types of layered materials under intensive investigation. However, the zero-bandgap nature of graphene and the relatively low mobility in TMDCs limit their applications. Here we reintroduce black phosphorus (BP), the most stable allotrope of phosphorus with strong intrinsic in-plane anisotropy, to the layered-material family. For 15-nm-thick BP, we measure a Hall mobility of 1,000 and 600 cm(2)V(-1)s(-1) for holes along the light (x) and heavy (y) effective mass directions at 120 K. BP thin films also exhibit large and anisotropic in-plane optical conductivity from 2 to 5 μm. Field-effect transistors using 5 nm BP along x direction exhibit an on-off current ratio exceeding 10(5), a field-effect mobility of 205 cm(2)V(-1)s(-1), and good current saturation characteristics all at room temperature. BP shows great potential for thin-film electronics, infrared optoelectronics and novel devices in which anisotropic properties are desirable. PMID:25041752

  19. Crystallization of amorphous silicon thin films using nanoenergetic intermolecular materials with buffer layers

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Jeong, Tae Hoon; Kim, Do Kyung; Jeong, Woong Hee; Kang, Myung-Koo; Hwang, Tae Hyung; Kim, Hyun Jae

    2009-02-01

    Optimization of the crystallization of amorphous silicon (a-Si) using a mixture of nanoenergetic materials of iron oxide/aluminum (Fe 2O 3/Al) was studied. To achieve high-quality polycrystalline Si (poly-Si) thin films, silicon oxide (SiO 2) and silver (Ag) layer were deposited on the a-Si as buffer layers to prevent the metal diffusion in a-Si during thermite reaction and to transport the thermal energy released from nanoenergetic materials, respectively. Raman measurement was used to define the crystallinity of poly-Si. For molar ratio of Al and Fe of 2 with 100-nm-thick-SiO 2, Raman measurement showed the 519.59 cm -1 of peak position and the 5.08 cm -1 of full width at half maximum with 353 MPa of low tensile stress indicating high quality poly-Si thin film. These results showed that optimized thermite reaction could be used successfully in crystallization of a-Si to high -quality poly-Si thin films.

  20. Wannier function approach to realistic Coulomb interactions in layered materials and heterostructures

    NASA Astrophysics Data System (ADS)

    Rösner, M.; Şaşıoǧlu, E.; Friedrich, C.; Blügel, S.; Wehling, T. O.

    2015-08-01

    We introduce an approach to derive realistic Coulomb interaction terms in freestanding layered materials and vertical heterostructures from ab initio modeling of the corresponding bulk materials. To this end, we establish a combination of calculations within the framework of the constrained random-phase approximation, Wannier function representation of Coulomb matrix elements within some low-energy Hilbert space, and continuum medium electrostatics, which we call Wannier function continuum electrostatics (WFCE). For monolayer and bilayer graphene we reproduce full ab initio calculations of the Coulomb matrix elements within an accuracy of 0.3 eV or better. We show that realistic Coulomb interactions in bilayer graphene can be manipulated on the eV scale by different dielectric and metallic environments. A comparison to electronic phase diagrams derived in M. M. Scherer et al. [Phys. Rev. B 85, 235408 (2012), 10.1103/PhysRevB.85.235408] suggests that the electronic ground state of bilayer graphene is a layered antiferromagnet and remains surprisingly unaffected by these strong changes in the Coulomb interaction.

  1. Analyses of Oxyanion Materials by Prompt Gamma Activation Analysis

    SciTech Connect

    Firestone, Richard B; Perry, D.L.; English, G.A.; Firestone, R.B.; Leung, K.-N.; Garabedian, G.; Molnar, G.L.; Revay, Zs.

    2008-03-24

    Prompt gamma activation analysis (PGAA) has been used to analyze metal ion oxyanion materials that have multiple applications, including medicine, materials, catalysts, and electronics. The significance for the need for accurate, highly sensitive analyses for the materials is discussed in the context of quality control of end products containing the parent element in each material. Applications of the analytical data for input to models and theoretical calculations related to the electronic and other properties of the materials are discussed.

  2. Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials

    NASA Astrophysics Data System (ADS)

    Acosta, Roberto I.

    The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.

  3. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    PubMed

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection. PMID:23576794

  4. Material transport in a convective surface mixed layer under weak wind forcing

    NASA Astrophysics Data System (ADS)

    Mensa, Jean A.; Özgökmen, Tamay M.; Poje, Andrew C.; Imberger, Jörg

    2015-12-01

    Flows in the upper ocean mixed layer are responsible for the transport and dispersion of biogeochemical tracers, phytoplankton and buoyant pollutants, such as hydrocarbons from an oil spill. Material dispersion in mixed layer flows subject to diurnal buoyancy forcing and weak winds (| u10 | = 5m s-1) are investigated using a non-hydrostatic model. Both purely buoyancy-forced and combined wind- and buoyancy-forced flows are sampled using passive tracers, as well as 2D and 3D particles to explore characteristics of horizontal and vertical dispersion. It is found that the surface tracer patterns are determined by the convergence zones created by convection cells within a time scale of just a few hours. For pure convection, the results displayed the classic signature of Rayleigh-Benard cells. When combined with a wind stress, the convective cells become anisotropic in that the along-wind length scale gets much larger than the cross-wind scale. Horizontal relative dispersion computed by sampling the flow fields using both 2D and 3D passive particles is found to be consistent with the Richardson regime. Relative dispersion is an order of magnitude higher and 2D surface releases transition to Richardson regime faster in the wind-forced case. We also show that the buoyancy-forced case results in significantly lower amplitudes of scale-dependent horizontal relative diffusivity, kD(ℓ), than those reported by Okubo (1970), while the wind- and buoyancy-forced case shows a good agreement with Okubo's diffusivity amplitude, and the scaling is consistent with Richardson's 4/3rd law, kD ∼ ℓ4/3. These modeling results provide a framework for measuring material dispersion by mixed layer flows in future observational programs.

  5. Technical activities 1980: Center for Materials Science

    NASA Astrophysics Data System (ADS)

    Wachtman, J. B., Jr.; Hoffman, J. D.

    1980-10-01

    Part of the National Measurement Laboratory, one of the principal laboratories comprising the National Bureau of Standards, the Materials Science Center is organized in six divisions, each having responsibility in different areas of materials science appropriate to the major classes of materials metals, polymers, and ceramics and glass. These Divisions vary in their balance between theory and experiments, between direct standards work and research, and in their orientation toward industrial and Government needs and the needs of other components of the scientific and technical community. Achievements reported relate to signal processing and imaging; fracture theory; conformational changes in polymers; chemical stability and corrosion; fracture deformation; polymer science and standards; metallurgy and alloys; ceramics, glass, and solid state; and reactor radiation.

  6. Material and Doping Dependence of the Nodal and Anti-Nodal Dispersion Renormalizations in Single- and Multi-Layer Cuprates

    SciTech Connect

    Johnston, S.; Lee, W.S.; Nowadnick, E.A.; Moritz, B.; Shen, Z.-X.; Devereaux, T.P.; /Stanford U., Geballe Lab. /SLAC

    2010-02-15

    In this paper we present a review of bosonic renormalization effects on electronic carriers observed from angle-resolved photoemission spectra in the cuprates. Specifically, we discuss the viewpoint that these renormalizations represent coupling of the electrons to the lattice and review how materials dependence, such as the number of CuO{sub 2} layers, and doping dependence can be understood straightforwardly in terms of several aspects of electron-phonon coupling in layered correlated materials.

  7. Investigation of Barrier-Layer Materials for Mg2Si/Ni Interfaces

    NASA Astrophysics Data System (ADS)

    Sakamoto, Tatsuya; Taguchi, Yutaka; Kutsuwa, Takeshi; Ichimi, Kiyohide; Kasatani, Shinichi; Inada, Minoru

    2016-03-01

    The durability of Ni electrodes, which are often used for Mg2Si thermoelectric chips, is poor at high working temperatures because of deposition of Mg at the Mg2Si/Ni interface and on the surface. Hence, a "Mg2Si/barrier material/Ni" structure was adopted instead of direct adhesion of Ni to Mg2Si. Ti, TiSi2, and TiN were selected as candidate materials for the barrier layer between Mg2Si and Ni, and the barrier effect, adhesion, and contact resistance of each of these materials were evaluated. After the samples had been annealed at 873 K for 1 h, Mg appeared on the Ti surface and TiSi2 deposited on Mg2Si; however, no Mg was detected on the surface of TiN or in the inner part of the Ni electrode. Continuous, low contact resistance was also observed for Mg2Si/TiN/Ni samples. TiN does not adhere strongly to Mg2Si but is a promising barrier material for Mg2Si/Ni interfaces.

  8. Active nematic materials with substrate friction

    NASA Astrophysics Data System (ADS)

    Thampi, Sumesh P.; Golestanian, Ramin; Yeomans, Julia M.

    2014-12-01

    Active turbulence in dense active systems is characterized by high vorticity on a length scale that is large compared to that of individual entities. We describe the properties of active turbulence as momentum propagation is screened by frictional damping. As friction is increased, the spacing between the walls in the nematic director field decreases as a consequence of the more rapid velocity decays. This leads to, first, a regime with more walls and an increased number of topological defects, and then to a jammed state in which the walls deliminate bands of opposing flow, analogous to the shear bands observed in passive complex fluids.

  9. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Zhang, Ting-Jun; Li, Shu-Sun

    2003-01-01

    The objective of this project is to map the spatial variation of the active layer over the arctic permafrost in terms of two parameters: (i) timing and duration of thaw period and (ii) differential frost heave and thaw settlement of the active layer. To achieve this goal, remote sensing, numerical modeling, and related field measurements are required. Tasks for the University of Colorado team are to: (i) determine the timing of snow disappearance in spring through changes in surface albedo (ii) simulate the freezing and thawing processes of the active layer and (iii) simulate the impact of snow cover on permafrost presence.

  10. Influence of quaternization of ammonium on antibacterial activity and cytocompatibility of thin copolymer layers on titanium.

    PubMed

    Waßmann, Marco; Winkel, Andreas; Haak, Katharina; Dempwolf, Wibke; Stiesch, Meike; Menzel, Henning

    2016-10-01

    Antimicrobial coatings are able to improve the osseointegration of dental implants. Copolymers are promising materials for such applications due to their combined properties of two different monomers. To investigate the influence of different monomer mixtures, we have been synthesized copolymers of dimethyl (methacryloxyethyl) phosphonate (DMMEP) and dipicolyl aminoethyl methacrylate in different compositions and have them characterized to obtain the r-parameters. Some of the copolymers with different compositions have also been alkylated with 1-bromohexane, resulting in quaternized ammonium groups. The copolymers have been deposited onto titanium surfaces resulting in ultrathin, covalently bound layers. These layers have been characterized by water contact angle measurements and ellipsometry. The influence of quaternary ammonium groups on antibacterial properties and cytocompatibility was studied: Activity against bacteria was tested with a gram positive Staphylococcus aureus strain. Cytocompatibility was tested with a modified LDH assay after 24 and 72 h to investigate adhesion and proliferation of human fibroblast cells on modified surfaces. The copolymer with the highest content of DMMEP showed a good reduction of S. aureus and in the alkylated version a very good reduction of about 95%. On the other hand, poor cytocompatibility is observed. However, our results show that this trend cannot be generalized for this copolymer system. PMID:27456132

  11. Active metameric security devices using an electrochromic material.

    PubMed

    Baloukas, Bill; Lamarre, Jean-Michel; Martinu, Ludvik

    2011-03-20

    In order to increase the anticounterfeiting performance of interference security image structures, we propose to implement an active component using an electrochromic material. This novel device, based on metamerism, offers the possibility of creating various surprising optical effects, it is more challenging to duplicate due to its complexity, and it adds a second level of authentication. By designing optical filters that match the bleached and colored states of the electrochromic device, one can obtain two hidden images-one appearing when the device is tilted, and the other one disappearing when the device is colored under an applied potential. Specifically, we present an example of a filter that is metameric with the colored state of the electrochromic device, demonstrate how the dynamic nature of the device offers more fabrication flexibility, and discuss its performance. We also describe a design methodology for metameric filters based on the luminous efficiency curve of the human eye: this approach results in filters with a lower number of layers and hence lower fabrication costs, and with a lower color difference sensitivity under various illuminants and for nonstandard observers. PMID:21460974

  12. Cleaning of conveyor belt materials using ultrasound in a thin layer of water.

    PubMed

    Axelsson, L; Holck, A; Rud, I; Samah, D; Tierce, P; Favre, M; Kure, C F

    2013-08-01

    Cleaning of conveyor belts in the food industry is imperative for preventing the buildup of microorganisms that can contaminate food. New technologies for decreasing water and energy consumption of cleaning systems are desired. Ultrasound can be used for cleaning a wide range of materials. Most commonly, baths containing fairly large amounts of water are used. One possibility to reduce water consumption is to use ultrasonic cavitation in a thin water film on a flat surface, like a conveyor belt. In order to test this possibility, a model system was set up, consisting of an ultrasound transducer/probe with a 70-mm-diameter flat bottom, operating at 19.8 kHz, and contaminated conveyor belt materials in the form of coupons covered with a thin layer of water or water with detergent. Ultrasound was then applied on the water surface at different power levels (from 46 to 260 W), exposure times (10 and 20 s), and distances (2 to 20 mm). The model was used to test two different belt materials with various contamination types, such as biofilms formed by bacteria in carbohydrate- or protein-fat-based soils, dried microorganisms (bacteria, yeasts, and mold spores), and allergens. Ultrasound treatment increased the reduction of bacteria and yeast by 1 to 2 log CFU under the most favorable conditions compared with water or water-detergent controls. The effect was dependent on the type of belt material, the power applied, the exposure time, and the distance between the probe and the belt coupon. Generally, dried microorganisms were more easily removed than biofilms. The effect on mold spores was variable and appeared to be species and material dependent. Spiked allergens were also efficiently removed by using ultrasound. The results in this study pave the way for new cleaning designs for flat conveyor belts, with possibilities for savings of water, detergent, and energy consumption. PMID:23905796

  13. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOEpatents

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0materials and their use in electrochemical devices are also described.

  14. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  15. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  16. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Li, Shu-Sun; Romanovsky, V.; Lovick, Joe; Wang, Z.; Peterson, Rorik

    2003-01-01

    A method of mapping the active layer of Arctic permafrost using a combination of conventional synthetic aperture radar (SAR) backscatter and more sophisticated interferometric SAR (INSAR) techniques is proposed. The proposed research is based on the sensitivity of radar backscatter to the freeze and thaw status of the surface soil, and the sensitivity of INSAR techniques to centimeter- to sub-centimeter-level surface differential deformation. The former capability of SAR is investigated for deriving the timing and duration of the thaw period for surface soil of the active layer over permafrost. The latter is investigated for the feasibility of quantitative measurement of frost heaving and thaw settlement of the active layer during the freezing and thawing processes. The resulting knowledge contributes to remote sensing mapping of the active layer dynamics and Arctic land surface hydrology.

  17. In vitro antibacterial activity of different pulp capping materials

    PubMed Central

    Beltrami, Riccardo; Colombo, Marco; Ceci, Matteo; Dagna, Alberto; Chiesa, Marco

    2015-01-01

    Background Direct pulp capping involves the application of a dental material to seal communications between the exposed pulp and the oral cavity (mechanical and carious pulp exposures) in an attempt to act as a barrier, protect the dental pulp complex and preserve its vitality. The aim of this study was to evaluate and compare, by the agar disc diffusion test, the antimicrobial activity of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), Biodentine (Septodont). Material and Methods Streptococcus salivarius, Streptococcus sanguis and Streptococcus mutans strains were selected to evaluate the antimicrobial activity by the agar disc diffusion test of different pulp capping materials. Paper disks were impregnated whit each pulp capping materials and placed onto culture agar-plates pre-adsorbed with bacterial cells and further incubated for 24 h at 37°C. The growth inhibition zones around each pulp capping materials were recorded and compared for each bacterial strain. Results For the investigation of the antibacterial properties the ANOVA showed the presence of significant differences among the various materials. Tukey test showed that MTA-based materials induced lower growth inhibition zones. Conclusions MTA-based products show a discrete antibacterial activity varying from calcium hydroxide-based materials which present an higher antibacterial activity. Key words:Agar disc diffusion test, antimicrobial activity, calcium hydroxide, MTA, pulp capping materials. PMID:26644833

  18. Periodic materials-based vibration attenuation in layered foundations: experimental validation

    NASA Astrophysics Data System (ADS)

    Xiang, H. J.; Shi, Z. F.; Wang, S. J.; Mo, Y. L.

    2012-11-01

    Guided by the recent advances in solid-state research in periodic materials, a new type of layered periodic foundation consisting of concrete and rubber layers is experimentally investigated in this paper. The distinct feature of this new foundation is its frequency band gaps. When the frequency contents of a wave fall within the range of the frequency band gaps, the wave, and hence its energy, will be weakened or cannot propagate through the foundation, so the foundation itself can serve as a vibration isolator. Using the theory of elastodynamics and the Bloch-Floquet theorem, the mechanism of band gaps in periodic composites is presented, and a finite element model is built to show the isolation characteristic of a finite dimensional periodic foundation. Based on these analytical results, moreover, a scaled model frame and a periodic foundation were fabricated and shake table tests of the frame on the periodic foundation were performed. Ambient, strong and harmonic vibration attenuations are found when the exciting frequencies fall into the band gaps.

  19. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin

    NASA Astrophysics Data System (ADS)

    Lin, Yanjun; Wang, Jianrong; Evans, David G.; Li, Dianqing

    2006-05-01

    In the light of the accepted mechanism of thermal stabilization of PVC by layered double hydroxides (LDHs), the layer cations and interlayer counterions in LDHs were tailored to give MgZnAl-CO3-LDH and MgZnAl-maleate-LDH. These materials were characterized by XRD, FT-IR, and TG DTA. The thermal stability of PVC composites containing different LDH additives was tested in sheets having a thickness of about 1 mm. The results showed that compared with MgAl-CO3-LDH, MgZnAl-CO3-LDH enhances the thermal stability of PVC in terms of both long-term stability and early coloring. After intercalation of maleate in the LDH by reaction of maleic acid with the MgZnAl-CO3-LDH precursor, the interlayer distance increases from 0.75 to 1.11 nm. Since Cl- promotes the autocatalytic dehydrochlorination of PVC, which is responsible for its degradation, an increased interlayer distance should facilitate entry of Cl- into the interlayer galleries and inhibit the decomposition of PVC. In addition, maleic acid has a conjugated C=C double bond which can react with double bond formed in the dehydrochlorination of PVC and thus further inhibit the autocatalytic degradation reaction. The results show that the early coloring of PVC is markedly improved and the long-term stability slightly reduced by addition of the MgZnAl-maleate-LDH.

  20. Cobalt-Based Layered Metal-Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material.

    PubMed

    Liu, Xiuxiu; Shi, Changdong; Zhai, Changwei; Cheng, Meiling; Liu, Qi; Wang, Guoxiu

    2016-02-24

    Metal-organic frameworks (MOFs) have recently received increasing interest due to their potential application in the energy storage and conversion field. Herein, cobalt-based layered MOF ({[Co(Hmt)(tfbdc)(H2O)2]·(H2O)2}n, Co-LMOF; Hmt = hexamethylenetetramine; H2tfbdc = 2,3,5,6-tetrafluoroterephthalic acid) has been evaluated as an electrode material for supercapacitors. The Co-LMOF electrode exhibits a high specific capacitance and excellent cycling stability. Its maximum specific capacitance is 2474 F g(-1) at a current density of 1 A g(-1), and the specific capacitance retention is about 94.3% after 2000 cycles. The excellent electrochemical property may be ascribed to the intrinsic nature of Co-LMOF, enough space available for the storage and diffusion of the electrolyte, and the particles of nanoscale size. PMID:26829547

  1. Filler-depletion layer adjacent to interface impacts performance of thermal interface material

    NASA Astrophysics Data System (ADS)

    Yada, Susumu; Oyake, Takafumi; Sakata, Masanori; Shiomi, Junichiro

    2016-01-01

    When installing thermal interface material (TIM) between heat source and sink to reduce contact thermal resistance, the interfacial thermal resistance (ITR) between the TIM and heat source/sink may become important, especially when the TIM thickness becomes smaller in the next-generation device integration. To this end, we have investigated ITR between TIM and aluminum surface by using the time-domain thermoreflectance method. The measurements reveal large ITR attributed to the depletion of filler particles in TIM adjacent to the aluminum surface. The thickness of the depletion layer is estimated to be about 100 nm. As a consequence, the fraction of ITR to the total contact thermal resistance becomes about 20% when the TIM thickness is about 50 μm (current thickness), and it exceeds 50% when the thickness is smaller than 10 μm (next-generation thickness).

