Science.gov

Sample records for active layer sandwiched

  1. Topology optimization of magnetorheological fluid layers in sandwich plates for semi-active vibration control

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaopeng; Kang, Zhan

    2015-08-01

    This paper investigates topology optimization of the magnetorheological (MR) fluid layer in a sandwich plate for improving the semi-active vibration control performance. Therein, a uniform magnetic field is applied across the MR fluid layer to provide a semi-active damping control effect. In the optimization model, the pseudo-densities describing the MR fluid material distribution are taken as design variables, and an artificial magneto-rheological fluid model (AMRF) with penalization is proposed to suppress intermediate density values. For reducing the vibration level under harmonic excitations, the dynamic compliance under a specific excitation frequency, or the frequency-aggregated dynamic compliance in a given frequency band, is taken as the objective function to be minimized. In this context, the adjoint-variable sensitivity analysis scheme is derived. The effectiveness and efficiency of the proposed method are demonstrated by numerical examples, in which the structural dynamic performance can be remarkably improved through optimization. The influences of several key factors on the optimal designs are also explored. It is shown that the AMRF model is effective in yielding clear boundaries in the final optimal solutions without use of additional regularization techniques.

  2. The actuated performance of multi-layer piezoelectric actuator in active vibration control of honeycomb sandwich panel

    NASA Astrophysics Data System (ADS)

    Luo, Yajun; Xie, Shilin; Zhang, Xinong

    2008-11-01

    This paper discusses the use of the multi-layer piezoelectric actuator (MPA) in the active vibration control of the honeycomb sandwich panel (HSP). A literature overview of the available works is first presented. And the main motivation using the MPA in the AVC of HSP is discussed. Then, the honeycomb core is in advance treated as an orthotropic plate. The governing equations of the system are derived by the Hamilton principle on the basis of both displacement and transverse tress assumptions. The formulations of the actuation force/moment are obtained and indicate that the actuation force/moment are two four-order polynomial function of the piezoelectric layers number. Finally, active control experiments of a cantilever honeycomb sandwich panel (CHSP) are performed using the MPA. The control law of proportional velocity feedback is adopted in the experiments. These experiments include the resonant vibration control and the sinusoidal swept of the control system at the case of different piezoelectric layers number. The results show that the MPA can effectively control the vibration of the high damping HSP, and the control performance per voltage by the proposed actuator can be improved significantly through increasing the piezoelectric patch number. Consequently, the MPA exhibits better actuation capability than that with only single layer.

  3. Vibration damping using four-layer sandwich

    NASA Astrophysics Data System (ADS)

    Yadav, Binod P.

    2008-11-01

    This paper discusses vibration damping using four-layer sandwich beam. The present work deals with the analysis of vibration of the primary system having a mass and rubber spring mounted on a four-layer viscoelastic simply supported symmetrically arranged sandwich beam. The equation of motion of a general four-layer with alternate elastic layer and viscoelastic layer simply supported sandwich beam is first derived using the method of equilibrium of forces and beam theory. The above differential equation has been solved for harmonically force excited sandwich beam by applying suitable boundary conditions to get the impedance of the sandwich beam. This impedance is then combined with the impedance of the primary system to obtain the expression for the response of harmonically excited mass and then the expression for transmissibility is obtained. The effectiveness of geometrical and physical parameters in minimizing response and transmissibility for central mounting of the primary system is evaluated.

  4. Making Three-Layer Solid Electrolyte/Electrode Sandwiches

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1991-01-01

    Tape-casting-and-sintering process joins two ceramic materials having widely different sintering temperatures into integral sandwich structure. Layers retain their identities, without migration of constituents. Used to make three-layer structure composed of outer porous layers of strontium-doped lanthanum manganite and inner dense layer of yttria-stabilized zirconia. Structures used to make electrolytic and fuels cells with solid electrolytes for use at high temperatures. Other potential applications include oxygen pumps and oxygen sensors.

  5. Laser evaporation of metal sandwich layers for improved IC metallization

    NASA Astrophysics Data System (ADS)

    Pielmeier, R.; Bollmann, D.; Haberger, K.

    1990-12-01

    With the further shrink of IC dimensions, metallization becomes the most crucial layer because conductivity and contact resistivity determine the RC constants and thus the speed of the circuits. With our Q-switched Nd:YAG laser we have evaporated different materials (Al, Ti, W, Pt, Au), alloys (Ta-Si) and dielectrics (ZrO 2, Al 2O 3). We also produced sandwich layers (Al-Au, Ti-Al). The layers were investigated with regard to deposition rate, homogeneity, adhesion, step coverage and surface roughness. Deposition rates in the order of 60 nm/min were achieved. At a power of 10 W and a repetition rate of about 5 kHz we could form ohmic contacts to silicon with a good step coverage in the contact.

  6. Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties.

    PubMed

    Liu, Zhicheng; Bai, Lu; Zhao, Guizhe; Liu, Yaqing

    2016-01-01

    Sandwich-like layer-by-layer thin films consisting of polyelectrolytes and gold nanoparticles were utilized to construct surface-enhanced Raman scattering (SERS) substrates with tunable SERS properties. It is found that both the size of the nanoparticles in the layers and the interlayer distance significantly influence the SERS performance of the multilayered thin film. These simple, low-cost, easily processable and controllable SERS substrates have a promising future in the field of molecular sensing. PMID:27547620

  7. Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties

    PubMed Central

    Bai, Lu; Zhao, Guizhe

    2016-01-01

    Summary Sandwich-like layer-by-layer thin films consisting of polyelectrolytes and gold nanoparticles were utilized to construct surface-enhanced Raman scattering (SERS) substrates with tunable SERS properties. It is found that both the size of the nanoparticles in the layers and the interlayer distance significantly influence the SERS performance of the multilayered thin film. These simple, low-cost, easily processable and controllable SERS substrates have a promising future in the field of molecular sensing. PMID:27547620

  8. Actively cooled plate fin sandwich structural panels for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Smith, L. M.; Beuyukian, C. S.

    1979-01-01

    An unshielded actively cooled structural panel was designed for application to a hypersonic aircraft. The design was an all aluminum stringer-stiffened platefin sandwich structure which used a 60/40 mixture of ethylene glycol/water as the coolant. Eight small test specimens of the basic platefin sandwich concept and three fatigue specimens from critical areas of the panel design was fabricated and tested (at room temperature). A test panel representative of all features of the panel design was fabricated and tested to determine the combined thermal/mechanical performance and structural integrity of the system. The overall findings are that; (1) the stringer-stiffened platefin sandwich actively cooling concept results in a low mass design that is an excellent contender for application to a hypersonic vehicle, and (2) the fabrication processes are state of the art but new or modified facilities are required to support full scale panel fabrication.

  9. Tunable and Sizable Band Gap of Single Layer Graphene Sandwiched between Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    Zheng, Jiaxin; Qu, Heruge; Liu, Qihang; Qin, Rui; Zhou, Jing; Yu, Dapeng; Gao, Zhengxiang; Lu, Jing; Luo, Guangfu; Nagase, Shigeru; Mei, Wai-Ning

    2012-02-01

    It is a big challenge to open a tunable and sizable band gap of single layer graphene without big loss in structural integrity and carrier mobility. By using density functional theory calculations, we show that the band gap of single layer graphene can be opened to 0.16 (without electrical field) and 0.34 eV (with a strong electrical field) when sandwiched between two hexagonal boron nitride single layers in a proper way. The zero-field band gaps are increased by about 50% when many-body effects are included. Ab initio quantum transport simulation of a dual-gated FET out of such a sandwich structure further confirms an electrical field-enhanced transport gap. The tunable and sizeable band gap and structural integrity render this sandwich structure a promising candidate for high-performance single layer graphene field effect transistors.

  10. Governing equations for vibrating constrained-layer damping sandwich plates and beams.

    NASA Technical Reports Server (NTRS)

    Yan, M.-J.; Dowell, E. H.

    1972-01-01

    A simple differential equation is derived to describe constrained-layer damping in nonsymmetric sandwich plates and beams composed of isotropic and homogeneous layers. The natural boundary conditions related to this equation are determined and some typical numerical results obtained by this equation are given. The equation is valid within the linear theories of elasticity and viscoelasticity in the absence of any constraints on thicknesses, positions, symmetries, and densities of the layers.

  11. The Bending Strength, Internal Bonding and Thickness Swelling of a Five Layer Sandwiched Bamboo Particleboard

    NASA Astrophysics Data System (ADS)

    Jamaludin, M. A.; Bahari, S. A.; Nordin, K.; Soh, T. F. T.

    2010-03-01

    The demand for wood based material is increasing but the supply is decreasing. Therefore the price of these raw materials has increased. Bamboo provides an economically feasible alternative raw material for the wood based industry. Its properties are comparable to wood. It is also compatible with the existing processing technology. Bamboo is in abundance, easy to propagate and of short maturation period. Bamboo provides a cheaper alternative resource for the wood based industry. The development of new structural components from bamboo will widen its area of application from handicrafts to furniture and building components. In this study, five layer sandwiched bamboo particleboard were manufactured. The sandwiched Bamboo PB consists of a bamboo PB core, oil palm middle veneers and thin meranti surface veneers. The physical and mechanical properties of the bamboo sandwiched particleboards were tested in accordance to the BS-EN 317:1993 [1] and BS-EN 310:1993 [2], respectively. All the samples passed the standards. The modulus of elasticity was about 352% higher than the value specified in the BS standard, BS-EN 312-4:1996 [3]. The Internal bonding was about 23% higher than the general requirements specified in the standard. On the other hand, the thickness swelling was about 6% lower than the standard. No glue line failure was observed in the strength tests. Critical failures in the IB tests were observed in the particleboards. Tension failures were observed in the surface veneers in the bending tests. The five layer sandwiched bamboo particleboard can be used for light weight construction such as furniture, and wall and door panels in buildings.

  12. Reflective three-port high-efficiency grating with two dielectric layers based on a sandwiched configuration

    NASA Astrophysics Data System (ADS)

    Li, Hongtao; Wang, Bo; Pei, Hao; Shu, Wenhao; Chen, Li; Lei, Liang; Zhou, Jinyun

    2016-04-01

    In this paper, we describe a novel reflective sandwiched three-port grating with two dielectric layers. The two-layer sandwiched grating can separate incident wave into the ± 1 and the 0th-order with high-efficiency beam splitting and good splitting ratios for both transverse electric (TE) and transverse magnetic (TM) polarizations. The grating parameters can be optimized by using rigorous coupled-wave analysis (RCWA) with a special duty cycle of 0.6. With the optimized results, efficiencies more than 32% in the ± 1st-orders and the 0th-order can be obtained. Furthermore, performance of the incident bandwidth and aspect ratio can be improved. Compared with conventional surface-relief grating, the grating with sandwiched structure is aimed at cleaning and protecting grating surface. The presented reflective two-layer sandwiched three-port grating would be put into practical applications for its beneficial performances.

  13. Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers

    NASA Astrophysics Data System (ADS)

    Xu, Guoding; Cao, Ming; Liu, Chang; Sun, Jian; Pan, Tao

    2016-05-01

    We study numerically the properties of surface plasmon-polaritons (SPPs) in a gyroelectric slab sandwiched between two graphene layers, where the external static magnetic field is applied in the Voigt geometry. It is shown that the dispersion characteristics and propagation lenghts of the SPPs for both the optical and the acoustic branches can be tuned flexibly by the external magnetic field and graphene's chemical potential, and that the nonreciprocal properties of the SPPs caused by the external magnetic field are rather obvious. The results provide a method for adjusting and improving the dispersion and propagation properties of the SPPs, which might be helpful for the design of the related plasmonic devices.

  14. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles.

    PubMed

    Zhong, Yeteng; Tian, Gan; Gu, Zhanjun; Yang, Yijun; Gu, Lin; Zhao, Yuliang; Ma, Ying; Yao, Jiannian

    2014-05-01

    Nd3+-sensitized quenching-shield sandwich-structured upconversion nanoparticles are reported, which exhibit highly efficient upconversion photoluminescence under excitation by an 800 nm continuous-wave laser. The transition-layer structure is essential to bridge energy transfer from the sensitizer to the activator and simultaneously block energy back-transfer from the activator to the sensitizer. These 800 nm-excited upconversion nanoparticles are a key step toward the development of upconversion nanophosphors for biological applications. PMID:24338994

  15. Thermally stable anomalous Hall behavior in perpendicular Co/Pt multilayers sandwiched by HfO2 layers

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Long; Li, Xu-Jing; Liu, Yi-Wei; Chen, Xi; Liu, Qian-Qian; Han, Gang; Yang, Guang; Wang, Dong-Wei; Zhang, Jing-Yan; Teng, Jiao; Yu, Guang-Hua

    2016-01-01

    The effect of annealing on the anomalous Hall effect (AHE) in perpendicular Co/Pt multilayers sandwiched by HfO2 layers has been studied. It was found that thermally stable AHE features can be obtained in perpendicular Co/Pt multilayers with the introduction of two Co/HfO2 interfaces, leading to the improvement of the skew scattering contribution to the AHE after annealing. On the contrary, thermally stable AHE behavior cannot be observed in Co/Pt multilayers sandwiched by Pt layers or MgO layers because of Co-Pt interdiffusion during annealing.

  16. ACTIV: Sandwich Detector Activity from In-Pile Slowing-Down Spectra Experiment

    2013-08-01

    ACTIV calculates the activities of a sandwich detector, to be used for in-pile measurements in slowing-down spectra below a few keV. The effect of scattering with energy degradation in the filter and in the detectors has been included to a first approximation.

  17. Load-dependent Optimization of Honeycombs for Sandwich Components - New Possibilities by Using Additive Layer Manufacturing

    NASA Astrophysics Data System (ADS)

    Riss, Fabian; Schilp, Johannes; Reinhart, Gunther

    Due to their feasible geometric complexity, additive layer manufacturing (ALM) processes show a highpotential for the production of lightweight components.Therefore, ALM processes enable the realization of bionic-designedcomponents like honeycombs, which are optimized depending upon load and outer boundary conditions.This optimization is based on a closed-loop, three-steps methodology: At first, each honeycomb is conformed to the surface of the part. Secondly, the structure is optimizedfor lightweight design.It is possible to achieve a homogeneous stress distribution in the part by varying the wall thickness, honeycombdiameter and the amount of honeycombs, depending on the subjected stresses and strains. At last, the functional components like threads or bearing carriers are integrated directly into the honeycomb core.Using all these steps as an iterative process, it is possible to reduce the mass of sandwich components about 50 percent compared to conventional approaches.

  18. Parameter Estimation in Hybrid Active-Passive Laminated Sandwich Composite Structures

    SciTech Connect

    Araujo, A. L.; Mota Soares, C. M.; Mota Soares, C. A.

    2010-05-21

    In this article we present recent developments regarding parameter estimation in sandwich structures with viscoelastic frequency dependent core and elastic laminated skin layers, with piezoelectric patch sensors and actuators bonded to the exterior surfaces of the sandwich. The frequency dependent viscoelastic properties of the core material are modelled using fractional derivative models, with unknown parameters that are to be estimated by an inverse technique, using experimentally measured natural frequencies and associated modal loss factors. The inverse problem is formulated as a constrained minimization problem, and gradient based optimization techniques are employed. An application case is presented and discussed, focused on identification of viscoelastic frequency dependent core material properties.

  19. FAST TRACK COMMUNICATION: Emission wavelength extension of mid-infrared InAsSb/InP nanostructures using InGaAsSb sandwich layers

    NASA Astrophysics Data System (ADS)

    Lei, W.; Tan, H. H.; Jagadish, C.

    2010-08-01

    This paper presents a study on the emission wavelength extension of InAsSb nanostructures using InGaAsSb sandwich layers. Due to the reduced lattice mismatch between InAsSb nanostructure layer and buffer/capping layer, the introduction of InGaAsSb sandwich layers leads to larger island size, reduced compressive strain and lower confinement barrier for InAsSb nanostructures, thus resulting in a longer emission wavelength. For InGaAsSb sandwich layers with nominal Sb concentration higher than 10%, type II band alignment is observed for the InAsSb/InGaAsSb heterostructure, which also contributes to the extension of emission wavelength. The InGaAsSb sandwich layers provide an effective approach to extend the emission wavelength of InAsSb nanostructures well beyond 2 µm, which is very useful for device applications in the mid-infrared region.

  20. Design and analysis of a plate-fin sandwich actively cooled structural panel

    NASA Technical Reports Server (NTRS)

    Smith, L. M.

    1978-01-01

    The skin structure of hydrogen fueled hypersonic transport vehicles traveling at Mach 6 and above must be designed to withstand, for relatively long periods of time, the aerodynamic heating effects which are far more severe than those encountered by the supersonic aircraft of today. The use of conventional aircraft materials such as aluminum in combination with forced convection active cooling to accommodate aerodynamic heating is addressed. The basic active cooling concept consists of a stringer stiffened plate-fin sandwich. The sandwich surface is subjected to the aerodynamic heat flux which is transferred, via convection, to a coolant that is forced through the sandwich under pressure. The coolant, in turn, circulates in a closed loop through a hydrogen heat exchanger and back through the skin panel.

  1. Thermo-Elastic Triangular Sandwich Element for the Complete Stress Field Based on a Single-Layer Theory

    NASA Technical Reports Server (NTRS)

    Das, M.; Barut, A.; Madenci, E.; Ambur, D. R.

    2004-01-01

    This study presents a new triangular finite element for modeling thick sandwich panels, subjected to thermo-mechanical loading, based on a {3,2}-order single-layer plate theory. A hybrid energy functional is employed in the derivation of the element because of a C interelement continuity requirement. The single-layer theory is based on five weighted-average field variables arising from the cubic and quadratic representations of the in-plane and transverse displacement fields, respectively. The variations of temperature and distributed loading acting on the top and bottom surfaces are non-uniform. The temperature varies linearly through the thickness.

  2. Distortion-free single point imaging of multi-layered composite sandwich panel structures

    NASA Astrophysics Data System (ADS)

    Marble, Andrew E.; Mastikhin, Igor V.; MacGregor, Rod P.; Akl, Mohamad; LaPlante, Gabriel; Colpitts, Bruce G.; Lee-Sullivan, Pearl; Balcom, Bruce J.

    2004-05-01

    The results of a magnetic resonance imaging (MRI) investigation concerning the effects of an aluminum honeycomb sandwich panel on the B1 and B0 fields and on subsequent image quality are presented. Although the sandwich panel structure, representative of an aircraft composite material, distorts B0 and attenuates B1, distortion-free imaging is possible using single point (constant time) imaging techniques. A new expression is derived for the error caused by gradient field distortion due to the heterogeneous magnetic susceptibility within a sample and this error is shown not to cause geometric distortion in the image. The origin of the B0 distortion in the sample under investigation was also examined. The graphite-epoxy `skin' of the panel is the principal source of the B0 distortion. Successful imaging of these structures sets the stage for the development of methods for detecting moisture ingress and degradation within composite sandwich structures.

  3. Distortion-free single point imaging of multi-layered composite sandwich panel structures.

    PubMed

    Marble, Andrew E; Mastikhin, Igor V; MacGregor, Rod P; Akl, Mohamad; LaPlante, Gabriel; Colpitts, Bruce G; Lee-Sullivan, Pearl; Balcom, Bruce J

    2004-05-01

    The results of a magnetic resonance imaging (MRI) investigation concerning the effects of an aluminum honeycomb sandwich panel on the B1 and B0 fields and on subsequent image quality are presented. Although the sandwich panel structure, representative of an aircraft composite material, distorts B0 and attenuates B1, distortion-free imaging is possible using single point (constant time) imaging techniques. A new expression is derived for the error caused by gradient field distortion due to the heterogeneous magnetic susceptibility within a sample and this error is shown not to cause geometric distortion in the image. The origin of the B0 distortion in the sample under investigation was also examined. The graphite-epoxy 'skin' of the panel is the principal source of the B0 distortion. Successful imaging of these structures sets the stage for the development of methods for detecting moisture ingress and degradation within composite sandwich structures. PMID:15082262

  4. Enhanced antimelanoma activity of methotrexate and zoledronic acid within polymeric sandwiches.

    PubMed

    Schilrreff, Priscila; Cervini, Gabriela; Romero, Eder Lilia; Morilla, Maria Jose

    2014-10-01

    New therapies are urgently needed against melanoma, one of the most aggressive tumors. Melanoma cells are resistant to the antifolate methotrexate (MTX), since MTX is taken up by the folate receptor-α (FRα), sequestered in melanosomes and exported out of the cell. The bisphosphonate zoledronic acid (ZOL) is active in several non-skeletal tumors; however, its antitumoral activity is hampered by its long-term accumulation in bones and low cellular permeability. Recently, we showed that core-shell tecto-dendrimers made of amine-terminated polyamidoamine generation 5 dendrimer (G5) as core and carboxyl-terminated G2.5 dendrimer as shell (G5G2.5) had selective cytotoxicity to melanoma cells. We hypothesized here that the activity of MTX and ZOL on melanoma cells could be enhanced when loaded within G5G2.5. MTX and ZOL were loaded within G5 cores, which were coated by a covalently bound shell of G2.5 dendrimers (drug-sandwiches). 12nm mean diameter and -12mV Z potential drug-sandwiches incorporating 6 and 31 molecules of MTX and ZOL, respectively, per G5G2.5, showed higher cytotoxicity (by MTT and apoptosis/necrosis assays) to melanoma (Sk-Mel-28) cells than free drugs and G5G2.5. Only MTX-sandwich was cytotoxic to Sk-Mel-28 cells and harmless to keratinocytes (HaCaT cells). The intracellular pathway of G5G2.5 was followed using chemical inhibitors of endocytosis. The increased cytotoxicity of MTX-sandwich could be due to its uptake by macropinocytosis instead of by FRα, avoiding MTX exocytosis. The increased cytotoxicity of ZOL-sandwich could be due to an increased intracellular accumulation of ZOL, owed by its endocytic uptake instead of diffusing as free drug. PMID:25016541

  5. Optical fiber strain sensor based on sandwiched long-period fiber gratings with a surface bonding layer

    NASA Astrophysics Data System (ADS)

    Chiang, Chia-Chin; Li, Chien-Hsing

    2014-10-01

    An optical fiber strain sensor based on sandwiched long-period fiber gratings (OFSS-SLPFG) with a surface bonding layer is proposed. The proposed OFSS-SLPFG is an etched optical fiber that is sandwiched between two thick photoresists with a periodic structure. To prevent the glue effect in the surface bonding process, where glue flows into the SLPFG structure, reducing the coupling strength, a surface bonding layer (thickness: 16 μm) is used as the base layer on the bottom of the OFSS-SLPFG. The OFSS-SLPFG is, therefore, more effective for use as a strain sensor. When external strain loading is applied, the resonant dip loss of the OFSS-SLPFG is reflected linearly. A bending strain calibration experiment is demonstrated by the four-point bending test. The results show an average linearity (R2) of 0.980, with a sensitivity of 0.00788 dB/με. This phenomenon suggests that the OFSS-SLPFG can be utilized as a sensitive strain transducer.

  6. Survival of Salmonella in Cookie and Cracker Sandwiches Containing Inoculated, Low-Water Activity Fillings.

    PubMed

    Beuchat, Larry R; Mann, David A

    2015-10-01

    A study was done to determine the rate of inactivation of Salmonella in cookie and cracker snack sandwiches. Two cookie bases (chocolate and vanilla) and cheese crackers, along with high-sugar chocolate and peanut butter-based crème cookie fillings and peanut butter- and cheese-based cracker fillings, were obtained from commercial sources. Fillings and sandwiches containing fillings that had been dry- or wet-inoculated with Salmonella were stored at 25°C for 1, 6, 21, 35, 70, 112, and 182 days (6 months). At initial populations of 3.4 and 3.6 log CFU/g of cookie sandwiches containing chocolate crème and peanut butter crème fillings, respectively, Salmonella survived for at least 182 days; initially at 0.36 log CFU/g, the pathogen survived for at least 35 and 70 days. Initially at 2.9 and 3.4 log CFU/g of cracker sandwiches containing peanut butter- and cheese-based fillings, respectively, Salmonella survived for at least 182 and 112 days; initially at 0.53 log CFU/g, the pathogen survived for at least 6 and 35 days. Inactivation of Salmonella was more rapid in wet-inoculated peanut butter crème cookie filling than in dry-inoculated filling but was less affected by type of inoculum in peanut butter-based cracker filling. Chocolate cookie base (water activity [aw] 0.39) and chocolate crème filling (aw 0.30) components of sandwiches equilibrated to aw 0.38 within 15 days at 25°C; vanilla cookie base (aw 0.21) and peanut butter-based crème filling (aw 0.27) equilibrated to aw 0.24 between 50 and 80 days. Cheese cracker (aw 0.14) and peanut butter-based filling (aw 0.31) or cheese-based filling (aw 0.33) components of sandwiches equilibrated to aw 0.33 in 80 days. The ability of Salmonella to survive for at least 182 days in fillings of cookie and cracker sandwiches demonstrates a need to assure that filling ingredients do not contain the pathogen and that contamination does not occur during manufacture. PMID:26408131

  7. Use of Primary Rat and Human Hepatocyte Sandwich Cultures for Activation of Indirect Carcinogens: Monitoring of DNA Strand Breaks and Gene Mutations in Co-cultured Cells.

    PubMed

    Fahrig, R; Rupp, M; Steinkamp-Zucht, A; Bader, A

    1998-08-01

    Loss of cytochrome P-450 content is a common feature in conventional culture systems of primary hepatocytes. In contrast to the standard in vitro situation, in vivo each hepatocyte is exposed to an extracellular matrix (space of Disse) at two opposing basolateral surfaces. This in vivo symmetry has been reconstructed in vitro by culturing rat or human hepatocytes within two layers of collagen, thus forming a sandwich configuration. Activation of dimethylbenzanthracene (DMBA) or benzo[a]pyrene (BaP) was studied in rat and human hepatocytes. Genotoxic effects were studied in a three-dimensional co-culture model between sandwich hepatocytes and mammalian cells using the comet assay for detection of DNA strand breaks, and the HPRT test for detection of gene mutations. Sandwich hepatocytes generated active metabolites. The maintenance of metabolic properties in hepatocytes was dependent on extracellular matrix geometry. The number of DMBA- or BaP-induced genotoxic effects tended to be higher than in standard S-9 mix assays. While the ability to activate indirect carcinogens disappears within hours in primary hepatocytes, hepatocyte sandwich cultures enhance their ability to activate indirect carcinogens within 1 wk and retain this activity for up to 2 wk. This is the main advantage of the sandwich method over the more simple and conventional assays. While freshly isolated hepatocytes, regardless of whether in sandwich culture or in conventional assays, are injured by the isolation procedure and possess a corresponding reduced activation ability, hepatocytes in sandwich cultures recover over the course of a few days, and acquire a much higher ability to activate indirect carcinogens. Consequently, the indirect carcinogens BaP and DMBA, which were ineffective (BaP) or exhibited only weak effects (DMBA) at a concentration of 160nmol/ml in 1-2-day-old hepatocytes, were clearly effective (BaP) or showed about a threefold increase in genotoxicity (DMBA) in 8-day

  8. It All Starts with a Sandwich: Identification of Sialidases with Trans-Glycosylation Activity.

    PubMed

    Nordvang, Rune T; Nyffenegger, Christian; Holck, Jesper; Jers, Carsten; Zeuner, Birgitte; Sundekilde, Ulrik K; Meyer, Anne S; Mikkelsen, Jørn D

    2016-01-01

    Sialidases (3.2.1.18) may exhibit trans-sialidase activity to catalyze sialylation of lactose if the active site topology is congruent with that of the Trypanosoma cruzi trans-sialidase (EC 2.4.1.-). The present work was undertaken to test the hypothesis that a particular aromatic sandwich structure of two amino acids proximal to the active site of the T. cruzi trans-sialidase infers trans-sialidase activity. On this basis, four enzymes with putative trans-sialidase activity were identified through an iterative alignment from 2909 native sialidases available in GenBank, which were cloned and expressed in Escherichia coli. Of these, one enzyme, SialH, derived from Haemophilus parasuis had an aromatic sandwich structure on the protein surface facing the end of the catalytic site (Phe168; Trp366), and was indeed found to exhibit trans-sialidase activity. SialH catalyzed production of the human milk oligosaccharide 3'-sialyllactose as well as the novel trans-sialylation product 3-sialyllactose using casein glycomacropeptide as sialyl donor and lactose as acceptor. The findings corroborated that Tyr119 and Trp312 in the T. cruzi trans-sialidase are part of an aromatic sandwich structure that confers trans-sialylation activity for lactose sialylation. The in silico identification of trans-glycosidase activity by rational active site topology alignment thus proved to be a quick tool for selecting putative trans-sialidases amongst a large group of glycosyl hydrolases. The approach moreover provided data that help understand structure-function relations of trans-sialidases. PMID:27367145

  9. It All Starts with a Sandwich: Identification of Sialidases with Trans-Glycosylation Activity

    PubMed Central

    Nordvang, Rune T.; Nyffenegger, Christian; Holck, Jesper; Jers, Carsten; Sundekilde, Ulrik K.; Meyer, Anne S.; Mikkelsen, Jørn D.

    2016-01-01

    Sialidases (3.2.1.18) may exhibit trans-sialidase activity to catalyze sialylation of lactose if the active site topology is congruent with that of the Trypanosoma cruzi trans-sialidase (EC 2.4.1.-). The present work was undertaken to test the hypothesis that a particular aromatic sandwich structure of two amino acids proximal to the active site of the T. cruzi trans-sialidase infers trans-sialidase activity. On this basis, four enzymes with putative trans-sialidase activity were identified through an iterative alignment from 2909 native sialidases available in GenBank, which were cloned and expressed in Escherichia coli. Of these, one enzyme, SialH, derived from Haemophilus parasuis had an aromatic sandwich structure on the protein surface facing the end of the catalytic site (Phe168; Trp366), and was indeed found to exhibit trans-sialidase activity. SialH catalyzed production of the human milk oligosaccharide 3’-sialyllactose as well as the novel trans-sialylation product 3-sialyllactose using casein glycomacropeptide as sialyl donor and lactose as acceptor. The findings corroborated that Tyr119 and Trp312 in the T. cruzi trans-sialidase are part of an aromatic sandwich structure that confers trans-sialylation activity for lactose sialylation. The in silico identification of trans-glycosidase activity by rational active site topology alignment thus proved to be a quick tool for selecting putative trans-sialidases amongst a large group of glycosyl hydrolases. The approach moreover provided data that help understand structure-function relations of trans-sialidases. PMID:27367145

  10. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo

    2016-03-01

    In order to improve the reliability of TFT, an Al2O3 insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al2O3 layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V o2+ toward the interface between the gate insulator and the semiconductor. The inserted Al2O3 triple layer exhibits a noticeably low turn on voltage shift of -0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm2/V ṡ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.

  11. Experiments and simulated calculations on the resistance to low-velocity impact of layered plates with a sandwiched ERM

    NASA Astrophysics Data System (ADS)

    Zhao, Yinyan; Xiao, Tianyuan; Xue, Sixin; Dong, Janhua

    2004-04-01

    Comparison experiments and simulated calculations are conducted on the resistance to low-velocity (or low-energy) impact of layered structures with and without an electro-rheological material (ERM) sandwiched, under different electric voltages applied to the ERM layer. From the experiments, it is found that the stiffness of the specimen under different electric intensities applied to the ERM layer is approximately a constant. From the calculations, within the range of 0.0 kV/mm⩽ E⩽3.5 kV/mm, the resistance to impact decreases somewhat with the increasing electric intensity for the layered composite specimens. The same conclusion is obtained for a layered aluminum plate within the range of 0.0 kV/mm⩽ E⩽0.75 kV/mm. Meanwhile, data from the experiments and calculations show that these results are repeatable under different impact velocities. Further analysis by computations shows that the change of viscous proportional damping, [ C]= α[ M]+ β[ C], is the main cause of the reduction of the specimen's resistance to impact, where the stiffness coefficient β is the key factor.

  12. Non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels using active thermography

    NASA Astrophysics Data System (ADS)

    Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; López, I.

    2012-11-01

    The aerospace industry is in constant need of ever-more efficient inspection methods for quality control. Product inspection is also essential to maintain the safe operation of aircraft components designed to perform for decades. This paper proposes a method for non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels. Honeycomb sandwich panels are extensively employed in the aerospace industry due to their high strength and stiffness to weight ratios. In order to attach additional structures to them, panels are reinforced by filling honeycomb cells and drilling holes into the reinforced areas. The proposed procedure is designed to detect the position of the holes within the reinforced area and to provide a robust measurement of the distance between each hole and the boundary of the reinforced area. The result is a fast, safe and clean inspection method for drilled holes in reinforced honeycomb sandwich panels that can be used to robustly assess a possible displacement of the hole from the center of the reinforced area, which could have serious consequences. The proposed method is based on active infrared thermography, and uses state of the art methods for infrared image processing, including signal-to-nose ratio enhancement, hole detection and segmentation. Tests and comparison with X-ray inspections indicate that the proposed system meets production needs.

  13. Ambient temperature fatigue tests of elements of an actively cooled honeycomb sandwich structural panel

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Elber, W.

    1977-01-01

    Elements of an actively cooled structural panel for a hypersonic aircraft have been investigated for fatigue characteristics. The study involved a bonded honeycomb sandwich panel with d-shaped coolant tubes. The curved portion of these tubes was embedded in the honeycomb, and the flat portion was bonded or soldered to the inner surface of the outer skin. The elements examined were two plain skin specimens (aluminum alloy); two specimens with skins attached to manifolds and tubes (one specimen was bonded, the other soldered); and a specimen representative of a corner section of the complete cooled sandwich. Sinusoidal loads were applied to all specimens. The honeycomb sandwich specimen was loaded in both tension and compression; the other specimens were loaded in tension only. The cooling tubes were pressurized with oil throughout the fatigue tests. The most significant results of these tests follow: All specimens exceeded their design life of 20,000 cycles without damage. Crack growth rates obtained in the plain skin specimens were used to determine the crack growth characteristics of aluminum alloy. Cracks in skins either bonded or soldered to cooling tubes propagated past the tubes without penetration. The coolant tubes served as crack arresters and temporarily stopped crack growth when a crack reached a tube-skin interface. The honeycomb core demonstrated that it could contain leakage from a tube.

  14. High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Koch, L. C.; Pagel, L. L.

    1978-01-01

    The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.

  15. A brilliant sandwich type fluorescent nanostructure incorporating a compact quantum dot layer and versatile silica substrates.

    PubMed

    Huang, Liang; Wu, Qiong; Wang, Jing; Foda, Mohamed; Liu, Jiawei; Cai, Kai; Han, Heyou

    2014-03-18

    A "hydrophobic layer in silica" structure was designed to integrate a compact quantum dot (QD) layer with high quantum yield into scalable silica hosts containing desired functionality. This was based on metal affinity driven assembly of hydrophobic QDs with versatile silica substrates and homogeneous encapsulation of organosilica/silica layers. PMID:24492702

  16. Sandwiched assembly of ZnO nanowires between graphene layers for a self-powered and fast responsive ultraviolet photodetector.

    PubMed

    Boruah, Buddha Deka; Mukherjee, Anwesha; Misra, Abha

    2016-03-01

    A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials. PMID:26857833

  17. Sandwiched assembly of ZnO nanowires between graphene layers for a self-powered and fast responsive ultraviolet photodetector

    NASA Astrophysics Data System (ADS)

    Deka Boruah, Buddha; Mukherjee, Anwesha; Misra, Abha

    2016-03-01

    A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.

  18. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.

    2015-08-01

    The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.

  19. C@SiNW/TiO2 Core-Shell Nanoarrays with Sandwiched Carbon Passivation Layer as High Efficiency Photoelectrode for Water Splitting

    PubMed Central

    Devarapalli, Rami Reddy; Debgupta, Joyashish; Pillai, Vijayamohanan K.; Shelke, Manjusha V.

    2014-01-01

    One-dimensional heterostructure nanoarrays are efficiently promising as high performance electrodes for photo electrochemical (PEC) water splitting applications, wherein it is highly desirable for the electrode to have a broad light absorption, efficient charge separation and redox properties as well as defect free surface with high area suitable for fast interfacial charge transfer. We present highly active and unique photoelectrode for solar H2 production, consisting of silicon nanowires (SiNWs)/TiO2 core-shell structures. SiNWs are passivated to reduce defect sites and protected against oxidation in air or water by forming very thin carbon layer sandwiched between SiNW and TiO2 surfaces. This carbon layer decreases recombination rates and also enhances the interfacial charge transfer between the silicon and TiO2. A systematic investigation of the role of SiNW length and TiO2 thickness on photocurrent reveals enhanced photocurrent density up to 5.97 mA/cm2 at 1.0 V vs.NHE by using C@SiNW/TiO2 nanoarrays with photo electrochemical efficiency of 1.17%. PMID:24810865

  20. A ceramic damage model for analyses of multi-layered ceramic-core sandwich panels under blast wave pressure loading

    NASA Astrophysics Data System (ADS)

    Lee, Keejoo

    2005-11-01

    A damage model for ceramic materials is developed and incorporated into the geometrically nonlinear solid shell element formulation for dynamic analyses of multi-layered ceramic armor panels under blast wave pressure loading. The damage model takes into account material behaviors observed from multi-axial dynamic tests on Aluminum Nitride (AlN) ceramic. The ceramic fails in a brittle or gradual fashion, depending upon the hydrostatic pressure and applied strain-rate. In the model, the gradual failure is represented by two states: the initial and final failure states. These states are described by two separate failure surfaces that are pressure-dependent and strain-rate-dependent. A scalar damage parameter is defined via using the two failure surfaces, based on the assumption that the local stress state determines material damage and its level. In addition, the damage model accounts for the effect of existing material damage on the new damage. The multi-layered armor panel of interest is comprised of an AlN-core sandwich with unidirectional composite skins and a woven composite back-plate. To accommodate the material damage effect of composite layers, a composite failure model in the open literature is adopted and modified into two separate failure models to address different failure mechanisms of the unidirectional and woven composites. In addition, the effect of strain-rates on the material strengths is incorporated into the composite failure models. For finite element modeling, multiple eighteen-node elements are used in the thickness direction to properly describe mechanics of the multi-layered panel. Dynamic analyses of a multi-layered armor panel are conducted under blast wave pressure loadings. The resulting dynamic responses of the panel demonstrate that dynamic analyses that do not take into account material damage and failure significantly under-predict the peak displacement. The under-prediction becomes more pronounced as the blast load level increases

  1. Fluxless Brazing and Heat Treatment of a Plate-Fin Sandwich Actively Cooled Panel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.

    1978-01-01

    The processes and techniques used to fabricate plate-fin sandwich actively cooled panels are presented. The materials were 6061 aluminum alloy and brazing sheet having clad brazing alloy. The panels consisted of small scale specimens, fatigue specimens, and a large 0.61 m by 1.22 m test panel. All panels were fluxless brazed in retorts in heated platen presses while exerting external pressure to assure intimate contact of details. Distortion and damage normally associated with that heat treatment were minimized by heat treating without fixtures and solution quenching in an organic polymer solution. The test panel is the largest fluxless brazed and heat treated panel of its configuration known to exist.

  2. A sandwich ELISA for the conformation-specific quantification of the activated form of human Bax.

    PubMed

    Teijido, Oscar; Ganesan, Yogesh Tengarai; Llanos, Raul; Peton, Ashley; Urtecho, Jean-Baptiste; Soprani, Adauri; Villamayor, Aimee; Antonsson, Bruno; Manon, Stéphen; Dejean, Laurent

    2016-03-15

    Bcl-2 family proteins are critical regulators of mitochondrial outer membrane permeabilization (MOMP), which represents the point of no return of apoptotic cell death. The exposure of the Bax N-terminus at the mitochondria reflects Bax activation; and this activated configuration of the Bax protein is associated with MOMP. N-terminal exposure can be detected using specific monoclonal and/or polyclonal antibodies, and the onset of activated Bax has extensively been used as an early marker of apoptosis. The protocols of immunoprecipitation and/or immunocytochemistry commonly used to detect activated Bax are long and tedious, and allow semiquantification of the antigen at best. The sandwich ELISA protocol we developed has a 5 ng/mL detection limit and is highly specific for the activated conformation of Bax. This ELISA allows a rapid quantification of activated human Bax in whole cells and isolated mitochondria protein extracts. These properties grant this assay the potential to further clarify the prognostic and diagnostic value of activated Bax in disorders associated with deregulated apoptotic pathways such as degenerative diseases or cancer. PMID:26748144

  3. Effects of the energy-separation filter on the performance of each detector layer in the sandwich detector for single-shot dual-energy imaging

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kim, D. W.; Kam, S.; Park, E.; Youn, H.; Kim, H. K.

    2016-02-01

    A novel sandwich-style single-shot detector has been built by stacking two indirect-conversion flat-panel detectors for preclinical dual-energy mouse imaging. Although this single-shot method is more immune to motion artifacts compared with the conventional dual-shot method (i.e., fast kVp switching), it may suffer from reduced image quality because of poor spectral separation between the two detectors. Spectral separation can be improved by using an intermediate filter between the two detector layers. Adversely, the filter reduces the number of x-ray photons reaching the rear detector, hence probably increasing image noise. For a better design and practical use of the sandwich detector for single-shot dual-energy imaging, imaging performances of each detector layer in the sandwich detector are investigated for various spectral-separation extents and applied tube voltages. The imaging performances include the modulation-transfer function, the Wiener noise-power spectrum, and the detective quantum efficiency. According to the experimental results, impacts of the intermediate filter on the imaging performances of each detector layer are marginal. The detailed experimental results are shown in this study.

  4. Super-fast switching of liquid crystals sandwiched between highly conductive graphene oxide/dimethyl sulfate doped PEDOT:PSS composite layers

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Yifan; Oh, Byeong-Yun; Seo, Dae-Shik; Li, Xiangdan

    2016-05-01

    Graphene oxide (GO)-doped dimethyl sulfate (DMS)/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) superconductive alignment layer, aligning liquid crystals (LCs) with super switching and non-residual direct current (non-residual DC) performance, is presented in this manuscript. Doping of GO increased the pristine polar energy of a thin composite layer as well as the corresponding anchoring energy of the LCs sandwiched between these thin layers but only slightly affected the thin layers' morphology. When rubbed GO/DMS/PEDOT:PSS composite layers were used as alignment layers, a homogeneous alignment of nematic LCs was observed with competitive optoelectrical switching properties and non-residual DC performance because of the enhanced field effect and charge transport induced by the doped GO.

  5. Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers

    NASA Astrophysics Data System (ADS)

    Toudert, J.; Camelio, S.; Babonneau, D.; Denanot, M.-F.; Girardeau, T.; Espiños, J. P.; Yubero, F.; Gonzalez-Elipe, A. R.

    2005-12-01

    Nanocermet trilayered thin films consisting of silver nanoclusters sandwiched between two dielectric layers (the buffer and the cap) have been synthesized by ion-beam sputtering with an alternate deposition of the metal and the dielectric species. The influence of the amount of silver, the nature of the buffer and the cap (BN or Si3N4), and a time delay before the cap deposition on clusters morphology and repartition have been investigated by transmission electron microscopy. It has been observed that the clusters display truncated ellipsoidal shapes in which the height to diameter ratio H /D decreases as the amount of deposited silver increases. For a given amount of silver, this ratio is lower in the case of a Si3N4 cap, whatever the nature of the buffer. Two explanations are proposed to account for this "cap effect" on clusters morphology: the first one is based on a calculation of the H /D minimizing the surface free energy of the clusters embedded between the buffer and the cap; the second one holds on the shape relaxation of the coalesced nonequilibrium clusters towards their equilibrium shape with the buffer, this process occurring until clusters are fully covered with the cap. Because of the higher deposition rate of Si3N4 compared to BN, a Si3N4 cap would allow a less efficient reshaping and consequently lead to flatter clusters. This explanation is supported by the temporal evolution of clusters morphology and repartition observed during the time delay before deposition of the cap. The evolution of the spectral position of the surface-plasmon resonance (SPR) of the trilayers as a function of their structure has also been investigated by optical transmittance measurements. The influence of cluster morphology, as well as the nature of the buffer and the cap on the SPR spectral position are discussed.

  6. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films

    PubMed Central

    Iqbal, M Waqas; Iqbal, M Zahir; Khan, M Farooq; Shehzad, M Arslan; Seo, Yongho; Park, Jong Hyun; Hwang, Chanyong; Eom, Jonghwa

    2015-01-01

    An emerging electronic material as one of transition metal dichalcogenides (TMDCs), tungsten disulfide (WS2) can be exfoliated as an atomically thin layer and can compensate for the drawback of graphene originating from a gapless band structure. A direct bandgap, which is obtainable in single-layer WS2, is an attractive characteristic for developing optoelectronic devices, as well as field-effect transistors. However, its relatively low mobility and electrical characteristics susceptible to environments remain obstacles for the use of device materials. Here, we demonstrate remarkable improvement in the electrical characteristics of single-layer WS2 field-effect transistor (SL-WS2 FET) using chemical vapor deposition (CVD)-grown hexagonal BN (h-BN). SL-WS2 FET sandwiched between CVD-grown h-BN films shows unprecedented high mobility of 214 cm2/Vs at room temperature. The mobility of a SL-WS2 FET has been found to be 486 cm2/Vs at 5 K. The ON/OFF ratio of output current is ~107 at room temperature. Apart from an ideal substrate for WS2 FET, CVD-grown h-BN film also provides a protection layer against unwanted influence by gas environments. The h-BN/SL-WS2/h-BN sandwich structure offers a way to develop high-quality durable single-layer TMDCs electronic devices. PMID:26030008

  7. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films.

    PubMed

    Iqbal, M Waqas; Iqbal, M Zahir; Khan, M Farooq; Shehzad, M Arslan; Seo, Yongho; Park, Jong Hyun; Hwang, Chanyong; Eom, Jonghwa

    2015-01-01

    An emerging electronic material as one of transition metal dichalcogenides (TMDCs), tungsten disulfide (WS2) can be exfoliated as an atomically thin layer and can compensate for the drawback of graphene originating from a gapless band structure. A direct bandgap, which is obtainable in single-layer WS2, is an attractive characteristic for developing optoelectronic devices, as well as field-effect transistors. However, its relatively low mobility and electrical characteristics susceptible to environments remain obstacles for the use of device materials. Here, we demonstrate remarkable improvement in the electrical characteristics of single-layer WS2 field-effect transistor (SL-WS2 FET) using chemical vapor deposition (CVD)-grown hexagonal BN (h-BN). SL-WS2 FET sandwiched between CVD-grown h-BN films shows unprecedented high mobility of 214 cm(2)/Vs at room temperature. The mobility of a SL-WS2 FET has been found to be 486 cm(2)/Vs at 5 K. The ON/OFF ratio of output current is ~10(7) at room temperature. Apart from an ideal substrate for WS2 FET, CVD-grown h-BN film also provides a protection layer against unwanted influence by gas environments. The h-BN/SL-WS2/h-BN sandwich structure offers a way to develop high-quality durable single-layer TMDCs electronic devices. PMID:26030008

  8. Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.

    1978-01-01

    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).

  9. Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism.

    PubMed

    Harris, Joseph A; Wu, Chien-Te; Woldorff, Marty G

    2011-01-01

    It is generally agreed that considerable amounts of low-level sensory processing of visual stimuli can occur without conscious awareness. On the other hand, the degree of higher level visual processing that occurs in the absence of awareness is as yet unclear. Here, event-related potential (ERP) measures of brain activity were recorded during a sandwich-masking paradigm, a commonly used approach for attenuating conscious awareness of visual stimulus content. In particular, the present study used a combination of ERP activation contrasts to track both early sensory-processing ERP components and face-specific N170 ERP activations, in trials with versus without awareness. The electrophysiological measures revealed that the sandwich masking abolished the early face-specific N170 neural response (peaking at ~170 ms post-stimulus), an effect that paralleled the abolition of awareness of face versus non-face image content. Furthermore, however, the masking appeared to render a strong attenuation of earlier feedforward visual sensory-processing signals. This early attenuation presumably resulted in insufficient information being fed into the higher level visual system pathways specific to object category processing, thus leading to unawareness of the visual object content. These results support a coupling of visual awareness and neural indices of face processing, while also demonstrating an early low-level mechanism of interference in sandwich masking. PMID:21669859

  10. Active vibration control of a sandwich plate by non-collocated positive position feedback

    NASA Astrophysics Data System (ADS)

    Ferrari, Giovanni; Amabili, Marco

    2015-04-01

    The active vibration control of a free rectangular sandwich plate by using the Positive Position Feedback (PPF) algorithm was experimentally investigated in a previous study. Four normal modes were controlled by four nearly collocated couples of piezoelectric sensors and actuators. The experimental results of the control showed some limitation, especially in the Multi-Input Multi-Output (MIMO) configuration. This was attributed to the specific type of sensors and their conditioning, as well as to the phase shifts present in the vibration at different points of the structure. An alternative approach is here undertaken by abandoning the configuration of quasi-perfect collocation between sensor and actuator. The positioning of the piezoelectric patches is still led by the strain energy value distribution on the plate; each couple of sensor and actuator is now placed on the same face of the plate but in two distinct positions, opposed and symmetrical with respect to the geometric center of the plate. Single-Input Single-Output (SISO) PPF is tested and the transfer function parameters of the controller are tuned according to the measured values of modal damping. Then the participation matrices necessary for the MIMO control algorithm are determined by means of a completely experimental procedure. PPF is able to mitigate the vibration of the first four natural modes, in spite of the rigid body motions due to the free boundary conditions. The amplitude reduction achieved with the non-collocated configuration is much larger than the one obtained with the nearby collocated one. The phase lags were addressed in the MIMO algorithm by correction phase delays, further increasing the performance of the controller.

  11. High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers

    PubMed Central

    Kim, Yeonho; Kim, Sang Jin; Cho, Sung-Pyo; Hong, Byung Hee; Jang, Du-Jeon

    2015-01-01

    Ultraviolet (UV) light photodetectors constructed from solely inorganic semiconductors still remain unsatisfactory because of their low electrical performances. To overcome this limitation, the hybridization is one of the key approaches that have been recently adopted to enhance the photocurrent. High-performance UV photodetectors showing stable on-off switching and excellent spectral selectivity have been fabricated based on the hybrid structure of solution-grown ZnS nanobelts and CVD-grown graphene. Sandwiched structures and multilayer stacking strategies have been applied to expand effective junction between graphene and photoactive ZnS nanobelts. A multiply sandwich-structured photodetector of graphene/ZnS has shown a photocurrent of 0.115 mA under illumination of 1.2 mWcm−2 in air at a bias of 1.0 V, which is higher 107 times than literature values. The multiple-sandwich structure of UV-light sensors with graphene having high conductivity, flexibility, and impermeability is suggested to be beneficial for the facile fabrication of UV photodetectors with extremely efficient performances. PMID:26197784

  12. High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers.

    PubMed

    Kim, Yeonho; Kim, Sang Jin; Cho, Sung-Pyo; Hong, Byung Hee; Jang, Du-Jeon

    2015-01-01

    Ultraviolet (UV) light photodetectors constructed from solely inorganic semiconductors still remain unsatisfactory because of their low electrical performances. To overcome this limitation, the hybridization is one of the key approaches that have been recently adopted to enhance the photocurrent. High-performance UV photodetectors showing stable on-off switching and excellent spectral selectivity have been fabricated based on the hybrid structure of solution-grown ZnS nanobelts and CVD-grown graphene. Sandwiched structures and multilayer stacking strategies have been applied to expand effective junction between graphene and photoactive ZnS nanobelts. A multiply sandwich-structured photodetector of graphene/ZnS has shown a photocurrent of 0.115 mA under illumination of 1.2 mWcm(-2) in air at a bias of 1.0 V, which is higher 10(7) times than literature values. The multiple-sandwich structure of UV-light sensors with graphene having high conductivity, flexibility, and impermeability is suggested to be beneficial for the facile fabrication of UV photodetectors with extremely efficient performances. PMID:26197784

  13. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2016-03-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  14. Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half-space

    NASA Astrophysics Data System (ADS)

    Saha, Anup; Kundu, Santimoy; Gupta, Shishir; Vaishnav, Pramod Kumar

    2016-06-01

    The present paper is concerned with the propagation of torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half-space. We assume the quadratic inhomogeneity in rigidity and density in the lower half-space and irregularity is taken in the form of rectangle at the interface separating the layer from the lower half-space. The dispersion equation for torsional waves has been obtained in a closed form. Velocity equation is also obtained in the absence of irregularity. The study reveals that the presence of irregularity, initial stress, porosity, inhomogeneity and anisotropy factor in the dispersion equation approves the significant effect of these parameters in the propagation of torsional waves in porous medium. It has also been observed that for a uniform media, the velocity equation reduces to the classical result of Love wave.

  15. Composite surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a periodically multilayered isotropic dielectric material

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple p- and s-polarized compound surface-plasmon-polariton (SPP) waves at a fixed frequency can be guided by a structure consisting of a metal layer sandwiched between a homogeneous isotropic dielectric (HID) material and a periodic multilayered isotropic dielectric (PMLID) material. For any thickness of the metal layer, at least one compound SPP wave must exist. It possesses the p-polarization state, and is strongly bound to the metal/HID interface when the metal thickness is large but to both metal/dielectric interfaces when the metal thickness is small. When the metal layer vanishes, this compound SPP wave transmutes into a Tamm wave. Additional compound SPP waves exist, depending on the thickness of the metal layer, the relative permittivity of the HID material, and the period and composition of the PMLID material. Some of these are p-polarized, the others are s-polarized. All of them differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. The multiplicity and dependence of the number of compound SPP waves on the relative permittivity of the HID material when the metal layer is thin could be useful for optical sensing applications and intrachip plasmonic optical communication.

  16. Atomic-layer-deposited Al2O3-HfO2 laminated and sandwiched dielectrics for metal insulator metal capacitors

    NASA Astrophysics Data System (ADS)

    Ding, Shi-Jin; Zhang, David Wei; Wang, Li-Kang

    2007-02-01

    Metal-insulator-metal (MIM) capacitors with atomic-layer-deposited Al2O3-HfO2 laminated and sandwiched dielectrics have been fabricated and electrically compared for analog circuit applications. The experimental results indicate that the laminated dielectrics exhibit much better leakage and breakdown characteristics than the sandwiched ones while maintaining higher capacitance densities and acceptable voltage linearity. In respect of the 1 nm Al2O3 and 10 nm HfO2 laminated dielectric, the resulting capacitor offers an extremely low leakage current of 2.4 × 10-9 A cm-2 at 8 V and a breakdown electric field of ~3.3 MV cm-1 at 125 °C together with a capacitance density of ~3.1 fF µm-2 and voltage coefficients of capacitance of 100 ppm V-2 and -80 ppm V-1 at 100 kHz. The superiority of the laminated dielectrics correlates with inhibition of HfO2 crystallization, discontinuity of the grain boundary channels from the top to the bottom and changes of the dielectric electronic properties due to the bonding and polarization effects at the multi-interfaces.