  2. Catalytic properties of single layers of transition metal sulfide catalytic materials

    SciTech Connect

    Chianelli, R.R.; Siadati, M.H.; De la Rosa, M.P.; Berhault, G.; Wilcoxon, J.P.; Bearden, R.; Abrams, B.L.

    2006-01-15

    Single layer transition metal sulfides (SLTMS) such as MoS{sub 2}, WS{sub 2}, and ReS{sub 2}, play an important role in catalytic processes such as the hydrofining of petroleum streams, and are involved in at least two of the slurry-catalyst hydroconversion processes that have been proposed for upgrading heavy petroleum feed and other sources of hydrocarbon fuels such as coal and shale oils. Additional promising catalytic applications of the SLTMS are on the horizon. The physical, chemical, and catalytic properties of these materials are reviewed in this report. Also discussed are areas for future research that promise to lead to advanced applications of the SLTMS.

  3. Fabrication of single electron tunneling devices using layered structures of high- Tc superconducting materials

    NASA Astrophysics Data System (ADS)

    Kim, S.-J.; Yamashita, T.

    2006-10-01

    We have fabricated the submicron structures using high-Tc superconducting materials of Bi2Sr2CuO6+δ (Bi-2201). The stacks of layered structures are made by focused-ion-beam (FIB) etching methods. The fabricated 3D three terminal devices consist of source, drain and gate electrodes on the same chip. A gate electrode is capacitively coupled to a central island between two ultra-small tunnel junctions with in plane area S = 0.25 μm2 in series. Two stacks including an island structure show a Coulomb blockade region of 15 mV at zero gate potential. The effects are not smeared out by thermal fluctuations until temperatures greater than 150 K are reached.

  4. Dynamics of the Thermal State of Active Layer at the Alaska North Slope and Northern Yakutia

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Romanovsky, V. E.; Marchenko, S.; Shiklomanov, N. I.; Fedorov-Davydov, D.

    2010-12-01

    Dynamics of the active layer is one of the most important indexes, reflecting permafrost response to the modern climate changes. Monitoring of active layer thickness dynamics is the main goal of CALM (Circumpolar Active Layer Monitoring) project. But, from different points of view, it is very important to know not only maximal depth of seasonal thawing but also dynamics of thermal field of active layer and duration of its staying in the unfrozen state. Current research was aimed on the analyzing data of temperature measurements have been done during the more then 10 years at the North Slope of Brooks Range (Alaska) and 2 years at the selected sites at the Northern Yakutia (Russia) and its comparison with the 17 to 10 years records of active layer thickness dynamics at the corresponding sites (http://www.udel.edu/Geography/calm/data/north.html). The area of investigation characterized by the typical tundra landscape and different kinds of micro topography. Reported observation sites located at the latitudinal range from 68.5 to 70.3N in Alaska and 70.5 to 71.75N in the Northern Yakutia. Observation have been done using the 1 meter long MRC probe with 11 sensors (every 10 cm) and single Campbell SCI A107 sensors in Alaska and 2-channel HOBO U23 data loggers with TMC-HD thermistors in the Northern Yakutia. Analyses of CALM data show what most observation sites in Alaska (except located near the Brooks Range and at the Arctic Ocean coast) do not subjected to the significant sustainable changes of active layer thickness over the last 10 years. At the same time active layer thickness at the Yakutian sites was increasing. Temperature observations show decreasing of the mean annual temperature at the average depth of active layer bottom at the Alaskan sites. But, because of general trend to increasing of period of thawing it does not lead to the decreasing of active layer thickness. Recent equipment deployment at the Tiksi and Allaikha sites (Northern Yakutia) does not

  5. Defect Physics, Delithiation Mechanism, and Electronic and Ionic Conduction in Layered Lithium Manganese Oxide Cathode Materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2015-02-01

    Layered Li Mn O2 and Li2Mn O3 are of great interest for lithium-ion battery cathodes because of their high theoretical capacities. The practical application of these materials is, however, limited due to poor electrochemical performance. We herein report a comprehensive first-principles study of defect physics in Li Mn O2 and Li2Mn O3 using hybrid density-functional calculations. We find that manganese antisites have low formation energies in Li Mn O2 and may act as nucleation sites for the formation of impurity phases. The antisites can also occur with high concentrations in Li2Mn O3 ; however, unlike in Li Mn O2 , they can be eliminated by tuning the experimental conditions during preparation. Other intrinsic point defects may also occur and have an impact on the materials' properties and functioning. An analysis of the formation of lithium vacancies indicates that lithium extraction from Li Mn O2 is associated with oxidation at the manganese site, resulting in the formation of manganese small hole polarons; whereas in Li2Mn O3 the intrinsic delithiation mechanism involves oxidation at the oxygen site, leading to the formation of bound oxygen hole polarons ηO+ . The layered oxides are found to have no or negligible bandlike carriers, and they cannot be doped n or p type. The electronic conduction proceeds through hopping of hole and/or electron polarons; the ionic conduction occurs through lithium monovacancy and/or divacancy migration mechanisms. Since ηO+ is not stable in the absence of negatively charged lithium vacancies in bulk Li2Mn O3 , the electronic conduction near the start of delithiation is likely to be poor. We suggest that the electronic conduction associated with ηO+ and, hence, the electrochemical performance of Li2Mn O3 can be improved through nanostructuring and/or ion substitution.

  6. Application of Mobility Spectrum Analysis to Modern Multi-layered IR Device Material

    NASA Astrophysics Data System (ADS)

    Brown, Alexander Earl

    Modern detector materials used for infrared (IR) imaging purposes contain complex multi-layered architectures, making more robust characterization techniques necessary. In order to determine mutli-carrier transport properties in the presence of mixed conduction, variable-field Hall characterization can be performed and then analyzed using mobility spectrum analysis to extract parameters of interest. Transport parameters are expected to aid in modeling and simulation of materials and can be used in optimization of particular problem areas. The performances of infrared devices ultimately depend on transport mechanisms, so an accurate determination becomes paramount. This work focuses on the characterization of two materials at the forefront of IR detectors; incumbent, tried and true, HgCdTe technologies and emergent III-V based superlattice structures holding much promise for future detector purposes. Ex-situ doped long-wave planar devices and in-situ doped mid-wave dual-layer heterojunctions (P+/n architecture) HgCdTe structures are explored with regards to substrate choice, namely lattice-matched CdZnTe and lattice-mismatched Si or GaAs. A detailed study of scattering mechanisms reveal that growth on lattice-mismatched substrates leads to dislocation scattering limited mobility at low temperature, correlating with extrinsically limited minority carrier lifetime and excesses diode tunneling current, resulting in overall lower performance. Mobility spectrum analysis proves to be an effective diagnostic on performance as well as providing insight in surface, substrate-interface, and minority carrier transport. Two main issues limiting performance of III-V based superlattices are addressed; high residual doping backgrounds and surface passivation. Mobility spectrum analysis proves to be a reliable method of determining background doping levels. Modest improvements are obtained via post-growth thermal annealing, but results suggest future efforts should be placed upon

  7. Development of an ab-initio calculation method for 2D layered materials-based optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    We report on the development of a novel first-principles method for the calculation of non-equilibrium nanoscale device operation process. Based on region-dependent Δ self-consistent field method beyond the standard density functional theory (DFT), we will introduce a novel method to describe non-equilibrium situations such as external bias and simultaneous optical excitations. In particular, we will discuss the limitation of conventional method and advantage of our scheme in describing 2D layered materials-based devices operations. Then, we investigate atomistic mechanism of optoelectronic effects from 2D layered materials-based devices and suggest the optimal material and architecture for such devices.

  8. Composite surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a periodically multilayered isotropic dielectric material

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple p- and s-polarized compound surface-plasmon-polariton (SPP) waves at a fixed frequency can be guided by a structure consisting of a metal layer sandwiched between a homogeneous isotropic dielectric (HID) material and a periodic multilayered isotropic dielectric (PMLID) material. For any thickness of the metal layer, at least one compound SPP wave must exist. It possesses the p-polarization state, and is strongly bound to the metal/HID interface when the metal thickness is large but to both metal/dielectric interfaces when the metal thickness is small. When the metal layer vanishes, this compound SPP wave transmutes into a Tamm wave. Additional compound SPP waves exist, depending on the thickness of the metal layer, the relative permittivity of the HID material, and the period and composition of the PMLID material. Some of these are p-polarized, the others are s-polarized. All of them differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. The multiplicity and dependence of the number of compound SPP waves on the relative permittivity of the HID material when the metal layer is thin could be useful for optical sensing applications and intrachip plasmonic optical communication.

  9. Transfer Printed P3HT/PCBM Photoactive Layers: From Material Intermixing to Device Characteristics.

    PubMed

    Abdellah, Alaa; Falco, Aniello; Schwarzenberger, Ulrich; Scarpa, Giuseppe; Lugli, Paolo

    2016-02-01

    The fabrication of organic electronic devices involving complex stacks of solution-processable functional materials has proven challenging. Significant material intermixing often occurs as a result of cross-solubility and postdeposition treatments, rendering the realization of even the simplest bilayer architectures rather cumbersome. In this study we investigate the feasibility of a dry transfer printing process for producing abrupt bilayer organic photodiodes (OPDs) and the effect of thermal annealing on the integrity of the bilayer. The process involves the transfer of readily deposited thin films of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) using a polydimethylsiloxane (PDMS) stamp. Fabricated structures are characterized by means of cross-sectional scanning electron microscopy (SEM), UV/vis absorption spectroscopy, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Joint consideration of all results unveils abrupt interfaces with no thermal treatment applied and significant material intermixing for samples annealed above 100 °C. The role of the thermally assisted intermixing in determining the performance of complete devices is evaluated through the comparison of J-V characteristics and external quantum efficiencies (EQEs) of identical photodiodes subject to different annealing conditions. It is shown that the performance of such devices approaches the one of bulk heterojunction photodiodes upon thermal annealing at 140 °C for 5 min. Our results demonstrate that transfer printing is a reliable and simple process for the realization of functional multilayers, paving the way for organic electronic devices incorporating complex stacks. It further contributes to a fundamental understanding of material composition within photoactive layers by elucidating the process of thermally assisted intermixing. PMID:26754413

  10. Improving ice nucleation activity of zein film through layer-by-layer deposition of extracellular ice nucleators.

    PubMed

    Shi, Ke; Yu, Hailong; Lee, Tung-Ching; Huang, Qingrong

    2013-11-13

    Zein protein has been of scientific interest in the development of biodegradable functional food packaging. This study aimed at developing a novel zein-based biopolymer film with ice nucleation activity through layer-by-layer deposition of biogenic ice nucleators, that is, extracellular ice nucleators (ECINs) isolated from Erwinia herbicola , onto zein film surface. The adsorption behaviors and mechanisms were investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). On unmodified zein surface, the highest ECINs adsorption occurred at pH 5.0; on UV/ozone treated zein surface followed by deposition of poly(diallyldimethylammonium chloride) (PDADMAC) layer, the optimum condition for ECINs adsorption occurred at pH 7.0 and I 0.05 M, where the amount of ECINs adsorbed was also higher than that on unmodified zein surface. QCM-D analyses further revealed a two-step adsorption process on unmodified zein surfaces, compared to a one-step adsorption process on PDADMAC-modified zein surface. Also, significantly, in order to quantify the ice nucleation activity of ECINs-coated zein films, an empirical method was developed to correlate the number of ice nucleators with the ice nucleation temperature measured by differential scanning calorimetry. Calculated using this empirical method, the highest ice nucleation activity of ECINs on ECINs-modified zein film reached 64.1 units/mm(2), which was able to elevate the ice nucleation temperature of distilled water from -15.5 °C to -7.3 °C. PMID:24106783

  11. Layers of cyclam-substituted PVC with sodium hydroxide aqua complexes with aza-crown ligands on cellulose tissue filled with active coal

    NASA Astrophysics Data System (ADS)

    Fridman, A. Ya.; Tsivadze, A. Yu.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardyshev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.

    2016-03-01

    A material with an electrically OH--conductive porous layer of cyclam-substituted PVC filled with active coal containing NaOH aqua complexes with aza-crown ligands and cross-linked with the surface of cellulose tissue fibers has been synthesized. The structure of the material was studied. Its sorption capacity in vapors and liquid benzene and hexane, specific resistance, potential of OH- transfer from solution to layer, and rate constants of OH- travel in the layer of the material as an electrochemical bridge in vapors and liquid benzene and hexane were determined. The aqua complexes decomposed in the layer with formation of H2 during the cathodic polarization of the bridge and O2 during the anodic polarization; the composition of the complexes was regenerated due to the motion of OH-.

  12. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    PubMed

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  13. Recognition of wall materials through active thermography coupled with numerical simulations.

    PubMed

    Pietrarca, Francesca; Mameli, Mauro; Filippeschi, Sauro; Fantozzi, Fabio

    2016-09-01

    In the framework of historical buildings, wall thickness as well as wall constituents are not often known a priori, and active IR thermography can be exploited as a nonintrusive method for detecting what kind of material lies beneath the external plaster layer. In the present work, the wall of a historical building is subjected to a heating stimulus, and the surface temperature temporal trend is recorded by an IR camera. A hybrid numerical model is developed in order to simulate the transient thermal response of a wall made of different known materials underneath the plaster layer. When the numerical thermal contrast and the appearance time match with the experimental thermal images, the material underneath the plaster can be qualitatively identified. PMID:27607254

  14. Local structure modification in lithium rich layered Li-Mn-O cathode material

    NASA Astrophysics Data System (ADS)

    Giorgetti, Marco; Wang, Diandian; Aquilanti, Giuliana; Buchholz, Daniel; Passerini, Stefano

    2016-05-01

    X-ray absorption spectroscopy (XAS) is applied to study the local geometry of Co, Ni, and Mn sites in a new high voltage cathode for lithium batteries. The material is a solid solution between Li2MnO3 and Li(x)Mn0.4Ni0.4Co0.2O2. The XAS technique has permitted to check the local atomic structure and charge associated with the metals in a series of electrodes with different lithium concentration x, obtained during the first charge operation, and compared to the first discharge and a successive charge. The ex-situ XAS investigation on the initial activation of the cathode material (first charge) can be described by two separated reaction of LiMO2 (M = Ni and Co) and Li2MnO3. The strength and limitations of the ExAFS approach in these materials is underlined.

  15. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0active material is manufactured by employing either a solid state reaction method or an aqueous solution method or a sol-gel method which is followed by a rapid quenching from high temperatures into liquid nitrogen or liquid helium.

  16. Highly sensitive multi-layer pressure sensor with an active nanostructured layer of an organic molecular metal

    NASA Astrophysics Data System (ADS)

    Laukhin, V.; Lebedev, V.; Laukhina, E.; Rovira, C.; Veciana, J.

    2016-03-01

    This work addresses to the modern technologies that need to be instrumented with lightweight highly sensitive pressure sensors. The paper presents the development of a new plain flexible thin pressure sensor using a nanostructured layer of the highly sensitive organic piezoresistive metal β-(BEDT-TTF)2I3 as an active component; BEDT-TTF=bis (ethylenedithio)tetrathiafulvalene. The original construction approach permits one to operate the developed sensor on the principle of electrical resistance variations when its piezoresistive layer is elongated under a pressure increase. The pressure sensing element and a set of gold electrodes were integrated into one compact multi-layer design. The construction was optimized to enable one generic design for pressure ranges from 1 to 400 bar. The pressure tests showed that the sensor is able to control a small pressure change as a well definite electrical signal. So the developed type of the sensors is very attractive as a new generation of compact, lightweight, low-cost sensors that might monitor pressure with a good level of measurement accuracy.

  17. Crystallinity Modulation of Layered Carbon Nitride for Enhanced Photocatalytic Activities.

    PubMed

    Wang, Jianhai; Shen, Yanfei; Li, Ying; Liu, Songqin; Zhang, Yuanjian

    2016-08-22

    As an emerging metal-free semiconductor, covalently bonded carbon nitride (CN) has attracted much attention in photocatalysis. However, drawbacks such as a high recombination rate of excited electrons and holes hinder its potential applications. Tailoring the crystallinity of semiconductors is an important way to suppress unwanted charge recombination, but has rarely been applied to CN so far. Herein, a simple method to synthesize CN of high crystallinity by protonation of specific intermediate species during conventional polymerization is reported. Interestingly, the as-obtained CN exhibited improved photocatalytic activities of up to seven times those of the conventional bulk CN. This approach, with only a slight change to the conventional method, provides a facile way to effectively regulate the crystallinity of bulk CN to improve its photocatalytic activities and sheds light on large-scale industrial applications of CN with high efficiency for sustainable energy. PMID:27436164

  18. Structural evolution of NM (Ni and Mn) lithium-rich layered material revealed by in-situ electrochemical Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Xin; Li, Bing; Liu, Bo; Liu, Bi-Ju; Zhao, Jin-Bao; Ren, Bin

    2016-04-01

    Li-rich layered materials are one of promising candidates of cathode materials for energy storage in electric vehicles (EVs) due to their high energy density. The practical application of these materials relies on the in-depth understanding of the crystal structures and reaction mechanisms during the electrochemical processes to overcome the potential decay issue. In this work, in-situ electrochemical Raman spectroscopy has been developed and used to investigate the structural evolution of the Li-rich layered material (0.5LiNi0.5Mn0.5O2·0.5Li2MnO3). An electrochemical Raman spectroscopic cell with an excellent air-tightness and optical signal collection efficiency has been designed and used for in-situ investigation of the NM Li-rich material during the very first two electrochemical cycles. We found that the reactions of Ni2+ to Ni3+ and Ni3+ to Ni4+ appearing in the potential range of from 3.70 V to 4.45 V show a good reversibility. The in-situ Raman spectra after the first two electrochemical cycles also indicate the activation of Li2MnO3 changes the ionic local coordination structure and increases the ionic disorder of the pristine NM Li-rich layered material. This structural change has a great impact on the subsequent electrochemical cycles. The in-situ Raman spectroscopy results can help to improve the performance of NM Li-rich layered materials.

  19. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials - A general bond polarizability model

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Ying Quek, Su

    2015-10-01

    2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials.

  20. Activation of a photosensitive pharmaceutical agent by a triboluminescent material

    NASA Astrophysics Data System (ADS)

    Yuen, Stacey; Schreyer, Magdalena; Finlay, W. H.; Löbenberg, R.; Moussa, W.

    2006-03-01

    Given the recent emphasis on applications of triboluminescent materials, we investigate the ability of a triboluminescent material to activate a photosensitive pharmaceutical agent. Using compressed sucrose doped with wintergreen, which luminesces when fractured, we demonstrate the activation of riboflavin (vitamin B2), a photosensitizer. A product of activation is the highly reactive singlet oxygen. We add ascorbic acid (vitamin C), an antioxidant, and measure the amount of ascorbic acid oxidation to correlate with the amount of riboflavin activation. Up to 17% ascorbic acid oxidation is observed, indicating triboluminescence is worth exploring as a mechanism for activation of photosensitizers in photodynamic therapy.

  1. Activation of a photosensitive pharmaceutical agent by a triboluminescent material

    SciTech Connect

    Yuen, Stacey; Schreyer, Magdalena; Finlay, W.H.; Loebenberg, R.; Moussa, W.

    2006-03-20

    Given the recent emphasis on applications of triboluminescent materials, we investigate the ability of a triboluminescent material to activate a photosensitive pharmaceutical agent. Using compressed sucrose doped with wintergreen, which luminesces when fractured, we demonstrate the activation of riboflavin (vitamin B2), a photosensitizer. A product of activation is the highly reactive singlet oxygen. We add ascorbic acid (vitamin C), an antioxidant, and measure the amount of ascorbic acid oxidation to correlate with the amount of riboflavin activation. Up to 17% ascorbic acid oxidation is observed, indicating triboluminescence is worth exploring as a mechanism for activation of photosensitizers in photodynamic therapy.

  2. Nano-photonic phenomena in van der Waals atomic layered materials

    NASA Astrophysics Data System (ADS)

    Basov, Dmitri

    Layered van der Waals (vdW) crystals reveal diverse classes of light-matter modes (polaritons) including: surface plasmon polaritons in graphene, hyperbolic phonon polaritons in boron nitride, exciton polaritons in MoS2, Cooper pair plasmon polaritons in high-Tc cuprates, topological plasmon polaritons and many others. Polaritons in vdW materials are of considerable technological interest. For example, polaritonic modes enable sub diffractional focusing and imaging in infrared frequencies. Applications apart, infrared nano-imaging of propagating polaritons facilitates experimental access to new physics of vdW materials not attainable with conventional spectroscopic methods. I will discuss two recent experiments performed in our group that utilize unique virtues of polaritons. Nano-imaging of plasmon polaritons in moire superlattices formed in graphene on boron nitride has allowed us to establish the important features of the electronic structure of this interesting from of graphene. Pump-probe hyper-spectral images of non-equilibrium plasmon polaritons in graphene revealed novel aspects of carrier relaxation.

  3. Improving quality of textile wastewater with organic materials as multi soil layering

    NASA Astrophysics Data System (ADS)

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  4. Twymann Green interferometry in study of AlN material as an actuation layer in MEMS

    NASA Astrophysics Data System (ADS)

    Gorecki, C.; Krupa, K.; Andrei, A.; Jozwik, M.; Nieradko, L.; Delobelle, P.; Hirsinger, L.

    2008-08-01

    In this study we focus on the aluminium nitride (AlN). This material shows a large number of advantages associated with good piezoelectric properties. Therefore, AlN is an excellent candidate for MEMS actuation where low dielectric loss, low thermal drift and high signal-to-noise ratios are required. In this paper, the case of AlN driven cantilevers composed of three thin layers deposited on the silicon substrate will be considered. Precise knowledge of physical and material parameters of AlN applied in these simple elements are necessary for their further applications. However, up to now, AlN still represents a technological challenge and many of its micromechanical and piezoelectric properties are not precisely described. That is why, our study has been concentrated on determination of such parameters like the residual thin film stresses, thermal expansion coefficient α and piezoelectric coefficient d31. In this paper the interactions between the theoretical solution, the numerical FEM simulations and experimental results were performed. This hybrid methodology allows to identify the main source of behaviors discrepancy between the physical and numerical model of tested cantilevers. Obtained knowledge leads to optimization of the technological process and required parameters of actuator functionality achievement by better understanding of the tested microdevices properties. In experimental procedure, it was used nanoindentation tests for obtaining an elastic properties of AlN, interferometric techniques for performing the static and dynamic measurements of cantilevers and scanning electron microscope for measuring topography.

  5. An active control system for the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Lew, James

    This thesis presents the development process and the experimental results of a system constructed to apply real-time control to the structures of the turbulent boundary layer region in order to reduce surface shear stress. The system is composed of three main components: an array of MEMS surface shear stress, tauw sensors; a MEMS flap actuator; and a control logic which integrates the hardware components together into a closed system. The objective of this system is to reduce the stress contained in streak-like regions of high tauw. The sensor array, used to image the tauw distribution, is an extension of the thermal based tauw sensor developed by Jiang. Numerous studies have been performed using this device, the results of which have validated its performance. For this study, a new temperature compensation methodology, based on the surface temperature of the sensor chip, was employed in order to account for possible temperature variations at the wall surface. The actuator, a pneumatically driven flap, is developed as part of the present research. The device is, in essence, a 3 mm x 1 mm cantilever beam that sits on top of an inflatable diaphragm and is capable of actuation frequencies of over 200 Hz and amplitudes of over .11 mm. When it is oscillated in the open loop mode, the effect over one cycle of motion is an average reduction by as much as 2.5% in tauw in the region immediately downstream. A neural network is employed to identify the streak-like regions of interest. Results have shown that this network is successful in identifying the streak-like regions of interest. The control logic employs this network in a predictive, feed-forward scheme to determine the appropriate actuator response. Offline studies have shown that under optimal conditions, the signature of the streak-like regions can be eliminated. Online results conform well to the offline predictions. While unable to achieve the optimal conditions, online experiments show that the system is capable

  6. Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water.

    PubMed

    Li, Bucheng; Wu, Lei; Li, Lingxiao; Seeger, Stefan; Zhang, Junping; Wang, Aiqin

    2014-07-23

    Inspired by the mussel adhesive protein and the lotus leaf, Ag-based double-layer polyester (DL-PET) textiles were fabricated for effective removal of organic pollutants in water. The DL-PET textiles are composed of a top superamphiphilic layer and a bottom superhydrophobic/superoleophilic layer. First, the PET textiles were modified with a layer of polydopamine (PDA) and deposited with Ag nanoparticles to form the PET@PDA@Ag textiles. The top superamphiphilic layer, formed by immobilizing Ag3PO4 nanoparticles on the PET@PDA@Ag textile, shows excellent visible-light photocatalytic activity. The bottom superhydrophobic/superoleophilic layer, formed by modifying the PET@PDA@Ag textile using dodecyl mercaptan, is mechanically, environmentally, and chemically very stable. The water-insoluble oils with low surface tension can penetrate both layers of the DL-PET textiles, while the water with soluble organic dyes can only selectively wet the top layer owing to their unique wettability. Consequently, the water-soluble organic contaminants in the collected water can be decomposed by the Ag3PO4 nanoparticles of the top layer under visible-light irradiation or even sunlight in room conditions. Thus, the DL-PET textiles can remove various kinds of organic pollutants in water including both insoluble oils and soluble dyes. The DL-PET textiles feature unique wettability, high oil/water separation efficiency, and visible-light photocatalytic activity. PMID:24956183

  7. Contribution of S-Layer Proteins to the Mosquitocidal Activity of Lysinibacillus sphaericus

    PubMed Central

    Allievi, Mariana Claudia; Palomino, María Mercedes; Prado Acosta, Mariano; Lanati, Leonardo; Ruzal, Sandra Mónica; Sánchez-Rivas, Carmen

    2014-01-01

    Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity. PMID:25354162

  8. Structural and Chemical Evolution of Li- and Mn-rich Layered Cathode Material

    SciTech Connect

    Zheng, Jianming; Xu, Pinghong; Gu, Meng; Xiao, Jie; Browning, Nigel D.; Yan, Pengfei; Wang, Chong M.; Zhang, Jiguang

    2015-02-24

    Lithium (Li)- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being sufficiently understood. Here we report the detailed phase transformation pathway in the LMR cathode (Li[Li0.2Ni0.2Mn0.6]O2) during cycling for the samples prepared by hydro-thermal assistant method. It is found the transformation pathway of LMR cathode is closely correlated to its initial structure and preparation conditions. The results reveal that LMR cathode prepared by HA approach experiences a phase transformation from the layered structure to a LT-LiCoO2 type defect spinel-like structure (Fd-3m space group) and then to a disordered rock-salt structure (Fm-3m space group). The voltage fade can be well correlated with the Li ion insertion into octahedral sites, rather than tetrahedral sites, in both defect spinel-like structure and disordered rock-salt structure. The reversible Li insertion/removal into/from the disordered rock-salt structure is ascribed to the Li excess environment that can satisfy the Li percolating in the disordered rock-salt structure despite the increased kinetic barrier. Meanwhile, because of the presence of a great amount of oxygen vacancies, a significant decrease of Mn valence is detected in the cycled particle, which is below that anticipated for a potentially damaging Jahn-Teller distortion (+3.5). Clarification of the phase transformation pathway, cation redistribution, oxygen vacancy and Mn valence change undoubtedly provides insights into a profound understanding on the voltage fade, and capacity degradation of LMR cathode. The results also inspire us to further enhance the reversibility of LMR cathode via improving its surface structural stability.

  9. Structure and mechanical properties of the three-layer material based on a vanadium alloy and corrosion-resistant steel

    NASA Astrophysics Data System (ADS)

    Nikulin, S. A.; Rozhnov, A. B.; Nechaikina, T. A.; Rogachev, S. O.; Zavodchikov, S. Yu.; Khatkevich, V. M.

    2014-10-01

    The quality of three-layer pipes has been studied; they are manufactured by hot pressing of a three-layer assembly of tubular billets followed by forging and cold rolling. The operating core is made from a V-4Ti-4Cr alloy. The protective claddings are made from corrosion-resistant steels of two grades, 08Kh17T and 20Kh13. The results of investigation into the structure and microhardness of the junction zone of steel and the vanadium alloy, which includes a contact zone and a transition diffusion layer, are reported. The 08Kh17T steel is shown to be a preferred cladding material.

  10. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond

    NASA Astrophysics Data System (ADS)

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V.; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M.; Haga, Masa-Aki; Wandlowski, Thomas

    2015-10-01

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g-1 at a current density of 10 μA cm-2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  11. [Co/Ni]-CoFeB hybrid free layer stack materials for high density magnetic random access memory applications

    NASA Astrophysics Data System (ADS)

    Liu, E.; Swerts, J.; Couet, S.; Mertens, S.; Tomczak, Y.; Lin, T.; Spampinato, V.; Franquet, A.; Van Elshocht, S.; Kar, G.; Furnemont, A.; De Boeck, J.

    2016-03-01

    Alternative free layer materials with high perpendicular anisotropy are researched to provide spin-transfer-torque magnetic random access memory stacks' sufficient thermal stability at critical dimensions of 20 nm and below. We demonstrate a high tunnel magetoresistance (TMR) MgO-based magnetic tunnel junction stack with a hybrid free layer design made of a [Co/Ni] multilayer and CoFeB. The seed material on which the [Co/Ni] multilayer is deposited determines its switching characteristics. When deposited on a Pt seed layer, soft magnetic switching behavior with high squareness is obtained. When deposited on a NiCr seed, the perpendicular anisotropy remains high, but the squareness is low and coercivity exceeds 1000 Oe. Interdiffusion of the seed material with the [Co/Ni] multilayers is found to be responsible for the different switching characteristics. In optimized stacks, a TMR of 165% and low resistance-area (RA) product of 7.0 Ω μm2 are attained for free layers with an effective perpendicular magnetic anisotropy energy of 1.25 erg/cm2, which suggests that the hybrid free layer materials may be a viable candidate for high density magnetic random access memory applications.

  12. Layered carbon nanotube-polyelectrolyte electrodes outperform traditional neural interface materials.

    PubMed

    Jan, Edward; Hendricks, Jeffrey L; Husaini, Vincent; Richardson-Burns, Sarah M; Sereno, Andrew; Martin, David C; Kotov, Nicholas A

    2009-12-01

    The safety, function, and longevity of implantable neuroprosthetic and cardiostimulating electrodes depend heavily on the electrical properties of the electrode-tissue interface, which in many cases requires substantial improvement. While different variations of carbon nanotube materials have been shown to be suitable for neural excitation, it is critical to evaluate them versus other materials used for bioelectrical interfacing, which have not been done in any study performed so far despite strong interest to this area. In this study, we carried out this evaluation and found that composite multiwalled carbon nanotube-polyelectrolyte (MWNT-PE) multilayer electrodes substantially outperform in one way or the other state-of-the-art neural interface materials available today, namely activated electrochemically deposited iridium oxide (IrOx) and poly(3,4-ethylenedioxythiophene) (PEDOT). Our findings provide the concrete experimental proof to the much discussed possibility that carbon nanotube composites can serve as excellent new material for neural interfacing with a strong possibility to lead to a new generation of implantable electrodes. PMID:19785391

  13. Activation product release from fusion structural materials in helium

    NASA Astrophysics Data System (ADS)

    Maya, I.; Montgomery, F.; Trester, P.; Burnette, R.; Johnson, W.; Schultz, K.

    1985-08-01

    The release and transport of activated materials-of-construction in a fusion reactor during an accident scenario involving overheating and ingress of oxidants is an important area of safety research. This investigation quantified material release characteristics which result from surface oxide spallation and vaporization for the steel alloys PCA and HT-9 in impure helium and air environments.

  14. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  15. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al₂O₃ Nanoparticles and Conductive Polymer.

    PubMed

    Lee, Yoon-Sung; Shin, Won-Kyung; Kannan, Aravindaraj G; Koo, Sang Man; Kim, Dong-Won

    2015-07-01

    We demonstrate the effectiveness of dual-layer coating of cathode active materials for improving the cycling performance and thermal stability of lithium-ion cells. Layered nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material was synthesized and double-layer coated with alumina nanoparticles and poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol). The lithium-ion cells assembled with a graphite negative electrode and a double-layer-coated LiNi0.6Co0.2Mn0.2O2 positive electrode exhibited high discharge capacity, good cycling stability, and improved rate capability. The protective double layer formed on the surface of LiNi0.6Co0.2Mn0.2O2 materials effectively inhibited the dissolution of Ni, Co, and Mn metals from cathode active materials and improved thermal stability by suppressing direct contact between electrolyte solution and delithiated Li(1-x)Ni0.6Co0.2Mn0.2O2 materials. This effective design strategy can be adopted to enhance the cycling performance and thermal stability of other layered nickel-rich cathode materials used in lithium-ion batteries. PMID:26083766

  16. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; De, Sukanta

    2016-05-01

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  17. Changes in the structure of the surface layer of metal materials upon friction and electric current loading

    NASA Astrophysics Data System (ADS)

    Fadin, V. V.

    2013-09-01

    Dependences of the electric conductivity of a contact and wear intensity of metal materials on the electric current density in sliding friction are obtained. It is established that alloying of the material basis leads to faster damage of the friction surface. The presence of about 40 аt.% oxygen in the surface layer is detected by the Auger spectrometry method. It is demonstrated by the x-ray diffraction method that FeO formed in the surface layer leads to an increase in the electric conductivity of the contact.

  18. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Chun

    The search for new ultrathin materials as the "new silicon" has begun. In this dissertation, I examine (1) the surface structure, including the growth, the crystal quality, and thin film surface corrugation of a monolayer sample and a few layers of MoS2 and WSe2, and (2) their electronic structure. The characteristics of these electronic systems depend intimately on the morphology of the surfaces they inhabit, and their interactions with the substrate or within layers. These physical properties will be addressed in each chapter. This thesis has dedicated to the characterization of mono- and a few layers of MoS2 and WSe2 that uses surface-sensitive probes such as low-energy electron microscopy and diffraction (LEEM and LEED). Prior to our studies, the characterization of monolayer MoS2 and WSe2 has been generally limited to optical and transport probes. Furthermore, the heavy use of thick silicon oxide layer as the supporting substrate has been important in order to allow optical microscopic characterization of the 2D material. Hence, to the best of our knowledge, this has prohibited studies of this material on other surfaces, and it has precluded the discovery of potentially rich interface interactions that may exist between MoS 2 and its supporting substrate. Thus, in our study, we use a so-called SPELEEM system (Spectroscopic Photo-Emission and Low Energy Electron Microscopy) to address these imaging modalities: (1) real-space microscopy, which would allow locating of monolayer MoS2 samples, (2) spatially-resolved low-energy diffraction which would allow confirmation of the crystalline quality and domain orientation of MoS2 samples, and, (3) spatially-resolved spectroscopy, which would allow electronic structure mapping of MoS2 samples. Moreover, we have developed a preparation procedure for samples that yield, a surface-probe ready, ultra-clean, and can be transferred on an arbitrary substrate. To fully understand the physics in MoS2 such as direct

  19. [Study on preparation of lanthanum-doped TiO2 nanometer thin film materials and its photocatalytic activity].

    PubMed

    Zheng, Huai-li; Tang, Ming-fang; Gong, Ying-kun; Deng, Xiao-jun; Wu, Bang-hua

    2003-04-01

    In this paper, lanthanum-doped TiO2 nanometer film materials coated on glass were prepared in Ti(OBu)4 precursor solutions by sol-gel processing. Transmittance and photocatalytic activity were respectively investigated and tested for these nanometer thin films prepared with different amount of lanthanum (La), different amount of polyethylene glycol (PEG), and different coating layer times. Some reactive mechanisms were also discussed. For one layer La-addition had little effect on the film transmissivity; but the photocatalytic activity was significantly improved due to La-addition. With increasing PEG, the transmittance of the film decreased for one layer film; but its photocatalytic activity did not rise. Increasing layer number did not affect the transmissivity of multilayer film. After coating two times, increasing layer number did not significantly improve the photocatalytic activity. The highest photocatalytic activity and best transmissivity were obtained for two layer TiO2 film when the dosage of lanthanum was 0.5 g and the dosage of polyethylene was 0.2 g in the precursor solutions. These materials will probably be used in the protection of environment, waste water treatment, and air purification. PMID:12961861

  20. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  1. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. PMID:27494632

  2. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  3. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping

    PubMed Central

    2014-01-01

    In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 1013 cm-2, resistivity at 4.6 × 10-3 Ω∙cm, and Hall mobility at 14.6 cm2/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm2/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm2/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs. PMID:25435832

  4. Carbon nanotubes supported cerium dioxide and platinum nanohybrids: Layer-by-layer synthesis and enhanced electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Lou, Xinyuan; Chen, Jiayi; Wang, Mengdi; Gu, Jialei; Wu, Ping; Sun, Dongmei; Tang, Yawen

    2015-08-01

    We successfully synthesize carbon nanotubes (CNTs) supported cerium dioxide and platinum (Pt/CeO2/CNTs) nanohybrids via layer-by-layer assembly. The composition, morphology and structure of the as-prepared Pt/CeO2/CNTs nanohybrids are characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission spectrometry (ICP-AES). By comparison of the electrocatalytic properties of the Pt/CeO2/CNTs with the Pt/CNTs, we systematically investigate the promotion effect of CeO2 on the Pt/CeO2/CNTs catalysts towards methanol oxidation. It is found that the introduction of CeO2 not only enhances the electrocatalytic activity and stability of the Pt/CeO2/CNTs catalyst for methanol oxidation but also minimizes the CO poisoning, probably accounting for the good oxygen carrying capacity of CeO2 and its high stability in acidic solution.

  5. Sitting Phases of Polymerizable Amphiphiles for Controlled Functionalization of Layered Materials.

    PubMed

    Bang, Jae Jin; Rupp, Kortney K; Russell, Shane R; Choong, Shi Wah; Claridge, Shelley A

    2016-04-01

    Precisely tailoring surface chemistry of layered materials is a growing need for fields ranging from electronics to biology. For many applications, the need for noncovalently adsorbed ligands to simultaneously control interactions with a nonpolar substrate and a polar solvent is a particular challenge. However, biology routinely addresses a similar challenge in the context of the lipid bilayer. While conventional standing phases of phospholipids (such as those found in a bilayer) would not provide spatially ordered interactions with the substrate, here we demonstrate formation of a sitting phase of polymerizable phospholipids, in which the two alkyl chains extend along the surface and the two ionizable functionalities (a phosphate and an amine) sit adjacent to the substrate and project into the solvent, respectively. Interfacial ordering and polymerization are assessed by high-resolution scanning probe measurements. Water contact angle titrations demonstrate interfacial pKa shifts for the lipid phosphate but not for the amine, supporting localization of the phosphate near the nonpolar graphite surface. PMID:26974686

  6. Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Johannes, Michelle

    Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.