  17. A novel diiminopyridine ligand containing redox active Co(III) mixed sandwich complexes.

    PubMed

    Magdzinski, Eleanor; Gobbo, Pierangelo; Workentin, Mark S; Ragogna, Paul J

    2013-10-01

    The synthesis of a diiminopyridine (DIMPY) ligand containing pendant mixed sandwich cobaltocene functionalities on the imine nitrogens was prepared and characterized (18). Its reactivity with 2 equiv of GeCl2·dioxane and SnCl2 in THF yields the respective Lewis base mediated autoionization products (18Ge and 18Sn). Analogous low-valent complexes utilizing an N,N'- differocenyl diiminopyridine support were also prepared (15Ge and 15Sn). All compounds were characterized by spectroscopic and X-ray crystallographic methods. Electrochemical studies were conducted for both 15Sn and the precursor of 18. PMID:24050633

  18. Resistance switching memory characteristics of CaF2/Si/CaF2 resonant-tunneling quantum-well heterostructures sandwiched by nanocrystalline Si secondary barrier layers

    NASA Astrophysics Data System (ADS)

    Kuwata, Yuya; Suda, Keita; Watanabe, Masahiro

    2016-07-01

    A novel resistance switching memory using CaF2/Si/CaF2 resonant-tunneling quantum well heterostructures sandwiched by nanocrystalline Si (nc-Si) as secondary barrier layers has been proposed and the room temperature current–voltage characteristics of the basic resistance switching memory operation have been demonstrated. A resistance switching voltage of 1.0 V, a peak current density of approximately 42 kA/cm2, and an ON/OFF ratio of 2.8 were observed. In particular, more than 28000 write-read-erase cyclic memory operations have been demonstrated by applying pulsed input voltage sequences, which suggests better endurance than the device using a CaF2/CdF2/CaF2 heterostructure.

  19. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers

    NASA Astrophysics Data System (ADS)

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-02-01

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180o.

  20. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers.

    PubMed

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-01-01

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180(°). PMID:26846891

  1. FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein

    SciTech Connect

    Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; Tripp, Patrick; Arvai, Andrew  S.; Ishida, Justin  P.; Tainer, John  A.; Albers, Sonja -Verena

    2015-05-01

    Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is a paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.

  2. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries

    PubMed Central

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-01-01

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g−1 at a high rate of 100C even after 1000 cycles. PMID:25476980

  3. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-01

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g-1 at a high rate of 100C even after 1000 cycles.

  4. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers

    PubMed Central

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-01-01

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180o. PMID:26846891

  5. FlaF is a β-sandwich protein that anchors the archaellum in the archaeal cell envelope by binding the S-layer protein

    DOE PAGESBeta

    Banerjee, Ankan; Tsai, Chi -Lin; Chaudhury, Paushali; Tripp, Patrick; Arvai, Andrew  S.; Ishida, Justin  P.; Tainer, John  A.; Albers, Sonja -Verena

    2015-05-01

    Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is amore » paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope.« less

  6. FlaF Is a β-Sandwich Protein that Anchors the Archaellum in the Archaeal Cell Envelope by Binding the S-Layer Protein

    PubMed Central

    Banerjee, Ankan; Tsai, Chi-Lin; Chaudhury, Paushali; Tripp, Patrick; Arvai, Andrew S.; Ishida, Justin P.; Tainer, John A.; Albers, Sonja-Verena

    2015-01-01

    Summary Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is a paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope. PMID:25865246

  7. Vibration control of cylindrical shells using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  8. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides.

    PubMed

    Terrones, Humberto; López-Urías, Florentino; Terrones, Mauricio

    2013-01-01

    Although bulk hexagonal phases of layered semiconducting transition metal dichalcogenides (STMD) such as MoS2, WS2, WSe2 and MoSe2 exhibit indirect band gaps, a mono-layer of STMD possesses a direct band gap which could be used in the construction of novel optoelectronic devices, catalysts, sensors and valleytronic components. Unfortunately, the direct band gap only occurs for mono-layered STMD. We have found, using first principles calculations, that by alternating individual layers of different STMD (MoS2, WS2, WSe2 and MoSe2) with particular stackings, it is possible to generate direct band gap bi-layers ranging from 0.79 eV to 1.157 eV. Interestingly, in this direct band gap, electrons and holes are physically separated and localized in different layers. We foresee that the alternation of different STMD would result in the fabrication of materials with unprecedented optical and physico-chemical properties that would need further experimental and theoretical investigations. PMID:23528957

  9. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides

    PubMed Central

    Terrones, Humberto; López-Urías, Florentino; Terrones, Mauricio

    2013-01-01

    Although bulk hexagonal phases of layered semiconducting transition metal dichalcogenides (STMD) such as MoS2, WS2, WSe2 and MoSe2 exhibit indirect band gaps, a mono-layer of STMD possesses a direct band gap which could be used in the construction of novel optoelectronic devices, catalysts, sensors and valleytronic components. Unfortunately, the direct band gap only occurs for mono-layered STMD. We have found, using first principles calculations, that by alternating individual layers of different STMD (MoS2, WS2, WSe2 and MoSe2) with particular stackings, it is possible to generate direct band gap bi-layers ranging from 0.79 eV to 1.157 eV. Interestingly, in this direct band gap, electrons and holes are physically separated and localized in different layers. We foresee that the alternation of different STMD would result in the fabrication of materials with unprecedented optical and physico-chemical properties that would need further experimental and theoretical investigations. PMID:23528957

  10. Analysis of an Interface Crack for a Functionally Graded Strip Sandwiched between Two Homogeneous Layers of Finite Thickness

    NASA Technical Reports Server (NTRS)

    Shbeeh, N. I.; Binienda, W. K.

    1999-01-01

    The interface crack problem for a composite layer that consists of a homogeneous substrate, coating and a non-homogeneous interface was formulated for singular integral equations with Cauchy kernels and integrated using the Lobatto-Chebyshev collocation technique. Mixed-mode Stress Intensity Factors and Strain Energy Release Rates were calculated. The Stress Intensity Factors were compared for accuracy with relevant results previously published. The parametric studies were conducted for the various thickness of each layer and for various non-homogeneity ratios. Particular application to the Zirconia thermal barrier on steel substrate is demonstrated.

  11. Love-type waves in functionally graded piezoelectric material (FGPM) sandwiched between initially stressed layer and elastic substrate

    NASA Astrophysics Data System (ADS)

    Saroj, Pradeep K.; Sahu, S. A.; Chaudhary, S.; Chattopadhyay, A.

    2015-10-01

    This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.

  12. Effect of keratin-gelatin and bFGF-gelatin composite film as a sandwich layer for full-thickness skin mesh graft in experimental dogs.

    PubMed

    Thilagar, S; Jothi, N Arul; Omar, A R Sheikh; Kamaruddin, M Y; Ganabadi, Shanthi

    2009-01-01

    Skin grafts are indicated when there is a major loss of skin. Full-thickness skin graft is an ideal choice to reconstruct defect of irregular surface that is difficult to immobilize. Full-thickness mesh grafts can be applied to patch large skin defect when there is less donor site in extensively traumatized and burned surgical patients. The concept of using natural biomaterials such as keratin, basic fibroblast growth factor is slowly gaining popularity in the field of medical research to achieve early healing. The main objective of this study is to evaluate the efficacy of gelatin conjoined with keratin processed from the poultry feather and commercially available basic fibroblast growth factor (bFGF) as a sandwich layer in promoting the viability of full-thickness skin mesh grafts. The efficacy was assessed from the observation of clinical, bacteriological, and histopathological findings in three groups of experimental dogs. The clinical observations such as color, appearance and discharge, and hair growth were selected as criteria which indicated good and early acceptance of graft in keratin-gelatin (group II). On bacteriological examination, Staphylococcus aureus and Proteus was identified in few animals. Histopathological study of the patched graft revealed early presences of hair follicles; sebaceous gland, and normal thickness of the epidermis in keratin-gelatin in group II treated animals compared with other group (group I-control, group III-bFGF-gelatin). PMID:18161832

  13. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    SciTech Connect

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H. Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).

  14. Solution structure of the hypothetical protein TA0095 from Thermoplasma acidophilum: A novel superfamily with a two-layer sandwich architecture

    PubMed Central

    León, Esther; Yee, Adelinda; Ortíz, Angel R.; Santoro, Jorge; Rico, Manuel; Jiménez, M. Angeles

    2007-01-01

    TA0095 is a 96-residue hypothetical protein from Thermoplasma acidophilum that exhibits no sequence similarity to any protein of known structure. Also, TA0095 is a member of the COG4004 orthologous group of unknown function found in Archaea bacteria. We determined its three-dimensional structure by NMR methods. The structure displays an α/β two-layer sandwich architecture formed by three α-helices and five β-strands following the order β1-α1-β2-β3-β4-β5-α2-α3. Searches for structural homologs indicate that the TA0095 structure belongs to the TBP-like fold, constituting a novel superfamily characterized by an additional C-terminal helix. The TA0095 structure provides a fold common to the COG4004 proteins that will obviously belong to this new superfamily. Most hydrophobic residues conserved in the COG4004 proteins are buried in the structure determined herein, thus underlying their importance for structure stability. Considering that the TA0095 surface shows a large positively charged patch with a high degree of residue conservation within the COG4004 domain, the biological function of TA0095 and the rest of COG4004 proteins might occur through binding a negatively charged molecule. Like other TBP-like fold proteins, the COG4004 proteins might be DNA-binding proteins. The fact that TA0095 is shown to interact with large DNA fragments is in favor of this hypothesis, although nonspecific DNA binding cannot be ruled out. PMID:17766377

  15. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  16. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    PubMed Central

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-01-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics. PMID:26877263

  17. Prospects and limitations of digital Shearography and Active Thermography in finding and rating flaws in CFRP sandwich parts with honeycomb core

    NASA Astrophysics Data System (ADS)

    Gruber, J.; Mayr, G.; Hendorfer, G.

    2012-05-01

    This work shows the prospects and limitations of the non-destructive testing methods Digital Shearography and Active Thermography when applied to CFRP sandwich parts with honeycomb cores. Two specimens with different core materials (aluminum, NOMEX) and artificial flaws such as delaminations, disbonds and inclusions of foreign material, are tested with Digital Shearography and Pulse Thermography including Pulse Phase Thermography. Both methods provide a good ability for finding and rating the flaws.

  18. Contrasting Anticancer Activity of Half-Sandwich Iridium(III) Complexes Bearing Functionally Diverse 2-Phenylpyridine Ligands

    PubMed Central

    2015-01-01

    We report the synthesis, characterization, and antiproliferative activity of 15 iridium(III) half-sandwich complexes of the type [(η5-Cp*)Ir(2-(R′-phenyl)-R-pyridine)Cl] bearing either an electron-donating (−OH, −CH2OH, −CH3) or electron-withdrawing (−F, −CHO, −NO2) group at various positions on the 2-phenylpyridine (2-PhPy) chelating ligand giving rise to six sets of structural isomers. The X-ray crystal structures of [(η5-Cp*)Ir(2-(2′-fluorophenyl)pyridine)Cl] (1) and [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) exhibit the expected “piano-stool” configuration. DFT calculations showed that substituents caused only localized effects on the electrostatic potential surface of the chelating 2-PhPy ligand of the complexes. Hydrolysis of all complexes is rapid, but readily reversed by addition of NaCl. The complexes show preferential binding to 9-ethylguanine over 9-methyladenine and are active catalysts for the oxidation of NADH to NAD+. Antiproliferative activity experiments in A2780 ovarian, MCF-7 breast, A549 lung, and HCT116 colon cancer cell lines showed IC50 values ranging from 1 to 89 μM, with the most potent complex, [(η5-Cp*)Ir(2-(2′-methylphenyl)pyridine)Cl] (13) (A2780 IC50 = 1.18 μM), being 10× more active than the parent, [(η5-Cp*)Ir(2-phenylpyridine)Cl], and 2× more active than [(η5-CpxPh)Ir(2-phenylpyridine)Cl]. Intriguingly, contrasting biological activities are observed between structural isomers despite exhibiting similar chemical reactivity. For pairs of structural isomers both the nature and position of the functional group can affect the hydrophobicity of the complex. An increase in hydrophobicity resulted in enhanced cellular-iridium accumulation in A2780 ovarian cells, which generally gave rise to an increase in potency. The structural isomers [(η5-Cp*)Ir(2-(4′-fluorophenyl)pyridine)Cl] (2) and [(η5-Cp*)Ir(2-phenyl-5-fluoropyridine)Cl] (4) preferentially localized in the cytosol > membrane and particulate

  19. Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes

    SciTech Connect

    Suna, Yuki; Fujita, Etsuko; Ertem, Mehmed Z.; Wang, Wan-Hui; Kambayashi, Hide; Manaka, Yuichi; Muckerman, James T.; Himeda, Yuichiro

    2014-11-12

    Proton-responsive half-sandwich Cp*Ir(III) complexes possessing a bipyridine ligand with two hydroxy groups at the 3,3'-, 4,4'-, 5,5'- or 6,6'-positions (3DHBP, 4DHBP, 5DHBP, or 6DHBP) were systematically investigated. UV-vis titration data provided average pK a values of the hydroxy groups on the ligands. Both hydroxy groups were found to deprotonate in the pH 4.6–5.6 range for the 4–6DHBP complexes. One of the hydroxy groups of the 3DHBP complex exhibited the low pKa value of < 0.4 because the deprotonation is facilitated by the strong intramolecular hydrogen bond formed between the generated oxyanion and the remaining hydroxy group, which in turn leads to an elevated pKa value of ~13.6 for the second deprotonation step. The crystal structures of the 4– and 6DHBP complexes obtained from basic aqueous solutions revealed their deprotonated forms. The intramolecular hydrogen bond in the 3DHBP complex was also observed in the crystal structures. The catalytic activities of these complexes in aqueous phase reactions, at appropriate pH, for hydrogenation of carbon dioxide (pH 8.5), dehydrogenation of formic acid (pH 1.8), transfer hydrogenation reactions using formic acid/formate as a hydrogen source (pH 7.2 and 2.6) were investigated to compare the positional effects of the hydroxy groups. The 4– and 6DHBP complexes exhibited remarkably enhanced catalytic activities under basic conditions because of the resonance effect of the strong electrondonating oxyanions, whereas the 5DHBP complex exhibited negligible activity despite the presence of electron-donating groups. The 3DHBP complex exhibited relatively high catalytic activity at low pH owing to the one strong electron-donating oxyanion group stabilized by the intramolecular hydrogen bond. DFT calculations were employed to study the mechanism of CO₂ hydrogenation by the 4DHBP and 6DHBP complexes, and comparison of the activation free energies of the H₂ heterolysis and CO

  20. Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes

    DOE PAGESBeta

    Suna, Yuki; Fujita, Etsuko; Ertem, Mehmed Z.; Wang, Wan-Hui; Kambayashi, Hide; Manaka, Yuichi; Muckerman, James T.; Himeda, Yuichiro

    2014-11-12

    Proton-responsive half-sandwich Cp*Ir(III) complexes possessing a bipyridine ligand with two hydroxy groups at the 3,3'-, 4,4'-, 5,5'- or 6,6'-positions (3DHBP, 4DHBP, 5DHBP, or 6DHBP) were systematically investigated. UV-vis titration data provided average pK a values of the hydroxy groups on the ligands. Both hydroxy groups were found to deprotonate in the pH 4.6–5.6 range for the 4–6DHBP complexes. One of the hydroxy groups of the 3DHBP complex exhibited the low pKa value of < 0.4 because the deprotonation is facilitated by the strong intramolecular hydrogen bond formed between the generated oxyanion and the remaining hydroxy group, which in turn leadsmore » to an elevated pKa value of ~13.6 for the second deprotonation step. The crystal structures of the 4– and 6DHBP complexes obtained from basic aqueous solutions revealed their deprotonated forms. The intramolecular hydrogen bond in the 3DHBP complex was also observed in the crystal structures. The catalytic activities of these complexes in aqueous phase reactions, at appropriate pH, for hydrogenation of carbon dioxide (pH 8.5), dehydrogenation of formic acid (pH 1.8), transfer hydrogenation reactions using formic acid/formate as a hydrogen source (pH 7.2 and 2.6) were investigated to compare the positional effects of the hydroxy groups. The 4– and 6DHBP complexes exhibited remarkably enhanced catalytic activities under basic conditions because of the resonance effect of the strong electrondonating oxyanions, whereas the 5DHBP complex exhibited negligible activity despite the presence of electron-donating groups. The 3DHBP complex exhibited relatively high catalytic activity at low pH owing to the one strong electron-donating oxyanion group stabilized by the intramolecular hydrogen bond. DFT calculations were employed to study the mechanism of CO₂ hydrogenation by the 4DHBP and 6DHBP complexes, and comparison of the activation free energies of the H₂ heterolysis and CO₂ insertion steps

  1. Sound transmission loss of composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the

  2. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jitsui, Yusuke; Ohtani, Naoki

    2012-10-01

    We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co- N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found.

  3. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes.

    PubMed

    Jitsui, Yusuke; Ohtani, Naoki

    2012-01-01

    We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co-N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found. PMID:23095451

  4. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  5. Layer-by-layer nanoencapsulation of camptothecin with improved activity

    PubMed Central

    Parekh, Gaurav; Pattekari, Pravin; Joshi, Chaitanya; Shutava, Tatsiana; DeCoster, Mark; Levchenko, Tatyana; Torchilin, Vladimir; Lvov, Yuri

    2014-01-01

    160 nm nanocapsules containing up to 60% of camptothecin in the core and 7–8 polyelectrolyte bilayers in the shell were produced by washless layer-by-layer assembly of heparin and block-copolymer of poly-L-lysine and polyethylene glycol. The outer surface of the nanocapsules was additionally modified with polyethylene glycol of 5 kDa or 20 kDa molecular weight to attain protein resistant properties, colloidal stability in serum and prolonged release of the drug from the capsules. An advantage of the LbL coated capsules is the preservation of camptothecin lactone form with the shell assembly starting at acidic pH and improved chemical stability of encapsulated drug at neutral and basic pH, especially in the presence of albumin that makes such formulation more active than free camptothecin. LbL nanocapsules preserve the camptothecin lactone form at pH 7.4 resulting in triple activity of the drug toward CRL2303 glioblastoma cell. PMID:24508806

  6. Enhanced Antibacterial Activity of Silver Nanoparticles/Halloysite Nanotubes/Graphene Nanocomposites with Sandwich-Like Structure

    PubMed Central

    Yu, Liang; Zhang, Yatao; Zhang, Bing; Liu, Jindun

    2014-01-01

    A sandwich-like antibacterial reagent (Ag/HNTs/rGO) was constructed through the direct growth of silver nanoparticles on the surface graphene-based HNTs nanosheets. Herein, various nanomaterials were combined by adhesion effect of DOPA after self-polymerization. Ag/HNTs/rGO posses enhanced antibacterial ability against E. coli and S. aureus compared with individual silver nanoparticles, rGO nanosheets or their nanocomposites. PMID:24722502

  7. Enhanced Antibacterial Activity of Silver Nanoparticles/Halloysite Nanotubes/Graphene Nanocomposites with Sandwich-Like Structure

    NASA Astrophysics Data System (ADS)

    Yu, Liang; Zhang, Yatao; Zhang, Bing; Liu, Jindun

    2014-04-01

    A sandwich-like antibacterial reagent (Ag/HNTs/rGO) was constructed through the direct growth of silver nanoparticles on the surface graphene-based HNTs nanosheets. Herein, various nanomaterials were combined by adhesion effect of DOPA after self-polymerization. Ag/HNTs/rGO posses enhanced antibacterial ability against E. coli and S. aureus compared with individual silver nanoparticles, rGO nanosheets or their nanocomposites.

  8. Synergistically Enhanced Electrocatalytic Activity of Sandwich-like N-Doped Graphene/Carbon Nanosheets Decorated by Fe and S for Oxygen Reduction Reaction.

    PubMed

    Men, Bao; Sun, Yanzhi; Liu, Jia; Tang, Yang; Chen, Yongmei; Wan, Pingyu; Pan, Junqing

    2016-08-01

    Although N-doped graphene-based electrocatalysts have shown good performance for oxygen reduction reaction (ORR), they still suffer from the single-type active site in the as-prepared catalyst, limited accessible active surface area because of easy aggregation of graphene, and harsh condition for preparation process of graphene. Therefore, further developing a novel type of graphene-based electrocatalyst by a facile and environmentally benign method is highly anticipated. Herein, we first fabricate a sandwich-like graphene/carbon hybrid using graphene oxide (GO) and nontoxic starch. Then the graphene/carbon hybrid undergoes postprocessing with iron(III) chloride (FeCl3) and potassium sulfocyanide (KSCN) to acquire N-doped graphene/carbon nanosheets decorated by Fe and S. The resultant displays the features of interpenetrated three-dimensional hierarchical architecture composed of abundant sandwich-like graphene/carbon nanosheets and low graphene content in as-prepared sample. Remarkably, the obtained catalyst possesses favorable kinetic activity due to the unique structure and synergistic effect of N, S, and Fe on ORR, showing high onset potential, low Tafel slope, and nearly four-electron pathway. Meanwhile, the catalyst exhibits strong methanol tolerance and excellent long-term durability. In view of the multiple active sites, unique hierarchical structure, low graphene content, and outstanding electrochemical activity of the as-prepared sample, this work could broaden the thinking to develop more highly efficient graphene/carbon electrocatalysts for ORR in fuel cells. PMID:27404342

  9. Accelerated Bonding of Magnesium and Aluminum with a CuNi/Ag/CuNi Sandwich Interlayer by Plasma-Activated Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Rao, Mei; Li, Leijun; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng

    2016-02-01

    Plasma-activated sintering (PAS) has been applied, for the first time, to join magnesium and aluminum using a CuNi/Ag/CuNi sandwich structural interlayer. A cleaning effect and high efficient plasma heating mode in PAS have contributed to forming a strong interfacial diffusion bond under low temperature 673 K (400 °C) and short dwell time (0.6 ks). The designed interlayer provides a diffusion barrier effect and an enhanced physical contact between the interfaces. Strong bonding has been achieved without forming the brittle Mg-Al intermetallics.

  10. Bending Stiffness of Multiwall Sandwich

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1983-01-01

    An analytical and experimental study was carried out to understand the extensional and flexural behavior of multiwall sandwich, a metallic insulation composed of alternate layers of flat and dimpled foil. The multiwall sandwich was structurally analyzed by using several simplifying assumptions combined with a finite element analysis. The simplifying assumptions made in this analysis were evaluated by bending and tensile tests. Test results validate the assumption that flat sheets in compression do not significantly contribute to the flexural stiffness of multiwall sandwich for the multiwall geometry tested. However, calculations show that thicker flat sheets may contribute significantly to bending stiffness and cannot be ignored. Results of this analytical approach compare well with test data; both show that the extensional stiffness of the dimpled sheet in he 0 deg direction is about 30 percent of that for a flat sheet, and that in the 45 deg direction, it is about 10 percent. The analytical and experimental multiwall bending stiffness showed good agreement for the particular geometry tested.

  11. Achieving Extreme Utilization of Excitons by an Efficient Sandwich-Type Emissive Layer Architecture for Reduced Efficiency Roll-Off and Improved Operational Stability in Organic Light-Emitting Diodes.

    PubMed

    Wu, Zhongbin; Sun, Ning; Zhu, Liping; Sun, Hengda; Wang, Jiaxiu; Yang, Dezhi; Qiao, Xianfeng; Chen, Jiangshan; Alshehri, Saad M; Ahamad, Tansir; Ma, Dongge

    2016-02-10

    It has been demonstrated that the efficiency roll-off is generally caused by the accumulation of excitons or charge carriers, which is intimately related to the emissive layer (EML) architecture in organic light-emitting diodes (OLEDs). In this article, an efficient sandwich-type EML structure with a mixed-host EML sandwiched between two single-host EMLs was designed to eliminate this accumulation, thus simultaneously achieving high efficiency, low efficiency roll-off and good operational stability in the resulting OLEDs. The devices show excellent electroluminescence performances, realizing a maximum external quantum efficiency (EQE) of 24.6% with a maximum power efficiency of 105.6 lm W(-1) and a maximum current efficiency of 93.5 cd A(-1). At the high brightness of 5,000 cd m(-2), they still remain as high as 23.3%, 71.1 lm W(-1), and 88.3 cd A(-1), respectively. And, the device lifetime is up to 2000 h at initial luminance of 1000 cd m(-2), which is significantly higher than that of compared devices with conventional EML structures. The improvement mechanism is systematically studied by the dependence of the exciton distribution in EML and the exciton quenching processes. It can be seen that the utilization of the efficient sandwich-type EML broadens the recombination zone width, thus greatly reducing the exciton quenching and increasing the probability of the exciton recombination. It is believed that the design concept provides a new avenue for us to achieve high-performance OLEDs. PMID:26828128

  12. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice

    PubMed Central

    Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro

    2016-01-01

    Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography. PMID:27321892

  13. Contrasting electronic requirements for C-H binding and C-H activation in d(6) half-sandwich complexes of rhenium and tungsten.

    PubMed

    Thenraj, Murugesan; Samuelson, Ashoka G

    2015-09-15

    A computational study of the interaction half-sandwich metal fragments (metal = Re/W, electron count = d(6)), containing linear nitrosyl (NO(+) ), carbon monoxide (CO), trifluorophosphine (PF3 ), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO(+). Electron-withdrawing ligands like NO(+) lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. PMID:26174521

  14. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  15. The sandwich model: the 'music and dance' of therapeutic action.

    PubMed

    Harrison, Alexandra M

    2014-04-01

    My premise is that a 'layered' approach is necessary to understand the process of exchanges that result in therapeutic change. I imagine these processes occurring in three layers - although the number of domains in which change is taking place is actually infinite - such as in a sandwich. The top layer, or top slice of bread of the sandwich, represents a broad view of the change process; it is non-linear and includes the feature of uncertainty, a general principle of dynamic systems theory. The middle layer, or the meat of the sandwich, is explained by theories that are immediately and clinically useful to a therapist, such as psychoanalytic theories. These are primarily linear theories and use language and symbols to 'tell a story of what happened'. The bottom layer, or bottom slice of bread of the sandwich, is the micro-process; this layer includes the moment-to-moment patterns of coordinated rhythms that both communicate meaning and provide the essential scaffold for all higher-level change processes. The micro-process also requires a non-linear theory to make sense of its variability and emergent properties. Taking a bite out of the sandwich will include a 'polysemic bundle of communicative behaviors' (Harrison and Tronick, 2011). I will illustrate the 'sandwich model' with the clinical case of the analytic treatment of a 5 year-old boy. PMID:24354856

  16. Salads, Sandwiches and Desserts.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on salads, sandwiches, and desserts is designed to provide Marine food service personnel with a general background in the proper techniques for the preparation of these items. Introductory materials include specific information for MCI students and a…

  17. Sandwich-Geometry YBa(2)Cu(3)O(7-delta)/Au/Nb SNS Devices

    NASA Technical Reports Server (NTRS)

    Foote, Marc C.; Hunt, Brian D.

    1993-01-01

    Superconductor/normal-conductor/superconductor (SNS) devices in which electronically active layers consist of high-temperature superconductor YBa(2)Cu(3)O(7-delta), normal conductor Au, and conventional superconductor Nb, fabricated in sandwich geometry. Devices and processes by which fabricated are part of continuing effort to develop SNS microbridges for use in superconducting quantum interference devices (SQUIDS's) or as mixers or local oscillators operating at frequencies of hundreds of gigahertz. Results show promise for manufacture of practical devices.

  18. Melanin as an active layer in biosensors

    SciTech Connect

    Piacenti da Silva, Marina Congiu, Mirko Oliveira Graeff, Carlos Frederico de; Fernandes, Jéssica Colnaghi Biziak de Figueiredo, Natália Mulato, Marcelo

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  19. Melanin as an active layer in biosensors

    NASA Astrophysics Data System (ADS)

    Piacenti da Silva, Marina; Fernandes, Jéssica Colnaghi; de Figueiredo, Natália Biziak; Congiu, Mirko; Mulato, Marcelo; de Oliveira Graeff, Carlos Frederico

    2014-03-01

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  20. Optimization of Sandwich Composites Fuselages Under Flight Loads

    NASA Astrophysics Data System (ADS)

    Yuan, Chongxin; Bergsma, Otto; Koussios, Sotiris; Zu, Lei; Beukers, Adriaan

    2012-02-01

    The sandwich composites fuselages appear to be a promising choice for the future aircrafts because of their structural efficiency and functional integration advantages. However, the design of sandwich composites is more complex than other structures because of many involved variables. In this paper, the fuselage is designed as a sandwich composites cylinder, and its structural optimization using the finite element method (FEM) is outlined to obtain the minimum weight. The constraints include structural stability and the composites failure criteria. In order to get a verification baseline for the FEM analysis, the stability of sandwich structures is studied and the optimal design is performed based on the analytical formulae. Then, the predicted buckling loads and the optimization results obtained from a FEM model are compared with that from the analytical formulas, and a good agreement is achieved. A detailed parametric optimal design for the sandwich composites cylinder is conducted. The optimization method used here includes two steps: the minimization of the layer thickness followed by tailoring of the fiber orientation. The factors comprise layer number, fiber orientation, core thickness, frame dimension and spacing. Results show that the two-step optimization is an effective method for the sandwich composites and the foam sandwich cylinder with core thickness of 5 mm and frame pitch of 0.5 m exhibits the minimum weight.

  1. On the dynamic stability of multilayer sandwich plates

    NASA Technical Reports Server (NTRS)

    Salama, A. M.; Chen, J. C.

    1973-01-01

    Study of the dynamic stability of plates which are constructed of several alternating soft and hard layers and are subjected to time-dependent periodic in-plane loads. A theory that accounts for all of these effects is presented for multilayer sandwich plates. The plate thickness consists of (k - 1) orthotropic soft core layers sandwiched between k hard isotropic membrane layers, each of which may have a different thickness and elastic properties. It is assumed that the core layers carry only the transverse shear stresses, while the hard membrane layers carry the in-plane normal and shear stresses. The complementary variational principle for dynamics is used to derive the governing differential equations and the necessary boundary conditions for the dynamic stability of the sandwich plate. The equations governing the vibration of the plate and those governing its static stability are deduced from the more general equations for dynamic stability.

  2. Health Monitoring for Reliability Testing of Metallic Sandwich Panels Using Integrated Active Sensing with Dual Actuator-Sensor Pairs and the Method of Virtual Forces to Identify Damage

    NASA Astrophysics Data System (ADS)

    Ellmer, Claudia; Adams, Douglas E.; White, Jonathan R.; Jata, Kumar

    2008-02-01

    A vibration-based health monitoring technique is implemented to detect simulated damage in a sandwich metallic honeycomb under combined acoustic and thermal loading. Two types of damage are introduced into a gamma titanium aluminide panel; simulated oxidation damage in the form of a local mass addition and simulated bolt damage with a change in bolt torque. An active sensing approach is used to measure frequency response functions between a piezo-stack actuator with force measurement and high-frequency accelerometers. The measured frequency response function matrix is then used to estimate the virtual force due to damage. Temperatures up to 300 °F and sound pressures up to 110 dB are considered. It is shown that the measurement of damage changes with combined loading. For example, temperature changes cause bolt damage to be more apparent in the virtual force due to the effects of temperature on the attachment boundary conditions and to the temperature gradient across the panel causing global bending. Similarly, acoustic loading is shown to enhance the detection of simulated mass damage due to larger motions produced on the panel.

  3. Thin-Layer Chromatography: Four Simple Activities for Undergraduate Students.

    ERIC Educational Resources Information Center

    Anwar, Jamil; And Others

    1996-01-01

    Presents activities that can be used to introduce thin-layer chromatography at the undergraduate level in relatively less developed countries and that can be performed with very simple and commonly available apparati in high schools and colleges. Activities include thin-layer chromatography with a test-tube, capillary feeder, burette, and rotating…

  4. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  5. Half-sandwich rhodium(III) transfer hydrogenation catalysts: Reduction of NAD(+) and pyruvate, and antiproliferative activity.

    PubMed

    Soldevila-Barreda, Joan J; Habtemariam, Abraha; Romero-Canelón, Isolda; Sadler, Peter J

    2015-12-01

    Organometallic complexes have the potential to behave as catalytic drugs. We investigate here Rh(III) complexes of general formula [(Cp(x))Rh(N,N')(Cl)], where N,N' is ethylenediamine (en), 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), and Cp(x) is pentamethylcyclopentadienyl (Cp*), 1-phenyl-2,3,4,5-tetramethylcyclopentadienyl (Cp(xPh)) or 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl (Cp(xPhPh)). These complexes can reduce NAD(+) to NADH using formate as a hydride source under biologically-relevant conditions. The catalytic activity decreased in the order of N,N-chelated ligand bpy > phen > en with Cp* as the η(5)-donor. The en complexes (1-3) became more active with extension to the Cp(X) ring, whereas the activity of the phen (7-9) and bpy (4-6) compounds decreased. [Cp*Rh(bpy)Cl](+) (4) showed the highest catalytic activity, with a TOF of 37.4±2h(-1). Fast hydrolysis of the chlorido complexes 1-10 was observed by (1)H NMR (<10min at 310K). The pKa* values for the aqua adducts were determined to be ca. 8-10. Complexes 1-9 also catalysed the reduction of pyruvate to lactate using formate as the hydride donor. The efficiency of the transfer hydrogenation reactions was highly dependent on the nature of the chelating ligand and the Cp(x) ring. Competition reactions between NAD(+) and pyruvate for reduction by formate catalysed by 4 showed a preference for reduction of NAD(+). The antiproliferative activity of complex 3 towards A2780 human ovarian cancer cells increased by up to 50% when administered in combination with non-toxic doses of formate, suggesting that transfer hydrogenation can induce reductive stress in cancer cells. PMID:26601938

  6. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  7. Structural Analysis of Sandwich Foam Panels

    SciTech Connect

    Kosny, Jan; Huo, X. Sharon

    2010-04-01

    The Sandwich Panel Technologies including Structural Insulated Panels (SIPs) can be used to replace the conventional wooden-frame construction method. The main purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and SGI Venture, Inc. was to design a novel high R-value type of metal sandwich panelized technology. This CRADA project report presents design concept discussion and numerical analysis results from thermal performance study of this new building envelope system. The main objective of this work was to develop a basic concept of a new generation of wall panel technologies which will have R-value over R-20 will use thermal mass to improve energy performance in cooling dominated climates and will be 100% termite resistant. The main advantages of using sandwich panels are as follows: (1) better energy saving structural panels with high and uniform overall wall R-value across the elevation that could not be achieved in traditional walls; and (2) reducing the use of raw materials or need for virgin lumber. For better utilization of these Sandwich panels, engineers need to have a thorough understanding of the actual performance of the panels and system. Detailed analysis and study on the capacities and deformation of individual panels and its assembly have to be performed to achieve that goal. The major project activity was to conduct structural analysis of the stresses, strains, load capacities, and deformations of individual sandwich components under various load cases. The analysis simulated the actual loading conditions of the regular residential building and used actual material properties of the steel facings and foam.

  8. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  9. Sporadic Layer es and Siesmic Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid; Blokhin, Alexandr; Kalashnikova, Tatyana

    2016-07-01

    To determine the influence of seismogenic disturbances on the calm state of the iono-sphere and assess the impact of turbulence development in sporadic-E during earthquake prepa-ration period we calculated the variation in the range of semitransparency ∆fES = f0ES - fbES. The study was based primarily on the ionograms obtained by vertical sounding of the ionosphere at Dushanbe at nighttime station from 15 to 29 August 1986. In this time period four successive earthquakes took place, which serves the purpose of this study of the impact of seis-mogenic processes on the intensity of the continuous generation of ionospheric turbulence. Analysis of the results obtained for seismic-ionospheric effects of 1986 earthquakes at station Dushanbe has shown that disturbance of ionospheric parameters during earthquake prepa-ration period displays a pronounced maximum with a duration of t = 1-6 hours. Ionospheric effects associated with the processes of earthquake preparation emerge quite predictably, which verifies seismogenic disturbances in the ionosphere. During the preparation of strong earthquakes, ionograms of vertical sounding produced at station Dushanbe - near the epicenter area - often shown the phenomenon of spreading traces of sporadic Es. It is assumed that the duration of manifestation of seismic ionospheric precursors in Du-shanbe τ = 1 - 6 hours may be associated with deformation processes in the Earth's crust and var-ious faults, as well as dissimilar properties of the environment of the epicentral area. It has been shown that for earthquakes with 4.5 ≤ M ≤ 5.5 1-2 days prior to the event iono-spheric perturbations in the parameters of the sporadic layer Es and an increase in the value of the range of semitransparency Es - ΔfEs were observed, which could lead to turbulence at altitudes of 100-130 km.

  10. Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes.

    PubMed

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-02-01

    As shown in recent work, thin layer ion-selective multi-ionophore membranes can be interrogated by cyclic voltammetry to detect the ion activity of multiple species simultaneously and selectively. Additional fundamental evidence is put forward on ion discrimination with thin multi-ionophore-based membranes with thicknesses of 200 ± 25 nm and backside contacted with poly-3-octylthiophene (POT). An anodic potential scan partially oxidizes the POT film (to POT(+)), thereby initiating the release of hydrophilic cations from the membrane phase to the sample solution at a characteristic potential. Varying concentration of added cation-exchanger demonstrates that it limits the ion transfer charge and not the deposited POT film. Voltammograms with multiple peaks are observed with each associated with the transfer of one type of ion (lithium, potassium, and sodium). Experimental conditions (thickness and composition of the membrane and concentration of the sample) are chosen that allow one to describe the system by a thermodynamic rather than kinetic model. As a consequence, apparent stability constants for sodium, potassium, and lithium (assuming 1:1 stoichiometry) with their respective ionophores are calculated and agree well with the values obtained by the potentiometric sandwich membrane technique. As an analytical application, a membrane containing three ionophores was used to determine lithium, sodium, and potassium in artificial samples at the same location and within a single voltammetric scan. Lithium and potassium were also determined in undiluted human plasma in the therapeutic concentration range. PMID:26712342

  11. Analysis of Charge Carrier Transport in Organic Photovoltaic Active Layers

    NASA Astrophysics Data System (ADS)

    Han, Xu; Maroudas, Dimitrios

    2015-03-01

    We present a systematic analysis of charge carrier transport in organic photovoltaic (OPV) devices based on phenomenological, deterministic charge carrier transport models. The models describe free electron and hole transport, trapping, and detrapping, as well as geminate charge-pair dissociation and geminate and bimolecular recombination, self-consistently with Poisson's equation for the electric field in the active layer. We predict photocurrent evolution in devices with active layers of P3HT, P3HT/PMMA, and P3HT/PS, as well as P3HT/PCBM blends, and photocurrent-voltage (I-V) relations in these devices at steady state. Charge generation propensity, zero-field charge mobilities, and trapping, detrapping, and recombination rate coefficients are determined by fitting the modeling predictions to experimental measurements. We have analyzed effects of the active layer morphology for layers consisting of both pristine drop-cast films and of nanoparticle (NP) assemblies, as well as effects on device performance of insulating NP doping in conducting polymers and of specially designed interlayers placed between an electrode and the active layer. The model predictions provide valuable input toward synthesis of active layers with prescribed morphology that optimize OPV device performance.

  12. Sandwich Construction Solar Structural Facets

    SciTech Connect

    Diver, R. B.; Grossman, J.W.

    1998-12-22

    Silver/glass mirrors have excellent optical properties but need a method of support in order to be used in concentrating solar thermal systems. In collaboration with the Cummins dish/Stirling development program, they started investigating sandwich construction as a way to integrate silver/glass mirrors into solar optical elements. In sandwich construction, membranes such as sheet metal or plastic are bonded to the front and back of a core (like a sandwich). For solar optical elements, a glass mirror is bonded to one of the membranes. This type of construction has the advantages of a high strength-to-weight ratio, and reasonable material and manufacturing cost. The inherent stiffness of sandwich construction mirror panels also facilitates large panels. This can have cost advantages for both the amount of hardware required as well as reduced installation and alignment costs. In addition, by incorporating the panels into the support structure reductions in the amount of structural support required are potentially possible.

  13. Vibration Characteristics of Partially Covered Double-Sandwich Cantilever Beam

    NASA Technical Reports Server (NTRS)

    Chen, Qinghua; Levy, Cesar

    1996-01-01

    The differential equations of motion together with the boundary conditions for a partially covered, double-sandwich cantilever beam are derived. Bending and extension, rotational and longitudinal inertia of damping layers, and shear deformation and rotational and longitudinal inertia of the constraining layers and the primary beam are included in the equations. The theory is applicable for long as well as short, soft, or stiff damping layer, double-sandwich beams. Also, the effects of different parameters on the system loss factor and resonance frequency are discussed. Differences are found to exist with the previous beam model (called the Euler beam model) when the damping layers are stiff, when the thickness of the damping layer is large compared to the primary-beam thickness, and in the case of higher modes of vibration.

  14. In-situ observation of nucleated polymer crystallization in polyoxymethylene sandwich composites

    NASA Astrophysics Data System (ADS)

    Slouf, Miroslav; Krejcikova, Sabina; Vackova, Tatana; Kratochvil, Jaroslav; Novak, Libor

    2015-03-01

    We introduce a dynamic sandwich method, which can be used for in-situ observation and quantification of polymer crystallization nucleated by micro/nanoparticles. The method was applied on polyoxymethylene (POM) composites with three nucleating agents: talc micropowder (POM/mTalc), chalk nanopowder (POM/nChalk) and titanate nanotubes (POM/TiNT). The nucleating agents were deposited between polymer films, the resulting sandwich samples were consolidated by thermal treatment, and their microtomed cross-sections were observed during isothermal crystallization by polarized light microscopy. As the intensity of polarized light was shown to be proportional to the relative crystallinity, the PLM results could be fitted to Avrami equation and the nucleating activity of all investigated particles could be quantified by means of Avrami parameters (n, k). The crystallization half-times increased reproducibly in the following order: POM/nChalk < POM/mTalc < POM/TiNT ~ POM. For strong nucleating agents (mTalc, nChalk), the crystallization kinetics corresponded to spontaneous crystallization starting from central nucleating layer, which was verified by computer simulations. The results were also confirmed by DSC. We concluded that the sandwich method is an efficient microscopic technique for detailed evaluation of nucleating activity of arbitrary micro/nanoparticles in polymer systems.

  15. Stiff, Strong Splice For A Composite Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Schmaling, D.

    1991-01-01

    New type of splice for composite sandwich structure reduces peak shear stress in structure. Layers of alternating fiber orientation interposed between thin ears in adhesive joint. Developed for structural joint in spar of helicopter rotor blade, increases precision of control over thickness of adhesive at joint. Joint easy to make, requires no additional pieces, and adds little weight.

  16. Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment

    NASA Astrophysics Data System (ADS)

    Yeh, Jia-Yi

    2013-03-01

    In this study, the vibration analysis of sandwich rectangular plates with magnetorheological (MR) elastomer damping treatment is presented. The rectangular plate is combined with a magnetorheological elastomer core layer and a constraining layer to improve the vibration behaviors of the sandwich system. The MR material shows variations in the rheological properties when subjected to varying magnetic fields. Additionally, the MR material exhibits a rapid time response and is applicable to structures or devices when a tunable system is required. The magnetorheological elastomer is found to have a significant effect on the vibration characteristics of the sandwich rectangular plate. The modal damper and the natural frequencies for the sandwich plate system are calculated for various magnetic fields and some designed parameters by utilizing the finite element method. The damping effects of the sandwich plate system can be controlled and changed when different magnetic field strengths are applied.

  17. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    SciTech Connect

    Momblona, C.; Malinkiewicz, O.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Bolink, H. J.; Edri, E.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging from 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.

  18. Sandwich-Type Functionalized Graphene Sheet-Sulfur Nanocomposite for Rechargeable Lithium Batteries

    SciTech Connect

    Cao, Yuliang; Li, Xiaolin; Aksay, Ilhan A.; Lemmon, John P.; Nie, Zimin; Yang, Zhenguo; Liu, Jun

    2011-03-30

    A sandwich structured graphene sheet-sulfur (GSS) nanocomposite was synthesized as the cathode material for lithium-sulfur batteries. The structure has a layer of graphene stacks and a layer of sulfur nanoparticles integrated into a three-dimensional architecture. This GSS nanoscale layered composite, making use of the efficient physical and electrical contact between sulfur and the large surface area, highly conductive graphene, provides a high loading of active materials of ~70 wt%, a high tape density of ~0.92 g∙cm-3, and a high power with a reversible capacity of ~505 mAh∙g-1 (~464 mAh∙cm-3) at a current density of 1,680 mA∙g-1 (1C). When coated with a thin layer of cation exchange Nafion film, the migration of dissolved polysulfide anions from the GSS nanocomposite was effectively alleviated, leading to a good cycling stability of 75% capacity retention over 100 cycles. This sandwich-structured composite conceptually provides a new strategy for designing electrodes in energy storage applications.

  19. Nature of the Intense Second-Order Nonlinear Optical Activity: DFT Studies on the Octupolarization of Sandwich-Type Bis(phthalocyaninato) Yttrium Skeletons.

    PubMed

    Qi, Dongdong; Jiang, Jianzhuang

    2015-06-22

    The periodic octupolar vibrational nature of the electron cloud in sandwich-type bis(phthalocyaninato) yttrium double-decker compounds has been revealed on the basis of coupled perturbed density functional theory. This in turn results in an intense hyper-Rayleigh scattering response and renders the double-decker skeletons excellent second-order hyperpolarizability with a maximum value as high as 5.55×10(6) au (≈10(5) ×10(-30) esu, theoretical prediction) achieved for the molecular conformation with a rotation angle between two phthalocyanine chromophores of approximately 70°. PMID:25892649

  20. Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates

    NASA Astrophysics Data System (ADS)

    Babu, V. Ramesh; Vasudevan, R.

    2016-03-01

    In the present study, the dynamic performance of the sandwich plate with magneto rheological elastomer (MRE) as the core layer and tapered laminated composite plates as the face layers is investigated. Various MRE tapered laminated composite sandwich plate models are formulated by dropping-off the plies longitudinally in top and bottom composite layers to yield tapered plates as the face layers and uniform MRE layer as the core layer. The governing equations of motion of tapered composite MRE sandwich plates are derived using classical laminated plate theory and solved numerically. Further, silicon based MRE is being fabricated and tested to obtain the shear and loss moduli using MR rheometer. The efficacy of the finite element formulation is validated by carrying out experiments on the various prototypes of tapered composite silicon based MRE sandwich plates and comparing the results in terms of natural frequencies obtained at various magnetic fields with those obtained numerically and with available literature. Also, the effects of magnetic field, taper angle of the top and bottom layers, aspect ratio, ply orientations and various end conditions on the various dynamic properties of tapered laminated composite MRE sandwich plate are investigated. Further, the transverse vibration responses of three different tapered composite MRE based sandwich plates under harmonic force excitation are analyzed at various magnetic fields.

  1. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Qingrui; Teng, Jie; Zou, Guodong; Peng, Qiuming; Du, Qing; Jiao, Tifeng; Xiang, Jianyong

    2016-03-01

    Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater applications, respectively. Such efficient sequestration is ascribed to the formation of a unique nano-ferric oxide morphology. The ultrafine nano-Fe2O3 particles can intercalate into the interior layers of MXene, widening the layer distance, and stimulating the available overlapping activated layers; while the efficient phosphate removal can be achieved by the strong complexation onto the embedded magnetic nano-Fe3O4 with a unique sandwich-structure as well as the stimulated Ti-O terminal within MXene. Apart from the fact that this approach suggests a complementary means for environmental remediation, it opens a new trajectory to achieve the functionalization of MXene.Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater

  2. Nanoparticle organization in sandwiched polymer brushes.

    PubMed

    Curk, Tine; Martinez-Veracoechea, Francisco J; Frenkel, Daan; Dobnikar, Jure

    2014-05-14

    The organization of nanoparticles inside grafted polymer layers is governed by the interplay of polymer-induced entropic interactions and the action of externally applied fields. Earlier work had shown that strong external forces can drive the formation of colloidal structures in polymer brushes. Here we show that external fields are not essential to obtain such colloidal patterns: we report Monte Carlo and molecular dynamics simulations that demonstrate that ordered structures can be achieved by compressing a "sandwich" of two grafted polymer layers, or by squeezing a coated nanotube, with nanoparticles in between. We show that the pattern formation can be efficiently controlled by the applied pressure, while the characteristic length-scale, that is, the typical width of the patterns, is sensitive to the length of the polymers. Based on the results of the simulations, we derive an approximate equation of state for nanosandwiches. PMID:24707901

  3. Sandwich-type electrode

    DOEpatents

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  4. CFRP sandwiched facesheets inspected by pulsed thermography

    NASA Astrophysics Data System (ADS)

    Li, Huijuan; Huo, Yan; Cai, Liangxu; Huang, Zhenhua

    2010-10-01

    Carbon fiber reinforced polymer (CFRP) has been always used in aerospace, Sandwiched structures composed by a honeycomb core between two multi-layer CFRP facesheets are very common on aerospace parts. As to the application of the CFRP sandwiched facesheets is extended, The demand for quality control of CFRP sandwiched composites is increasing, Infrared thermography is one of several non-destructive testing techniques which can be used for defect detection in aircraft materials such as carbon-fibre-reinforced composites. Infrared thermography can be potentially useful, as it is quick, real time, non-contact and can examine over a relatively large area in one inspection procedure. The technique is based on heating the sample surface with different heat sources and monitoring the surface temperature of the sample with an IR camera, any abnormal behavior of the surface temperature distribution indicates the subsurface defect. This kind of structure is normally affected by anomalies such as delaminations, disbonding, water ingressing to the core. in this paper, several different kinds of defects which are of various size and depth below the test surface are planted in the CFRP composites, the Teflon inserts between the plies in the facesheet represents the delaminations, the Teflon inserts between the inner facesheet and adhensive or between adhensive and core are simulated disbonding in the composites, they are all tested by pulsed thermography, meanwhile, these samples are also inspected by ultrasonic testing, compare with each characteristic and the results got by these two different methods, it shows that pulsed thermography is an effective nondestructive technique for inspecting CFRP composites.

  5. Impact and Blast Resistance of Sandwich Plates

    NASA Astrophysics Data System (ADS)

    Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.

    Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.

  6. Composite panels based on woven sandwich-fabric preforms

    NASA Astrophysics Data System (ADS)

    van Vuure, Aart Willem

    attention was paid to a special application in the field of structural damping, where sandwich-fabric panels could be used as spacer in a constrained layer application. The vibrations and damping were modelled with the help of finite elements.

  7. An Investigation on Low Velocity Impact Response of Multilayer Sandwich Composite Structures

    PubMed Central

    Jedari Salami, S.; Sadighi, M.; Shakeri, M.; Moeinfar, M.

    2013-01-01

    The effects of adding an extra layer within a sandwich panel and two different core types in top and bottom cores on low velocity impact loadings are studied experimentally in this paper. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Low velocity impact tests were carried out by drop hammer testing machine to the clamped multilayer sandwich panels with expanded polypropylene (EPP) and polyurethane rigid (PUR) in the top and bottom cores. Local displacement of the top core, contact force and deflection of the sandwich panel were obtained for different locations of the internal sheet; meanwhile the EPP and PUR were used in the top and bottom cores alternatively. It was found that the core material type has made significant role in improving the sandwich panel's behavior compared with the effect of extra layer location. PMID:24453804

  8. An investigation on low velocity impact response of multilayer sandwich composite structures.

    PubMed

    Jedari Salami, S; Sadighi, M; Shakeri, M; Moeinfar, M

    2013-01-01

    The effects of adding an extra layer within a sandwich panel and two different core types in top and bottom cores on low velocity impact loadings are studied experimentally in this paper. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Low velocity impact tests were carried out by drop hammer testing machine to the clamped multilayer sandwich panels with expanded polypropylene (EPP) and polyurethane rigid (PUR) in the top and bottom cores. Local displacement of the top core, contact force and deflection of the sandwich panel were obtained for different locations of the internal sheet; meanwhile the EPP and PUR were used in the top and bottom cores alternatively. It was found that the core material type has made significant role in improving the sandwich panel's behavior compared with the effect of extra layer location. PMID:24453804

  9. Computed tomography with single-shot dual-energy sandwich detectors

    NASA Astrophysics Data System (ADS)

    Kim, Seung Ho; Youn, Hanbean; Kim, Daecheon; Kim, Dong Woon; Jeon, Hosang; Kim, Ho Kyung

    2016-03-01

    Single-shot dual-energy sandwich detector can produce sharp images because of subtraction of images from two sub-detector layers, which have different thick x-ray converters, of the sandwich detector. Inspired by this observation, the authors have developed a microtomography system with the sandwich detector in pursuit of high-resolution bone-enhanced small-animal imaging. The preliminary results show that the bone-enhanced images reconstructed with the subtracted projection data are better in visibility of bone details than the conventionally reconstructed images. In addition, the bone-enhanced images obtained from the sandwich detector are relatively immune to the artifacts caused by photon starvation. The microtomography with the single-shot dual-energy sandwich detector will be useful for the high-resolution bone imaging.

  10. Local and Sustained Activity of Doxycycline Delivered with Layer-by-Layer Microcapsules.

    PubMed

    Luo, Dong; Gould, David J; Sukhorukov, Gleb B

    2016-04-11

    Achieving localized delivery of small molecule drugs has the potential to increase efficacy and reduce off target and side effects associated with systemic distribution. Herein, we explore the potential use of layer-by-layer (LbL) assembled microcapsules for the delivery of doxycycline. Absorbance of doxycycline onto core dextran sulfate of preassembled microcapsules provides an efficient method to load both synthetic and biodegradable microcapsules with the drug. Application of an outer layer lipid coat enhances the sustained in vitro release of doxycycline from both microcapsule types. To monitor doxycycline delivery in a biological system, C2C12 mouse myoblasts are engineered to express EGFP under the control of the optimized components of the tetracycline regulated gene expression system. Microcapsules are not toxic to these cells, and upon delivery to the cells, EGFP is more efficiently induced in those cells that contain engulfed microcapsules and monitored EGFP expression clearly demonstrates that synthetic microcapsules with a DPPC coat are the most efficient for sustain intracellular delivery. Doxycycline released from microcapsules also displayed sustained activity in an antimicrobial growth inhibition assay compared with doxycycline solution. This study reveals the potential for LbL microcapsules in small molecule drug delivery and their feasible use for achieving prolonged doxycycline activity. PMID:26967921

  11. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Kane, D.L.

    1986-01-01

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  12. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  13. a Spatio-Temporal Framework for Modeling Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Streletskiy, D. A.; Nelson, F. E.; Apanasovich, T. V.

    2015-07-01

    The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems. This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation. The simplest model's stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naïve model, against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best stochastic spatio-temporal model increases predictive accuracy, compared to the naïve model, of 33.3%, 36.2% and 32.5% on average across the three error metrics at the key sites for a one-year hold out period.

  14. Targeted synthesis of novel hierarchical sandwiched NiO/C arrays as high-efficiency lithium ion batteries anode

    NASA Astrophysics Data System (ADS)

    Feng, Yangyang; Zhang, Huijuan; Li, Wenxiang; Fang, Ling; Wang, Yu

    2016-01-01

    In this contribution, the novel 2D sandwich-like NiO/C arrays on Ti foil are successfully designed and fabricated for the first time via simple and controllable hydrothermal process. In this strategy, we use green glucose as carbon source and ultrathin Ni(OH)2 nanosheet arrays as precursor for NiO nanoparticles and sacrificial templates for coupled graphitized carbon layers. This advanced sandwiched composite can not only provide large surface area for numerous active sites and continuous contact between active materials and electrolyte, but also protect the active nanoparticles from aggregation, pulverization and peeling off from conductive substrates. Furthermore, the porous structure derived from lots of substances loss under high-temperature calcinations can effectively buffer possible volume expansion and facilitate ion transfer. In this article, sandwiched NiO/C arrays, utilized as anode for LIBs, demonstrated high specific capacity (∼1458 mAh g-1 at 500 mA g-1) and excellent rate performance and cyclablity (∼95.7% retention after 300 cycles).

  15. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites.

    PubMed

    Zhang, Qingrui; Teng, Jie; Zou, Guodong; Peng, Qiuming; Du, Qing; Jiao, Tifeng; Xiang, Jianyong

    2016-04-01

    Rationally tailored intercalation for two-dimensional (2D) layered MXene materials has aroused extraordinary enthusiasm for broadening their applications. Herein, a novel sandwiched structural 2D MXene-iron oxide (MXI) material, prepared by selectively exfoliating an Al layer followed by magnetic ferric oxide intercalation, exhibits remarkable applicability to trace phosphate sequestration in the environmental remediation realm. Compared with commercial adsorbents, the resultant MXI nanocomposite exhibits a fast separation in 120 s together with the superior treatment capacities of 2100 kg and 2400 kg per kg in simulated and real phosphate wastewater applications, respectively. Such efficient sequestration is ascribed to the formation of a unique nano-ferric oxide morphology. The ultrafine nano-Fe2O3 particles can intercalate into the interior layers of MXene, widening the layer distance, and stimulating the available overlapping activated layers; while the efficient phosphate removal can be achieved by the strong complexation onto the embedded magnetic nano-Fe3O4 with a unique sandwich-structure as well as the stimulated Ti-O terminal within MXene. Apart from the fact that this approach suggests a complementary means for environmental remediation, it opens a new trajectory to achieve the functionalization of MXene. PMID:26961506

  16. Surface activation of CNT Webs towards layer by layer assembly of biosensors.

    PubMed

    Musameh, Mustafa; Huynh, Chi P; Hickey, Mark; Kyratzis, Ilias Louis

    2016-04-25

    Several surface activation methods such as chemical, electrochemical and plasma have been used for enhancing the electrochemical performance of carbon based electrodes for various applications. However, some of these surface activation methods may not be useful depending on the chemical and physical properties of the activated surface. Herein we investigate the surface activation of carbon nanotube (CNT) webs by electrochemical and plasma techniques to enhance their electrochemical performance and enable the fabrication of a biosensor using the layer-by-layer (LBL) approach. The pretreated CNT webs were characterized by SEM, TEM, Raman, XPS and electrochemical methods. TEM images and Raman analysis showed an increase in the level of surface defects upon pretreatment with higher number of defects after electrochemical pretreatment. XPS analysis showed an increase in the level of oxygen functional groups after pretreatment (4 to 5 times increase) which resulted in enhanced water wettability especially for plasma pretreated CNT webs. The pretreated CNT web electrodes also showed an enhanced electrochemical activity towards the oxidation and reduction of different redox probes with higher sensitivity for the electrochemically pretreated CNT web electrode that was accompanied by a higher level of noise in amperometric measurements. A highly linear response was obtained for the untreated and the electrochemically pretreated CNT web electrodes towards the amperometric detection of NADH (R(2) of 0.9996 and 0.9986 respectively) while a non-linear response was observed for the plasma pretreated CNT web electrode (R(2) of 0.8538). The pretreated CNT web electrodes enabled the fabrication of a LBL biosensor for alcohol detection with highest operational stability obtained for the plasma pretreated CNT web surface. PMID:26818435

  17. Activation of White Phosphorus by Low-Valent Group 5 Complexes: Formation and Reactivity of cyclo-P4 Inverted Sandwich Compounds

    PubMed Central

    2015-01-01

    We report the synthesis and comprehensive study of the electronic structure of a unique series of dinuclear group 5 cyclo-tetraphosphide inverted sandwich complexes. White phosphorus (P4) reacts with niobium(III) and tantalum(III) β-diketiminate (BDI) tert-butylimido complexes to produce the bridging cyclo-P4 phosphide species {[(BDI)(NtBu)M]2(μ-η3:η3P4)} (1, M = Nb; 2, M = Ta) in fair yields. 1 is alternatively synthesized upon hydrogenolysis of (BDI)Nb(NtBu)Me2 in the presence of P4. The trinuclear side product {[(BDI)NbNtBu]3(μ-P12)} (3) is also identified. Protonation of 1 with [HOEt2][B(C6F5)4] does not occur at the phosphide ring but rather involves the BDI ligand to yield {[(BDI#)Nb(NtBu)]2(μ-η3:η3P4)}[B(C6F5)4]2 (4). The monocation and dication analogues {[(BDI)(NtBu)Nb]2(μ-η3:η3P4)}{B(ArF)4}n (5, n = 1; 6, n = 2) are both synthesized by oxidation of 1 with AgBArF. DFT calculations were used in combination with EPR and UV–visible spectroscopies to probe the nature of the metal–phosphorus bonding. PMID:25469924

  18. Catalytically active single-atom niobium in graphitic layers.

    PubMed

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J; Chisholm, Matthew F

    2013-01-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability. PMID:23715283

  19. Damage Tolerance of Sandwich Plates with Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Avery, John L., III; Sankar, Bhavani V.

    1998-01-01

    Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.

  20. Metal-Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries.

    PubMed

    Han, Yuzhen; Qi, Pengfei; Zhou, Junwen; Feng, Xiao; Li, Siwu; Fu, Xiaotao; Zhao, Jingshu; Yu, Danni; Wang, Bo

    2015-12-01

    A novel metal-organic framework (MOF) sandwich coating method (denoted as MOF-SC) is developed for hybrid Li ion battery electrode preparation, in which the MOF films are casted on the surface of a silicon layer and sandwiched between the active silicon and the separator. The obtained electrodes show improved cycling performance. The areal capacity of the cheap and readily available microsized Si treated with MOF-SC can reach 1700 μAh cm(-2) at 265 μA cm(-2) and maintain at 850 μAh cm(-2) after 50 cycles. Beyond the above, the commercial nanosized Si treated by MOF-SC also shows greatly enhanced areal capacity and outstanding cycle stability, 600 μAh cm(-2) for 100 cycles without any apparent fading. By virtue of the novel structure prepared by the MOFs, this new MOF-SC structure serves as an efficient protection cushion for the drastic volume change of silicon during charge/discharge cycles. Furthermore, this MOF layer, with large pore volume and high surface area, can adsorb electrolyte and allow faster diffusion of Li(+) as evidenced by decreased impedance and improved rate performance. PMID:26569374

  1. Numerical analysis of sandwich beam with corrugated core under three-point bending

    SciTech Connect

    Wittenbeck, Leszek; Grygorowicz, Magdalena; Paczos, Piotr

    2015-03-10

    The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.

  2. Active Layer Thermal Response to Stream Water Temperatures

    NASA Astrophysics Data System (ADS)

    Cozzetto, K.; McKnight, D.

    2004-12-01

    The hyporheic zone is comprised of sediments below and adjacent to a stream through which stream water flows in and out. In polar regions, the shape, dimensions, physical and chemical characteristics of this zone are affected by the seasonal freezing and thawing of the active layer. One factor that may influence the active layer temperature regime is stream water temperature, both its absolute value and cyclic variations in its value. Many of the glacial meltwater streams in Taylor Valley in the McMurdo Dry Valleys of Antarctica, exhibit daily temperature patterns with lows of 0 or 1° C and highs of 10 or, on occasion, 15° C. Because the viscosity of water decreases significantly with increasing temperature, these daily maxima may increase infiltration and the exchange of water and heat between the stream and the hyporheic zone. To investigate the influence of stream water temperature and flow paths on the active layer temperature regime and vice versa, two conservative tracer injection experiments were conducted. Both took place in the same 200-meter reach, which was instrumented with temperature and conductivity probes. Both also took place at the same time of day during which the stream reaches its temperature maximum. However, in one experiment snow from a nearby patch was added to the stream to suppress the temperature maximum by 3° C from 10 to 7° C. The temperature data show that the snow addition slowed the rate of hyporheic zone warming and suppressed temperature increases in the hyporheic zone by 1-3° C when compared with the non-perturbation experiment. The electrical conductivity data indicate that during the snow addition experiment, the stream neither gained nor lost water while during the non-perturbation experiment, the stream lost water. These results suggest that the stream water cooling decreased infiltration and heat transfer into the hyporheic zone.

  3. Experiments on the active control of transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  4. Composite Sandwich Technologies Lighten Components

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Leveraging its private resources with several Small Business Innovation Research (SBIR) contracts with both NASA and the U.S. Department of Defense, WebCore Technologies LLC, of Miamisburg, Ohio, developed a fiber-reinforced foam sandwich panel it calls TYCOR that can be used for a wide variety of industrial and consumer applications. Testing at Glenn Research Center?s Ballistic Impact Facility demonstrated that the technology was able to exhibit excellent damage localization and stiffness during impact. The patented and trademarked material has found use in many demanding applications, including marine, ground transportation, mobile shelters, bridges, and most notably, wind turbines.

  5. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  6. Novel MRE/CFRP sandwich structures for adaptive vibration control

    NASA Astrophysics Data System (ADS)

    Kozlowska, J.; Boczkowska, A.; Czulak, A.; Przybyszewski, B.; Holeczek, K.; Stanik, R.; Gude, M.

    2016-03-01

    The aim of this work was the development of sandwich structures formed by embedding magnetorheological elastomers (MRE) between constrained layers of carbon fibre-reinforced plastic (CFRP) laminates. The MREs were obtained by mechanical stirring of a reactive mixture of substrates with carbonyl-iron particles, followed by orienting the particles into chains under an external magnetic field. Samples with particle volume fractions of 11.5% and 33% were examined. The CFRP/MRE sandwich structures were obtained by compressing MREs samples between two CFRP laminates composed. The used A.S.SET resin was in powder form and the curing process was carried out during pressing with MRE. The microstructure of the manufactured sandwich beams was inspected using SEM. Moreover, the rheological and damping properties of the examined materials with and without a magnetic field were experimentally investigated. In addition, the free vibration responses of the adaptive three-layered MR beams were studied at different fixed magnetic field levels. The free vibration tests revealed that an applied non-homogeneous magnetic field causes a shift in natural frequency values and a reduction in the vibration amplitudes of the CFRP/MRE adaptive beams. The reduction in vibration amplitude was attributed mainly to the stiffening effect of the MRE core and only a minor contribution was made by the enhanced damping capacity, which was evidenced by the variation in damping ratio values.

  7. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  8. Development and Evaluation of Stitched Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)

    2001-01-01

    This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.

  9. Graphene-antenna sandwich photodetector.

    PubMed

    Fang, Zheyu; Liu, Zheng; Wang, Yumin; Ajayan, Pulickel M; Nordlander, Peter; Halas, Naomi J

    2012-07-11

    Nanoscale antennas sandwiched between two graphene monolayers yield a photodetector that efficiently converts visible and near-infrared photons into electrons with an 800% enhancement of the photocurrent relative to the antennaless graphene device. The antenna contributes to the photocurrent in two ways: by the transfer of hot electrons generated in the antenna structure upon plasmon decay, as well as by direct plasmon-enhanced excitation of intrinsic graphene electrons due to the antenna near field. This results in a graphene-based photodetector achieving up to 20% internal quantum efficiency in the visible and near-infrared regions of the spectrum. This device can serve as a model for merging the light-harvesting characteristics of optical frequency antennas with the highly attractive transport properties of graphene in new optoelectronic devices. PMID:22703522

  10. Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures.

    PubMed

    Abdellatif, S; Kirah, K; Ghannam, R; Khalil, A S G; Anis, W

    2015-06-10

    A novel structure for thin-film solar cells is simulated with the purpose of maximizing the absorption of light in the active layer and of reducing the parasitic absorption in other layers. In the proposed structure, the active layer is formed from an amorphous silicon thin film sandwiched between silicon nanowires from above and photonic crystal structures from below. The upper electrical contact consists of an indium tin oxide layer, which serves also as an antireflection coating. A metal backreflector works additionally as the other contact. The simulation was done using a new reliable, efficient and generic optoelectronic approach. The suggested multiscale simulation model integrates the finite-difference time-domain algorithm used in solving Maxwell's equation in three dimensions with a commercial simulation platform based on the finite element method for carrier transport modeling. The absorption profile, the external quantum efficient, and the power conversion efficiency of the suggested solar cell are calculated. A noticeable enhancement is found in all the characteristics of the novel structure with an estimated 32% increase in the total conversion efficiency over a cell without any light trapping mechanisms. PMID:26192857

  11. Effects of Soil Property Uncertainty on Projected Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Coon, E.; Painter, S. L.; Wilson, C. J.; Romanovsky, V. E.; Liljedahl, A.

    2014-12-01

    Uncertainty in future climate is often assumed to contribute the largest uncertainty to active layer thickness (ALT) projections. However, the impact of soil property uncertainty on these projections may be significant. In this research, we evaluate the contribution of soil property uncertainty on ALT projections at the Barrow Environmental Observatory, Alaska. The effect of variations in porosity, thermal conductivity, saturation, and water retention properties of peat and mineral soil are evaluated. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) is used to model multiphase thermal and hydrological processes in the subsurface. We apply the Null-Space Monte Carlo (NSMC) algorithm to identify an ensemble of soil property combinations that produce simulated temperature profiles that are consistent with temperature measurements available from the site. ALT is simulated for the ensemble of soil property combinations for four climate scenarios. The uncertainty in ALT due to soil properties within and across climate scenarios is evaluated. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  12. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  13. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil's physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  14. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil`s physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  15. Active millimeter wave detection of concealed layers of dielectric material

    NASA Astrophysics Data System (ADS)

    Bowring, N. J.; Baker, J. G.; Rezgui, N. D.; Southgate, M.; Alder, J. F.

    2007-04-01

    Extensive work has been published on millimetre wave active and passive detection and imaging of metallic objects concealed under clothing. We propose and demonstrate a technique for revealing the depth as well as the outline of partially transparent objects, which is especially suited to imaging layer materials such as explosives and drugs. The technique uses a focussed and scanned FMCW source, swept through many GHz to reveal this structure. The principle involved is that a parallel sided dielectric slab produces reflections at both its upper and lower surfaces, acting as a Fabry-Perot interferometer. This produces a pattern of alternating reflected peaks and troughs in frequency space. Fourier or Burg transforming this pattern into z-space generates a peak at the thickness of the irradiated sample. It could be argued that though such a technique may work for single uniform slabs of dielectric material, it will give results of little or no significance when the sample both scatters the incident radiation and gives erratic reflectivities due to its non-uniform thickness and permittivity . We show results for a variety of materials such as explosive simulants, powder and drugs, both alone and concealed under clothing or in a rucksack, which display strongly directional reflectivities at millimeter wavelengths, and whose location is well displayed by a varying thickness parameter as the millimetre beam is scanned across the target. With this system we find that samples can easily be detected at standoff distances of at least 4.6m.

  16. Microbial diversity in European alpine permafrost and active layers.

    PubMed

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. PMID:26832204

  17. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  18. Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances

    NASA Astrophysics Data System (ADS)

    Jia, Ran; Lin, Guanjun; Zhao, Dongfang; Zhang, Qian; Lin, Xiaoyu; Gao, Naikun; Liu, Duo

    2015-03-01

    We report here a facile wet-chemical route to fabricate high performance Cu2O-based plasmonic photodetectors. The Cu2O active layer is sandwiched between Au nanoparticles (Au NPs) and a corrugated Au thin film electrode. We find that the presence of Au NPs will affect the nucleation process of Cu2O thin film on ITO, resulting in different surface morphology, and the localized surface plasmons (LSPs) of Au NPs can greatly increase resonant absorption of the incident light. We show, using I-V and photoresponse measurements, that the sample decorated with Au NPs exhibit greatly improved photo-to-dark current ratio and photoelectric conversion efficiency, with enhancement ratios of 199.7% and 54.3% compared with the sample without Au NPs, respectively. We attribute the observations mainly to optical effects of LSPs, and the effects of the corrugated Au electrode on light reflection are also discussed.

  19. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    DOEpatents

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  20. An h-p Finite Element Vibration Analysis of Open Conical Sandwich Panels and Conical Sandwich Frusta

    NASA Astrophysics Data System (ADS)

    BARDELL, N. S.; LANGLEY, R. S.; DUNSDON, J. M.; AGLIETTI, G. S.

    1999-09-01

    The vibration study of a general three-layer conical sandwich panel based on theh -p version of the finite element method is presented in this paper. No restriction is placed on the degree of curvature of the shell, thereby relaxing the strictures associated with shallow shell theory. The methodology incorporates a new set of trigonometric functions to provide the element p -enrichment, and elements may be joined together to model either open conical panels, or complete conical frusta (circumferentially connected, but open at each end). The full range of classical boundary conditions, which includes free, clamped, simply supported and shear diaphragm edges, may be applied in any combination to open and closed panels, thereby facilitating the study of a wide range of conical sandwich shells. The convergence properties of this element have been established for different combinations of the h - and p -parameters, thereby assuring its integrity for more general use. Since very little work has been reported on the vibration characteristic of either circumferentially closed or open conical sandwich panels, the main thrust of this work has been to present and validate an efficient modelling technique, rather than to perform numerous parameter and/or sensitivity studies. To this end, some new results are presented and subsequently validated using a commercially available finite element package. It is shown that for results of comparable accuracy, models constructed using the h-p formulation require significantly fewer degrees of freedom than those assembled using the commercial package. Some preliminary experimental results are also included for completeness.

  1. Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes.

    PubMed

    Adams, Muneebah; de Kock, Carmen; Smith, Peter J; Land, Kirkwood M; Liu, Nicole; Hopper, Melissa; Hsiao, Allyson; Burgoyne, Andrew R; Stringer, Tameryn; Meyer, Mervin; Wiesner, Lubbe; Chibale, Kelly; Smith, Gregory S

    2015-02-01

    A series of ferrocenyl- and aryl-functionalised organosilane thiosemicarbazone compounds was obtained via a nucleophilic substitution reaction with an amine-terminated organosilane. The thiosemicarbazone (TSC) ligands were further reacted with either a ruthenium dimer [(η(6-i)PrC6H4Me)Ru(μ-Cl)Cl]2 or a rhodium dimer [(Cp*)Rh(μ-Cl)Cl]2 to yield a series of cationic mono- and binuclear complexes. The thiosemicarbazone ligands, as well as their metal complexes, were characterised using NMR and IR spectroscopy, and mass spectrometry. The molecular structure of the binuclear ruthenium(ii) complex was determined by single-crystal X-ray diffraction analysis. The thiosemicarbazones and their complexes were evaluated for their in vitro antiplasmodial activities against the chloroquine-sensitive (NF54) and chloroquine-resistant (Dd2) Plasmodium falciparum strains, displaying activities in the low micromolar range. Selected compounds were screened for potential β-haematin inhibition activity, and it was found that two Rh(iii) complexes exhibited moderate to good inhibition. Furthermore, the compounds were screened for their antitrichomonal activities against the G3 Trichomonas vaginalis strain, revealing a higher percentage of growth inhibition for the ruthenium and rhodium complexes over their corresponding ligand. PMID:25559246

  2. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    PubMed Central

    2011-01-01

    Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET) reaction cascades of cytochrome c (cyt c) immobilized by the use of modified silica nanoparticles (SiNPs) to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS), Fourier transformed infrared spectroscopy (FT-IR), Zeta-potential and transmission electron microscopy (TEM). The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the influence of particle size are

  3. Temperature distribution in a layer of an active thermal insulation system heated by a gas burner

    SciTech Connect

    Maruyama, Shigenao . Inst. of Fluid Science); Shimizu, Naotaka . Dept. of Mechanical Engineering)

    1993-12-01

    The temperature distribution in a layer of an active thermal insulation system was measured. A semitransparent porous layer was heated by a gas burner, and air was injected from the back face of the layer. The temperature in the layer was measured by thermocouples. The temperature distributions were compared with numerical solutions. The thermal penetration depth of the active thermal insulation layer with gas injection can be reduced to 3 mm. When the surface temperature of a conventional insulation layer without gas injection reached 1,500 K, the temperature at the back surface of a 10-mm-thick layer reached 600 K. The transient temperature of the active thermal insulation reached a steady state very quickly compared with that of the conventional insulation. These characteristics agreed qualitatively with the numerical solutions.

  4. Controlled release of metformin hydrochloride and repaglinide from sandwiched osmotic pump tablet.

    PubMed

    Qin, Chao; He, Wei; Zhu, Chunli; Wu, Mengmeng; Jin, Zhu; Zhang, Qiang; Wang, Guangji; Yin, Lifang

    2014-05-15

    The marketed compound tablet of metformin hydrochloride (MH) and repaglinide (RG) exhibits perfect multidrug therapeutic effect of type 2 diabetes. However, due to the short half life of the drugs, the tablet has to be administered 2 to 3 times a day, causing inconvenience to patient and fluctuations of plasma concentration. Here, a sandwiched osmotic pump tablet was developed to deliver the two drugs simultaneously at zero-order rate, in which MH and RG were loaded in different layers separated by a push layer. The osmotic pump tablet was prepared by a combination of three tableting procedure and film coating method. The factors including type and amount of propellant, osmotic active agents, amount of porogenic agent, coating weight, orifice diameter were optimized. The pharmacokinetic study was performed in beagle dogs, and the drug concentration in plasma samples was assayed by HPLC-MS/MS method. Simultaneous, controlled release of MH and RG in the first 12 and 8h was achieved from the optimized formulation. A significantly decreased Cmax, prolonged Tmax and satisfactory bioavailability of the osmotic pump tablet were obtained, and a good in vivo-in vitro correlation of the two drugs was also established. In summary, the sandwiched osmotic pump tablet released the MH and RG simultaneously at zero-order rate, and exhibited significant sustained release effect in vivo and good in vivo-in vitro correlation. The designed controlled release system for MH and RG proposed a promising replacement for the marked compound product in the therapy of type 2 diabetes. PMID:24607209

  5. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in

  6. Application of ADA1 as a new marker enzyme in sandwich ELISA to study the effect of adenosine on activated monocytes.

    PubMed

    Liu, Chengqian; Skaldin, Maksym; Wu, Chengxiang; Lu, Yuanan; Zavialov, Andrey V

    2016-01-01

    Enzyme-linked immunosorbent assay (ELISA) is a valuable technique to detect antigens in biological fluids. Horse radish peroxidase (HRP) is one of the most common enzymes used for signal amplification in ELISA. Despite new advances in technology, such as a large-scale production of recombinant enzymes and availability of new detection systems, limited research is devoted to finding alternative enzymes and their substrates to amplify the ELISA signals. Here, HRP-avidin was substituted with the human adenosine deaminase (hADA1)-streptavidin complex and adenosine as a detection system in commercial ELISA kits. The hADA1 ELISA was successfully used to demonstrate that adenosine, bound to A1 and A3 adenosine receptors, increases cytokine secretion by LPS activated monocytes. We show that hADA1-based ELISA has the same sensitivity, and also provides identical results, as HRP ELISA. In addition, the sensitivity of hADA1-based ELISA could be easily adjusted by changing the adenosine concentration and the incubation time. Therefore, hADA1 could be used as a detection enzyme with any commercial ELISA kit with a wide range of concentration of antigens. PMID:27510152

  7. Application of ADA1 as a new marker enzyme in sandwich ELISA to study the effect of adenosine on activated monocytes

    PubMed Central

    Liu, Chengqian; Skaldin, Maksym; Wu, Chengxiang; Lu, Yuanan; Zavialov, Andrey V.

    2016-01-01

    Enzyme-linked immunosorbent assay (ELISA) is a valuable technique to detect antigens in biological fluids. Horse radish peroxidase (HRP) is one of the most common enzymes used for signal amplification in ELISA. Despite new advances in technology, such as a large-scale production of recombinant enzymes and availability of new detection systems, limited research is devoted to finding alternative enzymes and their substrates to amplify the ELISA signals. Here, HRP-avidin was substituted with the human adenosine deaminase (hADA1)-streptavidin complex and adenosine as a detection system in commercial ELISA kits. The hADA1 ELISA was successfully used to demonstrate that adenosine, bound to A1 and A3 adenosine receptors, increases cytokine secretion by LPS activated monocytes. We show that hADA1-based ELISA has the same sensitivity, and also provides identical results, as HRP ELISA. In addition, the sensitivity of hADA1-based ELISA could be easily adjusted by changing the adenosine concentration and the incubation time. Therefore, hADA1 could be used as a detection enzyme with any commercial ELISA kit with a wide range of concentration of antigens. PMID:27510152

  8. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-07-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morpho-dynamics and for measuring and predicting bed load transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to re-work the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three-dimensions. Normalizing active layer thickness and dividing into 10 sub-layers we show that all grain sizes occur with almost equal frequency in all sub-layers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bed load prediction a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  9. Distinctive electrical properties in sandwich-structured Al2O3/low density polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min

    2016-02-01

    The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.

  10. Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio

    2010-07-01

    In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.

  11. Layer-by-layer engineered nanocapsules of curcumin with improved cell activity.

    PubMed

    Kittitheeranun, Paveenuch; Sajomsang, Warayuth; Phanpee, Sarunya; Treetong, Alongkot; Wutikhun, Tuksadon; Suktham, Kunat; Puttipipatkhachorn, Satit; Ruktanonchai, Uracha Rungsardthong

    2015-08-15

    Nanocarriers based on electrostatic Layer-by-layer (LbL) assembly of CaCO3 nanoparticles (CaCO3 NPs) was investigated. These inorganic nanoparticles was used as templates to construct nanocapsules made from films based on two oppositely charged polyelectrolytes, poly(diallyldimethylammonium chloride), and poly (sodium 4-styrene-sulfonate sodium salt), followed by core dissolution. The naked CaCO3 NPs, CaCO3 NPs coated with the polyelectrolytes and hollow nanocapsules were found with hexagonal shape with average sizes of 350-400 nm. A reversal of the surface charge between positive to negative zeta potential values was found, confirming the adsorption of polyelectrolytes. The loading efficiency and release of curcumin were controlled by the hydrophobic interactions between the drug and the polyelectrolyte matrix of the hollow nanocapsules. The quantity of curcumin released from hollow nanocapsules was found to increase under acidic environments, which is a desirable for anti-cancer drug delivery. The hollow nanocapsules were found to localize in the cytoplasm and nucleus compartment of Hela cancer cells after 24 h of incubation. Hollow nanocapsules were non-toxic to human fibroblast cells. Furthermore, curcumin loaded hollow nanocapsules exhibited higher in vitro cell inhibition against Hela cells than that of free curcumin, suggesting that polyelectrolyte based-hollow nanocapsules can be utilized as new carriers for drug delivery. PMID:26143232

  12. Novel light-weight, high-performance anode-supported microtubular solid oxide fuel cells with an active anode functional layer

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Wang, Yao; Ren, Cong; Fang, Shumin; Mao, Yating; Chen, Fanglin

    2015-10-01

    Influence of the air-gap, the distance from the tube-in-orifice spinneret to the upper surface of the external coagulant bath during the extrusion/phase-inversion process, on the microstructure of nickel - yttria-stabilized zirconia (Ni-YSZ) hollow fibers has been systematically studied. When the air-gap is 0 cm, the obtained Ni-YSZ hollow fiber has a sandwich microstructure. However, when the air-gap is increased to 15 cm, a bi-layer Ni-YSZ hollow fiber consisting of a thin layer with small pores and a thick support with highly porous fingerlike macrovoids has been achieved. The output power density of microtubular solid oxide fuel cells (MT-SOFCs) with a cell configuration of Ni-YSZ/YSZ/YSZ-LSM increases from 594 mW cm-2 for the cells with the Ni-YSZ anode of sandwich microstructure to 832 mW cm-2 for the cells with the Ni-YSZ anode of bi-layer microstructure at 750 °C, implying that to achieve the same output power density, the weight of the cells with the bi-layer anode support can be reduced to 41.5% compared with that of the cells with the sandwich anode support. Thermal-cycling test shows no obvious degradation on the open-circuit-voltage (OCV), indicating that the MT-SOFCs have robust resistance to thermal cycling.

  13. Sandwich Panels Evaluated With Ultrasonic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.

    2004-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment systems for next-generation engines. The bond strength between the core and face sheets is critical in maintaining the structural integrity of the sandwich structure. To improve the inspection and production of these systems, researchers at the NASA Glenn Research Center are using nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, to evaluate the brazing quality between the face plates and the metallic foam core. The capabilities and limitations of a swept-frequency approach to ultrasonic spectroscopy were evaluated with respect to these sandwich structures. This report discusses results from three regions of a sandwich panel representing different levels of brazing quality between the outer face plates and a metallic foam core. Each region was investigated with ultrasonic spectroscopy. Then, on the basis of the NDE results, three shear specimens sectioned from the sandwich panel to contain each of these regions were mechanically tested.

  14. Fatigue studies of polyurethane sandwich structures

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Krishna, M.; Narasimha Murthy, H. N.; Sathyamoorthy, M.; Bhattacharya, Debes

    2004-10-01

    The fatigue characteristics of polyurethane foam-cored (PUF) composite sandwich structures were investigated using three-point bending tests carried out according to ASTM C 393. Three types of specimens (epoxy/glass-PUF-epoxy/glass, polyester/glass-PUF-polyester/glass, and epoxy/glass-PUF-polyester/glass) were considered for investigation. Experimental results indicate that degradation of stiffness occurs due to debonding and sliding between the skin and the foam during fatigue cycles. Epoxy/glass-PUF-epoxy/glass sandwich structures exhibit higher bending strength along with higher stiffness degradation than the other two types of sandwich panels, due to higher initial fatigue loading. The lowest fatigue properties have been obtained for the polyester/glass-PUF-polyester/glass sandwich panel specimens. Better performance of the epoxy/glass-PUF-epoxy/glass sandwich panels is most likely due to the superior properties of the outer thin skins. Most of the specimens fail within the foam region and not at the skin level. This situation is possibly due to debonding between the foam and the skin. The fatigue damage development in the foam and skin has been investigated using scanning electron microscopy.

  15. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification.

    PubMed

    Fang, Lin-Xia; Huang, Ke-Jing; Liu, Yang

    2015-09-15

    A new electrochemical aptamer biosensor for the platelet-derived growth factor BB (PDGF-BB) detection has been developed based on the signal amplification of MoS2/carbon aerogel composites (MoS2/CA) and sandwich assay. A facile hydrothermal route assisted by L-cysteine was applied to synthesize CA incorporated flower-like MoS2 with the large surface active sites and good conductivity. The electrochemical aptasensor was constructed by sandwiching the PDGF-BB between a glassy carbon electrode modified with thiol-terminated PDGF-BB aptamer-1 (Apt1)/gold nanoparticles (AuNPs)/MoS2/CA and the AuNPs with thiol-terminated PDGF-BB aptamer-2 (Apt2) and 6-ferrocenyl hexanethiol (Fc). Fc-AuNPs-Apt2 acted as tracer and AuNPs/MoS2/CA were utilized as the biosensor platform to immobilize a large amount of capture aptamers, owing to their layered structure and high surface-to-volume ratio. Based on the sandwich format, a dual signal amplification strategy had been successfully developed with a wide linear response in the range of 0.001-10nM and a limit of detection of 0.3 pM. The developed assay demonstrated good selectivity and high sensitivity, indicating potential applications in bioanalysis and biomedicine. PMID:25909336

  16. Development and Optimization of a Thrombin Sandwich Aptamer Microarray

    PubMed Central

    Meneghello, Anna; Sosic, Alice; Antognoli, Agnese; Cretaio, Erica; Gatto, Barbara

    2012-01-01

    A sandwich microarray employing two distinct aptamers for human thrombin has been optimized for the detection of subnanomolar concentrations of the protein. The aptamer microarray demonstrates high specificity for thrombin, proving that a two-site binding assay with the TBA1 aptamer as capture layer and the TBA2 aptamer as detection layer can ensure great specificity at times and conditions compatible with standard routine analysis of biological samples. Aptamer microarray sensitivity was evaluated directly by fluorescent analysis employing Cy5-labeled TBA2 and indirectly by the use of TBA2-biotin followed by detection with fluorescent streptavidin. Sub-nanomolar LODs were reached in all cases and in the presence of serum, demonstrating that the optimized aptamer microarray can identify thrombin by a low-cost, sensitive and specific method.

  17. Coupled Néel domain wall motion in sandwiched perpendicular magnetic anisotropy nanowires

    PubMed Central

    Purnama, I.; Kerk, I. S.; Lim, G. J.; Lew, W. S.

    2015-01-01

    The operating performance of a domain wall-based magnetic device relies on the controlled motion of the domain walls within the ferromagnetic nanowires. Here, we report on the dynamics of coupled Néel domain wall in perpendicular magnetic anisotropy (PMA) nanowires via micromagnetic simulations. The coupled Néel domain wall is obtained in a sandwich structure, where two PMA nanowires that are separated by an insulating layer are stacked vertically. Under the application of high current density, we found that the Walker breakdown phenomenon is suppressed in the sandwich structure. Consequently, the coupled Néel domain wall of the sandwich structure is able to move faster as compared to individual domain walls in a single PMA nanowire. PMID:25736593

  18. Three-dimensional solutions for thermomechanical stresses in sandwich panels and shells

    NASA Technical Reports Server (NTRS)

    Burton, W. Scott; Noor, Ahmed K.

    1995-01-01

    Analytic three-dimensional thermoelasticity solutions are presented for static problems of simply supported sandwich panels and cylindrical shells subjected to mechanical and thermal loads. The panels and shells have laminated composite face sheets of arbitrary thickness separated by a core. Each of the individual layers of the face sheets and the core is modeled as a three-dimensional continuum. Analytic first-order sensitivity coefficients are evaluated to assess the sensitivity of the responses to variations in material parameters of the face sheets and the core, as well as to variations in the curvatures and thicknesses of the sandwich and face sheets. Also, the strain energy associated with various stress components in the face sheets and core are calculated and compared. The information obtained in the present study can aid the development and assessment of two-dimensional models for sandwich structures and illuminate the role of particular material parameters in an equivalent model for the core.

  19. [Sb4Au4Sb4]2-: A designer all-metal aromatic sandwich

    NASA Astrophysics Data System (ADS)

    Tian, Wen-Juan; Guo, Jin-Chang; Li, Da-Zhi; You, Xue-Rui; Wang, Ying-Jin; Sun, Zhong-Ming; Zhai, Hua-Jin

    2016-07-01

    We report on the computational design of an all-metal aromatic sandwich, [Sb4Au4Sb4]2-. The triple-layered, square-prismatic sandwich complex is the global minimum of the system from Coalescence Kick and Minima Hopping structural searches. Following a standard, qualitative chemical bonding analysis via canonical molecular orbitals, the sandwich complex can be formally described as [Sb4]+[Au4]4-[Sb4]+, showing ionic bonding characters with electron transfers in between the Sb4/Au4/Sb4 layers. For an in-depth understanding of the system, one needs to go beyond the above picture. Significant Sb → Au donation and Sb ← Au back-donation occur, redistributing electrons from the Sb4/Au4/Sb4 layers to the interlayer Sb-Au-Sb edges, which effectively lead to four Sb-Au-Sb three-center two-electron bonds. The complex is a system with 30 valence electrons, excluding the Sb 5s and Au 5d lone-pairs. The two [Sb4]+ ligands constitute an unusual three-fold (π and σ) aromatic system with all 22 electrons being delocalized. An energy gap of ˜1.6 eV is predicted for this all-metal sandwich. The complex is a rare example for rational design of cluster compounds and invites forth-coming synthetic efforts.

  20. A Study on Flexural Properties of Sandwich Structures with Fiber/Metal Laminate Face Sheets

    NASA Astrophysics Data System (ADS)

    Dariushi, S.; Sadighi, M.

    2013-10-01

    In this work, a new family of sandwich structures with fiber metal laminate (FML) faces is investigated. FMLs have benefits over both metal and fiber reinforced composites. To investigate the bending properties of sandwich beams with FML faces and compare with similar sandwich beams with fibrous composite faces, 6 groups of specimen with different layer arrangements were made and tested. Results show that FML faces have good resistance against transverse local loads and minimize stress concentration and local deformations of skin and core under the loading tip. In addition, FML faces have a good integrity even after plateau region of foam cores and prevent from catastrophic failures, which cannot be seen in fibrous composite faces. Also, FML faces are lighter than metal faces and have better connection with foam cores. Sandwich beams with FML faces have a larger elastic region because of simultaneous deformation of top and bottom faces and larger failure strain thanks to good durability of FMLs. A geometrical nonlinear classical theory is used to predict force-deflection behavior. In this model an explicit formula between symmetrical sandwich beams deflections and applied force which can be useful for designers, is derived. Good agreement is obtained between the analytical predictions and experimental results. Also, analytical results are compared with small deformation solution in a parametric study, and the effects of geometric parameters on difference between linear and nonlinear results are discussed.

  1. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures

    NASA Astrophysics Data System (ADS)

    Ryan, S.; Schaefer, F.; Destefanis, R.; Lambert, M.

    During a recent experimental test campaign performed in the framework of ESA Contract 16721, the ballistic performance of multiple satellite-representative Carbon Fibre Reinforced Plastic (CFRP)/Aluminium honeycomb sandwich panel structural configurations (GOCE, Radarsat-2, Herschel/Planck, BeppoSax) was investigated using the two-stage light-gas guns at EMI. The experimental results were used to develop and validate a new empirical Ballistic Limit Equation (BLE), which was derived from an existing Whipple-shield BLE. This new BLE provided a good level of accuracy in predicting the ballistic performance of stand-alone sandwich panel structures. Additionally, the equation is capable of predicting the ballistic limit of a thin Al plate located at a standoff behind the sandwich panel structure. This thin plate is the representative of internal satellite systems, e.g. an Al electronic box cover, a wall of a metallic vessel, etc. Good agreement was achieved with both the experimental test campaign results and additional test data from the literature for the vast majority of set-ups investigated. For some experiments, the ballistic limit was conservatively predicted, a result attributed to shortcomings in correctly accounting for the presence of high surface density multi-layer insulation on the outer facesheet. Four existing BLEs commonly applied for application with stand-alone sandwich panels were reviewed using the new impact test data. It was found that a number of these common approaches provided non-conservative predictions for sandwich panels with CFRP facesheets.

  2. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-12-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morphodynamics, and for measuring and predicting bedload transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to rework the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs (digital elevation models) of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three dimensions. By normalizing active layer thickness and dividing into 10 sublayers, we show that all grain sizes occur with almost equal frequency in all sublayers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bedload prediction, a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  3. Impact resistance of composite laminated sandwich plates

    NASA Astrophysics Data System (ADS)

    Kim, Chun-Gon; Jun, Eui-Jin

    1992-01-01

    Investigated are the effects of face layup sequence and core density of a sandwich plate on the impact delamination area of the laminated facesheet. The sandwich plate is made of graphite/epoxy faces and Nomex honeycomb core. The size and shape of delamination due to impact at each interply location have been measured by the room temperature deply technique. The shape of the interply delamination under impact is, in general, found to be two-lobed. The shape exhibits very peculiar regularity under various experimental conditions. The quantitative measurement of delamination size has shown that the face layup with small relative orientation between adjacent plies and high density core are desirable in sandwich plates to reduce the impact delamination.

  4. Analysis and Fabrication of Paraboloidal CFRP Sandwich Mirrors

    NASA Astrophysics Data System (ADS)

    Hong, Tayo Steve

    The low areal weight requirements of telescopes in aerospace applications has driven the study on composite mirrors for several years. For example, the primary parabolic mirror in a balloon-borne, Cassegrain telescope required an optical quality better than 30 microns in figure RMS error. A parametric study on composite sandwich mirrors was conducted by using finite element analysis as well as optical analysis. The factors covered the cell sizes, core materials, core thicknesses, face layups, and support configurations. Based on theoretical calculations, many high quality spherical composite sandwich mirrors were generated by using a non-heat curing process. The CFRP faces and Nomex core were chosen as the baseline materials for mirror fabrication due to their high strength and low weight. The proposed replication method applied an interface layer between face and surface coat to eliminate print -through problems. Many important goals have been realized in those mirror samples with optical laser interferometer testing. These include the figure RMS error less than 2 microns and the surface RMS error less than 0.05 micron. The areal weights of the mirror samples are less than 7 kg/m ^2. The thermal stability of these mirrors was observed from the optical results with thermal cycling tests. The proposed 2-meter parabolic composite sandwich mirror, with an areal weight of less than 10 kg/m ^2, would consist of either (0/90/45/ -45) _{rm S} layup faces with an optimal 3^{' '} core or (QC) layup faces with a total core thickness of 5 inches. Both a ring support around the equator and the 18-point Hindle-type support would lead to the best optical quality under both self weight and thermal loading.

  5. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity.

    PubMed

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-09-15

    Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl-Ti3O7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10(-2)min(-1), which is about 9 and 4 times higher than its precursors H2Ti3O7 and ZnAl-LDH, respectively. Based on UV-vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior. PMID:25151238

  6. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Zhang, Ting-Jun; Li, Shu-Sun

    2003-01-01

    The objective of this project is to map the spatial variation of the active layer over the arctic permafrost in terms of two parameters: (i) timing and duration of thaw period and (ii) differential frost heave and thaw settlement of the active layer. To achieve this goal, remote sensing, numerical modeling, and related field measurements are required. Tasks for the University of Colorado team are to: (i) determine the timing of snow disappearance in spring through changes in surface albedo (ii) simulate the freezing and thawing processes of the active layer and (iii) simulate the impact of snow cover on permafrost presence.

  7. Experimental study of acoustical characteristics of honeycomb sandwich structures

    NASA Astrophysics Data System (ADS)

    Peters, Portia Renee

    Loss factor measurements were performed on sandwich panels to determine the effects of different skin and core materials on the acoustical properties. Results revealed inserting a viscoelastic material in the core's mid-plane resulted in the highest loss factor. Panels constructed with carbon-fiber skins exhibited larger loss factors than glass-fiber skins. Panels designed to achieve subsonic wave speed did not show a significant increase in loss factor above the coincidence frequency. The para-aramid core had a larger loss factor value than the meta-aramid core. Acoustic absorption coefficients were measured for honeycomb sandwiches designed to incorporate multiple sound-absorbing devices, including Helmholtz resonators and porous absorbers. The structures consisted of conventional honeycomb cores filled with closed-cell polyurethane foams of various densities and covered with perforated composite facesheets. Honeycomb cores filled with higher density foam resulted in higher absorption coefficients over the frequency range of 50 -- 1250 Hz. However, this trend was not observed at frequencies greater than 1250 Hz, where the honeycomb filled with the highest density foam yielded the lowest absorption coefficient among samples with foam-filled cores. The energy-recycling semi-active vibration suppression method (ERSA) was employed to determine the relationship between vibration suppression and acoustic damping for a honeycomb sandwich panel. Results indicated the ERSA method simultaneously reduced the sound transmitted through the panel and the panel vibration. The largest reduction in sound transmitted through the panel was 14.3% when the vibrations of the panel were reduced by 7.3%. The influence of different design parameters, such as core density, core material, and cell size on wave speeds of honeycomb sandwich structures was experimentally analyzed. Bending and shear wave speeds were measured and related to the transmission loss performance for various material

  8. A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses.

    PubMed

    Elsgaard, Lars; Jørgensen, Leif Wagner

    2002-03-01

    A temperature-gradient incubator (TGI) is described, which produces a thermal gradient over 34 aluminium modules (15x30x5 cm) intersected by 2-mm layers of partly insulating graphite foil (SigraFlex Universal). The new, sandwich-designed TGI has 30 rows of six replicate sample wells for incubation of 28-ml test tubes. An electric plate heats one end of the TGI, and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA (Supervisory Control And Data Acquisition) software (Genesis 4.20) is applied for temperature control using three advanced control loops. The precision of the TGI temperature measurements was better than +/-0.12 degrees C, and for a 0-40 degrees C gradient, the temperature at the six replicate sample wells varied less than +/-0.04 degrees C. Temperatures measured in incubated water samples closely matched the TGI temperatures, which showed a linear relationship to the sample row number. During operation for 8 days with a gradient of 0-40 degrees C, the temperature at the cold end was stable within +/-0.02 degrees C, while the temperatures at the middle and the warm end were stable within +/-0.08 degrees C (n=2370). Using the new TGI, it was shown that the fine-scale (1 degrees C) temperature dependence of S(o) oxidation rates in agricultural soil (0-29 degrees C) could be described by the Arrhenius relationship. The apparent activation energy (E(a)) for S(o) oxidation was 79 kJ mol(-1), which corresponded to a temperature coefficient (Q(10)) of 3.1. These data demonstrated that oxidation of S(o) in soil is strongly temperature-dependent. In conclusion, the new TGI allowed a detailed study of microbial temperature responses as it produced a precise, stable, and certifiable temperature gradient by the new and combined use of sandwich-design, thermoelectric cooling, and advanced

  9. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  10. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Li, Shu-Sun; Romanovsky, V.; Lovick, Joe; Wang, Z.; Peterson, Rorik

    2003-01-01

    A method of mapping the active layer of Arctic permafrost using a combination of conventional synthetic aperture radar (SAR) backscatter and more sophisticated interferometric SAR (INSAR) techniques is proposed. The proposed research is based on the sensitivity of radar backscatter to the freeze and thaw status of the surface soil, and the sensitivity of INSAR techniques to centimeter- to sub-centimeter-level surface differential deformation. The former capability of SAR is investigated for deriving the timing and duration of the thaw period for surface soil of the active layer over permafrost. The latter is investigated for the feasibility of quantitative measurement of frost heaving and thaw settlement of the active layer during the freezing and thawing processes. The resulting knowledge contributes to remote sensing mapping of the active layer dynamics and Arctic land surface hydrology.

  11. Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  12. Dynamics of the Thermal State of Active Layer at the Alaska North Slope and Northern Yakutia

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Romanovsky, V. E.; Marchenko, S.; Shiklomanov, N. I.; Fedorov-Davydov, D.

    2010-12-01

    Dynamics of the active layer is one of the most important indexes, reflecting permafrost response to the modern climate changes. Monitoring of active layer thickness dynamics is the main goal of CALM (Circumpolar Active Layer Monitoring) project. But, from different points of view, it is very important to know not only maximal depth of seasonal thawing but also dynamics of thermal field of active layer and duration of its staying in the unfrozen state. Current research was aimed on the analyzing data of temperature measurements have been done during the more then 10 years at the North Slope of Brooks Range (Alaska) and 2 years at the selected sites at the Northern Yakutia (Russia) and its comparison with the 17 to 10 years records of active layer thickness dynamics at the corresponding sites (http://www.udel.edu/Geography/calm/data/north.html). The area of investigation characterized by the typical tundra landscape and different kinds of micro topography. Reported observation sites located at the latitudinal range from 68.5 to 70.3N in Alaska and 70.5 to 71.75N in the Northern Yakutia. Observation have been done using the 1 meter long MRC probe with 11 sensors (every 10 cm) and single Campbell SCI A107 sensors in Alaska and 2-channel HOBO U23 data loggers with TMC-HD thermistors in the Northern Yakutia. Analyses of CALM data show what most observation sites in Alaska (except located near the Brooks Range and at the Arctic Ocean coast) do not subjected to the significant sustainable changes of active layer thickness over the last 10 years. At the same time active layer thickness at the Yakutian sites was increasing. Temperature observations show decreasing of the mean annual temperature at the average depth of active layer bottom at the Alaskan sites. But, because of general trend to increasing of period of thawing it does not lead to the decreasing of active layer thickness. Recent equipment deployment at the Tiksi and Allaikha sites (Northern Yakutia) does not

  13. Engineering Sandwich Courses in British Technological Universities

    ERIC Educational Resources Information Center

    Moore, J. P.; Urry, S. A.

    1971-01-01

    The development of sandwich courses, a review of their progress and a consideration of the problems associated with their operation are described. These courses are integrated so that industrial training is required and is interspersed between academic segments. (Author/TS)

  14. Sandwich targets for heavy-ion experiments

    SciTech Connect

    Thomas, G.E.

    1982-01-01

    Techniques for producing sandwich targets such as Gd + Pb are described. Better contact between the materials is sometimes assured by evaporating one material onto the other rather than by rolling the two together. Experimental data using both types of targets will be shown.

  15. Career Counseling for the Sandwich Generation.

    ERIC Educational Resources Information Center

    Byrd, Virginia

    The Sandwich Generation refers to individuals who have multiple caregiving responsibilities for children under 18, as well as parents, grandparents or other aging relatives. Employees who are the caregivers cannot help but bring the stress of the situation to the workplace. Existing research suggests that these responsibilities take a toll on…

  16. Noise transmission by viscoelastic sandwich panels

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1977-01-01

    An analytical study on low frequency noise transmission into rectangular enclosures by viscoelastic sandwich panels is presented. Soft compressible cores with dilatational modes and hard incompressible cores with dilatational modes neglected are considered as limiting cases of core stiffness. It is reported that these panels can effect significant noise reduction.

  17. Feedback Sandwiches Affect Perceptions but Not Performance

    ERIC Educational Resources Information Center

    Parkes, Jay; Abercrombie, Sara; McCarty, Teresita

    2013-01-01

    The feedback sandwich technique-make positive comments; provide critique; end with positive comments-is commonly recommended to feedback givers despite scant evidence of its efficacy. These two studies (N = 20; N = 350) of written peer feedback with third-year medical students on clinical patient note-writing assignments indicate that students…

  18. Understanding Successful Sandwich Placements: A Bourdieusian Approach

    ERIC Educational Resources Information Center

    Clark, Martyn; Zukas, Miriam

    2016-01-01

    Sandwich placements and other integrated work and study schemes are increasingly advocated as a key means by which universities can promote students' employability. However, there is little understanding of how successful placements work in terms of facilitating learning and development. Drawing on three longitudinal case studies of students who…

  19. Wave propagation in metamaterial lattice sandwich plates

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Wen, Jihong; Yin, Jianfei; Yu, Dianlong

    2016-04-01

    This paper designed a special acoustic metamaterial 3D Kagome lattice sandwich plate. Dispersion properties and vibration responses of both traditional plate and metamaterial plate are investigated based on FEA methods. The traditional plate does not have low-frequency complete bandgaps, but the metamaterial plate has low-frequency complete bandgap (at 620Hz) coming from the symmetrical local cantilever resonators. The bandgap frequency is approximate to the first-order natural frequency of the oscillator. Complex wave modes are analyzed. The dispersion curves of longitudinal waves exist in the flexural bandgap. The dispersion properties demonstrate the metamaterial design is advantageous to suppress the low-frequency flexural wave propagation in lattice sandwich plate. The flexural vibrations near the bandgap are also suppressed efficiently. The longitudinal excitation stimulates mainly longitudinal waves and lots of low-frequency flexural vibration modes are avoided. Furthermore, the free edge effects in metamaterial plate provide new method for damping optimizations. The influences of damping on vibrations of the metamaterial sandwich plate are studied. Damping has global influence on the wave propagation; stronger damping will induce more vibration attenuation. The results enlighten us damping and metamaterial design approaches can be unite in the sandwich plates to suppress the wave propagations.

  20. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  1. Impact-damaged graphite-thermoplastic trapezoidal-corrugation sandwich and semi-sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, D.

    1993-01-01

    The results of a study of the effects of impact damage on compression-loaded trapezoidal-corrugation sandwich and semi-sandwich graphite-thermoplastic panels are presented. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them, and semi-sandwich panels with a corrugation attached to a single skin are considered in this study. Panels were designed, fabricated and tested. The panels were made using the manufacturing process of thermoforming, a less-commonly used technique for fabricating composite parts. Experimental results for unimpacted control panels and panels subjected to impact damage prior to loading are presented. Little work can be found in the literature about these configurations of thermoformed panels.

  2. MTF and NPS of single-shot dual-energy sandwich detectors

    NASA Astrophysics Data System (ADS)

    Kim, Junwoo; Kim, Dong Woon; Yun, Hanbean; Kim, Ho Kyung

    2016-03-01

    The actual meaning of the modulation-transfer function (MTF) and the noise-power spectrum (NPS) is ambiguous in dual-energy images obtained from the single-shot sandwich detector, and their properties for various detector design parameters are also being questioned. In this study, the authors regard the sandwich detector including weighted logarithmic subtraction operation as a single black-box detector, and measure the single-shot dual-energy MTF and NPS performances. Subtraction of two images obtained from the sub-detector layers, which have different thick x-ray converters (hence, different spatial-resolution performances), of the sandwich detector yields a band-pass filter characteristic of the MTF. On the other hand, the NPS is the weighted sum of each NPS obtained from the sub-detector layers. The MTF characteristic is reflected into the DQE, hence the DQE shows a similar band-pass filter characteristics. Therefore, the sandwich detector may lose the contrast performance for large-area objects, but it may emphasize the contrast performance for objects with importance at mid-frequency information.