  7. Few-layer Phosphorene: An Ideal 2D Material For Tunnel Transistors.

    PubMed

    Ameen, Tarek A; Ilatikhameneh, Hesameddin; Klimeck, Gerhard; Rahman, Rajib

    2016-01-01

    2D transition metal dichalcogenides (TMDs) have attracted a lot of attention recently for energy-efficient tunneling-field-effect transistor (TFET) applications due to their excellent gate control resulting from their atomically thin dimensions. However, most TMDs have bandgaps (Eg) and effective masses (m(*)) outside the optimum range needed for high performance. It is shown here that the newly discovered 2D material, few-layer phosphorene, has several properties ideally suited for TFET applications: 1) direct Eg in the optimum range ~1.0-0.4 eV, 2) light transport m(*) (0.15 m0), 3) anisotropic m(*) which increases the density of states near the band edges, and 4) a high mobility. These properties combine to provide phosphorene TFET outstanding ION ~ 1 mA/um, ON/OFF ratio ~ 10(6) for a 15 nm channel and 0.5 V supply voltage, thereby significantly outperforming the best TMD-TFETs and CMOS in many aspects such as ON/OFF current ratio and energy-delay products. Furthermore, phosphorene TFETS can scale down to 6 nm channel length and 0.2 V supply voltage within acceptable range in deterioration of the performance metrics. Full-band atomistic quantum transport simulations establish phosphorene TFETs as serious candidates for energy-efficient and scalable replacements of MOSFETs. PMID:27345020

  8. Multiple pass and multiple layer friction stir welding and material enhancement processes

    DOEpatents

    Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN

    2010-07-27

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  9. Few-layer Phosphorene: An Ideal 2D Material For Tunnel Transistors

    PubMed Central

    Ameen, Tarek A.; Ilatikhameneh, Hesameddin; Klimeck, Gerhard; Rahman, Rajib

    2016-01-01

    2D transition metal dichalcogenides (TMDs) have attracted a lot of attention recently for energy-efficient tunneling-field-effect transistor (TFET) applications due to their excellent gate control resulting from their atomically thin dimensions. However, most TMDs have bandgaps (Eg) and effective masses (m*) outside the optimum range needed for high performance. It is shown here that the newly discovered 2D material, few-layer phosphorene, has several properties ideally suited for TFET applications: 1) direct Eg in the optimum range ~1.0–0.4 eV, 2) light transport m* (0.15 m0), 3) anisotropic m* which increases the density of states near the band edges, and 4) a high mobility. These properties combine to provide phosphorene TFET outstanding ION ~ 1 mA/um, ON/OFF ratio ~ 106 for a 15 nm channel and 0.5 V supply voltage, thereby significantly outperforming the best TMD-TFETs and CMOS in many aspects such as ON/OFF current ratio and energy-delay products. Furthermore, phosphorene TFETS can scale down to 6 nm channel length and 0.2 V supply voltage within acceptable range in deterioration of the performance metrics. Full-band atomistic quantum transport simulations establish phosphorene TFETs as serious candidates for energy-efficient and scalable replacements of MOSFETs. PMID:27345020

  10. Leaching of iodide (I(-)) and iodate (IO3(-)) anions from synthetic layered double hydroxide materials.

    PubMed

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L

    2016-09-15

    Several studies have previously demonstrated that layered double hydroxides (LDHs) show considerable potential for the adsorption of radioiodine from aqueous solution; however, few studies have demonstrated that these materials are able to store radioactive (131)I for an acceptable period. The leaching of iodide (I(-)) and iodate (IO3(-)) form Mg/Al LDHs has been carried out. Contact time appeared to be a more significant variable for the leaching of iodate (IO3(-)) compared to that of iodide (I(-)). Experimental results are fitted to the pseudo second order model, suggesting that diffusion is likely to be the rate-limiting step. The presence of carbonate in the leaching solution appeared to significantly increase the leaching of iodide (I(-)) as did the presence of chloride to a lesser extent. The maximum amount of iodate (IO3(-)) leached using ultrapure water as the leaching solution was 21% of the iodate (IO3(-)) originally present. The corresponding result for iodide (I(-)) was even lower at 3%. PMID:27309951

  11. Few-layer Phosphorene: An Ideal 2D Material For Tunnel Transistors

    NASA Astrophysics Data System (ADS)

    Ameen, Tarek A.; Ilatikhameneh, Hesameddin; Klimeck, Gerhard; Rahman, Rajib

    2016-06-01

    2D transition metal dichalcogenides (TMDs) have attracted a lot of attention recently for energy-efficient tunneling-field-effect transistor (TFET) applications due to their excellent gate control resulting from their atomically thin dimensions. However, most TMDs have bandgaps (Eg) and effective masses (m*) outside the optimum range needed for high performance. It is shown here that the newly discovered 2D material, few-layer phosphorene, has several properties ideally suited for TFET applications: 1) direct Eg in the optimum range ~1.0–0.4 eV, 2) light transport m* (0.15 m0), 3) anisotropic m* which increases the density of states near the band edges, and 4) a high mobility. These properties combine to provide phosphorene TFET outstanding ION ~ 1 mA/um, ON/OFF ratio ~ 106 for a 15 nm channel and 0.5 V supply voltage, thereby significantly outperforming the best TMD-TFETs and CMOS in many aspects such as ON/OFF current ratio and energy-delay products. Furthermore, phosphorene TFETS can scale down to 6 nm channel length and 0.2 V supply voltage within acceptable range in deterioration of the performance metrics. Full-band atomistic quantum transport simulations establish phosphorene TFETs as serious candidates for energy-efficient and scalable replacements of MOSFETs.

  12. Development of electrodeposited ZnTe layers as window materials in ZnTe/CdTe/CdHgTe multi-layer solar cells

    SciTech Connect

    Islam, A.B.M.O. Chaure, N.B.; Wellings, J.; Tolan, G.; Dharmadasa, I.M.

    2009-02-15

    Zinc telluride (ZnTe) thin films have been deposited on glass/conducting glass substrates using a low-cost electrodeposition method. The resulting films have been characterized using various techniques in order to optimize growth parameters. X-ray diffraction (XRD) has been used to identify the phases present in the films. Photoelectrochemical (PEC) cell and optical absorption measurements have been performed to determine the electrical conductivity type, and the bandgap of the layers, respectively. It has been confirmed by XRD measurement that the deposited layers mainly consist of ZnTe phases. The PEC measurements indicate that the ZnTe layers are p-type in electrical conduction and optical absorption measurements show that their bandgap is in the range 2.10-2.20 eV. p-Type ZnTe window materials have been used in CdTe based solar cell structures, following new designs of graded bandgap multi-layer solar cells. The structures of FTO/ZnTe/CdTe/metal and FTO/ZnTe/CdTe/CdHgTe/metal have been investigated. The results are presented in this paper using observed experimental data.

  13. Thermal processes within the active layer of the rock glacier Murtèl-Corvatsch, Upper Engadin, Switzerland

    NASA Astrophysics Data System (ADS)

    Panz, Melanie; Hoelzle, Martin

    2010-05-01

    Coarse debris is a characteristic ground material in high alpine environments. The special thermal properties of this ground material favour the existence of permafrost. However, the most important processes explaining the common thermal anomaly found within these materials are still not yet fully understood. Many different approaches try to explain these processes. The most common explanation is the heat transfer between atmosphere and ground, driven by heat convection in autumn and winter and stable stratification of the interstitial air in summer. These processes could be shown at the investigated site in an earlier study (Hanson and Hoelzle 2005). On the contrary, Gruber and Hoelzle (2008) tried to explain the observed measurements independent of convective processes, only based on model calculations, which were based on the interaction between winter snow cover and the very low thermal conductivity of the coarse debris layer. In the present study, we took the ground surface temperature data from the uppermost 90 cm of the active layer of the rock glacier Murtèl-Corvatsch in combination with meteorological data, such as air temperature, snow depth and radiation to analyze the dominant heat transfer mechanisms during the different seasons. The main focus was to assess the contribution of convective processes. The potential for free convection was estimated using the Rayleigh number. In addition, the air circulation within the uppermost active layer measured by three wind sensors was taken into consideration. These data were compared with the other climate variables of the nearby meteorological station. After analyzing the data, it can be concluded that the potential for free convection in the cavities of the upper blocky layer is high as soon as the stable thermal stratification during the summer month gets instable due to a cooling of the surface. Especially in the autumn and early winter months a strong ground cooling could be observed caused by the low air

  14. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex.

    PubMed

    Adams, Daniel L; Economides, John R; Horton, Jonathan C

    2015-05-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. PMID:25810480

  15. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex

    PubMed Central

    Adams, Daniel L.; Economides, John R.

    2015-01-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. PMID:25810480

  16. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  17. Polymer Solar Cell Device Characteristics Are Independent of Vertical Phase Separation in Active Layers

    NASA Astrophysics Data System (ADS)

    Loo, Yueh-Lin

    2013-03-01

    Preferential segregation of organic semiconductor constituents in multicomponent thin-film active layers has long been speculated to affect the characteristics of bulk-heterojunction polymer solar cells. Using soft-contact lamination and delamination schemes - with which we have been able to remove compositionally well characterized polymer thin films, flip them over so as to reverse their composition profiles, and then transfer them onto existing device platforms - we showed unambiguously that the device performance of P3HT:PCBM solar cells are independent of the interfacial segregation characteristics of the active layers. Temperature-dependent single-carrier diode measurements of the organic semiconductor constituents suggest that the origin of this invariance stems from the fact that P3HT comprises a high density of mid-gap states. Hole carriers in these mid-gap states can in turn recombine with electrons at the electron-collecting interface, effectively promoting electron transfer from the cathode to the active layer.

  18. Fabrication of Alternating-Phase Fed Single-Layer Slotted Waveguide Arrays Using Plastic Materials with Metal-Plating

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Hirokawa, Jiro; Ando, Makoto

    Lightweight single-layer slotted waveguide array antennas are fabricated using plastic materials with metal-plating. A plastic material that has good heat-radiation properties is investigated. Three types of antennas are fabricated by milling, using ABS resin, heat-radiating plastic, and aluminum alloy. In measurements, all three types of antennas are confirmed to have almost the same VSWR and gain in the 25GHz frequency band.

  19. Catalytic Graphitization for Preparation of Porous Carbon Material Derived from Bamboo Precursor and Performance as Electrode of Electrical Double-Layer Capacitor

    NASA Astrophysics Data System (ADS)

    Tsubota, Toshiki; Maguchi, Yuta; Kamimura, Sunao; Ohno, Teruhisa; Yasuoka, Takehiro; Nishida, Haruo

    2015-12-01

    The combination of addition of Fe (as a catalyst for graphitization) and CO2 activation (a kind of gaseous activation) was applied to prepare a porous carbon material from bamboo powder (a waste product of superheated steam treatment). Regardless of the heat treatment temperature, many macropores were successfully formed after the heating process by removal of Fe compounds. A turbostratic carbon structure was generated in the Fe-added sample heated at 850°C. It was confirmed that the added Fe acted as a template for pore formation. Moreover, it was confirmed that the added Fe acted as a catalyst for graphitization. The resulting electrochemical performance as the electrode of an electrical double-layer capacitor, as demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy, and charge-discharge testing, could be explained based on the graphitization and activation effects. Addition of Fe could affect the electrical properties of carbon material derived from bamboo.

  20. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  1. Thermal stress in a bi-material assembly with a 'piecewise-continuous' bonding layer: theorem of three axial forces

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2009-02-01

    We consider a bi-material assembly with a 'piecewise-continuous' bonding layer. The layer is characterized by different elastic constants of its 'pieces' (segments) and is assumed to be thin. Young's moduli of all the 'pieces' of the bonding layer are significantly lower than the moduli of the adherend materials. In such a situation the coefficient of thermal expansion (CTE) of the bonding material need not be accounted for. Only the interfacial compliance of the bonding layer is important. This is indeed the case for the majority of electronic, opto-electronic or photonic assemblies. We consider the situation when the assembly is manufactured at an elevated temperature and is subsequently cooled down to a low (say, room) temperature. The objective of the analysis is to develop a simple, easy-to-use and physically meaningful analytical ('mathematical') predictive model for the evaluation of the interfacial shearing stresses that arise at the boundaries of the 'pieces' (segments) of the bonding layer and at the assembly edge. The basic equation is obtained for the thermally induced forces acting in the adherends' cross-sections that correspond to the boundaries between the dissimilar portions of the bonding layer. This equation has the form of the theorem of three (bending) moments in the theory of multi-span beams lying on separate simple supports and could therefore be called the 'theorem of three axial forces'. We show, as an illustration, how this equation could be employed to design a bi-material assembly with an inhomogeneous bonding layer and with low interfacial shearing stresses. Low shearing stresses will certainly result in lower peeling stresses as well. The numerical example is carried out for an assembly with a relatively high-modulus bonding material in its mid-portion (aimed primarily at providing good adhesion and, if necessary, good heat transfer as well) and a low-modulus material in its peripheral portions (aimed primarily at bringing down the

  2. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  3. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  4. Elimination of initial stress-induced curvature in a micromachined bi-material composite-layered cantilever

    NASA Astrophysics Data System (ADS)

    Liu, Ruiwen; Jiao, Binbin; Kong, Yanmei; Li, Zhigang; Shang, Haiping; Lu, Dike; Gao, Chaoqun; Chen, Dapeng

    2013-09-01

    Micro-devices with a bi-material-cantilever (BMC) commonly suffer initial curvature due to the mismatch of residual stress. Traditional corrective methods to reduce the residual stress mismatch generally involve the development of different material deposition recipes. In this paper, a new method for reducing residual stress mismatch in a BMC is proposed based on various previously developed deposition recipes. An initial material film is deposited using two or more developed deposition recipes. This first film is designed to introduce a stepped stress gradient, which is then balanced by overlapping a second material film on the first and using appropriate deposition recipes to form a nearly stress-balanced structure. A theoretical model is proposed based on both the moment balance principle and total equal strain at the interface of two adjacent layers. Experimental results and analytical models suggest that the proposed method is effective in producing multi-layer micro cantilevers that display balanced residual stresses. The method provides a generic solution to the problem of mismatched initial stresses which universally exists in micro-electro-mechanical systems (MEMS) devices based on a BMC. Moreover, the method can be incorporated into a MEMS design automation package for efficient design of various multiple material layer devices from MEMS material library and developed deposition recipes.

  5. Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification.

    PubMed

    Wang, Sihui; Li, Yixiao; Wu, Jue; Zheng, Bizhu; McDonald, Matthew J; Yang, Yong

    2015-04-21

    Layered lithium-rich oxides have several serious shortcomings such as fast voltage fading and poor cyclic stability of energy density which greatly hinder their practical applications. Fabrication of a stable framework of layered lithium-rich oxides during charging-discharging is crucial for addressing the above problems. In this work, we show that Ti modification is a promising way to realize this target with bifunctional roles. For example, it is able to substitute Mn in the lattice framework and form a stable surface layer. It therefore leads to an improved retention of energy density of the Ti-modified Li1.2Mn0.54-xTixNi0.13Co0.13O2 (x = 0.04, 0.08, and 0.15) materials during cycling. The evolution of dQ/dV curves show that the layered/spinel phase transformation is suppressed owing to the introduction of strong Ti-O bonds in the framework. In addition, SEM, TEM, and EIS results confirm that a more uniform and stable interface layer is formed on Ti-modified Li1.2Mn0.54-xTixNi0.13Co0.13O2 (x = 0.04, 0.08, and 0.15) materials compared with the Ti-free counterpart. The stable interface layer on the lithium-rich oxides is also beneficial for further reducing side reactions, resulting in stable interface layer resistance. Therefore, the improved cycling performance of the material is due to both contribution of the more stable framework and enhanced electrode/electrolyte interface by Ti modification. PMID:25790778

  6. Molecular simulation of adsorption and separation of mixtures of short linear alkanes in pillared layered materials at ambient temperature.

    PubMed

    Li, Wen-Zhuo; Liu, Zi-Yang; Che, Yu-Liang; Zhang, Dan

    2007-08-15

    Grand canonical Monte Carlo and configurational-bias Monte Carlo techniques are carried out to simulate the adsorption of ternary and quaternary mixtures of short linear alkanes, involving methane, ethane, propane, and n-butane, in pillared layered materials at ambient temperature, T=300 K. In the simulation, a pillared layered pore is modeled by a uniform distribution of pillars between two layered walls built by making two separate talc lamellas parallel each other with a given size of interlayer distance. The interaction between fluid molecules and two layered walls is measured by storing potentials calculated in advance at a series of grid points. The interaction between fluid molecules and pillars is also calculated by a site-to-site method. The potential model proposed in this work is proved to be effective because of the simulation result being good agreement with the experimental data for the adsorption of nitrogen at 77 K. Then, the adsorption isotherms of mixtures of short linear alkanes in pillared layered pores with three different porosities psi=0.98, 0.93 and 0.85, and three pore widths H=1.02, 1.70 and 2.38 nm at 300 K are obtained by taking advantage of the model. The simulation results tell us that the longer chain component is preferentially adsorbed at low pressures, and its adsorption increases and then decreases as the pressure increases while the shorter chain component is still adsorbed at high pressures. Moreover, the sorption selectivity of pillared layered materials for the longest chain component in alkane mixtures increases as the mole fraction of methane in the gas phase increases. The selectivity of pillared layered materials for the longest chain component in alkane mixtures also increases as the pore width decreases and the porosity increases. PMID:17482203

  7. Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Xianyou; Yang, Xiukang; Yu, Ruizhi; Ge, Long; Shu, Hongbo

    2015-10-01

    The spherical lithium-rich cathode material with a layered-spinel hybrid structure is successfully synthesized and coated by polyaniline (PANI). The spherical material with layered-spinel hybrid structure is firstly prepared via the hydrothermal method, and then the conducting PANI is coated on the surface of the as-prepared spherical particle through an in-situ polymerization. Based on the analysis of scanning electron microscope (SEM), transmission electron microscope (TEM), high rate transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), it can be found that the size distribution of the spherical particles modified by PANI are about ∼1 μm, meanwhile the average thickness of the PANI layer on the surface of each particle is about 6.3 nm. The electrochemical performance of the spherical lithium-rich cathode material modified by PANI is apparently improved, the capacity retention is still 92.4% after 200 cycles at a rate of 0.5 C. The discharge capacities at 0.1 C and 10 C are as high as 302.9 mAh g-1 and 146.2 mAh g-1, respectively. Therefore, the modification of PANI for the spherical lithium-rich cathode material with a layered-spinel hybrid structure will be a promising technical route for the application with high capacity, long cycle life and good safety.

  8. Thermal conductivity tensors of the cladding and active layers of interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Cui, Boya; Vurgaftman, I.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Meyer, J. R.; Grayson, M.

    2014-12-01

    The cross-plane and in-plane thermal conductivities of the W-active stages and InAs/AlSb superlattice optical cladding layer of an interband cascade laser (ICL) were characterized for temperatures ranging from 15 K to 324 K. The in-plane thermal conductivity of the active layer is somewhat larger than the cross-plane value at temperatures above about 30 K, while the thermal conductivity tensor becomes nearly isotropic at the lowest temperatures studied. These results will improve ICL performance simulations and guide the optimization of thermal management.

  9. MAPLE prepared heterostructures with arylene based polymer active layer for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, F.; Rasoga, O.; Catargiu, A. M.; Vacareanu, L.; Socol, M.; Breazu, C.; Preda, N.; Socol, G.; Stanculescu, A.

    2015-05-01

    This paper presents some studies about the preparation by matrix-assisted pulsed laser evaporation (MAPLE) technique of heterostructures with single layer of arylene based polymer, poly[N-(2-ethylhexyl)2.7-carbazolyl vinylene]/AMC16 and poly[N-(2-ethylhexyl)2.7-carbazolyl 1.4-phenylene ethynylene]/AMC22, and with layers of these polymers mixed with Buckminsterfullerene/C60 in the weight ratio of 1:2 (AMC16:C60) and 1:3 (AMC22:C60). The deposited layers have been characterized by spectroscopic (UV-Vis-NIR, PL, FTIR) and microscopic (SEM, AFM) methods. The effect of the polymer particularities on the optical and electrical properties of the structures based on polymer and polymer:C60 mixed layer has been analyzed. The study of the electrical properties has revealed typical solar cell behavior for the heterostructure prepared by MAPLE on glass/ITO/PEDOT-PSS with AMC16, AMC22 and AMC22:C60 layer, confirming that this method is adequate for the preparation of polymeric and mixed active layers for solar cells applications. The highest photovoltaic effect was shown by the solar cell structure realized with single layer of AMC16 polymer: glass/ITO/PEDOT-PSS/AMC16/Al.

  10. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer.

    PubMed

    Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  11. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer

    PubMed Central

    Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  12. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2016-03-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  13. Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue.

    PubMed

    Vitkin, I A; Wilson, B C; Anderson, R R

    1995-06-01

    A model of pulsed photothermal radiometry (PPTR) based on optical diffusion theory is presented for a turbid, two-layer, semi-infinite medium containing a surface layer whose optical absorption and scattering properties differ from that of the underlying layer. Assuming one-dimensional geometry, we develop expressions for the depth-dependent fluence distributions and radiant-energy-density profiles and for the time dependence of the PPTR signal. Experimental tests of the PPTR model in a series of layered phantoms of varying optical properties are described. The results of these tests are consistent with the model predictions. PMID:21052451

  14. The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H2S from air.

    PubMed

    Chen, Yingwen; Wang, Xiaojun; He, Shuo; Zhu, Shemin; Shen, Shubao

    2016-01-01

    In the work described here, a two-layer biotrickling filter filled with new packing materials was used to remove H2S from air. The upper layer of the filter was packed with activated carbon-loaded polyurethane, whereas the lower layer was filled with modified organism-suspended fillers. The effects of inlet load, empty bed residence time (EBRT) from 79 s to 53 s, pH and contaminant starvation time were investigated. For loads of 15-50 g/(m(3) h), the average removal efficiency (RE) was higher than 96% under a consistent supply of pollutants. The critical elimination capacity was 39.95 g/(m(3) h) for an EBRT of 53 s with an RE of 99.9%. The two-layer BTF was capable of withstanding contaminant starvation periods for 1.5 d and 7 d with only a few hours of recovery time. The biodegradation kinetics was studied using Michaelis-Menten type equations under different EBRTs. At an EBRT of 66 s, the optimal kinetic constants rmax and Km were 333.3 g/(m(3) h) and 0.93 g/m(3), respectively. During the operation, the two-layer BTF performed well under various reasonable conditions. PMID:26397031

  15. Functionalization of Fibers Using Azlactone-Containing Polymers: Layer-by-Layer Fabrication of Reactive Thin Films on the Surfaces of Hair and Cellulose-Based Materials

    PubMed Central

    Buck, Maren E.