  3. An analytical and experimental investigation of sandwich composites subjected to low-velocity impact

    NASA Astrophysics Data System (ADS)

    Anderson, Todd Alan

    1999-12-01

    This study involves an experimental and analytical investigation of low-velocity impact phenomenon in sandwich composite structures. The analytical solution of a three-dimensional finite-geometry multi-layer specially orthotropic panel subjected to static and transient transverse loading cases is presented. The governing equations of the static and dynamic formulations are derived from Reissner's functional and solved by enforcing the continuity of traction and displacement components between adjacent layers. For the dynamic loading case, the governing equations are solved by applying Fourier or Laplace transformation in time. Additionally, the static solution is extended to solve the contact problem between the sandwich laminate and a rigid sphere. An iterative method is employed to determine the sphere's unknown contact area and pressure distribution. A failure criterion is then applied to the sandwich laminate's stress and strain field to predict impact damage. The analytical accuracy of the present study is verified through comparisons with finite element models, other analyses, and through experimentation. Low-velocity impact tests were conducted to characterize the type and extent of the damage observed in a variety of sandwich configurations with graphite/epoxy face sheets and foam or honeycomb cores. Correlation of the residual indentation and cross-sectional views of the impacted specimens provides a criterion for the extent of damage. Quasi-static indentation tests are also performed and show excellent agreement when compared with the analytical predictions. Finally, piezoelectric polyvinylidene fluoride (PVF2) film sensors are found to be effective in detecting low-velocity impact.

  4. Improving ice nucleation activity of zein film through layer-by-layer deposition of extracellular ice nucleators.

    PubMed

    Shi, Ke; Yu, Hailong; Lee, Tung-Ching; Huang, Qingrong

    2013-11-13

    Zein protein has been of scientific interest in the development of biodegradable functional food packaging. This study aimed at developing a novel zein-based biopolymer film with ice nucleation activity through layer-by-layer deposition of biogenic ice nucleators, that is, extracellular ice nucleators (ECINs) isolated from Erwinia herbicola , onto zein film surface. The adsorption behaviors and mechanisms were investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). On unmodified zein surface, the highest ECINs adsorption occurred at pH 5.0; on UV/ozone treated zein surface followed by deposition of poly(diallyldimethylammonium chloride) (PDADMAC) layer, the optimum condition for ECINs adsorption occurred at pH 7.0 and I 0.05 M, where the amount of ECINs adsorbed was also higher than that on unmodified zein surface. QCM-D analyses further revealed a two-step adsorption process on unmodified zein surfaces, compared to a one-step adsorption process on PDADMAC-modified zein surface. Also, significantly, in order to quantify the ice nucleation activity of ECINs-coated zein films, an empirical method was developed to correlate the number of ice nucleators with the ice nucleation temperature measured by differential scanning calorimetry. Calculated using this empirical method, the highest ice nucleation activity of ECINs on ECINs-modified zein film reached 64.1 units/mm(2), which was able to elevate the ice nucleation temperature of distilled water from -15.5 °C to -7.3 °C. PMID:24106783

  5. Highly sensitive multi-layer pressure sensor with an active nanostructured layer of an organic molecular metal

    NASA Astrophysics Data System (ADS)

    Laukhin, V.; Lebedev, V.; Laukhina, E.; Rovira, C.; Veciana, J.

    2016-03-01

    This work addresses to the modern technologies that need to be instrumented with lightweight highly sensitive pressure sensors. The paper presents the development of a new plain flexible thin pressure sensor using a nanostructured layer of the highly sensitive organic piezoresistive metal β-(BEDT-TTF)2I3 as an active component; BEDT-TTF=bis (ethylenedithio)tetrathiafulvalene. The original construction approach permits one to operate the developed sensor on the principle of electrical resistance variations when its piezoresistive layer is elongated under a pressure increase. The pressure sensing element and a set of gold electrodes were integrated into one compact multi-layer design. The construction was optimized to enable one generic design for pressure ranges from 1 to 400 bar. The pressure tests showed that the sensor is able to control a small pressure change as a well definite electrical signal. So the developed type of the sensors is very attractive as a new generation of compact, lightweight, low-cost sensors that might monitor pressure with a good level of measurement accuracy.

  6. Crystallinity Modulation of Layered Carbon Nitride for Enhanced Photocatalytic Activities.

    PubMed

    Wang, Jianhai; Shen, Yanfei; Li, Ying; Liu, Songqin; Zhang, Yuanjian

    2016-08-22

    As an emerging metal-free semiconductor, covalently bonded carbon nitride (CN) has attracted much attention in photocatalysis. However, drawbacks such as a high recombination rate of excited electrons and holes hinder its potential applications. Tailoring the crystallinity of semiconductors is an important way to suppress unwanted charge recombination, but has rarely been applied to CN so far. Herein, a simple method to synthesize CN of high crystallinity by protonation of specific intermediate species during conventional polymerization is reported. Interestingly, the as-obtained CN exhibited improved photocatalytic activities of up to seven times those of the conventional bulk CN. This approach, with only a slight change to the conventional method, provides a facile way to effectively regulate the crystallinity of bulk CN to improve its photocatalytic activities and sheds light on large-scale industrial applications of CN with high efficiency for sustainable energy. PMID:27436164

  7. Fabrication of three-dimensional microfluidic systems by stacking molded polydimethylsiloxane (PDMS) layers

    NASA Astrophysics Data System (ADS)

    Jo, Byung-Ho; Beebe, David J.

    1999-08-01

    A new technique to fabricate 3D microchannels using polydimethylsiloxane (PDMS) elastomer material is presented. The process allows for the stacking of many thin (about 100 micrometers thick) patterned PDMS layers to realize complex 3D channel paths. Replica molding method is utilized to generate each layer. The master for each layer is formed on a silicon wafer using SU-8 positive relief photoresist. PDMS is cast against the master producing molded layers containing channels and openings. To realize thin layers with openings, a sandwich molding configuration was developed that allows precise control of the PDMS thickness. The master wafer is clamped within a sandwich that includes flat aluminum plates, a flexible polyester film layer, a rigid Pyrex wafer and a rubber sheet. A parametric study is performed on PDMS surface activation in a reactive ion etching (RIE) system and the subsequent methanol treatment for bonding and aligning very thin individual components to a substrate. Low RF power and short treatment times are better than high RF power and long treatment times respectively for instant bonding. Layer to layer alignment of less than 15 micrometers is achieved with manual alignment techniques that utilize surface tension driven self alignment methods. A coring procedure is used to realize off chip fluidic connections via the bottom PDMS layer, allowing the top layer to remain smooth and flat for complete optical access. After fabricating 3D channel paths, the hydrophobic surfaces of the inside channel walls can be activated (hydrophobic to hydrophilic) an oxygen plasma RIE system.

  8. An active control system for the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Lew, James

    This thesis presents the development process and the experimental results of a system constructed to apply real-time control to the structures of the turbulent boundary layer region in order to reduce surface shear stress. The system is composed of three main components: an array of MEMS surface shear stress, tauw sensors; a MEMS flap actuator; and a control logic which integrates the hardware components together into a closed system. The objective of this system is to reduce the stress contained in streak-like regions of high tauw. The sensor array, used to image the tauw distribution, is an extension of the thermal based tauw sensor developed by Jiang. Numerous studies have been performed using this device, the results of which have validated its performance. For this study, a new temperature compensation methodology, based on the surface temperature of the sensor chip, was employed in order to account for possible temperature variations at the wall surface. The actuator, a pneumatically driven flap, is developed as part of the present research. The device is, in essence, a 3 mm x 1 mm cantilever beam that sits on top of an inflatable diaphragm and is capable of actuation frequencies of over 200 Hz and amplitudes of over .11 mm. When it is oscillated in the open loop mode, the effect over one cycle of motion is an average reduction by as much as 2.5% in tauw in the region immediately downstream. A neural network is employed to identify the streak-like regions of interest. Results have shown that this network is successful in identifying the streak-like regions of interest. The control logic employs this network in a predictive, feed-forward scheme to determine the appropriate actuator response. Offline studies have shown that under optimal conditions, the signature of the streak-like regions can be eliminated. Online results conform well to the offline predictions. While unable to achieve the optimal conditions, online experiments show that the system is capable

  9. Contribution of S-Layer Proteins to the Mosquitocidal Activity of Lysinibacillus sphaericus

    PubMed Central

    Allievi, Mariana Claudia; Palomino, María Mercedes; Prado Acosta, Mariano; Lanati, Leonardo; Ruzal, Sandra Mónica; Sánchez-Rivas, Carmen

    2014-01-01

    Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity. PMID:25354162

  10. Design and evaluation of bimorph and sandwich tunable frequency power harvesting devices

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yin; Lai, Chia-Shun; Chou, Yuh-Shyong; Hsu, Chen-Kai; Wu, Wen-Jong

    2008-03-01

    Over the past years, there are growing interests on scavenging energy from ambience for portable and low-power electronic devices. Among these low-power electronic devices, wireless sensor networks combined with piezoelectric power harvesting devices are the most promising scenario which using piezoelectric cantilever beam structure excited by ambient vibrations to convert mechanical vibration power to electric power and power the wireless sensors. It is known that the environmental excitation frequency will not be always the same as the resonant frequency of the cantilever beam. However, the cantilever beam excited under resonant frequency will have the highest energy output. In this paper, bimorph and sandwich type structure with frequency tuning circuit is proposed to shift the resonant frequency of the piezoelectric cantilever beam in real-time to match the environmental excitation frequency in order to increase the power efficiency and harvest more energy. For the bimorph and sandwich laminated PZT cantilever beam, there will be 2 layers and 3 layers of PZT layers, and one for the PZT layers will be used to control the beam resonant frequency by connecting to different electrical loading impedance. The exciting frequency will be monitored by a low-power micro-processor usually used on wireless sensors. The design and fabrication of the bimorph and sandwich beam structure with and without frequency tuning circuit will all be evaluated and detailed in this paper.

  11. Computation of linear transmittance of thermal bridges in precast concrete sandwich panels

    NASA Astrophysics Data System (ADS)

    Luscietti, Davide; Gervasio, Paola; Lezzi, Adriano M.

    2014-11-01

    Precast concrete lightened sandwich panels are widely used building elements. They are made by two concrete wythes separated by a layer of lightweight material: the central layer is inhomogeneous due to the presence of concrete ribs which tie the external wythe and act as thermal bridges. Computation of thermal transmittance of sandwich panels is clearly described in European Standards, but in many cases it requires numerical simulations to determine the linear transmittance ψ associated with lightweight material-concrete interfaces in the inhomogeneous layer. Although simple, these simulations represent a critical issue for many panel manufacturers and they would much rather prefer correlations to compute ψ. In this work we present a correlation based on an artificial neural network (ANN) to estimate linear trasmittauce values for current Italian sandwich panel production. Five input parameters are considered: rib width, lightweight material conductivity, and thickness of the three panel layers. To obtain the data which are necessary to train and test the ANN, a fast and accurate Spectral Element Method is used to solve Laplace equation in the neighborhood of a rib. 5460 ψ values are collected which ensure an accurate network response.

  12. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species.

    PubMed

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P R

    2015-05-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. PMID:25675956

  13. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species

    PubMed Central

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P. R.

    2015-01-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young’s moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. PMID:25675956

  14. Interannual active layer thermal and dynamics evolution at the crater Lake CALM site, Deception Island (Antarctica).

    NASA Astrophysics Data System (ADS)

    Ramos, Miguel; Vieira, Gonzalo; Ángel De Pablo, Miguel; Molina, Antonio; Abramov, Andrey

    2015-04-01

    Deception Island, is an active strato-volcano on South Shetland Archipelago of Antarctica (62° 55' 0″ S, 60° 37' 0″ W), is a cold region with harsh remote and hostile environmental conditions. The permafrost and active layer existence, and the cold climate conditions together with volcanic material with height water content inside made this region of the Earth a perfect site to study the active layer and permafrost evolution involved in the Circumpolar Active Layer South (CALM-S) program. The active layer is measured in late January or firs february (during the end of the thaw period) at the "Crater Lake" CALM site (62°58'06.7''; 60°40'44.8'') on Deception Island, Antarctica, at the period 2006 to 2014 we obtained a mean annual value of 29,7±2 cm. In this paper, we describe the spatial active layer thickness distribution and report the reduction on the mean thickness between February 2006 and 2014. Below the active layer, permafrost could be also reported (with a mean thickness of 4.5± 0.5 m.) based on the temperature data acquired by sensors installed at different depth inside the soil; three different shallow boreholes was drilled (1.0 m., 1.6 m., 4.5 m. in depth) and we have been registered its temperature gradient at the 2010 to 2013 period. Here we use all those data 1) to describe the thermal behavior of the permafrost at the CALM site, and 2) to describe its evolution (aggradation/degradation) along fourteen years of continuous measurements. We develop this study, to known the thermal behavior of the permafrost and the active layer related with the air/soil interaction being one of the most important factors the snow layer that was measured by the installation of termo-snowmeters with the complement of an automatic digital camera during the 2008 to 2014 period. On the other hand, the pyroclastics soil materials has a very high values of water content then the latent heat in the freezing/thawing process controls the active layer evolution and the

  15. Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Aiello, R. A.; Murthy, P. L. N.

    1986-01-01

    Several computational levels of progressive sophistication/simplification are described to computationally simulate composite sandwich hygral, thermal, and structural behavior. The computational levels of sophistication include: (1) three-dimensional detailed finite element modeling of the honeycomb, the adhesive and the composite faces; (2) three-dimensional finite element modeling of the honeycomb assumed to be an equivalent continuous, homogeneous medium, the adhesive and the composite faces; (3) laminate theory simulation where the honeycomb (metal or composite) is assumed to consist of plies with equivalent properties; and (4) derivations of approximate, simplified equations for thermal and mechanical properties by simulating the honeycomb as an equivalent homogeneous medium. The approximate equations are combined with composite hygrothermomechanical and laminate theories to provide a simple and effective computational procedure for simulating the thermomechanical/thermostructural behavior of fiber composite sandwich structures.

  16. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  17. Buckling optimisation of sandwich cylindrical panels

    NASA Astrophysics Data System (ADS)

    Abouhamzeh, M.; Sadighi, M.

    2016-06-01

    In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.

  18. Concrete sandwich construction for energy conservation

    NASA Astrophysics Data System (ADS)

    Keeton, J. R.

    1980-03-01

    An abbreviated research study on use of shrinkage-compensating expansive concrete in sandwich-type wall and roof panels containing insulation at mid-thickness is described. The use of expansive concrete is shown to be a technically viable concept for eliminating shrinkage cracking, thus preventing moisture penetration which can reduce insulation effectiveness, cause deterioration of the insulating material, and accelerate steel corrosion. Embeddable resistance strain gages proved to be reliable for measuring expansion and subsequent shrinkage of the experimental panels. As a result of this study, a comprehensive research program is proposed for experimental verification of design and field control measures that will permit the use of shrinkage-compensating cement mortars in sandwich panel construction.

  19. Multilayer Roll-Bonded Sandwich: Processing, Mechanical Performance, and Bioactive Behavior

    SciTech Connect

    Palkowski H.; Stanic V.; Carrado, A.

    2012-03-30

    Multifunctionality and improving the properties of materials make it necessary to use hybrid systems such as combinations of metals with polymers. Their applications can be found in all areas where light weight and improved and adapted mechanical properties as well as high functionality are needed. Moreover, tailored types of hybrids can be interesting for biomedical applications, as under specific conditions they show, e.g., good strength combined with high elasticity. Herein, we present preliminary tests on the biomimetic behavior of AISI SS316L/polypropylene copolymer/AISI SS316L sandwich. Biomimetic coatings were produced by inducing a calcium phosphate layer in a way similar to the process of natural bone formation. Knowledge of the formability of three-layered sandwich sheets and their biomimetic behavior is presented.

  20. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  1. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. PMID:27494632

  2. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  3. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping

    PubMed Central

    2014-01-01

    In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 1013 cm-2, resistivity at 4.6 × 10-3 Ω∙cm, and Hall mobility at 14.6 cm2/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm2/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm2/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs. PMID:25435832

  4. Carbon nanotubes supported cerium dioxide and platinum nanohybrids: Layer-by-layer synthesis and enhanced electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Lou, Xinyuan; Chen, Jiayi; Wang, Mengdi; Gu, Jialei; Wu, Ping; Sun, Dongmei; Tang, Yawen

    2015-08-01

    We successfully synthesize carbon nanotubes (CNTs) supported cerium dioxide and platinum (Pt/CeO2/CNTs) nanohybrids via layer-by-layer assembly. The composition, morphology and structure of the as-prepared Pt/CeO2/CNTs nanohybrids are characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission spectrometry (ICP-AES). By comparison of the electrocatalytic properties of the Pt/CeO2/CNTs with the Pt/CNTs, we systematically investigate the promotion effect of CeO2 on the Pt/CeO2/CNTs catalysts towards methanol oxidation. It is found that the introduction of CeO2 not only enhances the electrocatalytic activity and stability of the Pt/CeO2/CNTs catalyst for methanol oxidation but also minimizes the CO poisoning, probably accounting for the good oxygen carrying capacity of CeO2 and its high stability in acidic solution.

  5. BMI Sandwich Wing Box Analysis and Test

    NASA Technical Reports Server (NTRS)

    Palm, Tod; Mahler, Mary; Shah, Chandu; Rouse, Marshall; Bush, Harold; Wu, Chauncey; Small, William J.

    2000-01-01

    A composite sandwich single bay wing box test article was developed by Northrop Grumman and tested recently at NASA Langley Research Center. The objectives for the wing box development effort were to provide a demonstration article for manufacturing scale up of structural concepts related to a high speed transport wing, and to validate the structural performance of the design. The box concept consisted of highly loaded composite sandwich wing skins, with moderately loaded composite sandwich spars. The dimensions of the box were chosen to represent a single bay of the main wing box, with a spar spacing of 30 inches, height of 20 inches constant depth, and length of 64 inches. The bismaleimide facesheet laminates and titanium honeycomb core chosen for this task are high temperature materials able to sustain a 300F service temperature. The completed test article is shown in Figure 1. The tests at NASA Langley demonstrated the structures ability to sustain axial tension and compression loads in excess of 20,000 lb/in, and to maintain integrity in the thermal environment. Test procedures, analysis failure predictions, and test results are presented.

  6. Establishment of swine interleukin-6 sandwich ELISA.

    PubMed

    Nuntaprasert, A; Mori, Y; Tsukiyama-Kohara, K; Kai, C

    2005-03-01

    We established a sandwich enzyme-linked immunosorbent assay (ELISA) for swine interleukin-6 (SwIL-6), which was applied for detection of SwIL-6 in vitro and in vivo. Anti-SwIL-6 rabbit- and goat-polyclonal antibodies, and monoclonal antibody (mAb) were prepared, conforming that all of the antibodies were reactive with recombinant SwIL-6 by Western blotting and indirect ELISA. A sandwich ELISA was developed using the mAb as a capture antibody and biotinylated goat-polyclonal antibody as a detection antibody. The detection limit of the sandwich ELISA for rSwIL-6 was 49pg/ml and did not show cross-reactivity with swine IL-1b, IL-4, IL-8, IL-18, IL-12, and IFN-g. Using the ELISA, SwIL-6 was detected in culture medium of the monocytes stimulated with PHA-P and PMA, and the plasma or the bronchoalveolar lavage fluid (BALF) of pigs experimentally infected with Actinobacillus pleuropneumoniae or Mycoplasma hyopneumoniae. This ELISA for SwIL-6 may be useful for understanding the role of this cytokine in various swine diseases. PMID:15582688

  7. Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries.

    PubMed

    Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan

    2015-07-01

    Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle. PMID:26047208

  8. Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control

    NASA Technical Reports Server (NTRS)

    Heyliger, P. R.; Ramirez, G.; Pei, K. C.

    1994-01-01

    The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when

  9. Morphing nacelle inlet lip with pneumatic actuators and a flexible nano composite sandwich panel

    NASA Astrophysics Data System (ADS)

    Gulsine Ozdemir, Nazli; Scarpa, Fabrizio; Craciun, Monica; Remillat, Chrystel; Lira, Cristian; Jagessur, Yogesh; Da Rocha-Schmidt, Luiz

    2015-12-01

    We present a hybrid pneumatic/flexible sandwich structure with thermoplastic (TP) nanocomposite skins to enable the morphing of a nacelle inlet lip. The design consists of pneumatic inflatables as actuators and a flexible sandwich panel that morphs under variable pressure combinations to adapt different flight conditions and save fuel. The sandwich panel forms the outer layer of the nacelle inlet lip. It is lightweight, compliant and impact resistant with no discontinuities, and consists of graphene-doped thermoplastic polyurethane (G/TPU) skins that are supported by an aluminium Flex-core honeycomb in the middle, with near zero in-plane Poisson’s ratio behaviour. A test rig for a reduced-scale demonstrator was designed and built to test the prototype of morphing nacelle with custom-made pneumatic actuators. The output force and the deflections of the experimental demonstrator are verified with the internal pressures of the actuators varying from 0 to 0.41 MPa. The results show the feasibility and promise of the hybrid inflatable/nanocomposite sandwich panel for morphing nacelle airframes.

  10. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex.

    PubMed

    Adams, Daniel L; Economides, John R; Horton, Jonathan C

    2015-05-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. PMID:25810480

  11. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex

    PubMed Central

    Adams, Daniel L.; Economides, John R.

    2015-01-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. PMID:25810480

  12. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  13. Polymer Solar Cell Device Characteristics Are Independent of Vertical Phase Separation in Active Layers

    NASA Astrophysics Data System (ADS)

    Loo, Yueh-Lin

    2013-03-01

    Preferential segregation of organic semiconductor constituents in multicomponent thin-film active layers has long been speculated to affect the characteristics of bulk-heterojunction polymer solar cells. Using soft-contact lamination and delamination schemes - with which we have been able to remove compositionally well characterized polymer thin films, flip them over so as to reverse their composition profiles, and then transfer them onto existing device platforms - we showed unambiguously that the device performance of P3HT:PCBM solar cells are independent of the interfacial segregation characteristics of the active layers. Temperature-dependent single-carrier diode measurements of the organic semiconductor constituents suggest that the origin of this invariance stems from the fact that P3HT comprises a high density of mid-gap states. Hole carriers in these mid-gap states can in turn recombine with electrons at the electron-collecting interface, effectively promoting electron transfer from the cathode to the active layer.

  14. Effect of layered composite meta-structures on the optical activity and ellipticity of structural biomolecules

    NASA Astrophysics Data System (ADS)

    Khoo, E. H.; Hor, Y. Li; Leong, Eunice S. P.; Liu, Y. J.

    2014-09-01

    In this paper, we design layered composite meta-structures to investigate its' effect on the optical activity and circular dichroism (CD). The layered composite meta-structures consist of thin gammadion nanostructure with thickness λ/10, where λ is the incident wavelength. The layered meta-structures are alternate between a dielectric and gold (AU) material. Each layered composite meta-gammadion is arranged together in an array of pitch 700 nm. In the first case, 3 layers of meta-gammadion, with metal-insulator-metal (MIM) and insulator-metal-insulator (IMI) configuration are simulated with material properties from optical hand book. There are 3 modes in the CD spectrum, which can be characterized into Bloch CD mode and hybrid CD modes. Compared with the CD spectrum of whole structure of gammadion in gold with same total height, the CD of the MIM layered composite are larger. When the number layer increase to 5, it is observed that the CD is reduced by 30% and there is a red shift in the Bloch CD mode and a slight blue shift in the hybrid CD modes. By further increasing the number of layers to 7, we observed further CD increment and larger wavelength shift in the CD modes. The layered composite meta-gammadion is fabricated using template stripping method. Experimental results also show excellent agreement with the simulation results for CD and wavelength shift. We submerge the layered meta-gammadion into a solution of chiral molecules. The CD spectrum of the meta-gammadion shows a larger wavelength shift compared to pure metal structures. This indicate a more sensitive and robust detection of chiral molecules.

  15. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned

  16. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  17. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  18. An enriched 1D finite element for the buckling analysis of sandwich beam-columns

    NASA Astrophysics Data System (ADS)

    Sad Saoud, Kahina; Le Grognec, Philippe

    2016-06-01

    Sandwich constructions have been widely used during the last few decades in various practical applications, especially thanks to the attractive compromise between a lightweight and high mechanical properties. Nevertheless, despite the advances achieved to date, buckling still remains a major failure mode for sandwich materials which often fatally leads to collapse. Recently, one of the authors derived closed-form analytical solutions for the buckling analysis of sandwich beam-columns under compression or pure bending. These solutions are based on a specific hybrid formulation where the faces are represented by Euler-Bernoulli beams and the core layer is described as a 2D continuous medium. When considering more complex loadings or non-trivial boundary conditions, closed-form solutions are no more available and one must resort to numerical models. Instead of using a 2D computationally expensive model, the present paper aims at developing an original enriched beam finite element. It is based on the previous analytical formulation, insofar as the skin layers are modeled by Timoshenko beams whereas the displacement fields in the core layer are described by means of hyperbolic functions, in accordance with the modal displacement fields obtained analytically. By using this 1D finite element, linearized buckling analyses are performed for various loading cases, whose results are confronted to either analytical or numerical reference solutions, for validation purposes.

  19. Thermal conductivity tensors of the cladding and active layers of interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Cui, Boya; Vurgaftman, I.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Meyer, J. R.; Grayson, M.

    2014-12-01

    The cross-plane and in-plane thermal conductivities of the W-active stages and InAs/AlSb superlattice optical cladding layer of an interband cascade laser (ICL) were characterized for temperatures ranging from 15 K to 324 K. The in-plane thermal conductivity of the active layer is somewhat larger than the cross-plane value at temperatures above about 30 K, while the thermal conductivity tensor becomes nearly isotropic at the lowest temperatures studied. These results will improve ICL performance simulations and guide the optimization of thermal management.

  20. MAPLE prepared heterostructures with arylene based polymer active layer for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, F.; Rasoga, O.; Catargiu, A. M.; Vacareanu, L.; Socol, M.; Breazu, C.; Preda, N.; Socol, G.; Stanculescu, A.

    2015-05-01

    This paper presents some studies about the preparation by matrix-assisted pulsed laser evaporation (MAPLE) technique of heterostructures with single layer of arylene based polymer, poly[N-(2-ethylhexyl)2.7-carbazolyl vinylene]/AMC16 and poly[N-(2-ethylhexyl)2.7-carbazolyl 1.4-phenylene ethynylene]/AMC22, and with layers of these polymers mixed with Buckminsterfullerene/C60 in the weight ratio of 1:2 (AMC16:C60) and 1:3 (AMC22:C60). The deposited layers have been characterized by spectroscopic (UV-Vis-NIR, PL, FTIR) and microscopic (SEM, AFM) methods. The effect of the polymer particularities on the optical and electrical properties of the structures based on polymer and polymer:C60 mixed layer has been analyzed. The study of the electrical properties has revealed typical solar cell behavior for the heterostructure prepared by MAPLE on glass/ITO/PEDOT-PSS with AMC16, AMC22 and AMC22:C60 layer, confirming that this method is adequate for the preparation of polymeric and mixed active layers for solar cells applications. The highest photovoltaic effect was shown by the solar cell structure realized with single layer of AMC16 polymer: glass/ITO/PEDOT-PSS/AMC16/Al.

  1. Material properties and field-effect transistor characteristics of hybrid organic/graphene active layers

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun; Lee, Jongho; Chowdhury, Sk. Fahad; Akinwande, Deji; Dodabalapur, Ananth

    2012-10-01

    We report on the material properties and device characteristics of field-effect transistors (FETs) consisting of hybrid mono-layer graphene/organic semiconductor active layers. By capping with selected organic and polymeric layers, transformation of the electronic characteristics of mono-layer graphene FETs was observed. The off-state current is reduced while the on-state current and field-effect mobility are either unaffected or increased after depositing π-conjugated organic semiconductors. Significantly, capping mono-layer graphene FETs with fluoropolymer improved the on-off current ratio from 5 to 10 as well as increased the field-effect mobility by factor of two compared to plain graphene FETs. Removal of π-conjugated organic semiconductors or fluoropolymer from graphene FETs results in a return to the original electronic properties of mono-layer graphene FETs. This suggests that weak reversible electronic interactions between graphene and π-conjugated organic semiconductors/fluoropolymer favorably tune the material and electrical characteristics of mono-layer graphene.

  2. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer.

    PubMed

    Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  3. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer

    PubMed Central

    Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  4. Development Of Advanced Sandwich Core Topologies Using Fused Deposition Modeling And Electroforming Processes

    NASA Astrophysics Data System (ADS)

    Storck, Steven M.

    New weight efficient materials are needed to enhance the performance of vehicle systems allowing increased speed, maneuverability and fuel economy. This work leveraged a multi-length-scale composite approach combined with hybrid material methodology to create new state-of-the-art additive manufactured sandwich core material. The goal of the research was to generate a new material to expands material space for strength versus density. Fused-Deposition-Modeling (FDM) was used to remove geometric manufacturing constraints, and electrodepositing was used to generate a high specific-strength, bio-inspired hybrid material. Microtension samples (3mm x 1mm with 250mum x 250mum gage) were used to investigate the electrodeposited coatings in the transverse (TD) and growth (GD) directions. Three bath chemistries were tested: copper, traditional nickel sulfamate (TNS) nickel, and nickel deposited with a platinum anode (NDPA). NDPA shows tensile strength exceeding 1600 MPa, significantly beyond the literature reported values of 60MPa. This strengthening was linked to grain size refinement into the sub-30nm range, in addition to grain texture refinement resulting in only 17% of the slip systems for nickel being active. Anisotropy was observed in nickel deposits, which was linked to texture evolution inside of the coating. Microsample testing guided the selection of 15mum layer of copper deposition followed by a 250 mum NDPA layer. Classical formulas for structural collapse were used to guide an experimental parametric study to establish a weight/volume efficient strut topology. Length, diameter and thickness were all investigated to determine the optimal column topology. The most optimal topology exists when Eulerian buckling, shell micro buckling and yielding failure modes all exist in a single geometric topology. Three macro-scale sandwich topologies (pyramidal, tetrahedral, and strut-reinforced-tetrahedral (SRT) were investigated with respect to strength-per-unit-weight. The

  5. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Lulu; Jiang, Changlong; Zhang, Zhongping

    2013-04-01

    Analytical techniques based on surface-enhanced Raman scattering (SERS) suffer from a lack of reproducibility and reliability, thus hampering their practical applications. Herein, we have developed a SERS-active substrate based on a graphene oxide embedded sandwich nanostructure for ultrasensitive Raman signal readout. By using this novel Au@Ag NPs/GO/Au@Ag NPs sandwich nanostructure as a SERS substrate, the Raman signals of analytes were dramatically enhanced due to having plenty of hot spots on their surfaces and the unique structure of the graphene oxide sheets. These features make the sandwich nanostructured film an ideal SERS substrate to improve the sensitivity, reproducibility and reliability of the Raman readout. The sandwich nanostructure film can be applied to detect rhodamine-6G (R6G) with an enhancement factor (EF) of ~7.0 × 107 and the pesticide thiram in commercial grape juice with a detection limit of as low as 0.1 μM (0.03 ppm), which is much lower than the maximal residue limit (MRL) of 7 ppm in fruit prescribed by the U.S. Environmental Protection Agency (EPA). The GO embedded sandwich nanostructure also has the ability to selectively detect dithiocarbamate compounds over other types of agricultural chemical. Furthermore, spiked tests show that the sandwich nanostructure can be used to monitor thiram in natural lake water and commercial grape juice without further treatment. In addition, the GO enhanced Raman spectroscopic technique offers potential practical applications for the on-site monitoring and assessment of pesticide residues in agricultural products and environments.Analytical techniques based on surface-enhanced Raman scattering (SERS) suffer from a lack of reproducibility and reliability, thus hampering their practical applications. Herein, we have developed a SERS-active substrate based on a graphene oxide embedded sandwich nanostructure for ultrasensitive Raman signal readout. By using this novel Au@Ag NPs/GO/Au@Ag NPs sandwich

  6. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic

  7. Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Sato, Satoshi; Maegawa, Toshio; Yoshimatsu, Kenji; Sato, Koichi; Nonaka, Akira; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara

    2011-10-01

    A multi-layered concrete structure has been developed to reduce induced activity in the shielding for neutron generating facilities such as a fusion reactor. The multi-layered concrete structure is composed of: (1) an inner low activation concrete, (2) a boron-doped low activation concrete as the second layer, and (3) ordinary concrete as the outer layer of the neutron shield. With the multi-layered concrete structure the volume of boron is drastically decreased compared to a monolithic boron-doped concrete. A 14 MeV neutron shielding experiment with multi-layered concrete structure mockups was performed at FNS and several reaction rates and induced activity in the mockups were measured. This demonstrated that the multi-layered concrete effectively reduced low energy neutrons and induced activity.

  8. A charge carrier transport model for donor-acceptor blend layers

    NASA Astrophysics Data System (ADS)

    Fischer, Janine; Widmer, Johannes; Kleemann, Hans; Tress, Wolfgang; Koerner, Christian; Riede, Moritz; Vandewal, Koen; Leo, Karl

    2015-01-01

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C60 in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for the characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (Et = 0.14 eV, Nt = 1.2 × 1018 cm-3) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.

  9. A charge carrier transport model for donor-acceptor blend layers

    SciTech Connect

    Fischer, Janine Widmer, Johannes; Koerner, Christian; Vandewal, Koen; Leo, Karl; Kleemann, Hans; Tress, Wolfgang; Riede, Moritz

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for the characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.

  10. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    NASA Astrophysics Data System (ADS)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen–Popper, Dion–Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  11. Monitoring of the active layer at Kapp Linne', SVALBARD 1972-2002

    NASA Astrophysics Data System (ADS)

    Akerman, J.

    2003-04-01

    The active layer has been monitored at ten sites in the vicinity of Kapp Linné, (78o03'42" 13o37'07") Svalbard during the period 1972 - 2002. The ten sites differ in elevation, distance from the sea, vegetation cover, substrate and active periglacial processes. From 1994 the International permafrost Association "CALM" standard grids, with measurement within 100x100m squares, has been applied. Microclimate and soil temperatures have been monitored by data logger covering levels form 2 m above to 7m below the ground. The macroclimate is covered by complete data series from the nearby weather station at Kapp Linne’, covering the period 1912 to 2002. A number of periglacial processes, especially slope processes, are monitored parallel with the active layer. The mean active layer for the sites varies between 1,13m and 0,43m. The deepest active layer is found in the exposed, well drained raised beach ridges and the shallowest in the bogs. The interannual variability during the observation period do not correlate well with the MAAT but better with the summer climate, June - August mean or DDT. The data clearly illustrate colder summers during the period 1972 to 1983 and after that steadily increasing summer temperatures. The active layer follows the same general pattern with good correlations. There are several surface indications as a response to the deepening active layer especially in the bogs. Thermokarst scars appear frequently and a majority of the palsa like mounds and pounus have disappeared. A drastic change in the vegetation on the bogs has also occurred, from dry heath to wet Carex vegetation. In summary the observations from Kapp Linne’ are; 1. A clear trend towards milder summers, 2. A clear trend towards deeper active layers, 3. All sites show a similar pattern, 4. The bogs are getting strikingly wetter, 5. Mounds in the bog sites are disappearing, 6. The slow slope processes are getting accelerated, 7. Thermokarst depressions and scars are appearing in

  12. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide.

    PubMed

    Khan, A I; Lei, L; Norquist, A J; O'Hare, D

    2001-11-21

    A series of pharmaceutically active compounds including diclofenac, gemfibrozil, ibuprofen, naproxen, 2-propylpentanoic acid, 4-biphenylacetic acid and tolfenamic acid can be reversibly intercalated into a layered double hydroxide, initial studies suggest that these materials may have application as the basis of a novel tuneable drug delivery system. PMID:12240066

  13. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  14. Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive.

    PubMed

    Zheng, Yifan; Goh, Tenghooi; Fan, Pu; Shi, Wei; Yu, Junsheng; Taylor, André D

    2016-06-22

    The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination. PMID:27253271

  15. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  16. Buckling Analysis of Debonded Sandwich Panel Under Compression

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Wang, John T.

    1995-01-01

    A sandwich panel with initial through-the-width debonds is analyzed to study the buckling of its faceskin when subject to an in-plane compressive load. The debonded faceskin is modeled as a beam on a Winkler elastic foundation in which the springs of the elastic foundation represent the sandwich foam. The Rayleigh-Ritz and finite-difference methods are used to predict the critical buckling load for various debond lengths and stiffnesses of the sandwich foam. The accuracy of the methods is assessed with a plane-strain finite-element analysis. Results indicate that the elastic foundation approach underpredicts buckling loads for sandwich panels with isotropic foam cores.

  17. Lamb wave dispersion in a PZT/metal/PZT sandwich plate with imperfect interface

    NASA Astrophysics Data System (ADS)

    Kurt, Ilkay; Akbarov, Surkay D.; Sezer, Semih

    2016-07-01

    The Lamb wave dispersion in a PZT/Metal/PZT sandwich plate is investigated by employing the exact linear equations of electro-elastic waves in piezoelectric materials within the scope of the plane-strain state. It is assumed that at the interfaces between the piezoelectric face layers and metal core layer, shear-spring and normal-spring type imperfect conditions are satisfied. The degree of this imperfectness is estimated through the corresponding shear-spring and normal-spring type parameters which appear in the contact condition characterizing the transverse and normal displacements' discontinuity. The corresponding dispersion equation is derived, and as a result of the numerical solution to this equation, the dispersion curves are constructed for the first and second lowest modes in the cases where the material of the face layers is PZT and the material of the middle layer is Steel (St). Consequently, for the PZT/St/PZT sandwich plate, the study of the influence of the problem parameters such as the piezoelectric and dielectric constants, layer thickness ratios, non-dimensional shear-spring, and normal-spring type parameters, is carried out. In particular, it is established that the imperfectness of the contact between the layers of the plate causes a decrease in the values of the wave propagation velocity.

  18. Development of the LANL sandwich test.

    SciTech Connect

    Hill, L. G.

    2001-01-01

    The Sandwich test is slab-variant of the ubiquitous copper cylinder test, and is used to obtain high explosive product equation-of-state information in the same manner as its predecessor. The motivation for slab geometry is (1) better high-pressure resolution, and (2) the ability to accommodate initial temperature extremes for solid explosive samples. The present design allows initial temperatures from -55 C to 75 C. The pros and cons of the two geometries we discussed, followed by a description of the mechanical design and instrumentation. gample data for several ambient PBX 9501 tests demonstrates excellent data quality and repeatability.

  19. A double-sandwich ELISA for identification of monoclonal antibodies suitable for sandwich immunoassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sandwich immunoassay (sIA) is an invaluable technique for concentrating, detecting, and quantifying target antigens. The two critical components required are a capture antibody and a detection antibody, each binding a different epitope on the target antigen. The specific antibodies incorporated...

  20. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes.

    PubMed

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  1. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  2. Piezoelectric performance of fluor polymer sandwiches with different void structures

    NASA Astrophysics Data System (ADS)

    Lou, Kexing; Zhang, Xiaoqing; Xia, Zhongfu

    2012-06-01

    Film sandwiches, consisting of two outer layers of fluoroethylenepropylene and one middle layer of patterned porous polytetrafluoroethylene, were prepared by patterning and fusion bonding. Contact charging was conducted to render the films piezoelectric. The critical voltage to trigger air breakdown in the inner voids in the fabricated films was investigated. The piezoelectric d 33 coefficients were measured employing the quasistatic method and dielectric resonance spectrum. The results show that the critical voltage for air breakdown in the inner voids is associated with the void microstructure of the films. For the films with patterning factors of 0%, 25% and 44%, the critical values are 300, 230 and 230 kV/cm, respectively. With an increase in the patterning factor, both the piezoelectric d 33 coefficients determined from the dielectric resonance spectra and those determined from quasistatic measurements increase, which might be due to a decrease in Young's modulus for the films. The nonlinearity of d 33 becomes increasingly obvious as the patterning factor increases.

  3. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  4. A novel sandwich differential capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure

    NASA Astrophysics Data System (ADS)

    Xiao, D. B.; Li, Q. S.; Hou, Z. Q.; Wang, X. H.; Chen, Z. H.; Xia, D. W.; Wu, X. Z.

    2016-02-01

    This paper presents a novel differential capacitive silicon micro-accelerometer with symmetrical double-sided serpentine beam-mass sensing structure and glass-silicon-glass sandwich structure. The symmetrical double-sided serpentine beam-mass sensing structure is fabricated with a novel pre-buried mask fabrication technology, which is convenient for manufacturing multi-layer sensors. The glass-silicon-glass sandwich structure is realized by a double anodic bonding process. To solve the problem of the difficulty of leading out signals from the top and bottom layer simultaneously in the sandwich sensors, a silicon pillar structure is designed that is inherently simple and low-cost. The prototype is fabricated and tested. It has low noise performance (the peak to peak value is 40 μg) and μg-level Allan deviation of bias (2.2 μg in 1 h), experimentally demonstrating the effectiveness of the design and the novel fabrication technology.

  5. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong

    2015-12-01

    Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

  6. Behavior and Failure Modes of Sandwich T-Joint Using Cohesive Zone Material Model and Contact Elements

    NASA Astrophysics Data System (ADS)

    Khalili, S. M. R.; Ghaznavi, A.

    2013-02-01

    One of the significant concerns of sandwich panels is their joints. T-joint is one the most common joint in sandwich structures. This paper deals with the numerical study of triangle T-joint under static loading. The results of numerical solution obtained by ANSYS modeling are verified with the results of experimental tests obtained in the literature. In general, the results obtained for anticipated failure load by numerical solution with the results of experimental test is in good agreement. Contact elements and cohesive zone material model are used to model the adhesive layer, hence debonding and fracture of adhesive is observed by the numerical modeling. Also, by using a written macro code in the ANSYS software, the ability of damage is explained for the core of sandwich panels; thus both the modes in fracture of T-joints (core shear failure in base panel and debonding of adhesive) are modeled. Core materials consist of Divinycell H100, H160, H250, and HCP70 are used for modeling sandwich panels, so that the function of joint is studied under different conditions of the sandwich core material. Nine different geometrical models are created by changing the base angle of the core triangle. The absorbed energy associated with different segments of the T-joint are used to investigate the effect of joint geometry and core material on the load transfer and failure mode of the T-joint.

  7. Comparison of different irrigation activation techniques on smear layer removal: an in vitro study.

    PubMed

    Akyuz Ekim, Sefika Nur; Erdemir, Ali

    2015-03-01

    The purpose of this study was to evaluate the efficiency of different irrigation activation techniques on smear layer removal. About 80 single-rooted human maxillary central teeth were decoronated to a standardized length.The samples were prepared by using ProTaper system to size F4 and divided into eight equal groups (n = 10) according to the final irrigation activation technique; distilled water was used as an irrigant in Group 1. The other groups were treated with 2.5% NaOCl and 17% EDTA, respectively. Conventional syringe irrigation (CSI) was used in Group 2. Irrigation solutions were activated using passive ultrasonic irrigation (PUI, Group 3), EndoVac apical negative pressure (ANP, Group 4), diode laser (Group 5), Nd:YAG laser (Group 6), Er:YAG laser (Group 7), and Er:YAG laser using with photon-induced photoacoustic streaming (PIPS™, Group 8). Teeth were split longitudinally and subjected to scanning electron microscope (SEM). PIPS showed the best removal of smear layer when compared with PUI, ANP, Nd:YAG, and Er:YAG, but the difference was not statistically significant (P > 0.05). Smear layer scores obtained with PIPS technique were statistically significant different from those of obtained with control, CSI and diode laser groups (P < 0.05). All experimental irrigation techniques except ANP and diode laser removed smear layer more effectively at the coronal and middle levels compared to the apical level (P < 0.05). Irrigation activated/delivered techniques except diode laser have a positive effect on removing of smear layer. PMID:25582378

  8. Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine).

    PubMed

    Li, Ben; Liu, Wanpeng; Jiang, Zhongyi; Dong, Xiao; Wang, Baoyi; Zhong, Yurong

    2009-07-01

    We demonstrate that dopamine is able to self-polymerize and adhere firmly onto the substrate, which can create a hierarchical structure comprising an ultrathin active layer and a porous support layer. Such an approach opens a novel way to fabricating highly efficient and stable composite materials including composite membranes. More specifically, in this study the composite membranes are fabricated by simply dipping microporous substrate in aqueous dopamine solution under mild conditions. Nanoindentation measurement reveals the tight adhesion of dopamine onto microporous substrate, which is ascribed to numerous pi-pi and hydrogen-bonding interactions. The chemical composition of the active layer is analyzed by XPS, which demonstrates the self-polymerization of dopamine. The water contact angle of the dopamine coated membranes is reduced remarkably compared with that of the uncoated counterpart. Stylus profiler measurements display that the poly(dopamine) thickness increases as the coating time increases. FESEM images of the membranes' cross section show that an active layer (<100 nm) is deposited on the porous polysulfone (PS) substrate. Positron annihilation spectroscopy (PAS) is introduced to probe the fractional free volume properties throughout the cross section of the composite membranes and reveal that after dopamine double-coating the active layer becomes thicker and more compact. Moreover, pH and concentration of the dopamine solution exert notable influence on the fractional free volume of the composite membranes. The as-prepared membranes are tentatively employed for pervaporative desulfurization and exhibits satisfying separation performance as well as durability. This facile, versatile, and efficient approach enables a promising prospect for the wide applications of such novel kinds of ultrathin composite materials. PMID:19366196

  9. Modeling of Sandwich Sheets with Metallic Foam

    SciTech Connect

    Mata, H.; Jorge, R. Natal; Fernandes, A. A.; Parente, M. P. L.; Santos, A.; Valente, R. A. F.

    2011-08-22

    World-wide vehicles safety experts agree that significant further reductions in fatalities and injuries can be achieved as a result of the use of new lightweight and energy absorbing materials. On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications. The mathematical model used to describe the behavior of sandwich shells with metal cores foam is presented and some numerical examples are presented. In order to validate those results mechanical experiments are carried out. Using the crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. There are two variants of this model available on ABAQUS: the volumetric hardening model and the isotropic hardening model. As a first approximation we chose the isotropic hardening variant. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Based on this constitutive model for the foam, numerical simulations of the tensile and bulge test will be conducted. The numerical results will be validated using the data obtained from the experimental results.

  10. Modeling of Sandwich Sheets with Metallic Foam

    NASA Astrophysics Data System (ADS)

    Mata, H.; Jorge, R. Natal; Santos, A.; Fernandes, A. A.; Valente, R. A. F.; Parente, M. P. L.

    2011-08-01

    World-wide vehicles safety experts agree that significant further reductions in fatalities and injuries can be achieved as a result of the use of new lightweight and energy absorbing materials. On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications. The mathematical model used to describe the behavior of sandwich shells with metal cores foam is presented and some numerical examples are presented. In order to validate those results mechanical experiments are carried out. Using the crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. There are two variants of this model available on ABAQUS: the volumetric hardening model and the isotropic hardening model. As a first approximation we chose the isotropic hardening variant. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Based on this constitutive model for the foam, numerical simulations of the tensile and bulge test will be conducted. The numerical results will be validated using the data obtained from the experimental results.

  11. Microstructure evolution process of Ferro-Aluminum based sandwich composite for electromagnetic shielding.

    PubMed

    Luo, Zhichao; Zhang, Qiang; Ma, Xiangyu; Wu, Gaohui

    2014-09-01

    In this paper, sandwich composite (SWC) with Fe-Al soft magnetic alloy sandwiched between pure iron substrates was proposed and fabricated by hot pressing and diffusion treatment. The microstructure evolution process of the composite was investigated. Fe/Fe2Al5/Fe diffusion couple was obtained at 700 °C and subsequently kept at 900 °C for further isothermal diffusion. During the diffusion reactive process, we confirmed that major FeAl2 and minor Fe4Al13 were produced when Fe2Al5 dissolved. After 10h of diffusion treatment, FeAl and α-Fe(Al) were the only two intermetallic phases left. Except FeAl2, the thickness of each intermetallic layer held good parabolic relationship with the diffusion annealing time. PMID:24981211

  12. High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dimitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim; Tyson, Richard W.; Walker, James L.; Miller, Jimmy L.

    2011-01-01

    High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation.

  13. Realizing the full potential of Remotely Sensed Active Layer Thickness (ReSALT) Products

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Chen, A.; Liu, L.; Parsekian, A.; Jafarov, E. E.; Panda, S. K.; Zebker, H. A.

    2015-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence, active layer thickness (ALT), and thermokarst activity in permafrost regions. ReSALT supports research for the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential Nasa-Isro Synthetic Aperture Radar (NISAR) product. ALT is a critical parameter for monitoring the status of permafrost and thermokarst activity is one of the key drivers of change in permafrost regions. The ReSALT product currently includes 1) long-term subsidence trends resulting from the melting and subsequent drainage of excess ground ice in permafrost-affected soils, 2) seasonal subsidence resulting from the expansion of soil water into ice as the active layer freezes and thaws, and 3) ALT estimated from the seasonal subsidence assuming a vertical profile of water within the soil column. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. We present high resolution ReSALT products on the North Slope of Alaska: Prudhoe Bay, Barrow, Toolik Lake, Happy Valley, and the Anaktuvuk fire zone. We believe that the ReSALT product could be expanded to include maps of individual thermokarst features identified as spatial anomalies in the subsidence trends, with quantified expansion rates. We illustrate the technique with multiple examples of thermokarst features on the North Slope of Alaska. Knowing the locations and expansion rates for individual features allows us to evaluate risks to human infrastructure. Our results highlight the untapped potential of the InSAR technique to remotely sense ALT and thermokarst dynamics over large areas of the Arctic.

  14. Influences and interactions of inundation, peat, and snow on active layer thickness

    DOE PAGESBeta

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-18

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  15. Influences of Peat, Surface and Subsurface Water, and Snow on Active Layer Thickness

    SciTech Connect

    Atchley, Adam; Coon, Ethan T.; Painter, Scott L; Harp, Dylan; Wilson, Cathy

    2016-01-01

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but the strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.

  16. Influences of Peat, Surface and Subsurface Water, and Snow on Active Layer Thickness

    DOE PAGESBeta

    Atchley, Adam; Coon, Ethan T.; Painter, Scott L; Harp, Dylan; Wilson, Cathy

    2016-01-01

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  17. Influences and interactions of inundation, peat, and snow on active layer thickness

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-01

    Active layer thickness (ALT), the uppermost layer of soil that thaws on an annual basis, is a direct control on the amount of organic carbon potentially available for decomposition and release to the atmosphere as carbon-rich Arctic permafrost soils thaw in a warming climate. We investigate how key site characteristics affect ALT using an integrated surface/subsurface permafrost thermal hydrology model. ALT is most sensitive to organic layer thickness followed by snow depth but is relatively insensitive to the amount of water on the landscape with other conditions held fixed. The weak ALT sensitivity to subsurface saturation suggests that changes in Arctic landscape hydrology may only have a minor effect on future ALT. However, surface inundation amplifies the sensitivities to the other parameters and under large snowpacks can trigger the formation of near-surface taliks.

  18. Layered Structure of Bacterial and Archaeal Communities and Their In Situ Activities in Anaerobic Granules▿ †

    PubMed Central

    Satoh, Hisashi; Miura, Yuki; Tsushima, Ikuo; Okabe, Satoshi

    2007-01-01

    The microbial community structure and spatial distribution of microorganisms and their in situ activities in anaerobic granules were investigated by 16S rRNA gene-based molecular techniques and microsensors for CH4, H2, pH, and the oxidation-reduction potential (ORP). The 16S rRNA gene-cloning analysis revealed that the clones related to the phyla Alphaproteobacteria (detection frequency, 51%), Firmicutes (20%), Chloroflexi (9%), and Betaproteobacteria (8%) dominated the bacterial clone library, and the predominant clones in the archaeal clone library were affiliated with Methanosaeta (73%). In situ hybridization with oligonucleotide probes at the phylum level revealed that these microorganisms were numerically abundant in the granule. A layered structure of microorganisms was found in the granule, where Chloroflexi and Betaproteobacteria were present in the outer shell of the granule, Firmicutes were found in the middle layer, and aceticlastic Archaea were restricted to the inner layer. Microsensor measurements for CH4, H2, pH, and ORP revealed that acid and H2 production occurred in the upper part of the granule, below which H2 consumption and CH4 production were detected. Direct comparison of the in situ activity distribution with the spatial distribution of the microorganisms implied that Chloroflexi contributed to the degradation of complex organic compounds in the outermost layer, H2 was produced mainly by Firmicutes in the middle layer, and Methanosaeta produced CH4 in the inner layer. We determined the effective diffusion coefficient for H2 in the anaerobic granules to be 2.66 × 10−5 cm2 s−1, which was 57% in water. PMID:17905889

  19. Vegetation-Soil-Active Layer Relationships Along a Low-Arctic Bioclimate Gradient, Alaska

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Jia, G. J.; Epstein, H. E.; Shiklomanov, N.; Nelson, F.; Hinzman, L. D.; Romanovsky, V. E.

    2002-12-01

    Northern Alaska has three of five Arctic bioclimate subzones, which are representative of the circumpolar Low Arctic. This portion of the Arctic has more or less continuous tundra plant cover and well-developed moss canopies. We examined the biomass and remotely sensed spectral properties of the vegetation canopy, active-layer thickness, and the soil properties at 21 sites on the Arctic Slope and Seward Peninsula of Alaska. The sites were grouped into three bioclimate subzones according the summer warmth at the sites. The summer warmth index (SWI) is the sum of the mean monthly temperatures greater than 0 degrees C. Subzone C, the coldest subzone, occurs in a narrow strip along the northern coast of the Alaska. Subzone D covers most of the Arctic Coastal Plain and the northwest portion of the Seward Peninsula, and Subzone E covers most of the Foothills and most of the unforested portion of the Seward Peninsula. The SWIs in Subzones C, D, and E are generally less than 10-15 degrees C, 15-25 degrees C, and 25-35 degrees C respectively. The average active layer depths were 44, 55, and 47 cm respectively The shallow active layer in Subzone E is to a large degree a response to the denser vegetation canopies in Subzone E. Total plant biomass in Subzone C, D, and E averaged 421 g m-2, 503 g m-2, and 1178 g m-2 respectively. The much higher biomass in Subzone E was due primarily to woody shrubs (40 g m-2 in Subzone C, 51 g m-2 in Subzone D, and 730 g m-2 in Subzone E). The normalized difference vegetation index (NDVI) is one measure of greenness. Highest NDVI values were obtained from acidic tundra regions in Subzone E, and the lowest NDVI values were obtained in the nonacidic areas of Subzone C. In summary, the insulative properties of the vegetation play a very important role controlling the thickness of the active layer, and the amount of vegetation biomass differs according to summer warmth and soil properties. Acidic soils in the warmest parts of the Arctic (Subzone E

  20. Influence of the Halogen Activation on the Ozone Layer in XXIst Century

    NASA Astrophysics Data System (ADS)

    Larin, Igor; Aloyan, Artash; Yermakov, Alexandr

    2016-04-01

    The aim of the work is to evaluate a possible effect of heterophase chemical reactions (HCR) with participation of reservoir gases (ClONO2, HCl) and sulfate particles of the Junge layer on the ozone layer at mid-latitudes in the XXI century, which could be relevant for more accurate predicting a recovery of the ozone layer, taking into account that just these processes were the main cause of the ozone depletion at the end of XXth century. Required for calculating the dynamics of GHR data on the specific volume/surface of the sulfate aerosols in the lower stratosphere were taken from the data of field experiments. Their physico-chemical properties (chemical composition, density, water activity and free protons activity et al.) have been obtained with help of thermodynamic calculations (Atmospheric Inorganic Model, AIM). Altitude concentration profiles of individual gas components, as well as temperature and relative humidity (RH) at a given geographic location and season have been calculated using a two-dimensional model SOCRATES. The calculations have been made for the conditions of June 1995, 2040 and 2080 at 15 km altitude and 50° N latitude. It has been shown that the rate of ozone depletion as a result of processes involving halogen activation for the given conditions in 2040, 2080 is about 35% lower than a corresponding value in 1995 (a year of maximum effect of halogen activation). From this we can conclude that in the XXI century, despite the natural decline of ozone-depleting chlorofluorocarbons. processes of halogen activation of the ozone depletion with participation of sulfate aerosols should be taken into account in the calculations of the recovery of the ozone layer at mid-latitudes.

  1. Practical Instruction in Tissue Culture and Cytogenetics for Sandwich Students.

    ERIC Educational Resources Information Center

    Williams, D. C.; Bishun, N. P.

    1973-01-01

    Describes the training and practical techniques taught to students involved in a sandwich course at the Tissue Culture and Cytogenetics Unit of the Marie Curie Memorial Foundation, Surrey, England. Students spend a minimum of six months involved in the sandwich course before returning to university for a final academic year. (JR)

  2. High Velocity Impact Response of Composite Lattice Core Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Zhang, Guoqi; Wang, Shixun; Ma, Li; Wu, Linzhi

    2014-04-01

    In this research, carbon fiber reinforced polymer (CFRP) composite sandwich structures with pyramidal lattice core subjected to high velocity impact ranging from 180 to 2,000 m/s have been investigated by experimental and numerical methods. Experiments using a two-stage light gas gun are conducted to investigate the impact process and to validate the finite element (FE) model. The energy absorption efficiency (EAE) in carbon fiber composite sandwich panels is compared with that of 304 stainless-steel and aluminum alloy lattice core sandwich structures. In a specific impact energy range, energy absorption efficiency in carbon fiber composite sandwich panels is higher than that of 304 stainless-steel sandwich panels and aluminum alloy sandwich panels owing to the big density of metal materials. Therefore, in addition to the multi-functional applications, carbon fiber composite sandwich panels have a potential advantage to substitute the metal sandwich panels as high velocity impact resistance structures under a specific impact energy range.

  3. Air-Coupled Piezoelectric Transducers with Active Polypropylene Foam Matching Layers

    PubMed Central

    Gómez Álvarez-Arenas, Tomás E.

    2013-01-01

    This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1–3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl). These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the λ/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz), then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers) are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range. PMID:23666129

  4. Activated oil sands fluid coke for electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Kirk, Donald W.; Jia, Charles Q.; Tong, Shitang

    2014-12-01

    Electrochemical capacitors are important energy storage devices that have high power density, rapid charging cycles and are highly cyclable. In this study, activated fluid coke has demonstrated high surface area, improved capacitive properties, and high energy density. Fluid coke is a by-product generated from continuous high temperature bitumen upgrading, resulting in the formation of nearly spherical particles with concentric carbon layers. The residual sulphur impurities in fluid coke may enhance its energy storage performance. The activated coke samples have high specific surface areas, up to 1960 m2 g-1, and show promising capacitive performance, in 4 M KOH electrolyte, with high gravimetric and specific capacitances of 228-257 F g-1 and 13-14 μF cm-2, respectively. These results are comparable to other top performing activated carbon materials [1-3]. The activated fluid coke maintains high performance at fast charging rates, greater than 160 F g-1 at a current density of 7500 mA g-1. Activated fluid coke's high capacitance and promising rate performance are potentially associated with its unique layered, and the moderate sulphur content in the chemical structure. Activated fluid coke is a unique opportunity to use a limited use by-product to generate activated carbon that has a high surface area and promising energy storage properties.

  5. Long-term active layer and ground surface temperature trends: results of 12 years of observations at Alaskan CALM sites

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Nelson, F. E.; Streletskyi, D. A.; Klene, A. E.; Schimek, M.; Little, J.

    2006-12-01

    The uppermost layer of seasonal thawing above permafrost (the active layer) is an important regulator of energy and mass fluxes between the surface and the atmosphere in the polar regions. The Circumpolar Active Layer Monitoring (CALM) program is a network of sites at which data about active-layer thickness (ALT) and dynamics are collected. CALM was established in the 1990s to observe and detect the long-term response of the active layer and near-surface permafrost to changes in climate. Active layer monitoring is an important component of efforts to assess the effects of global change in permafrost environments. CALM strategies are evolving; this presentation showcases some additions to CALM observation procedures designed to monitor processes and detect changes not anticipated in the original CALM protocol of the early 1990s. In this study we used data from 12 (1995-2006) years of extensive, spatially oriented field observations at CALM sites in northern Alaska to examine landscape-specific spatial and temporal trends in active-layer thickness and air and ground surface temperature. Despite an observed increase in air temperature, active-layer thickness exhibited a decreasing trend over the study period. This result indicates that soil consolidation accompanying penetration of thaw into an ice-rich stratum at the base of the active layer has resulted in subsidence of the surface with little or no apparent thickening of the active layer, as traditionally defined. Differential Global Positioning Systems (DGPS) technology was used to detect frost heave and thaw settlement within representative landscapes. Preliminary results indicate that heave and settlement follow patterns of spatial variation similar to those of active-layer thickness. To evaluate the effect of vegetation on ground surface temperature, several heat-transfer coefficients were estimated, including land cover specific thermal diffusivity and empirical n-factors.

  6. MMP activity in the hybrid layer detected with in situ zymography.

    PubMed

    Mazzoni, A; Nascimento, F D; Carrilho, M; Tersariol, I; Papa, V; Tjäderhane, L; Di Lenarda, R; Tay, F R; Pashley, D H; Breschi, L

    2012-05-01

    Dentinal proteases are believed to play an important role in the degradation of hybrid layers (HL). This study investigated the HL gelatinolytic activity by in situ zymography and functional enzyme activity assay. The hypotheses were that HLs created by an etch-and-rinse adhesive exhibit active gelatinolytic activity, and MMP-2 and -9 activities in dentin increase during adhesive procedures. Etched-dentin specimens were bonded with Adper Scotchbond 1XT and restored with composite. Adhesive/dentin interface slices were placed on microscope slides, covered with fluorescein-conjugated gelatin, and observed with a multi-photon confocal microscope after 24 hrs. Human dentin powder aliquots were prepared and assigned to the following treatments: A, untreated; B, etched with 10% phosphoric acid; or C, etched with 10% phosphoric acid and mixed with Scotchbond 1XT. The MMP-2 and -9 activities of extracts of dentin powder were measured with functional enzyme assays. Intense and continuous enzyme activity was detected at the bottom of the HL, while that activity was more irregular in the upper HL. Both acid-etching and subsequent adhesive application significantly increased MMP-2 and -9 activities (p < 0.05). The results demonstrate, for the first time, intrinsic MMP activity in the HL, and intense activation of matrix-bound MMP activity with both etching and adhesive application. PMID:22354448

  7. Chiral hexagonal cellular sandwich structure: a vibro-acoustic assessment

    NASA Astrophysics Data System (ADS)

    Lew, Tze L.; Spadoni, Alessandro; Scarpa, Fabrizio; Ruzzene, Massimo

    2005-05-01

    In this work we describe the vibroacoustic behavior of a novel concept of core for sandwich structures featuring auxetic characteristics, enhanced shear stiffness and compressive strength compared to classical cellular cores in sandwich components for sandwich applications. The out-plane properties and density values are described in terms of geometric parameters of the honeycomb unit cells. Opposite to classical honeycomb cellular applications, the hexagonal chiral structure presents a noncentresymemetric configuration, i.e., a "mirror" symmetrical topology. The derived mechanical properties are used to assess the modal behaviour and modal densities of sandwich plate elements with chiral and standard cellular cores. The analytical findings are backed up by structural tests on chiral honeycomb plates and sandwich beams.

  8. Development, testing, and numerical modeling of a foam sandwich biocomposite

    NASA Astrophysics Data System (ADS)

    Chachra, Ricky

    This study develops a novel sandwich composite material using plant based materials for potential use in nonstructural building applications. The face sheets comprise woven hemp fabric and a sap based epoxy, while the core comprises castor oil based foam with waste rice hulls as reinforcement. Mechanical properties of the individual materials are tested in uniaxial compression and tension for the foam and hemp, respectively. The sandwich composite is tested in 3 point bending. Flexural results are compared to a finite element model developed in the commercial software Abaqus, and the validated model is then used to investigate alternate sandwich geometries. Sandwich model responses are compared to existing standards for nonstructural building panels, showing that the novel material is roughly half the strength of equally thick drywall. When space limitations are not an issue, a double thickness sandwich biocomposite is found to be a structurally acceptable replacement for standard gypsum drywall.

  9. Compressive Strength of Stainless-Steel Sandwiches at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Mathauser, Eldon E.; Pride, Richard A.

    1959-01-01

    Experimental results are presented from crippling tests of stainless-steel sandwich specimens in the temperature range from 80 F to 1,200 F. The specimens included resistance-welded 17-7 PH stainless-steel sandwiches with single-corrugated cores, type 301 stainless-steel sandwiches with double-corrugated cores, and brazed 17-7 PH stainless-steel sandwiches with honeycomb cores. The experimental strengths are compared with predicted buckling and crippling strengths. The crippling strengths were predicted from the calculated maximum strength of the individual plate elements of the sandwiches and from a correlation procedure which gives the elevated-temperature crippling strength when the experimental room-temperature crippling strengths are known. Photographs of some of the tested specimens are included to show the modes of failure.

  10. Impact damage in aircraft composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Mordasky, Matthew D.

    An experimental study was conducted to develop an improved understanding of the damage caused by runway debris and environmental threats on aircraft structures. The velocities of impacts for stationary aircraft and aircraft under landing and takeoff speeds was investigated. The impact damage by concrete, asphalt, aluminum, hail and rubber sphere projectiles was explored in detail. Additionally, a kinetic energy and momentum experimental study was performed to look at the nature of the impacts in more detail. A method for recording the contact force history of the impact by an instrumented projectile was developed and tested. The sandwich composite investigated was an IM7-8552 unidirectional prepreg adhered to a NOMEXRTM core with an FM300K film adhesive. Impact experiments were conducted with a gas gun built in-house specifically for delivering projectiles to a sandwich composite target in this specic velocity regime (10--140 m/s). The effect on the impact damage by the projectile was investigated by ultrasonic C-scan, high speed camera and scanning electron and optical microscopy. Ultrasonic C-scans revealed the full extent of damage caused by each projectile, while the high speed camera enabled precise projectile velocity measurements that were used for striking velocity, kinetic energy and momentum analyses. Scanning electron and optical images revealed specific features of the panel failure and manufacturing artifacts within the lamina and honeycomb core. The damage of the panels by different projectiles was found to have a similar damage area for equivalent energy levels, except for rubber which had a damage area that increased greatly with striking velocity. Further investigation was taken by kinetic energy and momentum based comparisons of 19 mm diameter stainless steel sphere projectiles in order to examine the dominating damage mechanisms. The sandwich targets were struck by acrylic, aluminum, alumina, stainless steel and tungsten carbide spheres of the

  11. High Efficiency Alternating Current Driven Organic Light Emitting Devices Employing Active Semiconducting Gate Layers

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Xu, Junwei; Carroll, David

    2015-03-01

    In this work, we describe the role of semiconductor-polymer interfaces in alternating current (AC) driven organic electroluminescent (EL) devices. We implement inorganic semiconducting materials between the external contact and the active layers in organic light EL devices. Precise control of capacitance and charge injection is required to realize bright and efficient large area AC driven devices. We show how this architecture results in active gating to the polymer layers, resulting in the novel ability to control the capacitance and charge injection characteristics. We propose a model based on band bending at the semiconductor-polymer interface. Furthermore, we elucidate the influence of the semiconductor-polymer interface on the internally coupled magnetic field generated in an alternating current driven organic light emitting device configuration. Magnetic fields can alter the ratios of singlet and triplet populations, and we show that internal generation of a magnetic field can dramatically alter the efficiency of light emission in organic EL devices.

  12. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    SciTech Connect

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; Wilson, Cathy; Wullschleger, Stan D.

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  13. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Throckmorton, H. M.; Graham, D. E.; Gu, B.; Hubbard, S. S.; Liang, L.; Wu, Y.; Heikoop, J. M.; Herndon, E. M.; Phelps, T. J.; Wilson, C. J.; Wullschleger, S. D.

    2015-03-01

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  14. Active layer hydrology for Imnavait Creek, Toolik, Alaska. Annual progress report, July 1984--January 1986

    SciTech Connect

    Kane, D.L.

    1986-12-31

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  15. Dual Gate Thin Film Transistors Based on Indium Oxide Active Layers

    SciTech Connect

    Kekuda, Dhananjaya; Rao, K. Mohan; Tolpadi, Amita; Chu, C. W.

    2011-07-15

    Polycrystalline Indium Oxide (In{sub 2}O{sub 3}) thin films were employed as an active channel layer for the fabrication of bottom and top gate thin film transistors. While conventional SiO{sub 2} served as a bottom gate dielectric, cross-linked poly-4-vinylphenol (PVP) was used a top gate dielectric. These nano-crystalline TFTs exhibited n-channel behavior with their transport behavior highly dependent on the thickness of the channel. The correlation between the thickness of the active layer and TFT parameters such as on/off ratio, field-effect mobility, threshold voltage were carried out. The optical spectra revealed a high transmittance in the entire visible region, thus making them promising candidates for the display technology.

  16. Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life.

    PubMed

    Liu, Xianghong; Zhang, Jun; Si, Wenping; Xi, Lixia; Eichler, Barbara; Yan, Chenglin; Schmidt, Oliver G

    2015-02-24

    The large capacity loss and huge volume change of silicon anodes severely restricts their practical applications in lithium ion batteries. In this contribution, the sandwich nanoarchitecture of rolled-up Si/reduced graphene oxide bilayer nanomembranes was designed via a strain released strategy. Within this nanoarchitecture, the inner void space and the mechanical feature of nanomembranes can help to buffer the strain during lithiation/delithiation; the alternately stacked conductive rGO layers can protect the Si layers from excessive formation of SEI layers. As anodes for lithium-ion batteries, the sandwiched Si/rGO nanoarchitecture demonstrates long cycling life of 2000 cycles at 3 A g(-1) with a capacity degradation of only 3.3% per 100 cycles. PMID:25646575

  17. Vibration and formability characteristics of aluminum-polymer sandwich materials

    NASA Astrophysics Data System (ADS)

    Somayajulu, Thamma S. V.

    Metal/polymer/metal sandwich materials are finding increasing use in the automotive industry primarily as lightweight alternatives to steel and aluminum alloys. In addition to low density they also offer other functional benefits e.g. improved vibration damping. In order to exploit such beneficial characteristics it is necessary to examine the manufacturability of these materials. In this work the vibration characteristics and formability were examined in selected materials, chosen from a group of aluminum/polypropylene/aluminum sandwich materials. First, a systematic study was carried out on vibration characteristics of square sandwich plates using 3D finite element models and usefulness of such a 3D displacement field in understanding the damping mechanisms as well as their contributions toward the modal damping were discussed. Second, a study of stretch formability of several sandwich materials was conducted. Since the knowledge of tensile properties is essential for understanding the formability, those properties were determined by performing uniaxial tensile tests on several aluminum/polypropylene/aluminum (HyliteRTM) sandwich materials and their constituent materials. The phenomena of diffused necking and deformation of material up to and beyond the point of necking were systematically investigated. Furthermore, the formability of sandwich materials was assessed by comparing the experimentally determined forming limit diagrams (FLDs) of monolithic 5182 aluminum and several sandwich materials. In addition to the experimental research, theoretical modeling was carried out to predict formability based on the concept of growth of pre-existing defects. One such model, known as M-K analysis, was utilized on the basis of defects existing in (i) the aluminum skins and (ii) the overall thickness of the sandwich. The experimental and theoretical results suggest that the levels of forming limit in sandwich materials are far less than those for monolithic materials of

  18. A Comparison of Active and Passive Methods for Control of Hypersonic Boundary Layers on Airbreathing Configurations

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    2003-01-01

    Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.

  19. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes.

    PubMed

    Lu, Xinglin; Arias Chavez, Laura H; Romero-Vargas Castrillón, Santiago; Ma, Jun; Elimelech, Menachem

    2015-02-01

    In this study, we investigate the influence of surface structure on the fouling propensity of thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, we compare membranes fabricated through identical procedures except for the use of different solvents (dimethylformamide, DMF and N-methyl-2-pyrrolidinone, NMP) during phase separation. FO fouling experiments were carried out with a feed solution containing a model organic foulant. The TFC membranes fabricated using NMP (NMP-TFC) had significantly less flux decline (7.47 ± 0.15%) when compared to the membranes fabricated using DMF (DMF-TFC, 12.70 ± 2.62% flux decline). Water flux was also more easily recovered through physical cleaning for the NMP-TFC membrane. To determine the fundamental cause of these differences in fouling propensity, the active and support layers of the membranes were extensively characterized for physical and chemical characteristics relevant to fouling behavior. Polyamide surface roughness was found to dominate all other investigated factors in determining the fouling propensities of our membranes relative to each other. The high roughness polyamide surface of the DMF-TFC membrane was also rich in larger leaf-like structures, whereas the lower roughness NMP-TFC membrane polyamide layer contained more nodular and smaller features. The support layers of the two membrane types were also characterized for their morphological properties, and the relation between support layer surface structure and polyamide active layer formation was discussed. Taken together, our findings indicate that support layer structure has a significant impact on the fouling propensity of the active layer, and this impact should be considered in the design of support layer structures for TFC membranes. PMID:25564877

  20. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons.

    PubMed

    Bock, Tobias; Stuart, Greg J

    2016-03-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels onN-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  1. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  2. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    PubMed Central

    D'Angelo, Egidio; Solinas, Sergio; Mapelli, Jonathan; Gandolfi, Daniela; Mapelli, Lisa; Prestori, Francesca

    2013-01-01

    The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research. PMID:23730271

  3. Enhancing the performance of BHJ solar cell via self-assembly templates in active layer

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Li, Hongfei; Yang, Zhenhua; Nam, Chang-Yong; Satija, Sushil; Rafailovich, Miriam

    The bulk heterojunction (BHJ) solar cell is an important example of a polymer solar cell technology that has been proposed in recent years. However, due to the disordered inner structures in the active layer, control of the inner structure within the active layer is required to enhance the efficiency. In our approach, a self-assembly of tertiary polymer blend film is confined between the air and solid interfaces. The principal has been proved using a blend of PMMA: P3HT: PCBM where we showed that the PMMA phase formed a column structure in the P3HT, which template the PCBM phase between the electrodes. Neutron reflectometry was used to demonstrate the confinement of PCBM at the interface between P3HT and PMMA in the active layer. The columnar structured template is investigated under atomic force microscopy (AFM) and transmission electron microscopy (TEM). SCLC mobility measurement indicated an obvious improvement on both hole and electron mobility. The different morphological structures formed via phase segregation are correlated with the performance of the PEV cells fabricated at the BNL-CFN and significant enhancement for the efficiency is observed.

  4. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-01

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency. PMID:26431263

  5. Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam

    2012-02-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.

  6. Architectural evolution of the Nojima fault and identification of the activated slip layer by Kobe earthquake

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidemi; Omura, Kentaro; Matsuda, Tatsuo; Ikeda, Ryuji; Kobayashi, Kenta; Murakami, Masaki; Shimada, Koji

    2007-07-01

    Evolutionary history of Nojima Fault zone is clarified by comprehensive examinations of petrological, geophysical, and geochemical characterizations on a fault zone in deep-drilled core penetrating the Nojima Fault. On the basis of the results, we reconstruct a whole depth profile of the architecture of the Nojima Fault and identify the primal slip layer activated by 1995 Kobe earthquake. The deepest part (8- to 12-km depth) of the fault zone is composed of thin slip layers of pseudotachylite (5 to 10 mm thick each, 10 cm in total). Middle depth (4- to 8-km depth) of the fault zone is composed of fault core (6 to 10 m thick), surrounded by thick (100 m thick) damage zone, characterized by zeolite precipitation. The shallow part of the fault zone (1- to 4-km depth) is composed of distributed narrow shear zones, which are characterized by combination of thin (0.5 cm thick each, 10 cm in total) ultracataclasite layers at the core of shear zones, surrounded by thicker (1 to 3 m thick) damage zones associated with carbonate precipitation. An extremely thin ultracataclasite layer (7 mm thick), activated by the 1995 Kobe earthquake, is clearly identified from numerous past slip layers, overprinting one of the shear zones, as evidenced by conspicuous geological and geophysical anomalies. The Nojima Fault zone was 10 to 100 times thicker at middle depth than that of shallower and deeper depths. The thickening would be explained as a combination of physical and chemical effects as follows. (1) Thickening of "fault core" at middle depth would be attributed to normal stress dependence on thickness of the shear zone and (2) an extreme thickening of "damage zone" in middle depth of the crust would result from the weakening of the fault zone due to super hydrostatic fluid pressure at middle depths. The high fluid pressure would result from faster sealing with low-temperature carbonate at the shallower fault zone.

  7. "Inverse Sandwich" Complexes of Perhalogenated Cyclohexasilane

    SciTech Connect

    Dai, Xuliang; Shulz, Douglas; Braun, Christopher; Ugrinov, Angel; and Boudjouk, Philip

    2010-04-20

    Perhalogenated cyclohexasilanes, Si6X12 (X = Cl, Br), were prepared by reaction of Si6H12 with molecular chlorine or bromine in cold (-89 °C) dichloromethane. Single-crystal structural determination by X-ray analysis shows that the six silicon atoms comprising Si6Br12 adopt a chair conformation in the solid state. The addition of p-tolunitrile to Si6X12 (X = Cl, Br) leads to the rapid formation of colorless precipitates. Si6Br12 3 2(p-CH3C6H4CN) adopts an 'inverse sandwich' structure where the N atoms of the p-tolunitrile molecules are μ6 bonded and are located above and below the planar hexagonal Si6 ring. In conclusion, Si6X12 (X = Cl, Br) was synthesized by molecular halogenation of Si6H12 in high yield and good purity. Perhalogenated cyclohexasilanes react with p-tolunitrile to give 'inverse sandwich' adducts 3 and 4 with a planar Si6 ring upon coordination. Our future reports will detail dianionic adducts based on tetra-n-butylammonium halides as well as a monoanionic adamantyl azide adduct of Si6Cl12. It is straightforward to conceptualize the utility of Si6X12 ∙ Ln chemistry in molecular assembly of silicon-based clusters/tubes/wires. Thereby, we proffer that this constitutes a new landscape in Si chemistry.

  8. Surface analytical characterization of chromium-stabilized protecting oxide layers on stainless steel referring to activity buildup

    NASA Astrophysics Data System (ADS)

    Thieme, M.; Scharnweber, D.; Drechsler, L.; Heiser, C.; Adolphi, B.; Weiss, A.

    1992-08-01

    Surface analytical methods were used to characterize both protecting oxide layers formed by hydrothermal chromate treatment (HTCT) on stabilized austenitic stainless steel and hydrothermally grown corrosion product layers (CPL) within the scope of lowering the activity buildup in the primary circuit of nuclear power plants. Morphology, thickness and chromium depth distribution of the layers proved to be considerably different from each other. According to Raman microspectrometry, there were also alterations in the chemical nature of the oxide species. Preceding electropolishing gave rise to particular properties of the respective layers. Prerequisites for an optimal corrosion behaviour of the protecting layers are discussed. Titanium-containing precipitations were oxidatively transformed by HTCT.

  9. Real-time monitoring of enzyme activity in a mesoporous silicon double layer

    NASA Astrophysics Data System (ADS)

    Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.

    2009-04-01

    The activity of certain proteolytic enzymes is often an indicator of disease states such as cancer, stroke and neurodegeneracy, so there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules, but coupling a sensitive detection method to such a membrane remains difficult. Here, we demonstrate a single mesoporous nanoreactor that can isolate and quantify in real time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer, with large pore sizes (~100 nm in diameter), traps the protease and acts as the reactor. The lower layer, with smaller pore sizes (~6 nm), excludes the proteases and other large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity, and this allows label-free quantification of enzyme kinetics in real time within a volume of ~5 nl.

  10. Active layer thermal regime at different vegetation covers at Lions Rump, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Almeida, Ivan C. C.; Schaefer, Carlos Ernesto G. R.; Fernandes, Raphael B. A.; Pereira, Thiago T. C.; Nieuwendam, Alexandre; Pereira, Antônio Batista

    2014-11-01

    Climate change impacts the biotic and abiotic components of polar ecosystems, affecting the stability of permafrost, active layer thickness, vegetation, and soil. This paper describes the active layer thermal regimes of two adjacent shallow boreholes, under the same soil but with two different vegetations. The study is location in Lions Rump, at King George Island, Maritime Antarctic, one of the most sensitive regions to climate change, located near the climatic limit of Antarctic permafrost. Both sites are a Turbic Cambic Cryosol formed on andesitic basalt, one under moss vegetation (Andreaea gainii, at 85 m a.s.l.) and another under lichen (Usnea sp., at 86 m a.s.l.), located 10 m apart. Ground temperature at same depths (10, 30 and 80 cm), water content at 80 cm depth and air temperature were recorded hourly between March 2009 and February 2011. The two sites showed significant differences in mean annual ground temperature for all depths. The lichen site showed a higher soil temperature amplitude compared to the moss site, with ground surface (10 cm) showing the highest daily temperature in January 2011 (7.3 °C) and the lowest daily temperature in August (- 16.5 °C). The soil temperature at the lichen site closely followed the air temperature trend. The moss site showed a higher water content at the bottommost layer, consistent with the water-saturated, low landscape position. The observed thermal buffering effect under mosses is primarily associated with higher moisture onsite, but a longer duration of the snowpack (not monitored) may also have influenced the results. Active layer thickness was approximately 150 cm at low-lying moss site, and 120 cm at well-drained lichen site. This allows to classify these soils as Cryosols (WRB) or Gelisols (Soil Taxonomy), with evident turbic features.

  11. Microbial activities at the benthic boundary layer in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Tholosan, O.; Garcin, J.; Polychronaki, T.; Tselepides, A.; Buscail, R.; Duineveld, G.

    2003-05-01

    During the Aegean Sea component of the EU MTP-MATER project, benthic samples were acquired along a depth gradient from two continental margins in the Aegean Sea. Sampling was undertaken during spring and summer 1997 and the microbial metabolic activities measured (Vmax for aminopeptidase activity, 14C-glutamate respiration and assimilation) displayed seasonal variability even in deep-sea conditions. The metabolic rates encountered in the North Aegean (average depth 566±234 m), were approximately five-fold higher than in the deeper (1336±140 m) Southern part of the Aegean. The aminopeptidase rates, however, were the exception with higher values recorded in the more oligotrophic sediments of the Southern stations (1383±152 vs. 766±297 nmol MCA cm -2 h -1). A discrepancy in bacterial metabolism also appeared in the near bottom waters. In the Southern stations, 80% of the glutamate uptake was used for energy yielding processes and only 20% devoted to biomass production, while in the North Aegean, most of the used glutamate was incorporated into bacterial cells. During the early burial stages, bacterial mineralization rates estimated from 14C-glutamate respiration decreased drastically compared to the rates of biopolymer hydrolysis estimated by aminopeptidase assays. Thus, at the 2-cm depth layer, these rates were only 32 and up to 77% of the corresponding average values, respectively, in the superficial layer. Such a discrepancy between the evolution of these two metabolic activities is possibly due to the rapid removal of readily utilizable monomers in the surface deposits. The correlation between bacterial respiration and total organic carbon, or total organic nitrogen, is higher in the surficial sediment (0-2 and 2-4 cm) than in the underlying layer. Conversely, it is only at 4-cm depth layer that the hydrolysis rates appear correlated with organic carbon and nitrogen concentrations. This pattern confirms the drastic degradation of organic matter during the

  12. On the Rigidity in Bending of a Sandwich with Thick CFRP Facings and Thin Soft Core

    NASA Astrophysics Data System (ADS)

    Caprino, G.; Iaccarino, P.; Langella, A.; Lamboglia, A.

    2009-06-01

    Flexure tests in three-point bending were performed in the elastic domain on sandwich specimens whose facings were made of T800H/3900-2 laminates, and the core by a soft rubbery layer. The contribution of the shear and flexural deformations to the overall deflection was varied by varying the slenderness ratio. The rigidities yielded by the load-displacement curve were corrected for the indentation occurring at the points of load introduction, using an experimentally determined calibration curve. Due to the thinness of the sandwich, indentation negligibly affected the precision of the results, with the apparent rigidities differing from the actual ones by less than 2%. By an analytical formula previously developed for sandwich structures, a prediction of the rigidities in flexure was attempted, adopting elastic constants available in the literature. The correlation with the data points was poor, with the theoretical results largely overestimating the actual rigidities. However, the reliability of the closed-form formula was supported by finite element analysis, carried out modelling the facings by 2D plate elements, and the core by 3D brick elements. Through the formula, the core shear modulus was individuated as responsible of the discrepancies observed. Assuming a suitable value for this parameter, both the analytic solution and the finite element models were able to match with accuracy the rigidities measured.

  13. Sandwiched polymer fibre in fibrin matrices for the dictation of endothelial cells undergoing angiogenesis

    NASA Astrophysics Data System (ADS)

    Sukmana, I.; Djuansjah, J. R. P.

    2013-04-01

    We present here a three-dimensional (3D) sandwich system made by poly(ethylene terephthalate) (PET) fibre and fibrin extracellular matrix (ECM) for endothelial cell dictation and angiogenesis guidance. In this three-dimensional system, Human Umbilical Vein Endothelial cells (HUVECs) were firstly cultured for 2 (two) days to cover the PET fibre before sandwiched in two layer fibrin gel containing HUVECs. After 4 (four) days of culture, cel-to-cel connection, tube-like structure and multi-cellular lumen formation were then assessed and validated. Phase contrast and fluorescence imaging using an inverted microscope were used to determine cell-to-cell and cell-ECM interactions. Laser scanning confocal microscopy and histological techniques were used to confirm the development of tube-like structure and multi-cellular lumen formation. This study shows that polymer fibres sandwiched in fibrin gel can be used to dictate endothelial cells undergoing angiogenesis with potential application in cancer and cardiovascular study and tissue engineering vascularisation.

  14. Formability of Aluminum 5182-Polypropylene Sandwich Sheet for Automotive Application

    NASA Astrophysics Data System (ADS)

    Kim, Kee Joo; Kim, Cheol-Woong; Choi, Byung-Ik; Sung, Chang Won; Kim, Heon Young; Won, Si-Tae; Ryu, Ho-Yeun

    The AA5182/polypropylene/AA5182 (AA/PP/AA) sandwich sheet is the material fabricated by adhering two aluminum skins to one polypropylene core. When it has the same flexural rigidity as a steel sheet, it is 65% lighter than the steel sheet and 30% lighter than an aluminum alloy sheet. Therefore, it is notified exclusively as good substitutive materials for a steel body to improve the fuel efficiency. Through AA/PP/AA sandwich sheet, however, it has relatively lower formability than that of the steel sheet for automotive application. In this study, we developed formability evaluation techniques in order to apply AA/PP/AA sandwich sheet for an automotive parts. For this purpose, newly adopting formability evaluations (using limit dome height and plane strain test) were carried out in order to secure the fundamental data for the measurement of sheet metal forming and the establishment of optimum forming conditions of the sandwich sheet. The results showed that there were in good agreements between the old formability evaluation method and the new one which was more simplified than that of the old one. From the results of these formability evaluations, the formability of sandwich sheet was higher than that of aluminum alloy sheet alone which was the skin component for the sandwich sheet. In addition, it was found that sandwich sheet could reduce the weight and could have the same flexural rigidity simultaneously when it was compared to the automotive steel sheet.

  15. Development and Mechanical Behavior of FML/Aluminium Foam Sandwiches

    NASA Astrophysics Data System (ADS)

    Baştürk, S. B.; Tanoğlu, M.

    2013-10-01

    In this study, the Fiber-Metal Laminates (FMLs) containing glass fiber reinforced polypropylene (GFPP) and aluminum (Al) sheet were consolidated with Al foam cores for preparing the sandwich panels. The aim of this article is the comparison of the flexural properties of FML/Al foam sandwich panels bonded with various surface modification approaches (silane treatment and combination of silane treatment with polypropylene (PP) based film addition). The FML/foam sandwich systems were fabricated by laminating the components in a mould at 200 °C under 1.5 MPa pressure. The energy absorbtion capacities and flexural mechanical properties of the prepared sandwich systems were evaluated by mechanical tests. Experiments were performed on samples of varying foam thicknesses (8, 20 and 30 mm). The bonding among the sandwich components were achieved by various surface modification techniques. The Al sheet/Al foam sandwiches were also consolidated by bonding the components with an epoxy adhesive to reveal the effect of GFPP on the flexural performance of the sandwich structures.

  16. Study on Na layer response to geomagnetic activities based on Odin/OSIRIS Na density data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo; Nakamura, Takuji; Hedin, Jonas; Gumbel, Jorg; Hosokawa, Keisuke; Ejiri, Mitsumu K.; Nishiyama, Takanori; Takahashi, Toru

    2016-07-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational data sets obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  17. Design method of the layered active magnetic regenerator (AMR) for hydrogen liquefaction by numerical simulation

    NASA Astrophysics Data System (ADS)

    Park, Inmyong; Kim, Youngkwon; Park, Jiho; Jeong, Sangkwon

    2015-09-01

    The design procedure of an active magnetic regenerator (AMR) operating between liquid nitrogen temperature and liquid hydrogen temperature is discussed with the selected magnetic refrigerants. Selected magnetic refrigerants (GdNi2, Dy0.85Er0.15Al2, Dy0.5Er0.5Al2, and Gd0.1Dy0.9Ni2) that have different transition temperatures are layered in an AMR to widen the temperature span. The optimum volume fraction of the layered refrigerants for the maximum COP with minimum volume is designed in a two-stage active magnetic regenerative refrigerator (AMRR) using one dimensional numerical simulation. The entropy generation in each stage of the AMR is calculated by the numerical simulation to optimize the proposed design. The main sources of the entropy generation in the AMR are pressure drop, convection and conduction heat transfers in the AMR. However, the entropy generation by the convective heat transfer is mostly dominant in the optimized cases. In this paper, the design parameters and the operating conditions such as the distribution of the selected refrigerants in the layered AMR, the intermediate temperature between two stages and the mass flow rate of heat transfer fluid are specifically determined to maximize the performance of the AMR. The proposed design method will facilitate the construction of AMR systems with various magnetic refrigerants and conditions such as AMR size, operating temperature range, and magnetic field variation.

  18. First insight into catalytic activity of anionic iron porphyrins immobilized on exfoliated layered double hydroxides.

    PubMed

    Nakagaki, Shirley; Halma, Matilte; Bail, Alesandro; Arízaga, Gregório Guadalupe Carbajal; Wypych, Fernando

    2005-01-15

    Mg-Al layered double hydroxide (LDH) intercalated with glycinate anions was synthesized through co-precipitation and exfoliated in formamide and the single-layer suspension was reacted with aqueous iron porphyrin solutions (Fe(TDFSPP) and Fe(TCFSPP)). The obtained materials were characterized by X-ray powder diffraction, UV-vis, and electron paramagnetic resonance and investigated in the oxidation reaction of cyclooctene and cyclohexane using iodosylbenzene as oxidant. The iron porphyrin seems to be immobilized at the surface of the glycinate intercalated LDH. The catalytic activities obtained in heterogeneous media for iron porphyrin, Fe(TDFSPP), was superior to the results obtained under homogeneous conditions, but the opposite effect was observed on the Fe(TCFSPP), indicating that, instead of the structural similarity of both iron porphyrins (second-generation porphyrins), the immobilization of each one produced different catalysts. The best catalytic activity of the Fe(TDFSPP)/Gly-LDH, compared to Fe(TCFSPP)/Gly-LDH, can be explained by the easy access of the oxidant and the substrate to the catalytic sites in the former, probably located at the surface of the layered double hydroxide pillared with glycinate anions. A model for the immobilization and a mechanism for the oxidation reaction will be discussed. PMID:15571697

  19. Imaging active layer and permafrost variability in the Arctic using electromagnetic induction data

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Hubbard, S. S.; Ulrich, C.; Peterson, J. E.; Wu, Y.; Chen, J.; Wullschleger, S. D.

    2012-12-01

    Characterizing the spatial variability of active layer and permafrost properties is critical for gaining an understanding of Arctic ecosystem functioning and for parameterizing process-rich models that simulate feedbacks to a changing climate. Due to the sensitivity of electrical conductivity measurements to moisture content, salinity and freeze state in the active layer and permafrost and the ease of collecting electromagnetic induction (EMI) data with portable tools over large regions, EMI holds great potential for characterization of permafrost systems. However, inversion of such EMI data to estimate the subsurface electrical conductivity distribution is challenging. The challenges are due to the insufficient amount of information (even when using multiple configurations that vary coil spacing, orientation and elevation and signal frequency) needed to find a unique solution. The non-uniqueness problem is typically approached by invoking prior information, such as inversion constraints and initial models. Unfortunately, such prior information can significantly influence the obtained inversion result. We describe the development and implementation of a new grid search based method for estimating electrical conductivity from EMI data that evaluates the influence of priors and the information contained in such data. The new method can be applied to investigate two or three layer 1-D models reproducing the recorded data within a specified range of uncertainty at each measurement location over a large surveyed site. Importantly, the method can quickly evaluate multiple priors and data from numerous measurement locations, since the time-consuming simulation of the EMI signals from the multi-dimension search grid needs to be performed only once. We applied the developed approach to EMI data acquired in Barrow, AK at the Next-Generation Ecosystem Experiments (NGEE Arctic) study site on the Barrow Environmental Observatory. Our specific focus was on a 475-meter linear

  20. Advanced activity reporting in a multi-layered unattended ground sensor network

    NASA Astrophysics Data System (ADS)

    Joslin, Todd W.

    2007-04-01

    Sensor networks are emplaced throughout the world to remotely track activity. Typically, these sensors report data such as target direction or target classification. This information is reported to a personnel-based monitor or a command and control center. The ideal sensor system will have a long mission life capability and will report information-rich actionable intelligence with high data integrity at near real-time latency. This paper discusses a multi-layered approach that includes data fusion at the Sensor Node, Sensor Field, and Command and Control Center Layer to create cohesive reports that mitigate false alarms and multiple reports of the same target while providing accurate tracking data on a situational awareness level. This approach is influenced by low-power architecture, and designed to maximize information density and reduce flooding of sensor networks.

  1. Low-noise encoding of active touch by layer 4 in the somatosensory cortex.

    PubMed

    Hires, Samuel Andrew; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-01-01

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise. PMID:26245232

  2. A novel sandwich immunosensing method for measuring cardiac troponin I in sera.

    PubMed

    Wei, Jingyan; Mu, Ying; Song, Daqian; Fang, Xuexun; Liu, Xia; Bu, Lisha; Zhang, Hanqi; Zhang, Guizhen; Ding, Jiahua; Wang, Weizhong; Jin, Qinhan; Luo, Guimin

    2003-10-15

    Common methods for monitoring human cardiac troponin I (cTn I) are based on using antibodies against cTn I labeled with horseradish peroxidase, radioactive isotopes, or other labels. In this study, a novel label-free sandwich immunosensing method for measuring cTn I was developed. Three monoclonal antibodies (mAbs 9F5, 2F11, and 8C12) against human cTn I were generated by the commonly used hybridoma technique and characterized by a surface plasmon resonance (SPR) biosensor. An optimal pair of mAbs for measuring human cTn I was selected, as both mAbs have high affinities for cTn I and do not compete against each other for cTn I binding. An optical immunosensor for measuring cTn I in sera based on SPR was developed by using avidin as an intermediate layer and biotinylated-2F11 as the capturing antibody. Two detection methods for cTn I with the immunosensor were performed: (1) the direct detection of cTn I with a detection range of 2.5 to 40 microg/L and (2) the sandwich immunosensing method. In the sandwich assay mode, the second antibody 9F5 biologically amplified the sensor response. As a result, the sandwich assay showed a sensitivity of 0.25 microg/L and a detection range of 0.5 to 20 microg/L with within-run variation of 4.9 to 6.7% and between-run variation of 5.2 to 8.4%. This method has greatly enhanced the sensitivity for detection compared to that previously reported in the literatures. PMID:14511686

  3. On Active Layer Environments and Processes in Western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Hansen, C. D.; Meiklejohn, I.; Nel, W.

    2012-12-01

    The current understanding of Antarctic permafrost is poor, particularly regarding its evolution, the current thermal characteristics, and relationships with pedogenesis, hydrology, geomorphic, dynamics, biotic activity and response to global changes. Results from borehole temperature measurements over a four-year period in Western Dronning Maud Land suggest that the active layer depth is dependent on the substrate, latitude, altitude and the volume of ground exposed; the latter alludes to the potential impact of surrounding ice on the ground thermal regime. The active layer depths at the monitoring sites, varied between 16 cm at Vesleskarvet, a small nunatak at 850 masl to 28 cm in granitic till at Jutulsessen (1 270 masl). The mean near surface (1.5 cm depth) ground temperatures from 2009 to 2012 in the region have a narrow range from -16.4°C at 850m to -17.5°C at 1270 masl. Permafrost temperatures for the same locations vary between -16.3°C and -18.3°C. While little variability exists between the mean temperatures at the study locations, each site is distinct and seasonal and shorter-term frost cycles have produced landforms that are characteristic of both permafrost and diurnal frost environments. One of the key aspects of investigation is the control that the active layer has on autochthonous blockfield development in the region. The, thus far, exploratory research is being used to understand controls on the landscape and the relationship between distribution and abundance of biota. Given the rapidly changing climates in the region, improving knowledge of what drives patterns of biodiversity at a local and regional scale is vital to assess consequences of environmental change.

  4. Conjoined Cochlear Models:. the Twamp and the Sandwich

    NASA Astrophysics Data System (ADS)

    Hubbard, Allyn

    2009-02-01

    A new model of the cochlea is created by joining parts of the traveling-wave amplifier (TWAMP) and the Sandwich models. The lossy, untuned traveling-wave line of the TWAMP is retained, but the TWAMP's tuned traveling-wave line is replaced by the Sandwich's traveling-wave line that represents the reticular lamina (RL) and scala tympani. The model combines stereocilliary forces, which act between the tectorial membrane (TM) and RL, with somatic outer hair cell forces that power the Sandwich.

  5. Thermal behavior of a titanium honeycomb-core sandwich panel

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jackson, Raymond H.

    1991-01-01

    Finite element thermal stress analysis was performed on a rectangular titanium honecomb-core sandwich panel which is subjected to thermal load with a temperature gradient across its depth. The distributions of normal stresses in the face sheets and the face-sheet/sandwich-core interfacial shear stresses are presented. The thermal buckling of the heated face sheet was analyzed by assuming the face sheet to be resting on an elastic foundation representing the sandwich core. Thermal buckling curves and thermal buckling load surface are presented for setting the limit for temperature gradient across the panel depth.

  6. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  7. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, Roberto; Schaefer, Carlos; Simas, Felipe; Pregesbauer, Michael; Bockheim, James

    2013-04-01

    International attention on the climate change phenomena has grown in the last decade, intense modelling of climate scenarios were carried out by scientific investigations searching the sources and trends of these changes. The cryosphere and its energy flux became the focus of many investigations, being recognised as a key element for the understanding of future trends. The active layer and permafrost are key components of the terrestrial cryosphere due to their role in energy flux regulation and high sensitivity to climate change (Kane et al., 2001; Smith and Brown, 2009). Compared with other regions of the globe, our understanding of Antarctic permafrost is poor, especially in relation to its thermal state and evolution, its physical properties, links to pedogenesis, hydrology, geomorphic dynamics and response to global change (Bockheim, 1995, Bockheim et al., 2008). The active layer monitoring site was installed in the summer of 2008, and consist of thermistors (accuracy ± 0.2 °C) arranged in a vertical array (Turbic Eutric Cryosol 600 m asl, 10.5 cm, 32.5 cm, 67.5 cm and 83.5 cm). King George Island experiences a cold moist maritime climate characterized by mean annual air temperatures of -2°C and mean summer air temperatures above 0°C for up to four months (Rakusa-Suszczewski et al., 1993, Wen et al., 1994). Ferron et al., (2004) found great variability when analysing data from 1947 to1995 and identified cycles of 5.3 years of colder conditions followed by 9.6 years of warmer conditions. All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from March 1st 2008 until November 30th 2012. Meteorological data for Fildes was obtained from the near by stations. We calculated the thawing days, freezing days; thawing degree days and freezing degree days; all according to Guglielmin et al. (2008). The active lawyer thickness was calculated as the 0 °C depth by extrapolating the thermal gradient from the two

  8. Role of interfacial friction for flow instabilities in a thin polar-ordered active fluid layer.

    PubMed

    Sarkar, Niladri; Basu, Abhik

    2015-11-01

    We construct a generic coarse-grained dynamics of a thin inflexible planar layer of polar-ordered suspension of active particles that is frictionally coupled to an embedding isotropic passive fluid medium with a friction coefficient Γ. Being controlled by Γ, our model provides a unified framework to describe the long-wavelength behavior of a variety of thin polar-ordered systems, ranging from wet to dry active matter and free-standing active films. Investigations of the linear instabilities around a chosen orientationally ordered uniform reference state reveal generic moving and static instabilities in the system that can depend sensitively on Γ. Based on our results, we discuss estimation of bounds on Γ in experimentally accessible systems. PMID:26651694

  9. Role of interfacial friction for flow instabilities in a thin polar-ordered active fluid layer

    NASA Astrophysics Data System (ADS)

    Sarkar, Niladri; Basu, Abhik

    2015-11-01

    We construct a generic coarse-grained dynamics of a thin inflexible planar layer of polar-ordered suspension of active particles that is frictionally coupled to an embedding isotropic passive fluid medium with a friction coefficient Γ . Being controlled by Γ , our model provides a unified framework to describe the long-wavelength behavior of a variety of thin polar-ordered systems, ranging from wet to dry active matter and free-standing active films. Investigations of the linear instabilities around a chosen orientationally ordered uniform reference state reveal generic moving and static instabilities in the system that can depend sensitively on Γ . Based on our results, we discuss estimation of bounds on Γ in experimentally accessible systems.

  10. Low latitude F2- and F3- layer variabilities over India: Effects of solar activity and ExB drift

    NASA Astrophysics Data System (ADS)

    Peddapati, PavanChaitanya; Patra, Amit; Balan, Nanan; Vijaya Bhaskara Rao, S.

    In this paper we present and discuss the results on F2 and F3 layers based on ionosonde observations made from low latitude stations in India. We also use ExB drift using daytime 150 km echoes made with the Gadanki MST radar. We present two important aspects of the F2 and F3 layers: (1) The variability of F2 and F3 layer properties during low solar activity period of 2008-2009 and compare them with those observed during the high solar activity period of 2002-2003 (2) The variability of F2 and F3 layer properties with ExB drift values simultaneously observed during low solar activity period. The results show that ionospheric F2 and F3 layers have distinctly different features during high and low solar activities. The critical frequencies of the F2 and F3 layers are 5-6 MHz higher in the high solar activity than those of low solar activity. F2 layer shows stronger semi-annual and solar rotation associated variations during high solar activity than in low solar activity. Occurrence of the F3 layer, however, was quite similar in high and low solar activities except for winter solstice. Simultaneous observations of F2 and F3 layers, and ExB drift made during the low solar activity period clearly suggest that a threshold value of the ExB drift and its time integrated value are important for the formation of the F3 layer. The heights of the F2 and F3 layers linearly increase with ExB drift, indicating the dominant role of zonal electric field in determining the height of the F2 and F3 layers due to the close proximity of Gadanki to the magnetic equator. In order to gain further insight on the role of meridional neutral wind, we study this effect using Sheffield University Plasmasphere Ionosphere Model (SUPIM) by employing the observed ExB drift and F3 layer parameters and meridional neutral wind from Horizontal Wind Model 90 (HWM90).

  11. Vertical profiles of trapped greenhouse gases in Alaskan permafrost active layers before the spring thaw

    NASA Astrophysics Data System (ADS)

    Byun, Eunji; Yang, Ji-woong; Kim, Yongwon; Ahn, Jinho

    2015-04-01

    Seasonally frozen ground over permafrost is important in controlling annual greenhouse gas exchange between permafrost and atmosphere. Soil microbes decompose soil carbon and generate carbon dioxide and methane when they become activated. However, the actual greenhouse gas emission follows various efflux pathways. For example, seasonal freezing of the top soil layers can either restrain or press the gas emission from deeper layers. It has been reported that abrupt release of methane during spring is attributable to the emission of trapped gases that had failed to be released instantly after formation (1, 2). In order to examine the seasonally trapped greenhouse gases, we drilled five Alaskan permafrost cores before spring thaw; one from coastal tundra, two from typical boreal forests, one from area where fire occurred, and one from peat accumulated sites. Vertical profiles of carbon dioxide and methane concentrations were obtained with 5-10 cm depth intervals. We found methane peaks from two cores, indicating inhibition of methane efflux. We also analyzed organic carbon, nitrogen and water contents and compared them with the greenhouse gas profiles. We are continuing analysis for the soil temperature profiles of the sampling boreholes because the detailed temperature information might be related to microbial activity, and can be used as indirect indicators of soil water freezing and latent heat influences at some active layer depth (zero curtain effects). All the high-resolution analyses for subsurface environments may help to improve understanding greenhouse gas emission from permafrost regions. 1. Mastepanov M, et al. (2008) Large tundra methane burst during onset of freezing. Nature 456(7222):628-630. 2. Song C, et al. (2012) Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters 7(3):034009.

  12. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    SciTech Connect

    Wang, J. W.; Murakami, M.; Weng, S. M.; Xu, H.; Ju, J. J.; Luan, S. X.; Yu, W.

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  13. Spectral finite element based on an efficient layerwise theory for wave propagation analysis of composite and sandwich beams

    NASA Astrophysics Data System (ADS)

    Nanda, Namita; Kapuria, S.; Gopalakrishnan, S.

    2014-07-01

    In this paper, we present a spectral finite element model (SFEM) using an efficient and accurate layerwise (zigzag) theory, which is applicable for wave propagation analysis of highly inhomogeneous laminated composite and sandwich beams. The theory assumes a layerwise linear variation superimposed with a global third-order variation across the thickness for the axial displacement. The conditions of zero transverse shear stress at the top and bottom and its continuity at the layer interfaces are subsequently enforced to make the number of primary unknowns independent of the number of layers, thereby making the theory as efficient as the first-order shear deformation theory (FSDT). The spectral element developed is validated by comparing the present results with those available in the literature. A comparison of the natural frequencies of simply supported composite and sandwich beams obtained by the present spectral element with the exact two-dimensional elasticity and FSDT solutions reveals that the FSDT yields highly inaccurate results for the inhomogeneous sandwich beams and thick composite beams, whereas the present element based on the zigzag theory agrees very well with the exact elasticity solution for both thick and thin, composite and sandwich beams. A significant deviation in the dispersion relations obtained using the accurate zigzag theory and the FSDT is also observed for composite beams at high frequencies. It is shown that the pure shear rotation mode remains always evanescent, contrary to what has been reported earlier. The SFEM is subsequently used to study wavenumber dispersion, free vibration and wave propagation time history in soft-core sandwich beams with composite faces for the first time in the literature.

  14. A Ham Sandwich Is Better than Nothing: Some Thoughts about Transitivity

    ERIC Educational Resources Information Center

    Roberts, Tim S.

    2004-01-01

    There is an old joke that says that given the choice between eternal happiness and a ham sandwich, one should choose the ham sandwich. The proof is quite simple: (1) nothing is better than eternal happiness; (2) a ham sandwich is better than nothing; and therefore, it straightforwardly follows from (1) and (2) that (3) a ham sandwich is better…

  15. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  16. Lidar observations of Ca and K metallic layers from Arecibo and comparison with micrometeor sporadic activity

    NASA Astrophysics Data System (ADS)

    Raizada, S.; Tepley, C. A.; Janches, D.; Friedman, J. S.; Zhou, Q.; Mathews, J. D.

    2004-04-01

    We report on the first simultaneous observations of Ca and K metallic layers using the low-latitude lidar systems located at the Arecibo Observatory in Puerto Rico (18.35°N, 66.75°W). We often observe sudden increases in both Ca and K densities during early morning hours on nights where meteor showers take place. During these periods, the Ca/K abundance ratio varied between 2 and 3. On occasion, differences were observed in Ca and K layers, which relate to differences in the chemistry of the two metals. It is known that metallic layers display distinct seasonal variations, but chemistry alone cannot explain the measured differences. Thus, we examined whether or not the seasonal distribution of micrometeoroids, derived from meteor observations using the Arecibo 430MHz radar, can account for the dissimilar metallic observations. We found that the deposition flux of micrometeoroids, with particle sizes ranging between 0.5 and 100μm, increased by a factor of two during the summer as compared with the winter, suggesting a seasonal variation of their sporadic activity. In addition, our data support the idea that differential ablation leads to a depletion of Ca atoms in the mesosphere.

  17. Material Based Structure Design: Numerical Analysis Thermodynamic Response of Thermal Pyrolytic Graphite /Al Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Wang, Junxia; Yan, Shilin; Yu, Dingshan

    2016-06-01

    Amine-grafted multiwalled carbon nanotubes (MWCNTs) based thermally conductive adhesive (TCA) was studied in the previous paper and applied here in thermal pyrolytic graphite (TPG)/Al radiator due to its high thermal conductivity, toughness and cohesiveness. In this paper, in an attempt to confirm the application of TCA to TPG/Al sandwich radiator, the thermodynamic response in TPG/Al sandwich composites associated with key material properties and structural design was investigated using finite element simulation with commercial available ANSYS software. The induced thermal stress in TCA layer is substantial due to the thermal expansion mismatch between Al plate and TPG. The maximum thermal stress is located near the edge of TCA layer with the von Mises stress value of 4.02 MPa and the shear stress value of 1.66 MPa. The reasonable adjustment of physical-mechanical properties including thermal conductivity, thermal expansion, Young,s modulus and the thickness of TCA layer, Al plate and TPG are beneficial for reducing the temperature of the top surface of the upper skin and their effects on the reduction of thermal structural response in some ways. These findings will highlight the structural optimization of TPG/Al radiator for future application.