    2010-01-01

    We report an approach to the functionalization of fibers and fiber-based materials that is based on the deposition of reactive azlactone-functionalized polymers and the ‘reactive’ layer-by-layer assembly of azlactone-containing thin films. We demonstrate (i) that the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) can be used to modify the surfaces of a model protein-based fiber (horsehair) and cellulose-based materials (e.g., cotton and paper), and (ii) that fibers functionalized in this manner can be used to support the fabrication of covalently crosslinked and reactive polymer multilayers assembled using PVDMA and poly(ethyleneimine) (PEI). The growth, chemical reactivity, and uniformity of films deposited on these substrates were characterized using fluorescence microscopy, confocal microscopy, and scanning electron microscopy (SEM). In addition to the direct functionalization of fibers, we demonstrate that the residual azlactone functionality in PVDMA-treated or film-coated fibers can be exploited to chemically modify the surface chemistry and physicochemical properties of fiber-based materials post-fabrication using amine functionalized molecules. For example, we demonstrate that this approach permits control over the surface properties of paper (e.g., absorption of water) by simple post-fabrication treatment of film-coated paper with the hydrophobic amine n-decylamine. The azlactone functionality present in these materials provides a platform for the modification of polymer-treated and film-coated fibers with a broad range of other chemical and biological species (e.g., enzymes, peptides, catalysts, etc.). The results of this investigation thus provide a basis for the functionalization of fibers and fiber-based materials (e.g., textile fabrics or non-woven mats) of potential utility in a broad range of consumer, industrial, and biomedical contexts. PMID:20402471

  16. Multi-Functional Surface Engineering for Li-Excess Layered Cathode Material Targeting Excellent Electrochemical and Thermal Safety Properties.

    PubMed

    Bian, Xiaofei; Fu, Qiang; Pang, Qiang; Gao, Yu; Wei, Yingjin; Zou, Bo; Du, Fei; Chen, Gang

    2016-02-10

    The Li(Li(0.18)Ni(0.15)Co(0.15)Mn(0.52))O2 cathode material is modified by a Li4M5O12-like heterostructure and a BiOF surface layer. The interfacial heterostructure triggers the layered-to-Li4M5O12 transformation of the material which is different from the layered-to-LiMn2O4 transformation of the pristine Li(Li(0.18)Ni(0.15)Co(0.15)Mn(0.52))O2. This Li4M5O12-like transformation helps the material to keep high working voltage, long cycle life and excellent rate capability. Mass spectrometry, in situ X-ray diffraction and transmission electron microscope show that the Li4M5O12-like phase prohibits oxygen release from the material bulk at elevated temperatures. In addition, the BiOF coating layer protects the material from harmful side reactions with the electrolyte. These advantages significantly improve the electrochemical performance of Li(Li(0.18)Ni(0.15)Co(0.15)Mn(0.52))O2. The material shows a discharge capacity of 292 mAh g(-1) at 0.2 C with capacity retention of 92% after 100 cycles. Moreover, a high discharge capacity of 78 mAh g(-1) could be obtained at 25 C. The exothermic temperature of the fully charged electrode is elevated from 203 to 261 °C with 50% reduction of the total thermal release, highlighting excellent thermal safety of the material. PMID:26799857

  17. Design of electro-active polymer gels as actuator materials

    NASA Astrophysics Data System (ADS)

    Popovic, Suzana

    Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as

  18. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic

  19. Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Sato, Satoshi; Maegawa, Toshio; Yoshimatsu, Kenji; Sato, Koichi; Nonaka, Akira; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara

    2011-10-01

    A multi-layered concrete structure has been developed to reduce induced activity in the shielding for neutron generating facilities such as a fusion reactor. The multi-layered concrete structure is composed of: (1) an inner low activation concrete, (2) a boron-doped low activation concrete as the second layer, and (3) ordinary concrete as the outer layer of the neutron shield. With the multi-layered concrete structure the volume of boron is drastically decreased compared to a monolithic boron-doped concrete. A 14 MeV neutron shielding experiment with multi-layered concrete structure mockups was performed at FNS and several reaction rates and induced activity in the mockups were measured. This demonstrated that the multi-layered concrete effectively reduced low energy neutrons and induced activity.

  20. Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries

    PubMed Central

    Wang, Di; Yu, Ruizhi; Wang, Xianyou; Ge, Long; Yang, Xiukang

    2015-01-01

    Homogeneous lithium-rich layered-spinel 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 microspheres (~1 μm) are successfully prepared by a solvothermal method and subsequent high-temperature calcinations process. The effects of temperature on the structure and performance of the as-prepared cathode material are systemically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatical charge/discharge and electrochemical impedance spectra. The results show that a spinel Li4Mn5O12 component can be controllably introduced into the lithium-rich layered material at 750°C. Besides, it has been found that the obtained layered-spinel cathode material represents excellent electrochemical characteristics. For example, it can deliver a high initial discharge capacity of 289.6 mAh g−1 between 2.0 V and 4.6 V at a rate of 0.1 C at room temperature, and a discharge capacity of 144.9 mAh g−1 at 5 C and 122.8 mAh g−1 even at 10 C. In addition, the retention of the capacity is still as high as 88% after 200 cycles, while only 79.9% for the single-phase layered material. The excellent electrochemical performance of the as-prepared cathode material can probably be attributed to the hybrid structures combining a fast Li-ion diffusion rate of 3D spinel Li4Mn5O12 phase and a high capacity of the layered Li-Mn-Ni-Co-O component. PMID:25672573

  1. Thermochemically activated carbon as an electrode material for supercapacitors.

    PubMed

    Ostafiychuk, Bogdan K; Budzulyak, Ivan M; Rachiy, Bogdan I; Vashchynsky, Vitalii M; Mandzyuk, Volodymyr I; Lisovsky, Roman P; Shyyko, Lyudmyla O

    2015-01-01

    The results of electrochemical studies of nanoporous carbon as electrode material for electrochemical capacitors (EC) are presented in this work. Nanoporous carbon material (NCM) was obtained from the raw materials of plant origin by carbonization and subsequent activation in potassium hydroxide. It is established that there is an optimal ratio of 1:1 between content of KOH and carbon material at chemical activation, while the maximum specific capacity of NCM is 180 F/g. An equivalent electrical circuit, which allows modeling of the impedance spectra in the frequency range of 10(-2) to 10(5) Hz, is proposed, and a physical interpretation of each element of the electrical circuit is presented. PMID:25852362

  2. Soft Active Materials for Actuation, Sensing, and Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  3. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  4. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    PubMed Central

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-01-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics. PMID:26877263

  5. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  6. Long-lived activation products in reactor materials

    SciTech Connect

    Evans, J.C.; Lepel, E.L.; Sanders, R.W.; Wilkerson, C.L.; Silker, W.; Thomas, C.W.; Abel, K.H.; Robertson, D.R.

    1984-08-01

    The purpose of this program was to assess the problems posed to reactor decommissioning by long-lived activation products in reactor construction materials. Samples of stainless steel, vessel steel, concrete, and concrete ingredients were analyzed for up to 52 elements in order to develop a data base of activatable major, minor, and trace elements. Large compositional variations were noted for some elements. Cobalt and niobium concentrations in stainless steel, for example, were found to vary by more than an order of magnitude. A thorough evaluation was made of all possible nuclear reactions that could lead to long lived activation products. It was concluded that all major activation products have been satisfactorily accounted for in decommissioning planning studies completed to date. A detailed series of calculations was carried out using average values of the measured compositions of the appropriate materials to predict the levels of activation products expected in reactor internals, vessel walls, and bioshield materials for PWR and BWR geometries. A comparison is made between calculated activation levels and regulatory guidelines for shallow land disposal according to 10 CFR 61. This analysis shows that PWR and BWR shroud material exceeds the Class C limits and is, therefore, generally unsuitable for near-surface disposal. The PWR core barrel material approaches the Class C limits. Most of the remaining massive components qualify as either Class A or B waste with the bioshield clearly Class A, even at the highest point of activation. Selected samples of activated steel and concrete were subjected to a limited radiochemical analysis program as a verification of the computer model. Reasonably good agreement with the calculations was obtained where comparison was possible. In particular, the presence of /sup 94/Nb in activated stainless steel at or somewhat above expected levels was confirmed.

  7. Extending the energy range of materials activation modelling

    NASA Astrophysics Data System (ADS)

    Forrest, R. A.

    2004-08-01

    Activation calculations are an essential contribution to understanding the interactions of fusion materials with neutrons. The existing state-of-the-art tools such as EASY-2003 enable calculations to be carried out with neutrons up to 20 MeV. Plans to expose fusion components to high neutron fluxes include the IFMIF materials testing facility. This accelerator-based device will produce neutrons with a high-energy tail up to about 55 MeV. In order to carry out activation calculations on materials exposed to such neutrons it is necessary to extend the energy range of the data libraries. An extension of the European Activation System (EASY) to a new version, EASY-2004, for testing has been completed. The existing reactions have been extended up to 60 MeV and new classes of reactions added using calculated cross sections. Results of preliminary calculations in an IFMIF relevant neutron field are given.

  8. Monothioanthraquinone as an organic active material for greener lithium batteries

    NASA Astrophysics Data System (ADS)

    Iordache, Adriana; Maurel, Vincent; Mouesca, Jean-Marie; Pécaut, Jacques; Dubois, Lionel; Gutel, Thibaut

    2014-12-01

    In order to reduce the environmental impact of human activities especially transportation and portable electronics, a more sustainable way is required to produce and store electrical energy. Actually lithium battery is one of the most promising solutions for energy storage. Unfortunately this technology is based on the use of transition metal-based active materials for electrodes which are rare, expensive, extracted by mining, can be toxic and hard to recycle. Organic materials are an interesting alternative to replace inorganic counterparts due to their high electrochemical performances and the possibility to produce them from renewable resources. A quinone derivative is synthetized and investigated as novel active material for rechargeable lithium ion batteries which shows higher performances.

  9. Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene

    SciTech Connect

    Capasso, A.; Leoni, E.; Dikonimos, T.; Buonocore, F.; Lisi, N.; De Francesco, M.; Lancellotti, L.; Bobeico, E.; Sarto, M. S.; Tamburrano, A.; De Bellis, G.

    2014-09-15

    The transfer of chemical vapor deposited graphene is a crucial process, which can affect the quality of the transferred films and compromise their application in devices. Finding a robust and intrinsically clean material capable of easing the transfer of graphene without interfering with its properties remains a challenge. We here propose the use of an organic compound, cyclododecane, as a transfer material. This material can be easily spin coated on graphene and assist the transfer, leaving no residues and requiring no further removal processes. The effectiveness of this transfer method for few-layer graphene on a large area was evaluated and confirmed by microscopy, Raman spectroscopy, x-ray photoemission spectroscopy, and four-point probe measurements. Schottky-barrier solar cells with few-layer graphene were fabricated on silicon wafers by using the cyclododecane transfer method and outperformed reference cells made by standard methods.

  10. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    NASA Astrophysics Data System (ADS)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen–Popper, Dion–Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  11. Salix polaris growth responses to active layer detachment and solifluction processes in High Arctic.

    NASA Astrophysics Data System (ADS)

    Siekacz, Liliana

    2015-04-01

    The work is dedicated to demonstrate the potential of Salix polaris grow properties in the dendrogemorphologic image, analyzing periglacially induced slope processes in the high Arctic.. Observed anatomical and morphological plants responses to solifluction and active layer detachment processes are presented qualitatively and quantitatively as a summary of presented features frequency. The results are discussed against the background of the other research results in this field. The investigations was performed in Ebba valley, in the vicinity of Petunia Bay, northernmost part of Billefjorden in central Spitsbergen (Svalbard). Environmental conditions are characterized by annual precipitation sum lower than 200 mm (Hagen et al.,1993) and average summer temperature of about 5°C, with maximum daily temperatures rarely exceeding 10°C (Rachlewicz, 2009). Collected shrub material was prepared according to the methods presented by Schweingruber and Poschlod (2005). Thin (approx. 15-20μm) sections of the whole cross-section were prepared with a sledge microtome, stained with Safranine and Astra blue and finally permanently fixed on microslides with Canada balsam and dried. Snapshots were taken partially for each cross-section with digital camera (ColorView III, Olympus) connected to a microscope (Olympus BX41) and merged into one, high resolution image. After all, ring widths were measured in 3-4 radii in every single cross-section using ImageJ software. Analyzed plants revealed extremely harsh environmental conditions of their growth. Buchwał et al. (2013) provided quantitative data concerning missing rings and partially missing rings in shrubs growing on Ebba valley floor. Mean ring width at the level of 79μm represents one of the smallest values of yearly growth ever noted. The share of missing rings and partially missing rings was 11,2% and 13,6% respectively. Plants growing on Ebba valley slope indicate almost twice smaller values of ring width (41μm), and higher

  12. Monitoring of the active layer at Kapp Linne', SVALBARD 1972-2002

    NASA Astrophysics Data System (ADS)

    Akerman, J.

    2003-04-01

    The active layer has been monitored at ten sites in the vicinity of Kapp Linné, (78o03'42" 13o37'07") Svalbard during the period 1972 - 2002. The ten sites differ in elevation, distance from the sea, vegetation cover, substrate and active periglacial processes. From 1994 the International permafrost Association "CALM" standard grids, with measurement within 100x100m squares, has been applied. Microclimate and soil temperatures have been monitored by data logger covering levels form 2 m above to 7m below the ground. The macroclimate is covered by complete data series from the nearby weather station at Kapp Linne’, covering the period 1912 to 2002. A number of periglacial processes, especially slope processes, are monitored parallel with the active layer. The mean active layer for the sites varies between 1,13m and 0,43m. The deepest active layer is found in the exposed, well drained raised beach ridges and the shallowest in the bogs. The interannual variability during the observation period do not correlate well with the MAAT but better with the summer climate, June - August mean or DDT. The data clearly illustrate colder summers during the period 1972 to 1983 and after that steadily increasing summer temperatures. The active layer follows the same general pattern with good correlations. There are several surface indications as a response to the deepening active layer especially in the bogs. Thermokarst scars appear frequently and a majority of the palsa like mounds and pounus have disappeared. A drastic change in the vegetation on the bogs has also occurred, from dry heath to wet Carex vegetation. In summary the observations from Kapp Linne’ are; 1. A clear trend towards milder summers, 2. A clear trend towards deeper active layers, 3. All sites show a similar pattern, 4. The bogs are getting strikingly wetter, 5. Mounds in the bog sites are disappearing, 6. The slow slope processes are getting accelerated, 7. Thermokarst depressions and scars are appearing in

  13. Active Neutron Interrogation of Non-Radiological Materials with NMIS

    SciTech Connect

    Walker, Mark E; Mihalczo, John T

    2012-02-01

    The Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory (ORNL), although primarily designed for analyzing special nuclear material, is capable of identifying nonradiological materials with a wide range of measurement techniques. This report demonstrates four different measurement methods, complementary to fast-neutron imaging, which can be used for material identification: DT transmission, DT scattering, californium transmission, and active time-tagged gamma spectroscopy. Each of the four techniques was used to evaluate how these methods can be used to identify four materials: aluminum, polyethylene, graphite, and G-10 epoxy. While such measurements have been performed individually in the past, in this project, all four measurements were performed on the same set of materials. The results of these measurements agree well with predicted results. In particular, the results of the active gamma spectroscopy measurements demonstrate the technique's applicability in a future version of NMIS which will incorporate passive and active gamma-ray spectroscopy. This system, designated as a fieldable NMIS (FNMIS), is under development by the US Department of Energy Office of Nuclear Verification.

  14. Sodium montmorillonite/amine-containing drugs complexes: new insights on intercalated drugs arrangement into layered carrier material.

    PubMed

    Bello, Murilo L; Junior, Aridio M; Vieira, Bárbara A; Dias, Luiza R S; de Sousa, Valéria P; Castro, Helena C; Rodrigues, Carlos R; Cabral, Lucio M

    2015-01-01

    Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug) were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation). We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin) were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems. PMID:25803292

  15. Sodium Montmorillonite/Amine-Containing Drugs Complexes: New Insights on Intercalated Drugs Arrangement into Layered Carrier Material

    PubMed Central

    Vieira, Bárbara A.; Dias, Luiza R. S.; de Sousa, Valéria P.; Castro, Helena C.; Rodrigues, Carlos R.; Cabral, Lucio M.

    2015-01-01

    Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore Na-MMT is a versatile material for the preparation of new drug delivery systems, especially for slow release of protonable drugs. Herein, we describe the intercalation of several amine-containing drugs with Na-MMT so we can derive a better understanding of how these drugs molecules interact with and distribute throughout the Na-MMT interlayer space. Therefore, for this purpose nine sodium montmorillonite/amine-containing drugs complexes (Na-MMT/drug) were prepared and characterized. In addition, the physicochemical properties of the drugs molecules in combination with different experimental conditions were assessed to determine how these factors influenced experimental outcomes (e.g. increase of the interlayer spacing versus drugs arrangement and orientation). We also performed a molecular modeling study of these amine-containing drugs associated with different Na-MMT/drug complex models to analyze the orientation and arrangement of the drugs molecules in the complexes studied. Six amine-containing drugs (rivastigmine, doxazosin, 5-fluorouracil, chlorhexidine, dapsone, nystatin) were found to successfully intercalate Na-MMT. These findings provide important insights on the interlayer aspect of the molecular systems formed and may contribute to produce more efficient drug delivery nanosystems. PMID:25803292

  16. In-plane and through-plane local and average Nusselt numbers in fibrous porous materials with different fiber layer temperatures: Gas diffusion layers for fuel cells

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza

    2016-09-01

    Convective heat transfer inside fibrous gas diffusion layers (GDLs) noticeably impacts the heat and water management of air-cooled polymer electrolyte membrane fuel cells (PEMFCs). Cutting-edge experiments have recently proved that convective heat transfer inside fibrous GDLs increases their thermal resistances considerably. However, heat transfer coefficients are difficult to measure experimentally or compute numerically for the millions of the tiny pores inside microstructural GDLs. The present study provides robust analytic models for predicting the heat transfer coefficient for both through-plane and in-plane flows inside fibrous media such as GDLs. The model is based on the unit cell approach and the integral method. Closed-form formulas are developed for local and average heat transfer coefficients. The model considers the temperature variations of the fiber layers along the medium thickness while assuming the same temperature for all the fibers in each layer. The model is well verified by COMSOL numerical data for a few pores inside a GDL. The simple, closed-form easy-to-use formulas developed in this study can be readily employed for predicting Nusselt number inside multilayer fibrous porous materials.

  17. Protein-mediated layer-by-layer synthesis of TiO₂(B)/anatase/carbon coating on nickel foam as negative electrode material for lithium-ion battery.

    PubMed

    Wang, Xiaobo; Yan, Yong; Hao, Bo; Chen, Ge

    2013-05-01

    Through an aqueous, protein-mediated layer-by-layer titania deposition process, we have fabricated a protamine/titania composite layer on nickel foam. The coating was composed of amorphous carbon and TiO2(B)/anatase nanoparticles and formed upon organic pyrolysis under a reducing atmosphere (5% H2-Ar mixture). X-ray diffraction analyses, Auger electron spectroscopy, and high-resolution transmission electron microscopy revealed that the obtained coatings contained fine monoclinic TiO2(B) and anatase nanocrystals, along with amorphous carbon. Moreover, the coating can be used as a binder-free negative electrode material for lithium-ion batteries and exhibits high reversible capacity and fast charge-discharge properties; a reversible capacity of 245 mAh g(-1) was obtained at a current density of 50 mA g(-1), and capacities of 167 and 143 mAh g(-1) were obtained at current densities of 1 and 2 A g(-1), respectively. PMID:23597025

  18. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale

    SciTech Connect

    Wu, Yan; Ma, Cheng; Yang, Jihui; Li, Zicheng; Allard, Jr., Lawrence Frederick; Liang, Chengdu; Chi, Miaofang

    2015-01-01

    Li-rich layered oxides hold great promise for improving the energy density of present-day Li-ion batteries. However, their application is limited by the voltage decay upon cycling, and the origin of such a phenomenon is poorly understood. A major issue is determining the voltage range over which detrimental reactions originate. In the present study, a unique yet effective approach was employed to probe this issue. Instead of studying the materials during the first cycle, electrochemical behavior and evolution of the atomic structures were compared in extensively cycled specimens under varied charge/discharge voltages. With the upper cutoff voltage lowered from 4.8 to 4.4 V, the voltage decay ceased to occur even after 60 cycles. In the meantime, the material maintained its layered structure without any spinel phase emerging at the surface, which is unambiguously shown by the atomic-resolution Z-contrast imaging and electron energy loss spectroscopy. These results have conclusively demonstrated that structural/chemical changes responsible for the voltage decay began between 4.4 and 4.8 V, where the layered-to-spinel transition was the most dramatic structural change observed. Thus, this discovery lays important groundwork for the mechanistic understanding of the voltage decay in Li-rich layered cathode materials.