  18. Forced vibration of a shear thickening fluid sandwich beam

    NASA Astrophysics Data System (ADS)

    Wei, Minghai; Hu, Gang; Jin, Lu; Lin, Kun; Zou, Dujian

    2016-05-01

    The forced vibration of a sandwich beam integrating a shear thickening fluid (STF) core and with conductive skins subjected to a periodic excitation was investigated theoretically in this study. The rheological properties of the STF material including viscosity, plasticity, and elasticity may be changed under the periodic vibration, and hence they were considered. The governing equation of motion was derived based on the complex stiffness method and some key parameters were derived based on the Timoshenko beam theory. Effects of the excitation frequency, the excitation amplitude, the excitation location, and the skin/core thickness ratio on the nature frequency of the sandwich beam were investigated. It was found that the STF core has a significant effect on the dynamic property of the sandwich beam. Based on the findings, integrating the STF core in a sandwich beam can reduce the vibration of the beam.

  19. A consistent large deflection theory of composite sandwich shells

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfu

    1993-05-01

    Composite sandwich shells are important structures in aeronautical and astronautical industry. The theory, especially nonlinear theory, of them is still required to be advanced so as to meet the demand of engineering application. With Lagrangian description, the consistent Green strain tensor, the compatibility equations and the second Piola-Kirchhoff stress tensor of the composite sandwich shells are obtained. Based on these results and several assumptions, the constitutive equations relating the stress resultants to the strains, the strain energy density and the potential energy functional are further developed. In terms of minimum potential energy principle, the equilibrium equations and associated boundary conditions are obtained, which are consistent with the first order approximation under the conditions of small strain accompanied with moderate/small rotation. In terms of the structural features of the shallow composite sandwich shells, the equations obtained are further processed approximately and Donnel-type equations for the shallow composite sandwich shells are obtained.

  20. LiFePO4 nanoparticles enveloped in freestanding sandwich-like graphitized carbon sheets as enhanced remarkable lithium-ion battery cathode.

    PubMed

    Zhang, Yan; Zhang, Huijuan; Li, Xiao; Xu, Haitao; Wang, Yu

    2016-04-15

    A novel nanostructure where LiFePO4 nanoparticles are enveloped in sandwich-like carbon sheets as an enhanced cathode in lithium-ion batteries has successfully been synthesized for the first time. Compared to previous carbon-based nanocomposites, the achieved sandwich-like LiFePO4 nanocomposites exhibit totally different architecture, in which LiFePO4 nanoparticles are tightly entrapped between two carbon layers, instead of being anchored on the carbon sheet surfaces. In other words, the achieved sandwich-like LiFePO4 nanocomposite carbon layers are actually freestanding and can be operated and separated from each other. This is a great breakthrough in the design and synthesis of carbon-based functional materials. The obtained sandwich-like LiFePO4 nanocomposites present excellent electrochemical performance, which is rationally ascribed to the superb and unique structure and architecture. Of particular note is that the freestanding sandwich-like LiFePO4 nanocomposites exhibit enhanced cyclability and rate capability. At a high current density of 0.1 A g(-1), a stable specific capacity of approximately 168.5 mAh g(-1) can be delivered over 1000 cycles, and when the charge-discharge rates increase to 0.6, 2, 5 and 10 A g(-1), the specific capacities still survive at 149, 129, 114 and 91 mAh g(-1), respectively. Meanwhile, the sandwiched nanocomposite demonstrates a significantly improved low-temperature electrochemical energy storage performance. With respect to the excellent Li storage performance, and facility and reliability of production, the freestanding sandwich-like LiFePO4 nanocomposites are reasonably believed to have a great potential for multiple electrochemical energy storage applications. PMID:26934516

  1. LiFePO4 nanoparticles enveloped in freestanding sandwich-like graphitized carbon sheets as enhanced remarkable lithium-ion battery cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Huijuan; Li, Xiao; Xu, Haitao; Wang, Yu

    2016-04-01

    A novel nanostructure where LiFePO4 nanoparticles are enveloped in sandwich-like carbon sheets as an enhanced cathode in lithium-ion batteries has successfully been synthesized for the first time. Compared to previous carbon-based nanocomposites, the achieved sandwich-like LiFePO4 nanocomposites exhibit totally different architecture, in which LiFePO4 nanoparticles are tightly entrapped between two carbon layers, instead of being anchored on the carbon sheet surfaces. In other words, the achieved sandwich-like LiFePO4 nanocomposite carbon layers are actually freestanding and can be operated and separated from each other. This is a great breakthrough in the design and synthesis of carbon-based functional materials. The obtained sandwich-like LiFePO4 nanocomposites present excellent electrochemical performance, which is rationally ascribed to the superb and unique structure and architecture. Of particular note is that the freestanding sandwich-like LiFePO4 nanocomposites exhibit enhanced cyclability and rate capability. At a high current density of 0.1 A g-1, a stable specific capacity of approximately 168.5 mAh g-1 can be delivered over 1000 cycles, and when the charge-discharge rates increase to 0.6, 2, 5 and 10 A g-1, the specific capacities still survive at 149, 129, 114 and 91 mAh g-1, respectively. Meanwhile, the sandwiched nanocomposite demonstrates a significantly improved low-temperature electrochemical energy storage performance. With respect to the excellent Li storage performance, and facility and reliability of production, the freestanding sandwich-like LiFePO4 nanocomposites are reasonably believed to have a great potential for multiple electrochemical energy storage applications.

  2. Tungsten Biscorroles: New Chiral Sandwich Compounds.

    PubMed

    Alemayehu, Abraham B; Vazquez-Lima, Hugo; Gagnon, Kevin J; Ghosh, Abhik

    2016-05-10

    The oxidative metalation method, involving the interaction of free-base meso-triarylcorroles and W(CO)6 in refluxing decalin, led to a set of three tungsten(VI) biscorroles, the first homoleptic sandwich compounds involving corroles. Single-crystal X-ray structures of two of the complexes revealed square-antiprismatic coordination and strongly domed corroles with long W-N distances of 2.15-2.22 Å and a substantial displacement of ∼1.17 Å of the metal relative to the mean N4 planes of the ligands. The structures correspond to approximate C2 symmetry and are thus chiral. DFT calculations strongly indicate that the enantiomers are configurationally stable and hence amenable to chiral resolution. Their other notable properties include a strongly blueshifted Soret band at (357±2) nm, a relatively intense π→W(dz2 ) near-IR feature at (781±3) nm, and a low electrochemical HOMO-LUMO gap of approximately 1.3 V. The results obtained herein suggest that metallobiscorroles may emerge as a new class of inherently chiral chromophores with novel optical and electrochemical properties. PMID:27059004

  3. Hypervelocity impact response of honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Schonberg, William; Schäfer, Frank; Putzar, Robin

    2010-02-01

    Man-made orbital poses a serious threat to spacecraft that are launched to operate in Earth orbit because it can strike such spacecraft at very high velocities and consequently damage mission-critical systems. This paper describes the findings of a study whose objective was to develop a system of empirical equations that can be used to predict the trajectories and spread of the debris clouds that exit the rear facesheet following a high speed perforating impact of a honeycomb sandwich panel (HC/SP). These equations are based on a database containing the results of nearly 400 tests from 13 previously published papers and reports. Overall the correlation coefficient values for the various regression equations obtained are fairly reasonable, and range from near 60% to well above 90%. This indicates that the chosen forms of the equations are a good fit to the data, and that they are capable of picking up most of the variations in the data that result from changes in test conditions. These equations can now be used to estimate the amount of mass in a debris cloud if an HC/SP is perforated by a high speed impact, where this mass will travel, and what spacecraft components will be impacted by it. This information can then be fed into a risk assessment code to calculate the probability of spacecraft failure under a prescribed set of impact conditions.

  4. Numerically simulating the sandwich plate system structures

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Qing; Li, Gang; Liu, Zhi-Hui; Niu, Huai-Lei; Li, Chen-Feng

    2010-09-01

    Sandwich plate systems (SPS) are advanced materials that have begun to receive extensive attention in naval architecture and ocean engineering. At present, according to the rules of classification societies, a mixture of shell and solid elements are required to simulate an SPS. Based on the principle of stiffness decomposition, a new numerical simulation method for shell elements was proposed. In accordance with the principle of stiffness decomposition, the total stiffness can be decomposed into the bending stiffness and shear stiffness. Displacement and stress response related to bending stiffness was calculated with the laminated shell element. Displacement and stress response due to shear was calculated by use of a computational code write by FORTRAN language. Then the total displacement and stress response for the SPS was obtained by adding together these two parts of total displacement and stress. Finally, a rectangular SPS plate and a double-bottom structure were used for a simulation. The results show that the deflection simulated by the elements proposed in the paper is larger than the same simulated by solid elements and the analytical solution according to Hoff theory and approximate to the same simulated by the mixture of shell-solid elements, and the stress simulated by the elements proposed in the paper is approximate to the other simulating methods. So compared with calculations based on a mixture of shell and solid elements, the numerical simulation method given in the paper is more efficient and easier to do.

  5. Foam core materials for structural sandwich panels

    SciTech Connect

    Huang Jongshin.

    1991-01-01

    The author first investigates the creep of polymer foam cores. Models for the creep of linear and nonlinear viscoelastic polymer foams are proposed. Experimental results for the creep of a rigid polyurethane foam are compared to the mode; agreement is good. The results indicate that creep can limit the design of building panels with polymer foam cores. Next, he studies the potential of using ceramic foams as a core material in building panels. Ceramic foams have a high stiffness, high creep resistance, low cost, and are incombustible. Ceramic foams, however, have a low fracture toughness and tensile strength. Assuming that the variability of cell wall modulus of rupture follows a Weibull distribution, there is a cell size effect on both the fracture toughness and tensile strength. Both the tensile strength and fracture toughness of ceramic foams can be improved by controlling the cell size. Since cell wall deformation of cellular materials is primarily by bending, the mechanical properties of cellular materials may be improved by making cell walls into sandwich structures. Hollow-sphere composites are made by introducing thin-walled hollow spheres into a matrix.

  6. An efficient finite element with layerwise mechanics for smart piezoelectric composite and sandwich shallow shells

    NASA Astrophysics Data System (ADS)

    Yasin, M. Yaqoob; Kapuria, S.

    2014-01-01

    In this work, we present a new efficient four-node finite element for shallow multilayered piezoelectric shells, considering layerwise mechanics and electromechanical coupling. The laminate mechanics is based on the zigzag theory that has only seven kinematic degrees of freedom per node. The normal deformation of the piezoelectric layers under the electric field is accounted for without introducing any additional deflection variables. A consistent quadratic variation of the electric potential across the piezoelectric layers with the provision of satisfying the equipotential condition of electroded surfaces is adopted. The performance of the new element is demonstrated for the static response under mechanical and electric potential loads, and for free vibration response of smart shells under different boundary conditions. The predictions are found to be very close to the three dimensional piezoelasticity solutions for hybrid shells made of not only single-material composite substrates, but also sandwich substrates with a soft core for which the equivalent single layer (ESL) theories perform very badly.

  7. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    PubMed Central

    Paytan, Adina; Lecher, Alanna L.; Dimova, Natasha; Sparrow, Katy J.; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D.

    2015-01-01

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 104 nM, 61.6 dpm⋅m−3, and 4.5 × 105 dpm⋅m−3 compared with 1.3 × 102 nM, 5.7 dpm⋅m−3, and 4.4 × 103 dpm⋅m−3, respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m−2⋅y−1) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r2 > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  8. A hydrogen biosensor made of clay, poly(butylviologen), and hydrogenase sandwiched on a glass carbon electrode.

    PubMed

    Qian, Dong-Jin; Nakamura, Chikashi; Wenk, Stephan-Olav; Ishikawa, Hiroshi; Zorin, Nikolay; Miyake, Jun

    2002-09-01

    A hydrogen gas (H(2)) biosensor was developed in which hydrogenase (H(2)ase) was immobilized and sandwiched between two layers of a montmorillonite clay and poly(butylviologen) (PBV) mixture on a glass carbon electrode. The immobilized PBV efficiently enhanced the electron transfer among the electrode, H(2)ase, and methyl viologen in solution. Both PBV and methyl viologen acted as the electron carrier in the clay-PBV-H(2)ase modified electrode. The clay-PBV-H(2)ase electrode catalyzed the oxidation of H(2) to protons (H(+)) with the electrons being transferred by viologen groups to the electrode. The activation energy of this process was 38+/-2 kJ/mol at pH 7. The catalytic current of the clay-PBV-H(2)ase electrode increased linearly when exposed to increasing concentrations of H(2) gas. In contrast, this electrode showed no activity when exposed to three combustible compounds, namely, carbon monoxide, methane and methanol. The optimum pH range for the oxidation of H(2) by the clay-PBV-H(2)ase electrode was from 7 to 10. Electron transfer process in the clay-PBV-H(2)ase electrode is discussed. PMID:12191927

  9. Permafrost and active layer monitoring in the maritime Antarctic: Preliminary results from CALM sites on Livingston and Deception Islands

    USGS Publications Warehouse

    Ramos, M.; Vieira, G.; Blanco, J.J.; Hauck, C.; Hidalgo, M.A.; Tome, D.; Nevers, M.; Trindade, A.

    2007-01-01

    This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study’s ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.

  10. Modified Mode-I Cracked Sandwich Beam (CSB) Fracture Test

    NASA Technical Reports Server (NTRS)

    Smith, S. A.; Shivakumar, K. N.

    2001-01-01

    Five composite sandwich panels were fabricated using vacuum assisted resin transfer molding (VARTM). Four of these panels had E-glass/vinylester facesheets and one had carbon/epoxy facesheets. The sandwich panels had different density PVC foam cores. The four E-glass panels had core densities of 80, 100, 130, 200 kg/cu m. The sandwich with carbon/epoxy 3 facesheets had a core with density of 100 kg/cu m. Fracture tests were conducted using a modified Cracked Sandwich Beam (CSB) test configuration. Load displacement curves were obtained for loading and unloading of the specimens during crack growth. Various increments of crack growth were monitored. Critical Strain Energy Release Rates (SERR) were determined from the tests using the area method. The critical values of SERR can be considered the fracture toughness of the sandwich material. The fracture toughness ranged 367 J/sq m to 1350 J/sq m over the range of core densities. These results are compared to the Mode-I fracture toughness of the PVC foam core materials and values obtained for foam-cored sandwiches using the TSD specimen. Finite-element analyses (FEA) were performed for the test configuration and Strain Energy Release Rates were calculated using the Virtual Crack Closure Technique (VCCT). The SERR values determined from the FEA were scaled to the fracture loads, or critical loads, obtained from the modified CSB tests. These critical loads were in close agreement with the test values.

  11. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  12. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  13. General Strategy for Fabricating Sandwich-like Graphene-Based Hybrid Films for Highly Reversible Lithium Storage.

    PubMed

    Zhong, Xiongwu; Yang, Zhenzhong; Liu, Xiaowu; Wang, Jiaqing; Gu, Lin; Yu, Yan

    2015-08-26

    We report a general strategy for the fabrication of freestanding sandwich-like graphene-based hybrid films by electrostatic adsorption and following reduction reaction. We demonstrate that by rational control of pH value in precursors, graphene oxide (GO) sheets can form three-dimensional (3D) sandwich frameworks with nanoparticles decorated between the layers of graphene. In our proof-of-concept study, we prepared the graphene/Si/graphene (G@Si@G) sandwich-like films. When used as negative electrode materials for lithium-ion batteries, it exhibits superior lithium-ion storage performance (∼1800 mA h g(-1) after 40 cycles at 100 mA g(-1)). Importantly, with this simple and general method, we also successfully synthesized graphene/Fe2O3/graphene and graphene/TiO2/graphene hybrid films, showing improved electrochemical performance. The good electrochemical property results from the enhanced electron transport rate, and the 3D flexible matrix to buffer volume changes during cycling. In addition, the porous sandwich structure consisting of plate-like graphene with high surface area provides effective electrolyte infiltration and promotes diffusion rate of Li(+), leading to an improved rate capability. PMID:26259036

  14. Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Berrier, Bobby L.

    2004-01-01

    This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.

  15. Enhancing photocatalytic activity of LaTiO2N by removal of surface reconstruction layer.

    PubMed

    Matsukawa, Michinori; Ishikawa, Ryo; Hisatomi, Takashi; Moriya, Yosuke; Shibata, Naoya; Kubota, Jun; Ikuhara, Yuichi; Domen, Kazunari

    2014-02-12

    LaTiO2N is an oxynitride photocatalyst that has ability to generate H2 and O2 from water under irradiation of light with wavelengths up to 600 nm. However, LaTiO2N necessitates sacrificial reagents that capture either photoexcited electrons or holes efficiently to be active in the photocatalytic reactions because of a considerable number of defects that cause trapping and recombination of photoexcited carriers. Therefore, identifying defect structures of LaTiO2N is important. In this study, using atomic-resolution scanning transmission electron microscopy, we evidence that eliminating defective surface reconstructed layers of LaTiO2N particles by the treatment with aqua regia can double the photocatalytic activity. PMID:24460145

  16. Dielectric elastomer based active layer for macro-scaled industrial application in roto-flexographic printing

    NASA Astrophysics Data System (ADS)

    Pinto, F.; D'Oriano, G.; Meo, M.

    2014-03-01

    The use of dielectric elastomer (DE) for the realisation of new generation actuators has attracted the interest of many researchers in the last ten years due to their high efficiency, a very good electromechanical coupling and large achievable strains [1-3]. Although these properties constitute a very important advantage, the industrial exploitation of such systems is hindered by the high voltages required for the actuation [4] that could potentially constitute also a risk for the operators. In this work we present a DE based active layer that can be used in different macro-scaled parts of industrial equipment for roto-flexographic printing substituting traditional mechanical devices, reducing manufacturing costs and enhancing its reliability. Moreover, the specific configuration of the system requires the driving voltage to be applied only in the mounting/dismounting step thus lowering further the operative costs without posing any threat for the workers. Starting from the industrial requirements, a complete thermo-mechanical characterisation using DSC and DMA was undertaken on acrylic elastomer films in order to investigate their behaviour under the operative frequencies and solicitations. Validation of the active layer was experimentally evaluated by manufacturing a DE actuator controlling both prestrain and nature of the complaint electrodes, and measuring the electrically induced Maxwell's strain using a laser vibrometer to evaluate the relative displacement along the z-axis.

  17. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    DOE PAGESBeta

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; et al

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less

  18. Design of Bicontinuous Donor/Acceptor Morphologies for Use as Organic Solar Cell Active Layers

    NASA Astrophysics Data System (ADS)

    Kipp, Dylan; Mok, Jorge; Verduzco, Rafael; Ganesan, Venkat

    Two of the primary challenges limiting the marketability of organic solar cells are i) the smaller device efficiency of the organic solar cell relative to the conventional silicon-based solar cell and ii) the long term thermal instability of the device active layer. The achievement of equilibrium donor/acceptor morphologies with the characteristics believed to yield high device performance characteristics could address each of these two challenges. In this work, we present the results of a combined simulations and experiments-based approach to investigate if a conjugated BCP additive can be used to control the self-assembled morphologies taken on by conjugated polymer/PCBM mixtures. First, we use single chain in mean field Monte Carlo simulations to identify regions within the conjugated polymer/PCBM composition space in which addition of copolymers can lead to bicontinuous equilibrium morphologies with high interfacial areas and nanoscale dimensions. Second, we conduct experiments as directed by the simulations to achieve such morphologies in the PTB7 + PTB7- b-PNDI + PCBM model blend. We characterize the results of our experiments via a combination of transmission electron microscopy and X-ray scattering techniques and demonstrate that the morphologies from experiments agree with those predicted in simulations. Accordingly, these results indicate that the approach utilized represents a promising approach to intelligently design the morphologies taken on by organic solar cell active layers.

  19. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  20. Cooperation between adsorbates accounts for the activation of atomic layer deposition reactions.

    PubMed

    Shirazi, Mahdi; Elliott, Simon D

    2015-04-14

    Atomic layer deposition (ALD) is a technique for producing conformal layers of nanometre-scale thickness, used commercially in non-planar electronics and increasingly in other high-tech industries. ALD depends on self-limiting surface chemistry but the mechanistic reasons for this are not understood in detail. Here we demonstrate, by first-principle calculations of growth of HfO2 from Hf(N(CH3)2)4-H2O and HfCl4-H2O and growth of Al2O3 from Al(CH3)3-H2O, that, for all these precursors, co-adsorption plays an important role in ALD. By this we mean that previously-inert adsorbed fragments can become reactive once sufficient numbers of molecules adsorb in their neighbourhood during either precursor pulse. Through the calculated activation energies, this 'cooperative' mechanism is shown to have a profound influence on proton transfer and ligand desorption, which are crucial steps in the ALD cycle. Depletion of reactive species and increasing coordination cause these reactions to self-limit during one precursor pulse, but to be re-activated via the cooperative effect in the next pulse. This explains the self-limiting nature of ALD. PMID:25786200

  1. Seismic Spatial Autocorrelation as a Technique to Track Changes in the Permafrost Active Layer

    NASA Astrophysics Data System (ADS)

    Abbott, R. E.

    2013-12-01

    We present preliminary results from an effort to continuously track freezing and thawing of the permafrost active layer using a small-aperture seismic array. The 7-element array of three-component posthole seismometers is installed on permafrost at Poker Flat Research Range, near Fairbanks, Alaska. The array is configured in two three-station circles with 75 and 25 meter radii that share a common center station. This configuration is designed to resolve omnidirectional, high-frequency seismic microtremor (i.e. ambient noise). Microtremor is continuously monitored and the data are processed using the spatial autocorrelation (SPAC) method. The resulting SPAC coefficients are then inverted for shear-wave velocity structure versus depth. Thawed active-layer soils have a much slower seismic velocity than frozen soils, allowing us to track the depth and intensity of thawing. Persistent monitoring on a permanent array would allow for a way to investigate year-to-year changes without costly site visits. Results from the seismic array will compared to, and correlated with, other measurement techniques, such as physical probing and remote sensing methods. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Hydrogenated Amorphous Silicon Germanium Active Layer for Top Cell of a Multi Junction Cell Structure.

    PubMed

    Cho, Jaehyun; Iftiquar, S M; Kim, Minbum; Park, Jinjoo; Jung, Junhee; Kim, Jiwoong; Yi, Junsin

    2016-05-01

    Intrinsic hydrogenated amorphous silicon-germanium (a-SiGe:H) alloy is generally used in the bottom cell because of its low band gap. The a-SiGe:H has a higher photo conductivity in comparison to the a-Si:H; thus, it is expected that the a-SiGe:H can show better short circuit current density than that of the a-Si:H based solar cell. Therefore, we optimized a-SiGe:H active layer that can be a suitable choice for the front cell of a multi junction.solar cell. Furthermore, we carried out a comparative study of the solar cells that have a-SiGe:H and a-Si:H as respective active layers. The a-SiGe:H based solar cells show higher short circuit current density, while the a-Si:H based cells show higheropen circuit voltage. The current-voltage characteristics of these cells are as follows: (a) V(oc) = 770 mV, J(sc) = 15.0 mA/cm2, FF = 64.5%, and η = 7.47% for a-SiGe:H based cell; and (b) V(oc) = 826 mV, J(sc) = 13.63 mA/cm2, FF = 72.0%, and η = 8.1% for a-Si:H based cell. PMID:27483837

  3. Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity.

    PubMed

    Song, Yanhua; Lei, Yucheng; Xu, Hui; Wang, Cheng; Yan, Jia; Zhao, Haozhu; Xu, Yuanguo; Xia, Jiexiang; Yin, Sheng; Li, Huaming

    2015-02-21

    Novel few-layer MoS2/Ag3PO4 composites were fabricated. The results indicated that Ag3PO4 nanoparticles were directly formed on the surface of few-layer MoS2. The physical and chemical properties of the few-layer MoS2/Ag3PO4 composite photocatalysts were tested in order to investigate the effects of few-layer MoS2 on the photocatalytic activity of Ag3PO4. The photocatalytic activity of the few-layer MoS2/Ag3PO4 composites was evaluated by the photocatalytic degradation of Rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation. The photocatalytic activity of the few-layer MoS2/Ag3PO4 composites was higher than that of pure Ag3PO4. The optimal few-layer MoS2 content for the organic pollutant degradation of the heterojunction structures was determined. The synergic effect between few-layer MoS2 and Ag3PO4 was found to lead to an improved photogenerated carrier separation. The stability and the possible photocatalytic mechanism of the composites were also discussed. PMID:25567674

  4. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Feng, Xiaoyang; Chen, Yubin; Qin, Zhixiao; Wang, Menglong; Guo, Liejin

    2016-07-20

    Herein, sandwich structured tungsten trioxide (WO3) nanoplate arrays were first synthesized for photoelectrochemical (PEC) water splitting via a facile hydrothermal method followed by an annealing treatment. It was demonstrated that the annealing temperature played an important role in determining the morphology and crystal phase of the WO3 film. Only when the hydrothermally prepared precursor was annealed at 500 °C could the sandwich structured WO3 nanoplates be achieved, probably due to the crystalline phase transition and increased thermal stress during the annealing process. The sandwich structured WO3 photoanode exhibited a photocurrent density of 1.88 mA cm(-2) and an incident photon-to-current conversion efficiency (IPCE) as high as 65% at 400 nm in neutral Na2SO4 solution under AM 1.5G illumination. To our knowledge, this value is one of the best PEC performances for WO3 photoanodes. Meanwhile, simultaneous hydrogen and oxygen evolution was demonstrated for the PEC water splitting. It was concluded that the high PEC performance should be attributed to the large electrochemically active surface area and active monoclinic phase. The present study can provide guidance to develop highly efficient nanostructured photoelectrodes with the favorable morphology. PMID:27347739

  5. A study of structurally efficient graphite-thermoplastic trapezoidal-corrugation sandwich and semi-sandwich panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1993-01-01

    The structural efficiency of compression-loaded trapezoidal-corrugation sandwich and semi-sandwich composite panels is studied to determine their weight savings potential. Sandwich panels with two identical face sheets and a trapezoidal corrugated core between them, and semi-sandwich panels with a corrugation attached to a single skin are considered. An optimization code is used to find the minimum weight designs for critical compressive load levels ranging from 3,000 to 24,000 lb/in. Graphite-thermoplastic panels based on the optimal minimum weight designs were fabricated and tested. A finite-element analysis of several test specimens was also conducted. The results of the optimization study, the finite-element analysis, and the experiments are presented.

  6. Hypoxia Activates Calpains in the Nerve Fiber Layer of Monkey Retinal Explants

    PubMed Central

    Hirata, Masayuki; Shearer, Thomas R.; Azuma, Mitsuyoshi

    2015-01-01

    Purpose The vascular ischemic hypothesis attributes nerve damage in the retina to decreased blood flow in the ophthalmic artery, reduced oxygenation, and impaired axonal transport. Activation of calpain enzymes contributes to retinal cell death during hypoxia. However, we still do not know in which specific retinal layers calpains are activated. Thus, the purpose of the present study was to investigate where and when calpains are activated in an improved culture model of hypoxic monkey retina. Methods Monkey retinal explants were cultured on microporous membranes with the retinal ganglion cell (RGC) side facing up. Explants were incubated under hypoxic conditions, with or without additional reoxygenation. When it was used, the calpain inhibitor SNJ-1945 was maintained throughout the culture period. Immunohistochemistry and immunoblotting assays for α-spectrin, calpains 1 and 2, calpastatin, β-III tubulin, and γ-synuclein were performed with specific antibodies. Cell death was assessed by TUNEL staining. Results Under normoxic conditions, TUNEL-positive cells were minimal in our improved culture conditions. As early as 8 hours after hypoxia, the 150-kDa calpain-specific α-spectrin breakdown product appeared in the nerve fiber layer (NFL), where calpains 1 and 2 were localized. TUNEL-positive RGCs then increased at later time periods. The calpain inhibitor SNJ-1945 ameliorated changes induced by hypoxia or hypoxia/reoxygenation. Conclusions During hypoxia/reoxygenation in an improved, relevant monkey model, calpains were first activated in the NFL, followed by death of the parent RGCs. This observation suggest that calpain-induced degeneration of retinal nerve fibers may be an underlying mechanism for RGC death in hypoxic retinal neuropathies. PMID:26393472

  7. Activated macrophages as a feeder layer for growth of resident cardiac progenitor cells.

    PubMed

    Sepúlveda, Diana E; Cabeza Meckert, Patricia; Locatelli, Paola; Olea, Fernanda D; Pérez, Néstor G; Pinilla, Oscar A; Díaz, Romina G; Crottogini, Alberto; Laguens, Rubén P

    2016-08-01

    The adult heart contains a population of cardiac progenitor cells (CPCs). Growing and collecting an adequate number of CPCs demands complex culture media containing growth factors. Since activated macrophages secrete many growth factors, we investigated if activated isolated heart cells seeded on a feeder layer of activated peritoneal macrophages (PM) could result in CPCs and if these, in turn, could exert cardioprotection in rats with myocardial infarction (MI). Heart cells of inbred Wistar rats were isolated by collagenase digestion and cultured on PM obtained 72 h after intraperitoneal injection of 12 ml thioglycollate. Cells (1 × 10(6)) exhibiting CPC phenotype (immunohistochemistry) were injected in the periphery of rat MI 10 min after coronary artery occlusion. Control rats received vehicle. Three weeks later, left ventricular (LV) function (echocardiogram) was assessed, animals were euthanized and the hearts removed for histological studies. Five to six days after seeding heart cells on PM, spherical clusters composed of small bright and spherical cells expressing mostly c-Kit and Sca-1 antigens were apparent. After explant, those clusters developed cobblestone-like monolayers that expressed smooth muscle actin and sarcomeric actin and were successfully transferred for more than ten passages. When injected in the MI periphery, many of them survived at 21 days after coronary ligature, improved LV ejection fraction and decreased scar size as compared with control rats. CPC-derived cells with cardiocyte and smooth muscle phenotypes can be successfully grown on a feeder layer of activated syngeneic PM. These cells decreased scar size and improved heart function in rats with MI. PMID:25432330

  8. Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation.

    PubMed

    Baranovic, Jelena; Chebli, Miriam; Salazar, Hector; Carbone, Anna L; Faelber, Katja; Lau, Albert Y; Daumke, Oliver; Plested, Andrew J R

    2016-02-23

    Ionotropic glutamate receptors are postsynaptic tetrameric ligand-gated channels whose activity mediates fast excitatory transmission. Glutamate binding to clamshell-shaped ligand binding domains (LBDs) triggers opening of the integral ion channel, but how the four LBDs orchestrate receptor activation is unknown. Here, we present a high-resolution x-ray crystal structure displaying two tetrameric LBD arrangements fully bound to glutamate. Using a series of engineered metal ion trapping mutants, we showed that the more compact of the two assemblies corresponds to an arrangement populated during activation of full-length receptors. State-dependent cross-linking of the mutants identified zinc bridges between the canonical active LBD dimers that formed when the tetramer was either fully or partially bound by glutamate. These bridges also stabilized the resting state, consistent with the recently published full-length apo structure. Our results provide insight into the activation mechanism of glutamate receptors and the complex conformational space that the LBD layer can sample. PMID:26910426

  9. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer.

    PubMed

    Köster, Darius Vasco; Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R Dyche; Rao, Madan; Mayor, Satyajit

    2016-03-22

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  10. Polyethylene/organically-modified layered-silicate nanocomposites with antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Songtipya, P.; Jimenez-Gasco, M. M.; Manias, E.

    2009-03-01

    Despite the very intensive research on polymer nanocomposites, the opportunities for new functionalities possible by nanofillers still remain largely untapped. Here, we present polyethylene/inorganic nanocomposites that exhibit strongly enhanced mechanical performance and, at the same time, also an antimicrobial activity originating from the organo-filler nature. Specifically, PE/organically-modified layered-silicate nanocomposites were prepared via melt-processing, and antimicrobial activity was designed by proper choice of their organic modification. Their antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum) as model soil-borne plant and food contaminants. Montmorillonite-based organofillers, which only differ in their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the nanocomposites. The comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants.

  11. Induction and modulation of persistent activity in a layer V PFC microcircuit model.

    PubMed

    Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Cutsuridis, Vassilis; Poirazi, Panayiota

    2013-01-01

    Working memory refers to the temporary storage of information and is strongly associated with the prefrontal cortex (PFC). Persistent activity of cortical neurons, namely the activity that persists beyond the stimulus presentation, is considered the cellular correlate of working memory. Although past studies suggested that this type of activity is characteristic of large scale networks, recent experimental evidence imply that small, tightly interconnected clusters of neurons in the cortex may support similar functionalities. However, very little is known about the biophysical mechanisms giving rise to persistent activity in small-sized microcircuits in the PFC. Here, we present a detailed biophysically-yet morphologically simplified-microcircuit model of layer V PFC neurons that incorporates connectivity constraints and is validated against a multitude of experimental data. We show that (a) a small-sized network can exhibit persistent activity under realistic stimulus conditions. (b) Its emergence depends strongly on the interplay of dADP, NMDA, and GABAB currents. (c) Although increases in stimulus duration increase the probability of persistent activity induction, variability in the stimulus firing frequency does not consistently influence it. (d) Modulation of ionic conductances (I h , I D , I sAHP, I caL, I caN, I caR) differentially controls persistent activity properties in a location dependent manner. These findings suggest that modulation of the microcircuit's firing characteristics is achieved primarily through changes in its intrinsic mechanism makeup, supporting the hypothesis of multiple bi-stable units in the PFC. Overall, the model generates a number of experimentally testable predictions that may lead to a better understanding of the biophysical mechanisms of persistent activity induction and modulation in the PFC. PMID:24130519

  12. New paradigm for layered paleoproterozoic PGE intrusions of the Fennoscandian Shield: duration and multistage magmatic activity

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Felix; Bayanova, Tamara; Serov, Pavel

    2014-05-01

    Layered mafic-ultramafic paleoproterozoic PGE intrusions are widespread in the N-E part of Fennoscandian Shield and belongs to two belt: North (Kola) and South (Finland and Karelia). Precise isotope-geochemical data using U-Pb (on zircon and baddeleyite) and Sm-Nd (rock-forming and sulfides minerals), systematic reflect long magmatic activity (with 2.53, 2.50, 2.45, 2.40 pulses) and duration of mantle event from 2.53 to 2.40 Ga. The Kola belt barren phases were dated in Fedorovo-Pansky massifs with 2.53 Ga for orthopyroxenites and olivine gabbro based on U-Pb (on zircon) and Sm-Nd (rock-forming minerals) data. Main PGE-bearing phases of gabbronorite (Mt. Generalskaya) norite (Monchepluton) and gabbronorite (Fedorovo-Pansky) massif have yielded 2.50 Ga on U-Pb and Sm-Nd dating. The second PGE-bearing phases with 2.45 Ga belong to anorthosite of Mt. Generalskaya, Fedorovo-Pansky and Monchetundra massifs. The same ages have layered PGE-bearing intrusions of Finland - Koitelainen, Penikat et. set. and Oulanga group in Karelia (Bayanova et al., 2009). The final mafic magmatic activity connected with dykes of Imandra lopolith with 2.40 Ga. Isotope geochemical ɛNd - ISr indicators for layered intrusions (more than 70 analyses) reflect enriched mantle EM-1 type reservoir with ISr values from 0.703-0.704. Isotope 3He/4He data for accessory minerals (ilmenite, magnetite et. set.) have significant lower and upper mantle contribution. The model Sm-Nd ages of protolith lies in 3.2-2.9 Ga and primary magma source as fertile according to (Arndt, 2010). The geological and isotope-geochemistry data for layered paleoproterozoic PGE-intrusions permit considered Fennoscandian Shield with Superior and Wyoming as a big magmatic LIP, which related with breakup of oldest Kenorland Sypercontitent. We thank to G. Wasserburg for 205 Pb artificial spike, J. Ludden for 91500 and Temora standards, F. Corfu, V. Todt and U. Poller for assistance in the establishing of the U-Pb method for single

  13. Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction

    SciTech Connect

    Xie, Shuifen; Choi, Sang; Lu, Ning; Roling, Luke T.; Herron, Jeffrey A.; Zhang, Lei; Park, Jinho; Wang, Jinguo; Kim, Moon J.; Xie, Zhaoxiong; Mavrikakis, Manos; Xia, Younan

    2014-06-11

    An effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the deposited Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@PnL (n = 1-6) core-shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt2-3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.

  14. Experimental investigation on sandwich structure ring-type ultrasonic motor.

    PubMed

    Peng, Taijiang; Shi, Hongyan; Liang, Xiong; Luo, Feng; Wu, Xiaoyu

    2015-02-01

    This paper presents a manufacture method for a sandwich structure Ultrasonic Motor (USM) and experiment. Two pieces of rotor clamped on a stator, and a stainless steel disk-spring is bonded on the hollow rotor disk to provide the press by a nut assembled on the shaft. The stator is made of a double-side Printed-Circuit Board (PCB) which is sawed out the ring in the center and connected on the board with three legs. On each side of the ring surface, there are electrodes connected at the same position via through hole. The three layer drive circuit for sine, cosine, and ground signal is connected on the board through each leg. There are many piezoelectric components (PZT) bonded between two electrodes and fill soldering tin on each electrode. Then PZT is welded on PCB by reflow soldering. Finally, rub the gibbous soldering tin down to the position of PZT surface makes sure the surface contacts with rotor evenly. The welding process can also be completed by Surface Mounted Technology (SMT). A prototype motor is manufactured by this method. Two B03 model shapes of the stator are obtained by the finite element analysis and the optimal frequency of the motor is 56.375 kHz measured by impedance instrument. The theoretical analysis is conducted for the relationship between the revolving speed of the USM and thickness of stator ring, number of the travelling waves, PZT amplitude, frequency and the other parameters. The experiment result shows that the maximum revolving speed is 116 RPM and the maximum torque is 25 N mm, when the actuate voltage is 200 VAC. PMID:25213313

  15. Measuring Moisture Levels in Graphite Epoxy Composite Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert; Starr, Stanley

    2011-01-01

    Graphite epoxy composite (GEC) materials are used in the construction of rocket fairings, nose cones, interstage adapters, and heat shields due to their high strength and light weight. However, they absorb moisture depending on the environmental conditions they are exposed to prior to launch. Too much moisture absorption can become a problem when temperature and pressure changes experienced during launch cause the water to vaporize. The rapid state change of the water can result in structural failure of the material. In addition, heat and moisture combine to weaken GEC structures. Diffusion models that predict the total accumulated moisture content based on the environmental conditions are one accepted method of determining if the material strength has been reduced to an unacceptable level. However, there currently doesn t exist any field measurement technique to estimate the actual moisture content of a composite structure. A multi-layer diffusion model was constructed with Mathematica to predict moisture absorption and desorption from the GEC sandwich structure. This model is used in conjunction with relative humidity/temperature sensors both on the inside and outside of the material to determine the moisture levels in the structure. Because the core materials have much higher diffusivity than the face sheets, a single relative humidity measurement will accurately reflect the moisture levels in the core. When combined with an external relative humidity measurement, the model can be used to determine the moisture levels in the face sheets. Since diffusion is temperaturedependent, the temperature measurements are used to determine the diffusivity of the face sheets for the model computations.

  16. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

    NASA Astrophysics Data System (ADS)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude M.; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer; Turetsky, Merritt R.; McGuire, A. David; Shah, Manesh B.; Verberkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K.

    2015-05-01

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular `omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  17. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    PubMed

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost. PMID:25739499

  18. Low-temperature photo-activated inorganic electron transport layers for flexible inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Wook; Lee, Soo-Hyoung; Kim, Yong-Hoon; Park, Sung Kyu

    2014-09-01

    A simple and versatile route of forming sol-gel-derived metal oxide n-type electron transport layers (ETLs) for flexible inverted polymer solar cells (PSCs) is proposed using low-temperature photochemical activation process. The photochemical activation, which is induced by deep ultraviolet irradiation on sol-gel films, allows formation of metal oxide n-type ETLs such as zinc oxide (ZnO) and indium gallium zinc oxide films at a low temperature. Compared to poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester inverted PSCs with thermally annealed ZnO ETLs (optimized efficiency of 3.26 ± 0.03 %), the inverted PSCs with photo-activated ZnO ETLs showed an improved efficiency of 3.60 ± 0.02 %. The enhanced photovoltaic property is attributed to efficient charge collection from low overall series resistance and high surface area-to-geometric area ratio by the photo-activated ZnO ETLs.

  19. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  20. Multi-omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes

    SciTech Connect

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Shah, Manesh B.; VerBerkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Konstantinos; Jansson, Janet K.

    2015-03-04

    Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, if thawed may represent the largest future transfer of C from the biosphere to the atmosphere 1. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils 2-4 and a rapid shift in functional gene composition during short-term thaw experiments 3. However, the fate of permafrost C depends on climatic, hydrologic, and microbial responses to thaw at decadal scales 5, 6. Here the combination of several molecular “omics” approaches enabled us to determine the phylogenetic composition of the microbial community, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy revealed a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  1. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  2. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  3. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  4. Geochemical drivers of organic matter decomposition in the active layer of Arctic tundra

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B.; Graham, D. E.; Wullschleger, S. D.; Gu, B.; Liang, L.

    2014-12-01

    Arctic tundra soils store large quantities of organic carbon that are susceptible to decomposition and release to the atmosphere as CO2 and CH4. Decomposition rates are limited by cold temperatures and widespread anoxia; however, ongoing changes in soil temperature, thaw depth, and water saturation are expected to influence rates and pathways of organic matter decomposition. In order to predict greenhouse gas releases from high-latitude ecosystems, it is necessary to identify how geochemical factors (e.g. terminal electron acceptors, carbon substrates) influence CO2 and CH4 production in tundra soils. This study evaluates spatial patterns of aqueous geochemistry in the active layer of low- to high-centered polygons located at the Barrow Environmental Observatory in northern Alaska. Pore waters from saturated soils were low in sulfate and nitrate but contained abundant Fe which may serve a major terminal electron acceptor for anaerobic microbial metabolism. Relatively high concentrations of soluble Fe accumulated in the middle of the active layer near the boundary between the organic and mineral horizon, and we infer that Fe-oxide reduction and dissolution in the mineral horizon produced soluble Fe that diffused upwards and was stabilized by complexation with dissolved organic matter. Fe concentrations in the bulk soil were higher in organic than mineral horizons due to the presence of these organic-Fe complexes and Fe-oxide precipitates. Dissolved CH4 increased with increasing proportions of dissolved Fe(III) in saturated soils from transitional and low-centered polygons. The opposite trend was observed in drier soils from flat- and high-centered polygons where deeper oxidation fronts may inhibit methanogenesis. Using multiple spectroscopic and molecular methods (e.g. UV-Vis, Fourier transform infrared, ultrahigh resolution mass spectrometry), we also observed that pore waters from the middle of the active layer contained more aromatic organics than in mineral

  5. Numerical analysis of impact-damaged sandwich composites

    NASA Astrophysics Data System (ADS)

    Hwang, Youngkeun

    Sandwich structures are used in a wide variety of structural applications due to their relative advantages over other conventional structural materials in terms of improved stability, weight savings, and ease of manufacture and repair. Foreign object impact damage in sandwich composites can result in localized damage to the facings, core, and core-facing interface. Such damage may result in drastic reductions in composite strength, elastic moduli, and durability and damage tolerance characteristics. In this study, physically-motivated numerical models have been developed for predicting the residual strength of impact-damaged sandwich composites comprised of woven-fabric graphite-epoxy facesheets and Nomex honeycomb cores subjected to compression-after-impact loading. Results from non-destructive inspection and destructive sectioning of damaged sandwich panels were used to establish initial conditions for damage (residual facesheet indentation, core crush dimension, etc.) in the numerical analysis. Honeycomb core crush test results were used to establish the nonlinear constitutive behavior for the Nomex core. The influence of initial facesheet property degradation and progressive loss of facesheet structural integrity on the residual strength of impact-damaged sandwich panels was examined. The influence of damage of various types and sizes, specimen geometry, support boundary conditions, and variable material properties on the estimated residual strength is discussed. Facesheet strains from material and geometric nonlinear finite element analyses correlated relatively well with experimentally determined values. Moreover, numerical predictions of residual strength are consistent with experimental observations. Using a methodology similar to that presented in this work, it may be possible to develop robust residual strength estimates for complex sandwich composite structural components with varying levels of in-service damage. Such studies may facilitate sandwich

  6. A comprehensive assessment of adhesively bonded joints between sandwich composite beams

    NASA Astrophysics Data System (ADS)

    Shahin, Khaled Omar

    Assessment of adhesively bonded joints between sandwich composite beams are presented in this thesis in three parts, each is concerned with a distinct aspect of the joint behaviour. In physical order, these include the deformations of the entire joint assembly, the state of stress in the joint overlap region, and the strain energy release at the crack-tip at the end of the overlap. Analytical models developed in this thesis, however, are not limited in their application to adhesive joint between sandwich beams. In each part of this thesis, the integrity of the proposed analytical models are tested against geometrically non-linear finite element models. In this first part of this thesis, an analytical asymptotic model is presented for the analysis of balanced and unbalanced adhesively bonded joints. The model takes advantage of the asymptotic nature of the adhesive stress functions by eliminating exponentially small terms. Analysis of balanced and unbalanced adhesive joints is greatly simplified with negligible loss in accuracy. Accurate closed-form solutions for both adhesive peel and shear stresses are presented, providing an efficient analysis and design tool and a significant contribution to the literature on unbalanced adhesively bonded joints. In the second part, the asymptotic model is extended to the analysis of strain energy release rates in adhesively bonded joints, using the crack closure concept. Closed-form expressions are presented for various joint types. The shear force and adhesive layer effects are included in the analysis, thus improving on currently available works in the literature. In joints with a long crack and a thin adhesive layer, the asymptotic model is shown to be in good agreement with classical beam theory models. In the third part, deformations in adhesively bonded joints between sandwich beams are studied. Adherends are modeled as cylindrically bent plates on elastic foundations and the overlap section is treated as a single

  7. Exploring New Active Regions for Type 1 InasSb Strained-Layer Lasers

    SciTech Connect

    Biefeld, R.M.; Kurtz, S.R.; Phillips, J.D.

    1999-05-13

    We report on the metal-organic chemical vapor deposition (MOCVD) of mid- infrared InAsSb/InPSb optically pumped lasers grown using a high speed rotating disk reactor (RDR). The devices contain AlAsSb claddings and strained, type 1, InAsSb/InPSb active regions. By changing the layer thickness and composition of InAsSb/InPSb SLSs, we have prepared structures with low temperature (<20K) photoluminescence wavelengths ranging from 3.4 to 4.8 µm. We find a variation of bandgap from 0.272 to 0.324 eV for layer thicknesses of 9.0 to 18.2 nm. From these data we have estimated a valence band offset for the InAsSb/InPSb interface of about 400 meV. An InAsSb/InPSb SLS, optically pumped laser structure was grown on an InAs substrate with AlAs0.l6Sb0.84 claddings. A lasing threshold and spectrally narrowed laser emission was seen from 80 K through 200 K, the maximum temperature where Iasing occurred. The temperature dependence of the SLS laser threshold is described by a characteristic temperature, T0 = 72 K, from 80 to 200 K.

  8. Influence of quaternization of ammonium on antibacterial activity and cytocompatibility of thin copolymer layers on titanium.

    PubMed

    Waßmann, Marco; Winkel, Andreas; Haak, Katharina; Dempwolf, Wibke; Stiesch, Meike; Menzel, Henning

    2016-10-01

    Antimicrobial coatings are able to improve the osseointegration of dental implants. Copolymers are promising materials for such applications due to their combined properties of two different monomers. To investigate the influence of different monomer mixtures, we have been synthesized copolymers of dimethyl (methacryloxyethyl) phosphonate (DMMEP) and dipicolyl aminoethyl methacrylate in different compositions and have them characterized to obtain the r-parameters. Some of the copolymers with different compositions have also been alkylated with 1-bromohexane, resulting in quaternized ammonium groups. The copolymers have been deposited onto titanium surfaces resulting in ultrathin, covalently bound layers. These layers have been characterized by water contact angle measurements and ellipsometry. The influence of quaternary ammonium groups on antibacterial properties and cytocompatibility was studied: Activity against bacteria was tested with a gram positive Staphylococcus aureus strain. Cytocompatibility was tested with a modified LDH assay after 24 and 72 h to investigate adhesion and proliferation of human fibroblast cells on modified surfaces. The copolymer with the highest content of DMMEP showed a good reduction of S. aureus and in the alkylated version a very good reduction of about 95%. On the other hand, poor cytocompatibility is observed. However, our results show that this trend cannot be generalized for this copolymer system. PMID:27456132

  9. Morphology and geotechnique of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Antoni G.; Harris, Charles

    2005-07-01

    Fifty active-layer detachment failures triggered after forest fire in the discontinuous permafrost zone (central Mackenzie Valley, 65° N.) are compared to several hundred others caused by summer meteorological triggers in continuous permafrost (Fosheim Peninsula, Ellesmere Island, 80°N). Most failures fall into compact or elongated morphological categories. The compact type occur next to stream channels and have little internal disturbance of the displaced block, whereas the elongated types can develop on any part of the slope and exhibit greater internal deformation. Frequency distributions of length-to-width and length-to-depth ratios are similar at all sites. Positive pore pressures, expected theoretically, were measured in the field at the base of the thawing layer. Effective stress analysis could predict the instability of slopes in both areas, providing cohesion across the thaw plane was set to zero and/or residual strength parameters were employed. The location of the shear planes or zones in relation to the permafrost table and the degree of post-failure secondary movements (including headwall recession and thermokarst development within the failure track) differed between the localities, reflecting dissimilarity in the environmental triggers and in the degree of ground thermal disturbance.

  10. Low-noise encoding of active touch by layer 4 in the somatosensory cortex

    PubMed Central

    Andrew Hires, Samuel; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-01-01

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise. DOI: http://dx.doi.org/10.7554/eLife.06619.001 PMID:26245232

  11. Highly graphitized laterally interconnected SWCNT network synthesis via a sandwich-grown method

    NASA Astrophysics Data System (ADS)

    Teng, I.-Ju; Chen, Kai-Ling; Hsu, Hui-Lin; Jian, Sheng-Rui; Wang, Li-Chun; Chen, Jung-Hsuan; Wang, Wei-Hsiang; Kuo, Cheng-Tzu

    2011-04-01

    We present a sandwich-grown method for growing laterally interconnected single-walled carbon nanotube (SWCNT) networks with a high degree of graphitization by microwave plasma chemical vapour deposition (MPCVD). An Al2O3-supported Fe catalyst precursor layer deposited on an oxidized Si substrate with an upper Si cover is first pretreated in pure hydrogen, and then exposed to a gas mixture of methane/hydrogen for growth process at a lower growth temperature and a faster rate. The effects of various parameters, such as catalyst film thickness, gas flow rate, working pressure, growth time and plasma power, on the morphologies and structural characteristics of the SWCNT networks are investigated, and therefore provide the essential conditions for direct growth of laterally interconnected SWCNT networks. Analytical results demonstrate that the SWCNT-based lateral architecture comprises a mixture of graphene-sheet-wrapped catalyst particles and laterally interconnected nanotubes, isolated or branched or assembled into bundles. The results also show that the formation of the laterally interconnected SWCNT networks is related to the sandwich-like stack approach and the addition of an Al2O3 layer in the MPCVD process. The successful growth of lateral SWCNT networks provides new experimental information for simply and efficiently preparing lateral SWCNTs on unpatterned substrates, and opens a pathway to create network-structured nanotube-based devices.

  12. Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure.

    PubMed

    Ebenstein, Donna; Calderon, Carlos; Troncoso, Omar P; Torres, Fernando G

    2015-05-01

    Dermal plates from armored catfish are bony structures that cover their body. In this paper we characterized structural, chemical, and nanomechanical properties of the dermal plates from the Amazonian fish Pterygoplichthys pardalis. Analysis of the morphology of the plates using scanning electron microscopy (SEM) revealed that the dermal plates have a sandwich-like structure composed of an inner porous matrix surrounded by two external dense layers. This is different from the plywood-like laminated structure of elasmoid fish scales but similar to the structure of osteoderms found in the dermal armour of some reptiles and mammals. Chemical analysis performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed similarities between the composition of P. pardalis plates and the elasmoid fish scales of Arapaima gigas. Reduced moduli of P. pardalis plates measured using nanoindentation were also consistent with reported values for A. gigas scales, but further revealed that the dermal plate is an anisotropic and heterogeneous material, similar to many other fish scales and osteoderms. It is postulated that the sandwich-like structure of the dermal plates provides a lightweight and tough protective layer. PMID:25732181

  13. Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte.

    PubMed

    Zhou, Weidong; Wang, Shaofei; Li, Yutao; Xin, Sen; Manthiram, Arumugam; Goodenough, John B

    2016-08-01

    A cross-linked polymer containing pendant molecules attached to the polymer framework is shown to form flexible and low-cost membranes, to be a solid Li(+) electrolyte up to 270 °C, much higher than those based on poly(ethylene oxide), to be wetted by a metallic lithium anode, and to be not decomposed by the metallic anode if the anions of the salt are blocked by a ceramic electrolyte in a polymer/ceramic membrane/polymer sandwich electrolyte (PCPSE). In this sandwich architecture, the double-layer electric field at the Li/polymer interface is reduced due to the blocked salt anion transfer. The polymer layer adheres/wets the lithium metal surface and makes the Li-ion flux at the interface more homogeneous. This structure integrates the advantages of the ceramic and polymer. With the PCPSE, all-solid-state Li/LiFePO4 cells showed a notably high Coulombic efficiency of 99.8-100% over 640 cycles. PMID:27440104

  14. Comparison of EL emitted by LEDs on Si substrates containing Ge and Ge/GeSn MQW as active layers

    NASA Astrophysics Data System (ADS)

    Schwartz, B.; Arguirov, T.; Kittler, M.; Oehme, M.; Kostecki, K.; Kasper, E.; Schulze, J.