  19. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale

    DOE PAGESBeta

    Wu, Yan; Ma, Cheng; Yang, Jihui; Li, Zicheng; Allard, Jr., Lawrence Frederick; Liang, Chengdu; Chi, Miaofang

    2015-01-01

    Li-rich layered oxides hold great promise for improving the energy density of present-day Li-ion batteries. However, their application is limited by the voltage decay upon cycling, and the origin of such a phenomenon is poorly understood. A major issue is determining the voltage range over which detrimental reactions originate. In the present study, a unique yet effective approach was employed to probe this issue. Instead of studying the materials during the first cycle, electrochemical behavior and evolution of the atomic structures were compared in extensively cycled specimens under varied charge/discharge voltages. With the upper cutoff voltage lowered from 4.8 tomore » 4.4 V, the voltage decay ceased to occur even after 60 cycles. In the meantime, the material maintained its layered structure without any spinel phase emerging at the surface, which is unambiguously shown by the atomic-resolution Z-contrast imaging and electron energy loss spectroscopy. These results have conclusively demonstrated that structural/chemical changes responsible for the voltage decay began between 4.4 and 4.8 V, where the layered-to-spinel transition was the most dramatic structural change observed. Thus, this discovery lays important groundwork for the mechanistic understanding of the voltage decay in Li-rich layered cathode materials.« less

  20. Layered-Layered-Spinel Cathode Materials Prepared by a High-Energy Ball-Milling Process for Lithium-ion Batteries.

    PubMed

    Kim, Soo; Noh, Jae-Kyo; Aykol, Muratahan; Lu, Zhi; Kim, Haesik; Choi, Wonchang; Kim, Chunjoong; Chung, Kyung Yoon; Wolverton, Chris; Cho, Byung-Won

    2016-01-13

    In this work, we report the electrochemical properties of 0.5Li2MnO3·0.25LiNi0.5Co0.2Mn0.3O2·0.25LiNi0.5Mn1.5O4 and 0.333Li2MnO3·0.333LiNi0.5Co0.2Mn0.3O2·0.333LiNi0.5Mn1.5O4 layered-layered-spinel (L*LS) cathode materials prepared by a high-energy ball-milling process. Our L*LS cathode materials can deliver a large and stable capacity of ∼200 mAh g(-1) at high voltages up to 4.9 V, and do not show the anomalous capacity increase upon cycling observed in previously reported three-component cathode materials synthesized with different routes. Furthermore, we have performed synchrotron-based in situ X-ray diffraction measurements and found that there are no significant structural distortions during charge/discharge runs. Lastly, we carry out (opt-type) van der Waals-corrected density functional theory (DFT) calculations to explain the enhanced cycle characteristics and reduced phase transformations in our ball-milled L*LS cathode materials. Our simple synthesis method brings a new perspective on the use of the high-power L*LS cathodes in practical devices. PMID:26645115

  1. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  2. Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive.

    PubMed

    Zheng, Yifan; Goh, Tenghooi; Fan, Pu; Shi, Wei; Yu, Junsheng; Taylor, André D

    2016-06-22

    The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination. PMID:27253271

  3. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  4. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material.

    PubMed

    Lu, S B; Miao, L L; Guo, Z N; Qi, X; Zhao, C J; Zhang, H; Wen, S C; Tang, D Y; Fan, D Y

    2015-05-01

    Black phosphorous (BP), the most thermodynamically stable allotrope of phosphorus, is a high-mobility layered semiconductor with direct band-gap determined by the number of layers from 0.3 eV (bulk) to 2.0 eV (single layer). Therefore, BP is considered as a natural candidate for broadband optical applications, particularly in the infrared (IR) and mid-IR part of the spectrum. The strong light-matter interaction, narrow direct band-gap, and wide range of tunable optical response make BP as a promising nonlinear optical material, particularly with great potentials for infrared and mid-infrared opto-electronics. Herein, we experimentally verified its broadband and enhanced saturable absorption of multi-layer BP (with a thickness of ~10 nm) by wide-band Z-scan measurement technique, and anticipated that multi-layer BPs could be developed as another new type of two-dimensional saturable absorber with operation bandwidth ranging from the visible (400 nm) towards mid-IR (at least 1930 nm). Our results might suggest that ultra-thin multi-layer BP films could be potentially developed as broadband ultra-fast photonics devices, such as passive Q-switcher, mode-locker, optical switcher etc. PMID:25969214

  5. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides.

    PubMed

    Terrones, Humberto; López-Urías, Florentino; Terrones, Mauricio

    2013-01-01

    Although bulk hexagonal phases of layered semiconducting transition metal dichalcogenides (STMD) such as MoS2, WS2, WSe2 and MoSe2 exhibit indirect band gaps, a mono-layer of STMD possesses a direct band gap which could be used in the construction of novel optoelectronic devices, catalysts, sensors and valleytronic components. Unfortunately, the direct band gap only occurs for mono-layered STMD. We have found, using first principles calculations, that by alternating individual layers of different STMD (MoS2, WS2, WSe2 and MoSe2) with particular stackings, it is possible to generate direct band gap bi-layers ranging from 0.79 eV to 1.157 eV. Interestingly, in this direct band gap, electrons and holes are physically separated and localized in different layers. We foresee that the alternation of different STMD would result in the fabrication of materials with unprecedented optical and physico-chemical properties that would need further experimental and theoretical investigations. PMID:23528957

  6. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides

    PubMed Central

    Terrones, Humberto; López-Urías, Florentino; Terrones, Mauricio

    2013-01-01

    Although bulk hexagonal phases of layered semiconducting transition metal dichalcogenides (STMD) such as MoS2, WS2, WSe2 and MoSe2 exhibit indirect band gaps, a mono-layer of STMD possesses a direct band gap which could be used in the construction of novel optoelectronic devices, catalysts, sensors and valleytronic components. Unfortunately, the direct band gap only occurs for mono-layered STMD. We have found, using first principles calculations, that by alternating individual layers of different STMD (MoS2, WS2, WSe2 and MoSe2) with particular stackings, it is possible to generate direct band gap bi-layers ranging from 0.79 eV to 1.157 eV. Interestingly, in this direct band gap, electrons and holes are physically separated and localized in different layers. We foresee that the alternation of different STMD would result in the fabrication of materials with unprecedented optical and physico-chemical properties that would need further experimental and theoretical investigations. PMID:23528957

  7. Material Flows in an Active Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Decamp, Stephen; Redner, Gabriel; Baskaran, Aparna; Hagan, Michael; Dogic, Zvonimir

    Active matter systems are composed of energy consuming constituent components which drive far-from-equilibrium dynamics. As such, active materials exhibit energetic states which would be unfavorable in passive, equilibrium materials. We study one such material; an active nematic liquid crystal which exists in a dynamical steady state where +/-1/2 defects are continuously generated and annihilated at a constant rate. The active nematic is composed of micron-sized microtubule filaments which are highly concentrated into a quasi-2D film that resides on an oil-water interface. Kinesin motor proteins drive inter-filament sliding which results in net extensile motion of the microtubule film. Notably, we find a mesophase in which motile +1/2 defects, acquire system-spanning orientational order. Currently, we are tracking material flows generated by the active stresses in the system to measure length scales at which energy is dissipated, and to measure the relation between internally generated flows and bend in the nematic field.

  8. Review of superconductivity in BiS2-based layered materials

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Yoshikazu

    2015-09-01

    In 2012, a new layered superconductor where BiS2 layer is the superconducting layer was discovered. So far, seven types of BiS2-based superconductors and two related superconductors have been discovered. In this article, the diversity of the crystal structure and the physical properties of the BiS2-based superconductors are reviewed. Furthermore, notable characteristics of superconductivity in the BiS2 family are introduced. The prospects for raising Tc in this family are proposed on the basis of experimental and theoretical studies.

  9. Mechanical Activation of Construction Binder Materials by Various Mills

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.

    2016-04-01

    The paper deals with the mechanical grinding down to the nano powder of construction materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of portland cement. Mechanical processes during grinding mineral materials cause, along with the increase in their surface energy, increase the Gibbs energy of powders and, respectively, their chemical activity, which also contributes to the high adhesion strength when contacting them with binders. Thus, the set of measures for mechanical activation makes better use of the weight of components filled with cement systems and adjust their properties. At relatively low cost is possible to provide a spectacular and, importantly, easily repeatable results in a production environment.

  10. Novel neutral under layer materials to enhance the photolithography performance and defectivity for chemo-epitaxy process

    NASA Astrophysics Data System (ADS)

    Mizuochi, Ryuta; Wakayama, Hiroyuki; Someya, Yasunobu; Sakamoto, Rikimaru

    2016-03-01

    Neutral layer (NL) material is one of the key materials for aligning block-co-polymer (BCP). In this study, NLs were designed and investigated, which have the capability to enhance the photo-lithography performance, a good alignment performance of BCP, and reduce the defectivity after chemo-epitaxy process. In order to enhance the photo-lithography performance, some new polymers were prepared with chromophores to control n/k value and adhesive unit interacted with the photo resist. The surface energy of these materials was adjusted to the neutral for BCP by controlling the ratio of chromophore and adhesion unit. The defects were also investigated and achieved low defectivity by optimized materials. Since this material has the above properties, it shows a good perpendicularly alignment pattern of BCP and a photolithography performance.

  11. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes.

    PubMed

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  12. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  13. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    PubMed Central

    Cho, Sung Beom; Chung, Yong-Chae

    2016-01-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer. PMID:27301777

  14. Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer

    NASA Astrophysics Data System (ADS)

    Cho, Sung Beom; Chung, Yong-Chae

    2016-06-01

    Van der Waals (vdW) heterostructures are expected to play a key role in next-generation electronic and optoelectronic devices. In this study, the band alignment of a vdW heterostructure with 2D polar materials was studied using first-principles calculations. As a model case study, single-sided fluorographene (a 2D polar material) on insulating (h-BN) and metallic (graphite) substrates was investigated to understand the band alignment behavior of polar materials. Single-sided fluorographene was found to have a potential difference along the out-of-plane direction. This potential difference provided as built-in potential at the interface, which shift the band alignment between h-BN and graphite. The interface characteristics were highly dependent on the interface terminations because of this built-in potential. Interestingly, this band alignment can be modified with a capping layer of graphene or BN because the capping layer triggered electronic reconstruction near the interface. This is because the bonding nature is not covalent, but van der Waals, which made it possible to avoid Fermi-level pinning at the interface. The results of this study showed that diverse types of band alignment can be achieved using polar materials and an appropriate capping layer.

  15. Effects of open joints and weak layers on wave propagation in geologic materials

    NASA Astrophysics Data System (ADS)

    Dick, Richard D.; Fourney, William L.; Weaver, Thomas A.

    1994-07-01

    Computations involving stress wave propagation in rocks containing a weak layer in a strong rock and in rocks with open joints are presented. These computations were based on laboratory experiments using specimens fabricated from Indiana limestone and grout. The results indicate that the weak layer significantly attenuated the amplitude of the stress wave as it propagated through the layer, but the pulse width remained nearly constant. For the open joint case the amplitude remained constant as the width increased until at a sufficiently large separation the amplitude was attenuated. The pulse width, however, decreased with an increasing joint separation. The wave structure may lead to a determination of the quality of the rock through which a stress wave has traveled, i.e., open joints, weak layers, or intact rock.

  16. Wafer-scale process and materials optimization in cross-flow atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lecordier, Laurent Christophe

    The exceptional thickness control (atomic scale) and conformality (uniformity over nanoscale 3D features) of atomic layer deposition (ALD) has made it the process of choice for numerous applications from microelectronics to nanotechnology, and for a wide variety of ALD processes and resulting materials. While its benefits derive from self-terminated chemisorbed reactions of alternatively supplied gas precursors, identifying a suitable process window in which ALD's benefits are realized can be a challenge, even in favorable cases. In this work, a strategy exploiting in-situ gas phase sensing in conjunction with ex-situ measurements of the film properties at the wafer scale is employed to explore and optimize the prototypical Al2O3 ALD process. Downstream mass-spectrometry is first used to rapidly identify across the [H2O x Al(CH3)3] process space the exposure conditions leading to surface saturation. The impact of precursor doses outside as well as inside the parameter space outlined by mass-spectrometry is then investigated by characterizing film properties across 100 mm wafer using spectroscopic ellipsometry, CV and IV electrical characterization, XPS and SIMS. Under ideal dose conditions, excellent thickness uniformity was achieved (1sigma/mean<1%) in conjunction with a deposition rate and electrical properties in good agreement with best literature data. As expected, under-dosing of precursor results in depletion of film growth in the flow direction across the wafer surface. Since adsorbed species are reactive with respect to subsequent dose of the complementary precursor, such depletion magnifies non-uniformities as seen in the cross-flow reactor, thereby decorating deviations from a suitable ALD process recipe. Degradation of the permittivity and leakage current density across the wafer was observed though the film composition remained unchanged. Upon higher water dose in the over-exposure regime, deposition rates increased by up to 40% while the uniformity

  17. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  18. Spontaneous Motion in Hierarchically Assembled Active Cellular Materials

    NASA Astrophysics Data System (ADS)

    Chen, Daniel

    2013-03-01

    With exquisite precision and reproducibility, cells orchestrate the cooperative action of thousands of nanometer-sized molecular motors to carry out mechanical tasks at much larger length scales, such as cell motility, division and replication. Besides their biological importance, such inherently far-from-equilibrium processes are an inspiration for the development of soft materials with highly sought after biomimetic properties such as autonomous motility and self-healing. I will describe our exploration of such a class of biologically inspired soft active materials. Starting from extensile bundles comprised of microtubules and kinesin, we hierarchically assemble active analogs of polymeric gels, liquid crystals and emulsions. At high enough concentration, microtubule bundles form an active gel network capable of generating internally driven chaotic flows that enhance transport and fluid mixing. When confined to emulsion droplets, these 3D networks buckle onto the water-oil interface forming a dense thin film of bundles exhibiting cascades of collective buckling, fracture, and self-healing driven by internally generated stresses from the kinesin clusters. When compressed against surfaces, this active nematic cortex exerts traction stresses that propel the locomotion of the droplet. Taken together, these observations exemplify how assemblies of animate microscopic objects exhibit collective biomimetic properties that are fundamentally distinct from those found in materials assembled from inanimate building blocks. These assemblies, in turn, enable the generation of a new class of materials that exhibit macroscale flow phenomena emerging from nanoscale components.

  19. The Empirical Attitude, Material Practice and Design Activities

    ERIC Educational Resources Information Center

    Apedoe, Xornam; Ford, Michael

    2010-01-01

    This article is an argument about something that is both important and severely underemphasized in most current science curricula. The empirical attitude, fundamental to science since Galileo, is a habit of mind that motivates an active search for feedback on our ideas from the material world. Although more simple views of science manifest the…

  20. Getting Started: Materials and Equipment for Active Learning Preschools.

    ERIC Educational Resources Information Center

    Vogel, Nancy

    This book provides information to guide the development of an active learning early childhood program by assisting in the selection of materials and equipment to support children's cognitive, physical and social development. The guide considers the arrangement of classroom areas, and elements of the daily routine. The following classroom interest…

  1. Characterization of surface active materials derived from farm products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface active materials obtained by chemical modification of plant protein isolates (lupin, barley, oat), corn starches (dextrin, normal, high amylose, and waxy) and soybean oil (soybean oil based polysoaps, SOPS) were investigated for their surface and interfacial properties using axisymmetric dro...

  2. Fluoride release and antibacterial activity of selected dental materials.

    PubMed

    Marczuk-Kolada, Grazyna; Jakoniuk, Piotr; Mystkowska, Joanna; Łuczaj-Cepowicz, Elzbieta; Waszkiel, Danuta; Dabrowski, Jan Ryszard; Leszczyńska, Katarzyna

    2006-01-01

    The aim of the study was to assess the fluoride ion release and antibacterial activities of the glassionomer cement Fuji IX and the compomer (composite modified polyacid) Dyract AP. Fluoride ion release was measured using direct potentiometry with an Orion fluoride ion selective electrode. The measurement was carried out after 1, 4, 7, 14, 30, and 60 days of storage in phosphate buffer at pH 6.8. The antibacterial activity of the materials was evaluated against the bacteria Streptococcus mutans ATCC 35668, Streptococcus salivarius ATCC 13419, Streptococcus sanguis ATCC 10556, and Lactobacillus casei subsp. casei ATCC 393. The agar diffusion test was applied. The material specimens were assessed twice: after setting and seven days later. Zones of bacterial growth inhibition were measured in millimeters after 24 hours. The results of the study showed that both materials released ion fluoride, with a higher emission of Fuji IX than Dyract AP. The highest level of emission was observed on the seventh day of the study in both materials. After 24 hours of bonding there was inhibition of bacterial growth by Fuji IX, whereas Dyract AP did not show similar activity. On the eighth day after polymerization, Dyract AP was significantly more active towards Streptococcus sanguis and salivarius. PMID:18493226

  3. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  4. Nanosecond laser-induced selective removal of the active layer of CuInGaSe2 solar cells by stress-assisted ablation

    NASA Astrophysics Data System (ADS)

    Buzás, András; Geretovszky, Zsolt

    2012-06-01

    We demonstrate that laser pulses of nanosecond duration (λ=1064 nm, τ=25 ns, PRR =5 kHz) are capable of the clean removal of the CuInGaSe2 (CIGS) and ZnO:Al layers in the layer structure of chalcogenide-based solar cells, leaving the underlying Mo layer undamaged and producing excellent crater morphology. Our results prove that the material removal process is governed by the thermomechanical stress developing in the CIGS layer due to rapid laser heating. In the mechanical ablation of the active layer, three phenomena play a crucial role, namely, delamination, buckling, and fracture. Morphological and compositional analysis of the laser-processed areas is used to identify the experimental parameters where clean mechanical ablation can be achieved. Numerical calculations, performed in the comsol software environment, are also presented to complement the experimental tendencies and verify the proposed model. Our calculation proves the development of a stress distribution that drives the delamination of the CIGS and Mo layers. As the delamination front proceeds radially outward, the separation of the layers ceases in the colder outer regions according to the Griffith's criterion and defines the size of the craters produced afterwards. The free-standing chalcogenide layer continues to deform, and buckling results in a growing tensile stress at the perimeter of the delaminated area, where ultimately fracture will finalize the removal process and facilitate the clean ablation of the laser-irradiated area.

  5. Comparison of different irrigation activation techniques on smear layer removal: an in vitro study.

    PubMed

    Akyuz Ekim, Sefika Nur; Erdemir, Ali

    2015-03-01

    The purpose of this study was to evaluate the efficiency of different irrigation activation techniques on smear layer removal. About 80 single-rooted human maxillary central teeth were decoronated to a standardized length.The samples were prepared by using ProTaper system to size F4 and divided into eight equal groups (n = 10) according to the final irrigation activation technique; distilled water was used as an irrigant in Group 1. The other groups were treated with 2.5% NaOCl and 17% EDTA, respectively. Conventional syringe irrigation (CSI) was used in Group 2. Irrigation solutions were activated using passive ultrasonic irrigation (PUI, Group 3), EndoVac apical negative pressure (ANP, Group 4), diode laser (Group 5), Nd:YAG laser (Group 6), Er:YAG laser (Group 7), and Er:YAG laser using with photon-induced photoacoustic streaming (PIPS™, Group 8). Teeth were split longitudinally and subjected to scanning electron microscope (SEM). PIPS showed the best removal of smear layer when compared with PUI, ANP, Nd:YAG, and Er:YAG, but the difference was not statistically significant (P > 0.05). Smear layer scores obtained with PIPS technique were statistically significant different from those of obtained with control, CSI and diode laser groups (P < 0.05). All experimental irrigation techniques except ANP and diode laser removed smear layer more effectively at the coronal and middle levels compared to the apical level (P < 0.05). Irrigation activated/delivered techniques except diode laser have a positive effect on removing of smear layer. PMID:25582378

  6. Active materials for automotive adaptive forward lighting Part 1: system requirements vs. material properties

    NASA Astrophysics Data System (ADS)

    Keefe, Andrew C.; Browne, Alan L.; Johnson, Nancy L.

    2011-04-01

    Adaptive Frontlighting Systems (AFS in GM usage) improve visibility by automatically optimizing the beam pattern to accommodate road, driving and environmental conditions. By moving, modifying, and/or adding light during nighttime, inclement weather, or in sharp turns, the driver is presented with dynamic illumination not possible with static lighting systems The objective of this GM-HRL collaborative research project was to assess the potential of active materials to decrease the cost, mass, and packaging volume of current electric stepper-motor AFS designs. Solid-state active material actuators, if proved suitable for this application, could be less expensive than electric motors and have lower part count, reduced size and weight, and lower acoustic and EMF noise1. This paper documents Part 1 of the collaborative study, assessing technically mature, commercially available active materials for use as actuators. Candidate materials should reduce cost and improve AFS capabilities, such as increased angular velocity on swivel. Additional benefits to AFS resulting from active materials actuators were to be identified as well such as lower part count. In addition, several notional approaches to AFS were documented to illustrate the potential function, which is developed more fully in Part 2. Part 1 was successful in verifying the feasibility of using two active materials for AFS: shape memory alloys, and piezoelectrics. In particular, this demonstration showed that all application requirements including those on actuation speed, force, and cyclic stability to effect manipulation of the filament assembly and/or the reflector could be met by piezoelectrics (as ultrasonic motors) and SMA wire actuators.

  7. Active-solar-energy-system materials research priorities

    SciTech Connect

    Herzenberg, S.A.; Hien, L.K.; Silberglitt, R.

    1983-01-01

    THis report describes and prioritizes materials research alternatives to improve active solar heating and cooling system cost-effectiveness. Materials research areas analyzed are (polymer) glazings, heat mirrors, (selective) absorber surfaces, absorber adhesives, absorber substrates, fluids, thermal storage materials, and desiccants. Three classes of solar collectors are considered in the cost-effectiveness analysis: medium-temperature flat-plate collectors (operating temperature, 70/sup 0/C); high-temperature flat-plate collectors (operating temperature, 70 to 120/sup 0/C); and evacuated tubes (operating temperature 70 to 230/sup 0/C). We found the highest priority for medium-temperature flat-plate collectors to be research on polymeric materials to improve performance and durability characteristics. For the high-temperature, flat-plate collectors and evacuated tubes, heat mirror and selective absorber research is the highest priority. Research on storage materials, fluids, and desiccants is of relatively low priority for improving cost-effectiveness in all cases. The highest priority materials research areas identified include: optical properties and degradation of transparent conducting oxide heat mirrors and thickness insensitive selective paints; uv and thermal stabilization of polymeric glazing materials; and systems analysis of integrated polymeric collectors.

  8. Realizing the full potential of Remotely Sensed Active Layer Thickness (ReSALT) Products

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Chen, A.; Liu, L.; Parsekian, A.; Jafarov, E. E.; Panda, S. K.; Zebker, H. A.

    2015-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence, active layer thickness (ALT), and thermokarst activity in permafrost regions. ReSALT supports research for the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential Nasa-Isro Synthetic Aperture Radar (NISAR) product. ALT is a critical parameter for monitoring the status of permafrost and thermokarst activity is one of the key drivers of change in permafrost regions. The ReSALT product currently includes 1) long-term subsidence trends resulting from the melting and subsequent drainage of excess ground ice in permafrost-affected soils, 2) seasonal subsidence resulting from the expansion of soil water into ice as the active layer freezes and thaws, and 3) ALT estimated from the seasonal subsidence assuming a vertical profile of water within the soil column. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. We present high resolution ReSALT products on the North Slope of Alaska: Prudhoe Bay, Barrow, Toolik Lake, Happy Valley, and the Anaktuvuk fire zone. We believe that the ReSALT product could be expanded to include maps of individual thermokarst features identified as spatial anomalies in the subsidence trends, with quantified expansion rates. We illustrate the technique with multiple examples of thermokarst features on the North Slope of Alaska. Knowing the locations and expansion rates for individual features allows us to evaluate risks to human infrastructure. Our results highlight the untapped potential of the InSAR technique to remotely sense ALT and thermokarst dynamics over large areas of the Arctic.

  9. Influences and interactions of inundation, peat, and snow on active layer thickness

    DOE PAGESBeta

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-18

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  10. Influences of Peat, Surface and Subsurface Water, and Snow on Active Layer Thickness

    SciTech Connect

    Atchley, Adam; Coon, Ethan T.; Painter, Scott L; Harp, Dylan; Wilson, Cathy

    2016-01-01

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but the strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.

  11. Influences of Peat, Surface and Subsurface Water, and Snow on Active Layer Thickness

    DOE PAGESBeta

    Atchley, Adam; Coon, Ethan T.; Painter, Scott L; Harp, Dylan; Wilson, Cathy

    2016-01-01

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  12. Influences and interactions of inundation, peat, and snow on active layer thickness

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-01

    Active layer thickness (ALT), the uppermost layer of soil that thaws on an annual basis, is a direct control on the amount of organic carbon potentially available for decomposition and release to the atmosphere as carbon-rich Arctic permafrost soils thaw in a warming climate. We investigate how key site characteristics affect ALT using an integrated surface/subsurface permafrost thermal hydrology model. ALT is most sensitive to organic layer thickness followed by snow depth but is relatively insensitive to the amount of water on the landscape with other conditions held fixed. The weak ALT sensitivity to subsurface saturation suggests that changes in Arctic landscape hydrology may only have a minor effect on future ALT. However, surface inundation amplifies the sensitivities to the other parameters and under large snowpacks can trigger the formation of near-surface taliks.

  13. Love-type waves in functionally graded piezoelectric material (FGPM) sandwiched between initially stressed layer and elastic substrate

    NASA Astrophysics Data System (ADS)

    Saroj, Pradeep K.; Sahu, S. A.; Chaudhary, S.; Chattopadhyay, A.

    2015-10-01

    This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.

  14. Comparison of activation effects in {gamma}-ray detector materials

    SciTech Connect

    Truscott, P.R.; Evans, H.E.; Dyer, C.S.; Peerless, C.L.; Flatman, J.C.; Cosby, M.; Knight, P.; Moss, C.E.

    1996-06-01

    Activation induced by cosmic and trapped radiation in {gamma}-ray detector materials represents a significant source of background for space-based detector systems. Selection of detector materials should therefore include consideration of this background source. Results are presented from measurements of induced radioactivity in different scintillators activated either as a result of irradiation by mono-energetic protons at accelerator facilities, or flight on board the Space Shuttle. Radiation transport computer codes are used to help compare the effects observed from the scintillators, by identifying and quantifying the influence on the background spectra from more than one hundred of the radionuclides produced by spallation. For the space experiment data, the simulation results also permit determination of the contributions to detector activation from the different sources of radiation in the Shuttle cabin.

  15. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    PubMed

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2 ) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. PMID:26821763

  16. Layered Structure of Bacterial and Archaeal Communities and Their In Situ Activities in Anaerobic Granules▿ †

    PubMed Central

    Satoh, Hisashi; Miura, Yuki; Tsushima, Ikuo; Okabe, Satoshi

    2007-01-01

    The microbial community structure and spatial distribution of microorganisms and their in situ activities in anaerobic granules were investigated by 16S rRNA gene-based molecular techniques and microsensors for CH4, H2, pH, and the oxidation-reduction potential (ORP). The 16S rRNA gene-cloning analysis revealed that the clones related to the phyla Alphaproteobacteria (detection frequency, 51%), Firmicutes (20%), Chloroflexi (9%), and Betaproteobacteria (8%) dominated the bacterial clone library, and the predominant clones in the archaeal clone library were affiliated with Methanosaeta (73%). In situ hybridization with oligonucleotide probes at the phylum level revealed that these microorganisms were numerically abundant in the granule. A layered structure of microorganisms was found in the granule, where Chloroflexi and Betaproteobacteria were present in the outer shell of the granule, Firmicutes were found in the middle layer, and aceticlastic Archaea were restricted to the inner layer. Microsensor measurements for CH4, H2, pH, and ORP revealed that acid and H2 production occurred in the upper part of the granule, below which H2 consumption and CH4 production were detected. Direct comparison of the in situ activity distribution with the spatial distribution of the microorganisms implied that Chloroflexi contributed to the degradation of complex organic compounds in the outermost layer, H2 was produced mainly by Firmicutes in the middle layer, and Methanosaeta produced CH4 in the inner layer. We determined the effective diffusion coefficient for H2 in the anaerobic granules to be 2.66 × 10−5 cm2 s−1, which was 57% in water. PMID:17905889

  17. Activation of a Ca-bentonite as buffer material

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid

  18. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials.

    PubMed

    Kyomoto, Masayuki; Moro, Toru; Saiga, Kenichi; Hashimoto, Masami; Ito, Hideya; Kawaguchi, Hiroshi; Takatori, Yoshio; Ishihara, Kazuhiko

    2012-06-01

    Natural joints rely on fluid thin-film lubrication by the hydrated polyelectrolyte layer of cartilage. However, current artificial joints with polyethylene (PE) surfaces have considerably less efficient lubrication and thus much greater wear, leading to osteolysis and aseptic loosening. This is considered a common factor limiting prosthetic longevity in total hip arthroplasty (THA). However, such wear could be mitigated by surface modification to mimic the role of cartilage. Here we report the development of nanometer-scale hydrophilic layers with varying charge (nonionic, cationic, anionic, or zwitterionic) on cross-linked PE (CLPE) surfaces, which could fully mimic the hydrophilicity and lubricity of the natural joint surface. We present evidence to support two lubrication mechanisms: the primary mechanism is due to the high level of hydration in the grafted layer, where water molecules act as very efficient lubricants; and the secondary mechanism is repulsion of protein molecules and positively charged inorganic ions by the grafted polyelectrolyte layer. Thus, such nanometer-scaled hydrophilic polymers or polyelectrolyte layers on the CLPE surface of acetabular cup bearings could confer high durability to THA prosthetics. PMID:22465336

  19. Role of atomic layer deposited aluminum oxide as oxidation barrier for silicon based materials

    SciTech Connect

    Fiorentino, Giuseppe Morana, Bruno; Forte, Salvatore; Sarro, Pasqualina Maria

    2015-01-15

    In this paper, the authors study the protective effect against oxidation of a thin layer of atomic layer deposited (ALD) aluminum oxide (Al{sub 2}O{sub 3}). Nitrogen doped silicon carbide (poly-SiC:N) based microheaters coated with ALD Al{sub 2}O{sub 3} are used as test structure to investigate the barrier effect of the alumina layers to oxygen and water vapor at very high temperature (up to 1000 °C). Different device sets have been fabricated changing the doping levels, to evaluate possible interaction between the dopants and the alumina layer. The as-deposited alumina layer morphology has been evaluated by means of AFM analysis and compared to an annealed sample (8 h at 1000 °C) to estimate the change in the grain structure and the film density. The coated microheaters are subjected to very long oxidation time in dry and wet environment (up to 8 h at 900 and 1000 °C). By evaluating the electrical resistance variation between uncoated reference devices and the ALD coated devices, the oxide growth on the SiC is estimated. The results show that the ALD alumina coating completely prevents the oxidation of the SiC up to 900 °C in wet environment, while an oxide thickness reduction of 50% is observed at 1000 °C compared to uncoated devices.

  20. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries.

    PubMed

    Zhang, Tao; Li, Jun-tao; Liu, Jie; Deng, Ya-ping; Wu, Zhen-guo; Yin, Zu-wei; Guo, Dong; Huang, Ling; Sun, Shi-gang

    2016-03-28

    Guar gum (GG) has been applied as a binder for layered lithium-rich cathode materials of Li-ion batteries for the first time. Compared with the conventional PVDF binder, electrodes with GG as the binder exhibit significantly suppressed voltage and capacity fading. This study has introduced a multi-functional binder for layered lithium-rich cathode materials. PMID:26954264

  1. Doping, adsorption, and polarity of atomic-layer materials: A predictive theory from systematic first-principles study

    NASA Astrophysics Data System (ADS)

    Saito, Susumu; Fujimoto, Yoshitaka; Koretsune, Takashi

    2015-03-01

    Based on the extensive first-principles electronic-structure study of various doped hexagonal boron-nitride (h-BN) atomic layers as well as that of various doped graphene and carbon nanotubes, we propose a simple but predictive theory of polarity in doped atomic-layer materials. We first report the electronic structure of the pristine h-BN, h-BN layers with B and B3N vacancies which have been experimentally produced and observed frequently, and doped h-BN layers, and show that both p-type and n-type h-BN layers can be produced in a variety of ways. We next review the electronic structure of doped graphene and carbon nanotubes and the effect of the H adsorption which can even change the polarity of the system. Finally we propose a simple but predictive theory which is based on the number of valence electrons of each system, and can explain the polarities of all the h-BN, graphene, and nanotube-based systems studied so far. Supported by MEXT 25107005 and 25104711, JSPS 22740252 and 26390062, and MEST TIES project.

  2. Wrinkling micropatterns regulated by a hard skin layer with a periodic stiffness distribution on a soft material

    NASA Astrophysics Data System (ADS)

    Wang, Jiawen; Li, Bo; Cao, Yan-Ping; Feng, Xi-Qiao; Gao, Huajian

    2016-01-01

    A wrinkling-based method is proposed to create various surface micropatterns regulated by a hardened skin layer with a periodic stiffness distribution on a soft material. It is shown that the surface patterns generated by this technique are controlled by three fundamental surface deformation modes that involve sinusoidal wrinkling, Euler buckling, and rigid rotation of the skin. Systematic experiments and a phase diagram validate the efficacy and robustness of the proposed method.

  3. Vegetation-Soil-Active Layer Relationships Along a Low-Arctic Bioclimate Gradient, Alaska

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Jia, G. J.; Epstein, H. E.; Shiklomanov, N.; Nelson, F.; Hinzman, L. D.; Romanovsky, V. E.

    2002-12-01

    Northern Alaska has three of five Arctic bioclimate subzones, which are representative of the circumpolar Low Arctic. This portion of the Arctic has more or less continuous tundra plant cover and well-developed moss canopies. We examined the biomass and remotely sensed spectral properties of the vegetation canopy, active-layer thickness, and the soil properties at 21 sites on the Arctic Slope and Seward Peninsula of Alaska. The sites were grouped into three bioclimate subzones according the summer warmth at the sites. The summer warmth index (SWI) is the sum of the mean monthly temperatures greater than 0 degrees C. Subzone C, the coldest subzone, occurs in a narrow strip along the northern coast of the Alaska. Subzone D covers most of the Arctic Coastal Plain and the northwest portion of the Seward Peninsula, and Subzone E covers most of the Foothills and most of the unforested portion of the Seward Peninsula. The SWIs in Subzones C, D, and E are generally less than 10-15 degrees C, 15-25 degrees C, and 25-35 degrees C respectively. The average active layer depths were 44, 55, and 47 cm respectively The shallow active layer in Subzone E is to a large degree a response to the denser vegetation canopies in Subzone E. Total plant biomass in Subzone C, D, and E averaged 421 g m-2, 503 g m-2, and 1178 g m-2 respectively. The much higher biomass in Subzone E was due primarily to woody shrubs (40 g m-2 in Subzone C, 51 g m-2 in Subzone D, and 730 g m-2 in Subzone E). The normalized difference vegetation index (NDVI) is one measure of greenness. Highest NDVI values were obtained from acidic tundra regions in Subzone E, and the lowest NDVI values were obtained in the nonacidic areas of Subzone C. In summary, the insulative properties of the vegetation play a very important role controlling the thickness of the active layer, and the amount of vegetation biomass differs according to summer warmth and soil properties. Acidic soils in the warmest parts of the Arctic (Subzone E

  4. Activation of accelerator construction materials by heavy ions

    NASA Astrophysics Data System (ADS)

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  5. Magnetic materials. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite.

    PubMed

    Pitcher, Michael J; Mandal, Pranab; Dyer, Matthew S; Alaria, Jonathan; Borisov, Pavel; Niu, Hongjun; Claridge, John B; Rosseinsky, Matthew J

    2015-01-23

    Crystalline materials that combine electrical polarization and magnetization could be advantageous in applications such as information storage, but these properties are usually considered to have incompatible chemical bonding and electronic requirements. Recent theoretical work on perovskite materials suggested a route for combining both properties. We used crystal chemistry to engineer specific atomic displacements in a layered perovskite, (Ca(y)Sr(1- y))(1.15)Tb(1.85)Fe2O7, that change its symmetry and simultaneously generate electrical polarization and magnetization above room temperature. The two resulting properties are magnetoelectrically coupled as they arise from the same displacements. PMID:25613888

  6. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics.

    PubMed

    Tao, Ye; Yuan, Kai; Chen, Ting; Xu, Peng; Li, Huanhuan; Chen, Runfeng; Zheng, Chao; Zhang, Lei; Huang, Wei

    2014-12-17

    The design and characterization of thermally activated delayed fluorescence (TADF) materials for optoelectronic applications represents an active area of recent research in organoelectronics. Noble metal-free TADF molecules offer unique optical and electronic properties arising from the efficient transition and interconversion between the lowest singlet (S1 ) and triplet (T1 ) excited states. Their ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T1 →S1 ) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic devices. TADF-based organic light-emitting diodes, oxygen, and temperature sensors show significantly upgraded device performances that are comparable to the ones of traditional rare-metal complexes. Here we present an overview of the quick development in TADF mechanisms, materials, and applications. Fundamental principles on design strategies of TADF materials and the common relationship between the molecular structures and optoelectronic properties for diverse research topics and a survey of recent progress in the development of TADF materials, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes, are highlighted. The success in the breakthrough of the theoretical and technical challenges that arise in developing high-performance TADF materials may pave the way to shape the future of organoelectronics. PMID:25230116

  7. Protective or damage promoting effect of calcium carbonate layers on the surface of cement based materials in aqueous environments

    SciTech Connect

    Schwotzer, M.; Scherer, T.; Gerdes, A.

    2010-09-15

    Cement based materials permanently exposed to aggressive aqueous environments are subject to chemical changes affecting their durability. However, this holds also for tap water that is considered to be not aggressive to cementitious materials, although in that case a formation of covering layers of CaCO{sub 3} on the alkaline surfaces is commonly supposed to provide protection against reactive transport processes. Thus, investigations of the structural and chemical properties of the material/water interface were carried out in laboratory experiments and case studies to elucidate the consequences of surface reactions for the durability of cement based materials exposed to tap water. Focused Ion Beam investigations revealed that a protective effect of a CaCO{sub 3} covering layer depends on its structural properties, which are in turn affected by the hydro-chemical conditions during crystallization. Surface precipitation of CaCO{sub 3} can trigger further chemical degradation, if the required calcium is supplied by the pore solution of the material.

  8. Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    NASA Technical Reports Server (NTRS)

    Gille, J. P.

    1972-01-01

    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.

  9. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    SciTech Connect

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-28

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  10. Heat transfer and material flow during laser assisted multi-layer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Manvatkar, V.; De, A.; DebRoy, T.

    2014-09-01

    A three-dimensional, transient, heat transfer, and fluid flow model is developed for the laser assisted multilayer additive manufacturing process with coaxially fed austenitic stainless steel powder. Heat transfer between the laser beam and the powder particles is considered both during their flight between the nozzle and the growth surface and after they deposit on the surface. The geometry of the build layer obtained from independent experiments is compared with that obtained from the model. The spatial variation of melt geometry, cooling rate, and peak temperatures is examined in various layers. The computed cooling rates and solidification parameters are used to estimate the cell spacings and hardness in various layers of the structure. Good agreement is achieved between the computed geometry, cell spacings, and hardness with the corresponding independent experimental results.

  11. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure.