    2015-02-01

    We analyzed Ge- and GeSn/Ge multiple quantum well (MQW) light emitting diodes (LEDs). The structures were grown by molecular beam epitaxy (MBE) on Si. In the Ge LEDs the active layer was 300 nm thick. Sb doping was ranging from 1×1018 to 1×1020 cm-3. An unintentionally doped Ge-layer served as reference. The LEDs with the MQWs consist of ten alternating GeSn/Ge-layers. The Ge-layers were 10 nm thick and the GeSn-layers were grown with 6 % Sn and thicknesses between 6 and 12 nm. The top contact of all LEDs was identical. Accordingly, the light extraction is comparable. The electroluminescence (EL) analysis was performed under forward bias at different currents. Sample temperatures between <300 K and 80 K were studied. For the reference LED the direct transition at 0.8 eV dominates. With increasing current the peak is slightly redshifted due to Joule heating. Sb doping of the active Ge-layer affects the intensity and at 3×1019 cm-3 the strongest emission appears. It is ~4 times higher as compared to the reference. Moreover a redshift of the peak position is caused by bandgap narrowing. The LEDs with undoped GeSn/Ge-MQWs as active layer show a very broad luminescence band with a peak around 0.65 eV, pointing to a dominance of the GeSn-layers. The light emission intensity is at least 17 times stronger as compared to the reference Ge-LED. Due to incorporation of Sn in the MQWs the active layer should approach to a direct semiconductor. In indirect Si and Ge we observed an increase of intensity with increasing temperature, whereas the intensity of GeSn/Ge-MQWs was much less affected. But a deconvolution of the spectra revealed that the energy of indirect transition in the wells is still below the one of the direct transition.

  15. Nanocomposites of polymers with layered inorganic nanofillers: Antimicrobial activity, thermo-mechanical properties, morphology, and dispersion

    NASA Astrophysics Data System (ADS)

    Songtipya, Ponusa

    In the first part of the thesis, polyethylene/layered silicate nanocomposites that exhibit an antimicrobial activity were synthesized and studied. Their antimicrobial activity was designed to originate from non-leaching, novel cationic modifiers---amine-based surfactants---used as the organic-modification of the fillers. Specifically, PE/organically-modified montmorillonite ( mmt) nanocomposites were prepared via melt-processing, and simultaneous dispersion and antimicrobial activity was designed by proper choice of the fillers' organic modification. The antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum ). Various mmt-based organofillers, which only differ in the type or amount of their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the fillers themselves and the respective nanocomposites. A comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants. An attempt to improve the thermomechanical reinforcement of PE/mmt nanocomposites while maintaining their antimicrobial activity, was also carried out by combining two different organically modified montmorillonites. However, a uniform microscopic dispersion could not be achieved through this approach. In the second part of this thesis, a number of fundamental studies relating to structure-property relations in nanocomposites were carried out, towards unveiling strategies that can concurrently optimize selected properties of polymers by the addition of nanofillers. Specifically, the dispersion-crystallinity-reinforcement relations in HDPE/mmt nanocomposites was investigated. The influence of a functional HDPE compatibilizer

  16. Comparison of Plasma Activation of Thin Water Layers by Direct and Remote Plasma Sources

    NASA Astrophysics Data System (ADS)

    Kushner, Mark

    2014-10-01

    Plasma activation of liquids is now being investigated for a variety of biomedical applications. The plasma sources used for this activation can be generally classified as direct (the plasma is in contact with the surface of the liquid) or remote (the plasma does not directly touch the liquid). The direct plasma source may be a dielectric barrier discharge (DBD) where the surface of the liquid is a floating electrode or a plasma jet in which the ionization wave forming the plasma plume reaches the liquid. The remote plasma source may be a DBD with electrodes electrically isolated from the liquid or a plasma jet in which the ionization wave in the plume does not reach the liquid. In this paper, a comparison of activation of thin water layers on top of tissue, as might be encountered in wound healing, will be discussed using results from numerical investigations. We used the modeling platform nonPDPSIM to simulate direct plasma activation of thin water layers using DBDs and remote activation using plasma jets using up to hundreds of pulses. The DBDs are sustained in humid air while the plasma jets consist of He/O2 mixtures flowed into humid air. For similar number of pulses and energy deposition, the direct DBD plasma sources produce more acidification and higher production of nitrates/nitrites in the liquid. This is due to the accumulation of NxOy plasma jets, the convective flow removes many of these species prior to their diffusing into the water or reacting to form higher nitrogen oxides. This latter effect is sensitive to the repetition rate which determines whether reactive species formed during prior pulses overlap with newly produced reactive species. in the gas phase. In the plasma jets, the convective flow removes many of these species prior to their diffusing into the water or reacting to form higher nitrogen oxides. This latter effect is sensitive to the repetition rate which determines whether reactive species formed during prior pulses overlap with

  17. Influences and interactions of inundation, peat, and snow on active layer thickness: Modeling Archive

    DOE Data Explorer

    Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley

    2016-04-21

    This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.

  18. Reduction of Free Edge Peeling Stress of Laminated Composites Using Active Piezoelectric Layers

    PubMed Central

    Huang, Bin; Kim, Heung Soo

    2014-01-01

    An analytical approach is proposed in the reduction of free edge peeling stresses of laminated composites using active piezoelectric layers. The approach is the extended Kantorovich method which is an iterative method. Multiterms of trial function are employed and governing equations are derived by taking the principle of complementary virtual work. The solutions are obtained by solving a generalized eigenvalue problem. By this approach, the stresses automatically satisfy not only the traction-free boundary conditions, but also the free edge boundary conditions. Through the iteration processes, the free edge stresses converge very quickly. It is found that the peeling stresses generated by mechanical loadings are significantly reduced by applying a proper electric field to the piezoelectric actuators. PMID:25025088

  19. Some enzyme activities associated with the chlorophyll containing layers of the immature barley pericarp.

    PubMed

    Duffus, C M; Rosie, R

    1973-09-01

    Some photosynthetic and biochemical properties of the chlorophyl containing layers of the pericarp of developing barley have been investigated. The tissue changes from pale green to bright green early in development, chlorophyll disappearing only at the later stages of maturity. It contains chloroplasts and probably amyloplasts and starch bearing chloroplasts. It is capable of high rates of light dependent oxygen evolution. It has been shown that the enzyme phosphoenol pyruvate carboxylase (EC 4.1.1.31) is present in the pericarp and is 100 times as active in carbon dioxide fixation as ribulose diphosphate carboxylase (EC 4.1.1.39). Other enzymes present in the pericarp are phosphoenol pyruvate synthetase, pyrophosphatase (EC 3.6.1.1), malate NAD and NADP dehydrogenases (EC 1.1.1.37), malic enzyme (EC 1.1.1.40), and fructose 1,6 diphosphatase (EC 3.1.3.11). PMID:24458756

  20. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  1. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems. PMID:27124717

  2. Radiative transfer theory for active remote sensing of a layer of nonspherical particles

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1984-01-01

    The radiative transfer theory is applied to calculate the scattering by a layer of randomly positioned and oriented nonspherical particles. The scattering amplitude functions of each individual particle are calculated with Waterman's T matrix method, which utilizes vector spherical wave functions for expansion of incident, scattered, and surface fields. The orientation of the particles is described by a probability density function of the Eulerian angles of rotation. A rotation matrix is used to relate the T matrix of the principal frame to that of the natural frame of the particle. The extinction matrix and phase matrix of the radiative transfer equations are expressed in terms of the T matrix elements. The extinction matrix for nonspherical particles is generally nondiagonal. There are only two attenuation rates in a specified direction of propagation. The radiative transfer equations are solved by an iterative method to first order in albedo. Numerical results are illustrated as functions of incidence angle and frequency with applications to active remote sensing.

  3. Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries.

    PubMed

    Chen, Renjie; Zhao, Teng; Lu, Jun; Wu, Feng; Li, Li; Chen, Junzheng; Tan, Guoqiang; Ye, Yusheng; Amine, Khalil

    2013-10-01

    A multiwalled carbon nanotube/sulfur (MWCNT@S) composite with core-shell structure was successfully embedded into the interlay galleries of graphene sheets (GS) through a facile two-step assembly process. Scanning and transmission electron microscopy images reveal a 3D hierarchical sandwich-type architecture of the composite GS-MWCNT@S. The thickness of the S layer on the MWCNTs is ~20 nm. Raman spectroscopy, X-ray diffraction, thermogravimetric analysis, and energy-dispersive X-ray analysis confirm that the sulfur in the composite is highly crystalline with a mass loading up to 70% of the composite. This composite is evaluated as a cathode material for Li/S batteries. The GS-MWCNT@S composite exhibits a high initial capacity of 1396 mAh/g at a current density of 0.2C (1C = 1672 mA/g), corresponding to 83% usage of the sulfur active material. Much improved cycling stability and rate capability are achieved for the GS-MWCNT@S composite cathode compared with the composite lacking GS or MWCNT. The superior electrochemical performance of the GS-MWCNT@S composite is mainly attributed to the synergistic effects of GS and MWCNTs, which provide a 3D conductive network for electron transfer, open channels for ion diffusion, strong confinement of soluble polysulfides, and effective buffer for volume expansion of the S cathode during discharge. PMID:24032420

  4. Vertical structure and biological activity in the bottom nepheloid layer of the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Townsend, D. W.; Mayer, L. M.; Dortch, Q.; Spinrad, R. W.

    1992-02-01

    The bottom nepheloid layer (BNL) was investigated at a number of hydrographically different sites in the Gulf of Maine during August 1987. Observations were based on hydrographic measurements made from a surface ship and closely-spaced, near-bottom samples collected using a submersible. The BNL generally occurred as a turbid layer which extended 15-30 m above the bottom (m.a.b.), as indicated by in situ light transmission and increased concentrations of total suspended particulate matter (SPM). Phytoplankton pigments, electron transport activity (ETS), extracellular proteolytic enzyme activity (EPA), concentrations of particulate organic carbon and nitrogen (POC and PON), and protein were generally elevated in the BNL. They also displayed vertical distribution patterns in relation to near-bottom depth zones of increased abundances of zooplankton, bacteria and autotrophic and heterotrophic nanoplankton. We describe two zones of biological significance in the BNL. The first, at about 20 m.a.b. at most stations, was associated with greater zooplankton biomass (80 μm) and copepod abundances than those depth strata either above or below, and appeared to be related to a higher quality of food particles near the top of the BNL. A second zone was seen 1-3 m.a.b. at most stations in association with the greatest levels of SPM. This deeper zone was generally of a poorer food quality, as reflected by ratios of protein-N to total-N and showed increases in cell-specific EPA. We discuss the areal variability of the BNL in the Gulf of Maine as well as the biological enhancement and vertical structure as likely influenced by both physical and biological processes.

  5. Influence of Plant Communities on Active Layer Depth in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Fisher, James; Estop Aragones, Cristian; Thierry, Aaron; Hartley, Iain; Murton, Julian; Charman, Dan; Williams, Mathew; Phoenix, Gareth

    2015-04-01

    Vegetation plays a crucial role in determining active layer depth (ALD) and hence the extent to which permafrost may thaw under climate change. Such influences are multifaceted and include, for example, promotion of shallow ALD by insulation from moss or shading by plant canopies in summer, or trapping of snow in evergreen tree canopies that reduces snow insulation of soil in winter. However, while the role of different vegetation components are understood at a conceptual level, quantitative understanding of the relative importance of different vegetation components and how they interact to determine active layer depth is lacking. In addition, major abiotic factors such as fire and soil hydrological properties will considerably influence the role of vegetation in mediating ALD, though again this is not well understood. To address this we surveyed 60 plots across 4 sites of contrasting vegetation and fire status, encompassing a range of soil moisture and organic matter thickness, in the discontinuous permafrost zone near Yellowknife, NT, Canada. In each plot we measured ALD and a range of vegetation and soil parameters to understand how key characteristics of the understory and canopy vegetation, and soil properties influence ALD. Measurements included moss depth, tree canopy LAI, understory LAI, understory height, vegetation composition, soil organic matter depth, slope and soil moisture. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have also been able to determine which characteristics of the vegetation and soil are important for protecting permafrost, which characteristics emerge as the most important factors across sites (i.e. irrespective of site conditions) and which factors have site (ecosystem) specific influences. This work provides a major insight into how ecosystem properties influence ALD and therefore also how changes in ecosystems properties arising from climate change may influence

  6. Impact damage analysis of balsawood sandwich composite materials

    NASA Astrophysics Data System (ADS)

    Abdalslam, Suof Omran

    In this study, a new composite sandwich structure with a balsa wood core (end grain and regular balsa) in conjunction with E-glass/epoxy face sheets was proposed, fabricated, impact tested, and modeled. The behavior of the sandwich structure under low velocity impact and compression after impact was investigated. Low velocity impact tests were carried out by drop-weight impact tower at different energy levels (8J-35J) to evaluate the impact response of the sandwich structure. Visual inspection, destructive and non destructive evaluation methods have been conducted. For the sandwich plate with end grain core, the damage was very clear and can be visually detected. However, the damage in regular balsa core was not clearly visible and destructive evaluation method was used. Compression testing was done after subjecting the specimens to impact testing. Impact test results; load-time, load-deflection history and energy absorption for sandwich composites with two different cores, end grain and regular balsa were compared and they were investigated at three different impact energies. The results show that the sandwich structures with end grain core are able to withstand impact loading better than the regular balsa core because the higher stiffness of end grain core informs of sustaining higher load and higher overall energy. The results obtained from compression after impact testing show that the strengths of sandwich composites with end grain and regular balsa cores were reduced about 40% and 52%, respectively, after impact. These results were presented in terms of stress-strain curves for both damaged and undamaged specimens. Finite element analysis was conducted on the sandwich composite structure using LS-DYNA code to simulate impact test. A 3- D finite element model was developed and appropriate material properties were given to each component. The computational model was developed to predict the response of sandwich composite under dynamic loading. The experimental

  7. Many-body microhydrodynamics of colloidal particles with active boundary layers

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Ghose, Somdeb; Adhikari, R.

    2015-06-01

    Colloidal particles with active boundary layers—regions surrounding the particles where non-equilibrium processes produce large velocity gradients—are common in many physical, chemical and biological contexts. The velocity or stress at the edge of the boundary layer determines the exterior fluid flow and, hence, the many-body interparticle hydrodynamic interaction. Here, we present a method to compute the many-body hydrodynamic interaction between N spherical active particles induced by their exterior microhydrodynamic flow. First, we use a boundary integral representation of the Stokes equation to eliminate bulk fluid degrees of freedom. Then, we expand the boundary velocities and tractions of the integral representation in an infinite-dimensional basis of tensorial spherical harmonics and, on enforcing boundary conditions in a weak sense on the surface of each particle, obtain a system of linear algebraic equations for the unknown expansion coefficients. The truncation of the infinite series, fixed by the degree of accuracy required, yields a finite linear system that can be solved accurately and efficiently by iterative methods. The solution linearly relates the unknown rigid body motion to the known values of the expansion coefficients, motivating the introduction of propulsion matrices. These matrices completely characterize hydrodynamic interactions in active suspensions just as mobility matrices completely characterize hydrodynamic interactions in passive suspensions. The reduction in the dimensionality of the problem, from a three-dimensional partial differential equation to a two-dimensional integral equation, allows for dynamic simulations of hundreds of thousands of active particles on multi-core computational architectures. In our simulation of 104 active colloidal particle in a harmonic trap, we find that the necessary and sufficient ingredients to obtain steady-state convective currents, the so-called ‘self-assembled pump’, are (a) one

  8. Sandwich mapping of schistosomiasis risk in Anhui Province, China.

    PubMed

    Hu, Yi; Bergquist, Robert; Lynn, Henry; Gao, Fenghua; Wang, Qizhi; Zhang, Shiqing; Li, Rui; Sun, Liqian; Xia, Congcong; Xiong, Chenglong; Zhang, Zhijie; Jiang, Qingwu

    2015-01-01

    Schistosomiasis mapping using data obtained from parasitological surveys is frequently used in planning and evaluation of disease control strategies. The available geostatistical approaches are, however, subject to the assumption of stationarity, a stochastic process whose joint probability distribution does not change when shifted in time. As this is impractical for large areas, we introduce here the sandwich method, the basic idea of which is to divide the study area (with its attributes) into homogeneous subareas and estimate the values for the reporting units using spatial stratified sampling. The sandwich method was applied to map the county-level prevalence of schistosomiasis japonica in Anhui Province, China based on parasitological data collected from sample villages and land use data. We first mapped the county-level prevalence using the sandwich method, then compared our findings with block Kriging. The sandwich estimates ranged from 0.17 to 0.21% with a lower level of uncertainty, while the Kriging estimates varied from 0 to 0.97% with a higher level of uncertainty, indicating that the former is more smoothed and stable compared to latter. Aside from various forms of reporting units, the sandwich method has the particular merit of simple model assumption coupled with full utilization of sample data. It performs well when a disease presents stratified heterogeneity over space. PMID:26054518

  9. In situ processing methods for composite fuselage sandwich structures

    NASA Technical Reports Server (NTRS)

    Saatchi, Hossein; Durako, Bill; Reynolds, Dick; Dost, Ernest; Willden, Kurtis

    1993-01-01

    Conventional sandwich structure fabrication methods are labor intensive and high in cost. A low cost method is needed to produce lightweight sandwich structures. Sundstrand has developed a series of in situ composite fabrication methods in which the raw materials (skin and core materials) are placed in a closed mold, and the component is produced in one heating cycle. Internal pressure is generated by chemical agents during the thermal cycles, which consolidates the skins and produces the foam core. The finished part is a net-shape composite sandwich structure with skins and a foamed core. The in situ process reduces cost by eliminating several secondary operations that are used in conventional fabrication methods. Further, a strong molecular bond is produced between the core and skin, which eliminates adhesive bonding and prevents a weak bond section in the sandwich structure. In this investigation, we evaluated the feasibility of the in situ process using thermoset materials currently under consideration for commercial airplane fuselage applications, such as keel sections. The materials used were Hercules 855340 toughened epoxy resin in both liquid and powder forms, and 3M Scotchply PR500 resin, manufactured by 3M Corporation, in powder form. We successfully foamed these resins and produced experimental panels with AS-4/855340 Hercules prepreg skins. Chopped fibers were added to the core to increase performance of the foam. Mechanical property testing on these panels showed properties competitive with other foams. Additional experiments are required to optimize the in situ foam core sandwiches for specific properties and applications.

  10. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  11. Facesheet Delamination of Composite Sandwich Materials at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Odegard, Gregory M.; Herring, Helen M.

    2003-01-01

    The next generation of space transportation vehicles will require advances in lightweight structural materials and related design concepts to meet the increased demands on performance. One potential source for significant structural weight reduction is the replacement of traditional metallic cryogenic fuel tanks with new designs for polymeric matrix composite tanks. These new tank designs may take the form of thin-walled sandwich constructed with lightweight core and composite facesheets. Life-time durability requirements imply the materials must safely carry pressure loads, external structural loads, resist leakage and operate over an extremely wide temperature range. Aside from catastrophic events like tank wall penetration, one of the most likely scenarios for failure of a tank wall of sandwich construction is the permeation of cryogenic fluid into the sandwich core and the subsequent delamination of the sandwich facesheet due to the build-up of excessive internal pressure. The research presented in this paper was undertaken to help understand this specific problem of core to facesheet delamination in cryogenic environments and relate this data to basic mechanical properties. The experimental results presented herein provide data on the strain energy release rate (toughness) of the interface between the facesheet and the core of a composite sandwich subjected to simulated internal pressure. A unique test apparatus and associated test methods are described and the results are presented to highlight the effects of cryogenic temperature on the measured material properties.

  12. The flame structure of AP/HTPB sandwiches

    NASA Astrophysics Data System (ADS)

    Chorpening, Benjamin Todd

    2000-10-01

    Ultraviolet emission imaging experiments have been used to study the combustion of sandwiches of ammonium perchlorate (AP) and hydroxyl-terminated polybutadiene (HTPB) in nitrogen at pressures up to 32 atm, with binder layers from 50 to 450 mum in thickness. An ICCD camera system has been used to image the flame emission near 310 nm, and a backlighting technique has been developed that allows determination of the corresponding surface shape during combustion. The results indicate the AP/HTPB interface regression rate of IPDI cured samples undergoing low power (100W) laser-assisted deflagration is nearly independent of the binder thickness for binders thicker than 100 mum. The pressure exponent of the regression rate is 0.31 up to 15 atm, increasing with pressure from 15 to 32 atm. Two primary regimes of flame behavior have been identified: a split flame base regime which occurs with high Peclet and Damkohler numbers, and a merged flame base regime which occurs with low Peclet and Damkohler numbers. A secondary regime, exhibiting a "lifted" flame, occurs with low Damkohler numbers and high Peclet numbers. The ultraviolet flame emissions observed in the experiments show a correspondence with the fuel-rich region of the flame, as determined with a Schvab-Zeldovich model. This is reasonable since the primary sources of ultraviolet emission in the 305--315 nm region, electronically excited OH and the CO + O reaction, are dependent on fuel related species. The growth of the fuel-rich region with increasing Peclet number, predicted by the model, is qualitatively matched by the experimental results. The predicted shrinkage of the fuel-rich region when the binder layer is diluted with fine AP is also qualitatively matched by the experiments. Comparison of the experimental results with a single-reaction model with finite rate kinetics shows a weak qualitative agreement on the influence of Damkohler number. A large increase in Damkohler number (factor of 20) leads to a strong

  13. Sandwich structure of Pd doped nanostructure TiO2 film as O2 sensor.

    PubMed

    Wang, Hairong; Sun, Quantao; Chen, Lei; Zhao, Yulong

    2013-09-01

    In this paper, we investigated the sensing properties of sandwich structure of TiO2/Pd/TiO2 thin films at various operating temperatures and oxygen partial pressures. The nanostructure TiO2 thin films were prepared by the sol-gel method. Various thickness of Pd buried layer was deposited by magnetron sputtering of a pure Pd target. The films were characterized using X-ray diffraction analysis and SEM. It was found that TiO2/Pd/TiO2 thin films have the p-type behavior while the pure TiO2 thin film is n-type semiconductor materials. We found that the structure of TiO2/Pd/TiO2 thin films with 10 s sputtering Pd layer has a better stability at 240 °C. PMID:24089853

  14. Nonreciprocal Magneto-Plasmonic Waveguide with Compact Metal-Sandwiched Structure

    NASA Astrophysics Data System (ADS)

    Jin, Yi-Chang; Xu, Chao; Qiu, Hui-Ye; Xiang, Le-Qiang; Yang, Jian-Yi; Jiang, Xiao-Qing

    2013-09-01

    A magneto-optical (MO) metal-sandwiched multilayered structure composed of metal, MO medium and dielectric buffer layers is presented and investigated by finite-element-method-based-mode solver and perturbation theory. The results show that this structure exhibits large nonreciprocal phase shift, strong mode confinement in the narrow buffer layers as well as very low propagation loss. The propagation length with 1 dB loss is much longer than the required length of π/2 nonreciprocal phase shifts in this structure. The modal area is smaller than half of the conventional MO waveguides. This phenomenon can be used to achieve a compact plasmonic isolator based on the Mach—Zehnder interferometer.

  15. Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb

    PubMed Central

    Poplawsky, Alexander John; Fukuda, Mitsuhiro; Murphy, Matthew

    2015-01-01

    High-resolution functional magnetic resonance imaging (fMRI) detects localized neuronal activity via the hemodynamic response, but it is unclear whether it accurately identifies neuronal activity specific to individual layers. To address this issue, we preferentially evoked neuronal activity in superficial, middle, and deep layers of the rat olfactory bulb: the glomerular layer by odor (5% amyl acetate), the external plexiform layer by electrical stimulation of the lateral olfactory tract (LOT), and the granule cell layer by electrical stimulation of the anterior commissure (AC), respectively. Electrophysiology, laser-Doppler flowmetry of cerebral blood flow (CBF), and blood oxygenation level-dependent (BOLD) and cerebral blood volume-weighted (CBV) fMRI at 9.4 T were performed independently. We found that excitation of inhibitory granule cells by stimulating LOT and AC decreased the spontaneous multi-unit activities of excitatory mitral cells and subsequently increased CBF, CBV, and BOLD signals. Odor stimulation also increased the hemodynamic responses. Furthermore, the greatest CBV fMRI responses were discretely separated into the same layers as the evoked neuronal activities for all three stimuli, whereas BOLD was poorly localized with some exception to the poststimulus undershoot. In addition, the temporal dynamics of the fMRI responses varied depending on the stimulation pathway, even within the same layer. These results indicate that the vasculature is regulated within individual layers and CBV fMRI has a higher fidelity to the evoked neuronal activity compared with BOLD. Our findings are significant for understanding the neuronal origin and spatial specificity of hemodynamic responses, especially for the interpretation of laminar-resolution fMRI. SIGNIFICANCE STATEMENT Functional magnetic resonance imaging (fMRI) is a noninvasive, in vivo technique widely used to map function of the entire brain, including deep structures, in animals and humans. However, it

  16. Kinetic Monte Carlo simulations of thermally activated magnetization reversal in dual-layer Exchange Coupled Composite recording media

    NASA Astrophysics Data System (ADS)

    Plumer, M. L.; Almudallal, A. M.; Mercer, J. I.; Whitehead, J. P.; Fal, T. J.

    The kinetic Monte Carlo (KMC) method developed for thermally activated magnetic reversal processes in single-layer recording media has been extended to study dual-layer Exchange Coupled Composition (ECC) media used in current and next generations of disc drives. The attempt frequency is derived from the Langer formalism with the saddle point determined using a variant of Bellman Ford algorithm. Complication (such as stagnation) arising from coupled grains having metastable states are addressed. MH-hysteresis loops are calculated over a wide range of anisotropy ratios, sweep rates and inter-layer coupling parameter. Results are compared with standard micromagnetics at fast sweep rates and experimental results at slow sweep rates.

  17. Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees.

    PubMed

    Arun, S; Kanagaraj, S

    2016-06-01

    A socket plays a vital role in giving the comfort to the amputees. However, the accumulation of heat inside the socket and its weight led to increase their metabolic cost. Hence, an attempt was made to increase the performance of the epoxy based sandwich composites to be used for the socket by reinforcing multiwalled carbon nanotubes (MWCNT), which was varied from 0.1 to 0.5wt%. It was homogeneously dispersed in epoxy to obtain the desired properties, where the enhancement of thermal conductivity, compressive strength and modulus of epoxy was observed to be 76.7%, 62.6% and 20.2%, respectively at 0.3wt% of MWCNT concentration beyond which the mechanical properties were found to be decreased. Hence, the epoxy, E-glass plain fabric, 2-10 layers of stockinet and 0.3wt% of MWCNT were used to prepare the sandwich composites. The flexural strength and thermal conductivity of 0.3wt% of MWCNT reinforced sandwich composites were found to be improved by 11.38±1.5% and 29.8±1.3% for the 4-10 layers and up to 10 layers of stockinet, respectively compared to unreinforced sandwich composites, which helped to reduce the weight of the socket and decrease the heat accumulation inside the socket. Thus, it is suggested to be explored for the application of socket in trans-femoral amputees to increase their comfort level by decreasing the metabolic cost. PMID:26736176

  18. Magnetic MoS2 pizzas and sandwiches with Mnn (n = 1-4) cluster toppings and fillings: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Huang, Zhongjia; Wang, Xiao; Zhang, Hongyu; Li, Taohai; Wu, Zhaolong; Luo, Youhua; Cao, Wei

    2016-01-01

    The inorganic layered crystal (ILC) MoS2 in low dimensions is considered as one of the most promising and efficient semiconductors. To enable the magnetism and keep intrinsic crystal structures, we carried out a first-principles study of the magnetic and semiconductive monolayer MoS2 adsorbed with the Mnn (n = 1-4) clusters, and bilayer MoS2 intercalated with the same clusters. Geometric optimizations of the Mnn@MoS2 systems show the complexes prefer to have Mnn@MoS2(M) pizza and Mnn@MoS2(B) sandwich forms in the mono- and bi-layered cases, respectively. Introductions of the clusters will enhance complex stabilities, while bonds and charge transfers are found between external Mn clusters and the S atoms in the hosts. The pizzas have medium magnetic moments of 3, 6, 9, 4 μB and sandwiches of 3, 2, 3, 2 μB following the manganese numbers. The pizzas and sandwiches are semiconductors, but with narrower bandgaps compared to their corresponding pristine hosts. Direct bandgaps were found in the Mnn@MoS2(M) (n = 1,4) pizzas, and excitingly in the Mn1@MoS2(B) sandwich. Combining functional clusters to the layered hosts, the present work shows a novel material manipulation strategy to boost semiconductive ILCs applications in magnetics.

  19. Magnetic MoS2 pizzas and sandwiches with Mnn (n = 1-4) cluster toppings and fillings: A first-principles investigation.

    PubMed

    Zhang, Meng; Huang, Zhongjia; Wang, Xiao; Zhang, Hongyu; Li, Taohai; Wu, Zhaolong; Luo, Youhua; Cao, Wei

    2016-01-01

    The inorganic layered crystal (ILC) MoS2 in low dimensions is considered as one of the most promising and efficient semiconductors. To enable the magnetism and keep intrinsic crystal structures, we carried out a first-principles study of the magnetic and semiconductive monolayer MoS2 adsorbed with the Mnn (n = 1-4) clusters, and bilayer MoS2 intercalated with the same clusters. Geometric optimizations of the Mnn@MoS2 systems show the complexes prefer to have Mnn@MoS2(M) pizza and Mnn@MoS2(B) sandwich forms in the mono- and bi-layered cases, respectively. Introductions of the clusters will enhance complex stabilities, while bonds and charge transfers are found between external Mn clusters and the S atoms in the hosts. The pizzas have medium magnetic moments of 3, 6, 9, 4 μB and sandwiches of 3, 2, 3, 2 μB following the manganese numbers. The pizzas and sandwiches are semiconductors, but with narrower bandgaps compared to their corresponding pristine hosts. Direct bandgaps were found in the Mnn@MoS2(M) (n = 1,4) pizzas, and excitingly in the Mn1@MoS2(B) sandwich. Combining functional clusters to the layered hosts, the present work shows a novel material manipulation strategy to boost semiconductive ILCs applications in magnetics. PMID:26776327

  20. Magnetic MoS2 pizzas and sandwiches with Mnn (n = 1–4) cluster toppings and fillings: A first-principles investigation

    PubMed Central

    Zhang, Meng; Huang, Zhongjia; Wang, Xiao; Zhang, Hongyu; Li, Taohai; Wu, Zhaolong; Luo, Youhua; Cao, Wei

    2016-01-01

    The inorganic layered crystal (ILC) MoS2 in low dimensions is considered as one of the most promising and efficient semiconductors. To enable the magnetism and keep intrinsic crystal structures, we carried out a first-principles study of the magnetic and semiconductive monolayer MoS2 adsorbed with the Mnn (n = 1–4) clusters, and bilayer MoS2 intercalated with the same clusters. Geometric optimizations of the Mnn@MoS2 systems show the complexes prefer to have Mnn@MoS2(M) pizza and Mnn@MoS2(B) sandwich forms in the mono- and bi-layered cases, respectively. Introductions of the clusters will enhance complex stabilities, while bonds and charge transfers are found between external Mn clusters and the S atoms in the hosts. The pizzas have medium magnetic moments of 3, 6, 9, 4 μB and sandwiches of 3, 2, 3, 2 μB following the manganese numbers. The pizzas and sandwiches are semiconductors, but with narrower bandgaps compared to their corresponding pristine hosts. Direct bandgaps were found in the Mnn@MoS2(M) (n = 1,4) pizzas, and excitingly in the Mn1@MoS2(B) sandwich. Combining functional clusters to the layered hosts, the present work shows a novel material manipulation strategy to boost semiconductive ILCs applications in magnetics. PMID:26776327

  1. Unpinning the Open-Circuit Voltage in Organic Solar Cells through Tuning Ternary Blend Active Layer Morphology

    NASA Astrophysics Data System (ADS)

    Khlyabich, Petr; Thompson, Barry; Loo, Yueh-Lin

    2015-03-01

    The use of ternary, as opposed to binary, blends having complementary absorption in active layers of organic bulk heterojunction solar cells is a simple approach to increase overall light absorption. While the open-circuit voltage (Voc) of such solar cells have generally been shown to be pinned by the smallest energy level difference between the donor and acceptor constituents, there have been materials systems, that when incorporated into active layers of solar cells, exhibit composition dependent and tunable Voc. Herein, we demonstrate that this Voc tunability in ternary blend solar cells is correlated with the morphology of the active layer. Chemical compatibility between the constituents in the blend, as probed by grazing-incidence X-ray diffraction (GIXD) measurements, affords Voc tuning. The constituents need not ``co-crystallize'' limited miscibility between the constituents in the active layers of solar cells affords Voc tunability. Poor physical interactions between the constituent domains within the active layers, on the other hand, result in devices that exhibit an invariant Voc that is pinned by the smallest energy level difference between the donor(s) and the acceptor(s). Our morphological studies thus support the proposed alloying model that was put forth originally.

  2. Estimations of moisture content in the active layer in an Arctic ecosystem by using ground-penetrating radar profiling

    NASA Astrophysics Data System (ADS)

    Gacitúa, Guisella; Tamstorf, Mikkel Peter; Kristiansen, Søren Munch; Uribe, José Andrés

    2012-04-01

    We applied high-frequency GPR at a study site in the high arctic ecosystem of Northeast Greenland to evaluate its usefulness in assessing depth of, and water content in, the active layer at Zackenberg Valley (74°N; 20°W) to evaluate its usefulness in the high arctic ecosystems. The study site includes different vegetation types, and it well represents of the entire valley, for which we aimed to determine the conditions and characteristics that influence the GPR performance in the active layer. The spatial distribution of moisture content along the transect studied was estimated using GPR data (400 MHz antenna), depth to permafrost, soil samples and vegetation observations. Vertical distribution of the water content in the unfrozen soil bulk was predicted for several points on the transect by combining data that influence the behavior of the radar waves with that of capacitive moisture probes. The statistical models resulted to be highly significant, thus assuming common conditions of the soil to the classified vegetation, we can obtain from the GPR data, truthful estimations of water content, and, moreover, we can predict the distribution to the bottom of the active layer. Hence, we conclude that GPR is a viable option for improving active layer spatial quantification of water contents that can be used to assess changes in the active layer in arctic regions.

  3. Surface modification of polypropylene non-woven fibers with TiO2 nanoparticles via layer-by-layer self assembly method: Preparation and photocatalytic activity.

    PubMed

    Pavasupree, Suttipan; Dubas, Stephan T; Rangkupan, Ratthapol

    2015-11-01

    Polypropylene (PP) meltblown fibers were coated with titanium dioxide (TiO2) nanoparticles using layer-by-layer (LbL) deposition technique. The fibers were first modified with 3 layers of poly(4-styrenesulfonic acid) (PSS) and poly(diallyl-dimethylammonium chloride) (PDADMAC) to improve the anchoring of the TiO2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic TiO2 nanoparticles to construct TiO2/PDADMAC bilayer in the LbL fashion. The number of deposited TiO2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust TiO2 loading. The LbL technique showed higher TiO2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue (MB). Results showed that the TiO2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of TiO2 powder dispersed in solution. The deposition of TiO2 3 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4hr. TiO2-LbL constructions also preserved TiO2 adhesion on substrate surface after 1cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of TiO2 particles from the substrate outer surface. However, even in the third cycle, the TiO2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8hr of treatment. PMID:26574088

  4. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  5. A numerical study on intended and unintended failure mechanisms in blanking of sandwich plates

    NASA Astrophysics Data System (ADS)

    Chen, L.; Soyarslan, C.; Tekkaya, A. E.

    2013-05-01

    Metal-polymer-metal sandwich plates are widely used in the automotive and aerospace industry. As for different applications the sandwich plates can be divided into two types. They are sound-damping laminates with a polymer core much thinner than the metallic faces and low-density laminates with a core thickness of approximately 40-60% of the total thickness. One frequent process step in production of parts made of these plates is the blanking process whose hereditary effects draw the limits of further forming stages or service performance and life; e.g. the failure of the adhesive in the thermoplastic polymer interface affects the sound-damping efficiency intensively. With this motivation, we present FE simulation of an axi-symmetric blanking process of steel/polyethylene/steel sound-damping laminates. The mechanical behavior of the metallic layers was characterized by finite strain rate independent elasto-plasticity where progressive material deterioration and fracture are given account for using continuum damage mechanics (CDM). This material model is made accessible via implementations as VUMAT subroutines for ABAQUS/Explicit. Possible failure of the thermoplastic polymer which may lead to delamination of the metallic layers is modeled using ABAQUS built-in cohesive zone elements. The results show that existing intended and unintended failure modes, e.g. blanking of the metallic and thermoplastic polymer constituents as well as failure of polymer layer under shear and compression, can be effectively studied with the proposed framework for process enhancement. As a future work, a damage coupled nonlinear visco-elastic constitutive model will be devised for the simulation of the thermoplastic layer in low-density laminates.

  6. A sandwiched flexible polymer mold for control of particle-induced defects in nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhang, Jizong; Ge, Haixiong

    2013-01-01

    Particle related defects are one of the key concerns for nanoimprint lithography, since the particle can amplify the defect to become much larger than the particle itself. We developed a flexible tri-layer mold for control of particle-induced defects. The mold was composed of a PDMS cushion layer sandwiched between a rigid imprint pattern layer and a plastic polyethylene terephthalate (PET) backplane. The PET foil was used as the backplane of the mold to protect the sticky PDMS surface. The PDMS as a cushion layer could locally deform to conform the shape of substrate due to its high elasticity. The multifunctional epoxysiloxane was used for the formation of an imprint layer because of its insensitivity toward oxygen during curing, high transparency, excellent mechanical strength and high resistance to oxygen plasma after cross-linking. Nanostructures with different geometries and sizes were faithfully duplicated by this mold through a UV-curing imprint process. The particle-induced defectivity was dramatically improved by the deformation of the PDMS cushion layer with a slight external pressure. 500 nm pitch grating structures were successfully imprinted on a microposts array surface, both the top and the intervening bottom portions between the microposts.

  7. Wave propagation in sandwich panels with a poroelastic core.

    PubMed

    Liu, Hao; Finnveden, Svante; Barbagallo, Mathias; Arteaga, Ines Lopez

    2014-05-01

    Wave propagation in sandwich panels with a poroelastic core, which is modeled by Biot's theory, is investigated using the waveguide finite element method. A waveguide poroelastic element is developed based on a displacement-pressure weak form. The dispersion curves of the sandwich panel are first identified as propagating or evanescent waves by varying the damping in the panel, and wave characteristics are analyzed by examining their motions. The energy distributions are calculated to identify the dominant motions. Simplified analytical models are also devised to show the main physics of the corresponding waves. This wave propagation analysis provides insight into the vibro-acoustic behavior of sandwich panels lined with elastic porous materials. PMID:24815252

  8. Response of fiber reinforced sandwich structures subjected to explosive loading

    SciTech Connect

    Perotti, Luigi E.; El Sayed, Tamer; Deiterding, Ralf; Ortiz, Michael

    2011-01-01

    The capability to numerically simulate the response of sandwich structures to explosive loading constitutes a powerful tool to analyze and optimize their design by investigating the influence of different parameters. In order to achieve this objective, the necessary models for foam core and fiber reinforced materials in finite kinematics have been developed together with a finite element scheme which includes C1 finite elements for shells and cohesive elements able to capture the fracture propagation in composite fiber reinforced materials. This computational capability has been used to investigate the response of fiber reinforced sandwich shells to explosive loading. Based on the dissipated fracture energy resulting from these simulations, a factorial design has been carried out to assess the effect of different parameters on the sandwich shell response creating a tool for its optimization.

  9. Controllable Preparation of Ultrathin Sandwich-Like Membrane with Porous Organic Framework and Graphene Oxide for Molecular Filtration

    PubMed Central

    Zhu, Yuanzhi; Xu, Danyun; Zhao, Qingshan; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-01-01

    Porous organic frameworks (POFs) based membranes have potential applications in molecular filtration, despite the lack of a corresponding study. This study reports an interesting strategy to get processable POFs dispersion and a novel ultrathin sandwich-like membrane design. It was accidentally found that the hydrophobic N-rich Schiff based POFs agglomerates could react with lithium-ethylamine and formed stable dispersion in water. By successively filtrating the obtained POFs dispersion and graphene oxide (GO), we successfully prepared ultrathin sandwich-like hybrid membranes with layered structure, which showed significantly improved separation efficiency in molecular filtration of organic dyes. This study may provide a universal way to the preparation of processable POFs and their hybrid membranes with GO. PMID:26455497

  10. Synthesis of nanoporous activated iridium oxide films by anodized aluminum oxide templated atomic layer deposition.

    SciTech Connect

    Comstock, D. J.; Christensen, S. T.; Elam, J. W.; Pellin, M. J.; Hersam, M. C.

    2010-08-01

    Iridium oxide (IrOx) has been widely studied due to its applications in electrochromic devices, pH sensing, and neural stimulation. Previous work has demonstrated that both Ir and IrOx films with porous morphologies prepared by sputtering exhibit significantly enhanced charge storage capacities. However, sputtering provides only limited control over film porosity. In this work, we demonstrate an alternative scheme for synthesizing nanoporous Ir and activated IrOx films (AIROFs). This scheme utilizes atomic layer deposition to deposit a thin conformal Ir film within a nanoporous anodized aluminum oxide template. The Ir film is then activated by potential cycling in 0.1 M H{sub 2}SO{sub 4} to form a nanoporous AIROF. The morphologies and electrochemical properties of the films are characterized by scanning electron microscopy and cyclic voltammetry, respectively. The resulting nanoporous AIROFs exhibit a nanoporous morphology and enhanced cathodal charge storage capacities as large as 311 mC/cm{sup 2}.

  11. Active Control of Turbulent Boundary Layer Induced Sound Radiation from Multiple Aircraft Panels

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2002-01-01

    The objective of this work is to experimentally investigate active structural acoustic control of turbulent boundary layer (TBL) induced sound radiation from multiple panels on an aircraft sidewall. One possible approach for controlling sound radiation from multiple panels is a multi-input/multi-output scheme which considers dynamic coupling between the panels. Unfortunately, this is difficult for more than a few panels, and is impractical for a typical aircraft which contains several hundred such panels. An alternative is to implement a large number of independent control systems. Results from the current work demonstrate the feasibility of reducing broadband radiation from multiple panels utilizing a single-input/single-output (SISO) controller per bay, and is the first known demonstration of active control of TBL induced sound radiation on more than two bays simultaneously. The paper compares sound reduction for fully coupled control of six panels versus independent control on each panel. An online adaptive control scheme for independent control is also demonstrated. This scheme will adjust for slow time varying dynamic systems such as fuselage response changes due to aircraft pressurization, etc.

  12. An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder

    SciTech Connect

    Osaka, Tetsuya, Liu, X.; Nojima, Masashi; Momma, Toshiyuki

    1999-05-01

    An electric double layer capacitor (EDLC) was prepared with an activated carbon powder electrode with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based gel electrolyte. Ethylene carbonate (EC) and propylene carbonate (PC) were used as plasticizer and tetraethylammonium tetrafluoroborate (TEABF{sub 4}) was used as the supporting electrolyte. An optimized gel electrolyte of PVdF-HFP/PC/EC/TEABF{sub 4} - 23/31/35/11 mass ratio exhibited high ionic conductivity of 5 {times} 10{sup {minus}3} S/cm, high electrode capacitance, and good mechanical strength. An electrode consisting of activated carbon (AC) with the gel electrolyte as the binder (AC/PVdF-HFP based gel, 7/3 mass ratio) showed a higher specific capacitance and a lower ion diffusion resistance within the electrode than a carbon electrode, prepared with PVdF-HFP binder without plasticizer. This suggests that an electrode mixed with the gel electrolyte has a lower ion diffusion resistance inside the electrode. The highest specific capacitance of 123 F/g was achieved with an electrode containing AC with a specific surface area of 2500 m{sup 2}/g. A coin-type EDLC cell with optimized components showed excellent cycleability exceeding 10{sup 4} cycles with ca. 100% coulombic efficiency achieved when charging and discharging was repeated between 1.0 and 2.5 V at 1.66 mA/cm{sup 2}.

  13. Vibration analysis of constrained layered beams with multiple damping layers

    NASA Astrophysics Data System (ADS)

    Hao, Min

    2005-07-01

    With an increasing demand for light, continuous, and high strength structures, multi-layered systems with viscoelastic materials have gained major importance over the years. Viscoelastic layered systems provide a simple and flexible solution for damping vibration of sheet metal panels. They also help to effectively eliminate noise from resonant structures and surfaces. There has been a lot of work done on active and passive layered sandwich beams based on the theoretical models proposed by Kerwin (1959) and extended by Ditaranto (1965), Mead and Markus (1969), and other researchers. This work presents an analytical formulation to predict the stiffness and damping of constrained layered beams that have multiple viscoelastic damping layers. The model was derived for symmetrical setups using variational methods. The equations to evaluate the stiffness and damping were derived in closed form and can be evaluated for different boundary conditions. The complex modulus approach was used to model the elastic and shear modulus of the viscoelastic material. The equations of motion for multi-layer system in this research were compared with Mead's three layer beam model. Equations derived in this dissertation match well with Mead's equation for symmetric system. A parametric analysis has been conducted to study the effects of different parameters on the damping and stiffness of the system under simply supported boundary conditions. In addition, another analytical model was developed for the unsymmetrical setups with two different viscoelastic materials adjacent to each other. Experiments were conducted on simply supported three-layered beams at different temperatures to validate theoretical results. The experimental results show good agreement with the modal frequencies estimated by theory. The first four modes were considered in the computation and experiment validation. The multi-objective optimization procedure to obtain optimum structural and material parameters

  14. Sandwich enzyme-linked immunosorbent assay for naringin.

    PubMed

    Qu, Huihua; Wang, Xueqian; Qu, Baoping; Kong, Hui; Zhang, Yue; Shan, Wenchao; Cheng, Jinjun; Wang, Qingguo; Zhao, Yan

    2016-01-15

    Among the currently used immunoassay techniques, sandwich ELISA exhibits higher specificity, lower cross-reactivity, and a wider working range compared to the corresponding competitive assays. However, it is difficult to obtain a pair of antibodies that can simultaneously bind to two epitopes of a molecule with a molecular weight of less than 1000 Da. Naringin (Nar) is a flavonoid with a molecular mass of 580 Da. The main aim of this study was to develop a sandwich ELISA for detecting Nar. Two hybridomas secreting anti-Nar monoclonal antibodies (mAbs) were produced by fusing splenocytes from a mouse immunised against Nar-bovine serum albumin (BSA) conjugated with a hypoxanthine-aminopterin-thymidine (HAT)-sensitive mouse myeloma cell line; a sandwich ELISA for detecting Nar was developed using these two well-characterised anti-Nar mAbs. The performance of the sandwich assay was further evaluated by limit of detection (LOD), limit of quantification (LOQ), recovery, and interference analyses. A dose-response curve to Nar was obtained with an LOD of 6.78 ng mL(-1) and an LOQ of 13.47 ng mL(-1). The inter-assay and intra-assay coefficients of variation were 4.32% and 7.48%, respectively. The recovery rate of Nar from concentrated Fructus aurantii granules was 83.63%. A high correlation was obtained between HPLC and sandwich ELISA. These results demonstrate that the sandwich ELISA method has higher specificity for Nar than indirect competitive ELISA. PMID:26709308

  15. Guided waves propagating in sandwich structures made of anisotropic, viscoelastic, composite materials.

    PubMed

    Castaings, Michel; Hosten, Bernard

    2003-05-01

    The propagation of Lamb-like waves in sandwich plates made of anisotropic and viscoelastic material layers is studied. A semi-analytical model is described and used for predicting the dispersion curves (phase velocity, energy velocity, and complex wave-number) and the through-thickness distribution fields (displacement, stress, and energy flow). Guided modes propagating along a test-sandwich plate are shown to be quite different than classical Lamb modes, because this structure does not have the mirror symmetry, contrary to most of composite material plates. Moreover, the viscoelastic material properties imply complex roots of the dispersion equation to be found that lead to connections between some of the dispersion curves, meaning that some of the modes get coupled together. Gradual variation from zero to nominal values of the imaginary parts of the viscoelastic moduli shows that the mode coupling depends on the level of material viscoelasticity, except for one particular case where this phenomenon exists whether the medium is viscoelastic or not. The model is used to quantify the sensitivity of both the dispersion curves and the through-thickness mode shapes to the level of material viscoelasticity, and to physically explain the mode-coupling phenomenon. Finite element software is also used to confirm results obtained for the purely elastic structure. Finally, experiments are made using ultrasonic, air-coupled transducers for generating and detecting guided modes in the test-sandwich structure. The mode-coupling phenomenon is then confirmed, and the potential of the air-coupled system for developing single-sided, contactless, NDT applications of such structures is discussed. PMID:12765380

  16. Relating Charge Transport, Contact Properties, and Recombination to Open-Circuit Voltage in Sandwich-Type Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Sandberg, Oskar J.; Sundqvist, Anton; Nyman, Mathias; Österbacka, Ronald

    2016-04-01

    To avoid surface recombination at the contacts and ensure efficient charge collection and high open-circuit voltages (VOC) in organic bulk heterojunction and perovskite solar cells, selective contacts with optimized energy levels are needed. However, a detailed theoretical understanding of how the device performance is affected by surface recombination at the contacts is still lacking. In this work, the influence of surface recombination on the open-circuit voltage in sandwich-type solar cells, with optically thin active layers, is clarified using numerical simulations. Furthermore, analytical expressions are derived, directly relating VOC to relevant device parameters, such as surface recombination velocity (Sp), mobility, and active layer thickness. At large Sp, the surface recombination is determined by diffusion-limited transport in the bulk. By reducing Sp, thus increasing the charge selectivity of the electrode, the surface recombination is eventually reduced as the transport becomes limited by interface kinetics at the contact. Depending on the interplay between surface recombination and bulk recombination, and the properties of the contacts, different operating regimes are identified featuring different light ideality factors and thickness dependences.

  17. Approaches to Design and Evaluation of Sandwich Composites

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Raju, I. S. (Technical Monitor); Ambur, D. (Technical Monitor)

    2001-01-01

    This report describes research during the period June 15, 1997 to October 31, 2000. This grant yielded a low cast manufacturing of composite sandwich structures technology and characterization interfacial and subinterfacial cracks in foam core sandwich panels. The manufacturing technology is called the vacuum assisted resin transfer (VARTM). The VARTM is suitable for processing composite materials both at ambient and elevated temperatures and of unlimited component size. This technology has been successfully transferred to a small business fiber preform manufacturing company 3TEX located in Cary, North Carolina. The grant also supported one Ph.D, one M.S and a number of under graduate students, and nine publications and Presentations.

  18. Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Lundgren, Eric C. (Inventor)

    2016-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  19. Toughness of composite steel-concrete structure of sandwich system

    SciTech Connect

    Iwata, Setsuo; Hattori, Yoichi

    1994-12-31

    Offshore structure should have a high degree of structural safety not only under normal conditions but also extreme conditions even under collision loadings. The authors carried out both experimental and theoretical investigations on the toughness of the sandwich composite structures. Experiments were carried out for the two-dimensional models of composite structures under pure bending and combined shear and bending as well. A nonlinear analysis was developed to predict the toughness of sandwich beam under pure bending. In the analysis the material nonlinearity of both concrete and steel plate were taken into consideration. The analysis were found to be very close to the experimental results.

  20. p-GaAs(Cs,O)-photocathodes: Demarcation of domains of validity for practical models of the activation layer

    SciTech Connect

    Bakin, V. V.; Toropetsky, K. V.; Scheibler, H. E.; Terekhov, A. S.; Jones, L. B.; Militsyn, B. L.; Noakes, T. C. Q.

    2015-05-04

    The (Cs,O)-activation procedure for p-GaAs(Cs,O)-photocathodes was studied with the aim of demarcating the domains of validity for the two practical models of the (Cs,O)-activation layer: The dipole layer (DL) model and the heterojunction (HJ) model. To do this, the photocathode was activated far beyond the normal maximum of quantum efficiency, and several photocathode parameters were measured periodically during this process. In doing so, the data obtained enabled us to determine the domains of validity for the DL- and HJ-models, to define more precisely the characteristic parameters of the photocathode within both of these domains and thus to reveal the peculiarities of the influence of the (Cs,O)-layer on the photoelectron escape probability.

  1. Enhanced Electrocatalytic Performance for Oxygen Reduction via Active Interfaces of Layer-By-Layered Titanium Nitride/Titanium Carbonitride Structures

    PubMed Central

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2014-01-01

    Cathode materials always limit the performance of fuel cells while the commercial platinum-based catalysts hardly meet the requirements of low cost, durable and stable. Here a non-precious metal oxygen reduction reaction (ORR) electocatalyst based on titanium nitride/titanium carbonitride hierarchical structures (TNTCNHS) is demonstrated as high activity as Pt/C. In alkaline condition, tuning interface/mass ratio of TiN/TiCN, we observed the onset potential of ~0.93 V vs. RHE and a limit diffusion current density of ~5.1 mA cm−2 (at a rotating speed of 1600 rpm) on TNTCNHS with a relative low catalyst loading of ~0.1 mg cm−2. The kinetic current, durability and tolerance to crossover effect studies reveal even more efficient than carbon-supported platinum. The architecture fabrication for such electrocatalyst is easy to realize in industrial-scale facilities, for the use of chemical vapor deposition (CVD) technique could support a huge area production (more than 10000 cm2 for one pot) to satisfy the enormous market requirements in the future. PMID:25335930

  2. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank

    NASA Astrophysics Data System (ADS)

    Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.

    2012-12-01

    -life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.

  3. Salix polaris growth responses to active layer detachment and solifluction processes in High Arctic.

    NASA Astrophysics Data System (ADS)

    Siekacz, Liliana

    2015-04-01

    The work is dedicated to demonstrate the potential of Salix polaris grow properties in the dendrogemorphologic image, analyzing periglacially induced slope processes in the high Arctic.. Observed anatomical and morphological plants responses to solifluction and active layer detachment processes are presented qualitatively and quantitatively as a summary of presented features frequency. The results are discussed against the background of the other research results in this field. The investigations was performed in Ebba valley, in the vicinity of Petunia Bay, northernmost part of Billefjorden in central Spitsbergen (Svalbard). Environmental conditions are characterized by annual precipitation sum lower than 200 mm (Hagen et al.,1993) and average summer temperature of about 5°C, with maximum daily temperatures rarely exceeding 10°C (Rachlewicz, 2009). Collected shrub material was prepared according to the methods presented by Schweingruber and Poschlod (2005). Thin (approx. 15-20μm) sections of the whole cross-section were prepared with a sledge microtome, stained with Safranine and Astra blue and finally permanently fixed on microslides with Canada balsam and dried. Snapshots were taken partially for each cross-section with digital camera (ColorView III, Olympus) connected to a microscope (Olympus BX41) and merged into one, high resolution image. After all, ring widths were measured in 3-4 radii in every single cross-section using ImageJ software. Analyzed plants revealed extremely harsh environmental conditions of their growth. Buchwał et al. (2013) provided quantitative data concerning missing rings and partially missing rings in shrubs growing on Ebba valley floor. Mean ring width at the level of 79μm represents one of the smallest values of yearly growth ever noted. The share of missing rings and partially missing rings was 11,2% and 13,6% respectively. Plants growing on Ebba valley slope indicate almost twice smaller values of ring width (41μm), and higher

  4. Active Control of Panel Vibrations Induced by a Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1998-01-01

    In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal

  5. Active diagenetic formation of metal-rich layers in N. E. Atlantic sediments

    NASA Astrophysics Data System (ADS)

    Wallace, H. E.; Thomson, J.; Wilson, T. R. S.; Weaver, P. P. E.; Higgs, N. C.; Hydes, D. J.

    1988-06-01

    Sediment cores from the Porcupine Abyssal Plain exhibit an indurated layer 0.5-3 cm thick at depths of approximately 50 cm. This is some 15-20 cm below the glacial/Holocene transition as interpreted by radiocarbon dating and the palaeontological criteria of RUDDIMAN and MCINTYRE (1981). The layer is forming currently at the oxic/post-oxic boundary in the sediments, as revealed by pore water data: O 2 and NO -3 are present in solution above the layer, while Fe 2+, Mn 2+, PO 3-4 and NH +4 are present in solution below, and all these species show concentration gradients indicating fluxes into the layer. These data are consistent with the hypothesis for the initiation and sustained formation of such layers proposed by WILSONet al. (1986a,b). The elements Mn, Ni, Co, Fe, P, V, Cu, Zn and U are all enriched to varying degrees in the vicinity of the layer. Some differential stratification of these elements in the vertical, consistent with a redox control, is observed at one site with a 0.5 cm layer, with Mn, Ni and Co above, Fe, P, V and Cu in the layer, and U below. At another site the metal-rich layer has higher Fe and P concentrations and is more indurated. Here all enrichments except Co are contained within a single layer sample, 3 cm thick.

  6. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond

    NASA Astrophysics Data System (ADS)

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V.; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M.; Haga, Masa-Aki; Wandlowski, Thomas

    2015-10-01

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g-1 at a current density of 10 μA cm-2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  7. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer

    NASA Astrophysics Data System (ADS)

    Xiang, Lanyi; Ying, Jun; Han, Jinhua; Zhang, Letian; Wang, Wei

    2016-04-01

    In this letter, we demonstrate a high reliable and stable organic field-effect transistor (OFET) based nonvolatile memory (NVM) with a polymer poly(4-vinyl phenol) (PVP) as the charge trapping layer. In the unipolar OFETs, the inreversible shifts of the turn-on voltage (Von) and severe degradation of the memory window (ΔVon) at programming (P) and erasing (E) voltages, respectively, block their application in NVMs. The obstacle is overcome by using a pn-heterojunction as the active layer in the OFET memory, which supplied a holes and electrons accumulating channel at the supplied P and E voltages, respectively. Both holes and electrons transferring from the channels to PVP layer and overwriting the trapped charges with an opposite polarity result in the reliable bidirectional shifts of Von at P and E voltages, respectively. The heterojunction OFET exhibits excellent nonvolatile memory characteristics, with a large ΔVon of 8.5 V, desired reading (R) voltage at 0 V, reliable P/R/E/R dynamic endurance over 100 cycles and a long retention time over 10 years.

  8. Monitoring of the permafrost surface active layer in Quebec and in the Arctic using remote sensing

    NASA Astrophysics Data System (ADS)

    Marchand, Nicolas; Royer, Alain; Krinner, Gerhard; Roy, Alexandre

    2014-05-01

    Projected future warming is particularly strong in the Northern high latitudes. Increases of temperatures are up to 2 to 6°C in the northern high latitudes, and up to 3 to 8°C in the North Pole area. Permafrosts (grounds with negative temperatures at least two years in a row) are present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). Recent studies have shown that a significant part (50%) of the first meters of the permafrost could melt within 2050, and 90 % within 2100. The aim of this study is to help understand the climate evolution in arctic areas, and more specifically of land areas covered by snow. We want to describe the ground temperature all year round even under snow cover. We hope to be able to deduce the active layer thickness evolution over the last ten years in northern Quebec. With the use of satellite data (fusion of Modis land surface temperature « LST » and AMSR-E brillance temperature « Tb », land cover …), and with the assimilation of these observations in the Canadian Landscape Surface Scheme (CLASS, CLASS-SSA) and in a simple radiative transfert model (HUT), we try to benefit from the advantages of each one of the sources in order to complete two objectives : 1- build a solid methodology in order to retrieve the land surface temperature, with and without snow cover, in taïga and toundra areas ; 2 - from those retrieved land surface temperatures, describe the ground temperature during summer as well as in winter (under snow) so that we can have a better look at the summer melt of the permafrost active layer. We have proposed a methodology that takes into account the evolution of two main input parameters of the CLASS model (air temperature and precipitations) in order to minimise the LST and Tb ouput. The proposed methodology seems to improve the results on the LST and Tb at 10 and 19 GHz in summer in a toundra environment

  9. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Penninsula, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Nelson, F. E.

    2014-12-01

    As development proceeds in the high latitudes, information about interactions between urban influences and the thickness of the active layer above permafrost becomes vital, particularly given the possibility of increasing temperatures accompanying climate change. Permafrost characteristics are often mapped at small geographical scales (i.e., over large areas), at low resolution, and without extensive field validation. Although maps of active-layer thickness (ALT) have been created for areas of relatively undisturbed terrain, this has rarely been done within urbanized areas, even though ALT is a critical factor in the design of roads, buildings, pipelines, and other elements of infrastructure. The need for detailed maps of ALT is emphasized in work on potential hazards in permafrost regions associated with global warming scenarios. Northern Alaska is a region considered to be at moderate to high risk for thaw-induced damage under climatic warming. The Native Village of Barrow (71°17'44"N; 156°45' 59"W), the economic, transportation, and administrative hub of the North Slope Borough, is the northernmost community in the USA, and the largest native settlement in the circum-Arctic. A winter urban heat island in Barrow, earlier snowmelt in the village, and dust deposition downwind of gravel pads and roads are all urban effects that could increase ALT. A recent empirical study documented a 17 to 41 cm difference in ALT between locations in the village of Barrow and surrounding undeveloped tundra, even in similar land-cover classes. We mapped ALT in the Barrow Peninsula, with particular attention to contrasts between the urbanized village and relatively undisturbed tundra in the nearby Barrow Environmental Observatory. The modified Berggren solution, an advanced analytic solution to the general Stefan problem of calculating frost and thaw depth, was used in a geographic context to map ALT over the 150 km² area investigated in the Barrow Urban Heat Island Study. The

  10. Isotopic Identification of Nitrate Sources and Cycling in Arctic Tundra Active Layer Soils and Permafrost

    NASA Astrophysics Data System (ADS)

    Heikoop, J. M.; Throckmorton, H.; Newman, B. D.; Perkins, G.; Gard, M.; Iversen, C. M.; Wilson, C. J.; Wullschleger, S. D.

    2014-12-01

    The effect of nitrogen cycling on release of carbon from tundra ecosystems is being studied as part of the US Department of Energy Next Generation Ecosystem Experiment - Arctic project. Sampling and analysis of active layer soil water at the Barrow Environmental Observatory (Alaska, USA) was performed in ancient drained thaw lake basins (DTLBs), drainages, and in polygonal terrain associated with inter-DTLB tundra. Within active layer soils, nitrate was most commonly found above analytical limits of detection in pore water from the unsaturated centers of high-centered polygons. Nitrate has also been detected, though less frequently, in soil water immediately above the frost table of an ancient (14C age of 2000 - 5500 BP) DTLB and in a small drainage adjacent to high-centered polygonal terrain. Nitrate from high-centered polygons had δ15N ranging from -9.2 to +8.5 ‰ and δ18O ranging from -8.4 to +1.4 ‰. The δ15N isotopic range is consistent with microbial mineralization and nitrification of reduced nitrogen sources including ammonium, dissolved organic nitrogen, and soil organic nitrogen. The range in δ18O of nitrate is also consistent with nitrification based on the δ18O of site waters. No evidence for an atmospheric nitrate signal, as defined by δ15N and δ18O of nitrate in snow and snowmelt, is seen. In contrast, nitrate in permafrost appears to be a mixture of pre-industrial atmospheric nitrate (with higher δ15N than modern atmospheric nitrate) and nitrate that is microbial in origin. Massive ice wedges appear to contain larger proportions of snowmelt (based on δ18O of ice) and atmospheric nitrate, whereas textural ice appears to contain a greater proportion of summer precipitation and microbially-derived nitrate. Nitrate from the ancient DTLB and drainage samples also has isotopic signatures that appear to represent a mixture of pre-industrial atmospheric nitrate and nitrate from microbial nitrification, and may, at least in part, be derived from

  11. Fate and Transport of Methane Formed in the Active Layer of Alaskan Permafrost

    NASA Astrophysics Data System (ADS)

    Conrad, M. E.; Curtis, J. B.; Smith, L. J.; Bill, M.; Torn, M. S.

    2015-12-01

    Over the past 2 years a series of tracer tests designed to estimate rates of methane formation via acetoclastic methanogenesis in the active layer of permafrost soils were conducted at the Barrow Environmental Observatory (BEO) in northernmost Alaska. The tracer tests consisted of extracting 0.5 to 1.0 liters of soil water in gas-tight bags from different features of polygons at the BEO, followed by addition of a tracer cocktail including acetate with a 13C-labeled methyl group and D2O (as a conservative tracer) into the soil water and injection of the mixture back into the original extraction site. Samples were then taken at depths of 30 cm (just above the bottom of the active layer), 20 cm, 10 cm and surface flux to determine the fate of the 13C-labeled acetate. During 2014 (2015 results are pending) water, soil gas, and flux gas were sampled for 60 days following injection of the tracer solution. Those samples were analyzed for concentrations and isotopic compositions of CH4, DIC/CO2 and water. At one site (the trough of a low-centered polygon) the 13C acetate was completely converted to 13CH4 within the first 2 days. The signal persisted for throughout the entire monitoring period at the injection depth with little evidence of transport or oxidation in any of the other sampling depths. In the saturated center of the same polygon, the acetate was also rapidly converted to 13CH4, but water turnover caused the signal to rapidly dissipate. High δ13C CO2 in flux samples from the polygon center indicate oxidation of the 13CH4 in near-surface waters. Conversely, CH4 production in the center of an unsaturated, flat-centered polygon was relatively small 13CH4 and dissipated rapidly without any evidence of either 13CH4 transport to shallower levels or oxidation. At another site in the edge of that polygon no 13CH4 was produced, but significant 13CO2/DIC was observed indicating direct aerobic oxidation of the acetate was occurring at this site. These results suggest that

  12. Noble metal (Ru{sup III}, Pd{sup II}, Pt{sup II}) substituted {open_quotes}sandwich{close_quotes} type polyoxometalates: Preparation, characterization, and catalytic activity in oxidations of alkanes and alkenes by peroxides

    SciTech Connect

    Neumann, R.; Khenkin, A.M.

    1995-11-08

    The polyoxometalates substituted with noble metals, Pd(II), Pt(II) and Ru(III), K{sub 12}([WZnPd{sup II}{sub 2}(H{sub 2}O){sub 2}](ZnW{sub 9}O{sub 34}){sub 2}){center_dot}38H{sub 2}O, K{sub 12}[WZnPt{sup II}{sub 2}(H{sub 2}O){sub 2}][(ZnW{sub 9}O{sub 34}){sub 2}]{center_dot}36H{sub 2}O, and Na{sub 11}[WZnRu{sup III}{sub 2}(OH)(H{sub 2}O)][(ZnW{sub 9}O{sub 34}){sub 2}]{center_dot}42H{sub 2}O, were prepared by exchange of labile zinc atoms with noble metal atoms from the isostructural starting material, N{sub 12}-[WZn{sub 3}(H{sub 2}O){sub 2}][(ZnW{sub 9}O{sub 34}){sub 2}]{center_dot}46H{sub 2}O. Magnetic susceptibility studies as a function of temperature provide convincing evidence of two ruthenium (III) centers with no magnetic interaction between them. The catalytic activity of these compounds was tested for the oxidation of alkenes and alkanes using aqueous 30% hydrogen peroxide and 70% tert-butyl hydroperoxide as oxidants. The alkene oxidation proceeded in high reactivity and moderate selectivity to the epoxide product using 30% H{sub 2}O{sub 2}. Kinetic profiles as well as UV-vis and IR spectra before, during and after the reaction indicate that the catalysts are stable throughout the reaction. Formation of epoxides rather than ketonization in the reaction of terminal alkenes as well as low reactivity with iodosobenzene indicates that the reaction is tungsten centered and not noble metal centered. Oxidation of alkenes with tert-butyl hydroperoxide gave mostly allylic oxidation and/or addition of tert-butyl alcohol to the double bond. Oxidation of cyclic alkanes such as cyclohexane and adamantane was successful with tert-butyl hydroperoxide with catalytic activity 10 times higher than previously found for transition metal substituted Keggin compounds. Ratios of hydroxylation of adamantane at tertiary vs secondary positions indicates different active species in the palladium-, platinum-, and ruthenium substituted-polyoxometalates.

  13. Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment.

    PubMed

    Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi

    2016-08-01

    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability. PMID:26732538

  14. Interfacial diffusion behavior in Ni-BaTiO 3 MLCCs with ultra-thin active layers

    NASA Astrophysics Data System (ADS)

    Gong, Huiling; Wang, Xiaohui; Tian, Zhibin; Zhang, Hui; Li, Longtu

    2014-03-01

    The interfacial structure and diffusion behavior between the dielectric layers (BaTiO3) and internal electrode layers (Ni) in X5R-type multilayer ceramic capacitors (MLCCs, from -55°C to 85°C, at a temperature capacitance coefficient within ±15%) with ultra-thin active layers ( T = 1-3 µm) have been investigated by several microstructural techniques (SEM/TEM/HRTEM) with energy-dispersive x-ray spectroscopy (EDS). In the MLCC samples with different active layer thicknesses (1-3 µm), weak interfacial diffusion was observed between BaTiO3 and Ni. It was also found that the diffusion capability of Ni into the BaTiO3 layer was stronger than that of BaTiO3 to the Ni electrode, which indicated that the diffusion of Ni was the dominant factor for the interfacial diffusion behavior in the ultra-thin layered MLCCs. The mechanism of Ni diffusion is discussed in this study as well.

  15. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation

    PubMed Central

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  16. Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso

    2016-01-01

    Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.

  17. Transport in Cuprate Sandwich Junctions: the Quest for Preformed Pairs and Spin-Charge Separation

    NASA Astrophysics Data System (ADS)

    Bozovic, Ivan

    2003-03-01

    Using molecular beam epitaxy (MBE), we have developed a technology for reproducible growth of thin films, multilayers and superlattices of high-Tc superconductors (HTS) with rms surface roughness in the range 0.2-0.5 nm. In films and devices that contain one-unit-cell (1UC) thick layers of either La2CuO4+d (LCO) or La1.85Sr0.15CuO4 (LSCO), we found virtual absence of proximity effects. In SIS structures, 1UC thick insulating LCO barrier completely blocks the supercurrent between HTS electrodes. Conversely, 1UC thick LSCO layer sandwiched between thicker insulating layers sustains HTS. The HTS/AFM interface is sharp on the length scale of 1 Å; the two phases do not mix, like oil and vinegar. They are not nearly degenerate in energy; the energy difference is about 1 eV. Upon doping, electronic states appear at or near the middle of the band gap, in variance with the conventional rigid-band picture. Direct photo-excitation of these states seems forbidden, perhaps by spin conservation. In contrast, in SS'S junctions, above Tc' of S' layer and below Tc of S electrodes, we see Josephson supercurrent through thick S' layers -- even hundred times thicker than the coherence length in S and the mean free path in S'. This 'Giant Proximity Effect' defies conventional description; it may indicate existence of preformed pairs above Tc' in S'.

  18. The sandwich InGaAs/GaAs quantum dot structure for IR photoelectric detectors

    SciTech Connect

    Moldavskaya, L. D. Vostokov, N. V.; Gaponova, D. M.; Danil'tsev, V. M.; Drozdov, M. N.; Drozdov, Yu. N.; Shashkin, V. I.

    2008-01-15

    A new possibility for growing InAs/GaAs quantum dot heterostructures for infrared photoelectric detectors by metal-organic vapor-phase epitaxy is discussed. The specific features of the technological process are the prolonged time of growth of quantum dots and the alternation of the low-and high-temperature modes of overgrowing the quantum dots with GaAs barrier layers. During overgrowth, large-sized quantum dots are partially dissolved, and the secondary InGaAs quantum well is formed of the material of the dissolved large islands. In this case, a sandwich structure is formed. In this structure, quantum dots are arranged between two thin layers with an increased content of indium, namely, between the wetting InAs layer and the secondary InGaAs layer. The height of the quantum dots depends on the thickness of the GaAs layer grown at a comparatively low temperature. The structures exhibit intraband photoconductivity at a wavelength around 4.5 {mu}m at temperatures up to 200 K. At 90 K, the photosensitivity is 0.5 A/W, and the detectivity is 3 Multiplication-Sign 10{sup 9} cm Hz{sup 1/2}W{sup -1}.

  19. The sandwich InGaAs/GaAs quantum dot structure for IR photoelectric detectors

    SciTech Connect

    Moldavskaya, L. D. Vostokov, N. V.; Gaponova, D. M.; Danil'tsev, V. M.; Drozdov, M. N.; Drozdov, Yu. N.; Shashkin, V. I.

    2008-01-15

    A new possibility for growing InAs/GaAs quantum dot heterostructures for infrared photoelectric detectors by metal-organic vapor-phase epitaxy is discussed. The specific features of the technological process are the prolonged time of growth of quantum dots and the alternation of the low-and high-temperature modes of overgrowing the quantum dots with GaAs barrier layers. During overgrowth, large-sized quantum dots are partially dissolved, and the secondary InGaAs quantum well is formed of the material of the dissolved large islands. In this case, a sandwich structure is formed. In this structure, quantum dots are arranged between two thin layers with an increased content of indium, namely, between the wetting InAs layer and the secondary InGaAs layer. The height of the quantum dots depends on the thickness of the GaAs layer grown at a comparatively low temperature. The structures exhibit intraband photoconductivity at a wavelength around 4.5 {mu}m at temperatures up to 200 K. At 90 K, the photosensitivity is 0.5 A/W, and the detectivity is 3 x 10{sup 9} cm Hz{sup 1/2}W{sup -1}.

  20. Active control of panel vibrations induced by boundary-layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1991-01-01

    Some problems in active control of panel vibration excited by a boundary layer flow over a flat plate are studied. In the first phase of the study, the optimal control problem of vibrating elastic panel induced by a fluid dynamical loading was studied. For a simply supported rectangular plate, the vibration control problem can be analyzed by a modal analysis. The control objective is to minimize the total cost functional, which is the sum of a vibrational energy and the control cost. By means of the modal expansion, the dynamical equation for the plate and the cost functional are reduced to a system of ordinary differential equations and the cost functions for the modes. For the linear elastic plate, the modes become uncoupled. The control of each modal amplitude reduces to the so-called linear regulator problem in control theory. Such problems can then be solved by the method of adjoint state. The optimality system of equations was solved numerically by a shooting method. The results are summarized.

  1. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  2. Active control of panel vibrations induced by a boundary layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1995-01-01

    The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to consider the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. Although the sound radiation has not been included, the vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings are presented in three sections. In section two we describe results on the boundary control of nonlinear panel vibration, with or without flow excitation. Sections three and four are concerned with some analytical and numerical results in the optimal control of the linear and nonlinear panel vibrations, respectively, excited by the flow pressure fluctuations. Finally, in section five, we draw some conclusions from research findings.

  3. Electrical activity of the Hartmann layers relative to surface viscous shearing in an annular magnetohydrodynamic flow

    NASA Astrophysics Data System (ADS)

    Delacroix, Jules; Davoust, Laurent

    2014-03-01

    As a first step towards two-phase magnetohydrodynamics (MHD), this paper addresses an original analytical coupling between surface rheology, e.g., a gradually oxidizing liquid metal surface, ruled by the Boussinesq number Bo, and a supporting annular MHD flow, ruled by the Hartmann number Ha, in the general layout of a classical annular deep-channel viscometer, as developed by Mannheimer and Schechter [J. Colloid Interface Sci. 32, 195-211 (1970)]. Using a matched asymptotic expansion based on the small parameter 1/Ha, we can express the surface velocity as a coupling variable in the jump momentum balance at the liquid surface. By solving the latter through the determination of the Green's function, the whole flow can be analytically calculated. A modified Boussinesq number, tilde{B_o}, is produced as a new non-dimensional parameter that provides the balance between surface viscous shearing and the Lorentz force. It is shown that the tilde{B_o} number drives the electrical activation of the Hartmann layers, heavily modifying the MHD flow topology and leading to the emergence of the Lorentz force, for which interaction with the flow is not classical. Finally, the evolution laws given in this study allow the determination of scaling laws for an original experimental protocol, which would make it possible to accurately determine the surface shear viscosity of a liquid metal with respect to the quality of the ambient atmosphere.

  4. Hydrology and geochemistry of small tundra drainage basins in response to active layer disturbance. Progress report

    SciTech Connect

    Rundle, A.S.

    1986-06-01

    Hydrology of far northern drainage basins in which the shallow organic-rich surface layer overlies a permanently frozen substrate, is poorly known, yet is of great importance in evaluating natural stability and in predicting response to disturbances effecting flow and the distribution of nutrient and sedimentary ions. First-year study of a 2.5 km/sup 2/ watershed supports the primacy of the short duration melt-off in the yearly hydrologic/geochemical cycle. At this time basin storage capacity is minimum and total runoff carries with it a seasonal maximum of nutrient ions, suspended and dissolved solids. Subsequent to melt-off, base flow is high but decreases as thaw releases seasonally frozen water, including some temporarily stored melt-off. Spring storm events produce rapid peak discharges because of the low storage capacity in the catchment. Rare, high intensity, short duration storms in early season can produce discharges that rival diurnal peaks at melt-off. With activation of vegetation following melt-off, some nutrient ions are no longer detectable and pH becomes acid. Summer drought periods are common and if sufficiently protracted, reduce stream flow to barely measurable quantities. At such times hydrographs may show small diurnal fluctuations in response to evapotranspiration cycles. Ion concentrations show an increase as senescence commences in mid-August.

  5. Patterned dual-layer achromatic micro-quarter-wave-retarder array for active polarization imaging.

    PubMed

    Zhao, Xiaojin; Pan, Xiaofang; Fan, Xiaolei; Xu, Ping; Bermak, Amine; Chigrinov, Vladimir G

    2014-04-01

    In this paper, we present a liquid-crystal-polymer (LCP)-based dual-layer micro-quarter-wave-retarder (MQWR) array for active polarization image sensors. The proposed MQWRs, for the first time, enable the extraction of the incident light's circularly polarized components in the whole visible regime, which correspond to the fourth parameter of Stokes vector. Compared with the previous implementations, our proposed MQWRs feature high achromaticity, making their applications no longer limited to monochromatic illumination. In addition, the presented thin structure exhibits an overall thickness of 2.43μm, leading to greatly alleviated optical cross-talk between adjacent photo-sensing pixels. Moreover, the reported superior optical performance (e.g. minor transmittance, extinction ratio) validates our optical design and optimization of the proposed MQWRs. Furthermore, the demonstrated simple fabrication recipe offers a cost-effective solution for the monolithic integration between the proposed MQWR array and the commercial solid-state image sensors, which makes the multi-spectral full Stokes polarization imaging system on a single chip feasible. PMID:24718177

  6. An All-Metal Aromatic Sandwich Complex [Sb3Au3Sb3](3-).

    PubMed

    Pan, Fu-Xing; Li, Lei-Jiao; Wang, Ying-Jin; Guo, Jin-Chang; Zhai, Hua-Jin; Xu, Li; Sun, Zhong-Ming

    2015-09-01

    A sandwich complex, as exemplified by ferrocene in the 1950s, usually refers to one metal center bound by two arene ligands. The subject has subsequently been extended to carbon-free aromatic ligands and multiple-metal-atom "monolayered" center, but not to an all-metal species. Here, we describe the synthesis of an unprecedented all-metal aromatic sandwich complex, [Sb3Au3Sb3](3-), which was isolated as K([2.2.2]crypt)(+) salt and identified by single-crystal X-ray diffraction. Quantum chemical calculations indicate that intramolecular electron transfers for the three metallic layers (Sb → Au donation and Sb ← Au back-donation) markedly redistribute the valence electrons from the cyclo-Sb3 ligands and Au3 interlayer to the Au-Sb bonds, which hold the complex together via σ bonding. Each cyclo-Sb3 possesses aromaticity with delocalized three-center three-electron (3c-3e) π bonds, which are essentially equivalent to a 3c-4e ππ* triplet system, following the reversed 4n Hückel rule for aromaticity in a triplet state. PMID:26275027

  7. Occurrence of Sporadic -E layer during the Low Solar Activity over the Anomaly Crest Region Bhopal, India

    NASA Astrophysics Data System (ADS)

    Bhawre, Purushottam

    2016-07-01

    Ionospheric anomaly crest regions are most challenging for scientific community to understand its mechanism and investigation, for this purpose we are investigating some inospheric result for this region. The study is based on the ionogram data recorded by IPS-71 Digital Ionosonde installed over anomaly crust region Bhopal (Geo.Lat.23.2° N, Geo. Long77.4° E, Dip latitude18.4°) over a four year period from January 2007 to December 2010, covering the ending phase of 23rd Solar Cycle and starting phase of 24th solar cycle. This particular period is felt to be very suitable for examining the sunspot number and it encompasses periods of low solar activities. Quarterly ionograms are analyzed for 24 hours during these study years and have been carefully examined to note down the presence of sporadic- E. We also note down the space weather activities along with the study. The studies are divided in mainly four parts with space and geomagnetic activities during these periods. The occurrence probability of this layer is highest in summer solstice, moderate during equinox and low during winter solstice. Remarkable occurrence peaks appear from June to July in summer and from December to January in winter. The layer occurrence showed a double peak variation with distinct layer groups, in the morning (0200 LT) and the other during evening (1800 LT).The morning layer descent was associated with layer density increase indicating the strengthening of the layer while it decreased during the evening layer descent. The result indicates the presence of semi-diurnal tide over the location while the higher descent velocities could be due to the modulation of the ionization by gravity waves along with the tides. The irregularities associated with the gradient-drift instability disappear during the counter electrojet and the current flow is reversed in westward.

  8. Active control of Boundary Layer Separation & Flow Distortion in Adverse Pressure Gradient Flows via Supersonic Microjets

    NASA Technical Reports Server (NTRS)

    Alvi, Farrukh S.; Gorton, Susan (Technical Monitor)

    2005-01-01

    Inlets to aircraft propulsion systems must supply flow to the compressor with minimal pressure loss, flow distortion or unsteadiness. Flow separation in internal flows such as inlets and ducts in aircraft propulsion systems and external flows such as over aircraft wings, is undesirable as it reduces the overall system performance. The aim of this research has been to understand the nature of separation and more importantly, to explore techniques to actively control this flow separation. In particular, the use of supersonic microjets as a means of controlling boundary layer separation was explored. The geometry used for the early part of this study was a simple diverging Stratford ramp, equipped with arrays of supersonic microjets. Initial results, based on the mean surface pressure distribution, surface flow visualization and Planar Laser Scattering (PLS) indicated a reverse flow region. We implemented supersonic microjets to control this separation and flow visualization results appeared to suggest that microjets have a favorable effect, at least to a certain extent. However, the details of the separated flow field were difficult to determine based on surface pressure distribution, surface flow patterns and PLS alone. It was also difficult to clearly determine the exact influence of the supersonic microjets on this flow. In the latter part of this study, the properties of this flow-field and the effect of supersonic microjets on its behavior were investigated in further detail using 2-component (planar) Particle Image Velocimetry (PIV). The results clearly show that the activation of microjets eliminated flow separation and resulted in a significant increase in the momentum of the fluid near the ramp surface. Also notable is the fact that the gain in momentum due to the elimination of flow separation is at least an order of magnitude larger (two orders of magnitude larger in most cases) than the momentum injected by the microjets and is accomplished with very

  9. Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates

    PubMed Central

    Chen, Lipin; Li, Shaobei; Fan, Bolin; Yan, Wenbo; Wang, Donghui; Shi, Lihong; Chen, Hongjian; Ban, Dechao; Sun, Shihao

    2016-01-01

    We demonstrate a sandwich configuration for microfluidic manipulation in LiNbO3 platform based on photovoltaic effect, and the behaviours of dielectric microdroplet under this sandwich configuration are investigated. It is found that the microdroplet can generate in the form of liquid bridge inside the LiNbO3-based sandwich structure under the governing dielectrophoretic force, and the dynamic process of microdroplet generation highly depends on the substrate combinations. Dynamic features found for different combinations are explained by the different electrostatic field distribution basing on the finite-element simulation results. Moreover, the electrostatic field required by the microdroplet generation is estimated through meniscus evolution and it is found in good agreement with the simulated electrostatic field inside the sandwich gap. Several kinds of microdroplet manipulations are attempted in this work. We suggest that the local dielectrophoretic force acting on the microdroplet depends on the distribution of the accumulated irradiation dosage. Without using any additional pumping or jetting actuator, the microdroplet can be step-moved, deformed or patterned by the inconsecutive dot-irradiation scheme, as well as elastically stretched out and back or smoothly guided in a designed pass by the consecutive line-irradiation scheme. PMID:27383027

  10. Pulsed terahertz inspection of non-conducting sandwich composites

    NASA Astrophysics Data System (ADS)

    Lopato, P.; Chady, T.

    2013-01-01

    Pulsed terahertz inspection enables accurate, contactless and safe for operating personnel evaluation of non-conducting structures. In this paper we present results of pulsed terahertz testing of various sandwich composite structures incorporating glass and basalt fibers based skin materials and spherecore and balsa wood based core materials. Various Time-Frequency Distributions (TFD) are utilized in order to obtain most valuable defects response.

  11. Damage Tolerance of Sandwich Plates With Debonded Face Sheets

    NASA Technical Reports Server (NTRS)

    Sankar, Bhavani V.

    2001-01-01

    A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.

  12. Cytomegalovirus in urine: detection of viral DNA by sandwich hybridization.

    PubMed

    Virtanen, M; Syvänen, A C; Oram, J; Söderlund, H; Ranki, M

    1984-12-01

    A cytomegalovirus (CMV)-specific sandwich hybridization test was constructed by using two adjacent BamHI DNA fragments of CMV DNA as reagents. The fragments were cloned into two different vectors. One of the recombinants was attached to the filter, and the other was the labeled probe. When present in the sample, CMV DNA mediated labeling of the filter by hybridizing to both the filter-bound DNA and the probe. The sandwich hybridization test was applied for the detection of CMV DNA from urine. DNA was released from virus by 2% Sarkosyl, concentrated by 2-butanol extraction and isopropanol precipitation, denatured, and finally subjected to the sandwich hybridization test. As a result, 70 to 90% of the original viral DNA could be recovered and demonstrated by the quantitative hybridization reaction. Urine could be stored at room temperature in Sarkosyl for at least 2 days without affecting the detectability of CMV. The clinical applicability of the test was evaluated by studying urine samples from four infants excreting CMV. Sandwich hybridization demonstrated the presence of CMV DNA in all of the specimens. These contained originally 10(5) to 10(8) CMV DNA molecules per ml. PMID:6097598

  13. Damage tolerance of a composite sandwich with interleaved foam core

    NASA Technical Reports Server (NTRS)

    Ishai, Ori; Hiel, Clement

    1992-01-01

    A composite sandwich panel consisting of carbon fiber-reinforced plastic (CFRP) skins and a syntactic foam core was selected as an appropriate structural concept for the design of wind tunnel compressor blades. Interleaving of the core with tough interlayers was done to prevent core cracking and to improve damage tolerance of the sandwich. Simply supported sandwich beam specimens were subjected to low-velocity drop-weight impacts as well as high velocity ballistic impacts. The performance of the interleaved core sandwich panels was characterized by localized skin damage and minor cracking of the core. Residual compressive strength (RCS) of the skin, which was derived from flexural test, shows the expected trend of decreasing with increasing size of the damage, impact energy, and velocity. In the case of skin damage, RCS values of around 50 percent of the virgin interleaved reference were obtained at the upper impact energy range. Based on the similarity between low-velocity and ballistic-impact effects, it was concluded that impact energy is the main variable controlling damage and residual strength, where as velocity plays a minor role.

  14. Modular container assembled from fiber reinforced thermoplastic sandwich panels

    DOEpatents

    Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman

    2007-12-25

    An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.

  15. Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates

    NASA Astrophysics Data System (ADS)

    Chen, Lipin; Li, Shaobei; Fan, Bolin; Yan, Wenbo; Wang, Donghui; Shi, Lihong; Chen, Hongjian; Ban, Dechao; Sun, Shihao

    2016-07-01

    We demonstrate a sandwich configuration for microfluidic manipulation in LiNbO3 platform based on photovoltaic effect, and the behaviours of dielectric microdroplet under this sandwich configuration are investigated. It is found that the microdroplet can generate in the form of liquid bridge inside the LiNbO3-based sandwich structure under the governing dielectrophoretic force, and the dynamic process of microdroplet generation highly depends on the substrate combinations. Dynamic features found for different combinations are explained by the different electrostatic field distribution basing on the finite-element simulation results. Moreover, the electrostatic field required by the microdroplet generation is estimated through meniscus evolution and it is found in good agreement with the simulated electrostatic field inside the sandwich gap. Several kinds of microdroplet manipulations are attempted in this work. We suggest that the local dielectrophoretic force acting on the microdroplet depends on the distribution of the accumulated irradiation dosage. Without using any additional pumping or jetting actuator, the microdroplet can be step-moved, deformed or patterned by the inconsecutive dot-irradiation scheme, as well as elastically stretched out and back or smoothly guided in a designed pass by the consecutive line-irradiation scheme.

  16. Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates.

    PubMed

    Chen, Lipin; Li, Shaobei; Fan, Bolin; Yan, Wenbo; Wang, Donghui; Shi, Lihong; Chen, Hongjian; Ban, Dechao; Sun, Shihao

    2016-01-01

    We demonstrate a sandwich configuration for microfluidic manipulation in LiNbO3 platform based on photovoltaic effect, and the behaviours of dielectric microdroplet under this sandwich configuration are investigated. It is found that the microdroplet can generate in the form of liquid bridge inside the LiNbO3-based sandwich structure under the governing dielectrophoretic force, and the dynamic process of microdroplet generation highly depends on the substrate combinations. Dynamic features found for different combinations are explained by the different electrostatic field distribution basing on the finite-element simulation results. Moreover, the electrostatic field required by the microdroplet generation is estimated through meniscus evolution and it is found in good agreement with the simulated electrostatic field inside the sandwich gap. Several kinds of microdroplet manipulations are attempted in this work. We suggest that the local dielectrophoretic force acting on the microdroplet depends on the distribution of the accumulated irradiation dosage. Without using any additional pumping or jetting actuator, the microdroplet can be step-moved, deformed or patterned by the inconsecutive dot-irradiation scheme, as well as elastically stretched out and back or smoothly guided in a designed pass by the consecutive line-irradiation scheme. PMID:27383027

  17. Development of biobased sandwich structures for mass transit application

    NASA Astrophysics Data System (ADS)

    Munusamy, Sethu Raaj

    Efforts to increase the biobased content in sandwich composites are being investigated to reduce the dependence on synthetically produced or mined, energy-intensive materials for numerous composite applications. Vegetable oil-based polyurethane foams are gaining recognition as good substitutes for synthetic counter parts while utilizing bast fiber to replace fiberglass is also gaining credence. In this study, soy oil-based polyurethane foam was evaluated as a core in a sandwich construction with facesheets of hybridized kenaf and E-glass fibers in a vinyl ester resin matrix to replace traditionally used plywood sheeting on steel frame for mass transit bus flooring systems. As a first step towards implementation, the static performance of the biobased foam was compared to 100% synthetic foam. Secondly, biobased sandwich structures were processed and their static performance was compared to plywood. The biobased sandwich composites designed and processed were shown to hold promise towards replacing plywood for bus flooring applications by displaying an increase of 130% for flexural strength and 135% for flexural modulus plus better indentation values.

  18. Composite Cocured Modular Eggcrate-Core Sandwich Structure

    NASA Technical Reports Server (NTRS)

    Magurany, Charles J.

    1995-01-01

    Lightweight composite-material (e.g., graphite fiber/epoxy matrix) cocured sandwich panels with eggcratelike cores developed for use as principal components of optical benches and other structures that support precise optical instruments. Structures offer greater thermal and mechanical stability. Advantages include easier fabrication and better mechanical properties.

  19. Debris Impact on CFRP-AL Honeycomb Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Higashide, Masumi; Nagao, Yosuke; Kibe, Seishiro; Francesconi, Alessandro; Paverin, Daniele

    In order to do risk assessments of debris impacts on unmanned spacecraft, it is necessary to investigate damage of honeycomb sandwich structures caused by debris impacts. However, the study of the honeycomb sandwich panel with CFRP face sheets has not been sufficiently performed. The purpose of this study is to investigate hypervelocity impact phenomena of CFRP-AL honeycomb sandwich structure. Hypervelocity impact tests were performed with a two-stage light gas gun at University of Padova. Three kinds of CFRP-AL honeycomb sandwich panels which are frequently used as a material of a spacecraft structure were tested. The cell size and the core thickness were varied. Aluminum spheres, 0.8 mm in diameter, were used as projectiles. The tests were performed at a velocity range between 2 and 5 km/sec. After the tests, the projectiles perforated all targets. The perforation holes on the panels were measured, and ultrasonic inspection was performed. The area of the perforation holes of the panel were increased with the impact velocity. The core size of the honeycomb core did not influence the relationship between the hole and the impact velocity. Impacts of the projectile on the foil of honeycomb cell caused heavy damage to a face sheet of the opposite side of the impact surface.

  20. Methods for Assessing Honeycomb Sandwich Panel Wrinkling Failures

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart F.; Dial, William B.; Bednarcyk, Brett A.

    2012-01-01

    Efficient closed-form methods for predicting the facesheet wrinkling failure mode in sandwich panels are assessed. Comparisons were made with finite element model predictions for facesheet wrinkling, and a validated closed-form method was implemented in the HyperSizer structure sizing software.

  1. Detection of entrapped moisture in honeycomb sandwich structures

    NASA Technical Reports Server (NTRS)

    Hallmark, W. B.

    1967-01-01

    Thermal neutron moisture detection system detects entrapped moisture in intercellular areas of bonded honeycomb sandwich structures. A radium/beryllium fast neutron source bombards a specimen. The emitted thermal neutrons from the target nucleus are detected and counted by a boron trifluoride thermal neutron detector.

  2. High-frequency vibrations of sandwich plates and delamination detection

    NASA Astrophysics Data System (ADS)

    Jensen, Alf E.; Irgens, Fridtjov

    1998-06-01

    In multi-hull marine vehicles assembled by FRP sandwich composite materials problems with delamination and skin/core debonding are reported. High frequency vibrations in foam core sandwich materials are investigated to see if it was possible to apply them, together with bending vibrations, in an early damage warning system for delamination detection in marine vessels. This manuscript presents a theory for high frequency vibration in sandwich plates and beams. The core is modeled as a two parameter foundation with shearing interaction effects as well as normal stress effects in the core included. The skins are modeled as ordinary plates or beams on a foundation. Expressions for both anti-symmetric and symmetric modes are given. In addition to the theoretical development, experiments with a simply supported sandwich beam, using a TV-Holography technic, were performed and good accordance between theory and experiments were achieved. The results indicates that disappearance of symmetric modes may be used a parameter for delamination detection. The anti-symmetric modes may be interchangeable with higher bending modes by an early damage warning system. To avoid this, the theory presented may be applied to determine the anti-symmetric frequency values in forehand.

  3. Star cell type core configuration for structural sandwich materials

    DOEpatents

    Christensen, Richard M.

    1995-01-01

    A new pattern for cellular core material used in sandwich type structural materials. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes.

  4. Investigating the effect of solvent boiling temperature on the active layer morphology of diffusive bilayer solar cells

    NASA Astrophysics Data System (ADS)

    Vohra, Varun; Dörling, Bernhard; Higashimine, Koichi; Murata, Hideyuki

    2016-01-01

    Using chlorobenzene as a base solvent for the deposition of the poly(3-hexylthiophene-2,5-diyl) (P3HT) layer in P3HT:phenyl-C61-butyric acid methyl ester diffusive bilayer solar cells, we investigate the effect of adding of small amounts of high-boiling-point solvents with similar chemical structures on the resulting active layer morphologies. The results demonstrate that the crystallinity of the P3HT films as well as the vertical donor-acceptor gradient in the active layer can be tuned by this approach. The use of high-boiling-point solvents improved all photovoltaic parameters and resulted in a 32% increase in power conversion efficiency.

  5. Enzymatic and microbiological inhibitory activity in eggshell membranes as influenced by layer strains and age and storage variables.

    PubMed

    Ahlborn, G; Sheldon, B W

    2005-12-01

    Eggshell membranes (ESM) have been shown to exhibit antibacterial activity. The purpose of this study was to evaluate the enzymatic and biological [decimal reduction times (D-values)] activities of ESM as a function of bird breed, age, and ESM stabilization treatments. Younger White Leghorn (WL) hens produced ESM with 28% higher lysozyme activity than Rhode Island Red (RIR) layers. In contrast, older WL layers produced ESM with 17% less lysozyme activity than ESM from RIR layers. Similarly, beta-N-acetylglucosaminidase (beta-NAGase) ESM activities differed by hen age within breeds with younger hens yielding 14 to 16% more enzyme activity. D54 degrees C-values of Salmonella Typhimurium cells preexposed to WL ESM did not differ as a function of bird age (33, 50, and 81 wk). The ESM Lysozyme and beta-NAGase activities varied somewhat over a 6-mo storage study after treatment with 1 of 5 stabilization methods [i.e., storage at 4 degrees C, -20 degrees C, or ambient air storage after freeze drying, air drying (23 degrees C), or forced-air drying (50 degrees C)]. Both air and forced-air drying yielded significant reductions in beta-NAGase and lysozyme ESM activity (ca 12 to 30%) after the initial 24 h and then remained fairly stable during the extended storage. Freeze-dried samples retained the most enzymatic activity (95%) throughout the 6-mo trial, whereas refrigerated ESM lost 20 and 18% of the beta-NAGase and lysozyme activities, respectively. Frozen ESM lost 22% of the beta-NAGase activity, whereas lysozyme was nearly unaffected after 6 mo. The ESM biological activities against S. Typhimurium were not adversely impacted by layer breed or age. No significant loss in biological activity of ESM was detected 24 h after processing or after 6 mo of storage for refrigerated, frozen, and freeze-dried membranes, whereas significant reductions were observed for air- and heat-dried ESM. These findings demonstrate that ESM enzyme and biological activities are relatively

  6. Self-assembly of 2D sandwich-structured MnFe{sub 2}O{sub 4}/graphene composites for high-performance lithium storage

    SciTech Connect

    Li, Songmei Wang, Bo; Li, Bin; Liu, Jianhua; Yu, Mei; Wu, Xiaoyu

    2015-01-15

    Highlights: • MFO/GN composites were synthesized by a facile in situ solvothermal approach. • The MFO microspheres are sandwiched between the graphene layers. • Each MFO microsphere is an interstitial cluster of nanoparticles. • The MFO/GN electrode exhibits an enhanced cyclability for Li-ion batteries anodes. - Abstract: In this study, two-dimensional (2D) sandwich-structured MnFe{sub 2}O{sub 4}/graphene (MFO/GN) composites are synthesized by a facile in situ solvothermal approach, using cetyltrimethylammonium bromide (CTAB) as cationic surfactant. As a consequence, the nanocomposites of MFO/GN self-assembled into a 2D sandwich structure, in which the interstitial cluster structure of microsphere-type MnFe{sub 2}O{sub 4} is sandwiched between the graphene layers. This special structure of the MFO/GN composites used as anodes for lithium-ion batteries will be favorable for the maximum accessible surface of electroactive materials, fast diffusion of lithium ions and migration of electron, and elastomeric space to accommodate volume changes during the discharge–charge processes. The as-synthesized MFO/GN composites deliver a high specific reversible capacity of 987.95 mA h g{sup −1} at a current density of 200 mA g{sup −1}, a good capacity retention of 69.27% after 80 cycles and excellent rate performance for lithium storage.

  7. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  8. Compressive strength after blast of sandwich composite materials.

    PubMed

    Arora, H; Kelly, M; Worley, A; Del Linz, P; Fergusson, A; Hooper, P A; Dear, J P

    2014-05-13

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene-acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson-Cranz scaled distance of 3.02 m kg(-1/3), 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411-413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  9. Comparative Study of Permeatal Sandwich Tympanoplasty and Postaural Underlay Technique

    PubMed Central

    Nagpure, Prakash Shankarrao; Yadav, Manish; Chavan, Sushil

    2016-01-01

    Introduction Tympanoplasty is the most common operation performed by an Otolaryngologist right from the period of residency. During the last hundred years various modifications in this surgical technique have come up because of continued efforts made by otologists all over the world to achieve the best surgical outcome. Aim To compare the graft take up and complications associated with the Permeatal Sandwich Tympanoplasty performed with the use of Otoendoscope and traditional Postaural Underlay technique of Tympanoplasty from 1st September 2014 to 30th August 2015. Materials and Methods Patients attending the ENT OPD, suffering from Chronic Suppurative Otitis Media (CSOM) were selected on the basis of type of perforation and their workup was done to assess the candidature for tympanoplasty. Results A total of 100 patients were included in the study and the overall graft take was 92.3% in cases of Permeatal Sandwich technique as compared to 64.58% in the case of postaural underlay technique, with a majority of the failures in the large central perforation group rendering a p = 0.021 for patients operated for Large perforations, p = 0.036 for moderate perforations and p = 0.476 for small perforations. The overall p = 0.000649 which is highly significant. On comparing the complications there were only 2 cases in Permeatal Sandwich Technique compared to 25 cases in Postaural Underlay technique rendering a highly significant p-value 0f 0.000000348. There was a difference in hearing improvement with majority of the cases improving to the range of 16-25 dB in Permeatal Sandwich technique compared to 26-45 dB in Postaural Underlay technique. Conclusion Permeatal Sandwich technique produce much better results when compared with Postaural approach in terms of graft take up, complications and hearing improvement. PMID:27190842

  10. Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Pan, Xicai; Li, Yanping; Yu, Qihao; Shi, Xiaogang; Yang, Daqing; Roth, Kurt

    2016-07-01

    Seasonally variable thermal conductivity in active layers is one important factor that controls the thermal state of permafrost. The common assumption is that this conductivity is considerably lower in the thawed than in the frozen state, λt/λf < 1. Using a 9-year dataset from the Qinghai-Tibet Plateau (QTP) in conjunction with the GEOtop model, we demonstrate that the ratio λt/λf may approach or even exceed 1. This can happen in thick (> 1.5 m) active layers with strong seasonal total water content changes in the regions with summer-monsoon-dominated precipitation pattern. The conductivity ratio can be further increased by typical soil architectures that may lead to a dry interlayer. The unique pattern of soil hydraulic and thermal dynamics in the active layer can be one important contributor for the rapid permafrost warming at the study site. These findings suggest that, given the increase in air temperature and precipitation, soil hydraulic properties, particularly soil architecture in those thick active layers must be properly taken into account in permafrost models.

  11. Vibration and acoustic properties of honeycomb sandwich structures subject to variable incident plane-wave angle pressure loads

    NASA Astrophysics Data System (ADS)

    Yan, Jiaxue

    Honeycomb structures are widely used in many areas for their material characteristics such as high strength-to-weight ratio, stiffness-to-weight, sound transmission, and other properties. Honeycomb structures are generally constructed from periodically spaced tessellations of unit cells. It can be shown that the effective stiffness and mass properties of honeycomb are controlled by the local geometry and wall thickness of the particular unit cells used. Of particular interest are regular hexagonal (6-sided) honeycomb unit cell geometries which exhibit positive effective Poisson's ratio, and modified 6-sided auxetic honeycomb unit cells with Poisson's ratio which is effectively negative; a property not found in natural materials. One important honeycomb meta-structure is sandwich composites designed with a honeycomb core bonded between two panel layers. By changing the geometry of the repetitive unit cell, and overall depth and material properties of the honeycomb core, sandwich panels with different vibration and acoustic properties can be designed to shift resonant frequencies and improve intensity and Sound Transmission Loss (STL). In the present work, a honeycomb finite element model based on beam elements is programmed in MATLAB and verified with the commercial finite element software ABAQUS for frequency extraction and direct frequency response analysis. The MATLAB program was used to study the vibration and acoustic properties of different kinds of honeycomb sandwich panels undergoing in-plane loading with different incident pressure wave angles and frequency. Results for the root mean square intensity IRMS based on normal velocity on the transmitted side of the panel measure vibration magnitude are reported for frequencies between 0 and 1000 Hz. The relationship between the sound transmission loss computed with ABAQUS and the inverse of the intensity of surface velocity is established. In the present work it is demonstrated that the general trend between the

  12. Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs).

    PubMed

    Hill, R. D.; Liu, J. H.; Durnin, D.; Lamb, N.; Shaw, A.; Abrams, S. R.

    1995-06-01

    Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue. PMID:12228494

  13. Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs).

    PubMed Central

    Hill, R. D.; Liu, J. H.; Durnin, D.; Lamb, N.; Shaw, A.; Abrams, S. R.

    1995-01-01

    Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue. PMID:12228494

  14. Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers

    PubMed Central

    2014-01-01

    Background Glaucomatous optic neuropathy, a leading cause of blindness, can progress despite control of intraocular pressure - currently the main risk factor and target for treatment. Glaucoma progression shares mechanisms with neurodegenerative disease, including microglia activation. In the present model of ocular hypertension (OHT), we have recently described morphological signs of retinal microglia activation and MHC-II upregulation in both the untreated contralateral eyes and OHT eyes. By using immunostaining, we sought to analyze and quantify additional signs of microglia activation and differences depending on the retinal layer. Methods Two groups of adult Swiss mice were used: age-matched control (naïve, n = 12), and lasered (n = 12). In the lasered animals, both OHT eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against Iba-1, MHC-II, CD68, CD86, and Ym1. The Iba-1+ cell number in the plexiform layers (PL) and the photoreceptor outer segment (OS), Iba-1+ arbor area in the PL, and area of the retina occupied by Iba-1+ cells in the nerve fiber layer-ganglion cell layer (NFL-GCL) were quantified. Results The main findings in contralateral eyes and OHT eyes were: i) ameboid microglia in the NFL-GCL and OS; ii) the retraction of processes in all retinal layers; iii) a higher level of branching in PL and in the OS; iv) soma displacement to the nearest cell layers in the PL and OS; v) the reorientation of processes in the OS; vi) MHC-II upregulation in all retinal layers; vii) increased CD68 immunostaining; and viii) CD86 immunolabeling in ameboid cells. In comparison with the control group, a significant increase in the microglial number in the PL, OS, and in the area occupied by Iba-1+ cells in the NFL-GCL, and significant reduction of the arbor area in the PL. In addition, rounded Iba-1+ CD86+ cells in the NFL-GCL, OS and Ym1+ cells, and rod-like microglia in the NFL-GCL were restricted to OHT eyes

  15. Bio-layer interferometry of a multivalent sulfated virus nanoparticle with heparin-like anticoagulant activity.

    PubMed

    Groner, Myles; Ng, Taryn; Wang, Weidong; Udit, Andrew K

    2015-07-01

    Heparin is a sulfated glycosaminoglycan that is routinely used as an anticoagulant. It is typically purified from bovine or porcine sources, leading to heterogeneity that poses several challenges when used clinically. We have found that the bacteriophage Qβ can be selectively sulfated to yield virus-like nanoparticles (sulf-VLP) that elicit anticoagulant activity similar to heparin. In an effort to explore the binding interactions that heparin-like VLPs make with cationic targets, described herein are bio-layer interferometry studies utilizing the BLItz platform that evaluate the interaction of sulf-VLP with the cationic peptide CDK5 (50% Lys). Streptavidin biosensors modified with biotin-CDK5 were found to bind strongly to sulf-VLP and not to the underivatized nanoparticle. Titration of sulf-VLP yielded concentration-dependent sensorgrams, permitting calculation of rate and equilibrium constants: k(on) = (8 ± 3) × 10(6) s(-1) for the association phase, k(off )= (5 ± 2) × 10(-3) M s(-1) for the dissociation phase, yielding an overall dissociation constant K(D)~ 1 nM. Fitting was best achieved using an equation possessing both exponential and linear terms, suggesting a mechanism more complex than 1:1 binding. To mitigate multivalency and rebinding effects, experiments were conducted with protamine (~70% Arg) added during the dissociation phase, leading to more pronounced dissociation curves and k off values that yielded a near-linear relationship with protamine concentration. PMID:25957844

  16. Feedbacks between tall shrubland development and active layer temperatures in northwest Siberian arctic tundra

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Frost, G. V.; Walker, D. A.; Matyshak, G.

    2013-12-01

    Permafrost soils are a globally significant carbon store, but changes in permafrost thermal regime observed in recent decades across much of the Arctic suggest that permafrost carbon balance is likely to change with continued climate warming. Critical to changes in permafrost carbon balance in a warmer world, however, are feedbacks between changes in the composition and density of surface vegetation, and the thermal state of permafrost. Shrub expansion has been widely observed in the northwest Siberian Low Arctic, but the magnitude and direction of shrub-induced impacts to permafrost temperature and stability remain poorly understood. Here we evaluate changes to active layer properties and thermal regime that occur during tall shrubland development (shrubs > 1.5 m height) within a northwest Siberian landscape dominated by well-developed, small-scale patterned ground features (e.g., non-sorted circles). We measured the annual time-series of soil temperature at 5 cm and 20 cm depth, and the structural attributes of vegetation at patterned-ground microsites across four stages of tall shrubland development: low-growing tundra lacking erect shrubs, newly-developed shrublands, mature shrublands, and paludified shrublands. Mean summer soil temperatures declined with increasing shrub cover and moss thickness, but winter soil temperatures increased with shrub development. Shrubland development strongly attenuated cryoturbation, promoting the establishment of complete vegetation cover and the development of a continuous organic mat. Increased vegetation cover, in turn, led to further reduced cryoturbation and an aggrading permafrost table. These observations indicate that tall shrub expansion that is now occurring in patterned-ground landscapes of the northwest Siberian Arctic may buffer permafrost from atmospheric warming, and increase carbon storage in these systems at least in the short term.

  17. Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica

    NASA Astrophysics Data System (ADS)

    Schaefer, Carlos Ernesto; Michel, Roberto; Souza, Karoline; Senra, Eduardo; Bremer, Ulisses

    2015-04-01

    The Ellsworth Mountains occur along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east and the Sentinel Range to the West. The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The