    PubMed

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-21

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. PMID:27355160

  12. Influence of the Halogen Activation on the Ozone Layer in XXIst Century

    NASA Astrophysics Data System (ADS)

    Larin, Igor; Aloyan, Artash; Yermakov, Alexandr

    2016-04-01

    The aim of the work is to evaluate a possible effect of heterophase chemical reactions (HCR) with participation of reservoir gases (ClONO2, HCl) and sulfate particles of the Junge layer on the ozone layer at mid-latitudes in the XXI century, which could be relevant for more accurate predicting a recovery of the ozone layer, taking into account that just these processes were the main cause of the ozone depletion at the end of XXth century. Required for calculating the dynamics of GHR data on the specific volume/surface of the sulfate aerosols in the lower stratosphere were taken from the data of field experiments. Their physico-chemical properties (chemical composition, density, water activity and free protons activity et al.) have been obtained with help of thermodynamic calculations (Atmospheric Inorganic Model, AIM). Altitude concentration profiles of individual gas components, as well as temperature and relative humidity (RH) at a given geographic location and season have been calculated using a two-dimensional model SOCRATES. The calculations have been made for the conditions of June 1995, 2040 and 2080 at 15 km altitude and 50° N latitude. It has been shown that the rate of ozone depletion as a result of processes involving halogen activation for the given conditions in 2040, 2080 is about 35% lower than a corresponding value in 1995 (a year of maximum effect of halogen activation). From this we can conclude that in the XXI century, despite the natural decline of ozone-depleting chlorofluorocarbons. processes of halogen activation of the ozone depletion with participation of sulfate aerosols should be taken into account in the calculations of the recovery of the ozone layer at mid-latitudes.

  13. Transient assembly of active materials fueled by a chemical reaction

    NASA Astrophysics Data System (ADS)

    Boekhoven, Job; Hendriksen, Wouter E.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2015-09-01

    Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

  14. Melt-layer ejection and material changes of three different tungsten materials under high heat-flux conditions in the tokamak edge plasma of TEXTOR

    NASA Astrophysics Data System (ADS)

    Coenen, J. W.; Philipps, V.; Brezinsek, S.; Pintsuk, G.; Uytdenhouwen, I.; Wirtz, M.; Kreter, A.; Sugiyama, K.; Kurishita, H.; Torikai, Y.; Ueda, Y.; Samm, U.; TEXTOR-Team

    2011-11-01

    The behaviour of tungsten (W) plasma-facing components (PFCs) has been investigated in the plasma edge of the TEXTOR tokamak to study melt-layer ejection, macroscopic tungsten erosion from the melt layer as well as the changes of material properties such as grain-size and abundance of voids or bubbles. The parallel heat flux at the radial position of the exposed tungsten tile in the plasma ranges around q|| ~ 45 MW m-2 causing samples to be exposed at an impact angle of 35° to 20-30 MW m-2. Locally the temperature reached up to 6000 K, high levels of evaporation and boiling are causing significant erosion in the form of continuous fine spray or droplet ejection. The amount of fine-spray tungsten emission depends strongly on the material properties: in the case of the tungsten-tantalum alloy the effect of spraying and droplet emission is significantly higher at even low temperatures when compared with regular tungsten or even ultra-high purity tungsten which shows almost no spraying at all. Differences in the material composition, grain structure and size may be related to the different evolution of macroscopic erosion. In addition the re-solidified material is studied and strong differences in terms of re-crystallized grain size and evolution of the grain structure and grain orientation are observed. The build up of large voids has been observed.

  15. Analytic expressions for atomic layer deposition: Coverage, throughput, and materials utilization in cross-flow, particle coating, and spatial atomic layer deposition

    SciTech Connect

    Yanguas-Gil, Angel; Elam, Jeffrey W.

    2014-05-15

    In this work, the authors present analytic models for atomic layer deposition (ALD) in three common experimental configurations: cross-flow, particle coating, and spatial ALD. These models, based on the plug-flow and well-mixed approximations, allow us to determine the minimum dose times and materials utilization for all three configurations. A comparison between the three models shows that throughput and precursor utilization can each be expressed by universal equations, in which the particularity of the experimental system is contained in a single parameter related to the residence time of the precursor in the reactor. For the case of cross-flow reactors, the authors show how simple analytic expressions for the reactor saturation profiles agree well with experimental results. Consequently, the analytic model can be used to extract information about the ALD surface chemistry (e.g., the reaction probability) by comparing the analytic and experimental saturation profiles, providing a useful tool for characterizing new and existing ALD processes.

  16. Long-term active layer and ground surface temperature trends: results of 12 years of observations at Alaskan CALM sites

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Nelson, F. E.; Streletskyi, D. A.; Klene, A. E.; Schimek, M.; Little, J.

    2006-12-01

    The uppermost layer of seasonal thawing above permafrost (the active layer) is an important regulator of energy and mass fluxes between the surface and the atmosphere in the polar regions. The Circumpolar Active Layer Monitoring (CALM) program is a network of sites at which data about active-layer thickness (ALT) and dynamics are collected. CALM was established in the 1990s to observe and detect the long-term response of the active layer and near-surface permafrost to changes in climate. Active layer monitoring is an important component of efforts to assess the effects of global change in permafrost environments. CALM strategies are evolving; this presentation showcases some additions to CALM observation procedures designed to monitor processes and detect changes not anticipated in the original CALM protocol of the early 1990s. In this study we used data from 12 (1995-2006) years of extensive, spatially oriented field observations at CALM sites in northern Alaska to examine landscape-specific spatial and temporal trends in active-layer thickness and air and ground surface temperature. Despite an observed increase in air temperature, active-layer thickness exhibited a decreasing trend over the study period. This result indicates that soil consolidation accompanying penetration of thaw into an ice-rich stratum at the base of the active layer has resulted in subsidence of the surface with little or no apparent thickening of the active layer, as traditionally defined. Differential Global Positioning Systems (DGPS) technology was used to detect frost heave and thaw settlement within representative landscapes. Preliminary results indicate that heave and settlement follow patterns of spatial variation similar to those of active-layer thickness. To evaluate the effect of vegetation on ground surface temperature, several heat-transfer coefficients were estimated, including land cover specific thermal diffusivity and empirical n-factors.

  17. MMP activity in the hybrid layer detected with in situ zymography.

    PubMed

    Mazzoni, A; Nascimento, F D; Carrilho, M; Tersariol, I; Papa, V; Tjäderhane, L; Di Lenarda, R; Tay, F R; Pashley, D H; Breschi, L

    2012-05-01

    Dentinal proteases are believed to play an important role in the degradation of hybrid layers (HL). This study investigated the HL gelatinolytic activity by in situ zymography and functional enzyme activity assay. The hypotheses were that HLs created by an etch-and-rinse adhesive exhibit active gelatinolytic activity, and MMP-2 and -9 activities in dentin increase during adhesive procedures. Etched-dentin specimens were bonded with Adper Scotchbond 1XT and restored with composite. Adhesive/dentin interface slices were placed on microscope slides, covered with fluorescein-conjugated gelatin, and observed with a multi-photon confocal microscope after 24 hrs. Human dentin powder aliquots were prepared and assigned to the following treatments: A, untreated; B, etched with 10% phosphoric acid; or C, etched with 10% phosphoric acid and mixed with Scotchbond 1XT. The MMP-2 and -9 activities of extracts of dentin powder were measured with functional enzyme assays. Intense and continuous enzyme activity was detected at the bottom of the HL, while that activity was more irregular in the upper HL. Both acid-etching and subsequent adhesive application significantly increased MMP-2 and -9 activities (p < 0.05). The results demonstrate, for the first time, intrinsic MMP activity in the HL, and intense activation of matrix-bound MMP activity with both etching and adhesive application. PMID:22354448

  18. Trapping and depth profile of tritium in surface layers of metallic materials

    NASA Astrophysics Data System (ADS)

    Matsuyama, M.; Chen, Z.; Nisimura, K.; Akamaru, S.; Torikai, Y.; Hatano, Y.; Ashikawa, N.; Oya, Y.; Okuno, K.; Hino, T.

    2011-10-01

    Tritium amount retained in surface layers and release behavior from surface layers were examined using SS316L samples exposed to plasmas in the Large Helical Device and a commercial Cu-Be alloy plate. BIXS analyses and observation by SEM indicate that carbon and titanium deposited on the plasma-facing surface of the SS316L samples. Larger amount of tritium was trapped in the plasma-facing surface in comparison with the polished surface. Higher enrichment of tritium in surface layers was similarly found in the polished surface of both samples. The amount of surface tritium in both samples was almost same, while the bulk concentration of tritium in Cu-Be was much lower than that in SS316L. Tritium release from the SS316L and Cu-Be samples into water was examined by immersion experiments. Tritium elution was observed for both samples, but changes in the residual tritium amount in surface layers were different from each other.

  19. Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition.

    PubMed

    Wang, Tuo; Luo, Zhibin; Li, Chengcheng; Gong, Jinlong

    2014-11-21

    Photoelectrochemical (PEC) water splitting is an attractive approach to generate hydrogen as a clean chemical fuel from solar energy. But there remain many fundamental issues to be solved, including inadequate photon absorption, short carrier diffusion length, surface recombination, vulnerability to photo-corrosion, and unfavorable reaction kinetics. Owing to its self-limiting surface reaction mechanism, atomic layer deposition (ALD) is capable of depositing thin films in a highly controllable manner, which makes it an enabling technique to overcome some of the key challenges confronted by PEC water splitting. This tutorial review describes some unique and representative applications of ALD in fabricating high performance PEC electrodes with various nanostructures, including (i) coating conformal thin films on three-dimensional scaffolds to facilitate the separation and migration of photocarriers and enhance light trapping, as well as realizing controllable doping for bandgap engineering and forming homojunctions for carrier separation; (ii) achieving surface modification through deposition of anti-corrosion layers, surface state passivation layers, and surface catalytic layers; and (iii) identifying the main rate limiting steps with model electrodes with highly defined thickness, composition, and interfacial structure. PMID:24500041

  20. Formation of Organic Thin Films of Nonlinear Optical Materials by Molecular Layer Epitaxy

    NASA Astrophysics Data System (ADS)

    Burtman, V.; Kopylova, T. N.; Van Der Boom, M.; Gadirov, R. M.; Tel'minov, E. N.; Nikonov, S. Yu.; Nikonova, E. N.

    2016-03-01

    Conditions are described under which films of [(aminophenyl)azo]pyridine are formed by molecular layer epitaxy, and their optical absorption and x-ray photoelectron spectra are investigated. The nonlinear properties of such structures are described with the help of measurements of the intensity of second harmonic generation as a function of the angle of incidence.

  1. Determining the Optical Properties of Two-Layer Turbid Materials Based on Spatially Resolved Diffuse Reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral imaging-based spatially resolved technique is useful for determining the optical properties of fruits and food products that are homogeneous. To better characterize fruit properties and quality attributes, it is necessary to consider fruit to be composed of two homogeneous layers, i.e....

  2. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    SciTech Connect

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; Wilson, Cathy; Wullschleger, Stan D.

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  3. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Throckmorton, H. M.; Graham, D. E.; Gu, B.; Hubbard, S. S.; Liang, L.; Wu, Y.; Heikoop, J. M.; Herndon, E. M.; Phelps, T. J.; Wilson, C. J.; Wullschleger, S. D.

    2015-03-01

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  4. Active layer hydrology for Imnavait Creek, Toolik, Alaska. Annual progress report, July 1984--January 1986

    SciTech Connect

    Kane, D.L.

    1986-12-31

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  5. Dual Gate Thin Film Transistors Based on Indium Oxide Active Layers

    SciTech Connect

    Kekuda, Dhananjaya; Rao, K. Mohan; Tolpadi, Amita; Chu, C. W.

    2011-07-15

    Polycrystalline Indium Oxide (In{sub 2}O{sub 3}) thin films were employed as an active channel layer for the fabrication of bottom and top gate thin film transistors. While conventional SiO{sub 2} served as a bottom gate dielectric, cross-linked poly-4-vinylphenol (PVP) was used a top gate dielectric. These nano-crystalline TFTs exhibited n-channel behavior with their transport behavior highly dependent on the thickness of the channel. The correlation between the thickness of the active layer and TFT parameters such as on/off ratio, field-effect mobility, threshold voltage were carried out. The optical spectra revealed a high transmittance in the entire visible region, thus making them promising candidates for the display technology.

  6. Ab initio synthesis of single-layer III-V materials

    NASA Astrophysics Data System (ADS)

    Singh, Arunima K.; Zhuang, Houlong L.; Hennig, Richard G.

    2014-06-01

    The discovery of a novel material requires the identification of the material's composition as well as of suitable synthesis conditions. We present a data-mining approach to identify suitable substrates for the growth of two-dimensional materials and apply the method to the recently predicted two-dimensional III-V compounds. We identify several lattice-matched substrates for their epitaxial growth, stabilization, and functionalization. Density-functional calculations show that these substrates sufficiently reduce the formation energies of the metastable two-dimensional materials to make them thermodynamically stable. We show that chemical interactions of the two-dimensional materials with the substrates shift the Fermi level of these materials, resulting in doping. The large adsorption energies and strong doping indicate that these metals should provide good electrical contact to enable transport measurements and electronic applications.

  7. A Comparison of Active and Passive Methods for Control of Hypersonic Boundary Layers on Airbreathing Configurations

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    2003-01-01

    Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.

  8. Module Design, Materials, and Packaging Research Team: Activities and Capabilities

    SciTech Connect

    McMahon, T. J.; del Cueto, J.; Glick, S.; Jorgensen, G.; Kempe, M.; Kennedy, C.; Pern, J.; Terwilliger, K

    2005-01-01

    Our team activities are directed at improving PV module reliability by incorporating new, more effective, and less expensive packaging materials and techniques. New and existing materials or designs are evaluated before and during accelerated environmental exposure for the following properties: (1) Adhesion and cohesion: peel strength and lap shear. (2) Electrical conductivity: surface, bulk, interface and transients. (3) Water vapor transmission: solubility and diffusivity. (4) Accelerated weathering: ultraviolet, temperature, and damp heat tests. (5) Module and cell failure diagnostics: infrared imaging, individual cell shunt characterization, coring. (6) Fabrication improvements: SiOxNy barrier coatings and enhanced wet adhesion. (7) Numerical modeling: Moisture ingress/egress, module and cell performance, and cell-to-frame leakage current. (8) Rheological properties of polymer encapsulant and sheeting materials. Specific examples will be described.

  9. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes.

    PubMed

    Lu, Xinglin; Arias Chavez, Laura H; Romero-Vargas Castrillón, Santiago; Ma, Jun; Elimelech, Menachem

    2015-02-01

    In this study, we investigate the influence of surface structure on the fouling propensity of thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, we compare membranes fabricated through identical procedures except for the use of different solvents (dimethylformamide, DMF and N-methyl-2-pyrrolidinone, NMP) during phase separation. FO fouling experiments were carried out with a feed solution containing a model organic foulant. The TFC membranes fabricated using NMP (NMP-TFC) had significantly less flux decline (7.47 ± 0.15%) when compared to the membranes fabricated using DMF (DMF-TFC, 12.70 ± 2.62% flux decline). Water flux was also more easily recovered through physical cleaning for the NMP-TFC membrane. To determine the fundamental cause of these differences in fouling propensity, the active and support layers of the membranes were extensively characterized for physical and chemical characteristics relevant to fouling behavior. Polyamide surface roughness was found to dominate all other investigated factors in determining the fouling propensities of our membranes relative to each other. The high roughness polyamide surface of the DMF-TFC membrane was also rich in larger leaf-like structures, whereas the lower roughness NMP-TFC membrane polyamide layer contained more nodular and smaller features. The support layers of the two membrane types were also characterized for their morphological properties, and the relation between support layer surface structure and polyamide active layer formation was discussed. Taken together, our findings indicate that support layer structure has a significant impact on the fouling propensity of the active layer, and this impact should be considered in the design of support layer structures for TFC membranes. PMID:25564877

  10. Application of smart materials to helicopter rotor active control

    NASA Astrophysics Data System (ADS)

    Straub, Friedrich K.; Ealey, Mark A.; Schetky, Lawrence M.

    1997-05-01

    Helicopter design is limited by the compromise inherent in meeting hover and forward flight requirements, and the unsteady environment encountered in forward flight. Active control of helicopter rotors using smart material, in-blade actuation can overcome these barriers and provide substantial reductions in noise and vibrations and improved performance. The present study covers the blade/actuator integration and actuator development for a full scale system to demonstrate active control of noise and vibrations as well as inflight blade tracking on the MD Explorer helicopter. A piezoelectric multilayer stack actuator, driving a trailing edge flap, is used for active control. A shape memory alloy torsion actuator, driving a trailing edge trim tab, is used for inflight tracking. Overall, this DARPA sponsored program entails the design, development, and fabrication of the full scale active control rotor system. If successful, an entry in the NASA Ames 40 X 80 foot wind tunnel and flight tests are planned for a follow on program.

  11. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons.

    PubMed

    Bock, Tobias; Stuart, Greg J

    2016-03-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels onN-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  12. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  13. Materials for Active Engagement in Nuclear and Particle Physics Courses

    NASA Astrophysics Data System (ADS)

    Loats, Jeff; Schwarz, Cindy; Krane, Ken

    2013-04-01

    Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

  14. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    PubMed Central

    D'Angelo, Egidio; Solinas, Sergio; Mapelli, Jonathan; Gandolfi, Daniela; Mapelli, Lisa; Prestori, Francesca

    2013-01-01

    The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research. PMID:23730271

  15. Enhancing the performance of BHJ solar cell via self-assembly templates in active layer

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Li, Hongfei; Yang, Zhenhua; Nam, Chang-Yong; Satija, Sushil; Rafailovich, Miriam

    The bulk heterojunction (BHJ) solar cell is an important example of a polymer solar cell technology that has been proposed in recent years. However, due to the disordered inner structures in the active layer, control of the inner structure within the active layer is required to enhance the efficiency. In our approach, a self-assembly of tertiary polymer blend film is confined between the air and solid interfaces. The principal has been proved using a blend of PMMA: P3HT: PCBM where we showed that the PMMA phase formed a column structure in the P3HT, which template the PCBM phase between the electrodes. Neutron reflectometry was used to demonstrate the confinement of PCBM at the interface between P3HT and PMMA in the active layer. The columnar structured template is investigated under atomic force microscopy (AFM) and transmission electron microscopy (TEM). SCLC mobility measurement indicated an obvious improvement on both hole and electron mobility. The different morphological structures formed via phase segregation are correlated with the performance of the PEV cells fabricated at the BNL-CFN and significant enhancement for the efficiency is observed.

  16. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-01

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency. PMID:26431263

  17. Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam

    2012-02-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.

  18. Architectural evolution of the Nojima fault and identification of the activated slip layer by Kobe earthquake

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidemi; Omura, Kentaro; Matsuda, Tatsuo; Ikeda, Ryuji; Kobayashi, Kenta; Murakami, Masaki; Shimada, Koji

    2007-07-01

    Evolutionary history of Nojima Fault zone is clarified by comprehensive examinations of petrological, geophysical, and geochemical characterizations on a fault zone in deep-drilled core penetrating the Nojima Fault. On the basis of the results, we reconstruct a whole depth profile of the architecture of the Nojima Fault and identify the primal slip layer activated by 1995 Kobe earthquake. The deepest part (8- to 12-km depth) of the fault zone is composed of thin slip layers of pseudotachylite (5 to 10 mm thick each, 10 cm in total). Middle depth (4- to 8-km depth) of the fault zone is composed of fault core (6 to 10 m thick), surrounded by thick (100 m thick) damage zone, characterized by zeolite precipitation. The shallow part of the fault zone (1- to 4-km depth) is composed of distributed narrow shear zones, which are characterized by combination of thin (0.5 cm thick each, 10 cm in total) ultracataclasite layers at the core of shear zones, surrounded by thicker (1 to 3 m thick) damage zones associated with carbonate precipitation. An extremely thin ultracataclasite layer (7 mm thick), activated by the 1995 Kobe earthquake, is clearly identified from numerous past slip layers, overprinting one of the shear zones, as evidenced by conspicuous geological and geophysical anomalies. The Nojima Fault zone was 10 to 100 times thicker at middle depth than that of shallower and deeper depths. The thickening would be explained as a combination of physical and chemical effects as follows. (1) Thickening of "fault core" at middle depth would be attributed to normal stress dependence on thickness of the shear zone and (2) an extreme thickening of "damage zone" in middle depth of the crust would result from the weakening of the fault zone due to super hydrostatic fluid pressure at middle depths. The high fluid pressure would result from faster sealing with low-temperature carbonate at the shallower fault zone.

  19. Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

    SciTech Connect

    Morrison, G.C.; Corsi, R.L.; Destaillats, H.; Nazaroff, W.W.; Wells, J.R.

    2006-05-01

    Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

  20. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger