Science.gov

Sample records for active layer thaw

  1. Vertical profiles of trapped greenhouse gases in Alaskan permafrost active layers before the spring thaw

    NASA Astrophysics Data System (ADS)

    Byun, Eunji; Yang, Ji-woong; Kim, Yongwon; Ahn, Jinho

    2015-04-01

    Seasonally frozen ground over permafrost is important in controlling annual greenhouse gas exchange between permafrost and atmosphere. Soil microbes decompose soil carbon and generate carbon dioxide and methane when they become activated. However, the actual greenhouse gas emission follows various efflux pathways. For example, seasonal freezing of the top soil layers can either restrain or press the gas emission from deeper layers. It has been reported that abrupt release of methane during spring is attributable to the emission of trapped gases that had failed to be released instantly after formation (1, 2). In order to examine the seasonally trapped greenhouse gases, we drilled five Alaskan permafrost cores before spring thaw; one from coastal tundra, two from typical boreal forests, one from area where fire occurred, and one from peat accumulated sites. Vertical profiles of carbon dioxide and methane concentrations were obtained with 5-10 cm depth intervals. We found methane peaks from two cores, indicating inhibition of methane efflux. We also analyzed organic carbon, nitrogen and water contents and compared them with the greenhouse gas profiles. We are continuing analysis for the soil temperature profiles of the sampling boreholes because the detailed temperature information might be related to microbial activity, and can be used as indirect indicators of soil water freezing and latent heat influences at some active layer depth (zero curtain effects). All the high-resolution analyses for subsurface environments may help to improve understanding greenhouse gas emission from permafrost regions. 1. Mastepanov M, et al. (2008) Large tundra methane burst during onset of freezing. Nature 456(7222):628-630. 2. Song C, et al. (2012) Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters 7(3):034009.

  2. Active layer thickness and thaw subsidence in permafrost terrain: results from long-term observations near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Streletskiy, D. A.; Nelson, F. E.

    2012-12-01

    Patterns of active-layer thickness (ALT) on the North Slope of Alaska are highly variable, both spatially and temporally. Although geographic patterns of ALT repeat themselves from year to year, ALT is an integrated response to a large number of parameters. Thaw penetration into an ice-rich layer at the base of the active layer is accompanied by loss of volume (thaw consolidation) and results in subsidence at the ground surface. Differential thaw settlement occurs annually in permafrost environments as the layer of annual thaw (the active layer) develops. Significant ice segregation can occur at the bottom of the active layer during "cold" periods, due predominantly to freezing from below in the autumn and winter. This study examines trends in seasonal thawing of soils and vertical movements of the ground surface associated with formation and ablation of ice near the permafrost table in the Barrow region. The core thaw depth data set consists of ALT measurements conducted under the Circumpolar Active Layer Monitoring (CALM) program. The Barrow CALM site, represented by a regular 1 km2 grid, was established in the early 1990s. The reported ALT observations were initiated in 1992 and are measured annually in late August. Additional ALT measurements are available from a series of 10 x 10 meter plots established in 1962 as part of the Cold Regions Research and Engineering Laboratory (CRREL) research program at Barrow. Annual observations were made between 1962 and 1970. Measurements were reestablished in 1991 under the CALM program, following the original methodology. Field investigations to track interannual vertical movements associated with formation and ablation of ice near the permafrost table were initiated in 2003. Measurements continue annually at several CRREL plots representative of different elements of the tundra landscape. Observations were made at the end of the thawing season using Differential Global Positioning Systems (DGPS) technology. Results from

  3. Monitoring active layer thaw and freeze-back in four different periglacial landforms in Svalbard using Electrical Resistivity Tomography (ERT)

    NASA Astrophysics Data System (ADS)

    Juliussen, H.; Oswald, A.; Watanabe, T.; Christiansen, H. H.; Matsuoka, N.

    2012-04-01

    Thawing and freezing of the active layer has an important impact on the underlying permafrost through latent heat effects and changes in effective thermal conductivity and mechanisms of heat transport. Information on the active layer freeze/thaw dynamics is therefore important to understand the permafrost response to climate variability. In addition, active layer deepening may be an early sign of permafrost degradation, making monitoring programs such as the CALM network important. Active layer depths are traditionally measured by mechanical probing in fine-grained sediments or by vertical arrays of ground temperature sensors. The first technique prevents measurements to be made in stony sediments, while the latter technique gives only a point value of the active layer depth. In this study we have tested Electrical Resistivity Tomography (ERT) as a tool to measure and monitor active layer depth and freeze/thaw dynamics. The electrical resistivity of the ground is largely dependent on the unfrozen water content, making resistivity monitoring a potentially valuable tool to delineate freeze and thaw extent, and patterns in soil moisture. The results presented here are part of the IPY 2007-2009 research project 'Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard' (TSP NORWAY) and the IPA periglacial working group project on 'High-Resolution Periglacial Climate Indicators'. Electrode arrays were installed permanently in four different periglacial landforms in the Adventdalen valley area in central Svalbard; a solifluction slope in May 2007, a loess terrace (the UNISCALM site) in September 2007, and a mudboil site and ice-wedge site in June 2009 (Watanabe et al., submitted). The arrays were 16m long, giving maximum profile depths of 2m, and electrodes were installed with 0.2m spacing. Measurements were made with irregular but approximately two- to four-week time intervals, depending on weather conditions and

  4. Soil Active Layer Freeze/Thaw Detection Using Combined L- and P-Band Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Moghaddam, M.

    2014-12-01

    Monitoring of soil active layer freeze-thaw (FT) dynamics is critical for studying high-latitude ecosystem and environmental changes. We evaluated the potential of inferring FT state dynamics within a tundra soil profile using combined L- and P-band radar remote sensing and forward radiative transfer modeling of backscatter characteristics. A first-order two-layer soil scattering model (FTSS) was developed in this study to analyze soil multi-layer scattering effects. The FTSS was evaluated against other sophisticated modeling approaches and showed comparable performance. The FTSS was then applied to analyzing L- and P-band microwave responses to layered soil. We find that soil volume scattering is rather weak for the two frequencies for frozen or dry soil with mean particle size below 10mm diameter. Dielectric contrast between adjacent soil layers can contribute to total backscatter at both L- and P-band with more significant impact on P-band than L-band signals depending on the depth of soil profile. Combined L- and P-band radar data are shown to have greater utility than single channel observations in detecting soil FT dynamics and dielectric profile inhomogeneity. Further analysis using available airborne synthetic aperture radar (SAR) data and in-situ measurements also confirm that soil profile heterogeneity can be effectively detected using combined L- and P-band radar backscatter data. This study demonstrates the potential of lower frequency SARs from airborne missions, including UAV-SAR and AirMOSS, for Arctic and alpine assessment of soil active layer properties.

  5. Drivers and Estimates of Terrain Suitability for Active Layer Detachment Slides and Retrogressive Thaw Slumps in the Brooks Range and Foothills of Northwest Alaska, USA

    NASA Astrophysics Data System (ADS)

    Balser, A.; Jones, J.

    2015-12-01

    Active layer detachment sliding and retrogressive thaw slumping are important modes of upland permafrost degradation and disturbance in permafrost regions, and have been linked with climate warming trends, ecosystem impacts, and permafrost carbon release. In the Brooks Range and foothills of northwest Alaska, these features are widespread, with distribution linked to multiple landscape properties. Inter-related and co-varying terrain properties, including surficial geology, topography, geomorphology, vegetation and hydrology, are generally considered key drivers of permafrost landscape characteristics and responses to climate perturbation. However, these inter-relationships as collective drivers of terrain suitability for active layer detachment and retrogressive thaw slump processes are poorly understood in this region. We empirically tested and refined a hypothetical model of terrain factors driving active layer detachment and retrogressive thaw slump terrain suitability, and used final model results to generate synoptic terrain suitability estimates across the study region. Spatial data for terrain properties were examined against locations of 2,492 observed active layer detachments and 805 observed retrogressive thaw slumps using structural equation modelling and integrated terrain unit analysis. Factors significant to achieving model fit were found to substantially hone and constrain region-wide terrain suitability estimates, suggesting that omission of relevant factors leads to broad overestimation of terrain suitability. Resulting probabilistic maps of terrain suitability, and a threshold-delineated mask of suitable terrain, were used to quantify and describe landscape settings typical of these features. 51% of the study region is estimated suitable terrain for retrogressive thaw slumps, compared with 35% for active layer detachment slides, while 29% of the study region is estimated suitable for both. Results improve current understanding of arctic landscape

  6. Microbial mediators of carbon fate in thawing permafrost: connecting microbial activity to geochemistry across an in situ thaw gradient

    NASA Astrophysics Data System (ADS)

    Kim, E.; Mondav, R.; Woodcroft, B. J.; Hodgkins, S. B.; McCalley, C. K.; Wehr, R.; Logan, T.; VerBerkmoes, N. C.; Crill, P. M.; Chanton, J.; Saleska, S. R.; Rich, V. I.; Tyson, G. W.

    2012-12-01

    Permafrost holds approximately one third of global soil carbon in a relatively unavailable form. Climate change is predicted to virtually eliminate permafrost by the end of the century. The fate of the stored carbon will be driven by local geohydrology and mediated by microbial carbon transformations. Predicting thaw-induced feedbacks to climate change requires improving our understanding of concomitant changes in microbial activity, particularly in CO2 fixation, organic matter degradation, and CH4 cycling. Our team is using diverse geochemical and molecular measurements to track changes in carbon cycling and microbial communities across a natural permafrost thaw gradient. The gradient habitats are highly instrumented for ecological, hydrologic, and biogeochemical monitoring, and the thaw progression has been documented over decades. Permafrost thaw has caused slumping ground level and progressive changes in hydrology and plant composition, culminating in sedge-dominated fen wetland. Although this endpoint habitat supports higher plant productivity, there is a net increase in radiative forcing due to high methane emissions. This natural laboratory permits the examination of in situ changes in microbial composition and activity across thaw-induced habitat change. Specifically, taxonomic and metabolic profiling (16S rRNA gene amplicon, metagenomic and metaproteomic sequencing) is linking microbial metabolisms to synoptic geochemistry. Community data have revealed the presence of a novel highly active methanogen from the euryarchaeal lineage Rice Cluster-II. The abundance and distribution of RC-II across the thaw gradient habitats correlate to methane emission. The 2.1Mb RC-II genome (in 117 contigs, median 47kb, longest 135kb) was assembled from metagenomic data. The genome suggests the ability to perform hydrogenotrophic methanogenesis. To link resident microbes to active carbon cycling, we determined in situ community global protein expression profiles (i

  7. The subzero microbiome: microbial activity in frozen and thawing soils.

    PubMed

    Nikrad, Mrinalini P; Kerkhof, Lee J; Häggblom, Max M

    2016-06-01

    Most of the Earth's biosphere is characterized by low temperatures (<5°C) and cold-adapted microorganisms are widespread. These psychrophiles have evolved a complex range of adaptations of all cellular constituents to counteract the potentially deleterious effects of low kinetic energy environments and the freezing of water. Microbial life continues into the subzero temperature range, and this activity contributes to carbon and nitrogen flux in and out of ecosystems, ultimately affecting global processes. Microbial responses to climate warming and, in particular, thawing of frozen soils are not yet well understood, although the threat of microbial contribution to positive feedback of carbon flux is substantial. To date, several studies have examined microbial community dynamics in frozen soils and permafrost due to changing environmental conditions, and some have undertaken the complicated task of characterizing microbial functional groups and how their activity changes with changing conditions, either in situ or by isolating and characterizing macromolecules. With increasing temperature and wetter conditions microbial activity of key microbes and subsequent efflux of greenhouse gases also increase. In this review, we aim to provide an overview of microbial activity in seasonally frozen soils and permafrost. With a more detailed understanding of the microbiological activities in these vulnerable soil ecosystems, we can begin to predict and model future expectations for carbon release and climate change. PMID:27106051

  8. One-step encapsulation of siRNA between lipid-layers of multi-layer polycation liposomes by lipoplex freeze-thawing.

    PubMed

    Koide, Hiroyuki; Okamoto, Ayaka; Tsuchida, Hiroki; Ando, Hidenori; Ariizumi, Saki; Kiyokawa, Chiaki; Hashimoto, Masahiro; Asai, Tomohiro; Dewa, Takehisa; Oku, Naoto

    2016-04-28

    Small interfering RNA (siRNA) has the potential to be a candidate as a cure for intractable diseases. However, an appropriate vector is required for siRNA delivery because of the low transfection efficiency of siRNA without a vector and its easy degradation in vivo. Here, we report a simple, only one step, and efficient method for siRNA encapsulation into a lipidic nanocarrier by freeze-thawing: siRNA was entrapped between the lipid layers of multi-layer liposomes by freeze-thawing of lipoplexes composed of polycation liposomes (PCLs) and siRNA. siRNA-holding capacity to the PCL was increased by repeating freeze-thaw of the lipoplex up to 5cycles. Although siRNA in the conventional lipoplex was degraded after incubation in 90% fetal bovine serum for 72h, siRNA in the frozen and thawed lipoplex was not degraded. Interestingly, we found that the lipoplex formed a "packed multi-layer" structure after the freeze-thawing of "single-layer" PCL and siRNA complex, suggesting that siRNA exists between the lipid layers working as a binder. The frozen and thawed lipoplex showed significantly higher knockdown efficacy compared with the conventional lipoplex. In addition, PEGylated freeze-thawed lipoplexes delivered a higher amount of siRNA to a tumor in vivo compared with the PEGylated conventional ones. These results provide an attractive strategy for "one-step" encapsulation of siRNA into liposomes by freeze-thawing. PMID:26826309

  9. Identifying active methane-oxidizers in thawed Arctic permafrost by proteomics

    NASA Astrophysics Data System (ADS)

    Lau, C. M.; Stackhouse, B. T.; Chourey, K.; Hettich, R. L.; Vishnivetskaya, T. A.; Pfiffner, S. M.; Layton, A. C.; Mykytczuk, N. C.; Whyte, L.; Onstott, T. C.

    2012-12-01

    The rate of CH4 release from thawing permafrost in the Arctic has been regarded as one of the determining factors on future global climate. It is uncertain how indigenous microorganisms would interact with such changing environmental conditions and hence their impact on the fate of carbon compounds that are sequestered in the cryosol. Multitudinous studies of pristine surface cryosol (top 5 cm) and microcosm experiments have provided growing evidence of effective methanotrophy. Cryosol samples corresponding to active layer were sampled from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45) before the onset of annual thaw. Pyrosequencing of 16S rRNA gene indicated the occurrence of methanotroph-containing bacterial families as minor components (~5%) in pristine cryosol including Bradyrhizobiaceae, Methylobacteriaceae and Methylocystaceae within alpha-Proteobacteria, and Methylacidiphilaceae within Verrucomicrobia. The potential of methanotrophy is supported by preliminary analysis of metagenome data, which indicated putative methane monooxygenase gene sequences relating to Bradyrhizobium sp. and Pseudonocardia sp. are present. Proteome profiling in general yielded minute traces of proteins, which likely hints at dormant nature of the soil microbial consortia. The lack of specific protein database for permafrost posted additional challenge to protein identification. Only 35 proteins could be identified in the pristine cryosol and of which 60% belonged to Shewanella sp. Most of the identified proteins are known to be involved in energy metabolism or post-translational modification of proteins. Microcosms amended with sodium acetate exhibited a net methane consumption of ~65 ngC-CH4 per gram (fresh weight) of soil over 16 days of aerobic incubation at room temperature. The pH in microcosm materials remained acidic (decreased from initial 4.7 to 4.5). Protein extraction and

  10. Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges.

    PubMed

    Ormeci, B; Vesilind, P A

    2001-12-01

    Freeze-thaw conditioning effectively dewaters alum and activated sludges, but it works better on alum sludge than it does on activated sludge. The main difference between alum sludge and activated sludge is that activated sludge has high concentrations of both dissolved organic material and ions. Dissolved organic material and ions may possibly alter the freezing process and decrease the effectiveness of freeze-thaw conditioning on activated sludge. The objective of this study is to investigate the effect of dissolved organic material and cations on freeze-thaw conditioning of sludges, and to improve the effectiveness of freeze-thaw conditioning on activated sludge. The results of this study show that although protein, carbohydrate and cation concentrations in activated sludge supernatant are initially high, they dramatically increase after freeze-thaw conditioning. The increase is likely to come from the release of extracellular and intracellular material to sludge supernatant. The observed increase in the DNA concentration in activated sludge supernatant after freeze-thaw conditioning indicates that freeze-thaw causes cell disruption. Alum sludge supernatant, on the other hand, initially contains low concentrations of proteins, carbohydrates and cations which do not noticeably change after freeze-thaw conditioning. When ECPs (extracellular polymers) and cations are extracted from activated sludge before freeze-thaw conditioning. the sludge settles and dewaters better after the freeze-thaw. The resulting aggregates are smaller and denser resembling the "coffee ground" aggregates of alum sludge. PMID:11763031

  11. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Zhang, Ting-Jun; Li, Shu-Sun

    2003-01-01

    The objective of this project is to map the spatial variation of the active layer over the arctic permafrost in terms of two parameters: (i) timing and duration of thaw period and (ii) differential frost heave and thaw settlement of the active layer. To achieve this goal, remote sensing, numerical modeling, and related field measurements are required. Tasks for the University of Colorado team are to: (i) determine the timing of snow disappearance in spring through changes in surface albedo (ii) simulate the freezing and thawing processes of the active layer and (iii) simulate the impact of snow cover on permafrost presence.

  12. Landscape freeze/thaw retrievals from soil moisture active passive (SMAP) L-band radar measurements

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Derksen, C.

    2015-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission produces a daily landscape freeze/thaw product (L3_FT_A) which provides categorical (frozen, thawed, or [inverse] transitional) classification of the surface state (for land areas north of 45°N) derived from ascending and descending orbits of SMAP high-resolution L-band radar measurements. The FT retrievals are output to 3 km resolution polar and global grids with temporal revisit of 2 days or better north of ~55°N and 3 days or better north of 45°N. The algorithm classifies the land surface freeze/thaw state based on the time series of L-band radar backscatter compared to frozen and thawed reference states. This presentation will describe pre-launch L3_FT_A algorithm implementation and evaluation using NASA/SAC-D Aquarius L-band radar data, and provide an update on the current status of the SMAP L3_FT_A product. In advance of SMAP measurements, the L3_FT_A algorithm was configured and evaluated using Aquarius measurements. While the temporal (weekly) and spatial (~100 km) resolution is much coarser than SMAP, Aquarius provides L-band radar measurements at an incidence angle (normalized to 40 degrees) which is close to SMAP. Evaluation of FT retrievals derived using both Aquarius freeze/thaw references and backscatter time series as inputs identified good agreement during the fall freeze-up period with FT flag agreement (Aquarius versus in situ) exceeding the 80% SMAP mission requirement when summarized on a monthly basis. Disagreement was greater during the spring thaw transition due in part to uncertainty in characterizing the surface state from in situ measurements and backscatter sensitivity to the onset of snow melt, independent of the soil temperature beneath the snowpack. Initial challenges for SMAP derived FT retrievals include the scale difference between the Aquarius references (~100 km) and the SMAP measurements (3 km) which is particularly problematic in areas of complex topography and/or mixed

  13. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Li, Shu-Sun; Romanovsky, V.; Lovick, Joe; Wang, Z.; Peterson, Rorik

    2003-01-01

    A method of mapping the active layer of Arctic permafrost using a combination of conventional synthetic aperture radar (SAR) backscatter and more sophisticated interferometric SAR (INSAR) techniques is proposed. The proposed research is based on the sensitivity of radar backscatter to the freeze and thaw status of the surface soil, and the sensitivity of INSAR techniques to centimeter- to sub-centimeter-level surface differential deformation. The former capability of SAR is investigated for deriving the timing and duration of the thaw period for surface soil of the active layer over permafrost. The latter is investigated for the feasibility of quantitative measurement of frost heaving and thaw settlement of the active layer during the freezing and thawing processes. The resulting knowledge contributes to remote sensing mapping of the active layer dynamics and Arctic land surface hydrology.

  14. The effect of two pre-cryopreservation single layer colloidal centrifugation protocols in combination with different freezing extenders on the fragmentation dynamics of thawed equine sperm DNA

    PubMed Central

    2012-01-01

    Background Variability among stallions in terms of semen cryopreservation quality renders it difficult to arrive at a standardized cryopreservation method. Different extenders and processing techniques (such us colloidal centrifugation) are used in order to optimize post-thaw sperm quality. Sperm chromatin integrity analysis is an effective tool for assessing such quality. The aim of the present study was to compare the effect of two single layer colloidal centrifugation protocols (prior to cryopreservation) in combination with three commercial freezing extenders on the post-thaw chromatin integrity of equine sperm samples at different post-thaw incubation (37°C) times (i.e., their DNA fragmentation dynamics). Results Post-thaw DNA fragmentation levels in semen samples subjected to either of the colloidal centrifugation protocols were significantly lower (p<0.05) immediately after thawing and after 4 h of incubation at 37°C compared to samples that underwent standard (control) centrifugation. The use of InraFreeze® extender was associated with significantly less DNA fragmentation than the use of Botu-Crio® extender at 6 h of incubation, and than the use of either Botu-Crio® or Gent® extender at 24 h of incubation (p<0.05). Conclusions These results suggest that single layer colloidal centrifugation performed with extended or raw semen prior to cryopreservation reduces DNA fragmentation during the first four hours after thawing. Further studies are needed to determine the influence of freezing extenders on equine sperm DNA fragmentation dynamics. PMID:23217215

  15. Parametrizations of land-atmosphere energy and mass transfer: the role of the snow layer and the freeze/thaw cycle

    NASA Astrophysics Data System (ADS)

    Santolaria, E.; Rath, V.

    2012-04-01

    Land surface models are currently an active area of research because of their importance for circulation models on many spatial and temporal scales. Here we will compare the impact of different parametrization of the snow layer and the freeze-thaw cycle. The background of this study is the setup of a ling-term monitoring network in the Guadarrama mountains north of Madrid (GUMNET), where a number of complete meteorological observation sites will be complemented by shallow boreholes (10 m - 20 m), where temperatures and soil moisture are measured at various depths. We will focus our study on the aspects of different available land-surface models (Jules, NOAH, CLM) which impact their suitability to be used in a data assimilation framework with future data from GUMNET.

  16. Freeze-Thaw Stress: Effects of Temperature on Hydraulic Conductivity and Ultrasonic Activity in Ten Woody Angiosperms1

    PubMed Central

    Charrier, Guillaume; Charra-Vaskou, Katline; Kasuga, Jun; Cochard, Hervé; Mayr, Stefan; Améglio, Thierry

    2014-01-01

    Freeze-thaw events can affect plant hydraulics by inducing embolism. This study analyzed the effect of temperature during the freezing process on hydraulic conductivity and ultrasonic emissions (UE). Stems of 10 angiosperms were dehydrated to a water potential at 12% percentage loss of hydraulic conductivity (PLC) and exposed to freeze-thaw cycles. The minimal temperature of the frost cycle correlated positively with induced PLC, whereby species with wider conduits (hydraulic diameter) showed higher freeze-thaw-induced PLC. Ultrasonic activity started with the onset of freezing and increased with decreasing subzero temperatures, whereas no UE were recorded during thawing. The temperature at which 50% of UE were reached varied between −9.1°C and −31.0°C across species. These findings indicate that temperatures during freezing are of relevance for bubble formation and air seeding. We suggest that species-specific cavitation thresholds are reached during freezing due to the temperature-dependent decrease of water potential in the ice, while bubble expansion and the resulting PLC occur during thawing. UE analysis can be used to monitor the cavitation process and estimate freeze-thaw-induced PLC. PMID:24344170

  17. In situ measured and simulated seasonal freeze-thaw cycle: A 2-year comparative study between layered and homogeneous field soil profiles

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Sun, Y.; Jones, S. B.; Vasilyev, V. I.; Popov, V. V.; Wang, G.; Zheng, L.

    2014-11-01

    Annual freeze-thaw cycles of soil significantly impact agricultural and ecosystem services in cold regions. For advancing our understanding of freeze-thaw process, both improved measurements and simulations of coupled-heat-water-transfer (CHWT) phenomenon are needed under different field conditions. This paper focused on a comparative study between a CHWT-model simulation versus in situ measurements of liquid soil water content (LSWC) and soil temperature (ST) at two agricultural field sites. The first site consisted of a layered soil profile with sandy silt loam (0-60 cm) and clay loam (60-130 cm) layers, and the other site was a uniform sand profile (0-110 cm). Measurements were made over two winters between 2011 and 2013, i.e. the first winter is 2011-2012 (year 1) and the second winter is 2012-2013 (year 2), in the northeast of China employing an access-tube dielectric sensor combined with a temperature measurement array. During the freezing period of the year 1 winter, the soil freezing characteristic curves (SFCCs) were determined in situ in relation to the site-specific data of LSWC and ST and subsequently used for the model calibration. For the thawing process of year 1 and the freeze-thaw process of year 2, the resulting ST simulation time series were well-correlated with field measurements. In terms of the resulting LSWC, the numerical simulations also correlated well (R2 > 0.895, RMSE < 0.0381 cm3 cm-3) with the in situ observations of freezing and quasi-steady-state conditions at depths of 50- and 100-cm. The reasons for relatively reduced agreement between simulated and measured LSWC during the thawing stage (i.e., R2 > 0.702, RMSE < 0.0468 cm3 cm-3) are discussed. The resulting time series simulations confirm the model's capability for describing freeze- and thaw-front migration in layered and homogeneous freezing soils.

  18. Isotropic thaw subsidence in undisturbed permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Nikolay I.; Streletskiy, Dmitry A.; Little, Jonathon D.; Nelson, Frederick E.

    2013-12-01

    in undisturbed terrain within some regions of the Arctic reveal limited correlation between increasing air temperature and the thickness of the seasonally thawed layer above ice-rich permafrost. Here we describe landscape-scale, thaw-induced subsidence lacking the topographic contrasts associated with thermokarst terrain. A high-resolution, 11 year record of temperature and vertical movement at the ground surface from contrasting physiographic regions of northern Alaska, obtained with differential global positioning systems technology, indicates that thaw of an ice-rich layer at the top of permafrost has produced decimeter-scale subsidence extending over the entire landscapes. Without specialized observation techniques the subsidence is not apparent to observers at the surface. This "isotropic thaw subsidence" explains the apparent stability of active layer thickness records from some landscapes of northern Alaska, despite warming near-surface air temperatures. Integrated over extensive regions, it may be responsible for thawing large volumes of carbon-rich substrate and could have negative impacts on infrastructure.

  19. Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Segal, Rebecca A.; Lantz, Trevor C.; Kokelj, Steven V.

    2016-03-01

    Climate change is increasing the frequency and intensity of thermokarst, but the influences of regional climate and physiography remain poorly understood. Retrogressive thaw slumping is one of the most dynamic forms of thermokarst and affects many areas of glaciated terrain across northwestern Canada. In this study, we used airphotos and satellite imagery to investigate the influence of climate and landscape factors on thaw slump dynamics. We assessed slump size, density, and growth rates in four regions of ice-rich terrain with contrasting climate and physiographic conditions: the Jesse Moraine, the Tuktoyaktuk Coastlands, the Bluenose Moraine, and the Peel Plateau. Observed increases in: (1) the area impacted by slumps (+2 to +407%), (2) average slump sizes (+0.31 to +1.82 ha), and (3) slump growth rates (+169 to +465 m2 yr-1) showed that thermokarst activity is rapidly accelerating in ice-rich morainal landscapes in the western Canadian Arctic, where slumping has become a dominant driver of geomorphic change. Differences in slump characteristics among regions indicate that slump development is strongly influenced by topography, ground ice conditions, and Quaternary history. Observed increases in slump activity occurred in conjunction with increases in air temperature and precipitation, but variation in slump activity among the four regions suggests that increased precipitation has been an important driver of change. Our observation that the most rapid intensification of slump activity occurred in the coldest environment (the Jesse Moraine on Banks Island) indicates that ice-cored landscapes in cold permafrost environments are highly vulnerable to climate change.

  20. Assessing hazard risk, cost of adaptation and traditional land use activities in the context of permafrost thaw in communities in Yukon and the Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Benkert, B.; Perrin, A.; Calmels, F.

    2015-12-01

    Together with its partners, the Northern Climate ExChange (NCE, part of the Yukon Research Centre at Yukon College) has been mapping permafrost-related hazard risk in northern communities since 2010. By integrating geoscience and climate project data, we have developed a series of community-scale hazard risk maps. The maps depict hazard risk in stoplight colours for easy interpretation, and support community-based, future-focused adaptation planning. Communities, First Nations, consultants and local regulatory agencies have used the hazard risk maps to site small-scale infrastructure projects, guide land planning processes, and assess suitability of land development applications. However, we know that assessing risk is only one step in integrating the implications of permafrost degradation in societal responses to environmental change. To build on our permafrost hazard risk maps, we are integrating economic principles and traditional land use elements. To assess economic implications of adaptation to permafrost change, we are working with geotechnical engineers to identify adaptation options (e.g., modified building techniques, permafrost thaw mitigation approaches) that suit the risks captured by our existing hazard risk maps. We layer this with an economic analysis of the costs associated with identified adaptation options, providing end-users with a more comprehensive basis upon which to make decisions related to infrastructure. NCE researchers have also integrated traditional land use activities in assessments of permafrost thaw risk, in a project led by Jean Marie River First Nation in the Northwest Territories. Here, the implications of permafrost degradation on food security and land use priorities were assessed by layering key game and gathering areas on permafrost thaw vulnerability maps. Results indicated that close to one quarter of big and small game habitats, and close to twenty percent of key furbearer and gathering areas within the First Nation

  1. Estimated thickness of seasonally thawed layer for the Verhne-Charsky Basin, north of the Chita region, Russia: comparison of approaches

    NASA Astrophysics Data System (ADS)

    Aleksyutina, D.; Motenko, R.

    2010-12-01

    Seasonally thawed layer thickness estimations were conducted for the area to southwest from New Chara city, north of the Chita region. Studied area is located within the Verhne-Charsky Basin between mountain ridges Kodar and Udokan. Permafrost has a wide distribution in the area of researches. Thickness of seasonally thawed layer varies from 0.5 to 0.8 meters. Detail investigations were carried at the first terrace above the flood-plain on the right bank of the Chara River. Upper part of geological section was presented by clayish sands and bog mucks overlaid by alluvial sands. Sands, clay sands and bog mucks were collected and studied in the laboratory. Thermal properties were investigated by the I-st type regular mode method (a-calorimeter). Phase composition of water in the frozen grounds was studied by contact and cryoscopic methods. We studied these grounds in the range of humidity and density which can be observed in the natural environment. The humidity of bog mucks varies from 55 to 460 percents and density varies from 0.3 to 1.1 g/cm3. The humidity of sands varies from 10 to 30 percents and density varies from 1.3 to 1.55 g/cm3. The humidity of clayish sands varies from 15 to 260 percents and density varies from 1.1 to 1.85 g/cm3. Based on obtained laboratory data the thickness of seasonally thawed layer was estimated using the different methods. Estimated thicknesses were compared with the thickness of seasonally thawed layer observed in the field and the best method of estimation for studied area was selected.

  2. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B. M.; Zhang, T.; Parsekian, A. D.; Zebker, H. A.

    2013-12-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on arctic tundra lowlands, but their present-day dynamic states are seldom investigated. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located near Prudhoe Bay, Alaska where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area analyzed exhibited seasonal thaw settlement of 3-4 cm. However, four of the DTLBs analyzed exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10-35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on arctic coastal lowlands.

  3. Ground Validated Freeze/Thaw Timings Using Multifrequency Active and Passive Satellite Observations: A Comparison of Retrieval Methodologies

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Schroeder, R.; Azarderakhsh, M.

    2012-12-01

    The freeze/thaw state of the Earth's land surface has a considerable influence on the terrestrial water, energy and carbon cycles. Microwave frequency satellite observations are often used to the determine the landcover freeze/thaw state because of a high temporal repeat time and global coverage. Methodologies have been developed to detect changes in active and passive microwave-frequency measurements that occur during the transition from the frozen to thawed state. We evaluate the performance of several of these methodologies including: absolute-value thresholding, convolution-based change detection and running window methods. This validation effort is part of the preparations for the global freeze/thaw product derived from the Soil Moisture Active Passive (SMAP) mission. Freeze/thaw records produced from each method and sensor are evaluated for the period, 2000-2012, at locations containing detailed in-situ observations from ground station networks. Additionally, at several sites we illustrate in detail the microwave response during freeze/thaw transitions for all frequencies and polarizations using in-situ measurements of snow depth, soil temperature and vegetative indices. Channels and polarizations for each sensor are evaluated independently in order to illustrate useful approaches and combinations for future data fusion projects or combined active and passive freeze/thaw algorithms. Passive microwave observations used in this study are from the Special Sensor Microwave Imager (SSM/I) including the 19, 22 37 and 88 GHz channels, and span the entire measurement period. The active microwave components are temporally staggered and include the 13.4 GHz QuikSCAT scatterometer aboard SeaWinds from 1999-2009 and the Advanced Scatterometer (ASCAT) at 5.255 GHz onboard the European Organization for the Exploitation of Meteorological Satellite from 2009 onward. More focused attention will be given to the period of scatterometer overlap. For a consistent scatterometer

  4. Characterization of alkaline phosphatase activity in seminal plasma and in fresh and frozen-thawed stallion spermatozoa.

    PubMed

    Bucci, Diego; Giaretta, Elisa; Spinaci, Marcella; Rizzato, Giovanni; Isani, Gloria; Mislei, Beatrice; Mari, Gaetano; Tamanini, Carlo; Galeati, Giovanna

    2016-01-15

    Alkaline phosphatase (AP) has been studied in several situations to elucidate its role in reproductive biology of the male from different mammalian species; at present, its role in horse sperm physiology is not clear. The aim of the present work was to measure AP activity in seminal plasma and sperm extracts from freshly ejaculated as well as in frozen-thawed stallion spermatozoa and to verify whether relationship exists between AP activity and sperm quality parameters. Our data on 40 freshly ejaculated samples from 10 different stallions demonstrate that the main source of AP activity is seminal plasma, whereas sperm extracts contribution is very low. In addition, we found that AP activity at physiological pH (7.0) is significantly lower than that observed at pH 8.0, including the optimal AP pH (pH 10.0). Alkaline phosphatase did not exert any effect on sperm-oocyte interaction assessed by heterologous oocyte binding assay. Additionally, we observed a thermal stability of seminal plasma AP, concluding that it is similar to that of bone isoforms. Positive correlations were found between seminal plasma AP activity and sperm concentration, whereas a negative correlation was present between both spermatozoa extracts and seminal plasma AP activity and seminal plasma protein content. A significant decrease in sperm extract AP activity was found in frozen-thawed samples compared with freshly ejaculated ones (n = 21), concomitantly with the decrease in sperm quality parameters. The positive correlation between seminal plasma AP activity measured at pH 10 and viability of frozen-thawed spermatozoa suggests that seminal plasma AP activity could be used as an additional predictive parameter for stallion sperm freezability. In conclusion, we provide some insights into AP activity in both seminal plasma and sperm extracts and describe a decrease in AP after freezing and thawing. PMID:26433714

  5. Carbon release from Sphagnum peat during thawing in a montane area in China

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Song, Changchun; Wang, Jiaoyue; Miao, Yuqing; Mao, Rong; Song, Yanyu

    2013-08-01

    Soil thawing may affect the turnover of soil organic carbon (C) and the release of C to the atmosphere. Little is known about C release during thawing in the Great Hing'an Mountains, China. Through the incubations, we studied the emissions of CO2 and CH4 during thawing from the Sphagnum moss layer to the permafrost layer under aerobic and anaerobic conditions. Carbon was released quickly during thawing under different conditions. The Sphagnum moss layer produced more CO2 than the other layers. However, there was little CH4 release during thawing in the Sphagnum moss layer and burst of CH4 emissions in the peat and permafrost soils. These bursts include stored CH4 in the frozen samples and productions from microbial activity. The temperature sensitivity during thawing decreased across the freezing point in the Sphagnum moss layer, did not change greatly in the root layer, and increased greatly in the peat and permafrost layers. Changes in soil substrates and enzyme activities may affect C release during thawing.

  6. The Soil Moisture Active Passive (SMAP) Radar: Measurements at High Latitudes and of Surface Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.

  7. Isotropic Thaw Subsidence in Natural Landscapes of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Streletskiy, D. A.; Nelson, F. E.; Little, J.

    2013-12-01

    Recent research documents warming of permafrost, increased emissions of greenhouse gases in permafrost regions, and damage to civil infrastructure induced by melting of ground ice. Particular attention has been focused on 'thermokarst terrain,' localized systems of irregular pits, mounds, and ponds caused by differential subsidence accompanying thaw of ice-rich permafrost. Development of thermokarst terrain is often triggered by discrete, geographically constrained disturbance of vegetative cover or hydrological patterns. Here, we describe landscape-scale, thaw-induced subsidence in northern Alaska lacking the topographic contrasts associated with thermokarst terrain. Observations in some regions of the Arctic reveal little correlation between increasing air temperature and active-layer thickness (ALT) above permafrost in undisturbed terrain. The apparent stability of ALT in many Arctic landscapes may, however, be illusory if thaw penetrates into an ice-rich layer underlying the long-term base of the active layer. The apparent stability in ALT is attributable to the presence in many permafrost regions of an ice-rich 'transition layer' that resists thaw owing to the large amounts of latent heat involved in melting it. During warm summers, this layer protects underlying permafrost from thaw and creates nonlinearities in the response of the permafrost system to climatic forcing. We sought to determine whether widespread, relatively homogeneous, decadal-scale thaw subsidence, possibly attributable to climatic change, is occurring in natural, undisturbed landscapes and, if so, to estimate its magnitude and evaluate its role in the response of permafrost to atmospheric forcing. Field investigations designed to track interannual vertical movements associated with formation and ablation of ice near the permafrost table were begun in the summer of 2001 and continued annually at two 1 ha Circumpolar Active Layer Monitoring (CALM) sites representative of landscapes in the

  8. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    PubMed

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. PMID:26766394

  9. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

    NASA Astrophysics Data System (ADS)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude M.; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer; Turetsky, Merritt R.; McGuire, A. David; Shah, Manesh B.; Verberkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K.

    2015-05-01

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular `omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  10. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    PubMed

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost. PMID:25739499

  11. Multi-omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes

    SciTech Connect

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Shah, Manesh B.; VerBerkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Konstantinos; Jansson, Janet K.

    2015-03-04

    Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, if thawed may represent the largest future transfer of C from the biosphere to the atmosphere 1. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils 2-4 and a rapid shift in functional gene composition during short-term thaw experiments 3. However, the fate of permafrost C depends on climatic, hydrologic, and microbial responses to thaw at decadal scales 5, 6. Here the combination of several molecular “omics” approaches enabled us to determine the phylogenetic composition of the microbial community, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy revealed a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  12. Estimating 3D variation in active-layer thickness beneath arctic streams using ground-penetrating radar

    USGS Publications Warehouse

    Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.

    2009-01-01

    We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across three stream sites on the North Slope, AK, in August 2005, to investigate the dependence of thaw depth on channel morphology. Data were migrated with mean velocities derived from multi-offset GPR profiles collected across a stream section within each of the 3D survey areas. GPR data interpretations from the alluvial-lined stream site illustrate greater thaw depths beneath riffle and gravel bar features relative to neighboring pool features. The peat-lined stream sites indicate the opposite; greater thaw depths beneath pools and shallower thaw beneath the connecting runs. Results provide detailed 3D geometry of active-layer thaw depths that can support hydrological studies seeking to quantify transport and biogeochemical processes that occur within the hyporheic zone.

  13. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    NASA Astrophysics Data System (ADS)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  14. The Effect of Thawing Condition for Frozen Fish Meats

    NASA Astrophysics Data System (ADS)

    Abe, Shuji; Osako, Kazufumi; Watanabe, Manabu; Suzuki, Toru

    The influence of thawing speed on denaturation of muscle protein and quality of several kinds frozen fish meat was studied by measuring Ca-ATPase activity, drip loss, and microscopic observation. Frozen bigeye tuna, chub mackerel, alaska pollack and yellow tail meat thawed at 10°C by air (slow thawing) and water (rapid thawing). Ca-ATPase activity of slow thawed fishes meat decreased than it of rapid thawed fishes meat. On the other hand drip loss of slow thawed fishes meat increased than it of rapid thawed fishes meat. Decreasing of Ca-ATPase activity showed a good linear relation to increasing of drip loss. Further, from microscopic observation, it was confirmed that muscle cells of slow thawed fishes meat were disrupted than it of rapid thawed samples. Therefore,it was suggested that rapid warming on thawing process is better to inhibit protein denaturation and drip loss.

  15. Protective effects of ascorbic acid and vitamin E on antioxidant enzyme activity of freeze-thawed semen of Qinchuan bulls.

    PubMed

    Zhao, X L; Li, Y K; Cao, S J; Hu, J H; Wang, W H; Hao, R J; Gui, L S; Zan, L S

    2015-01-01

    The aim of this study was to determine the protective effects of the combination of ascorbic acid (Vc) and vitamin E (VE) on antioxidant enzyme activity, sperm motility, viability, and acrosome integrity of Qinchuan bulls after freeze-thaw. In this study, we determined the effects of Vc and VE on the activity of the antioxidant enzyme defense system comprising glutathione peroxidase (GSH-Px), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD). The combination of Vc and VE had protective effects on sperm motility and viability. With respect to acrosome integrity and the activity of GR and SOD, differences were observed between the experimental groups with added Vc (7 mg/mL) and VE (0.12 IU/mL) and the control group. The activity of GSH-Px in the experimental group (1400 IU/mL Vc and 0.12 IU/mL VE) was not different (P > 0.05) compared with that in the control group, while the activity of CAT showed a significant difference between the 2 groups (P < 0.05). Therefore, we inferred that the combination of Vc (1400 IU/mL) and VE (0.12 IU/mL) protected the sperm quality in the freeze-thaw process. PMID:25867404

  16. Reviews and Syntheses: Effects of permafrost thaw on arctic aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Tank, S. E.; Bowden, W. B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, M.; Anthony, K. M. Walter; Wickland, K. P.

    2015-07-01

    The Arctic is a water-rich region, with freshwater systems covering 16 % of the northern permafrost landscape. The thawing of this permafrost creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic and lotic systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas, vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying variables determine the degree to which permafrost thaw manifests as thermokarst, whether thermokarst leads to slumping or the formation of thermokarst lakes, and the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying variables determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted systems is also likely to change, with thaw-impacted lakes and streams having unique microbiological communities, and showing differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter and nutrient delivery. The degree to which thaw enables the delivery of

  17. A Loss in the Plasma Membrane ATPase Activity and Its Recovery Coincides with Incipient Freeze-Thaw Injury and Postthaw Recovery in Onion Bulb Scale Tissue 1

    PubMed Central

    Arora, Rajeev; Palta, Jiwan P.

    1991-01-01

    Plasma membrane ATPase has been proposed to be functionally altered during early stages of injury caused by a freeze-thaw stress. Complete recovery from freezing injury in onion cells during the postthaw period provided evidence in support of this proposal. During recovery, a simultaneous decrease in ion leakage and disappearance of water soaking (symptoms of freeze-thaw injury) has been noted. Since reabsorption of ions during recovery must be an active process, recovery of plasma membrane ATPase (active transport system) functions has been implicated. In the present study, onion (Allium cepa L. cv Downing Yellow Globe) bulbs were subjected to a freeze-thaw stress which resulted in a reversible (recoverable) injury. Plasma membrane ATPase activity in the microsomes (isolated from the bulb scales) and ion leakage rate (efflux/hour) from the same scale tissue were measured immediately following thawing and after complete recovery. In injured tissue (30-40% water soaking), plasma membrane ATPase activity was reduced by about 30% and this was paralleled by about 25% higher ion leakage rate. As water soaking disappeared during recovery, the plasma membrane ATPase activity and the ion leakage rate returned to about the same level as the respective controls. Treatment of freeze-thaw injured tissue with vanadate, a specific inhibitor of plasma membrane ATPase, during postthaw prevented the recovery process. These results indicate that recovery of freeze-injured tissue depends on the functional activity of plasma membrane ATPase. PMID:16668063

  18. Detecting the Signature of Permafrost Thaw in Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Mann, P. J.; Dittmar, T.; Eglinton, T. I.; Stubbins, A.

    2014-12-01

    Arctic permafrost soils contain vast quantities of ancient organic matter. Numerous studies have shown extensive permafrost thaw and degradation in the Arctic, but dissolved organic carbon (DOC) exported from the mouths of large Arctic rivers - which are expected to integrate processes and changes occurring through their watersheds - has been shown to be predominantly modern. This raises the question, where is the ancient DOC that is mobilized from permafrost thaw and the deepening of the active layer? This study examines DOC radiocarbon age, biolability and dissolved organic matter (DOM) composition via FT-ICR-MS in permafrost thaw streams and the Kolyma River mainstem (Northeast Siberia). Ancient permafrost thaw stream DOC is observed to be highly biolabile particularly in comparison to modern Kolyma River mainstem DOC. In conjunction with this high biolability the permafrost thaw stream DOM exhibits large changes in molecular structure, loss of hydrogen rich (energy rich) aliphatic molecules, and production of molecules in the classical area in van Krevelen space associated with riverine DOM. Modern Kolyma River mainstem DOM conversely appears very stable in bioincubations in comparison to ancient permafrost thaw DOM. Thus the apparent offset between mobilization of ancient permafrost derived organic matter and the current predominantly modern age of DOC at the mouth of major Arctic rivers may be explained due to microbial degradation of permafrost derived DOC within the river's hydrologic residence time.

  19. The Soil Moisture Active/Passive (SMAP) Freeze/Thaw Product: Providing a Crucial Linkage between Earth's Water and Carbon Cycles

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Kimball, J. S.; Kim, Y.

    2010-12-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth’s Northern Hemisphere, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. NASA’s Soil Moisture Active-Pasiive (SMAP) mission, currently planned for launch in 2014, will employ a combined radiometer and high-resolution radar to measure surface soil moisture and freeze/thaw state, thus providing new opportunities for scientific advances and societal benefits. Major science objectives of SMAP support the understanding of processes linking terrestrial water, energy and carbon cycles, the quantification of net carbon flux and the extension of capabilities for weather and climate prediction models. The SMAP suite of data products will include global maps of landscape freeze/thaw state derived from L-band radar at 1-3 km spatial resolution with a 2-day refresh rate for the high northern latitudes (i.e. latitudes above 50 degrees north). The algorithm employed in derivation of the freeze/thaw product employs a temporal change detection scheme to delineate freeze/thaw state changes associated with temporal variations in landscape microwave dielectric constant properties. Development of the algorithm follows from application of legacy data sets provided by satellite radars, both scatterometers and Synthetic Aperture Radars (SARs), and radiometers. This presentation reviews algorithm development, product derivation and validation, product applications and associated SMAP science objectives addressed through the derived freeze/thaw data products. We review efforts in which contemporary and legacy active and passive microwave remote sensing data sets have been applied in prototyping the freeze/thaw product and its applications. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of Montana under

  20. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Liu, L.; Schaefer, K.; Gusmeroli, A.; Grosse, G.; Jones, B. M.; Zhang, T.; Parsekian, A. D.; Zebker, H. A.

    2014-05-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3-4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10-35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  1. Genes Upregulated in Winter Wheat (Triticum aestivum L.) during Mild Freezing and Subsequent Thawing Suggest Sequential Activation of Multiple Response Mechanisms

    PubMed Central

    Skinner, Daniel Z.

    2015-01-01

    Exposing fully cold-acclimated wheat plants to a mild freeze-thaw cycle of −3°C for 24h followed by +3°C for 24 or 48h results in dramatically improved tolerance of subsequent exposure to sub-freezing temperatures. Gene enrichment analysis of crown tissue from plants collected before or after the −3°C freeze or after thawing at +3°C for 24 or 48h revealed that many biological processes and molecular functions were activated during the freeze-thaw cycle in an increasing cascade of responses such that over 150 processes or functions were significantly enhanced by the end of the 48 h, post-freeze thaw. Nearly 2,000 individual genes were upregulated more than 2-fold over the 72 h course of freezing and thawing, but more than 70% of these genes were upregulated during only one of the time periods examined, suggesting a series of genes and gene functions were involved in activation of the processes that led to enhanced freezing tolerance. This series of functions appeared to include extensive cell signaling, activation of stress response mechanisms and the phenylpropanoid biosynthetic pathway, extensive modification of secondary metabolites, and physical restructuring of cell membranes. By identifying plant lines that are especially able to activate these multiple mechanisms it may be possible to develop lines with enhanced winterhardiness. PMID:26173115

  2. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Tank, S. E.; Bowden, W. B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, M.; Anthony, K. M. Walter; Wickland, K. P.

    2015-12-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery

  3. The Soil Moisture Active Passive (SMAP): Radar Measurements at High Latitudes and of Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, a focus will be places on the radar design and associated data products at high latitudes. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used, among other things, to produce a surface freeze/thaw state data product.

  4. Mapping Microbial Carbon Substrate Utilization Across Permafrost Thaw

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Rich, V. I.; Hodgkins, S. B.; Tfaily, M.; Chanton, J.

    2014-12-01

    Permafrost thaw is likely to create a substantial positive feedback to climate warming, as previously frozen carbon becomes bioavailable and is released to the atmosphere. Microbes mediate this release, while also consuming "new" carbon from plant inputs and middle-aged soil carbon pools in the seasonally-thawed active layer overlying permafrost. This carbon consumption releases carbon dioxide (CO2) and methane (CH4), both potent greenhouse gases. To investigate microbial carbon cycling in this changing habitat, we examined how microbial communities' carbon substrate degradation changes along a natural permafrost thaw gradient in Stordalen Mire (68.35°N, 19.05°E), northern Sweden. At this location, intermediate thaw creates Sphagnum moss-dominated bogs, while complete thaw results in Eriophorum sedge-dominated fens. The progression of thaw results in increasing organic matter lability (Hodgkins et al, 2014), shifting microbial community composition (Mondav & Woodcroft et al 2014), and changing carbon gas emissions (McCalley et al, in review). However, the inter-relationship of the first two in producing the third remains unclear. We analyzed microbial carbon substrate utilization in the intermediate-thaw and full-thaw sites by two incubation-based methods. We used Biolog EcoPlates, which contain 31 ecologically relevant carbon substrates and a colorimetric marker of their consumption, and into which we added a soil liquid suspension. In addition, we performed mason-jar incubations of peat with carbon substrate amendments and measured CH4 and CO2 emissions. Preliminary Biolog Ecoplate incubations showed that intermediate-thaw features responded faster and more strongly overall to a wide range of substrates relative to the full-thaw features. Preliminary mason jar incubations showed that acetate amendment elicited the greatest response increase in CH4 production and the second greatest increase in CO2 production relative to the controls, in samples from both

  5. Carbon Flux and Isotopic Character of Soil and Soil Gas in Stabilized and Active Thaw Slumps in Northwest Alaska

    NASA Astrophysics Data System (ADS)

    Jensen, A.; Crosby, B. T.; Mora, C. I.; Lohse, K. A.

    2012-12-01

    Permafrost soils store nearly half the world's global carbon. Warming of arctic landscape results in permafrost thaw which causes ground subsidence or thermokarst. On hillslopes, these features rapidly and dramatically alter soil structure, temperature, and moisture, as well as the content and quality of soil organic matter. These changes alter both the rate and mechanism of carbon cycling in permafrost soils, making frozen soils available to both anaerobic and aerobic decomposition. In order to improve our predictive capabilities, we use a chronosequence thaw slumps to examine how fluxes from active and stabilized features differ. Our study site is along the Selawik River in northwest Alaska where a retrogressive thaw slump initiated in the spring of 2004. It has grown to a surface area of 50,000 m2. Products of the erosion are stored on the floor of the feature, trapped on a fan or flushed into the Selawik River. North of slump is undisturbed tundra and adjacent to the west is a slump feature that stabilized and is now covered with a second generation of spruce trees. In this 2 year study, we use measurements of CO2 efflux, δC13 in soil profiles and CO2 and CH4 abundance to constrain the response of belowground carbon emissions. We also focused on constraining which environmental factors govern C emissions within each of the above ecosystems. To this end, we measured soil temperature, and moisture, abundance and quality of soil organic carbon (SOC), water content, and bulk carbon compositions. Preliminary data from the summer of 2011 suggest that vegetation composition and soil temperature exert the strong control on CO2 efflux. The floor of the active slump and fan are bare mineral soils and are generally 10 to 15°C warmer than the tundra and stabilized slump. Consistently decreasing δC13 soil gas profiles in the recovered slump confirm that this region is a well-drained soil dominated by C3 vegetation. The δC13 gas profiles for the tundra, active slump

  6. Remote sensing of freeze-thaw transitions in Arctic soils using the complex resistivity method

    SciTech Connect

    Wu, Yuxin; Hubbard, Susan S; Ulrich, Craig; Wullschleger, Stan D

    2013-01-01

    Our ability to monitor freeze - thaw transitions is critical to developing a predictive understanding of biogeochemical transitions and carbon dynamics in high latitude environments. In this study, we conducted laboratory column experiments to explore the potential of the complex resistivity method for monitoring the freeze - thaw transitions of the arctic permafrost soils. Samples for the experiment were collected from the upper active layer of Gelisol soils at the Barrow Environmental Observatory, Barrow Alaska. Freeze - thaw transitions were induced through exposing the soil column to controlled temperature environments at 4 C and -20 C. Complex resistivity and temperature measurements were collected regularly during the freeze - thaw transitions using electrodes and temperature sensors installed along the column. During the experiments, over two orders of magnitude of resistivity variations were observed when the temperature was increased or decreased between -20 C and 0 C. Smaller resistivity variations were also observed during the isothermal thawing or freezing processes that occurred near 0 C. Single frequency electrical phase response and imaginary conductivity at 1 Hz were found to be exclusively related to the unfrozen water in the soil matrix, suggesting that these geophysical 24 attributes can be used as a proxy for the monitoring of the onset and progression of the freeze - thaw transitions. Spectral electrical responses and fitted Cole Cole parameters contained additional information about the freeze - thaw transition affected by the soil grain size distribution. Specifically, a shift of the observed spectral response to lower frequency was observed during isothermal thawing process, which we interpret to be due to sequential thawing, first from fine then to coarse particles within the soil matrix. Our study demonstrates the potential of the complex resistivity method for remote monitoring of freeze - thaw transitions in arctic soils. Although

  7. Influences and interactions of inundation, peat, and snow on active layer thickness

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-01

    Active layer thickness (ALT), the uppermost layer of soil that thaws on an annual basis, is a direct control on the amount of organic carbon potentially available for decomposition and release to the atmosphere as carbon-rich Arctic permafrost soils thaw in a warming climate. We investigate how key site characteristics affect ALT using an integrated surface/subsurface permafrost thermal hydrology model. ALT is most sensitive to organic layer thickness followed by snow depth but is relatively insensitive to the amount of water on the landscape with other conditions held fixed. The weak ALT sensitivity to subsurface saturation suggests that changes in Arctic landscape hydrology may only have a minor effect on future ALT. However, surface inundation amplifies the sensitivities to the other parameters and under large snowpacks can trigger the formation of near-surface taliks.

  8. Long-term active layer and ground surface temperature trends: results of 12 years of observations at Alaskan CALM sites

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Nelson, F. E.; Streletskyi, D. A.; Klene, A. E.; Schimek, M.; Little, J.

    2006-12-01

    The uppermost layer of seasonal thawing above permafrost (the active layer) is an important regulator of energy and mass fluxes between the surface and the atmosphere in the polar regions. The Circumpolar Active Layer Monitoring (CALM) program is a network of sites at which data about active-layer thickness (ALT) and dynamics are collected. CALM was established in the 1990s to observe and detect the long-term response of the active layer and near-surface permafrost to changes in climate. Active layer monitoring is an important component of efforts to assess the effects of global change in permafrost environments. CALM strategies are evolving; this presentation showcases some additions to CALM observation procedures designed to monitor processes and detect changes not anticipated in the original CALM protocol of the early 1990s. In this study we used data from 12 (1995-2006) years of extensive, spatially oriented field observations at CALM sites in northern Alaska to examine landscape-specific spatial and temporal trends in active-layer thickness and air and ground surface temperature. Despite an observed increase in air temperature, active-layer thickness exhibited a decreasing trend over the study period. This result indicates that soil consolidation accompanying penetration of thaw into an ice-rich stratum at the base of the active layer has resulted in subsidence of the surface with little or no apparent thickening of the active layer, as traditionally defined. Differential Global Positioning Systems (DGPS) technology was used to detect frost heave and thaw settlement within representative landscapes. Preliminary results indicate that heave and settlement follow patterns of spatial variation similar to those of active-layer thickness. To evaluate the effect of vegetation on ground surface temperature, several heat-transfer coefficients were estimated, including land cover specific thermal diffusivity and empirical n-factors.

  9. Microbes in thawing permafrost: the unknown variable in the climate change equation

    SciTech Connect

    Graham, David E; Wallenstein, Matthew D; Vishnivetskaya, T.; Waldrop, Mark P.; Phelps, Tommy Joe; Pfiffner, Susan M.; Onstott, T. C.; Whyte, Lyle; Rivkina, Elizaveta; Gilichinsky, David A; Elias, Dwayne A; Mackelprang, Rachel; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Wagner, Dirk; Wullschleger, Stan D; Jansson, Janet

    2012-01-01

    Considering that 25% of Earth s terrestrial surface is underlain by permafrost (ground that has been continuously frozen for at least 2 years), our understanding of the diversity of microbial life in this extreme habitat is surprisingly limited. Taking into account the total mass of perennially frozen sediment (up to several hundred meters deep), permafrost contains a huge amount of buried, ancient organic carbon (Tarnocai et al., 2009). In addition, permafrost is warming rapidly in response to global climate change (Romanovsky et al., 2010), potentially leading to widespread thaw and a larger, seasonally thawed soil active layer. This concern has prompted the question: will permafrost thawing lead to the release of massive amounts of carbon dioxide (CO2) and methane (CH4) into the atmosphere? This question can only be answered by understanding how the microbes residing in permafrost will respond to thaw, through processes such as respiration, fermentation, methanogenesis and CH4 oxidation (Schuur et al., 2009). Predicting future carbon fluxes is complicated by the diversity of permafrost environments, ranging from high mountains, southern boreal forests, frozen peatlands and Pleistocene ice complexes (yedoma) up to several hundred meters deep, which vary widely in soil composition, soil organic matter (SOM) quality, hydrology and thermal regimes (Figure 1). Permafrost degradation can occur in many forms: thaw can progress downward from seasonally-thawed active layer soils in warming climates or laterally because of changes in surface or groundwater flow paths (Grosse et al., 2011). Permafrost degradation can sometimes lead to dramatic changes in ecosystem structure and function

  10. Environmental correlates of peatland carbon fluxes in a thawing landscape: do transitional thaw stages matter?

    NASA Astrophysics Data System (ADS)

    Malhotra, A.; Roulet, N. T.

    2015-01-01

    Peatlands in discontinuous permafrost regions occur as a mosaic of wetland types, each with variable sensitivity to climate change. Permafrost thaw further increases the spatial heterogeneity in ecosystem structure and function in peatlands. Carbon (C) fluxes are well characterized in end-member thaw stages such as fully intact or fully thawed permafrost but remain unconstrained for transitional stages that cover a significant area of thawing peatlands. Furthermore, changes in the environmental correlates of C fluxes, due to thaw are not well described: a requirement for modeling future changes to C storage of permafrost peatlands. We investigated C fluxes and their correlates in end-member and a number of transitional thaw stages in a sub-arctic peatland. Across peatland lumped CH4 and CO2 flux data had significant correlations with expected correlates such as water table depth, thaw depth, temperature, photosynthetically active radiation and vascular green area. Within individual thaw states, bivariate correlations as well as multiple regressions between C flux and environmental factors changed variably with increasing thaw. The variability in directions and magnitudes of correlates reflects the range of structural conditions that could be present along a thaw gradient. These structural changes correspond to changes in C flux controls, such as temperature and moisture, and their interactions. Temperature sensitivity of CH4 increased with increasing thaw in bivariate analyses, but lack of this trend in multiple regression analyses suggested cofounding effects of substrate or water limitation on the apparent temperature sensitivity. Our results emphasize the importance of incorporating transitional stages of thaw in landscape level C budgets and highlight that end-member or adjacent thaw stages do not adequately describe the variability in structure-function relationships present along a thaw gradient.

  11. Environmental correlates of peatland carbon fluxes in a thawing landscape: do transitional thaw stages matter?

    NASA Astrophysics Data System (ADS)

    Malhotra, A.; Roulet, N. T.

    2015-05-01

    Peatlands in discontinuous permafrost regions occur as a mosaic of wetland types, each with variable sensitivity to climate change. Permafrost thaw further increases the spatial heterogeneity in ecosystem structure and function in peatlands. Carbon (C) fluxes are well characterized in end-member thaw stages such as fully intact or fully thawed permafrost but remain unconstrained for transitional stages that cover a significant area of thawing peatlands. Furthermore, changes in the environmental correlates of C fluxes, due to thaw, are not well described - a requirement for modeling future changes to C storage of permafrost peatlands. We investigated C fluxes and their correlates in end-member and a number of transitional thaw stages in a sub-arctic peatland. Across peatland-lumped CH4 and CO2 flux data had significant correlations with expected correlates such as water table depth, thaw depth, temperature, photosynthetically active radiation and vascular green area. Within individual thaw states, bivariate correlations as well as multiple regressions between C flux and environmental factors changed variably with increasing thaw. The variability in directions and magnitudes of correlates reflects the range of structural conditions that could be present along a thaw gradient. These structural changes correspond to changes in C flux controls, such as temperature and moisture, and their interactions. Temperature sensitivity of CH4 increased with increasing thaw in bivariate analyses, but lack of this trend in multiple regression analyses suggested cofounding effects of substrate or water limitation on the apparent temperature sensitivity. Our results emphasize the importance of incorporating transitional stages of thaw in landscape level C budgets and highlight that end-member or adjacent thaw stages do not adequately describe the variability in structure-function relationships present along a thaw gradient.

  12. Effects of Permafrost Thaw on Net Ecosystem Carbon Balance in a Subarctic Peatland

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roulet, N. T.; Moore, T. R.

    2014-12-01

    This research is to assess changes in net ecosystem carbon balance (NECB) with permafrost thaw in northern peatland: in particular how changes in C biogeochemistry influence NECB. Thawed transects associated with varying stages of permafrost thaw: from palsas with intact permafrost (P), through edge of palsa (EP), dry lawn (DL), wet lawn (WL), edge of thawed pond (ET), pond sedges (PS), to several thawed ponds (TP) in a subarctic peatland in northern Quebec were sampled in the snow free seasons of 2013 and 2014. The exchange of CO2 and CH4, vegetation, dissolved organic C (DOC) concentration and biodegradability, active layer depth, air and peat temperatures, water table depth (WT), pH, and conductivity were measured. Peat temperatures were quite similar among different locations, but the WT decreased significantly along the transect creating varied environmental conditions that supporting different plant communities. From dry to wet area, vegetation abundance and biomass showed reductions of shrubs and lichens, and increases of Sphagnum, grasses and sedges. Pore water pH increased from dry to wet area, and conductivity slightly decreased. Wet thaw area WL, ET and PS had relatively higher season gross ecosystem production (GEP) and higher season ecosystem respiration (ER), but relative similar net ecosystem CO2 exchange (NEE). Only TP had a significant higher positive season NEE. Palsa was the only CH4 sink, and quite high CH4 emissions were found after it thawed. CH4-C release significantly increased from dry to wet in thawed area, which even several times bigger than total C exchange in ET and PS. Generally, wet area had higher DOC concentration and higher DOC biodegradability indicated by lower SUVA254 (except PS which received great influence from pond). All components in the NECB (GEP, ER, CH4, DOC) increased significantly in magnitude from palsa to wet thawed area, and ecosystem C sink turned into source as palsa thawed into PS and TP. These results

  13. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment.

    PubMed

    Nowinski, Nicole S; Taneva, Lina; Trumbore, Susan E; Welker, Jeffrey M

    2010-07-01

    A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2-3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (Delta(14)C) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO(2) efflux by partitioning respiration into autotrophic and heterotrophic components. Delta(14)C signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO(2) sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45-55 cm thaw depth), while CO(2) from the ambient snow areas was approximately 100 years old (30-cm thaw depth). Heterotrophic respiration Delta(14)C signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from <50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO(2) in the atmosphere. PMID:20084398

  14. Thrombin generation, ProC®Global, prothrombin time and activated partial thromboplastin time in thawed plasma stored for seven days and after methylene blue/light pathogen inactivation

    PubMed Central

    Thiele, Thomas; Hron, Gregor; Kellner, Sarah; Wasner, Christina; Westphal, Antje; Warkentin, Theodore E.; Greinacher, Andreas; Selleng, Kathleen

    2016-01-01

    Background Methylene blue pathogen inactivation and storage of thawed plasma both lead to changes in the activity of several clotting factors. We investigated how this translates into a global loss of thrombin generation potential and alterations in the protein C pathway. Materials and methods Fifty apheresis plasma samples were thawed and each divided into three subunits. One subunit was stored for 7 days at 4 °C, one was stored for 7 days at 22 °C and one was stored at 4 °C after methylene blue/light treatment. Thrombin generation parameters, ProC®Global-NR, prothrombin time and activated partial thromboplastin time were assessed on days 0 and 7. Results The velocity of thrombin generation increased significantly after methylene blue treatment (increased thrombin generation rate; time to peak decreased) and decreased after storage (decreased thrombin generation rate and peak thrombin; increased lag time and time to peak). The endogenous thrombin generation potential remained stable after methylene blue treatment and storage at 4 °C. Methylene blue treatment and 7 days of storage at 4 °C activated the protein C pathway, whereas storage at room temperature and storage after methylene blue treatment decreased the functional capacity of the protein C pathway. Prothrombin time and activated partial thromboplastin time showed only modest alterations. Discussion The global clotting capacity of thawed plasma is maintained at 4 °C for 7 days and directly after methylene blue treatment of thawed plasma. Thrombin generation and ProC®Global are useful tools for investigating the impact of pathogen inactivation and storage on the clotting capacity of therapeutic plasma preparations. PMID:26192785

  15. Impact of permafrost thaw on Arctic tundra pond geochemistry

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Lougheed, V.

    2012-12-01

    Increasing evidence indicates the arctic tundra is changing physically, biologically, and chemically due to climate warming. With a warmer climate, permafrost is expected to thaw and influence the chemistry of arctic aquatic ecosystems. However, knowledge is limited on how geochemistry of arctic tundra pond ecosystems will respond. By re-sampling historical IBP ponds in Barrow, AK first sampled in the 1970s, previous studies have shown an increase in water temperature, nutrients and algal biomass through time. Results from this study indicate an increase of Ca, Mg, and Na in the water column, and a decrease in pH relative to the 1970s, suggesting an increased rate and magnitude of carbonate and Mg release. Seasonal trends were also examined to understand what processes, such as mineral weathering, peat decomposition and evaporation, were currently most influential in determining pond geochemistry. An increase in Ca/Na molar ratios, and carbonate and magnesium concentrations indicates that these tundra ponds are experiencing greater carbonate weathering compared to the 1970s and the rate of carbonate weathering increases in ponds as the summer progresses. However, increasing dissolved organic carbon (DOC) concentrations originating from peat decomposition are likely neutralizing additional inputs of carbonate, causing pond pH to decrease and exacerbating mineral weathering. A strong positive relationship between element concentrations and active layer pond thaw depth suggests that the origin of these additional solutes is likely from permafrost thaw. Active layer thaw depth has increased substantially over the past 40 years in the IBP ponds. Chloride/Bromide molar ratios and Deuterium/ 18-Oxygen isotope ratios will be used to determine the degree of evaporation occurring in tundra ponds. Ultimately, this study provides evidence for how geochemistry can identify the sources of chemical inputs to Arctic ponds affected by climate change and permafrost thaw.

  16. Influence of low molecular (below 5 KD) fraction from cord blood and actovegin on phagocytic activity of frozen-thawed neutrophils.

    PubMed

    Gulevsky, A K; Moiseyeva, N N; Gorina, O L

    2011-01-01

    The influence of the cattle cord blood low-molecular fraction (CBF below 5 kDa) as part of the rehabilitating medium in comparison with Actovegin on the functional activity of neutrophils after cryopreservation was studied. Incubation of frozen-thawed neutrophils in the rehabilitating media containing the low-molecular fraction or Actovegin stimulates their phagocytic function, in particular engulfing and digesting ability. After incubation of frozen-thawed neutrophils in the media containing 0.15 mg per ml CBF or 1.5 mg per ml Actovegin, their oxygen-dependent metabolism was activated, since the number of NBT-positive neutrophils increased significantly in comparison with the control. Gel-penetrating chromatography of CBF and Actovegin revealed differences between their chromatograms reflecting differences between the compositions compared. The recovery of the functional activity of frozen-thawed neutrophils was possible in the media containing the cattle cord blood low-molecular fraction (below 5 kDa) or Actovegin at 0.15 mg per ml and 1.5 mg per ml, respectively. PMID:21766142

  17. Seismic Spatial Autocorrelation as a Technique to Track Changes in the Permafrost Active Layer

    NASA Astrophysics Data System (ADS)

    Abbott, R. E.

    2013-12-01

    We present preliminary results from an effort to continuously track freezing and thawing of the permafrost active layer using a small-aperture seismic array. The 7-element array of three-component posthole seismometers is installed on permafrost at Poker Flat Research Range, near Fairbanks, Alaska. The array is configured in two three-station circles with 75 and 25 meter radii that share a common center station. This configuration is designed to resolve omnidirectional, high-frequency seismic microtremor (i.e. ambient noise). Microtremor is continuously monitored and the data are processed using the spatial autocorrelation (SPAC) method. The resulting SPAC coefficients are then inverted for shear-wave velocity structure versus depth. Thawed active-layer soils have a much slower seismic velocity than frozen soils, allowing us to track the depth and intensity of thawing. Persistent monitoring on a permanent array would allow for a way to investigate year-to-year changes without costly site visits. Results from the seismic array will compared to, and correlated with, other measurement techniques, such as physical probing and remote sensing methods. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, Roberto; Schaefer, Carlos; Simas, Felipe; Pregesbauer, Michael; Bockheim, James

    2013-04-01

    International attention on the climate change phenomena has grown in the last decade, intense modelling of climate scenarios were carried out by scientific investigations searching the sources and trends of these changes. The cryosphere and its energy flux became the focus of many investigations, being recognised as a key element for the understanding of future trends. The active layer and permafrost are key components of the terrestrial cryosphere due to their role in energy flux regulation and high sensitivity to climate change (Kane et al., 2001; Smith and Brown, 2009). Compared with other regions of the globe, our understanding of Antarctic permafrost is poor, especially in relation to its thermal state and evolution, its physical properties, links to pedogenesis, hydrology, geomorphic dynamics and response to global change (Bockheim, 1995, Bockheim et al., 2008). The active layer monitoring site was installed in the summer of 2008, and consist of thermistors (accuracy ± 0.2 °C) arranged in a vertical array (Turbic Eutric Cryosol 600 m asl, 10.5 cm, 32.5 cm, 67.5 cm and 83.5 cm). King George Island experiences a cold moist maritime climate characterized by mean annual air temperatures of -2°C and mean summer air temperatures above 0°C for up to four months (Rakusa-Suszczewski et al., 1993, Wen et al., 1994). Ferron et al., (2004) found great variability when analysing data from 1947 to1995 and identified cycles of 5.3 years of colder conditions followed by 9.6 years of warmer conditions. All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from March 1st 2008 until November 30th 2012. Meteorological data for Fildes was obtained from the near by stations. We calculated the thawing days, freezing days; thawing degree days and freezing degree days; all according to Guglielmin et al. (2008). The active lawyer thickness was calculated as the 0 °C depth by extrapolating the thermal gradient from the two

  19. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw.

    PubMed

    Coolen, Marco J L; van de Giessen, Jeroen; Zhu, Elizabeth Y; Wuchter, Cornelia

    2011-08-01

    Amplified Arctic warming could thaw 25% of the permafrost area by 2100, exposing vast amounts of currently fixed organic carbon to microbially mediated decomposition and release of greenhouse gasses through soil organic matter (SOM) respiration. We performed time-series incubation experiments with Holocene permafrost soils at 4°C for up to 11 days to determine changes in exoenzyme activities (EEAs) (i.e. phosphatase, β-glucosidase, aminopeptidase) as a measure for the bioavailability of SOM in response to permafrost thaw. We also profiled SSU rRNA transcripts to follow the qualitative and quantitative changes in viable prokaryotes and eukaryotes during incubation. EEA, amount of rRNA transcripts and microbial community structures differed substantially between the various soil intervals in response to thaw: after 11 days of incubation, the active layer became slightly depleted in C and P and harboured bacterial phyla indicative of more oligotrophic conditions (Acidobacteria). A fast response in phosphatase and β-glucosidase upon thaw, and a predominance of active copiotrophic Bacteroidetes, showed that the upper permafrost plate serves as storage of easily degradable carbon derived from the overlying thawed active layer during summer. EEA profiles and microbial community dynamics furthermore suggest that the deeper and older permafrost intervals mainly contain recalcitrant SOM, and that extracellular soil-bound exoenzymes play a role in the initial cleavage of biopolymers, which could kick-start microbial growth upon thaw. Basidiomycetous fungi and Candidate Subdivision OP5 bacteria were the first to respond in freshly thawed deeper permafrost intervals, and might play an important role in the decomposition of recalcitrant SOM to release more labile substrates to support the major bacterial phyla (β-Proteobacteria, Actinobacteria, Firmicutes), which predominated thereafter. PMID:21554513

  20. a Spatio-Temporal Framework for Modeling Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Streletskiy, D. A.; Nelson, F. E.; Apanasovich, T. V.

    2015-07-01

    The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems. This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation. The simplest model's stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naïve model, against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best stochastic spatio-temporal model increases predictive accuracy, compared to the naïve model, of 33.3%, 36.2% and 32.5% on average across the three error metrics at the key sites for a one-year hold out period.

  1. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  2. Climate Change and Thawing Permafrost in Two Iñupiaq Communities of Alaska's Arctic: Observations, Implications, and Resilience

    NASA Astrophysics Data System (ADS)

    Woodward, A.; Kofinas, G.

    2013-12-01

    For thousands of years the Iñupiat of northern Alaska have relied on ecosystems underlain by permafrost for material and cultural resources. As permafrost thaws across the Arctic, these social-ecological systems are changing rapidly. Community-based research and extensive local knowledge of Iñupiaq villagers offer unique and valuable contributions to understanding permafrost change and its implications for humans. We partnered with two Iñupiaq communities in Alaska's Arctic to investigate current and potential effects of thawing permafrost on social-ecological systems. Anaktuvuk Pass is situated on thaw-stable consolidated gravel in the Brooks Range, while Selawik rests on ice-rich permafrost in Beringia lowland tundra. Using the transdisciplinary approach of resilience theory and mixed geophysical and ethnographic methods, we measured active layer thaw depths and documented local knowledge about climate and permafrost change. Thaw depths were greater overall in Selawik. Residents of both communities reported a variety of changes in surface features, hydrology, weather, flora, and fauna that they attribute to thawing permafrost and / or climate change. Overall, Selawik residents described more numerous and extreme examples of such changes, expressed higher degrees of certainty that change is occurring, and anticipated more significant and negative implications for their way of life than did residents of Anaktuvuk Pass. Of the two villages, Selawik faces greater and more immediate challenges to the resilience of its social-ecological system as permafrost thaws.

  3. Active Layer Thermal Response to Stream Water Temperatures

    NASA Astrophysics Data System (ADS)

    Cozzetto, K.; McKnight, D.

    2004-12-01

    The hyporheic zone is comprised of sediments below and adjacent to a stream through which stream water flows in and out. In polar regions, the shape, dimensions, physical and chemical characteristics of this zone are affected by the seasonal freezing and thawing of the active layer. One factor that may influence the active layer temperature regime is stream water temperature, both its absolute value and cyclic variations in its value. Many of the glacial meltwater streams in Taylor Valley in the McMurdo Dry Valleys of Antarctica, exhibit daily temperature patterns with lows of 0 or 1° C and highs of 10 or, on occasion, 15° C. Because the viscosity of water decreases significantly with increasing temperature, these daily maxima may increase infiltration and the exchange of water and heat between the stream and the hyporheic zone. To investigate the influence of stream water temperature and flow paths on the active layer temperature regime and vice versa, two conservative tracer injection experiments were conducted. Both took place in the same 200-meter reach, which was instrumented with temperature and conductivity probes. Both also took place at the same time of day during which the stream reaches its temperature maximum. However, in one experiment snow from a nearby patch was added to the stream to suppress the temperature maximum by 3° C from 10 to 7° C. The temperature data show that the snow addition slowed the rate of hyporheic zone warming and suppressed temperature increases in the hyporheic zone by 1-3° C when compared with the non-perturbation experiment. The electrical conductivity data indicate that during the snow addition experiment, the stream neither gained nor lost water while during the non-perturbation experiment, the stream lost water. These results suggest that the stream water cooling decreased infiltration and heat transfer into the hyporheic zone.

  4. Dynamics of the Thermal State of Active Layer at the Alaska North Slope and Northern Yakutia

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Romanovsky, V. E.; Marchenko, S.; Shiklomanov, N. I.; Fedorov-Davydov, D.

    2010-12-01

    Dynamics of the active layer is one of the most important indexes, reflecting permafrost response to the modern climate changes. Monitoring of active layer thickness dynamics is the main goal of CALM (Circumpolar Active Layer Monitoring) project. But, from different points of view, it is very important to know not only maximal depth of seasonal thawing but also dynamics of thermal field of active layer and duration of its staying in the unfrozen state. Current research was aimed on the analyzing data of temperature measurements have been done during the more then 10 years at the North Slope of Brooks Range (Alaska) and 2 years at the selected sites at the Northern Yakutia (Russia) and its comparison with the 17 to 10 years records of active layer thickness dynamics at the corresponding sites (http://www.udel.edu/Geography/calm/data/north.html). The area of investigation characterized by the typical tundra landscape and different kinds of micro topography. Reported observation sites located at the latitudinal range from 68.5 to 70.3N in Alaska and 70.5 to 71.75N in the Northern Yakutia. Observation have been done using the 1 meter long MRC probe with 11 sensors (every 10 cm) and single Campbell SCI A107 sensors in Alaska and 2-channel HOBO U23 data loggers with TMC-HD thermistors in the Northern Yakutia. Analyses of CALM data show what most observation sites in Alaska (except located near the Brooks Range and at the Arctic Ocean coast) do not subjected to the significant sustainable changes of active layer thickness over the last 10 years. At the same time active layer thickness at the Yakutian sites was increasing. Temperature observations show decreasing of the mean annual temperature at the average depth of active layer bottom at the Alaskan sites. But, because of general trend to increasing of period of thawing it does not lead to the decreasing of active layer thickness. Recent equipment deployment at the Tiksi and Allaikha sites (Northern Yakutia) does not

  5. Correlations between the Heterogeneity of Permafrost Thaw Depth and Vegetation in Boreal Forests and Arctic Tundra in Alaska.

    NASA Astrophysics Data System (ADS)

    Uy, K. L. Q.; Natali, S.; Kholodov, A. L.; Loranty, M. M.

    2015-12-01

    Global climate change induces rapid large scale changes in the far Northern regions of the globe, which include the thickening of the active layer of arctic and subarctic soils. Active layer depth, in turn, drives many changes to the hydrology and geochemistry of the soil, making an understanding of this layer essential to boreal forest and arctic tundra ecology. Because the structure of plant communities can affect the thermal attributes of the soil, they may drive variations in active layer depth. For instance, trees and tussocks create shade, which reduces temperatures, but also hold snow, which increases temperature through insulation; these aspects of vegetation can increase or decrease summer thaw. The goal of this project is to investigate correlations between the degree of heterogeneity of active layer depths, organic layer thickness, and aboveground vegetation to determine how these facets of Northern ecosystems interact at the ecosystem scale. Permafrost thaw and organic layer depths were measured along 20m transects in twenty-four boreal forest and tundra sites in Alaska. Aboveground vegetation along these transects was characterized by measuring tree diameter at breast height (DBH), tussock dimensions, and understory biomass. Using the coefficient of variation as a measure of heterogeneity, we found a positive correlation between thaw depth variability and tussock volume variability, but little correlation between the former and tree DBH variability. Soil organic layer depth variability was also positively correlated with thaw depth variability, but weakly correlated with tree and tussock heterogeneity. These data suggest that low vegetation and organic layer control the degree of variability in permafrost thaw at the ecosystem scale. Vegetation can thus affect the microtopography of permafrost and future changes in the plant community that affect vegetation heterogeneity will drive corresponding changes in the variability of the soil.

  6. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    PubMed

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  7. Exploring Viral Mediated Carbon Cycling in Thawing Permafrost Microbial Communities

    NASA Astrophysics Data System (ADS)

    Trubl, G. G.; Solonenko, N.; Moreno, M.; Sullivan, M. B.; Rich, V. I.

    2014-12-01

    Viruses are the most abundant biological entities on Earth and their impact on carbon cycling in permafrost habitats is poorly understood. Arctic C cycling is particularly important to interpret due to the rapid climate change occurring and the large amount of C stockpiled there (~1/3 of global soil C is stored in permafrost). Viruses of microbes (i.e. phages) play central roles in C cycling in the oceans, through cellular lysis (phage drive the largest ocean C flux about 150 Gt yr-1, dwarfing all others by >5-fold), production of associated DOC, as well as transport and expression during infection (1029 transduction events day-1). C cycling in thawing permafrost systems is critical in understanding the climate trajectory and phages may be as important for C cycling here as they are in the ocean. The thawed C may become a food source for microbes, producing CO2 and potentially CH4, both potent greenhouse gases. To address the potential role of phage in C cycling in these dynamic systems, we are examining phage from an arctic permafrost thaw gradient in northern Sweden. We have developed a protocol for successfully extracting phage from peat soils and are quantifying phage in 15 peat and 2 lake sediment cores, with the goal of sequencing viromes. Preliminary data suggest that phage are present at 109 g-1 across the permafrost thaw gradient (compared to the typical marine count ~105 ml-1), implying a potentially robust phage-host interaction web in these changing environments. We are examining phage from 11 depth intervals (covering the active and permafrost layer) in the cores to assess phage-host community dynamics. Phage morphology and abundance for each layer and environment are being determined using qTEM and EFM. Understanding the phage that infect bacteria and archaea in these rapidly changing habitats will provide insight into the controls on current and future CH4 and CO2 emissions in permafrost habitats.

  8. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange

    USGS Publications Warehouse

    Hayes, Daniel J.; Kicklighter, David W.; McGuire, Anthony; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry M.; Wullschleger, Stan D.

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon (C) stored in previously frozen soil organic matter (SOM) have the potential to be a strong positive feedback to climate. As the northern permafrost region experiences as much as a doubling of the rate of warming as the rest of the Earth, the vast amount of C in permafrost soils is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases. Diagnostic and predictive estimates of high-latitude terrestrial C fluxes vary widely among different models depending on how dynamics in permafrost, and the seasonally thawed 'active layer' above it, are represented. Here, we employ a process-based model simulation experiment to assess the net effect of active layer dynamics on this 'permafrost carbon feedback' in recent decades, from 1970 to 2006, over the circumpolar domain of continuous and discontinuous permafrost. Over this time period, the model estimates a mean increase of 6.8 cm in active layer thickness across the domain, which exposes a total of 11.6 Pg C of thawed SOM to decomposition. According to our simulation experiment, mobilization of this previously frozen C results in an estimated cumulative net source of 3.7 Pg C to the atmosphere since 1970 directly tied to active layer dynamics. Enhanced decomposition from the newly exposed SOM accounts for the release of both CO2 (4.0 Pg C) and CH4 (0.03 Pg C), but is partially compensated by CO2 uptake (0.3 Pg C) associated with enhanced net primary production of vegetation. This estimated net C transfer to the atmosphere from permafrost thaw represents a significant factor in the overall ecosystem carbon budget of the Pan-Arctic, and a non-trivial additional contribution on top of the combined fossil fuel emissions from the eight Arctic nations over this time period.

  9. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; Derksen, Chris; Royer, Alain; Belair, Stephane; Houser, Paul; McDonald, Kyle; Entin, Jared; Lewis, Kristen

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  10. Active Layer Soil Carbon and Nutrient Mineralization, Barrow, Alaska, 2012

    DOE Data Explorer

    Stan D. Wullschleger; Holly M. Vander Stel; Colleen Iversen; Victoria L. Sloan; Richard J. Norby; Mallory P. Ladd; Jason K. Keller; Ariane Jong; Joanne Childs; Deanne J. Brice

    2015-10-29

    This data set consists of bulk soil characteristics as well as carbon and nutrient mineralization rates of active layer soils manually collected from the field in August, 2012, frozen, and then thawed and incubated across a range of temperatures in the laboratory for 28 day periods in 2013-2015. The soils were collected from four replicate polygons in each of the four Areas (A, B, C, and D) of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Soil samples were coincident with the established Vegetation Plots that are located in center, edge, and trough microtopography in each polygon. Data included are 1) bulk soil characteristics including carbon, nitrogen, gravimetric water content, bulk density, and pH in 5-cm depth increments and also by soil horizon, 2) carbon, nitrogen, and phosphorus mineralization rates for soil horizons incubated aerobically (and in one case both aerobically and anaerobically) for 28 days at temperatures that included 2, 4, 8, and 12 degrees C. Additional soil and incubation data are forthcoming. They will be available when published as part of another paper that includes additional replicate analyses.

  11. Microbial diversity in European alpine permafrost and active layers.

    PubMed

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. PMID:26832204

  12. Seasonal variation of ecosystem respiration delta 13C in response to experimental permafrost thaw and vegetation removal in moist acidic tundra

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Natali, S.; Schuur, E.

    2015-12-01

    Permafrost soils store twice as much carbon (C) as is contained in the atmosphere and about one-third of global soil C. Under a warmer future climate, permafrost is expected to thaw and decompose, releasing C to the atmosphere, further amplifying global warming. However, studies show that warmer arctic temperatures promote plant growth, in addition to stimulating losses from the soil C pool. Using delta 13C of ecosystem respiration (Reco) during the seasonal cycle of active layer thaw, we seek to understand the effect of permafrost thaw on the relative contributions from microbial decomposition of soil C and more recently fixed, plant-dominated C. We measured weekly CO2 flux rates and delta 13C of Reco from experimentally warmed plots with rapid permafrost thaw and control thaw. Vegetation removal plots, in un-warmed tundra, were monitored to isolate the seasonal contributions from soil alone. We expected delta 13C to be dominated by plant activity in vegetated plots, particularly in areas with greater permafrost thaw because they have highest plant biomass. In vegetation removal plots we expected to see greater contribution from deep soil as seasonal thaw progressed. From May to July delta 13C was extremely variable early in the growing season, but became more uniform as vegetation greened and thaw deepened. In vegetated plots CO2 fluxes doubled, but remained constant in vegetation removal plots. This indicates that, with thaw, microbes had access to a more spatially uniform C substrate, but this had little effect on the magnitude of CO2 flux. Overall delta 13C in rapidly thawed plots was least enriched (-29.4 ‰), control plots intermediate (-28.9 ‰), and vegetation removal plots were most enriched (-28.5 ‰). This suggests that in vegetation removal plots microbes used more decomposed soil C as substrate, and much of the increase in CO2 flux in vegetated plots was the result of C recently fixed and contributed by plants.

  13. Interannual active layer thermal and dynamics evolution at the crater Lake CALM site, Deception Island (Antarctica).

    NASA Astrophysics Data System (ADS)

    Ramos, Miguel; Vieira, Gonzalo; Ángel De Pablo, Miguel; Molina, Antonio; Abramov, Andrey

    2015-04-01

    Deception Island, is an active strato-volcano on South Shetland Archipelago of Antarctica (62° 55' 0″ S, 60° 37' 0″ W), is a cold region with harsh remote and hostile environmental conditions. The permafrost and active layer existence, and the cold climate conditions together with volcanic material with height water content inside made this region of the Earth a perfect site to study the active layer and permafrost evolution involved in the Circumpolar Active Layer South (CALM-S) program. The active layer is measured in late January or firs february (during the end of the thaw period) at the "Crater Lake" CALM site (62°58'06.7''; 60°40'44.8'') on Deception Island, Antarctica, at the period 2006 to 2014 we obtained a mean annual value of 29,7±2 cm. In this paper, we describe the spatial active layer thickness distribution and report the reduction on the mean thickness between February 2006 and 2014. Below the active layer, permafrost could be also reported (with a mean thickness of 4.5± 0.5 m.) based on the temperature data acquired by sensors installed at different depth inside the soil; three different shallow boreholes was drilled (1.0 m., 1.6 m., 4.5 m. in depth) and we have been registered its temperature gradient at the 2010 to 2013 period. Here we use all those data 1) to describe the thermal behavior of the permafrost at the CALM site, and 2) to describe its evolution (aggradation/degradation) along fourteen years of continuous measurements. We develop this study, to known the thermal behavior of the permafrost and the active layer related with the air/soil interaction being one of the most important factors the snow layer that was measured by the installation of termo-snowmeters with the complement of an automatic digital camera during the 2008 to 2014 period. On the other hand, the pyroclastics soil materials has a very high values of water content then the latent heat in the freezing/thawing process controls the active layer evolution and the

  14. Field information links permafrost carbon to physical vulnerabilities of thawing

    USGS Publications Warehouse

    Harden, Jennifer W.; Koven, Charles; Ping, Chien-Lu; Hugelius, Gustaf; McGuire, A. David; Camill, P.; Jorgenson, Torre; Kuhry, Peter; Michaelson, Gary; O'Donnell, Jonathan A.; Schuur, Edward A.G.; Tamocai, Charles; Johnson, K.; Grosse, G.

    2012-01-01

    Deep soil profiles containing permafrost (Gelisols) were characterized for organic carbon (C) and total nitrogen (N) stocks to 3m depths. Using the Community Climate System Model (CCSM4) we calculate cumulative probability functions (PDFs) for active layer depths under current and future climates. The difference in PDFs over time was multiplied by C and N contents of soil horizons in Gelisol suborders to calculate newly thawed C and N, Thawing ranged from 147 PgC with 10 PgN by 2050 (representative concentration pathway RCP scenario 4.5) to 436 PgC with 29 PgN by 2100 (RCP 8.5). Organic horizons that thaw are vulnerable to combustion, and all horizon types are vulnerable to shifts in hydrology and decomposition. The rates and extent of such losses are unknown and can be further constrained by linking field and modelling approaches. These changes have the potential for strong additional loading to our atmosphere, water resources, and ecosystems.

  15. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    SciTech Connect

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; Wilson, Cathy; Wullschleger, Stan D.

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  16. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Throckmorton, H. M.; Graham, D. E.; Gu, B.; Hubbard, S. S.; Liang, L.; Wu, Y.; Heikoop, J. M.; Herndon, E. M.; Phelps, T. J.; Wilson, C. J.; Wullschleger, S. D.

    2015-03-01

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  17. A comparison between modelling for spatial distribution of thaw depths using MODIS datasets and observational data of permafrost in Mongolia

    NASA Astrophysics Data System (ADS)

    Zorigt, Munkhtsetseg; Alexander, Orkhonselenge; Kwadijk, Jaap; van Beek, Eelco

    2016-04-01

    Thaw and freezing depth and the related variation in the top of the active layer of the permafrost are important variables for studying runoff production in permafrost regions. In this study we provide data on spatially distributed thawing depths in Mongolia based on Kudryavtsev approach. This approach requires land surface temperature (LSTs) and soil physical characteristics for estimating thaw depths. Measured data of ground land surface temperatures is lacking in Mongolia. Therefore, we estimated the LST based on satellite images of surface temperatures. Monthly values of the LSTs were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Soil physical characteristics are defined by reference values from previous studies (Tumurbaatar, 2004; Anarmaa, 2006). We validated the results by comparing them with the observational data of permafrost boreholes in Mongolia in 2002-2009 CALM, 2009. The results indicate that thaw depths range between 0-14.5 m from southern to northern parts of Mongolia. This study shows that distribution of thaw depths using the MODIS LSTs can indicate a general overview of thaw depths distribution throughout the country.

  18. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment

    PubMed Central

    Taneva, Lina; Trumbore, Susan E.; Welker, Jeffrey M.

    2010-01-01

    A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2–3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (∆14C) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO2 efflux by partitioning respiration into autotrophic and heterotrophic components. ∆14C signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO2 sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45–55 cm thaw depth), while CO2 from the ambient snow areas was ~100 years old (30-cm thaw depth). Heterotrophic respiration ∆14C signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from <50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO2 in the atmosphere. Electronic supplementary material The online version of this article (doi:10.1007/s00442-009-1556-x) contains supplementary material, which is available to authorized users. PMID:20084398

  19. Effect of the permafrost thawing on the organic carbon and microbial activity in thermokarst lakes of Western Siberia: important source of carbon dioxide in the atmosphere

    NASA Astrophysics Data System (ADS)

    Shirokova, L. S.; Pokrovsky, O. S.; Kirpotin, S. N.; Dupre, B.

    2008-12-01

    Ongoing processes of the permafrost thawing in Western Siberia are likely to increase the surface of water reservoirs via forming so-called thermokarst lakes, mobilizing the organic carbon (OC) from the soil pool to the rivers and, finally, to the ocean, and thus modifying the fluxes of methane and CO2 to the atmosphere. In order to understand the mechanisms of carbon mobilization and biodegradation during permafrost thawing and to establish the link between the OC and microbial activity in forming thermokarstic lakes, we performed a comparative multidisciplinary study on the biogeochemistry of OC and metals in lakes located in the northern part of Western Siberia. About 10 lakes and small ponds of various size and age were sampled for dissolved and colloidal organic carbon and metals and total bacterial cell number. There is a systematic evolution of DOC, pH, trace elements and biological activity during successions of thermokarst lakes encountered in the present study. At the beginning of permafrost thawing at the scale of several meter size ponds, fast lixiviation of unaltered peat yields significant amount of OC, major and trace elements; the pH of these waters is between 3.5 and 4.0 and the conductivity is 20-30 μS. The intermediate stage of lake formation still preserve low pHs, high DOC and conductivity, even in relatively large, up to 1 km diameter but fast growing lakes. At these stages, there is no any productivity as phytoplankton cannot live in these acidic waters and bacterial mineralization intensity is around 0.3 mg C/L/day both in the surface and bottom horizons. Once the lake border is stabilized, there are no new "unaltered peat" sources and the biological processes start to consume the OC and nutrients. At this stage, there is still no production in the water column (< 0.01 mg C/L/day) but the bacterial mineralization intensity remains high, up to 0.3 mg C/L/day. At this final stage, the remaining part of the lake located in the centre of the

  20. Genes upregulated in winter wheat (Triticum aestivum L) during mild freezing and subsequent thawing suggest sequential activation of multiple response mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposing fully cold-acclimated wheat plants to a freeze-thaw cycle of -3°C for 24h followed by +3°C for 24 or 48h resulted in dramatically improved freezing tolerance. To assess the transcriptomic changes that occur during the -3°C freeze, and the subsequent +3°C thaw, microarray analysis was applie...

  1. Morphology and geotechnique of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Antoni G.; Harris, Charles

    2005-07-01

    Fifty active-layer detachment failures triggered after forest fire in the discontinuous permafrost zone (central Mackenzie Valley, 65° N.) are compared to several hundred others caused by summer meteorological triggers in continuous permafrost (Fosheim Peninsula, Ellesmere Island, 80°N). Most failures fall into compact or elongated morphological categories. The compact type occur next to stream channels and have little internal disturbance of the displaced block, whereas the elongated types can develop on any part of the slope and exhibit greater internal deformation. Frequency distributions of length-to-width and length-to-depth ratios are similar at all sites. Positive pore pressures, expected theoretically, were measured in the field at the base of the thawing layer. Effective stress analysis could predict the instability of slopes in both areas, providing cohesion across the thaw plane was set to zero and/or residual strength parameters were employed. The location of the shear planes or zones in relation to the permafrost table and the degree of post-failure secondary movements (including headwall recession and thermokarst development within the failure track) differed between the localities, reflecting dissimilarity in the environmental triggers and in the degree of ground thermal disturbance.

  2. Microbial decomposer communities in Alaskan permafrost soils and their response to thaw

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Wickland, K.; Harden, J.; Striegl, R.; Aiken, G.

    2007-12-01

    Permafrost protected soil carbon in boreal forest ecosystems represents a significant portion of the approximately 500 Gt C in the soil organic matter of boreal regions. The magnitude of this thermally-protected carbon pool makes it a particularly important to the global C cycle within the context of global climatic change. Permafrost has acted as a C sink for thousands of years yet currently has been warming at a rate of 1°C per decade, making the C contained within it potentially available for decomposition. Thawing permafrost opens a latch into a globally important C reservoir that could be released to the atmosphere (as CO2) and rivers (as dissolved organic carbon, DOC), affecting greenhouse warming and aquatic chemistry. A gap in our current knowledge is the extent to which permafrost-protected C is available for microbial metabolism once soils thaw. Current indications are that organic matter contained within permafrost is relatively labile since it is not protected from decomposition by physical protection or humification mechanisms. However, we have little understanding of the microbiology of permafrost soils, which could significantly affect the rate of decomposition of permafrost C after thaw. Our aim was to use quantitative molecular techniques to examine the abundance of microbial decomposer functional groups in permafrost soils, the enzymes they encode, and their rates of respiration under both aerobic and anaerobic conditions in a simulated summer thaw at 5°C. We compared microbial and chemical characteristics of active layer and permafrost soils from black spruce stands in three distinct geographic regions: Coldfoot, Hess Creek, and Smith Lake, AK. We chose these regions because they span a range of permafrost conditions from shallow active layers and mineral-associated permafrost layers to thick active layers and deep organic permafrost soils. Soil carbon and nitrogen concentrations did not differ between active layer and permafrost soils within

  3. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  4. Layer-by-layer nanoencapsulation of camptothecin with improved activity

    PubMed Central

    Parekh, Gaurav; Pattekari, Pravin; Joshi, Chaitanya; Shutava, Tatsiana; DeCoster, Mark; Levchenko, Tatyana; Torchilin, Vladimir; Lvov, Yuri

    2014-01-01

    160 nm nanocapsules containing up to 60% of camptothecin in the core and 7–8 polyelectrolyte bilayers in the shell were produced by washless layer-by-layer assembly of heparin and block-copolymer of poly-L-lysine and polyethylene glycol. The outer surface of the nanocapsules was additionally modified with polyethylene glycol of 5 kDa or 20 kDa molecular weight to attain protein resistant properties, colloidal stability in serum and prolonged release of the drug from the capsules. An advantage of the LbL coated capsules is the preservation of camptothecin lactone form with the shell assembly starting at acidic pH and improved chemical stability of encapsulated drug at neutral and basic pH, especially in the presence of albumin that makes such formulation more active than free camptothecin. LbL nanocapsules preserve the camptothecin lactone form at pH 7.4 resulting in triple activity of the drug toward CRL2303 glioblastoma cell. PMID:24508806

  5. Remotely Sensed Active Layer Thickness (ReSALT) from InSAR data near Toolik Lake in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Chen, A. C.; Liu, L.; Schaefer, K. M.; Parsekian, A.; Jafarov, E. E.; Zebker, H. A.; Zhang, T.

    2014-12-01

    Toolik Field Station is built on spatially continuous permafrost on the north slope of Alaska. Seasonal surface subsidence and uplift occurs in permafrost regions due to thaw settlement and frost heave as the active layer thaws and refreezes. Using L-band (23.6 cm wavelength) InSAR data from ALOS-PALSAR acquired between 2006 and 2010, we use a small-baseline subset (SBAS) method to estimate seasonal surface subsidence and retrieve fine-resolution maps of active layer thickness (ALT) for a ~25x25 km area surrounding Toolik Field Station (located at 68.63°N, -149.60°E). We compare these remotely sensed ALT (ReSALT) results with in situ data from: 1) the Circumpolar Active Layer Monitoring (CALM) network showing mean ALT of ~40-50 cm in the region surrounding Toolik Field Station, corresponding to seasonal subsidence of 1 to 2 cm, and 2) mechanical probing measurements of ALT, obtained during field work in the study area in August 2014. We also solve for secular subsidence trends from the InSAR data. The trends are close to zero in most places, but larger subsidence trends in some isolated areas could be due to thermokarst processes (long-term thawing of ice-rich permafrost). We note, however, that downslope motion due to gelifluction cannot be separated from vertical thermokarst-related deformation without incorporating InSAR measurements from multiple look angles. Two key limitations to our method are the spatial variability of volumetric soil moisture content and the accuracy of the DEM needed to correct for topographic effects. We investigate the use of bulk volumetric water content inferred from ground-penetrating radar (GPR) data to improve the ReSALT retrieval algorithm. We also quantify the effect of DEM accuracy on ReSALT uncertainties, leads to requirements for DEM accuracy in InSAR-based ALT retrieval.

  6. Microwave thawing apparatus and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.; McMillan, April D.

    2004-06-01

    An apparatus for thawing a frozen material includes: a microwave energy source; a microwave applicator which defines a cavity for applying microwave energy from the microwave source to a material to be thawed; and a shielded region which is shielded from the microwave source, the shielded region in fluid communication with the cavity so that thawed material may flow from the cavity into the shielded region.

  7. Microwave thawing package and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.

    2004-03-16

    A package for containing frozen liquids during an electromagnetic thawing process includes: a first section adapted for containing a frozen material and exposing the frozen material to electromagnetic energy; a second section adapted for receiving thawed liquid material and shielding the thawed liquid material from further exposure to electromagnetic energy; and a fluid communication means for allowing fluid flow between the first section and the second section.

  8. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  9. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  10. Using dissolved organic matter (DOM) composition to detect permafrost thaw in arctic and boreal watersheds

    NASA Astrophysics Data System (ADS)

    ODonnell, J. A.; Aiken, G.; Walvoord, M. A.; Butler, K.

    2013-12-01

    Permafrost thaw can profoundly alter hydrology and carbon dynamics in northern high-latitude regions. Thawing of permafrost has been detected through monitoring of borehole temperatures and active layer thickness (ALT), but these measurements have limited spatial inference and primarily reflect local conditions. Remote sensing analyses have been useful for detecting thermokarst features, yet have limited application in upland forests or in ice-poor regions not susceptible to ground subsidence. Analysis of stream discharge time-series (e.g. recession flow analysis) can be a powerful tool for detecting watershed-scale changes in ALT, but long-term hydrologic data is sparse in many northern regions. Given the large pool of organic carbon (C) in permafrost soils, most research has focused on how permafrost thaw impacts C released to the atmosphere. However, permafrost thaw may also modify the lateral flux of C from terrestrial to aquatic systems, often through increasing groundwater discharge to stream flow. Here, we present data from arctic (n=36) and boreal rivers (n=60) of Alaska to address the question: can DOM character in rivers be used as a tool for detecting permafrost thaw in high-latitude watersheds? We hypothesize that the chemical composition of DOM is sensitive to permafrost configuration as a control on (1) groundwater transit times, (2) microbial processing, and (3) stabilization in mineral soils. Using measurements of DOM optical properties, chemical fractionation, and 14C-DOC, we distinguished DOM character between supra- and sub-permafrost aquifers. DOM transported from supra-permafrost soils to rivers is subject to seasonal thawing and re-freezing of the active layer. DOC concentrations peaked during spring snowmelt (7.5 to 41.7 mgC L-1), when frozen soils confine subsurface flow to organic-soil horizons, and declined during summer (2.6 to 27.3 mgC L-1), when soils of the active layer thaw. Δ14C-DOC in three boreal rivers also declined seasonally

  11. Influences and interactions of inundation, peat, and snow on active layer thickness: Modeling Archive

    DOE Data Explorer

    Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley

    2016-04-21

    This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.

  12. Bacterial production in subarctic peatland lakes enriched by thawing permafrost

    NASA Astrophysics Data System (ADS)

    Deshpande, Bethany N.; Crevecoeur, Sophie; Matveev, Alex; Vincent, Warwick F.

    2016-08-01

    Peatlands extend over vast areas of the northern landscape. Within some of these areas, lakes and ponds are changing in size as a result of permafrost thawing and erosion, resulting in mobilization of the carbon-rich peatland soils. Our aims in the present study were to characterize the particle, carbon and nutrient regime of a set of thermokarst (thaw) lakes and their adjacent peatland permafrost soils in a rapidly degrading landscape in subarctic Québec, Canada, and by way of fluorescence microscopy, flow cytometry, production measurements and an in situ enrichment experiment, determine the bacterial characteristics of these waters relative to other thaw lakes and rock-basin lakes in the region. The soil active layer in a degrading palsa (peatland permafrost mound) adjacent to one of the lakes contained an elevated carbon content (51 % of dry weight), high C : N ratios (17 : 1 by mass), and large stocks of other elements including N (3 % of dry weight), Fe (0.6 %), S (0.5 %), Ca (0.5 %) and P (0.05 %). Two permafrost cores were obtained to a depth of 2.77 m in the palsa, and computerized tomography scans of the cores confirmed that they contained high concentrations (> 80 %) of ice. Upon thawing, the cores released nitrate and dissolved organic carbon (from all core depths sampled), and soluble reactive phosphorus (from bottom depths), at concentrations well above those in the adjacent lake waters. The active layer soil showed a range of particle sizes with a peak at 229 µm, and this was similar to the distribution of particles in the upper permafrost cores. The particle spectrum for the lake water overlapped with those for the soil, but extended to larger (surface water) or finer (bottom water) particles. On average, more than 50 % of the bacterial cells and bacterial production was associated with particles > 3 µm. This relatively low contribution of free-living cells (operationally defined as the < 1 µm fraction) to bacterial production was a general

  13. Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.

    2012-12-01

    Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2

  14. Controlled Freeze-thaw Experiments to Study Biogeochemical Process and its Effects on Greenhouse Gas Release in Arctic Soil Columns

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Kneafsey, T. J.; Tas, N.; Bill, M.; Ulrich, C.; Hubbard, S. S.

    2014-12-01

    Greenhouse gas release associated with permafrost thawing is one of the largest uncertainties in future climate prediction. Improvement of such prediction relies on a better representation of the interactions between hydrological, geochemical and microbial processes in the Arctic ecosystem that occur over a wide range of space and time scales and under dynamic freeze-thaw conditions. As part of the Next Generation Ecosystem Experiments in the Arctic (NGEE-Arctic), we conducted controlled laboratory freeze-thaw experiments to study greenhouse gas release in vertical permafrost soil columns with vertically heterogeneous hydrological, geochemical and microbial properties. The studies were performed using soil cores collected from the NGEE Barrow, AK site. Two cores collected next to each other with very similar soil structures were used for the experiment. One of the cores was destructively sampled for baseline characterization, and the second core was used for the freeze-thaw experiments. The core extends from the ground surface into the permafrost with roughly 40 cm of active layer. The column was instrumented with various sensors and sampling devices, including thermocouples, geophysical (electrical) sensors, and sampling ports for solids and fluids. The headspace of the soil column was purged with CO2 free air and the gas samples were collected periodically for greenhouse gas analysis. Our initial tests simulated seasonal temperature variation from ~ -10°C to +10°C at the ground surface. Our results demonstrated that temperature and geophysical data provided real time information on the freeze thaw dynamics of the column and the surface greenhouse gas fluxes correlated with the freeze thaw stages and associated hydrological and biogeochemical processes in the vertical soil column. For example, surface fluxes data revealed an early burst of GHG concentrations during the initial thawing of the surface ice rich layer of the soil, indicating the presence of trapped

  15. Characteristics of frozen colostrum thawed in a microwave oven

    SciTech Connect

    Jones, L.R.; Taylor, A.W.; Hines, H.C.

    1987-09-01

    Use of a microwave oven to thaw frozen colostrum was evaluated. Colostrum was collected from nine cows, four of which were immunized to produce specific colostral antibodies. Colostrum from each cow was frozen, subsequently thawed, and pooled. One-liter aliquots of the pooled colostrum were frozen and assigned randomly to three thawing treatments. Colostrum was thawed using one of three regimens: 10 min in a microwave oven at full power (650 W), 17 min in a microwave oven at half power (325 W), and 25 min in 45 degrees C water. Colostrum thawed in the microwave oven was slightly coagulated and had lower volume and total protein content than colostrum thawed in water. Casein and pH were not different among treatments. Both concentration and total content of immunoglobulin A were higher in the control than in microwave treatments. Neither amount nor concentration of immunoglobulin G and immunoglobulin M were different among treatments. Immunological activity, measured by a hemolytic test, was lower for microwave treatments than the control but did not differ between microwave treatments. Frozen colostrum thawed in a microwave oven should provide a reasonable source of colostrum when fresh high quality colostrum is not available.

  16. High severity experimental burns in Siberian larch forests increase permafrost thaw and larch tree regeneration

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Davydov, S.; Zimov, N.; Mack, M. C.

    2013-12-01

    Global change models predict increased fire activity in boreal forests as climate warms and dries. We hypothesized that fire-driven decreases in soil organic layer (SOL) depth will (1) increase permafrost thaw by reducing the insulating capacity of the SOL and (2) improve seedbed conditions for tree regeneration. Over time, these changes will lead to altered patterns of above- and belowground carbon (C) accumulation. To test these hypotheses, we conducted plot-level experimental burns in July 2012 in a low-density, mature larch stand near the Northeast Science Station in Cherskii, Siberia. Dried fuels of naturally occurring vegetation were added to plots to achieve four burn severity treatments based on residual SOL depths: control, low (> 8 cm), moderate (5-8 cm), and high severity (2-5 cm). Pre-fire and during two growing seasons post-fire, we measured thaw depth, soil moisture, and soil temperature to determine severity effects on permafrost thaw. We also sowed larch seeds in fall 2012 and quantified germination rates the following growing season. By 1 wk post-fire, thaw depth was 15-25 cm deeper in plots burned at high severity (55 cm) compared to other treatments (30-40 cm). These differences in thaw depth with burn severity were maintained during the subsequent growing season and were associated with increased soil temperature and moisture. Larch regeneration was 10x higher on severely burned plots than those unburned. Our findings highlight the potential for increased fire severity to degrade permafrost and alter successional dynamics and patterns of C accumulation.

  17. Realizing the full potential of Remotely Sensed Active Layer Thickness (ReSALT) Products

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Chen, A.; Liu, L.; Parsekian, A.; Jafarov, E. E.; Panda, S. K.; Zebker, H. A.

    2015-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence, active layer thickness (ALT), and thermokarst activity in permafrost regions. ReSALT supports research for the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential Nasa-Isro Synthetic Aperture Radar (NISAR) product. ALT is a critical parameter for monitoring the status of permafrost and thermokarst activity is one of the key drivers of change in permafrost regions. The ReSALT product currently includes 1) long-term subsidence trends resulting from the melting and subsequent drainage of excess ground ice in permafrost-affected soils, 2) seasonal subsidence resulting from the expansion of soil water into ice as the active layer freezes and thaws, and 3) ALT estimated from the seasonal subsidence assuming a vertical profile of water within the soil column. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. We present high resolution ReSALT products on the North Slope of Alaska: Prudhoe Bay, Barrow, Toolik Lake, Happy Valley, and the Anaktuvuk fire zone. We believe that the ReSALT product could be expanded to include maps of individual thermokarst features identified as spatial anomalies in the subsidence trends, with quantified expansion rates. We illustrate the technique with multiple examples of thermokarst features on the North Slope of Alaska. Knowing the locations and expansion rates for individual features allows us to evaluate risks to human infrastructure. Our results highlight the untapped potential of the InSAR technique to remotely sense ALT and thermokarst dynamics over large areas of the Arctic.

  18. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China

    NASA Astrophysics Data System (ADS)

    Wu, Qingbai; Hou, Yandong; Yun, Hanbo; Liu, Yongzhi

    2015-01-01

    Between 2002 and 2012, daily soil temperature measurements were made at 10 sites within five alpine ecosystems in the Beiluhe area of the central Qinghai-Tibet Plateau. Changes in freeze-thaw occurrence, active-layer thickness and near-surface permafrost temperature in barren, desert grassland, alpine steppe and alpine meadow ecosystems indicate that alpine ecosystems are sensitive to climate variability. During this time, the average onset of spring thawing at 50-cm depth advanced by at least 16 days in all but the barren alpine settings, and the duration of thaw increased by at least 14 days for all but the desert grassland and barren ecosystems. All sites showed an increase in active-layer thickness (ALT) and near-surface permafrost temperature: the average increase of ALT was ~ 4.26 cm/a and the average increase in permafrost temperatures at 6 m and 10 m depths were, respectively, ~ 0.13 °C and ~ 0.14 °C. No apparent trend in mean annual air temperature was detected at the Beiluhe weather station. However, an increasing trend in precipitation was measured. This suggests that the primary control on the ALT increase was an increase in summer rainfall and the primary control on increasing permafrost temperature was probably the combined effects of increasing rainfall and the asymmetrical seasonal changes in subsurface soil temperatures.

  19. Geochemical drivers of organic matter decomposition in the active layer of Arctic tundra

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B.; Graham, D. E.; Wullschleger, S. D.; Gu, B.; Liang, L.

    2014-12-01

    Arctic tundra soils store large quantities of organic carbon that are susceptible to decomposition and release to the atmosphere as CO2 and CH4. Decomposition rates are limited by cold temperatures and widespread anoxia; however, ongoing changes in soil temperature, thaw depth, and water saturation are expected to influence rates and pathways of organic matter decomposition. In order to predict greenhouse gas releases from high-latitude ecosystems, it is necessary to identify how geochemical factors (e.g. terminal electron acceptors, carbon substrates) influence CO2 and CH4 production in tundra soils. This study evaluates spatial patterns of aqueous geochemistry in the active layer of low- to high-centered polygons located at the Barrow Environmental Observatory in northern Alaska. Pore waters from saturated soils were low in sulfate and nitrate but contained abundant Fe which may serve a major terminal electron acceptor for anaerobic microbial metabolism. Relatively high concentrations of soluble Fe accumulated in the middle of the active layer near the boundary between the organic and mineral horizon, and we infer that Fe-oxide reduction and dissolution in the mineral horizon produced soluble Fe that diffused upwards and was stabilized by complexation with dissolved organic matter. Fe concentrations in the bulk soil were higher in organic than mineral horizons due to the presence of these organic-Fe complexes and Fe-oxide precipitates. Dissolved CH4 increased with increasing proportions of dissolved Fe(III) in saturated soils from transitional and low-centered polygons. The opposite trend was observed in drier soils from flat- and high-centered polygons where deeper oxidation fronts may inhibit methanogenesis. Using multiple spectroscopic and molecular methods (e.g. UV-Vis, Fourier transform infrared, ultrahigh resolution mass spectrometry), we also observed that pore waters from the middle of the active layer contained more aromatic organics than in mineral

  20. Impact of dry-wet and freeze-thaw events on pesticide mineralizing populations and their activity in wetland ecosystems: A microcosm study.

    PubMed

    Vandermeeren, Pieter; Baken, Stijn; Vanderstukken, Ruben; Diels, Jan; Springael, Dirk

    2016-03-01

    Riparian wetlands are proposed to mitigate diffuse pollution of surface water by pesticides in agricultural landscapes. Wetland ecosystems though are highly dynamic environments and seasonal disturbances such as freezing and drying can affect microbial population sizes in the sediment and their functionality including pesticide biodegradation, which has hardly been studied. This study examined the effect of artificially induced dry-wet or freeze-thaw events on the mineralization of the pesticides isoproturon (IPU) and 2-methoxy-4-chlorophenoxy acetic acid (MCPA) in wetland microcosms, either without or with prior enrichment of IPU/MCPA degrading populations. Without prior enrichment, mineralization of IPU and MCPA was significantly reduced after exposure to especially freeze-thaw events, as evidenced by lower mineralization rates and longer lag times compared to non-exposed microcosms. However, herbicide mineralization kinetics correlated poorly with cell numbers of herbicide mineralizers as estimated by a most probable number (MPN) approach and the number of IPU and MCPA mineralizers was unexpectedly higher in freeze-thaw and dry-wet cycle exposed setups compared to the control setups. This suggested that the observed effects of season-bound disturbances were due to other mechanisms than decay of pesticide mineralizers. In addition, in systems in which the growth of pesticide mineralizing bacteria was stimulated by amendment of IPU and MCPA, exposure to a freeze-thaw or dry-wet event only marginally affected the herbicide mineralization kinetics. Our results show that season bound environmental disturbances can affect pesticide mineralization kinetics in wetlands but that this effect can depend on the history of pesticide applications. PMID:26714290

  1. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    DOE PAGESBeta

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; et al

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less

  2. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  3. Benchmarking numerical freeze/thaw models

    NASA Astrophysics Data System (ADS)

    Rühaak, Wolfram; Anbergen, Hauke; Molson, John; Grenier, Christophe; Sass, Ingo

    2015-04-01

    The modeling of freezing and thawing of water in porous media is of increasing interest, and for which very different application areas exist. For instance, the modeling of permafrost regression with respect to climate change issues is one area, while others include geotechnical applications in tunneling and for borehole heat exchangers which operate at temperatures below the freezing point. The modeling of these processes requires the solution of a coupled non-linear system of partial differential equations for flow and heat transport in space and time. Different code implementations have been developed in the past. Analytical solutions exist only for simple cases. Consequently, an interest has arisen in benchmarking different codes with analytical solutions, experiments and purely numerical results, similar to the long-standing DECOVALEX and the more recent "Geothermal Code Comparison" activities. The name for this freezing/ thawing benchmark consortium is INTERFROST. In addition to the well-known so-called Lunardini solution for a 1D case (case T1), two different 2D problems will be presented, one which represents melting of a frozen inclusion (case TH2) and another which represents the growth or thaw of permafrost around a talik (case TH3). These talik regions are important for controlling groundwater movement within a mainly frozen ground. First results of the different benchmark results will be shown and discussed.

  4. Thermokarst and thaw-related landscape dynamics -- an annotated bibliography with an emphasis on potential effects on habitat and wildlife

    USGS Publications Warehouse

    Jones, Benjamin M.; Amundson, Courtney L.; Koch, Joshua C.; Grosse, Guido

    2013-01-01

    Permafrost has warmed throughout much of the Northern Hemisphere since the 1980s, with colder permafrost sites warming more rapidly (Romanovsky and others, 2010; Smith and others, 2010). Warming of the near-surface permafrost may lead to widespread terrain instability in ice-rich permafrost in the Arctic and the Subarctic, and may result in thermokarst development and other thaw-related landscape features (Jorgenson and others, 2006; Gooseff and others, 2009). Thermokarst and other thaw-related landscape features result from varying modes and scales of permafrost thaw, subsidence, and removal of material. An increase in active-layer depth, water accumulation on the soil surface, permafrost degradation and associated retreat of the permafrost table, and changes to lake shores and coastal bluffs act and interact to create thermokarst and other thaw-related landscape features (Shur and Osterkamp, 2007). There is increasing interest in the spatial and temporal dynamics of thermokarst and other thaw-related features from diverse disciplines including landscape ecology, hydrology, engineering, and biogeochemistry. Therefore, there is a need to synthesize and disseminate knowledge on the current state of near-surface permafrost terrain. The term "thermokarst" originated in the Russian literature, and its scientific use has varied substantially over time (Shur and Osterkamp, 2007). The modern definition of thermokarst refers to the process by which characteristic landforms result from the thawing of ice-rich permafrost or the melting of massive ice (van Everdingen, 1998), or, more specifically, the thawing of ice-rich permafrost and (or) melting of massive ice that result in consolidation and deformation of the soil surface and formation of specific forms of relief (Shur, 1988). Jorgenson (2013) identifies 23 distinct thermokarst and other thaw-related features in the Arctic, Subarctic, and Antarctic based primarily on differences in terrain condition, ground-ice volume

  5. Thawed and liquid plasma--what do we know?

    PubMed

    Cardigan, R; Green, L

    2015-07-01

    There is increasing interest in the use of liquid or frozen plasma thawed and stored for extended periods (>24 h) to reduce wastage and to improve rapid availability of plasma in massive transfusion protocols advocating the early use of plasma in trauma by some centres. There is now a body of studies that have assessed individual coagulation factors during storage of thawed plasma. These show that factor VIII (FVIII) is the worst affected factor and that its activity is mainly lost during the first 24 h following thawing. However, for most factors studied, there is a continual decline during further storage. The few studies that have assessed thrombin generation in thawed plasma have shown variable results. Extended storage of plasma is associated with an increase in levels of DEHP in the component and could theoretically increase the risk of bacterial contamination, although the latter does not appear to have been an issue in countries that have adopted the use of thawed plasma. There are no clinical studies relating to the efficacy of extended-thawed plasma, and therefore, the potential reduction in its efficacy must be balanced with the clinical need for the component. PMID:25833464

  6. Melanin as an active layer in biosensors

    SciTech Connect

    Piacenti da Silva, Marina Congiu, Mirko Oliveira Graeff, Carlos Frederico de; Fernandes, Jéssica Colnaghi Biziak de Figueiredo, Natália Mulato, Marcelo

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  7. Melanin as an active layer in biosensors

    NASA Astrophysics Data System (ADS)

    Piacenti da Silva, Marina; Fernandes, Jéssica Colnaghi; de Figueiredo, Natália Biziak; Congiu, Mirko; Mulato, Marcelo; de Oliveira Graeff, Carlos Frederico

    2014-03-01

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  8. Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Pan, Xicai; Li, Yanping; Yu, Qihao; Shi, Xiaogang; Yang, Daqing; Roth, Kurt

    2016-07-01

    Seasonally variable thermal conductivity in active layers is one important factor that controls the thermal state of permafrost. The common assumption is that this conductivity is considerably lower in the thawed than in the frozen state, λt/λf < 1. Using a 9-year dataset from the Qinghai-Tibet Plateau (QTP) in conjunction with the GEOtop model, we demonstrate that the ratio λt/λf may approach or even exceed 1. This can happen in thick (> 1.5 m) active layers with strong seasonal total water content changes in the regions with summer-monsoon-dominated precipitation pattern. The conductivity ratio can be further increased by typical soil architectures that may lead to a dry interlayer. The unique pattern of soil hydraulic and thermal dynamics in the active layer can be one important contributor for the rapid permafrost warming at the study site. These findings suggest that, given the increase in air temperature and precipitation, soil hydraulic properties, particularly soil architecture in those thick active layers must be properly taken into account in permafrost models.

  9. Effects of temperature, moisture, and permafrost thaw on ecosystem carbon exchange in Alaskan tundra.

    NASA Astrophysics Data System (ADS)

    Natali, S.; Schuur, E. A.; Webb, E.

    2012-12-01

    Carbon has been accumulating in northern high latitude ecosystems for thousands of years because cold and moist conditions have protected soil organic matter from microbial decomposition. Over the past several decades, warming surface air temperatures have been accompanied by thawing of the perennially frozen permafrost layer where much of the accumulated carbon is stored. In addition to its role in carbon storage, permafrost regulates surface hydrology by restricting vertical water flow, thereby maintaining a water table that remains close to the ground surface. In the absence of the permafrost layer, enhanced water drainage will result in increased water table depth and decreased soil moisture. The biological availability of permafrost carbon may increase in a warmer and drier soil environment, as is expected for the region of this study. To determine the effects of warming temperatures and changes in soil moisture on ecosystem carbon exchange, we established a water table drawdown experiment within the footprint of the Carbon in Permafrost Experimental Heating Research (CiPEHR) project, an ecosystem warming experiment in Interior Alaska that warms air and soil temperatures and degrades permafrost. Here we present ecosystem carbon balance results from combined warming and moisture manipulation treatments at the CiPEHR project. Soil warming increased soil temperature by 2-3o C and resulted in a 10% increase in growing season thaw depth. Surprisingly, the additional 2 kg of thawed soil C m-2 in the warmed plots did not increase net growing season CO2 loss from this ecosystem. In contrast, soil warming and permafrost thaw increased growing season CO2 uptake, which was a result of both higher net primary productivity and an inhibition of microbial decomposition by soil saturation at the base of the active layer. The drying treatment (i.e., water table drawdown) decreased soil moisture by 25%, which led to an increase in ecosystem respiration and decrease in net

  10. InSAR detects possible thaw settlement in the Alaskan Arctic Coastal Plain

    USGS Publications Warehouse

    Rykhus, R.P.; Lu, Zhiming

    2008-01-01

    Satellite interferometric synthetic aperture radar (InSAR) has proven to be an effective tool for monitoring surface deformation from volcanoes, earthquakes, landslides, and groundwater withdrawal. This paper seeks to expand the list of applications of InSAR data to include monitoring subsidence possibly associated with thaw settlement over the Alaskan Arctic Coastal Plain. To test our hypothesis that InSAR data are sufficiently sensitive to detect subsidence associated with thaw settlement, we acquired all Japanese Earth Resources Satellite-1 (JERS-1) L-band data available for the summers of 1996, 1997, and 1998 over two sites on the Alaska North Slope. The least amount of subsidence for both study sites was detected in the interferograms covering the summer of 1996 (2-3 cm), interferograms from 1997 and 1998 revealed that about 3 cm of subsidence occurred at the northern Cache One Lake site, and about 5 cm of subsidence was detected at the southern Kaparuk River site. These preliminary results illustrate the capacity of the L-band (24 cm) wavelength JERS-1 radar data to penetrate the short Arctic vegetation to monitor subsidence possibly associated with thaw settlement of the active layer and (or) other hydrologic changes over relatively large areas. ?? 2008 CASI.

  11. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Penninsula, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Nelson, F. E.

    2014-12-01

    As development proceeds in the high latitudes, information about interactions between urban influences and the thickness of the active layer above permafrost becomes vital, particularly given the possibility of increasing temperatures accompanying climate change. Permafrost characteristics are often mapped at small geographical scales (i.e., over large areas), at low resolution, and without extensive field validation. Although maps of active-layer thickness (ALT) have been created for areas of relatively undisturbed terrain, this has rarely been done within urbanized areas, even though ALT is a critical factor in the design of roads, buildings, pipelines, and other elements of infrastructure. The need for detailed maps of ALT is emphasized in work on potential hazards in permafrost regions associated with global warming scenarios. Northern Alaska is a region considered to be at moderate to high risk for thaw-induced damage under climatic warming. The Native Village of Barrow (71°17'44"N; 156°45' 59"W), the economic, transportation, and administrative hub of the North Slope Borough, is the northernmost community in the USA, and the largest native settlement in the circum-Arctic. A winter urban heat island in Barrow, earlier snowmelt in the village, and dust deposition downwind of gravel pads and roads are all urban effects that could increase ALT. A recent empirical study documented a 17 to 41 cm difference in ALT between locations in the village of Barrow and surrounding undeveloped tundra, even in similar land-cover classes. We mapped ALT in the Barrow Peninsula, with particular attention to contrasts between the urbanized village and relatively undisturbed tundra in the nearby Barrow Environmental Observatory. The modified Berggren solution, an advanced analytic solution to the general Stefan problem of calculating frost and thaw depth, was used in a geographic context to map ALT over the 150 km² area investigated in the Barrow Urban Heat Island Study. The

  12. Method for Differentiation between Fresh and Frozen-thawed Fish

    NASA Astrophysics Data System (ADS)

    Kitamikado, Manabu; Yoshioka, Keiko

    In Japan fresh fish has a much higher market price than that for frozen-thawed fish. However, a large number of frozen-thawed fish are sold without being differentiated from fresh fish. We discuss here the differentiation methods described in literatures and our works in the search for such a method. We used the opacity of crystalline lens and the destruction of red blood cells as the index for the differentiation, in addition to the activity of neutral β-N-acetylglucosaminidase in blood. Thus, a fluorometric method and a rapid paper test method were developed based on measurement of the activity of this enzyme. This enzyme, found in fish red blood cells, was inactive in intact cells but was activated when cells were disrupted by freezing, and thawing. Both methods were applicable for testing most commom edible fish prior to filleting and required about 20 min using a UV-lamp.

  13. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    NASA Astrophysics Data System (ADS)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  14. Thin-Layer Chromatography: Four Simple Activities for Undergraduate Students.

    ERIC Educational Resources Information Center

    Anwar, Jamil; And Others

    1996-01-01

    Presents activities that can be used to introduce thin-layer chromatography at the undergraduate level in relatively less developed countries and that can be performed with very simple and commonly available apparati in high schools and colleges. Activities include thin-layer chromatography with a test-tube, capillary feeder, burette, and rotating…

  15. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  16. Effect of thaw depth on fluxes of CO₂ and CH₄ in manipulated Arctic coastal tundra of Barrow, Alaska.

    PubMed

    Kim, Yongwon

    2015-02-01

    Changes in CO₂ and CH₄ emissions represent one of the most significant consequences of drastic climate change in the Arctic, by way of thawing permafrost, a deepened active layer, and decline of thermokarst lakes in the Arctic. This study conducted flux-measurements of CO₂ and CH₄, as well as environmental factors such as temperature, moisture, and thaw depth, as part of a water table manipulation experiment in the Arctic coastal plain tundra of Barrow, Alaska during autumn. The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH₄ emission by a factor of 4.3 compared to non-flooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO₂ emission in the dry section was 3.9-fold higher than in others. CH₄ emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO₂ emission is not related to thaw depth. Quotients of global warming potential (GWPCO₂) (dry/control) and GWPCH₄ (wet/control) increased by 464 and 148%, respectively, and GWPCH₄ (dry/control) declined by 66%. This suggests that CO₂ emission in a drained section is enhanced by soil and ecosystem respiration, and CH₄ emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO₂ and CH₄, as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH₄ release, and the disappearance of the lakes causes the stimulated CO₂ production in response to the Arctic climate change. PMID:25461040

  17. Effect of Thaw Depth on Fluxes of CO2 and CH4 in Manipulated Arctic Coastal Tundra of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.

    2014-12-01

    Changes in CO2 and CH4 emissions represent one of the most significant consequences of drastic climate change in the Arctic, by way of thawing permafrost, a deepened active layer, and decline of thermokarst lakes in the Arctic. This study conducted flux-measurements of CO2 and CH4, as well as environmental factors such as temperature, moisture, and thaw depth, as part of a water table manipulation experiment in the Arctic coastal plain tundra of Barrow, Alaska during autumn. The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH4 emission by a factor of 4.3 compared to non-flooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO2 emission in the dry section was 3.9-fold higher than in others. CH4 emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO2 emission is not related to thaw depth. Quotients of global warming potential (GWPCO2) (dry/control) and GWPCH4 (wet/control) increased by 464 and 148 %, respectively, and GWPCH4 (dry/control) declined by 66 %. This suggests that CO2 emission in a drained section is enhanced by soil and ecosystem respiration, and CH4 emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO2 and CH4, as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH4 release, and the disappearance of the lakes causes the stimulated CO2 production in response to the Arctic climate change.

  18. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is

  19. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect

    Harp, Dylan; Atchley, Adam; Painter, Scott L; Coon, Ethan T.; Wilson, Cathy; Romanovsky, Vladimir E; Rowland, Joel

    2016-01-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21$^{st}$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant

  20. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is

  1. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGESBeta

    Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; Coon, Ethan T.; Wilson, Cathy J.; Romanovsky, Vladimir E.; Rowland, Joel C.

    2016-02-11

    Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties

  2. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGESBeta

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although

  3. Hydrology and geochemistry of small tundra drainage basins in response to active layer disturbance. Progress report

    SciTech Connect

    Rundle, A.S.

    1986-06-01

    Hydrology of far northern drainage basins in which the shallow organic-rich surface layer overlies a permanently frozen substrate, is poorly known, yet is of great importance in evaluating natural stability and in predicting response to disturbances effecting flow and the distribution of nutrient and sedimentary ions. First-year study of a 2.5 km/sup 2/ watershed supports the primacy of the short duration melt-off in the yearly hydrologic/geochemical cycle. At this time basin storage capacity is minimum and total runoff carries with it a seasonal maximum of nutrient ions, suspended and dissolved solids. Subsequent to melt-off, base flow is high but decreases as thaw releases seasonally frozen water, including some temporarily stored melt-off. Spring storm events produce rapid peak discharges because of the low storage capacity in the catchment. Rare, high intensity, short duration storms in early season can produce discharges that rival diurnal peaks at melt-off. With activation of vegetation following melt-off, some nutrient ions are no longer detectable and pH becomes acid. Summer drought periods are common and if sufficiently protracted, reduce stream flow to barely measurable quantities. At such times hydrographs may show small diurnal fluctuations in response to evapotranspiration cycles. Ion concentrations show an increase as senescence commences in mid-August.

  4. Effect of thawing methods on frozen semen quality of yak (Poephagus grunniens L.) bulls

    PubMed Central

    Borah, Binod Kumar Dutta; Deka, Bharat Chandra; Biswas, Ranjan Kumar; Chakravarty, Prithiviraj; Deori, Sourabh; Sinha, Sudip; Ahmed, Kutubuddin

    2015-01-01

    Aim: To evaluate different thawing temperatures and duration on the post-thaw semen quality of Indian yaks bulls. Materials and Methods: Semen ejaculates from four different yak bulls were collected using artificial vagina method and extended with tris extender containing 6.4% glycerol at 35°C, cooled gradually from 35°C to 5°C at 1°C/3 min and equilibrated at 4-5°C for 4 h and frozen in French mini straws using a programmable bio-freezer and finally stored in liquid nitrogen. Thawing of frozen semen straws was carried out using three methods i.e., 35°C for 60 s (thawing method I), 37°C for 30 s (thawing method II) and 75°C for 9 s (thawing method III). The post-thaw semen quality parameters assessed were sperm motility, percent live sperm, hypo-osmotic swelling test (HOST)-reacted sperm, acrosomal changes, and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the extracellular media. Results: The percent sperm motility, total incidence of acrosomal changes, and extracellular release of AST varied significantly (p<0.01) between thawing methods but live sperm and HOST-reacted sperm did not vary significantly between thawing methods. The percent sperm motility of frozen yak semen for thawing method III was significantly (p<0.05) higher than that for thawing methods I and II, the difference between thawing methods I and II being non-significant. The critical difference test revealed that the total incidence of acrosomal changes and extracellular release of AST were significantly (p<0.05) lower when thawing was done using methods I and II than in method III. Conclusion: On the basis of the present experiment, we can conclude that barring the post-thaw sperm motility, thawing of frozen yak semen in water either at 35°C for 60 s or 37°C for 30 s gives better post-thaw semen quality than at 75°C for 09 s. PMID:27047161

  5. High risk of permafrost thaw

    SciTech Connect

    Schuur, E.A.G.; Abbott, B.; Koven, C.D,; Riley, W.J.; Subin, Z.M.; al, et

    2011-11-01

    In the Arctic, temperatures are rising fast, and permafrost is thawing. Carbon released to the atmosphere from permafrost soils could accelerate climate change, but the likely magnitude of this effect is still highly uncertain. A collective estimate made by a group of permafrost experts, including myself, is that carbon could be released more quickly than models currently suggest, and at levels that are cause for serious concern. While our models of carbon emission from permafrost thaw are lacking, experts intimately familiar with these landscapes and processes have accumulated knowledge about what they expect to happen, based on both quantitative data and qualitative understanding of these systems. We (the authors of this piece) attempted to quantify this expertise through a survey developed over several years, starting in 2009. Our survey asked experts what percentage of surface permafrost they thought was likely to thaw, how much carbon would be released, and how much of that would be methane, for three time periods and under four warming scenarios that are part of the new IPCC Fifth Assessment Report.

  6. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  7. Influence of Plant Communities on Active Layer Depth in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Fisher, James; Estop Aragones, Cristian; Thierry, Aaron; Hartley, Iain; Murton, Julian; Charman, Dan; Williams, Mathew; Phoenix, Gareth

    2015-04-01

    Vegetation plays a crucial role in determining active layer depth (ALD) and hence the extent to which permafrost may thaw under climate change. Such influences are multifaceted and include, for example, promotion of shallow ALD by insulation from moss or shading by plant canopies in summer, or trapping of snow in evergreen tree canopies that reduces snow insulation of soil in winter. However, while the role of different vegetation components are understood at a conceptual level, quantitative understanding of the relative importance of different vegetation components and how they interact to determine active layer depth is lacking. In addition, major abiotic factors such as fire and soil hydrological properties will considerably influence the role of vegetation in mediating ALD, though again this is not well understood. To address this we surveyed 60 plots across 4 sites of contrasting vegetation and fire status, encompassing a range of soil moisture and organic matter thickness, in the discontinuous permafrost zone near Yellowknife, NT, Canada. In each plot we measured ALD and a range of vegetation and soil parameters to understand how key characteristics of the understory and canopy vegetation, and soil properties influence ALD. Measurements included moss depth, tree canopy LAI, understory LAI, understory height, vegetation composition, soil organic matter depth, slope and soil moisture. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have also been able to determine which characteristics of the vegetation and soil are important for protecting permafrost, which characteristics emerge as the most important factors across sites (i.e. irrespective of site conditions) and which factors have site (ecosystem) specific influences. This work provides a major insight into how ecosystem properties influence ALD and therefore also how changes in ecosystems properties arising from climate change may influence

  8. Spatial variability of the active layer thickness at the Limnopolar Lake CALM-S site (Byers Peninsula, Livingston Island, Antarctica) and the role of snow cover.

    NASA Astrophysics Data System (ADS)

    de Pablo, Miguel A.; Molina, Antonio; Ramos, Miguel

    2016-04-01

    Since its establishment in early 2009, thaw depth has been measured in late January - early February at the Limnopolar Lake CALM-S site (A25) in Byers Peninsula, Livingston Island, Antarctica (62°38'59.1''S, 61°06'16.9''W). Ground, surface, and air temperatures have been also measured, as well as snow cover deep, derived from an array of miniature temperature loggers mounted into a wood mast (iButton from Maxim) (Lewcovicz, 2008). Thermal characterization of the active layer has been already done based on this data (de Pablo et al., 2013), as well as the interannual variability (de Pablo et al., 2014) and the snow cover evolution analyses (de Pablo et al., submitted). The results show that permafrost could exist at 120 cm depth, although the active layer is reducing, probably caused by the elongation on the snow cover duration. While the snow cover thickness remains approximately similar each winter, the snow offset delays, reducing the period in which solar radiation could heat the ground. In fact, during the last years, thaw depth was not able to be measured (in spite we visited the area in the approximately the same dates) due to thick snow layer remained covering the CALM-S site. However, we have not yet developed an analysis of the spatial variability of the thaw depth we measured each year, and how it could be conditioned by the ground properties (as slope or grain-size) or external factors, such as snow cover. In order to confirm the effect of the snow cover in the evolution of the active layer thickness, here we analyze the spatial variability of the thaw depth for the entire CALM-S site, and try to correlate it respect to the ground surface characteristics (grain-size, ground patterns, among others), the ground surface temperature and the snow cover thickness. Some of those data were acquired while the surface was visible during Antarctic field trips few years ago, and others (snow cover thickness) was measured by mechanical probing in each node. This

  9. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  10. Effects of Freezing and Thawing on Consolidation Behavior of Clayey Soils

    NASA Astrophysics Data System (ADS)

    Binal, Adil; Adeli, Parisa

    2015-04-01

    An apprehending of freezing and thawing effects on cohesive soil is considerable for many construction and environmental subjects. This paper relates the effects of freezing and thawing on consolidation behaviour of clayey soils. The Capital of Ankara settled on a sequence of lacustrine sediments. These sediments include fine grain soils, locally. Collected samples were undisturbed grey clay and clayey sand that were obtained from the bottom of a construction zone at about 1m depth below the ground surface. Total of 32 moulded samples were prepared with constant water content to reflect the moisture condition in the active surface layer. Gray clay and clayey sand were analysed in the laboratory, and found to have the plastic limits (PL) of 33.01% and 22.56%, the liquid limits (LL) of 75.05% and 36.97%, and the plasticity indexes (PI) of 42.04% and 14.41%. The soil samples were classified as "CH" and "SC" in accordance with the unified soil classification system. Soil samples for all tests were placed in a freezer that has -18°C temperature. Samples have been waited in it for twenty-four hours. Then, they have been removed from the freezer and allowed to stand for twenty-four hours at a constant room temperature (21°C) and humidity (80% RH). As a result, one freezing and thawing cycle was achieved between -18°C (24 hours) and 21°C (24 hours), and it took two days. Freezing and thawing (FT) sequences were selected as 1, 3, 7, 14 and 21. After each FT sequence, Atterberg limits and consolidation tests were carried out in accordance with ASTM standards. Liquid and plastic limits of soil samples, suddenly, were decreased after first FT cycle. That state is a sign of the clay mineral orientation due to freezing and thawing process. The soil classification of clayey sand was changed from "SC" to "SM" after first FT cycle. Furthermore, the coefficient of consolidation and permeability of grey clay had been increased by rising in FT cycles up to 7 and then continue to

  11. Evaluation of Spaceborne L-band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada

    NASA Technical Reports Server (NTRS)

    Roy, A.; Royer, A.; Derksen, C.; Brucker, L.; Langlois, A.; Mailon, A.; Kerr, Y.

    2015-01-01

    The landscape freeze/thaw (FT) state has an important impact on the surface energy balance, carbon fluxes, and hydrologic processes; the timing of spring melt is linked to active layer dynamics in permafrost areas. L-band (1.4 GHz) microwave emission could allow the monitoring of surface state dynamics due to its sensitivity to the pronounced permittivity difference between frozen and thawed soil. The aim of this paper is to evaluate the performance of both Aquarius and Soil Moisture and Ocean Salinity (SMOS) L-band passive microwave measurements using a polarization ratio-based algorithm for landscape FT monitoring. Weekly L-band satellite observations are compared with a large set of reference data at 48 sites across Canada spanning three environments: tundra, boreal forest, and prairies. The reference data include in situ measurements of soil temperature (Tsoil) and air temperature (Tair), and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and snow cover area (SCA) products. Results show generally good agreement between Lband FT detection and the surface state estimated from four reference datasets. The best apparent accuracies for all seasons are obtained using Tair as the reference. Aquarius radiometer 2 (incidence angle of 39.6) data gives the best accuracies (90.8), while for SMOS the best results (87.8 of accuracy) are obtained at higher incidence angles (55- 60). The FT algorithm identifies both freeze onset and end with a delay of about one week in tundra and two weeks in forest and prairies, when compared to Tair. The analysis shows a stronger FT signal at tundra sites due to the typically clean transitions between consistently frozen and thawed conditions (and vice versa) and the absence of surface vegetation. Results in the prairies were poorer because of the influence of vegetation growth in summer (which decreases the polarization ratio) and the high frequency of ephemeral thaw events during winter. Freeze onset

  12. The Effects of Permafrost Thaw on Organic Matter Quality and Availability Along a Hill Slope in Northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Connolly, C. T.; Spawn, S.; Ludwig, S.; Schade, J. D.; Natali, S.

    2014-12-01

    Climate warming and permafrost thaw in northeastern Siberia are expected to change the quantity and quality of organic matter (OM) transported through watersheds, releasing previously frozen carbon (C) to biologically available pool. Hill slopes have shown to influence the distribution of OM, resulting in a downhill accumulation of available C and nutrients relative to uphill. Here we examine how future permafrost thaw will change OM quality and availability along a hill slope in a larch-dominated watershed. We collected soils from the thawed organic and mineral layers, and 1m deep permafrost cores for dissolved organic C (DOC) and total dissolved N (TDN), C composition from measures of colored dissolved organic matter (CDOM), DOC lability from biodegradable DOC (BDOC) incubations, C and nutrient availability from extracellular-enzyme assays (EEA's), and microbial respiration from aerobic soil incubations. Here we show that organic soils (O), in comparison to mineral soils (M) and permafrost (P) are the most abundant source of C (avg O DOC: 51.6mg/L), exhibiting low molecular complexity (avg O SUVA254: 4.05) and high quality. Evidence suggests permafrost OM may be an equally abundant, and more labile source of C than mineral soils (highest P DOC: 16.1 mg/L, lowest P SUVA254: 6.32; median M DOC: 18.5 mg/L, median M SUVA254: 24.0). Furthermore, we demonstrate that there may be a positive relationship in the rate of C mineralization and distance downhill, showing 15-30% greater CO2 production/gC downhill relative to uphill. Evidence also supports a similar relationship in permafrost DOC content and molecular complexity, showing more DOC of a lower complexity further downhill. This indicates DOC transport may have been occurring through the active layer and downhill during ice-rich permafrost formation, and may supply a labile source of carbon to lowland areas and adjacent stream networks upon thaw.

  13. Sporadic Layer es and Siesmic Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid; Blokhin, Alexandr; Kalashnikova, Tatyana

    2016-07-01

    To determine the influence of seismogenic disturbances on the calm state of the iono-sphere and assess the impact of turbulence development in sporadic-E during earthquake prepa-ration period we calculated the variation in the range of semitransparency ∆fES = f0ES - fbES. The study was based primarily on the ionograms obtained by vertical sounding of the ionosphere at Dushanbe at nighttime station from 15 to 29 August 1986. In this time period four successive earthquakes took place, which serves the purpose of this study of the impact of seis-mogenic processes on the intensity of the continuous generation of ionospheric turbulence. Analysis of the results obtained for seismic-ionospheric effects of 1986 earthquakes at station Dushanbe has shown that disturbance of ionospheric parameters during earthquake prepa-ration period displays a pronounced maximum with a duration of t = 1-6 hours. Ionospheric effects associated with the processes of earthquake preparation emerge quite predictably, which verifies seismogenic disturbances in the ionosphere. During the preparation of strong earthquakes, ionograms of vertical sounding produced at station Dushanbe - near the epicenter area - often shown the phenomenon of spreading traces of sporadic Es. It is assumed that the duration of manifestation of seismic ionospheric precursors in Du-shanbe τ = 1 - 6 hours may be associated with deformation processes in the Earth's crust and var-ious faults, as well as dissimilar properties of the environment of the epicentral area. It has been shown that for earthquakes with 4.5 ≤ M ≤ 5.5 1-2 days prior to the event iono-spheric perturbations in the parameters of the sporadic layer Es and an increase in the value of the range of semitransparency Es - ΔfEs were observed, which could lead to turbulence at altitudes of 100-130 km.

  14. Microbial community response to permafrost thaw after wildfire in an Alaskan upland boreal forest

    NASA Astrophysics Data System (ADS)

    Tas, N.; Jorgenson, M. T.; Wang, S.; Berhe, A. A.; Wickland, K. P.; Waldrop, M. P.; Jansson, J. K.

    2012-12-01

    Fire is a major factor controlling the long-term dynamics of soil carbon in Alaskan boreal forests. Wildfire not only contributes to a significant global emission of greenhouse gasses but also can indirectly result in the deepening of the active layer and thawing of near-surface permafrost due to reductions in organic layer depth and increases in heat flux through soil. Although boreal ecosystems are fire-adapted, increased fire frequency and rising global temperatures may result in warmer soils and therefore increase the metabolic rates of decomposer microbes and result in accelerated permafrost decomposition and greenhouse gas fluxes. In addition to fire-mediated changes in soil and vegetation structure, changes in the soil microbial community structure are likely to have consequences for rates of soil carbon cycling. In this study we aimed to define the impact of fire on soil microbial communities in an upland black spruce forest and to assess microbial metabolic potential for soil respiration, methanogenesis, and nitrous oxide (N2O) flux. Soil samples from two fire impacted and three control (unburned) locations were collected near Nome Creek, AK, an upland moderately drained black spruce forest. This location was within the Boundary fire that burned between mid-June and the end of August 2004. Soil temperature measurements from before and after the fire showed that soils were warmer after the fire event and the permafrost thawed below 1m. At each sampling location, soil and permafrost samples were collected every 10 cm to a depth of 1 m. Besides biochemical characterization, CO2, CH4, N2O fluxes and potential activities of enzymes involved in extracellular decomposition of complex organic molecules (hemicellulose, chitin and lignin) were measured. The microbial community composition in the samples was determined by sequencing of 16S rRNA genes and microbial metabolic potential was assessed via sequencing of total genomic DNA (metagenomics) in selected active

  15. Analysis of Charge Carrier Transport in Organic Photovoltaic Active Layers

    NASA Astrophysics Data System (ADS)

    Han, Xu; Maroudas, Dimitrios

    2015-03-01

    We present a systematic analysis of charge carrier transport in organic photovoltaic (OPV) devices based on phenomenological, deterministic charge carrier transport models. The models describe free electron and hole transport, trapping, and detrapping, as well as geminate charge-pair dissociation and geminate and bimolecular recombination, self-consistently with Poisson's equation for the electric field in the active layer. We predict photocurrent evolution in devices with active layers of P3HT, P3HT/PMMA, and P3HT/PS, as well as P3HT/PCBM blends, and photocurrent-voltage (I-V) relations in these devices at steady state. Charge generation propensity, zero-field charge mobilities, and trapping, detrapping, and recombination rate coefficients are determined by fitting the modeling predictions to experimental measurements. We have analyzed effects of the active layer morphology for layers consisting of both pristine drop-cast films and of nanoparticle (NP) assemblies, as well as effects on device performance of insulating NP doping in conducting polymers and of specially designed interlayers placed between an electrode and the active layer. The model predictions provide valuable input toward synthesis of active layers with prescribed morphology that optimize OPV device performance.

  16. Preservation of labile organic matter in soils of drained thaw lakes in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.; Rethemeyer, Janet; Kao-Kniffin, Jenny; Löppmann, Sebastian; Hinkel, Kenneth; Bockheim, James

    2014-05-01

    A large number of studies predict changing organic matter (OM) dynamics in arctic soils due to global warming. In contrast to rather slowly altering bulk soil properties, single soil organic matter (SOM) fractions can provide a more detailed picture of the dynamics of differently preserved SOM pools in climate sensitive arctic regions. By the study of the chemical composition of such distinctive SOM fractions using nuclear magnetic resonance spectroscopy (NMR) together with radiocarbon analyses it is possible to evaluate the stability of the major OM pools. Approximately 50-75% of Alaska's Arctic Coastal Plain is covered with thaw lakes and drained thaw lakes that follow a 5,000 yr cycle of development (between creation and final drainage), thus forming a natural soil chronosequence. The drained thaw lakes offer the possibility to study SOM dynamics affected by permafrost processes over millennial timescales. In April 2010 we sampled 16 soil cores (including the active and permanent layer) reaching from young drained lakes (0-50 years since drainage) to ancient drained lakes (3000-5500 years since drainage). Air dried soil samples from soil horizons of the active and permanent layer were subjected to density fractionation in order to differentiate particulate OM and mineral associated OM. The chemical composition of the SOM fractions was analyzed by 13C CPMAS NMR spectroscopy. For a soil core of a young and an ancient drained thaw lake basin we also analyzed the 14C content. For the studied soils we can show that up to over 25 kg OC per square meter are stored mostly as labile, easily degradable organic matter rich in carbohydrates. In contrast only 10 kg OC per square meter were sequestered as presumably more stable mineral associated OC dominated by aliphatic compounds. Comparable to soils of temperate regions, we found small POM (< 20 µm) occluded in aggregated soil structures which differed in the chemical composition from larger organic particles. This was

  17. Survival Rates with Time Course of Frozen-thawed Pacific Oyster Larvae in Indoor Rearing System

    PubMed Central

    Kim, Ki Tae; Lim, Han Kyu; Chang, Young Jin

    2013-01-01

    Post-thawed larval rearing in Pacific oyster Crassostrea gigas was performed to investigate the survival rate with time course in three kinds of larvae cryopreserved. The highest survival rate and larval activity index (LAI) of post-thawed larvae were obtained from the permeation in 0.2 M sucrose and 2.0 M ethylene glycol (EG) at -1°C/min in freezing speed showing the survival rates just after thawing of 63.8% in trochophore, 84.1% in D-shaped veliger and 56.3% in early umbo veliger. In post-thawed larval rearing with food supply, the larvae lasted their lives until 24 hours in trochophore, 75 hours in D-shaped veliger and 57 hours in early umbo veliger. The results suggested that each larval stage post-thawed revealed no more further development to subsequent respective stage. PMID:25949149

  18. Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chung, Sang-Kun (Inventor); Colvin, Michael S. (Inventor); Chang, Manchium (Inventor)

    1991-01-01

    Monodisperse, polymeric microspheres are formed by injecting uniformly shaped droplets of radiation polymerizable monomers, preferably a biocompatible monomer, having covalent binding sites such as hydroxyethylmethacrylate, into a zone, impressing a like charge on the droplet so that they mutually repel each other, spheroidizing the droplets within the zone and collecting the droplets in a pool of cryogenic liquid. As the droplets enter the liquid, they freeze into solid, glassy microspheres, which vaporizes a portion of the cryogenic liquid to form a layer. The like-charged microspheres, suspended within the layer, move to the edge of the vessel holding the pool, are discharged, fall and are collected. The collected microspheres are irradiated while frozen in the cryogenic liquid to form latent free radicals. The frozen microspheres are then slowly thawed to activate the free radicals which polymerize the monomer to form evenly-sized, evenly-shaped, monodisperse polymeric microspheres.

  19. The high resolution topographic evolution of an active retrogressive thaw slump compiled from a decade of photography, ground surveys, laser scans and satellite imagery

    NASA Astrophysics Data System (ADS)

    Crosby, B. T.; Barnhart, T. B.; Rowland, J. C.

    2015-12-01

    Remote sensing imagery has enables the temporal reconstruction of thermal erosion features including lakes, shorelines and hillslope failures in remote Arctic locations, yet these planar data limit analysis to lines and areas. This study explores the application of varying techniques to reconstruct the three dimensional evolution of a single thermal erosion feature using a mixture of opportunistic oblique photos, ground surveys and satellite imagery. At the Selawik River retrogressive thaw slump in northwest Alaska, a bush plane collected oblique aerial photos when the feature was first discovered in 2004 and in subsequent years. These images were recently processed via Structure from Motion to generate georeferenced point clouds for the years prior to the initiation of our research. High resolution ground surveys in 2007, 2009 and 2010 were completed using robotic total station. Terrestrial laser scans (TLS) were collected in the summers of 2011 and 2012. Analysis of stereo satellite imagery from 2012 and 2015 enable continued monitoring of the feature after ground campaigns ended. As accurate coregistraion between point clouds is vital to topographic change detection, all prior and subsequent datasets were georeferenced to stable features observed in the 2012 TLS scan. Though this coregistration introduces uncertainty into each image, the magnitudes of uncertainty are significantly smaller than the topographic changes detected. Upslope retreat of the slump headwall generally decreases over time as the slump floor progresses from a highly dissected gully topography to a low relief, earthflow dominated depositional plane. The decreasing slope of the slump floor diminishes transport capacity, resulting in the progressive burial of the slump headwall, thus decreasing headwall retreat rates. This self-regulation of slump size based on feature relief and transport capacity suggests a capacity to predict the maximum size a given feature can expand to before

  20. The effect of vegetation type and fire on permafrost thaw: An empirical test of a process based model

    NASA Astrophysics Data System (ADS)

    Thierry, Aaron; Estop-Aragones, Cristian; Fisher, James; Hartley, Iain; Murton, Julian; Phoenix, Gareth; Street, Lorna; Williams, Mathew

    2015-04-01

    As conditions become more favourable for plant growth in the high latitudes, most models predict that these areas will take up more carbon during the 21st century. However, vast stores of carbon are frozen in boreal and arctic permafrost, and warming may result in some of this carbon being released to the atmosphere. The recent inclusion of permafrost thaw in large-scale model simulations has suggested that the permafrost feedback could potentially substantially reduce the predicted global net uptake of carbon by terrestrial ecosystems, with major implications for the rate of climate change. However, large uncertainties remain in predicting rates of permafrost thaw and in determining the impacts of thaw in contrasting ecosystems, with many of the key processes missing from carbon-climate models. The role that different plant communities play in insulating soils and protecting permafrost is poorly quantified, with key groups such as mosses absent in many models. But it is thought that they may play a key role in determining permafrost resilience. In order to test the importance of these ecological processes we use a new specially acquired dataset from sites in the Canadian arctic to develop, parameterise and evaluate a detailed process-based model of vegetation-soil-permafrost interactions which includes an insulating moss understory. We tested the sensitivity of modelled active layer depth to a series of factors linked to fire disturbance, which is common in boreal permafrost areas. We show how simulations of active layer depth (ALD) respond to removals of (i) vascular vegetation, (ii) moss cover, and (iii) organic soil layers. We compare model responses to observed patterns from Canada. We also describe the sensitivity of our modelled ALD to changes in temperature and precipitation. We found that four parameters controlled most of the sensitivity in the modelled ALD, linked to conductivity of organic soils and mosses.

  1. The impacts of thawing permafrost on tundra lakes, Mackenzie Delta region, NWT, Canada. (Invited)

    NASA Astrophysics Data System (ADS)

    Kokelj, S.; Thompson, M. S.; Lantz, T.; Thienpont, J.; Pisaric, M. F.; Smol, J. P.; Blais, J.; Zajdlik, B.

    2009-12-01

    Many arctic regions with abundant lakes and ponds are characterized by ice-rich terrain sensitive to thermokarst disturbance. In the Mackenzie Delta region, retrogressive thaw slumps commonly develop adjacent to tundra lakes and may impact several hectares of terrain. The numbers, size and growth rates of slumps have increased significantly since the 1970s with rising air and permafrost temperatures. To examine the chemical effects of thawing permafrost on lake water quality we assessed water chemistry for large number of slump-disturbed and undisturbed lakes across tundra uplands in the Mackenzie Delta region. The environmental factors typically evoked to explain variation in tundra lake water quality, including surficial geology and proximity to the treeline or to the coast, were subordinate to the main driver, permafrost degradation. Thaw slump-affected lakes had elevated ionic concentrations and water clarity in comparison with undisturbed lakes. The strength of the ionic impact was positively associated with the proportion of catchment affected by slumping and inversely related to disturbance age. We also found that fire-induced active-layer deepening had a detectable influence on lake water ionic strength. Preliminary evidence suggests sedimentary diatom assemblages track the changes in chemical and physical limnology coincident with the timing of thermokarst slumping, and thus, may prove a valuable tool for inferring changes at the base of the aquatic food web in these lakes. In a warming arctic, we can anticipate that thermokarst processes will increase in importance as a driver of ionic chemistry and optical properties of small lakes and ponds with potential to alter aquatic food webs.

  2. The impacts of permafrost thaw on land-atmosphere greenhouse gas exchange

    SciTech Connect

    Hayes, Daniel J; Kicklighter, David W.; McGuire, A. David; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry; Wullschleger, Stan

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon stored in previously frozen soil organic matter (SOM) would be a strong positive feedback to climate1. As the northern permafrost region experiences double the rate of warming as the rest of the Earth2, the vast amount of carbon in permafrost soils3 is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases (GHG). Here, we employ a process-based model simulation experiment to assess the net effect of this so-called permafrost carbon feedback (PCF) in recent decades. Results show a wide-spread increase in the depth to permafrost between 1990 and 2006, with simulated active layer thickness (ALT) capturing the mean and spatial variability of the observational data. Analysis of the simulation experiment provides an estimate of a 2.8 mm/yr increase in permafrost depth, which translates to 281 TgC/yr thawed from previously frozen SOM. Overall, we estimate a net GHG forcing of 534 MtCO2eq/yr directly tied to ALT dynamics, while accounting for CO2 (562 MtCO2eq/yr) and CH4 (52 MtCO2eq/yr) release as well as CO2 uptake by vegetation (-80 MtCO2eq/yr). This net forcing represents a significant factor in the estimated 640 MtCO2eq/yr pan-arctic GHG source4, and an additional 6.9% contribution on top of the combined 7792 MtCO2eq/yr fossil fuel emissions from the eight Arctic nations over this time period5.

  3. Mechanism of freeze-thaw instability of aluminum hydroxycarbonate and magnesium hydroxide gels.

    PubMed

    Zapata, M I; Feldkamp, J R; Peck, G E; White, J L; Hem, S L

    1984-01-01

    The effect of freeze-thaw cycles on the physical stability of aluminum hydroxycarbonate and magnesium hydroxide gels was studied. Coagulation following a freeze-thaw cycle, leading to the formation of visible aggregates, affected the content uniformity of both gels. The freeze-thaw cycles did not affect the crystal form or surface characteristics of the gels as determined by X-ray powder diffraction and point of zero charge, but caused a slight reduction in the rate of acid neutralization and a large increase in the rate of sedimentation. The greatest effect was observed after the first freeze-thaw cycle. While the duration of freezing was not a factor, the rate of freezing was important and was inversely related to the aggregate size. The aggregates which formed following a freeze-thaw cycle were not redispersed by shaking, but were reversed by ultrasonic treatment or homogenization. The adsorption of polymers or surface-active agents prior to freezing reduced and, in some cases, prevented the formation of aggregates. The physical instability produced by a freeze-thaw cycle was explained by the modified DLVO theory. The force exerted on the particles by the growing ice crystals forced the particles into the primary minimum, producing strong interparticle attraction. On thawing, simple agitation did not provide enough force to overcome the attractive force of the primary minimum. Adsorption of polymers or surface-active agents increased the steric repulsive force and prevented the particles from reaching the primary minimum. PMID:6694078

  4. Changes in Soil Nitrogen Availability Associated with Permafrost Thaw

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Natali, S.; Crummer, K. G.; Mack, M. C.; Schuur, E. A.

    2013-12-01

    The globally significant size of the permafrost carbon (C) pool reflects the balance between soil decomposition and plant growth in high latitude ecosystems. Projected increases in mean annual temperatures in these cold systems are expected to increase rates of both of these processes. As the nutrient limiting plant productivity in high latitude ecosystems, nitrogen (N) is expected to play a key role in determining the future balance between permafrost C losses and increased C sequestration by plants. In this experiment a tundra ecosystem in interior Alaska was subjected to soil and air warming treatments for five years. Soil warming was executed using an insulating snow pack that was removed prior to spring thaw while air warming was achieved using open top chambers deployed during the growing season. Soil warming treatments increased growing season thaw depth by 9 cm and increased soil temperature by 4°C. Air warming treatments raised air temperatures by 0.5°C. To assess N availability across treatments, anion and cation binding resins were deployed during the fourth and fifth years of warming manipulations at a depth of 10cm. Analysis of resin extracts indicated that inorganic N availability of surface soils increased significantly with soil warming but did not significantly change from control levels when soil and air warming treatments were combined. Resins from control plots had 5.2 μg N per g dry resin in the form of ammonium and nitrate while resins from soil warmed plots had 10.7 μg N per g dry resin. Resins from combined soil and air warming plots had 7.3 μg N per g dry resin. Changes in inorganic N availability were partially explained by changes in environmental variables (active layer depth, soil temperature, and soil moisture). Nondestructive methods were used to survey aboveground plant biomass and are combined with %N analysis of live and senesced plant tissues. The resulting estimates of aboveground plant N pools and fluxes of litter N into

  5. Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica

    NASA Astrophysics Data System (ADS)

    Schaefer, Carlos Ernesto; Michel, Roberto; Souza, Karoline; Senra, Eduardo; Bremer, Ulisses

    2015-04-01

    The Ellsworth Mountains occur along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east and the Sentinel Range to the West. The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The mean annual air temperature at the 1,000 m level is estimated to be -25°C, and the average annual accumulation of water-equivalent precipitation likely ranges from 150 to 175 mm yr-1 (Weyant, 1966). The entire area is underlain by continuous permafrost of unknown thickness. Based on data collected from 22 pits, 41% of the sites contained dry permafrost below 70 cm, 27% had ice-cemented permafrost within 70 cm of the surface, 27% had bedrock within 70 cm, and 5% contained an ice-core (Bockheim, unpublished; Schaefer et al., 2015). Dry-frozen permafrost, which may be unique to Antarctica, appears to form from sublimation of moisture in ice-cemented permafrost over time. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm (Bockheim, unpublished); our understanding of Antarctic permafrost is poor, especially at the continent. The active layer monitoring sites were installed at Edson Hills, Ellsworth_Mountains, in the summer of 2012, and consist of thermistors (accuracy ± 0.2 °C) installed at 1 m above ground for air temperature measurements at two soil profiles on quartzite drift deposits, arranged in a vertical array (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm and Lithic Anyorthel 850 m asl, 5 cm, 10 cm, 30 cm). All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from January 2nd 2012 until December 29th 2013. We calculated the thawing days (TD), freezing days (FD); isothermal days (ID), freeze thaw days (FTD), thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). Temperature at 5 cm reaches a maximum

  6. Study of the Northern Qinghai-Tibetan Plateau Permafrost Active Layer Depth Rate Using Satellite Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Su, X.; Shum, C. K.; Kim, J. W.; Kuo, C. Y.

    2015-12-01

    The Tibetan Plateau is the world's largest and the highest plateau with distinct and competing surface and subsurface processes. It is the Third Pole and the World Water Tower, owing to its vast ice reservoir with the largest number of glaciers in the world, and covered by a large (1.3 to 1.6 million km2) layer of discontinuous and sporadic alpine permafrost. The thawing over Tibetan Plateau permafrost regions is thought to be more severe compared with other high latitude permafrost regions by the fact that the permafrost is warm. During the past few decades, 82% of Tibetan Plateau glaciers have retreated and 10% permafrost has degraded. The overall mean active layer depth (ALD) rate increase over the Plateau is 1.4 cm yr-1, 1980-2001, based on model studies and comparison with in situ borehole data. Here we report on the work in progress to quantify ALD rate increase in the northern Tibetan Plateau near the Tibetan national highway, using multi-band SAR/InSAR for improved the thermokarst surface classification, Envisat radar altimetry and ALOS-1 InSAR observed land subsidence, ALD modeling for the various thermokarst surface to relate to subsidence measurements, and the associated validations using available in situ borehole subsidence measurements.

  7. Last Decade of Changes in Ground Temperature and Active Layer Thickness in the High Canadian Arctic and in Barrow

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Walker, D. A.; Yoshikawa, K.; Marchenko, S. S.

    2013-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Most of the permafrost observatories in the Northern Hemisphere show substantial warming of permafrost since circa 1980-1990. The magnitude of warming has varied with location, but was typically from 0.5 to 2°C. Permafrost is already thawing within the southern part of the permafrost domain. However, recent observations documented propagation of this process northward into the continuous permafrost zone. The close proximity of the exceptionally icy soil horizons to the ground surface, which is typical for the arctic tundra biome, makes tundra surfaces extremely sensitive to the natural and human-made changes that may resulted in development of processes such as thermokarst, thermal erosion, and retrogressive thaw slumps that strongly affect the stability of ecosystems and infrastructure. In 2003-2005, three Ecological Permafrost Observatories where established in the High Canadian Arctic (Green Cabin on the Banks Island, Mould Bay on the Prince Patrick Island, and Isachsen on the Ellef Ringnes Island) as a part of the University of Alaska Fairbanks NSF funded Biocomplexity Project. These observatories represent the northern part of the North American Arctic Transect (NAAT) established as a result of this project. The climatic and ground temperature data collected at these observatories show a general warming trend similar to what has been observed at the other locations in the North American Arctic. An important result of this resent warming is a significant increase in the active layer thickness (ALT) during the last decade. For example, ALT at the Isachsen observatory increased from 0.4-0.42 m in 2005 to 0.54 m in 2012. The maximum ALT of 0.58 m was recorded in 2008. In a shallow excavation across an ice wedge at the Isachsen site, we estimated that the top of the ice wedge ice was located at 42

  8. Moisture drives surface decomposition in thawing tundra

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Schuur, E. A. G.; Vogel, Jason G.; Natali, Susan M.

    2013-07-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gradient and a warming experiment in Healy, Alaska. Permafrost thaw also changes plant community composition. We decomposed 12 plant litters in a common garden to test how changing plant litter inputs would affect decomposition. We combined species' tissue-specific decomposition rates with species and tissue-level estimates of aboveground net primary productivity to calculate community-weighted decomposition constants at both the thaw gradient and warming experiment. Moisture, specifically growing season precipitation and water table depth, was the most significant driver of decomposition. At the gradient, an increase in growing season precipitation from 200 to 300 mm increased mass loss of the common substrate by 100%. At the warming experiment, a decrease in the depth to the water table from 30 to 15 cm increased mass loss by 100%. At the gradient, community-weighted decomposition was 21% faster in extensive than in minimal thaw, but was similar when moss production was included. Overall, the effect of climate change and permafrost thaw on surface soil decomposition are driven more by precipitation and soil environment than by changes to plant communities. Increasing soil moisture is thereby another mechanism by which permafrost thaw can become a positive feedback to climate change.

  9. Isotopic Identification of Nitrate Sources and Cycling in Arctic Tundra Active Layer Soils and Permafrost

    NASA Astrophysics Data System (ADS)

    Heikoop, J. M.; Throckmorton, H.; Newman, B. D.; Perkins, G.; Gard, M.; Iversen, C. M.; Wilson, C. J.; Wullschleger, S. D.

    2014-12-01

    The effect of nitrogen cycling on release of carbon from tundra ecosystems is being studied as part of the US Department of Energy Next Generation Ecosystem Experiment - Arctic project. Sampling and analysis of active layer soil water at the Barrow Environmental Observatory (Alaska, USA) was performed in ancient drained thaw lake basins (DTLBs), drainages, and in polygonal terrain associated with inter-DTLB tundra. Within active layer soils, nitrate was most commonly found above analytical limits of detection in pore water from the unsaturated centers of high-centered polygons. Nitrate has also been detected, though less frequently, in soil water immediately above the frost table of an ancient (14C age of 2000 - 5500 BP) DTLB and in a small drainage adjacent to high-centered polygonal terrain. Nitrate from high-centered polygons had δ15N ranging from -9.2 to +8.5 ‰ and δ18O ranging from -8.4 to +1.4 ‰. The δ15N isotopic range is consistent with microbial mineralization and nitrification of reduced nitrogen sources including ammonium, dissolved organic nitrogen, and soil organic nitrogen. The range in δ18O of nitrate is also consistent with nitrification based on the δ18O of site waters. No evidence for an atmospheric nitrate signal, as defined by δ15N and δ18O of nitrate in snow and snowmelt, is seen. In contrast, nitrate in permafrost appears to be a mixture of pre-industrial atmospheric nitrate (with higher δ15N than modern atmospheric nitrate) and nitrate that is microbial in origin. Massive ice wedges appear to contain larger proportions of snowmelt (based on δ18O of ice) and atmospheric nitrate, whereas textural ice appears to contain a greater proportion of summer precipitation and microbially-derived nitrate. Nitrate from the ancient DTLB and drainage samples also has isotopic signatures that appear to represent a mixture of pre-industrial atmospheric nitrate and nitrate from microbial nitrification, and may, at least in part, be derived from

  10. Fate and Transport of Methane Formed in the Active Layer of Alaskan Permafrost

    NASA Astrophysics Data System (ADS)

    Conrad, M. E.; Curtis, J. B.; Smith, L. J.; Bill, M.; Torn, M. S.

    2015-12-01

    Over the past 2 years a series of tracer tests designed to estimate rates of methane formation via acetoclastic methanogenesis in the active layer of permafrost soils were conducted at the Barrow Environmental Observatory (BEO) in northernmost Alaska. The tracer tests consisted of extracting 0.5 to 1.0 liters of soil water in gas-tight bags from different features of polygons at the BEO, followed by addition of a tracer cocktail including acetate with a 13C-labeled methyl group and D2O (as a conservative tracer) into the soil water and injection of the mixture back into the original extraction site. Samples were then taken at depths of 30 cm (just above the bottom of the active layer), 20 cm, 10 cm and surface flux to determine the fate of the 13C-labeled acetate. During 2014 (2015 results are pending) water, soil gas, and flux gas were sampled for 60 days following injection of the tracer solution. Those samples were analyzed for concentrations and isotopic compositions of CH4, DIC/CO2 and water. At one site (the trough of a low-centered polygon) the 13C acetate was completely converted to 13CH4 within the first 2 days. The signal persisted for throughout the entire monitoring period at the injection depth with little evidence of transport or oxidation in any of the other sampling depths. In the saturated center of the same polygon, the acetate was also rapidly converted to 13CH4, but water turnover caused the signal to rapidly dissipate. High δ13C CO2 in flux samples from the polygon center indicate oxidation of the 13CH4 in near-surface waters. Conversely, CH4 production in the center of an unsaturated, flat-centered polygon was relatively small 13CH4 and dissipated rapidly without any evidence of either 13CH4 transport to shallower levels or oxidation. At another site in the edge of that polygon no 13CH4 was produced, but significant 13CO2/DIC was observed indicating direct aerobic oxidation of the acetate was occurring at this site. These results suggest that

  11. Temporal stereophotogrammetric analysis of retrogressive thaw slumps on Herschel Island, Yukon Territory

    NASA Astrophysics Data System (ADS)

    Lantuit, H.; Pollard, W. H.

    2005-05-01

    The western Canadian Arctic is identified as an area of potentially significant global warming. Thawing permafrost, sea level rise, changing sea ice conditions and increased wave activity will result in accelerated rates of coastal erosion and thermokarst activity in areas of ice-rich permafrost. The Yukon Coastal Plain is widely recognized as one of the most ice-rich and thaw-sensitive areas in the Canadian Arctic. In particular, Herschel Island displays extensive coastal thermokarst. Retrogressive thaw slumps are a common thermokarst landform along the Herschel Island coast that have been increasing in both frequency and extent have in recent years due to increased thawing of massive ground ice and coastal erosion. The volume of sediment and ground ice eroded by retrogressive slump activity and the potential release of climate change related materials like organic carbon, carbon dioxide and methane are largely unknown. The remote setting of Herschel Island, and the Arctic in general, make direct observation of this type of erosion and the analysis of potential climate feedbacks extremely problematic. Remote sensing provides possibly the best solution to this problem. This study looks at two retrogressive thaw slumps located on the western shore of Herschel Island and using stereophotogrammetric methods attempts to (1) develop the first three-dimensional geomorphic analysis of this type of landform, and (2) provide an estimation of the volume of sediment/ground ice eroded through back wasting thermokarst activity. Digital Elevation Models were extracted for the years 1952, 1970 and 2004 and validated using data collected in the field using Kinematic Differential Global Positioning System. Estimates of sediment volumes eroded from retrogressive thaw slumps were found to vary greatly. In one case the total volume of material lost for the 1970-2004 period was approximately 1560000m3. The estimated volume of sediment alone was 360000m3. The temporal analysis of the

  12. Interpreting Carbon Fluxes from a Spatially Heterogeneous Peatland with Thawing Permafrost: Scaling from Plant Community Scale to Ecosystem Scale

    NASA Astrophysics Data System (ADS)

    Harder, S. R.; Roulet, N. T.; Strachan, I. B.; Crill, P. M.; Persson, A.; Pelletier, L.; Watt, C.

    2014-12-01

    Various microforms, created by spatial differential thawing of permafrost, make up the subarctic heterogeneous Stordalen peatland complex (68°22'N, 19°03'E), near Abisko, Sweden. This results in significantly different peatland vegetation communities across short distances, as well as differences in wetness, temperature and peat substrates. We have been measuring the spatially integrated CO2, heat and water vapour fluxes from this peatland complex using eddy covariance and the CO2 exchange from specific plant communities within the EC tower footprint since spring 2008. With this data we are examining if it is possible to derive the spatially integrated ecosystem-wide fluxes from community-level simple light use efficiency (LUE) and ecosystem respiration (ER) models. These models have been developed using several years of continuous autochamber flux measurements for the three major plant functional types (PFTs) as well as knowledge of the spatial variability of the vegetation, water table and active layer depths. LIDAR was used to produce a 1 m resolution digital evaluation model of the complex and the spatial distribution of PFTs was obtained from concurrent high-resolution digital colour air photography trained from vegetation surveys. Continuous water table depths have been measured for four years at over 40 locations in the complex, and peat temperatures and active layer depths are surveyed every 10 days at more than 100 locations. The EC footprint is calculated for every half-hour and the PFT based models are run with the corresponding environmental variables weighted for the PFTs within the EC footprint. Our results show that the Sphagnum, palsa, and sedge PFTs have distinctly different LUE models, and that the tower fluxes are dominated by a blend of the Sphagnum and palsa PFTs. We also see a distinctly different energy partitioning between the fetches containing intact palsa and those with thawed palsa: the evaporative efficiency is higher and the Bowen

  13. Local and Sustained Activity of Doxycycline Delivered with Layer-by-Layer Microcapsules.

    PubMed

    Luo, Dong; Gould, David J; Sukhorukov, Gleb B

    2016-04-11

    Achieving localized delivery of small molecule drugs has the potential to increase efficacy and reduce off target and side effects associated with systemic distribution. Herein, we explore the potential use of layer-by-layer (LbL) assembled microcapsules for the delivery of doxycycline. Absorbance of doxycycline onto core dextran sulfate of preassembled microcapsules provides an efficient method to load both synthetic and biodegradable microcapsules with the drug. Application of an outer layer lipid coat enhances the sustained in vitro release of doxycycline from both microcapsule types. To monitor doxycycline delivery in a biological system, C2C12 mouse myoblasts are engineered to express EGFP under the control of the optimized components of the tetracycline regulated gene expression system. Microcapsules are not toxic to these cells, and upon delivery to the cells, EGFP is more efficiently induced in those cells that contain engulfed microcapsules and monitored EGFP expression clearly demonstrates that synthetic microcapsules with a DPPC coat are the most efficient for sustain intracellular delivery. Doxycycline released from microcapsules also displayed sustained activity in an antimicrobial growth inhibition assay compared with doxycycline solution. This study reveals the potential for LbL microcapsules in small molecule drug delivery and their feasible use for achieving prolonged doxycycline activity. PMID:26967921

  14. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Kane, D.L.

    1986-01-01

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  15. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  16. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2016-02-01

    The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil

  17. Vibration control of cylindrical shells using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  18. Investigation on Thawing and Freezing Processes Using High-frequency Ground Penetrating Radar in Amdo catchment, Central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Yingzhao; Zubrzycki, Sebastian

    2014-05-01

    We have applied 250MHz ground penetrating radar (GPR) to investigate subsurface thawing and freezing processes in Amdo catchment, central Tibetan Plateau. Also, the topography and geography environments were surveyed to better understand the regional thaw/freeze cycles. Generally, the GPR images clearly illustrated the development of thawing and freezing events, which would be learned from the CMP soundings and reflection profiles. Our results showed that a strong lower EM velocity of upper layers was detected in the thawing conditions, while a rather higher velocity could be monitored in the frozen grounds, which was mainly based on the large contrast in dielectric permittivity between liquid water and ice. In addition, on the north-facing slopes, the EM velocity was smaller than that of sunny slopes in thawing and freezing periods on the whole, which illustrated that the average soil moisture in the upper subsurface was higher in north-facing slopes than the opposite side. Furthermore, during the thawing periods, both of the velocity and thawing depth decreased as the slope became deeper on the south-facing slope basically; on the shade side, the velocity increased slightly when the slope got sharper, but the thawed depth had no obvious trend. As for the freezing periods, both the velocity and frozen depth were not found clear tendency on both sides. Moreover, the subsurface thawing and freezing developments were significantly affected by local surface environments (e.g, stream, grassland or bare soil) though in similar topographic conditions. In all, the non-invasive GPR technique allowed the interpretation of spatial and temporal thaw/freeze processes, which played an important role on hydrothermal regimes in cold regions.

  19. Impact of Climate and Fires on Abrupt Permafrost Thaw in Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Reents, C.; Greenberg, J. A.; Hu, F.

    2015-12-01

    Thermo-erosion from abrupt permafrost thaw is a key pulse disturbance in the Arctic that may impact the global carbon cycle. Abrupt thaw can occur when the permafrost active layer expands in response to climate warming and/or increased wildfire activity. Understanding these drivers of thermo-erosion is necessary to anticipate feedbacks in the Arctic, where summer temperature and fire frequency are predicted to increase. We examine modern and late-Holocene thermo-erosion in high-fire (Noatak) and low-fire (North Slope) tundra ecoregions of Alaska using a combination of remote-sensing and paleo-records. Lakes with active thaw features were identified through Landsat-7 image classification and time-series analysis based on observed 0.52-0.60 μm reflectance peaks following slump formation. We identified 1067 and 1705 lakes with active features between CE 2000-2012 in the Noatak and North Slope ecoregions, respectively. The density of features was higher in the highly flammable Noatak (0.04 versus 0.01 features km-2, respectively), suggesting that warmer climate and/or fires likely promote high thermo-erosional activity at present. To assess modern signals of thermo-erosion and identify past events, we analyzed soil profiles and lake-sediment cores from both ecoregions using X-ray fluorescence. The ratios of Ca:K and Ca:Sr increased with depth in permafrost soils, were higher in soils from younger versus older slump surfaces, and were significantly correlated with the ratio of carbonate to feldspar and clay minerals in lake sediments (r=0.96 and 0.93, P<0.0001, n=15). We interpret past increases in Ca:K, Ca:Sr, and δ13C as enhanced weathering of carbonate-rich permafrost soils associated with thermo-erosion. At the North Slope site, we identified ten episodes of thermoerosion over the past 6000 years and found strong correspondence to summer temperature trends. Events were more frequent at the Noatak site, where 15 thermo-erosional episodes and 26 fires occurred over

  20. The transcriptional response of microbial communities in thawing Alaskan permafrost soils.

    PubMed

    Coolen, Marco J L; Orsi, William D

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  1. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    PubMed Central

    Coolen, Marco J. L.; Orsi, William D.

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  2. Freezing and thawing or freezing, thawing, and aging effects on beef tenderness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effect of freezing and thawing or freezing and thawing with an additional aging period after frozen storage on the tenderness of longissimus lumborum (LL) and semitendinosus (ST) steaks relative to aged, fresh steaks. Left-side LL and ST (n=35 each) ...

  3. Surface activation of CNT Webs towards layer by layer assembly of biosensors.

    PubMed

    Musameh, Mustafa; Huynh, Chi P; Hickey, Mark; Kyratzis, Ilias Louis

    2016-04-25

    Several surface activation methods such as chemical, electrochemical and plasma have been used for enhancing the electrochemical performance of carbon based electrodes for various applications. However, some of these surface activation methods may not be useful depending on the chemical and physical properties of the activated surface. Herein we investigate the surface activation of carbon nanotube (CNT) webs by electrochemical and plasma techniques to enhance their electrochemical performance and enable the fabrication of a biosensor using the layer-by-layer (LBL) approach. The pretreated CNT webs were characterized by SEM, TEM, Raman, XPS and electrochemical methods. TEM images and Raman analysis showed an increase in the level of surface defects upon pretreatment with higher number of defects after electrochemical pretreatment. XPS analysis showed an increase in the level of oxygen functional groups after pretreatment (4 to 5 times increase) which resulted in enhanced water wettability especially for plasma pretreated CNT webs. The pretreated CNT web electrodes also showed an enhanced electrochemical activity towards the oxidation and reduction of different redox probes with higher sensitivity for the electrochemically pretreated CNT web electrode that was accompanied by a higher level of noise in amperometric measurements. A highly linear response was obtained for the untreated and the electrochemically pretreated CNT web electrodes towards the amperometric detection of NADH (R(2) of 0.9996 and 0.9986 respectively) while a non-linear response was observed for the plasma pretreated CNT web electrode (R(2) of 0.8538). The pretreated CNT web electrodes enabled the fabrication of a LBL biosensor for alcohol detection with highest operational stability obtained for the plasma pretreated CNT web surface. PMID:26818435

  4. Catalytically active single-atom niobium in graphitic layers.

    PubMed

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J; Chisholm, Matthew F

    2013-01-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability. PMID:23715283

  5. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Comte, Jérôme; Lovejoy, Connie

    2015-01-01

    Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters. PMID:25926816

  6. Environmental selection of planktonic methanogens in permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  7. Environmental selection of planktonic methanogens in permafrost thaw ponds

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  8. Environmental selection of planktonic methanogens in permafrost thaw ponds

    NASA Astrophysics Data System (ADS)

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-08-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  9. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw.

    PubMed

    Salmon, Verity G; Soucy, Patrick; Mauritz, Marguerite; Celis, Gerardo; Natali, Susan M; Mack, Michelle C; Schuur, Edward A G

    2016-05-01

    Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools. PMID:26718892

  10. Monitoring the freeze-thaw process of soil with different moisture contents using piezoceramic transducers

    NASA Astrophysics Data System (ADS)

    Wang, Ruolin; Zhu, Daopei; Liu, Xiaoyan; Sima, Jun

    2015-05-01

    Water content plays an active and important role in the performance of the soil freeze-thaw cycle to form frozen soil mechanical properties. Monitoring the freeze-thaw cycle of soil with various types of soil with varied moisture content will provide a direct observation of the properties of soil in cold regions. This paper presents new findings from monitoring the freeze-thaw process of soil using a piezoceramic-based smart aggregate (SA). For comparison, clay soil and medium sand with different moisture contents were used to study the behavior of the soil under the freeze-thaw process. Two SAs were embedded in the soil specimens with a pre-determined distance between them, one as an actuator to generate a stress wave and the other as a sensor to detect the propagated wave. As the propagation of the emitted wave is sensitive to soil status and properties, it is possible to monitor the soil freeze-thaw process by interpreting the SA sensor signal. Based on the attenuation of the energy, a freeze-thaw status indicator was established to describe the freezing-thawing condition. Indicator values of soil specimens with different types and different levels of moisture in freeze-thaw cycles were studied. The test results indicate that the freezing duration in the freezing-thawing process varied for different types of soil and different initial moisture content of the soil. Soil with different particle sizes and moisture content will determine the frozen soil microstructure and its corresponding mechanical properties. Our results illustrate that if soil particle size is bigger, then the signal indicator is stronger; if the moisture content is higher for the same soil, then the signal indicator is stronger. The research presents an innovative method to investigate the freezing-thawing performance of soil and potentially points to a new method to study the variation of soil mechanical properties during the freezing-thawing process, which is a critical problem for

  11. Superplasticizer effect on cement paste structure and concrete freeze-thaw resistance

    NASA Astrophysics Data System (ADS)

    Shuldyakov, Kirill; Kramar, Lyudmila; Trofimov, Boris; Ivanov, Ilya

    2016-01-01

    Article presents the results of studies of various types of superplasticizer additives and their influence on concrete structure and resistance under cyclic freezing-thawing. Glenium ACE 430 was taken as a polycarboxylate superplasticizer, and SP-1 - as a naphthalene-formaldehyde superplasticizer. It is revealed that at identical structure, W/C and fluidity of concrete mix, application of the polycarboxylate superplasticizer, Glenium AC 430, in comparison to the naphthalene-formaldehyde one SP-1, facilitates the increase of the concrete grade in freeze and thaw resistance from F2300 to F2400, concrete freeze and thaw resistance can be possible even higher if the gravel with higher freeze and thaw resistance is applied. To assess the superplasticizers influence on cement paste structure tests of the phase composition of the cement paste of the studied concrete were conducted. It is established that the use of polycarboxylate superplasticizer together with silica fume facilitates formation of cement plaster structure from tobermorite gel. This gel has increased basicity and is resistant to crystallization due to cyclic freezing. It is shown that in the presence of SP-1+SF in the cement paste of concrete during hydration the structure of hydrosilicate phases preferably comprises of C-S-H(I) and C-S-H(II) phases which actively crystallize while cyclic freezing and thawing and reduce freeze-thaw resistance of concrete.

  12. Experiments on the active control of transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  13. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Haverd, Vanessa

    2014-05-01

    Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismüller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture

  14. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Cuntz, M.; Haverd, V.

    2013-12-01

    Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismüller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture

  15. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss

    USGS Publications Warehouse

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.

    2011-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.

  16. Assessment of Climate Driven Dynamics of Active Layer, Hydrological and Vegetation Status at the Qinghai-Tibet Plateau Using Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Yang, Y.

    2014-12-01

    Extensive permafrost degradation starting from 1970s is observed at the Qinghai-Tibet Plateau , China. Degradation is attributed to an increase in mean annual ground temperature 0.1◦-0.5◦ C with mainly winter warming. The construction of Qinghai-Tibet Railway also influenced a state of permafrost in the area Permafrost degradation caused negative environmental consequences in the area. The areas covered by sand are expanding steadily making large concern of accelerating desertification. The general pathway of future joint dynamics of permafrost, vegetation and hydrological status at the Qinghai-Tibet Plateau is still poorly understood and foreseeable. Hydrology in the area is determined by heat-moisture dynamics of active layer. This dynamics is highly non-linear and depends as on external climatic variables temperature and precipitation, so on soil and rock properties (amount of sand against aeolian deposits in the Plateau) as well as vegetation cover, which determine thaw and freeze processes in the active layer and evaporation and run-off. SEVER DGVM was modified to include heat-moisture dynamics of active layer in the Qinghai-Tibet Plateau. SEVER DGVM imitates processes in 10 plant functional types at coarse resolution of 0.5 degrees. This model imitates behavior of average individual of each plant type in each grid cell through simulation years. Each of those grid cells processed independently. First, this model starts from "bare soil", placing a bit of each plant type and giving them some time to grow and achieve equilibrium. Then, including active layer thickness and soil moisture dynamics into this layer, it allows assessment of potential environmental dynamics in this area. Simulations demonstrate further degradation of pastureland and accelerating desertification processes in this vitally important water feed area for many Asian rivers. Negative environmental problems related to operation of Qinghai-Tibet are also assessed.

  17. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  18. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; Barrett, K.; Breen, A.; Euskirchen, E. S.; Johnstone, J. F.; Kasischke, E. S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, T. S.; Schuur, A. E. G.; Turetsky, M. R.; Yuan, F.

    2013-12-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  19. Long-term geoelectrical monitoring of laboratory freeze-thaw experiments on bedrock samples

    NASA Astrophysics Data System (ADS)

    Kuras, Oliver; Uhlemann, Sebastian; Murton, Julian; Krautblatter, Michael

    2014-05-01

    Much attention has recently focussed on the continuous and near-real-time geophysical monitoring of permafrost-affected bedrock with permanently installed sensor arrays. It is hoped that such efforts will enhance process understanding in such environments (permafrost degradation, weathering mechanisms) and augment our capability to predict future instabilities of rock walls and slopes. With regard to electrical methods for example, recent work has demonstrated that temperature-calibrated electrical resistivity tomography (ERT) is capable of imaging recession and re-advance of rock permafrost in response to the ambient temperature regime. However, field experience also shows that several fundamental improvements to ERT methodology are still required to achieve the desired sensitivity, spatial-temporal resolution and long-term robustness that must underpin continuous geophysical measurements. We have applied 4D geoelectrical tomography to monitoring laboratory experiments simulating permafrost growth, persistence and thaw in bedrock over a period of 26 months. Six water-saturated samples of limestone and chalk of varying porosity represented lithologies commonly affected by permafrost-related instability. Time-lapse imaging of the samples was undertaken during multiple successive freeze-thaw cycles, emulating annual seasonal change over several decades. Further experimental control was provided by simultaneous measurements of vertical profiles of temperature and moisture content within the bedrock samples. These experiments have helped develop an alternative methodology for the volumetric imaging of permafrost bedrock and tracking active layer dynamics. Capacitive resistivity imaging (CRI), a technique based upon low-frequency, capacitively-coupled measurements emulates ERT methodology, but without the need for galvanic contact on frozen rock. The latter is perceived as a key potential weakness, which could lead to significant limitations as a result of the variable

  20. Landscape Temperature and Frozen/Thawed Condition over Alaska with Infrared and Active/Passive Microwave Remote Sensing: Determination of Thermal Controls on Land-Atmosphere Carbon Flux in Support of CARVE

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Schroeder, R.; Miller, C. E.; Dinardo, S.

    2013-12-01

    The freeze/thaw (F/T) state of the Earth's land surface has a considerable influence on the terrestrial water, energy and carbon cycles. This is especially true in F/T dominated areas such as the Arctic and boreal regions where F/T cycles will often bracket negative and positive modes in carbon flux between the surface and atmosphere. Observations from a Forward-Looking Infrared (FLIR) thermal imaging camera, flown during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) in the summer of 2013, are used to determine the temperature and F/T state of the surface at a high resolution. We assess the high-resolution data product with concurrent satellite-based observations in the thermal-infrared using the Moderate Resolution Imaging Spectroradiometer (MODIS) and in the microwave from a combination of C-band active and passive instruments. Passive and active microwave observation are provided by the Advanced Microwave Scanning Radiometer (AMSR2) on JAXA's Shizuku (GCOM-W1) satellite and Advanced Scatterometer (ASCAT) aboard the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) MetOp-A respectively. In addition to the evaluation airborne thermal observations we provide comparisons of the satellite land surface temperature and F/T products because F/T determination from surface kinetic temperature is based on different physical properties than similar microwave data-records. The high resolution surface observations are also used to illustrate how small-scale thermal features, important in biogeochemical cycling, will scale to coarse resolution satellite products. The accuracy of remote sensing data-sets are evaluated using shallow soil temperatures from stations in the Alaska Ecological Transect (ALECTRA), Soil Climate Analysis Network (SCAN), and Snowpack Telemetry (SNOTEL) networks. The spatial and temporal co-registration and covariant analysis of all gridded datasets are performed within SciDB (www.scidb.org), an array

  1. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  2. Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska

    NASA Astrophysics Data System (ADS)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle A.; Raymond, Peter A.; Butler, Kenna D.; Dornblaser, Mark M.; Heckman, Katherine

    2014-11-01

    Recent warming at high latitudes has accelerated permafrost thaw, which can modify soil carbon dynamics and watershed hydrology. The flux and composition of dissolved organic matter (DOM) from soils to rivers are sensitive to permafrost configuration and its impact on subsurface hydrology and groundwater discharge. Here, we evaluate the utility of DOM composition and age as a tool for detecting permafrost thaw in three rivers (Beaver, Birch, and Hess Creeks) within the discontinuous permafrost zone of interior Alaska. We observed strong temporal controls on Δ14C content of hydrophobic acid isolates (Δ14C-HPOA) across all rivers, with the most enriched values occurring during spring snowmelt (75 ± 8‰) and most depleted during winter flow (-21 ± 8‰). Radiocarbon ages of winter flow samples ranged from 35 to 445 yr BP, closely tracking estimated median base flow travel times for this region (335 years). During spring snowmelt, young DOM was composed of highly aromatic, high molecular-weight compounds, whereas older DOM of winter flow had lower aromaticity and molecular weight. We observed a significant correlation between Δ14C-HPOA and UV absorbance coefficient at 254 nm (α254) across all study rivers. Using α254 as an optical indicator for Δ14C-HPOA, we also observed a long-term decline in α254 during maximum annual thaw depth over the last decade at the Hess Creek study site. These findings suggest a shift in watershed hydrology associated with increasing active layer thickness. Further development of DOM optical indicators may serve as a novel and inexpensive tool for detecting permafrost degradation in northern watersheds.

  3. The role of snow cover and soil freeze/thaw cycles affecting boreal-arctic soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Rawlins, M. A.; Moghaddam, M.; Euskirchen, E. S.

    2015-07-01

    Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (∼ 0.8-1.3 days decade-1) in the mean annual snow cover extent and frozen season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to changes in snow cover and soil freeze/thaw processes in the Pan-Arctic region over the past three decades (1982-2010). Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD) cm, corresponding with widespread warming and lengthening non-frozen season. Warming promotes vegetation growth and soil heterotrophic respiration, particularly within surface soil layers (≤ 0.2 m). The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m) soil layers, especially in colder climate zones (mean annual T ≤ -10 °C). Our results demonstrate the important control of snow cover in affecting northern soil freeze/thaw and soil carbon decomposition processes, and the necessity of considering both warming, and changing precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.

  4. Phototrophic pigment diversity and picophytoplankton in permafrost thaw lakes

    NASA Astrophysics Data System (ADS)

    Przytulska, A.; Comte, J.; Crevecoeur, S.; Lovejoy, C.; Laurion, I.; Vincent, W. F.

    2016-01-01

    Permafrost thaw lakes (thermokarst lakes) are widely distributed across the northern landscape, and are known to be biogeochemically active sites that emit large amounts of carbon to the atmosphere as CH4 and CO2. However, the abundance and composition of the photosynthetic communities that fix CO2 have been little explored in this ecosystem type. In order to identify the major groups of phototrophic organisms and their controlling variables, we sampled 12 permafrost thaw lakes along a permafrost degradation gradient in northern Québec, Canada. Additional samples were taken from five rock-basin reference lakes in the region to determine if the thaw lakes differed in limnological properties and phototrophs. Phytoplankton community structure was determined by high-performance liquid chromatography analysis of their photoprotective and photosynthetic pigments, and autotrophic picoplankton concentrations were assessed by flow cytometry. One of the black-colored lakes located in a landscape of rapidly degrading palsas (permafrost mounds) was selected for high-throughput 18S rRNA sequencing to complement conclusions based on the pigment and cytometry analyses. The results showed that the limnological properties of the thaw lakes differed significantly from the reference lakes, and were more highly stratified. However, both waterbody types contained similarly diverse phytoplankton groups, with dominance of the pigment assemblages by fucoxanthin-containing taxa, as well as chlorophytes, cryptophytes and cyanobacteria. Chlorophyll a concentrations (Chl a) were correlated with total phosphorus (TP), and both were significantly higher in the thaw lakes (overall means of 3.3 µg Chl a L-1 and 34 µg TP L-1) relative to the reference lakes (2.0 µg Chl a L-1 and 8.2 µg TP L-1). Stepwise multiple regression of Chl a against the other algal pigments showed that it was largely a function of alloxanthin, fucoxanthin and Chl b (R2 = 0.85). The bottom waters of two of the thaw

  5. Freeze-thaw induced gelation of alginates.

    PubMed

    Zhao, Ying; Shen, Wei; Chen, Zhigang; Wu, Tao

    2016-09-01

    Adding divalent ions or lowering pH below the pKa values of alginate monomers are common ways in preparing alginate gels. Herein a new way of preparing alginate gels using freeze-thaw technique is described. Solvent crystallization during freezing drove the polymers to associate into certain structures that became the junction zones of hydrogels after thawing. It enabled the preparation of alginate gels at pH 4.0 and 3.5, two pH at which the gel could not be formed previously. At pH 3.0 where alginate gel could be formed initially, applying freeze-thaw treatment increased the gel storage modulus almost 100 times. The formation of hydrogels and the resulting gel properties, such as dynamic moduli and gel syneresis were influenced by the pH values, number of freeze-thaw cycles, alginate concentrations, and ionic strengths. The obtained hydrogels were soft and demonstrated a melting behavior upon storage, which may find novel applications in the biomedical industry. PMID:27185114

  6. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect

    Genet, Helene; McGuire, A. David; Barrett, K.; Breen, Amy; Euskirchen, Eugenie S; Johnstone, J. F.; Kasischke, Eric S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, Scott T.; Schuur, Edward; Turetsky, M. R.; Yuan, Fengming

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  7. Characterization of cathode keeper wear by surface layer activation

    NASA Technical Reports Server (NTRS)

    Polk, James E.

    2003-01-01

    In this study, the erosion rates of the discharge cathode keeper in a 30 cm NSTAR configuration ion thruster were measured using a technique known as Surface Layer Activation (SLA). This diagnostic technique involves producing a radioactive tracer in a given surface by bombardment with high energy ions. The decrease in activity of the tracer material may be monitored as the surface is subjected to wear processes and correlated to a depth calibration curve, yielding the eroded depth. Analysis of the activities was achieved through a gamma spectroscopy system. The primary objectives of this investigation were to reproduce erosion data observed in previous wear studies in order to validate the technique, and to determine the effect of different engine operating parameters on erosion rate. The erosion profile at the TH 15 (23 kw) setting observed during the 8200 hour Life Demonstration Test (LDT) was reproduced. The maximum keeper erosion rate at this setting was determined to be 0.085 pm/hr. Testing at the TH 8 (1.4 kw) setting demonstrated lower erosion rates than TH 15, along with a different wear profile. Varying the keeper voltage was shown to have a significant effect on the erosion, with a positive bias with respect to cathode potential decreasing the erosion rate significantly. Accurate measurements were achieved after operating times of only 40 to 70 hours, a significant improvement over other erosion diagnostic methods.

  8. Freeze-thaw and high-voltage discharge allow macromolecule uptake into ileal brush-border vesicles

    SciTech Connect

    Donowitz, M.; Emmer, E.; McCullen, J.; Reinlib, L.; Cohen, M.E.; Rood, R.P.; Madara, J.; Sharp, G.W.G.; Murer, H.; Malmstrom, K.

    1987-06-01

    High-voltage discharge or one cycle of freeze-thawing are shown to transiently permeabilize rabbit ileal brush-border membrane vesicles to macromolecules. Uptake of the radiolabeled macromolecule dextran, mol wt 70,000, used as a marker for vesicle permeability, was determined by a rapid filtration technique, with uptake defined as substrate associated with the vesicle and releasable after incubation of vesicles with 0.1% saponin. Dextran added immediately after electric shock (2000 V) or at the beginning of one cycle of freeze-thawing was taken up approximately eightfold compared with control. ATP also was taken up into freeze-thawed vesicles, whereas there was no significant uptake into control vesicles. The increase in vesicle permeability was reversible, based on Na-dependent D-glucose uptake being decreased when studied 5 but not 15 min after electric shock, and was not significantly decreased after completion of one cycle of freeze-thawing. In addition, adenosine 3',5'-cyclic monophosphate and Ca/sup 2 +/-calmodulin-dependent protein kinase activity were similar in control vesicles and vesicles exposed to high-voltage discharge or freeze-thawing. Also, vesicles freeze-thawed with (/sup 32/P)ATP demonstrated increased phosphorylation compared with nonfrozen vesicles, while freeze-thawing did not alter vesicle protein as judged by Coomassie blue staining. These techniques should allow intestinal membrane vesicles to be used for studies of intracellular control of transport processes, for instance, studies of protein kinase regulation of transport.

  9. Effects of permafrost thaw on nitrogen availability and plant nitrogen acquisition in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Finger, R.; Euskirchen, E. S.; Turetsky, M.

    2013-12-01

    The degradation of ice-rich permafrost, which covers a large portion of Interior Alaska, typically leads to thermokarst and increases in soil saturation. As a result, conifer peat plateaus degrade and are often replaced by wet collapse scar bogs. This state change results in profound changes in regional hydrology, biogeochemical cycling, and plant community composition. Preliminary data suggest that permafrost thaw can increase surface soil inorganic nitrogen (IN) concentrations but it is still unknown whether these changes in nutrient availability are short-lived (pulse releases) and whether or not they impact collapse scar vegetation composition or productivity, particularly as collapse scars undergo succession with time-after-thaw. Therefore we are currently examining changes in plant community composition, N availability and plant N acquisition along three thermokarst gradients in Interior Alaska. Each gradient is comprised of a forested permafrost peat plateau, adjacent ecotones experiencing active permafrost degradation (including a collapsing forest canopy and a saturated moat), and a collapse scar bog where permafrost has completely degraded. We predicted that IN concentrations would be highest along the active thaw margin, and lowest in the peat plateau. We also predicted that IN concentrations would be positively related to shifts in vegetation community composition, nutrient use efficiency (NUE) and tissue 15N concentrations. Preliminary results have shown that IN concentrations increase in newer collapse scar features as well as with thaw depth. Our data also show a shift from feather moss and ericaceous shrub-dominate understories in the permafrost plateau to Sphagnum and sedge dominated thaw ecotone and bog communities. Further successional development of the collapse scar bog results in the reintroduction of small evergreen and deciduous shrubs as the peat mat develops. Over time, collapse scar succession and peat accumulation appears to lead to

  10. Effects of Soil Property Uncertainty on Projected Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Coon, E.; Painter, S. L.; Wilson, C. J.; Romanovsky, V. E.; Liljedahl, A.

    2014-12-01

    Uncertainty in future climate is often assumed to contribute the largest uncertainty to active layer thickness (ALT) projections. However, the impact of soil property uncertainty on these projections may be significant. In this research, we evaluate the contribution of soil property uncertainty on ALT projections at the Barrow Environmental Observatory, Alaska. The effect of variations in porosity, thermal conductivity, saturation, and water retention properties of peat and mineral soil are evaluated. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) is used to model multiphase thermal and hydrological processes in the subsurface. We apply the Null-Space Monte Carlo (NSMC) algorithm to identify an ensemble of soil property combinations that produce simulated temperature profiles that are consistent with temperature measurements available from the site. ALT is simulated for the ensemble of soil property combinations for four climate scenarios. The uncertainty in ALT due to soil properties within and across climate scenarios is evaluated. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  11. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil's physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  12. Active layer hydrology for Imnavait Creek, Toolik, Alaska

    SciTech Connect

    Hinzman, L.D.; Kane, D.L.

    1987-04-01

    The hydrology of the active layer of a watershed is described. In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. Significant runoff events are few. Convective storms covering relatively small areas on the North Slope of Alaska can produce significant small-scale events in a small watershed scale,but these events are rapidly attenuated outside the basin. Data collection began in August 1984. We have continuously monitored the hydrologic, the meteorologic, and the soil`s physical conditions. Information was collected through implementation of four snowmelt runoff plots and measurements of essential microclimate parameters. Soil moisture and temperature profiles were measured adjacent to each snowmelt runoff plot, and heat flux is collected adjacent to one of these plots. Meteorological parameters were measured locally. The water content of the snowpack prior to snowmelt was measured throughout the watershed and measured daily adjacent to each plot during snowmelt. The stream draining the basin was measured regularly during the spring melt event to provide information on watershed runoff rates and the volume of snowmelt.

  13. Active millimeter wave detection of concealed layers of dielectric material

    NASA Astrophysics Data System (ADS)

    Bowring, N. J.; Baker, J. G.; Rezgui, N. D.; Southgate, M.; Alder, J. F.

    2007-04-01

    Extensive work has been published on millimetre wave active and passive detection and imaging of metallic objects concealed under clothing. We propose and demonstrate a technique for revealing the depth as well as the outline of partially transparent objects, which is especially suited to imaging layer materials such as explosives and drugs. The technique uses a focussed and scanned FMCW source, swept through many GHz to reveal this structure. The principle involved is that a parallel sided dielectric slab produces reflections at both its upper and lower surfaces, acting as a Fabry-Perot interferometer. This produces a pattern of alternating reflected peaks and troughs in frequency space. Fourier or Burg transforming this pattern into z-space generates a peak at the thickness of the irradiated sample. It could be argued that though such a technique may work for single uniform slabs of dielectric material, it will give results of little or no significance when the sample both scatters the incident radiation and gives erratic reflectivities due to its non-uniform thickness and permittivity . We show results for a variety of materials such as explosive simulants, powder and drugs, both alone and concealed under clothing or in a rucksack, which display strongly directional reflectivities at millimeter wavelengths, and whose location is well displayed by a varying thickness parameter as the millimetre beam is scanned across the target. With this system we find that samples can easily be detected at standoff distances of at least 4.6m.

  14. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  15. Disaggregating meteorites by automated freeze thaw.

    PubMed

    Charles, Christopher R J

    2011-06-01

    An automated freeze-thaw (AFT) instrument for disaggregating meteorites is described. Meteorite samples are immersed in 18.2 MΩ water and hermetically sealed in a clean 30 ml Teflon vial. This vial and its contents are dipped between baths of liquid nitrogen and hot water over a number of cycles by a dual-stepper motor system controlled by LabView. Uniform and periodic intervals of freezing and thawing induce multiple expansions and contractions, such that cracks propagate along natural flaws in the meteorite for a sufficient number of AFT cycles. For the CR2 chondrite NWA801, the boundaries between different phases (i.e., silicates, metal, matrix) became progressively weaker and allowed for an efficient recovery of 500 individual chondrules and chondrule fragments spanning 0.2-4.7 mm diameters after 243 AFT cycles over 103.3 h. Further FT experiments on a basalt analog showed that the time required for freezing and thawing the same number of cycles can be reduced by a factor of ∼4. PMID:21721725

  16. Disaggregating meteorites by automated freeze thaw

    NASA Astrophysics Data System (ADS)

    Charles, Christopher R. J.

    2011-06-01

    An automated freeze-thaw (AFT) instrument for disaggregating meteorites is described. Meteorite samples are immersed in 18.2 MΩ water and hermetically sealed in a clean 30 ml Teflon vial. This vial and its contents are dipped between baths of liquid nitrogen and hot water over a number of cycles by a dual-stepper motor system controlled by LabView. Uniform and periodic intervals of freezing and thawing induce multiple expansions and contractions, such that cracks propagate along natural flaws in the meteorite for a sufficient number of AFT cycles. For the CR2 chondrite NWA801, the boundaries between different phases (i.e., silicates, metal, matrix) became progressively weaker and allowed for an efficient recovery of 500 individual chondrules and chondrule fragments spanning 0.2-4.7 mm diameters after 243 AFT cycles over 103.3 h. Further FT experiments on a basalt analog showed that the time required for freezing and thawing the same number of cycles can be reduced by a factor of ˜4.

  17. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    NASA Astrophysics Data System (ADS)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.; Fiandaca, Gianluca; Auken, Esben; Adamson, Kathryn; Lane, Timothy; Elberling, Bo

    2014-05-01

    With climatic changes, permafrost thawing and changes in active layer dynamics influencing microbial activity and greenhouse gas feedbacks to the climate system, understanding of the interaction between biogeochemical and thermal processes in the ground is of increasing interest. Here we present results of from an on-going field experiment, where the active layer dynamics are monitored using direct current (DC) resistivity and induced polarization (IP) measurements at high temporal resolution. These DC/IP measurements are supplemented by pore water analysis, continuous ground temperature monitoring (0-150 cm depth) and structural information from ground penetrating radar (GPR). The study site (N69°15', W53°30', 30 m a.s.l.) is located at a Vaccinium/Empetrum heath tundra area near the Arctic Station on Qeqertarsuaq on the west coast of Greenland. Mean air temperatures of the warmest (July) and the coldest (February-March) months are 7.1 and -16.0°C, respectively. The DC/IP monitoring system was installed in July 2013 and has since been acquiring at least 6 data sets per day on a 42-electrode profile with 0.5 m electrode spacing. Recorded data include DC resistivity, stacked full-decay IP responses and full waveform data at 1 kHz sampling frequency. The monitoring system operates fully automatic and data are backed up locally and uploaded to a web server. Time-lapse DC resistivity inversions of data acquired during the freezing period of October - December 2013 clearly image the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with soil temperature measurements at different depths indicates a linear relationship between the logarithm of electrical resistivity and temperature. Preliminary time-lapse inversions of the full-decay induced polarization (IP) data indicate a decrease of chargeability with freezing of the ground

  18. Effects of trehalose supplementation on cell viability and oxidative stress variables in frozen-thawed bovine calf testicular tissue.

    PubMed

    Zhang, Xiao-Gang; Wang, Yan-Hua; Han, Cong; Hu, Shan; Wang, Li-Qiang; Hu, Jian-Hong

    2015-06-01

    Trehalose is widely used for cryopreservation of various cells and tissues. Until now, the effect of trehalose supplementation on cell viability and antioxidant enzyme activity in frozen-thawed bovine calf testicular tissue remains unexplored. The objective of the present study was to compare the effect of varying doses of trehalose in cryomedia on cell viability and key antioxidant enzymes activities in frozen-thawed bovine calf testicular tissue. Bovine calf testicular tissue samples were collected and cryopreserved in the cryomedias containing varying doses (0, 5, 10, 15, 20 and 25%; v/v) of trehalose, respectively. Cell viability, total antioxidant capacity (T-AOC) activity, catalase (CAT) activity, superoxide dismutase (SOD) activity, glutathione (GSH) content and malondialdehyde (MDA) content were measured and analyzed. The results showed that cell viability, T-AOC activity, SOD activity, CAT activity and GSH content of frozen-thawed bovine calf testicular tissue was decreased compared with that of fresh group (P<0.05). MDA content in frozen-thawed bovine calf testicular tissue was significantly increased compared with that of fresh group (P<0.05). The cryomedia added 15% trehalose exhibited the greatest percentage of cell viability and antioxidant enzyme activity (SOD and CAT) among frozen-thawed groups (P<0.05). Meanwhile, GSH content was the lowest among frozen-thawed groups (P<0.05). However, there were no significance differences in MDA content among the groups added 10, 15 and 20% trehalose (P>0.05). In conclusion, the cryomedia added 15% trehalose reduced the oxidative stress and improved the cryoprotective effect of bovine calf testicular tissue. Further studies are required to obtain more concrete results on the determination of antioxidant capacity of trehalose in frozen-thawed bovine calf testicular tissue. PMID:25818604

  19. Distribution and growth of thaw slumps in the Richardson Mountains-Peel Plateau region, northwestern Canada

    NASA Astrophysics Data System (ADS)

    Lacelle, Denis; Brooker, Alex; Fraser, Robert H.; Kokelj, Steve V.

    2015-04-01

    Retrogressive thaw slumps are one of the most active geomorphic features in permafrost terrain. This study investigated the distribution and growth of thaw slumps in the Richardson Mountains and Peel Plateau region, northwestern Canada, using Tasseled Cap (TC) trend analysis of a Landsat image stack. Based on the TC linear trend image, more than 212 thaw slumps were identified in the study area, of which 189 have been active since at least 1985. The surface area of the slumps ranges from 0.4 to 52 ha, with 10 slumps exceeding 20 ha. The thaw slumps in the region are all situated within the maximum westward extent of the Laurentide Ice Sheet. Based on relations between frequency distribution of slumps and that of terrain factors in the landscape, the slumps are more likely to occur on the ice-rich hummocky rolling moraines at elevations of 300-350 m and 450-500 m and along east-facing slopes (slope aspects of 15° to 180°) with gradients of 8° to 12°. Pixel-level trend analysis of the TC greenness transformation in the Landsat stack allowed calculating headwall retreat rates for 19 thaw slumps. The 20-year average retreat rates (1990-2010 period) for 19 slumps ranged from 7.2 to 26.7 m yr- 1, with the largest slumps having higher retreat rates. At the regional scale, the 20-yr headwall retreat rates are mainly related to slope aspect, with south- and west-facing slopes exhibiting higher retreat rates, and large slumps appear to be generating feedbacks that allow them to maintain growth rates well above those of smaller slumps. Overall, the findings presented in this study allow highlighting of key sensitive landscapes and ecosystems that may be impacted by the presence and growth of thaw slumps in one of the most rapidly warming region in the Arctic.

  20. CO2, CH4, and DOC Flux During Long Term Thaw of High Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Stackhouse, B. T.; Vishnivetskaya, T. A.; Layton, A.; Bennett, P.; Mykytczuk, N.; Lau, C. M.; Whyte, L.; Onstott, T. C.

    2013-12-01

    Arctic regions are expected to experience temperature increases of >4° C by the end of this century. This warming is projected to cause a drastic reduction in the extent of permafrost at high northern latitudes, affecting an estimated 1000 Pg of SOC in the top 3 m. Determining the effects of this temperature change on CO2 and CH4 emissions is critical for defining source constraints to global climate models. To investigate this problem, 18 cores of 1 m length were collected in late spring 2011 before the thawing of the seasonal active layer from an ice-wedge polygon near the McGill Arctic Research Station (MARS) on Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). Cores were collected from acidic soil (pH 5.5) with low SOC (~1%), summertime active layer depth between 40-70 cm (2010-2013), and sparse vegetation consisting primarily of small shrubs and sedges. Cores were progressively thawed from the surface over the course of 14 weeks to a final temperature of 4.5° C and held at that temperature for 15 months under the following conditions: in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, surface light versus no surface light, cores from the polygon edge, and control cores with a permafrost table maintained at 70 cm depth. Core headspaces were measured weekly for CO2, CH4, H2, CO, and O2 flux during the 18 month thaw experiment. After ~20 weeks of thawing maximum, CO2 flux for the polygon edge and dark treatment cores were 3.0×0.7 and 1.7×0.4 mmol CO2 m-2 hr-1, respectively. The CO2 flux for the control, saturated, and in situ saturation cores reached maximums of 0.6×0.2, 0.9×0.5, and 0.9×0.1 mmol CO2 m-2 hr-1, respectively. Field measurements of CO2 flux from an adjacent polygon during the mid-summer of 2011 to 2013 ranged from 0.3 to 3.7 mmol CO2 m-2 hr-1. Cores from all treatments except water saturated were found to consistently oxidize CH4 at ~atmospheric concentrations (2 ppmv) with a maximum

  1. The role of snow cover affecting boreal-arctic soil freeze-thaw and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Rawlins, M. A.; Moghaddam, M.; Euskirchen, E. S.

    2015-10-01

    Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (~ 0.8-1.3 days decade-1) in the mean annual snow cover extent and frozen-season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with a detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to climate warming and changes in snow cover conditions in the pan-Arctic region over the past 3 decades (1982-2010). Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD) cm, corresponding to widespread warming. Warming promotes vegetation growth and soil heterotrophic respiration particularly within surface soil layers (≤ 0.2 m). The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m) soil layers, especially in colder climate zones (mean annual T ≤ -10 °C). Our results demonstrate the important control of snow cover on northern soil freeze-thaw and soil carbon decomposition processes and the necessity of considering both warming and a change in precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.

  2. Long-Term Hydrological Changes of Coastal Arctic Tundra Ponds in Drained Thaw Lake Basins

    NASA Astrophysics Data System (ADS)

    Andresen, C. G.; Lougheed, V.

    2013-12-01

    Given the dominance of these ponds in the tundra landscape, documenting long-term changes in these aquatic systems is essential to understand carbon and energy balance, trophic energy flow, and biodiversity for the Arctic. The combination of remote sensing using historical imagery, as well as rare historical data from the International Biological Program, provides a unique opportunity for understanding long-term changes in hydrology, chemistry and biology of these significant freshwater environments. To assess the changes in pond area and abundance in 22 drained thaw-lake basins (DTLB) across the Barrow Peninsula over the past 60 years, we utilized historic aerial imagery from USGS archives (1948) and modern high-resolution Quickbird (2002, 2008, 2010). Age classification of DTLB was based on Hinkel et al 2003. We compared water temperature, active layer thickness, and aboveground biomass of these systems to historical datasets compiled in the Limnology of Tundra Ponds' by Hobbie et al 1975. We observed an overall decrease of 28% in pond area and 19% decrease in pond number, where smaller ponds (<100m2) had the highest change. These losses were coincident with significantly higher air and water temperature and reduced annual rainfall, which has decreased by 2.5 cm over the past 62 years (-0.4mm/yr). Active layer in ponds increased on average by 15cm. Aquatic grasses increased in density and cover in ponds over the past 40 years. Area and number of ponds loss was independent of DTLB age; however, medium-age DTLBs had significantly higher number of new ponds over old and ancient-age basins. While we observe new ponds due to thaw lake processes, climate seems to be having a stronger effect on these systems by reducing the overall inundated area and pond number in these basins. Increased evaporation due to warmer and longer summers, permafrost degradation, transpiration from encroaching aquatic grasses and changes in precipitation patterns are likely the current major

  3. Permafrost Thaw Induces Methane Oxidation in Transitional Thaw Stages in a Subarctic Peatland

    NASA Astrophysics Data System (ADS)

    Perryman, C. R.; Kashi, N. N.; Malhotra, A.; McCalley, C. K.; Varner, R. K.

    2015-12-01

    Rising temperatures in the subarctic are accelerating permafrost thaw and increasing methane (CH4) emissions from subarctic peatlands. Methanotrophs in these peatlands can consume/oxidize CH4, potentially mitigating CH4 emissions in these peatlands. Oxidation rates can exceed 90% of CH4 production in some settings, depending on O2 and CH4 availability and environmental conditions. Malhotra and Roulet identified 10 thaw stages in Stordalen Mire near Abisko, Sweden (68°21'N,18°49'E ) with variable vegetation, environmental conditions, and associated CH4 emissions. We investigated potential methane oxidation rates across these thaw stages. Peat cores were extracted from two depths at each stage and incubated in 350ml glass jars at in situ temperatures and CH4 concentrations. Headspace samples were collected from each incubation jar over a 48-hour period and analyzed for CH4 concentration using flame ionization detection gas chromatography (GC-FID). Oxidation rates ranged from <0.1 to 17 μg of CH4 per gram of dry biomass per day. Water table depth and pore water pH were the strongest environmental correlates of oxidation (sample size = 56, p < 0.001). The highest potential oxidation rates were observed in collapsing palsa sites and recently collapsed sedge-dominated open water sites near palsa mounds. Our results suggest that permafrost thaw induces high CH4 oxidation rates by creating conditions ideal for both methanogenic and methanotrophic microbial communities. Our results also reinforce the importance of incorporating transitional thaw stages in landscape level carbon budgets of thawing peatlands emphasized by Malhotra and Roulet. Forthcoming microbial analysis and stable isotope analysis will further elucidate the factors controlling methane oxidation rates at Stordalen Mire.

  4. Reversible Photoinhibition in Antarctic Moss during Freezing and Thawing.

    PubMed Central

    Lovelock, C. E.; Jackson, A. E.; Melick, D. R.; Seppelt, R. D.

    1995-01-01

    Tolerance of antarctic moss to freezing and thawing stress was investigated using chlorophyll a fluorescence. Freezing in darkness caused reductions in Fv/Fm (ratio of variable to maximum fluorescence) and Fo (initial fluorescence) that were reversible upon thawing. Reductions in Fv/Fm and Fo during freezing in darkness indicate a reduction in the potential efficiency of photosystem II that may be due to conformational changes in pigment-protein complexes due to desiccation associated with freezing. The absorption of light during freezing further reduced Fv/Fm and Fo but was also reversible. Using dithiothreitol (DTT), which inhibits the formation of the carotenoid zeaxanthin, we found reduced flurorescence quenching during freezing and reduced concentrations of zeaxanthin and antheraxanthin after freezing in DTT-treated moss. Reduced concentrations of zeaxanthin and antheraxanthin in DTT-treated moss were partially associated with reductions in nonphotochemical fluorescence quenching. The reversible photoinhibition observed in antarctic moss during freezing indicates the existence of processes that protect from photoinhibitory damage in environments where freezing temperatures occur in conjunction with high solar radiation levels. These processes may limit the need for repair cycles that require temperatures favorable for enzyme activity. PMID:12228644

  5. Estimation of Mercury Storage in Permafrost and Potential Release to the Environment by Thaw

    NASA Astrophysics Data System (ADS)

    Schuster, P. F.; Kamark, B. L.; Striegl, R. G.; Aiken, G.

    2011-12-01

    northern hemisphere suggest the potential range of THg sequestered in permafrost is 35,000 to 17 million metric tons. Using the mean THg value for all three cores and assuming an average 1 meter permafrost depth with a soil density of 0.75 g cm-3, we estimate sequestered THg to be about 1.5 million metric tons. The current estimate of annual natural and anthropogenic Hg inputs to the global atmospheric pool is about 7500 metric tons. These data suggest that permafrost contain a substantial reservoir of Hg. Efforts are under way to measure THg in up to seven more permafrost cores and associated active layers recently collected in interior Alaska to further refine the estimate of THg stocks in permafrost. In a warming northern climate, the pool of Hg currently residing in permafrost could become mobilized and undergo transformation reactions such as methylation, the main pathway by which Hg enters the food web as a toxic agent. Areas that are conducive to the methylation of Hg, typically wetlands and riparian zones, are often referred to as hot spots. If the northern climate continues to warm and permafrost continues to thaw there may be an increase in wetlands, riparian areas and sources of previously sequestered Hg that could lead to an increased number of hot spots in the northern regions of the world.

  6. Experimental System for Simulating a Natural Soil Temperature Profile during Freeze-thaw Cycles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to better assess the effects of freeze-thaw cycles on soil physical properties, water and contaminant transport, and microbial activity, a simple experimental soil thermal cycling system was developed. The system consisted of an insulated bin containing four cylindrical PVC lysimeters encas...

  7. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    PubMed Central

    2011-01-01

    Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET) reaction cascades of cytochrome c (cyt c) immobilized by the use of modified silica nanoparticles (SiNPs) to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS), Fourier transformed infrared spectroscopy (FT-IR), Zeta-potential and transmission electron microscopy (TEM). The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the influence of particle size are

  8. Temperature distribution in a layer of an active thermal insulation system heated by a gas burner

    SciTech Connect

    Maruyama, Shigenao . Inst. of Fluid Science); Shimizu, Naotaka . Dept. of Mechanical Engineering)

    1993-12-01

    The temperature distribution in a layer of an active thermal insulation system was measured. A semitransparent porous layer was heated by a gas burner, and air was injected from the back face of the layer. The temperature in the layer was measured by thermocouples. The temperature distributions were compared with numerical solutions. The thermal penetration depth of the active thermal insulation layer with gas injection can be reduced to 3 mm. When the surface temperature of a conventional insulation layer without gas injection reached 1,500 K, the temperature at the back surface of a 10-mm-thick layer reached 600 K. The transient temperature of the active thermal insulation reached a steady state very quickly compared with that of the conventional insulation. These characteristics agreed qualitatively with the numerical solutions.

  9. Seminal plasma applied post-thawing affects boar sperm physiology: a flow cytometry study.

    PubMed

    Fernández-Gago, Rocío; Domínguez, Juan Carlos; Martínez-Pastor, Felipe

    2013-09-01

    Cryopreservation induces extensive biophysical and biochemical changes in the sperm. In the present study, we used flow cytometry to assess the capacitation-like status of frozen-thawed boar spermatozoa and its relationship with intracellular calcium, assessment of membrane fluidity, modification of thiol groups in plasma membrane proteins, reactive oxygen species (ROS) levels, viability, acrosomal status, and mitochondrial activity. This experiment was performed to verify the effect of adding seminal plasma on post-thaw sperm functions. To determine these effects after cryopreservation, frozen-thawed semen from seven boars was examined after supplementation with different concentrations of pooled seminal plasma (0%, 10%, and 50%) at various times of incubation from 0 to 4 hours. Incubation caused a decrease in membrane integrity and an increase in acrosomal damage, with small changes in other parameters (P > 0.05). Although 10% seminal plasma showed few differences with 0% (ROS increase at 4 hours, P < 0.05), 50% seminal plasma caused important changes. Membrane fluidity increased considerably from the beginning of the experiment, and ROS and free thiols in the cell surface increased by 2 hours of incubation. By the end of the experiment, viability decreased and acrosomal damage increased in the 50% seminal plasma samples. The addition of 50% of seminal plasma seems to modify the physiology of thawed boar spermatozoa, possibly through membrane changes and ROS increase. Although some effects were detrimental, the stimulatory effect of 50% seminal plasma could favor the performance of post-thawed boar semen, as showed in the field (García JC, Domínguez JC, Peña FJ, Alegre B, Gonzalez R, Castro MJ, Habing GG, Kirkwood RN. Thawing boar semen in the presence of seminal plasma: effects on sperm quality and fertility. Anim Reprod Sci 2010;119:160-5). PMID:23756043

  10. Thaw flow control for liquid heat transport systems

    DOEpatents

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  11. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-07-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morpho-dynamics and for measuring and predicting bed load transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to re-work the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three-dimensions. Normalizing active layer thickness and dividing into 10 sub-layers we show that all grain sizes occur with almost equal frequency in all sub-layers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bed load prediction a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  12. Quality Evaluation of Pork with Various Freezing and Thawing Methods

    PubMed Central

    2014-01-01

    In this study, the physicochemical and sensory quality characteristics due to the influence of various thawing methods on electro-magnetic and air blast frozen pork were examined. The packaged pork samples, which were frozen by air blast freezing at −45℃ or electro-magnetic freezing at −55℃, were thawed using 4 different methods: refrigeration (4±1℃), room temperature (RT, 25℃), cold water (15℃), and microwave (2450 MHz). Analyses were carried out to determine the drip and cooking loss, water holding capacity (WHC), moisture content and sensory evaluation. Frozen pork thawed in a microwave indicated relatively less thawing loss (0.63-1.24%) than the other thawing methods (0.68-1.38%). The cooking loss after electro-magnetic freezing indicated 37.4% by microwave thawing, compared with 32.9% by refrigeration, 36.5% by RT, and 37.2% by cold water in ham. The thawing of samples frozen by electro-magnetic freezing showed no significant differences between the methods used, while the moisture content was higher in belly thawed by microwave (62.0%) after electro-magnetic freezing than refrigeration (54.8%), RT (61.3%), and cold water (61.1%). The highest overall acceptability was shown for microwave thawing after electro-magnetic freezing but there were no significant differences compared to that of the other samples. PMID:26761493

  13. The impact of soil compaction and freezing-thawing cycles on soil structure and yield in Mollisol region of China

    NASA Astrophysics Data System (ADS)

    Wang, Enheng; Zhao, Yusen; Chen, Xiangwei

    2015-04-01

    Agricultural machinery tillage and alternating freezing and thawing are two critical factors associated with soil structure change and accelerates soil erosion in the black soil region of Northeast China. Combining practical machinery operation and natural freeze-thaw cycles with artificial machinery compaction in the field and artificial freeze-thaw cycles in the lab, the plus and minus benefits of machinery tillage, characterization of seasonal freeze-thaw cycles, and their effects on soil structure and yield were studied. Firstly,the effects of machinery type and antecedent water content on soil structure and soil available nutrient were investigated by measuring soil bulk density, soil strength, soil porosity, soil aggregate distribution and stability, and three soil phases. The results showed that: Machinery tillage had positive and negative influence on soil structure, soil in top cultivated layer can be loosened and ameliorated however the subsoil accumulation of compaction was resulted. For heavy and medium machinery, subsoil compaction formed in the soil depth of 41~60cm and 31~40cm, respectively; however during the soil depth of 17.5~30cm under medium machinery operation there was a new plow pan produced because of the depth difference between harvesting and subsoiling. Antecedent water content had a significant effect on soil structure under machinery operations. Higher water antecedent resulted in deeper subsoil compaction at 40cm,which was deeper by 10cm than lower water content and soil compaction accumulation occurred at the first pass under higher water content condition. Besides water content and bulk density, soil organic matter is another key factor for affecting compressive-resilient performance of tillage soil. Secondly, based on the soils sampled from fields of the black soil region, the effects of freeze-thaw cycles on soil structure at different soil depths (0 -- 40 cm, 40 -- 80 cm, 120 -- 160 cm) and size scales (field core sampling

  14. Recent low-latitude freeze thaw on Mars

    NASA Astrophysics Data System (ADS)

    Page, David P.

    2007-07-01

    Outside polar latitudes, features corresponding to surface thaw have yet to be identified on Mars. The youthful gully landforms observed at mid-high latitude [Malin, M., Edgett, K., 2000. Science 288, 2330-2335] are the nearest candidate, but the source (and nature) of the gully carving agent remains controversial [e.g., Musselwhite, D.S., Swindle, T.D., Lunine, J.I., 2001. Geophys. Res. Lett. 28, 1283-1285; Mellon, M.T., Phillips, R.J., 2001. J. Geophys. Res. 106, 1-15; Knauth, L.P., Burt, D.M., 2002. Icarus 158, 267-271; Costard, F., Forget, F., Mangold, N., Peulvast, J.P., 2002. Science 295, 110-113; Christensen, P.R., 2003. Nature 422, 45-48; Treiman, A.H., 2003. J. Geophys. Res. 108]. At higher obliquity than the present epoch, near-surface ground ice should be present globally [Mellon, M.T., Jakosky, B.M., 1995. J. Geophys. Res. 100 (E6), 11781-11799], populated by condensation of atmospheric water vapour in the top few metres of the regolith, or emplaced as dusty ice sheets reaching down towards the equator. The latitudinal restriction of these gullies to regions poleward of ±30° appears to argue against a thaw component to their formation—since ground ice is present and stable at all latitudes at high obliquity, the current (low) obliquity regime should result in ground ice thaw at low latitudes, where insolation and daytime temperatures are currently greatest, and this is not observed. A previously undescribed meltwater sequence in the Cerberus plains, at 20° N/187° E, shows that comparable, but much more continuous, and mappable melting and surface runoff have occurred in the geologically recent past at near-equatorial latitudes on Mars. Polygonal ground in the Cerberus plains is seen by the Mars Global Surveyor Mars Orbiter Camera (MOC) to suffer sequential, regional-scale volatile-loss consistent with thaw of near-surface ground ice under periglacial conditions. This degradation is continuously sampled by a single MOC strip, showing an icy

  15. Response of Soil Biogeochemistry to Freeze-thaw Cycles: Impacts on Greenhouse Gas Emission and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2014-12-01

    Freeze-thaw is an abiotic stress applied to soils and is a natural process at medium to high latitudes. Freezing and thawing processes influence not only the physical properties of soil, but also the metabolic activity of soil microorganisms. Fungi and bacteria play a crucial role in soil organic matter degradation and the production of greenhouse gases (GHG) such as CO2, CH4 and N2O. Production and consumption of these atmospheric trace gases are the result of biological processes such as photosynthesis, aerobic respiration (CO2), methanogenesis, methanotrophy (CH4), nitrification and denitrification (N2O). To enhance our understanding of the effects of freeze-thaw cycles on soil biogeochemical transformations and fluxes, a highly instrumented soil column experiment was designed to realistically simulate freeze-thaw dynamics under controlled conditions. Pore waters collected periodically from different depths of the column and solid-phase analyses on core material obtained at the initial and end of the experiment highlighted striking geochemical cycling. CO2, CH4 and N2O production at different depths within the column were quantified from dissolved gas concentrations in pore water. Subsequent emissions from the soil surface were determined by direct measurement in the head space. Pulsed CO2 emission to the headspace was observed at the onset of thawing, however, the magnitude of the pulse decreased with each subsequent freeze-thaw cycle indicating depletion of a "freeze-thaw accessible" carbon pool. Pulsed CO2 emission was due to a combination of physical release of gases dissolved in porewater and entrapped below the frozen zone and changing microbial respiration in response to electron acceptor variability (O2, NO3-, SO42-). In this presentation, we focus on soil-specific physical, chemical, microbial factors (e.g. redox conditions, respiration, fermentation) and the mechanisms that drive GHG emission and nutrient cycling in soils under freeze-thaw cycles.

  16. The Impact of Enhanced Summer Thaw, Hillslope Disturbances, and Late Season Rainfall on Solute Fluxes from High Arctic Headwater Catchments

    NASA Astrophysics Data System (ADS)

    Lafreniere, M. J.; Lamoureux, S. F.

    2011-12-01

    This study examines variations in the composition and total seasonal fluxes of dissolved solutes in several small High Arctic headwater catchments at the Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, Nunavut (74°54'N, 109°35'W) over multiple snowmelt seasons (2007, 2008, 2009) with contrasting climate and permafrost active layer conditions. Climate warming in the High Arctic will affect a number processes that will alter the hydrological and biogeochemical exports from the landscape. Climate change is projected to alter precipitation regimes, resulting in increases in both winter and summer precipitation in the High Arctic, thereby altering hydrological regimes. Warming will result in thickening of the seasonal active layer, which will alter hydrological flow paths and water and solute sources. Additionally, active layer thickening and permafrost warming is also project to enhance the development of thermokarst features, including hillslope disturbances, such as active layer detachment slides and retrogressive thaw slumps. This research compares the flux of inorganic and organic solutes emanating from a group of catchments that were subject to a range hillslope disturbances, or active layer detachment slides (ALDs), at the end of summer 2007. One of the catchments, Goose, was not subject to any disturbance, while active layer slides covered between 6% and 46% of the catchment area in the disturbed catchments. It was hypothesised that solute fluxes would increase primarily with increasing extent and degree of disturbance. This however, was not observed. Rather, comparing five sites with varying degrees of disturbance in 2009 illustrates that on a specific area and specific volume of runoff basis, solute fluxes were unrelated to disturbance extent. Comparing two catchments that were monitored from 2007 (pre-disturbance) through to 2009 (2 yrs post disturbance), shows that both catchments were subject to solute flux increases, however the solute

  17. Effect of alpha-lipoic acid on boar spermatozoa quality during freezing-thawing.

    PubMed

    Shen, Tao; Jiang, Zhong-Liang; Li, Cong-Jun; Hu, Xiao-Chen; Li, Qing-Wang

    2016-04-01

    Alpha-lipoic acid (ALA) is known to be a natural antioxidant. The aim of the present study was to evaluate the cryoprotective effect of ALA on the motility of boar spermatozoa and its antioxidant effect on boar spermatozoa during freezing-thawing. Different concentrations (2.0, 4.0, 6.0, 8.0 or 10.0 mg/ml) of ALA were added to the extender used to freeze boar semen, and the effects on the quality and endogenous antioxidant enzyme activities of frozen-thawed spermatozoa were assessed. The results indicated that the addition of ALA to the extender resulted in a higher percentage of motile spermatozoa post-thaw (P < 0.05). The activities of superoxide dismutase, lactate dehydrogenase, glutamic-oxaloacetic transaminase and catalase improved after adding ALA to the extender (P < 0.05). Artificial insemination results showed that pregnancy rate and litter size were significantly higher at 6.0 mg/ml in the ALA group than in the control group (P < 0.05). In conclusion, ALA conferred a cryoprotective capacity to the extender used for boar semen during the process of freezing-thawing, and the optimal concentration of ALA for the frozen extender was 6.0 mg/ml. PMID:26099848

  18. Effects of spatial variation of skull and cerebrospinal fluid layers on optical mapping of brain activities

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio

    2010-07-01

    In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.

  19. Layer-by-layer engineered nanocapsules of curcumin with improved cell activity.

    PubMed

    Kittitheeranun, Paveenuch; Sajomsang, Warayuth; Phanpee, Sarunya; Treetong, Alongkot; Wutikhun, Tuksadon; Suktham, Kunat; Puttipipatkhachorn, Satit; Ruktanonchai, Uracha Rungsardthong

    2015-08-15

    Nanocarriers based on electrostatic Layer-by-layer (LbL) assembly of CaCO3 nanoparticles (CaCO3 NPs) was investigated. These inorganic nanoparticles was used as templates to construct nanocapsules made from films based on two oppositely charged polyelectrolytes, poly(diallyldimethylammonium chloride), and poly (sodium 4-styrene-sulfonate sodium salt), followed by core dissolution. The naked CaCO3 NPs, CaCO3 NPs coated with the polyelectrolytes and hollow nanocapsules were found with hexagonal shape with average sizes of 350-400 nm. A reversal of the surface charge between positive to negative zeta potential values was found, confirming the adsorption of polyelectrolytes. The loading efficiency and release of curcumin were controlled by the hydrophobic interactions between the drug and the polyelectrolyte matrix of the hollow nanocapsules. The quantity of curcumin released from hollow nanocapsules was found to increase under acidic environments, which is a desirable for anti-cancer drug delivery. The hollow nanocapsules were found to localize in the cytoplasm and nucleus compartment of Hela cancer cells after 24 h of incubation. Hollow nanocapsules were non-toxic to human fibroblast cells. Furthermore, curcumin loaded hollow nanocapsules exhibited higher in vitro cell inhibition against Hela cells than that of free curcumin, suggesting that polyelectrolyte based-hollow nanocapsules can be utilized as new carriers for drug delivery. PMID:26143232

  20. Simulating soil freeze/thaw dynamics with an improved pan-Arctic water balance model

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.; Nicolsky, D. J.; McDonald, K. C.; Romanovsky, V. E.

    2013-12-01

    The terrestrial Arctic water cycle is strongly influenced by the presence of permafrost, which is at present degrading as a result of warming. In this study, we describe improvements to the representation of processes in the pan-Arctic Water Balance Model (PWBM) and evaluate simulated soil temperature at four sites in Alaska and active-layer thickness (ALT) across the pan-Arctic drainage basin. Model improvements include new parameterizations for thermal and hydraulic properties of organic soils; an updated snow model, which accounts for seasonal changes in density and thermal conductivity; and a new soil freezing and thawing model, which simulates heat conduction with phase change. When compared against observations across Alaska within differing landscape vegetation conditions in close proximity to one another, PWBM simulations show no systematic soil temperature bias. Simulated temperatures agree well with observations in summer. In winter, results are mixed, with both positive and negative biases noted at times. In two pan-Arctic simulations forced with atmospheric reanalysis, the model captures the mean in observed ALT, although predictability as measured by correlation is limited. The geographic pattern in northern hemisphere permafrost area is well estimated. Simulated permafrost area differs from observed extent by 7 and 17% for the two model runs. Results of two simulations for the periods 1996-1999 and 2066-2069 for a single grid cell in central Alaska illustrate the potential for a drying of soils in the presence of increases in ALT, annual total precipitation, and winter snowfall.

  1. Freeze-thaw cycles as drivers of complex ribozyme assembly

    PubMed Central

    Mutschler, Hannes; Wochner, Aniela; Holliger, Philipp

    2015-01-01

    The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools. PMID:25991529

  2. Freeze-thaw cycles as drivers of complex ribozyme assembly

    NASA Astrophysics Data System (ADS)

    Mutschler, Hannes; Wochner, Aniela; Holliger, Philipp

    2015-06-01

    The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles, even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools.

  3. Freeze-thaw cycles as drivers of complex ribozyme assembly.

    PubMed

    Mutschler, Hannes; Wochner, Aniela; Holliger, Philipp

    2015-06-01

    The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles, even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools. PMID:25991529

  4. Understanding response times and groundwater flow dynamics of thaw zone (talik) evolution below lakes in the Yukon Flats, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Wellman, T. P.; Minsley, B. J.; Voss, C. I.; Walvoord, M. A.

    2013-12-01

    In cold regions, hydrologic systems possess seasonal and perennial ice-free zones (taliks) within areas of permafrost that control and are enhanced by groundwater flow. Simulation of talik development that follows lake formation in watersheds modeled after those in the Yukon Flats of interior Alaska (USA) provides insight on the coupled interaction between groundwater flow and ice distribution. The SUTRA groundwater simulator with freeze-thaw physics is used to examine the effect of climate, lake size, and lake-groundwater relations on talik formation. Considering a range of these factors, simulated times for a through-going sub-lake talik to form through 90 m of permafrost range from ~200 to >1,000 years (vertical thaw rates <0.1-0.5 m yr^-1). Seasonal temperature cycles along lake margins impact supra-permafrost flow and late-stage cryologic processes. Warmer climate accelerates complete permafrost thaw and enhances seasonal flow within the supra-permafrost layer. Prior to open talik formation, sub-lake permafrost thaw is dominated by heat conduction. When hydraulic conditions induce upward or downward flow between the lake and sub-permafrost aquifer, thaw rates are greatly increased. The complexity of ground-ice and water-flow interplay, together with anticipated warming in the arctic, underscores the utility of coupled groundwater-energy transport models in evaluating hydrologic systems impacted by permafrost.

  5. Models for convection in thawing porous media in support for the subsea permafrost equations

    NASA Astrophysics Data System (ADS)

    Hutter, Kolumban; Straughan, Brian

    1999-12-01

    When permafrost becomes submerged because of shore line erosion, the covering ocean acts as a thermal insulator, and the submerged permafrost starts to melt. The thawed layer is bounded above by the ocean bed through which salt may intrude and by the phase boundary which for a fixed offshore position is known to progress with the square root of time. This situation gives rise to nonsteady double-diffusion coupling Bénard convection and liquefaction which can be described by the Darcy-Oberbeck-Boussinesq equations. The boundary value problem is formulated, and scalings are introduced which orient themselves on the relative magnitudes of phase boundary and convective bulk velocities of the salt convective regime identified by Harrison [1982]. The multiscale perturbation analysis that is introduced not only verifies the observed thaw rates with a parabolic-in-time phase boundary retreat, it equally automatically generates the equations for the corresponding perturbative equations such as the double-diffusion Bénard problem, the associated eigenvalue problem, its corrections and possible convective flows induced by the various possible currents induced by the ocean circulation overlying the thawed permafrost layer. The demonstration of this systematic approach is the main purpose of this paper.

  6. Cross-tolerance between osmotic and freeze-thaw stress in microbial assemblages from temperate lakes.

    PubMed

    Wilson, Sandra L; Frazer, Corey; Cumming, Brian F; Nuin, Paulo A S; Walker, Virginia K

    2012-11-01

    Osmotic stress can accompany increases in solute concentrations because of freezing or high-salt environments. Consequently, microorganisms from environments with a high-osmotic potential may exhibit cross-tolerance to freeze stress. To test this hypothesis, enrichments derived from the sediment and water of temperate lakes with a range of salt concentrations were subjected to multiple freeze-thaw cycles. Surviving isolates were identified and metagenomes were sampled prior to and following selection. Enrichments from alkali lakes were typically the most freeze-thaw resistant with only 100-fold losses in cell viability, and those from freshwater lakes were most susceptible, with cell numbers reduced at least 100,000-fold. Metagenomic analysis suggested that selection reduced assemblage diversity more in freshwater samples than in those from saline lakes. Survivors included known psychro-, halo- and alkali-tolerant bacteria. Characterization of freeze-thaw-resistant isolates from brine and alkali lakes showed that few isolates had ice-associating activities such as antifreeze or ice nucleation properties. However, all brine- and alkali-derived isolates had high intracellular levels of osmolytes and/or appeared more likely to form biofilms. Conversely, these phenotypes were infrequent amongst the freshwater-derived isolates. These observations are consistent with microbial cross-tolerance between osmotic and freeze-thaw stresses. PMID:22551442

  7. Thawing of Frozen Dressed Tuna by Microwave Heating

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeo; Nagasaki, Tasuku; Takahashi, Kenji

    Large sized frozen yellowfin tuna and southern bluefin tuna in dressed form (decapitated and gutted) were thawed by microwave (915 MHz) irradiation. Temperature rise of the tuna during thawing was measured. Quality of the tuna meat before and after thawing was compared with each other using objective quality index such as degree of discoloration (met-myoglobin ratio), freshness (K1 value) and taste cornponent (K2 value). Results are as follows : (1) Both frozen tunas were thawed fairly well within as short time as 30 min without any partial over heating. (2) No changes in met-myoglobin ratio, K1 and K2 values were observed in the cases of yellow fin tuna. Slight discoloration, however, occurred in southern bluefin tuna meat during microwave thawing. This problem has been left unsolved.

  8. Impact of Freezing and Thawing on Soil Oxygen Dynamics and Nutrient Fluxes

    NASA Astrophysics Data System (ADS)

    Milojevic, T.; Rezanezhad, F.; Van Cappellen, P.; Smeaton, C. M.; Parsons, C. T.

    2015-12-01

    Freeze-thaw cycles (FTCs) influence the physical properties, microbial activity, biogeochemistry, nutrient and carbon cycling in soils, and regulate subsurface oxygen (O2) availability, affecting greenhouse gas exchanges between soils and the atmosphere. The ability to monitor changes in O2 levels, which are indicative of aerobic and anaerobic conditions, is key to understanding how changes in the frequency and amplitude of freeze-thaw cycles affect a soil's geochemical conditions and microbial activity. In this study, a highly instrumented soil column experiment was designed to accurately simulate freeze-thaw dynamics under controlled conditions. This design allowed us to reproduce realistic, time- and depth-dependent temperature gradients in the soil column. Continuous O2 levels throughout the soil column were monitored using high-resolution, luminescence-based, Multi Fiber Optode (MuFO) microsensors. Image-processing techniques were used to convert light intensity of high-resolution digital images of the sensor-emitted light into O2 concentrations. Water samples from various depths in the column were collected to monitor pore water composition changes. Headspace gas measurements were used to derive the effluxes of CO2 and CH4 during the experiment. The results indicate that the pulse of oxygen introduced by thawing caused partial and temporal oxidation of previously reduced sulfur and nitrogen species, leading to concomitant changes in pore water SO42- and NO3- concentrations. Pulsed CO2 emission to the headspace was observed at the onset of thawing, indicating that a physical ice barrier had formed during frozen conditions and prevented gas exchange between the soil and atmosphere. CO2 emission was due to a combination of the physical release of gases dissolved in pore water and entrapped below the frozen zone and changing microbial respiration in response to electron acceptor variability (O2, NO3-, SO42-).

  9. Grain sorting in the morphological active layer of a braided river physical model

    NASA Astrophysics Data System (ADS)

    Leduc, P.; Ashmore, P.; Gardner, J. T.

    2015-12-01

    A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morphodynamics, and for measuring and predicting bedload transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to rework the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs (digital elevation models) of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three dimensions. By normalizing active layer thickness and dividing into 10 sublayers, we show that all grain sizes occur with almost equal frequency in all sublayers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bedload prediction, a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.

  10. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle A.; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  11. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948-2013)

    NASA Astrophysics Data System (ADS)

    Andresen, Christian G.; Lougheed, Vanessa L.

    2015-03-01

    Long-term fine-scale dynamics of surface hydrology in Arctic tundra ponds (less than 1 ha) are largely unknown; however, these small water bodies may contribute substantially to carbon fluxes, energy balance, and biodiversity in the Arctic system. Change in pond area and abundance across the upper Barrow Peninsula, Alaska, was assessed by comparing historic aerial imagery (1948) and modern submeter resolution satellite imagery (2002, 2008, and 2010). This was complemented by photogrammetric analysis of low-altitude kite-borne imagery in combination with field observations (2010-2013) of pond water and thaw depth transects in seven ponds of the International Biological Program historic research site. Over 2800 ponds in 22 drained thaw lake basins (DTLB) with different geological ages were analyzed. We observed a net decrease of 30.3% in area and 17.1% in number of ponds over the 62 year period. The inclusion of field observations of pond areas in 1972 from a historic research site confirms the linear downward trend in area. Pond area and number were dependent on the age of DTLB; however, changes through time were independent of DTLB age, with potential long-term implications for the hypothesized geomorphologic landscape succession of the thaw lake cycle. These losses were coincident with increases in air temperature, active layer, and density and cover of aquatic emergent plants in ponds. Increased evaporation due to warmer and longer summers, permafrost degradation, and transpiration from encroaching aquatic emergent macrophytes are likely the factors contributing to the decline in surface area and number of ponds.

  12. Mercury Content of Vegetation across a Subarctic Mire Thaw Gradient

    NASA Astrophysics Data System (ADS)

    Mayedo, A. L.; Remiszewski, K.; Prado, M. F.; McCalley, C. K.; Bryce, J. G.; Varner, R. K.

    2014-12-01

    Mercury deposition from natural and anthropogenic sources is known to accumulate in subarctic environments, particularly peatlands, due to their abundant organic matter that effectively sequester mercury and other heavy metals. Given direct links between mercury mobilization and aquatic and terrestrial ecosystem health, it is vital to understand the degree to which thawing peatlands serve as sinks or sources of mercury to the environment. In a peat mire underlain by permafrost in subarctic Sweden (Stordalen Mire, lat. 68°21' N, lon. 19°03' E), the onset of climate-driven permafrost thaw influences regional hydrology and therefore the composition of plant communities. The purpose of this work is to assess mercury content of vegetation and underlying peat across a thaw gradient. The study was conducted on two transects that transition from an unthawed dwarf shrub-dominated hummock community to a fully thawed graminoid-dominated wet depression community. Drained hummock sites at initial stages of the thaw sequence are characterized by a diverse graminoid and shrub community, including Eriophorum, Andromeda, and Empetrum populations underlain by Sphagnum litter. Semi-wet sites are characterized by moist Sphagnum mats with sparse populations of Eriophorum and Empetrum. Wet sites are characterized by tall graminoid Eriophorum underlain by submerged Sphagnum mats. Total mercury abundances in vegetation was analyzed via thermal decomposition. Generally, mercury contents in plant tissues exhibit decreasing concentrations of mercury with increasing thaw. Higher concentration of mercury in vegetation in drained sites versus that in wet sites supports the notion that mercury in the dry mire is exported into the local water and peat column. Changing mercury concentration profiles in peat core afford a means to assess that mercury is mobilized during the thaw but not fully exported from the thawed wetlands. Our results, coupled with earlier findings of mobilization and

  13. Interstratified nanohybrid assembled by alternating cationic layered double hydroxide nanosheets and anionic layered titanate nanosheets with superior photocatalytic activity.

    PubMed

    Lin, Bizhou; Sun, Ping; Zhou, Yi; Jiang, Shaofeng; Gao, Bifen; Chen, Yilin

    2014-09-15

    Oppositely charged 2D inorganic nanosheets of ZnAl-layered double hydroxide and layered titanate were successfully assembled into an interstratified nanohybrid through simply mixing the corresponding nanosheet suspensions. Powder X-ray diffraction and high-resolution transmission electron microscope clearly revealed that the component nanosheets in the as-obtained nanohybrid ZnAl-Ti3O7 retain the 2D sheet skeletons of the pristine materials and that the two kinds of nanosheets are well arranged in a layer-by-layer alternating fashion with a basal spacing of about 1.3 nm, coincident with the thickness summation of the two component nanosheets. The effective interfacial heterojunction between them and the high specific surface area resulted in that the nanohybrid exhibits a superior photocatalytic activity in the degradation of methylene blue with a reaction constant k of 2.81 × 10(-2)min(-1), which is about 9 and 4 times higher than its precursors H2Ti3O7 and ZnAl-LDH, respectively. Based on UV-vis, XPS and photoelectrochemical measurements, a proposed photoexcitation model was provided to understand its photocatalytic behavior. PMID:25151238

  14. Possible Future Changes in Permafrost and Active Layer Thickness in Northern Eurasia and their Relation to Permafrost Carbon Pool

    NASA Astrophysics Data System (ADS)

    Marchenko, S. S.; Romanovsky, V. E.; Chapman, W. L.; Walsh, J. E.

    2012-12-01

    Recent observations indicate a warming of permafrost in many northern regions with the resulting degradation of ice-rich and carbon-rich permafrost. Permafrost temperature has increased by 1 to 3 deg C in northern Eurasia during the last 30 years. To assess possible changes in the permafrost thermal state and the active layer thickness we implemented the GIPL2 (Geophysical Institute Permafrost Lab) transient model for the entire Northern Eurasia for the 1981-2100 time period. Input parameters to the model are spatial datasets of mean monthly air temperature, snow properties or SWE, prescribed vegetation and thermal properties of the multilayered soil column, and water content. The climate scenario was derived from an ensemble of five IPCC Global Circulation Models (GCM) ECHAM5, GFDL21, CCSM, HADcm and CCCMA. The outputs from these five models have been scaled down to 25 km spatial resolution with monthly temporal resolution, based on the composite (mean) output of the five models, using the IPCC SRES A1B CO2 emission scenario through the end of current century. Historic ground temperature measurements in shallow boreholes (3.2 m in depth) from more than 120 weather stations located within the continuous, discontinuous, and sporadic permafrost zones were available for the initial model validation and calibration. To prescribe the thermal properties we used the map of soil characteristics for whole of Russia (Stolbovoi & Savin, 2002) and the map of Soil Carbon Pools, CO2 and CH4 emissions (Tarnocai et al., 2009) and also the soil structure descriptions available for some locations. We estimated dynamics of the seasonally thawed volume of soils within the two upper meters for the entire North Eurasia. The model results indicate 1,200 km3 of seasonally unfrozen soils within the two upper meters within 10,800,000 km2 of northern Eurasian permafrost domain during the last two decades of the 20th century. Our projections have shown that unfrozen volume of soil within two

  15. Permafrost vulnerability and active layer thickness increases over the high northern latitudes inferred from satellite remote sensing and process model assessments

    NASA Astrophysics Data System (ADS)

    Park, Hotaek; Kim, Youngwook

    2016-04-01

    Permafrost extent (PE) and active layer thickness (ALT) are important for assessing high northern latitude (HNL) ecological and hydrological processes, and potential land-atmosphere carbon and climate feedbacks. We developed a new approach to infer PE from satellite microwave remote sensing of daily landscape freeze-thaw (FT) status. Our results document, for the first time, the use of satellite microwave FT observations for monitoring permafrost extent and condition. The FT observations define near-surface thermal status used to determine permafrost extent and stability over a 30-year (1980-2009) satellite record. The PE results showed similar performance against independent inventory and process model (CHANGE) estimates, but with larger differences over heterogeneous permafrost subzones. A consistent decline in the ensemble mean of permafrost areas (‑0.33 million km2 decade‑1; p < 0.05) coincides with regional warming (0.4 °C decade‑1; p < 0.01), while more than 40% (9.6 million km2) of permafrost areas are vulnerable to degradation based on the 30-year PE record. ALT estimates determined from satellite (MODIS) and ERA-Interim temperatures, and CHANGE simulations, compared favorably with independent field observations and indicate deepening ALT trends consistent with widespread permafrost degradation under recent climate change. The integration of remote sensing and modeling of permafrost and active layer conditions developed from this study may facilitate regular and effective regional monitoring of these parameters, and expand applications of remote sensing for examining permafrost-related feedbacks and consequences for biogeochemical and hydrological cycling in the Arctic.

  16. Application of ALOS PALSAR ScanSAR Data for Determining the Freeze/Thaw Surface State over Alaska

    NASA Astrophysics Data System (ADS)

    Azarderakhsh, M.; McDonald, K. C.; Schroeder, R.; Chapman, B. D.; Steiner, N.; Podest, E.; Colliander, A.; Kimball, J. S.; Pinales, J. C.

    2012-12-01

    Land surface freeze/thaw state is a key state variable governing water, carbon and energy cycles across the high latitudes. Spatially comprehensive ground observation networks suitable for characterizing regional-scale freeze/thaw patterns require large fiscal, technological and human resources to implement. Satellite microwave remote sensing thus offers the unique opportunity for a complete synoptic view of the surface freeze/thaw state that otherwise could not be assessed. A primary goal of NASA's Soil Moisture Active-Passive (SMAP) mission is characterization of land surface freeze/thaw state for northern latitudes. In this study, multi-temporal imagery from calibrated and terrain-corrected 100 m resolution L-band HH-polarized ALOS PALSAR ScanSAR, with coverage over the State of Alaska are employed to investigate backscatter variability in response to land cover and freeze/thaw state. Despite better temporal resolution, ScanSAR lacks constant incidence angle backscatter observations when compared to higher-resolution (6 - 12.5 m) PALSAR fine beam mode data. Thus a method for the normalization (to an incidence angle of 40 degree) of the ScanSAR backscatter responses to incidence angle variations, land cover and freeze/thaw state is proposed. Our incidence angle correction algorithm relies on ancillary data from the Japanese Earth Resources Satellite (JERS) based wetlands map over Alaska [Whitecomb et. al., 2009] as well as land cover information from the Boston University MOD12Q1 V004 Land Cover product (BU-MODIS) supporting identification of non-inundated vegetated upland regions. Mosaics of concurrent PALSAR fine beam data are utilized to evaluate the accuracy of our backscatter normalization procedure. Moreover, ALECTRA (Alaska Ecological Transect) biophysical monitoring sites, which provide unique information about the thermal (i.e. freeze/thaw) state of the various land cover components (e.g. canopy, stem, snow and soil) are employed to examine linkages

  17. Is Thawing Permafrost as a Result of Global Warming a Possible Significant Source of Degradable Carbon for Microbiota Residing In Situ and in Arctic Rivers?

    NASA Astrophysics Data System (ADS)

    Zhu, E. Y.; Coolen, M. J.

    2008-12-01

    Northern high-latitude ecosystems contain about half of the world's soil carbon, most of which is stored in permanently frozen soil (permafrost). Global warming through the 21st century is expected to induce permafrost thaw, which will increase microbial organic matter (OM) decomposition and release large amounts of the greenhouse gasses methane and carbon dioxide into the atmosphere. In addition, Arctic rivers are a globally important source of terrestrial organic carbon to the ocean and further permafrost melting will impact surface runoff, directly affecting groundwater storage and river discharge. Up to now, it remains largely unknown to what extent the ancient OM stored in newly thawing permafrost can be consumed by microbes in situ or by microbes residing in Arctic rivers which become exposed to newly discharged permafrost OM. In addition, we know little about which microbes are capable of degrading permafrost OM. During a field trip to the Toolik Lake Arctic Long Term Ecological Research (LTER) field station in northern Alaska in August 2008, we cored permafrost located near the Kuparuk River down to 110 cm below the active layer (i.e. the top layer which melts each summer) and analyzed the initial microbial enzymatic cleavage of particulate OM (POM) stored in permafrost. Alkaline phosphatase activity remained fairly constant throughout the permafrost and was only one order of magnitude lower than in the active layer. The latter enzyme cleaves organic phosphoesters into phosphate, which could cause eutrophication of lakes and rivers via ground water discharge. Similar results were found for β-glucosidase, which cleaves cellobiose into glucose. This process could fuel heterotrophic bacteria to produce carbon dioxide which, in return, could be converted to the stronger greenhouse gas methane by methanogenic archaea. Leucine aminopeptidase activities, on the other hand, were highest in the top Sphagnum root layer and quickly dropped to below detection limit

  18. Use of fluorescence-activated flow cytometry to determine membrane lipid peroxidation during hypothermic liquid storage and freeze-thawing of viable boar sperm loaded with 4, 4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid.

    PubMed

    Guthrie, H D; Welch, G R

    2007-06-01

    Part of the reduction in boar sperm motility and fertility associated with hypothermic liquid storage and cryopreservation may be due to membrane lipid peroxidation. Lipid peroxidation was monitored by the shift from red to green fluorescence emission of the lipophilic probe 4, 4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid, C(11)BODIPY(581/591) (BODIPY), as measured by fluorescence-activated flow cytometry in live sperm (negative for propidium iodide). Experiments were conducted with Percoll-washed sperm to determine the specificity of BODIPY oxidation in the presence of different reactive oxygen species generators and metal chelators. Compared with no FeSO(4) and Na ascorbate, the combination of FeSO(4) and Na ascorbate (FeAc) increased (P < 0.01) the percentage of sperm containing oxidized BODIPY from 70% and increased (P < 0.05) BOD-IPY fluorescence intensity/cell by 5- to 10-fold after a 30-min incubation. Motility was depressed (P < 0.05) after exposure to FeAc, but viability was not affected. Of the reactive oxygen species generators tested, BODIPY oxidation was specific for FeAc, because menadione and H(2)O(2) had little or no effect. The oxidization of hydroethidine to ethidium was specific for menadione and H(2)O(2); FeAc had no effect. The presence of the metal chelators EDTA or deferoxamine mesylate at 3 and 9 muM inhibited FeAc-induced BODIPY oxidation and maintained motility. Experiments were conducted to determine the effect of liquid storage at 17 degrees C for 1 and 5 d and the effect of freeze-thawing on basal and FeAc-induced BODIPY oxidation. Basal BODIPY oxidation (no FeAc) was low in liquid stored and thawed viable sperm (1.3 and 3.4%, respectively). Although the incidence of basal or spontaneous membrane lipid peroxidation was low during liquid storage and after freeze-thawing, viable boar sperm were susceptible to FeAc-induced lipid peroxidation. PMID:17296775

  19. Freeze-Thaw Cycles Effects on Soil Compaction in a Clay Loam

    NASA Astrophysics Data System (ADS)

    Jabro, J.; Evans, R.; Iversen, W.

    2012-04-01

    Inappropriate soil management practices and heavier farm machinery and equipment have led to an increase in soil compaction in the last two decades prompting increased global concern regarding the impact of soil compaction on crop production and soil quality in modern mechanized agriculture. A 3-yr comprehensive study was established to evaluate the dynamic of freeze-thaw cycles on soil compaction in a clay loam soil. Plots of frozen soils were compared with plots where soils were prevented from freezing with electrically heated blankets commonly used on concrete. Results showed that frequent freeze-thaw cycles over the winter alleviated a majority of soil compaction at the 0 - 20 cm depth. Soil penetration resistance in compacted soils was reduced by 73 and 68% over the winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to dynamic effects of freeze-thaw cycles on soil structure and particles configuration. In unfrozen compacted soils, the penetration resistance was also reduced by 50 and 60% over winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to the biology of soil, microbial activity, and disruptive effects of shrink-swell cycles. These results have demonstrated of how repeated freeze-thaw cycles can alleviate soil compaction, alter soil physical quality and create optimal soil conditions required for profitable growth of agricultural crops. The results from this study will save growers considerable time, money and energy currently required to alleviate soil compaction using other methods such as sub-soiling and deep tillage. We believe that Mother Nature provides ways to reverse soil compaction and improve soil structure and aggregation through the dynamic of freeze-thaw cycles that soils in Montana and other parts of the country go through each year. We concluded that the Mother Nature is the most effective and cheapest way to alleviate soil compaction.

  20. Effects of Freeze-Thawing and Intravenous Infusion on Mesenchymal Stromal Cell Gene Expression.

    PubMed

    Hoogduijn, Martin J; de Witte, Samantha F H; Luk, Franka; van den Hout-van Vroonhoven, Mirjam C G N; Ignatowicz, Lech; Catar, Rusan; Strini, Tanja; Korevaar, Sander S; van IJcken, Wilfred F J; Betjes, Michiel G H; Franquesa, Marcella; Moll, Guido; Baan, Carla C

    2016-04-15

    Mesenchymal stromal cells (MSC) are increasingly used as an investigative therapeutic product for immune disorders and degenerative disease. Typically, MSC are isolated from human tissue, expanded in culture, and cryopreserved until usage. The safety and efficacy of MSC therapy will depend on the phenotypical and functional characteristics of MSC. The freeze-thawing procedure may change these characteristics. Furthermore, the cells encounter a microenvironment after administration that may impact their properties. It has been demonstrated that the majority of MSC localize to the lungs after intravenous infusion, making this the site to study the effects of the in vivo milieu on administered MSC. In this study, we investigated the effect of freeze-thawing and the mouse lung microenvironment on human adipose tissue-derived MSC. There were effects of freeze-thawing on the whole genome expression profile of MSC, although the effects did not exceed interdonor differences. There were no major changes in the expression of hemostatic regulators on transcriptional level, but significantly increased expression of procoagulant tissue factor on the surface of thawed adipose MSC, correlating with increased procoagulant activity of thawed cells. Exposure for 2 h to the lung microenvironment had a major effect on MSC gene expression and affected several immunological pathways. This indicates that MSC undergo functional changes shortly after infusion and this may influence the efficacy of MSC to modulate inflammatory responses. The results of this study demonstrate that MSC rapidly alter in response to the local milieu and disease-specific conditions may shape MSC after administration. PMID:26914168

  1. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  2. Freeze-Thaw Durability of Air-Entrained Concrete

    PubMed Central

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results. PMID:23576906

  3. Freeze-thaw durability of air-entrained concrete.

    PubMed

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results. PMID:23576906

  4. Improving ice nucleation activity of zein film through layer-by-layer deposition of extracellular ice nucleators.

    PubMed

    Shi, Ke; Yu, Hailong; Lee, Tung-Ching; Huang, Qingrong

    2013-11-13

    Zein protein has been of scientific interest in the development of biodegradable functional food packaging. This study aimed at developing a novel zein-based biopolymer film with ice nucleation activity through layer-by-layer deposition of biogenic ice nucleators, that is, extracellular ice nucleators (ECINs) isolated from Erwinia herbicola , onto zein film surface. The adsorption behaviors and mechanisms were investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). On unmodified zein surface, the highest ECINs adsorption occurred at pH 5.0; on UV/ozone treated zein surface followed by deposition of poly(diallyldimethylammonium chloride) (PDADMAC) layer, the optimum condition for ECINs adsorption occurred at pH 7.0 and I 0.05 M, where the amount of ECINs adsorbed was also higher than that on unmodified zein surface. QCM-D analyses further revealed a two-step adsorption process on unmodified zein surfaces, compared to a one-step adsorption process on PDADMAC-modified zein surface. Also, significantly, in order to quantify the ice nucleation activity of ECINs-coated zein films, an empirical method was developed to correlate the number of ice nucleators with the ice nucleation temperature measured by differential scanning calorimetry. Calculated using this empirical method, the highest ice nucleation activity of ECINs on ECINs-modified zein film reached 64.1 units/mm(2), which was able to elevate the ice nucleation temperature of distilled water from -15.5 °C to -7.3 °C. PMID:24106783

  5. Thaw depth determines reaction and transport of inorganic nitrogen in valley bottom permafrost soils: Nitrogen cycling in permafrost soils.

    PubMed

    Harms, Tamara K; Jones, Jeremy B

    2012-09-01

    Nitrate (NO3 (-) ) export coupled with high inorganic nitrogen (N) concentrations in Alaskan streams suggests that N cycles of permafrost-influenced ecosystems are more open than expected for N-limited ecosystems. We tested the hypothesis that soil thaw depth governs inorganic N retention and removal in soils due to vertical patterns in the dominant N transformation pathways. Using an in situ, push-pull method, we estimated rates of inorganic N uptake and denitrification during snow melt, summer, and autumn, as depth of soil-stream flowpaths increased in the valley bottom of an arctic and a boreal catchment. Net NO3 (-) uptake declined sharply from snow melt to summer and decreased as a nonlinear function of thaw depth. Peak denitrification rate occurred during snow melt at the arctic site, in summer at the boreal site, and declined as a nonlinear function of thaw depth across both sites. Seasonal patterns in ammonium (NH4 (+) ) uptake were not significant, but low rates during the peak growing season suggest uptake that is balanced by mineralization. Despite rapid rates of hydrologic transport during snow melt runoff, rates of uptake and removal of inorganic N tended to exceed water residence time during snow melt, indicating potential for retention of N in valley bottom soils when flowpaths are shallow. Decreased reaction rates relative to water residence time in subsequent seasons suggest greater export of inorganic N as the soil-stream flowpath deepens due to thawing soils. Using seasonal thaw as a proxy for longer term deepening of the thaw layer caused by climate warming and permafrost degradation, these results suggest increasing potential for export of inorganic N from permafrost-influenced soils to streams. PMID:24501070

  6. Highly sensitive multi-layer pressure sensor with an active nanostructured layer of an organic molecular metal

    NASA Astrophysics Data System (ADS)

    Laukhin, V.; Lebedev, V.; Laukhina, E.; Rovira, C.; Veciana, J.

    2016-03-01

    This work addresses to the modern technologies that need to be instrumented with lightweight highly sensitive pressure sensors. The paper presents the development of a new plain flexible thin pressure sensor using a nanostructured layer of the highly sensitive organic piezoresistive metal β-(BEDT-TTF)2I3 as an active component; BEDT-TTF=bis (ethylenedithio)tetrathiafulvalene. The original construction approach permits one to operate the developed sensor on the principle of electrical resistance variations when its piezoresistive layer is elongated under a pressure increase. The pressure sensing element and a set of gold electrodes were integrated into one compact multi-layer design. The construction was optimized to enable one generic design for pressure ranges from 1 to 400 bar. The pressure tests showed that the sensor is able to control a small pressure change as a well definite electrical signal. So the developed type of the sensors is very attractive as a new generation of compact, lightweight, low-cost sensors that might monitor pressure with a good level of measurement accuracy.

  7. Crystallinity Modulation of Layered Carbon Nitride for Enhanced Photocatalytic Activities.

    PubMed

    Wang, Jianhai; Shen, Yanfei; Li, Ying; Liu, Songqin; Zhang, Yuanjian

    2016-08-22

    As an emerging metal-free semiconductor, covalently bonded carbon nitride (CN) has attracted much attention in photocatalysis. However, drawbacks such as a high recombination rate of excited electrons and holes hinder its potential applications. Tailoring the crystallinity of semiconductors is an important way to suppress unwanted charge recombination, but has rarely been applied to CN so far. Herein, a simple method to synthesize CN of high crystallinity by protonation of specific intermediate species during conventional polymerization is reported. Interestingly, the as-obtained CN exhibited improved photocatalytic activities of up to seven times those of the conventional bulk CN. This approach, with only a slight change to the conventional method, provides a facile way to effectively regulate the crystallinity of bulk CN to improve its photocatalytic activities and sheds light on large-scale industrial applications of CN with high efficiency for sustainable energy. PMID:27436164

  8. An active control system for the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Lew, James

    This thesis presents the development process and the experimental results of a system constructed to apply real-time control to the structures of the turbulent boundary layer region in order to reduce surface shear stress. The system is composed of three main components: an array of MEMS surface shear stress, tauw sensors; a MEMS flap actuator; and a control logic which integrates the hardware components together into a closed system. The objective of this system is to reduce the stress contained in streak-like regions of high tauw. The sensor array, used to image the tauw distribution, is an extension of the thermal based tauw sensor developed by Jiang. Numerous studies have been performed using this device, the results of which have validated its performance. For this study, a new temperature compensation methodology, based on the surface temperature of the sensor chip, was employed in order to account for possible temperature variations at the wall surface. The actuator, a pneumatically driven flap, is developed as part of the present research. The device is, in essence, a 3 mm x 1 mm cantilever beam that sits on top of an inflatable diaphragm and is capable of actuation frequencies of over 200 Hz and amplitudes of over .11 mm. When it is oscillated in the open loop mode, the effect over one cycle of motion is an average reduction by as much as 2.5% in tauw in the region immediately downstream. A neural network is employed to identify the streak-like regions of interest. Results have shown that this network is successful in identifying the streak-like regions of interest. The control logic employs this network in a predictive, feed-forward scheme to determine the appropriate actuator response. Offline studies have shown that under optimal conditions, the signature of the streak-like regions can be eliminated. Online results conform well to the offline predictions. While unable to achieve the optimal conditions, online experiments show that the system is capable

  9. Contribution of S-Layer Proteins to the Mosquitocidal Activity of Lysinibacillus sphaericus

    PubMed Central

    Allievi, Mariana Claudia; Palomino, María Mercedes; Prado Acosta, Mariano; Lanati, Leonardo; Ruzal, Sandra Mónica; Sánchez-Rivas, Carmen

    2014-01-01

    Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity. PMID:25354162

  10. Flow cytometric and near-infrared Raman spectroscopic investigation of quality in stained, sorted, and frozen-thawed buffalo sperm.

    PubMed

    Li, Xiao-Xia; Wang, Meng; Chen, Huan-Hua; Li, Qing-Yang; Yang, Huan; Xu, Hui-Yan; Lu, Yang-Qing; Zhang, Ming; Yang, Xiao-Gan; Lu, Sheng-Sheng; Lu, Ke-Huan

    2016-07-01

    Flow cytometry and Laser Tweezers Raman spectroscopy have been used to investigate Nili-Ravi buffalo (Bubalus bubalis) sperm from different samples (fresh, stained, sorted and frozen-thawed) of the flow-sorting process to optimize sperm sex sorting procedures. During the sorting and freezing-thawing processes, the two detection methods both indicated there were differences in mitochondrial activity and membrane integrity. Moreover, a dispersive-type NIR (Near Infrared Reflection) use of the Raman system resulted in the ability to detect a variety of sperm components, including relative DNA, lipid, carbohydrates and protein contents. The use of the Raman system allowed for PCA (principal components analysis) and DFA (discriminant function analysis) of fresh, stained, sorted and frozen-thawed sperm. The methodology, therefore, allows for distinguishing sperm from different samples (fresh, stained, sorted and frozen-thawed), and demonstrated the great discriminative power of ANN (artificial neural network) classification models for the differentiating sperm from different phases of the flow-sorting process. In conclusion, the damage induced by sperm sorting and freezing-thawing procedures can be quantified, and in the present research it is demonstrated that Raman spectroscopy is a valuable technology for assessing sperm quality. PMID:27095613

  11. Application of Spaceborne Scatterometer for Mapping Freeze-Thaw State in Northern Landscapes as a Measure of Ecological and Hydrological Processes

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle; Kimball, John; Zimmermann, Reiner; Way, JoBea; Frolking, Steve; Running, Steve

    1999-01-01

    Landscape freeze/thaw transitions coincide with marked shifts in albedo, surface energy and mass exchange, and associated snow dynamics. Monitoring landscape freeze/thaw dynamics would improve our ability to quantify the interannual variability of boreal hydrology and river runoff/flood dynamics. The annual duration of frost-free period also bounds the period of photosynthetic activity in boreal and arctic regions thus affecting the annual carbon budget and the interannual variability of regional carbon fluxes. In this study, we use the NASA scatterometer (NSCAT) to monitor the temporal change in the radar backscatter signature across selected ecoregions of the boreal zone. We have measured vegetation tissue temperatures, soil temperature profiles, and micrometeorological parameters in situ at selected sites along a north-south transect extending across Alaska from Prudhoe Bay to the Kenai Peninsula and in Siberia near the Yenisey River. Data from these stations have been used to quantify the scatterometer's sensitivity to freeze/thaw state under a variety of terrain and landcover conditions. Analysis of the NSCAT temporal response over the 1997 spring thaw cycle shows a 3 to 5 dB change in measured backscatter that is well correlated with the landscape springtime thaw process. Having verified the instrument's capability to monitor freeze/thaw transitions, regional scale mosaicked data are applied to derive temporal series of freeze/thaw transition maps for selected circumpolar high latitude regions. These maps are applied to derive areal extent of frozen and thawed landscape and demonstrate the utility of spaceborne radar for operational monitoring of seasonal freeze-thaw dynamics and associated biophysical processes for the circumpolar high latitudes.

  12. Hydraulic conductivity of geosynthetic clay liners after freeze-thaw

    SciTech Connect

    Hewitt, R.D.; Daniel, D.E.

    1997-04-01

    Hydraulic conductivity tests were performed in large tanks on intact (single panel) and overlapped samples of three geosynthetic clay liners (GCLs) that has been subjected to freeze-thaw cycles. The compressive stress applied to the GCLs (7.6--12.4 kPa) was selected to simulate final cover systems for landfills. Laboratory flexible-wall permeameter tests were also performed. With the exception of one overlapped GCL, all three GCLs withstood three freeze-thaw cycles without a significant change in hydraulic conductivity. An overlapped, geo-textile-encased, stitch-bonded GCL did undergo a 1,000-fold increase in hydraulic conductivity after one freeze-thaw cycle, but the overlapped area contained stitches, which are left off the edges of the full-sized material that is deployed in the field. In general, the tests showed that GCLs can withstand at least three freeze-thaw cycles without significant changes in hydraulic conductivity.

  13. Ultrastructural injury to human spermatozoa after freezing and thawing.

    PubMed

    Woolley, D M; Richardson, D W

    1978-07-01

    The ultrastructure of human spermatozoa at various stages of the freezing and thawing process was studied. In addition to conventional fixations, a freeze-substitution method was used to examine spermatozoa before they were thawed. Dilution in a glycerol-egg yolk-citrate medium caused slight swelling of the acrosome. During slow freezing, when large ice crystals grow in the diluent, the sperm plasmalemma became tighter, the mitochondria had more angular profiles and there was a reduction in electron density of the acrosomal contents. After thawing, the apical segment of the acrosome usually became swollen and the mitochondria appeared rounded. We deduce that these ultrastructural changes occur either during or after the thawing procedure. PMID:567693

  14. Reconstructing thawing quintessence with multiple datasets

    NASA Astrophysics Data System (ADS)

    Lima, Nelson A.; Liddle, Andrew R.; Sahlén, Martin; Parkinson, David

    2016-03-01

    In this work we model the quintessence potential in a Taylor series expansion, up to second order, around the present-day value of the scalar field. The field is evolved in a thawing regime assuming zero initial velocity. We use the latest data from the Planck satellite, baryonic acoustic oscillations observations from the Sloan Digital Sky Survey, and supernova luminosity distance information from Union2.1 to constrain our models parameters, and also include perturbation growth data from the WiggleZ, BOSS, and 6dF surveys. The supernova data provide the strongest individual constraint on the potential parameters. We show that the growth data performance is competitive with the other datasets in constraining the dark energy parameters we introduce. We also conclude that the combined constraints we obtain for our model parameters, when compared to previous works of nearly a decade ago, have shown only modest improvement, even with new growth of structure data added to previously existent types of data.

  15. Soil nutrient processes during spring thaw along a thermokarst recovery chronosequence

    NASA Astrophysics Data System (ADS)

    Buckeridge, K. M.; Schaeffer, S. M.; Baron, A.; Mack, M. C.; Schuur, E. A.; Schimel, J.

    2012-12-01

    Arctic soils store large pools of carbon (C) that are sensitive to a warming climate. When upland permafrost thaws, soil organic matter, C and nutrients are mobilized by the resulting landscape erosion. The intermediate ecosystem recovery stage (~ 50 y) is characterized by strongly enhanced above-ground biomass (shrubbiness) relative to undisturbed, early or late successional stages. However, upland arctic terrestrial ecosystems are very strongly nutrient- limited to plant growth and microbial activity, so the source of nutrients for this intermediate recovery stage is unknown. We hypothesized that nutrient inputs from upslope during spring thaw, combined with differential retention between recovery stages could be a potential mechanism. Furthermore, we hypothesized that the leachate nutrients from upslope vegetation would be an important stimulant to soil microbial activity at thaw. In winter, we placed ion exchange resin bags at the base of the snowpack, along the top, middle and base of each recovery stage slope. These were collected in spring and analyzed to estimate relative C, N and P inputs and outputs for each recovery stage. Also in winter, we collected snow cores (n=5) from the surface horizon of each of the recovery stages of the thermokarst chronosequence, in addition to live (dormant) plants and surface litter from snow-covered, undisturbed tundra directly above the thermokarst, with which we made cold (0-2 oC) vegetation leachate. To test the response of soil microbes to thaw pulses of vegetation leachate, we added this leachate (or water) to the frozen soil cores, and stepped them up in temperature from -10 oC to +4 oC over the course of 6 days and measured changes in microbial biomass and extractable soil biogeochemistry at the end of the incubation. As an indicator of soil microbial activity, we measured soil respiration and gross N mineralization over the course of the incubation. Time since thermokarst disturbance was the most important predictor

  16. Application of Spaceborne Scatterometer for Mapping Freeze-Thaw State in Northern Landscapes as a Measure of Ecological and Hydrological Processes

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle; Kimball, John; Zimmermann, Reiner; Way, JoBea; Frolking, Steve; Running, Steve

    1994-01-01

    Landscape freeze/thaw transitions coincide with marked shifts in albedo, surface energy and mass exchange, and associated snow dynamics. monitoring landscape freeze/thaw dynamics would improve our ability to quantify the interannual variability of boreal hydrology and river runoff/flood dynamics, The annual duration of frost-free period also bounds the period of photosynthetic activity in borel and arctic regions thus affecting the carbon budget and the interannual variability fo regional carbon fluxes.

  17. A retrospective study of single frozen-thawed blastocyst transfer

    PubMed Central

    Ryu, Eun Kyung; Song, Seung Hyun; Yoon, San Hyun; Lim, Kyung Sil; Lee, Won Don; Lim, Jin Ho

    2016-01-01

    Objective To study the clinical outcomes of single frozen-thawed blastocyst transfer cycles according to the hatching status of frozen-thawed blastocysts. Methods Frozen-thawed blastocysts were divided into three groups according to their hatching status as follows: less-than-expanded blastocyst (≤EdB), hatching blastocyst (HgB), and hatched blastocyst (HdB). The female age and infertility factors of each group were evaluated. The quality of the single frozen-thawed blastocyst was also graded as grade A, tightly packed inner cell mass (ICM) and many cells organized in the trophectoderm epithelium (TE); grade B, several and loose ICM and TE; and grade C, very few ICM and a few cells in the TE. The clinical pregnancy and implantation rate were compared between each group. The data were analyzed by either t-test or chi-square analysis. Results There were no statistically significant differences in average female ages, infertility factors, or the distribution of blastocyst grades A, B, and C in each group. There was no significant difference in the clinical pregnancy and implantation rate of each group according to their blastocyst grade. However, there was a significant difference in the clinical pregnancy and implantation rate between each group. In the HdB group, the clinical pregnancy and implantation rate were similar regardless of the blastocyst quality. Conclusion There was an effect on the clinical outcomes depending on whether the blastocyst hatched during single frozen-thawed blastocyst transfer. When performing single frozen-thawed blastocyst transfer, the hatching status of the frozen-thawed blastocyst may be a more important parameter for clinical outcomes than the quality of the frozen-thawed blastocyst. PMID:27358829

  18. The development of the cell cryopreservation protocol with controlled rate thawing.

    PubMed

    Gurina, Tatyana M; Pakhomov, Alexandr V; Polyakova, Anna L; Legach, Evgeniy I; Bozhok, Galyna A

    2016-06-01

    Thawing in the water bath is often considered as a standard procedure. The thermal history of samples thawed in this way is poorly controlled, but cryopreservation and banking of cell-based products require standardization, automation and safety of all the technological stages including thawing. The programmable freezers allow implementation of the controlled cooling as well as the controlled thawing. As the cell damage occurs during the phase transformation that takes place in the cryoprotectant medium in the process of freezing-thawing, the choice of warming rates within the temperature intervals of transformations is very important. The goal of the study was to investigate the influence of warming rates within the intervals of the phase transformations in the DMSO-based cryoprotectant medium on the cell recovery and to develop a cryopreservation protocol with controlled cooling and warming rates. The temperature intervals of phase transformations such as melting of the eutectic mixture of the cryoprotectant solution (MEMCS), melting of the eutectic salt solution (MESS), melting of the main ice mass (MMIM), recrystallization before MEMCS, recrystallization before MESS and recrystallization before MMIM were determined by thermo-mechanical analysis. The biological experiments were performed on the rat testicular interstitial cells (TIC). The highest levels of the cell recovery and metabolic activity after cryopreservation were obtained using the protocol with the high (20 °C/min) warming rate in the temperature intervals of crystallization of the eutectics as well as recrystallizations and the low (1 °C/min) warming rate in the temperature intervals of melting of the eutectics as well as MMIM. The total cell recovery was 65.3 ± 2.1 %, the recovery of the 3-beta-HSD-positive (Leydig) cells was 82.9 ± 1.8 %, the MTT staining was 32.5 ± 0.9 % versus 42.1 ± 1.7 %; 57.4 ± 2.1 % and 24.0 ± 1.1 % respectively, when compared to the thawing in

  19. Nutrient Controls on Methane Emissions in a Permafrost Thaw Subarctic Peatland

    NASA Astrophysics Data System (ADS)

    Kashi, N. N.; Perryman, C. R.; Malhotra, A.; Marek, E. A.; Giesler, R.; Varner, R. K.

    2015-12-01

    Permafrost peatlands in northern latitudes are large reservoirs of sequestered carbon that are vulnerable to climate change. While peatlands account for a small fraction of total global land surfaces, their potential to release sequestered carbon in response to higher temperatures is of concern. Of particular relevance is the conversion of these carbon stores into methane (CH4), a strong greenhouse gas with a global warming potential 20 times greater than that of CO2 over a 100-year time frame. Here, we explore how key nutrients impact the consumption of CH4 at the Stordalen Mire in Abisko, Sweden, a discontinuous permafrost peatland with expanding thaw over the last century. Peatland CH4 emissions are highly spatially variable due to multiple emission pathways and strong dependence on several environmental factors. Among controls on CH4 emissions, such as temperature and water table depth, primary production of wetland vegetation is also a strong factor in the variability of CH4 emissions. Plant community shifts among permafrost thaw stages subsequently change nutrient cycling and availability, which in turn impacts primary production. Early stages of permafrost thaw are mosaicked with a variety of vascular plants and mosses. We analyzed potential enzymatic activities of chitinase, glucosidase, and phosphatase as proxies for organic nitrogen, carbon, and phosphorus cycling, respectively, in tandem with potential CH4 oxidation rates. In addition, stoichiometric ratios of carbon, nitrogen, and phosphorus concentrations are used to illustrate nutrient limitation controls on CH4 oxidation rates. While CH4 emissions are low throughout initial thaw stages, < 7 CH4 mg m-2 day-1, we found they had the highest rates of potential CH4 oxidation. These permafrost thaw-induced CH4 oxidation rates are 5 and 11 times higher, in the surface and depth of the peat profile respectively, than subsequent aerobic permafrost thaw stages. As CH4 emissions are low in intact permafrost

  20. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  1. Ground Reference and Ancillary Data Validation of Freeze-Thaw State Products of Alaska

    NASA Astrophysics Data System (ADS)

    Oseguera, B.; Pinales, J. C.; McDonald, K. C.

    2013-12-01

    The freeze-thaw state of the landscape is a good indicator of growing season length, metabolic activity, root and soil respiration, and biogeochemical cycling in high latitude regions like Alaska. The increase in biological productivity and hydrological activity that comes with the arrival of the summer snow- and ice-free period can be estimated by microwave remote sensing systems because of the rise in the dielectric constant during the thawed period, which registers as marked shifts in the time series progression acquired by these data. Our study involves the comparison of high-frequency microwave remote sensing data, such as NASA's QuikSCAT sensor, with daily records of meteorological variables from the National Climatic Data Center's Global Historical Climatology Network (NCDC GHCN-Daily) and Natural Resources Conservation Service's Snowpack Telemetry (SNOTEL) network. These variables include soil temperature profiles, snowfall, and snow depth. A change detection algorithm was used to classify the microwave time series data as frozen or thawed. The station data were then utilized to validate the accuracy of the algorithm's product.

  2. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    PubMed

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. PMID:27494632

  3. Layer-by-layer carbon nanotube bio-templates for in situ monitoring of the metabolic activity of nitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Guest, Jeremy S.; Ho, Genevieve; Lynch, Jerome P.; Love, Nancy G.

    2009-03-01

    Despite the wide variety of effective disinfection and wastewater treatment techniques for removing organic and inorganic wastes, pollutants such as nitrogen remain in wastewater effluents. If left untreated, these nitrogenous wastes can adversely impact the environment by promoting the overgrowth of aquatic plants, depleting dissolved oxygen, and causing eutrophication. Although nitrification/denitrification processes are employed during advanced wastewater treatment, effective and efficient operation of these facilities require information of the pH, dissolved oxygen content, among many other parameters, of the wastewater effluent. In this preliminary study, a biocompatible CNT-based nanocomposite is proposed and validated for monitoring the biological metabolic activity of nitrifying bacteria in wastewater effluent environments (i.e., to monitor the nitrification process). Using carbon nanotubes and a pH-sensitive conductive polymer (i.e., poly(aniline) emeraldine base), a layer-by-layer fabrication technique is employed to fabricate a novel thin film pH sensor that changes its electrical properties in response to variations in ambient pH environments. Laboratory studies are conducted to evaluate the proposed nanocomposite's biocompatibility with wastewater effluent environments and its pH sensing performance.

  4. Dual active layer a-IGZO TFT via homogeneous conductive layer formation by photochemical H-doping

    PubMed Central

    2014-01-01

    In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 1013 cm-2, resistivity at 4.6 × 10-3 Ω∙cm, and Hall mobility at 14.6 cm2/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-μm-long HECL embedded in an 80-μm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm2/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm2/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs. PMID:25435832

  5. Carbon nanotubes supported cerium dioxide and platinum nanohybrids: Layer-by-layer synthesis and enhanced electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Lou, Xinyuan; Chen, Jiayi; Wang, Mengdi; Gu, Jialei; Wu, Ping; Sun, Dongmei; Tang, Yawen

    2015-08-01

    We successfully synthesize carbon nanotubes (CNTs) supported cerium dioxide and platinum (Pt/CeO2/CNTs) nanohybrids via layer-by-layer assembly. The composition, morphology and structure of the as-prepared Pt/CeO2/CNTs nanohybrids are characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission spectrometry (ICP-AES). By comparison of the electrocatalytic properties of the Pt/CeO2/CNTs with the Pt/CNTs, we systematically investigate the promotion effect of CeO2 on the Pt/CeO2/CNTs catalysts towards methanol oxidation. It is found that the introduction of CeO2 not only enhances the electrocatalytic activity and stability of the Pt/CeO2/CNTs catalyst for methanol oxidation but also minimizes the CO poisoning, probably accounting for the good oxygen carrying capacity of CeO2 and its high stability in acidic solution.

  6. Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control

    NASA Technical Reports Server (NTRS)

    Heyliger, P. R.; Ramirez, G.; Pei, K. C.

    1994-01-01

    The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when

  7. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex.

    PubMed

    Adams, Daniel L; Economides, John R; Horton, Jonathan C

    2015-05-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. PMID:25810480

  8. Contrasting effects of strabismic amblyopia on metabolic activity in superficial and deep layers of striate cortex

    PubMed Central

    Adams, Daniel L.; Economides, John R.

    2015-01-01

    To probe the mechanism of visual suppression, we have raised macaques with strabismus by disinserting the medial rectus muscle in each eye at 1 mo of age. Typically, this operation produces a comitant, alternating exotropia with normal acuity in each eye. Here we describe an unusual occurrence: the development of severe amblyopia in one eye of a monkey after induction of exotropia. Shortly after surgery, the animal demonstrated a strong fixation preference for the left eye, with apparent suppression of the right eye. Later, behavioral testing showed inability to track or to saccade to targets with the right eye. With the left eye occluded, the animal demonstrated no visually guided behavior. Optokinetic nystagmus was absent in the right eye. Metabolic activity in striate cortex was assessed by processing the tissue for cytochrome oxidase (CO). Amblyopia caused loss of CO in one eye's rows of patches, presumably those serving the blind eye. Layers 4A and 4B showed columns of reduced CO, in register with pale rows of patches in layer 2/3. Layers 4C, 5, and 6 also showed columns of CO activity, but remarkably, comparison with more superficial layers showed a reversal in contrast. In other words, pale CO staining in layers 2/3, 4A, and 4B was aligned with dark CO staining in layers 4C, 5, and 6. No experimental intervention or deprivation paradigm has been reported previously to produce opposite effects on metabolic activity in layers 2/3, 4A, and 4B vs. layers 4C, 5, and 6 within a given eye's columns. PMID:25810480

  9. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  10. Polymer Solar Cell Device Characteristics Are Independent of Vertical Phase Separation in Active Layers

    NASA Astrophysics Data System (ADS)

    Loo, Yueh-Lin

    2013-03-01

    Preferential segregation of organic semiconductor constituents in multicomponent thin-film active layers has long been speculated to affect the characteristics of bulk-heterojunction polymer solar cells. Using soft-contact lamination and delamination schemes - with which we have been able to remove compositionally well characterized polymer thin films, flip them over so as to reverse their composition profiles, and then transfer them onto existing device platforms - we showed unambiguously that the device performance of P3HT:PCBM solar cells are independent of the interfacial segregation characteristics of the active layers. Temperature-dependent single-carrier diode measurements of the organic semiconductor constituents suggest that the origin of this invariance stems from the fact that P3HT comprises a high density of mid-gap states. Hole carriers in these mid-gap states can in turn recombine with electrons at the electron-collecting interface, effectively promoting electron transfer from the cathode to the active layer.

  11. Effect of layered composite meta-structures on the optical activity and ellipticity of structural biomolecules

    NASA Astrophysics Data System (ADS)

    Khoo, E. H.; Hor, Y. Li; Leong, Eunice S. P.; Liu, Y. J.

    2014-09-01

    In this paper, we design layered composite meta-structures to investigate its' effect on the optical activity and circular dichroism (CD). The layered composite meta-structures consist of thin gammadion nanostructure with thickness λ/10, where λ is the incident wavelength. The layered meta-structures are alternate between a dielectric and gold (AU) material. Each layered composite meta-gammadion is arranged together in an array of pitch 700 nm. In the first case, 3 layers of meta-gammadion, with metal-insulator-metal (MIM) and insulator-metal-insulator (IMI) configuration are simulated with material properties from optical hand book. There are 3 modes in the CD spectrum, which can be characterized into Bloch CD mode and hybrid CD modes. Compared with the CD spectrum of whole structure of gammadion in gold with same total height, the CD of the MIM layered composite are larger. When the number layer increase to 5, it is observed that the CD is reduced by 30% and there is a red shift in the Bloch CD mode and a slight blue shift in the hybrid CD modes. By further increasing the number of layers to 7, we observed further CD increment and larger wavelength shift in the CD modes. The layered composite meta-gammadion is fabricated using template stripping method. Experimental results also show excellent agreement with the simulation results for CD and wavelength shift. We submerge the layered meta-gammadion into a solution of chiral molecules. The CD spectrum of the meta-gammadion shows a larger wavelength shift compared to pure metal structures. This indicate a more sensitive and robust detection of chiral molecules.

  12. Activation Layer Stabilization of High Polarization Photocathodes in Sub-Optimal RF Gun Environments

    SciTech Connect

    Gregory A. Mulhollan

    2010-11-16

    Specific activation recipes for bulk, 100 nm thick MBE grown and high polarization III-V photocathode material have been developed which mitigate the effects of exposure to background gasses. Lifetime data using four representative gasses were acquired for bulk GaAs, 100 nm unstrained GaAs and strained superlattice GaAs/GaAsP, all activated both with Cs and then Cs and Li (bi-alkali). Each photoemitter showed marked resilience improvement when activated using the bi-alkali recipe compared to the standard single alkali recipe. A dual alkali activation system at SLAC was constructed, baked and commissioned with the purpose of performing spin-polarization measurements on electrons emitted from the bi-alkali activated surfaces. An end station at SSRL was configured with the required sources for energy resolved photoemission measurements on the bi-alkali activated and CO2 dosed surfaces. The bi-alkali recipes were successfully implemented at SLAC/SSRL. Measurements at SLAC of the photoelectron spin-polarization from the modified activation surface showed no sign of a change in value compared to the standard activated material, i.e., no ill effects. Analysis of photoemission data indicates that the addition of Li to the activation layer results in a multi-layer structure. The presence of Li in the activation layer also acts as an inhibitor to CO2 absorption, hence better lifetimes in worse vacuum were achieved. The bi-alkali activation has been tested on O2 activated GaAs for comparison with NF3 activated surfaces. Comparable resilience to CO2 exposure was achieved for the O2 activated surface. An RF PECVD amorphous silicon growth system was modified to allow high temperature heat cleaning of GaAs substrates prior to film deposition. Growth versus thickness data were collected. Very thin amorphous silicon germanium layers were optimized to exhibit good behavior as an electron emitter. Growth of the amorphous silicon germanium films on the above substrates was fine tuned

  13. Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event

    NASA Astrophysics Data System (ADS)

    Pihlatie, M. K.; Kiese, R.; Brüggemann, N.; Butterbach-Bahl, K.; Kieloaho, A.-J.; Laurila, T.; Lohila, A.; Mammarella, I.; Minkkinen, K.; Penttilä, T.; Schönborn, J.; Vesala, T.

    2010-05-01

    Fluxes of greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured during a two month campaign at a drained peatland forest in Finland by the eddy covariance (EC) technique (CO2 and N2O), and automatic and manual chambers (CO2, CH4 and N2O). In addition, GHG concentrations and soil parameters (mineral nitrogen, temperature, moisture content) in the peat profile were measured. The aim of the measurement campaign was to quantify the GHG fluxes during freezing and thawing of the top-soil, a time period with potentially high GHG fluxes, and to compare different flux measurement methods. The forest was a net CO2 sink during the two months and the fluxes of CO2 dominated the GHG exchange. The peat soil was a small sink of atmospheric CH4 and a small source of N2O. Both CH4 oxidation and N2O production took place in the top-soil whereas CH4 was produced in the deeper layers of the peat, which were unfrozen throughout the measurement period. During the frost-thaw events of the litter layer distinct peaks in CO2 and N2O emissions were observed. The CO2 peak followed tightly the increase in soil temperature, whereas the N2O peak occurred with a delay after the thawing of the litter layer. CH4 fluxes did not respond to the thawing of the peat soil. The CO2 and N2O emission peaks were not captured by the manual chambers and hence we conclude that high time-resolution measurements with automatic chambers or EC are necessary to quantify fluxes during peak emission periods. Sub-canopy EC measurements and chamber-based fluxes of CO2 and N2O were comparable, although the fluxes of N2O measured by EC were close to the detection limit of the system. We conclude that if fluxes are high enough, i.e. greater than 5-10 μg N m-2 h-1, the EC method is a good alternative to measure N2O and CO2 fluxes at ecosystem scale, thereby minimizing problems with chamber enclosures and spatial representativeness of the measurements.

  14. The quality of great scallop (Pecten maximus) sperm after thawing.

    PubMed

    Suquet, Marc; Gourtay, Clémence; Donval, Anne; Le Goïc, Nelly; Quere, Claudie; Malo, Florent; Le Grand, Jaqueline; Ratiskol, Dominique; Mingant, Christian; Fauvel, Christian

    2016-04-01

    Most publications devoted to the cryopreservation of mollusc sperm have focused on the definition of technical protocols, avoiding the description of sperm quality after thawing. The present study investigated the effects of cryopreservation on sperm quality in the great scallop. Wild scallop were fished during the natural spawning period and conditioned in the hatchery before use. Sperm samples were obtained after intragonadal injection of serotonin and cryopreserved using a previously published protocol. Sperm quality was assessed using a panel of four parameters: sperm motility characteristics, using a computer assisted sperm analysis plugin with Image J, intracellular ATP content using an ATP-Lite kit, sperm integrity, using flow cytometry and sperm morphology, using transmission electron microscopy. For each parameter, fresh (control) and thawed spermatozoa were compared. A significant decrease of both the percentage of motile spermatozoa (reduction: 75%) and sperm swimming speed (86%) were observed for thawed sperm compared with fresh sperm. The percentage of living spermatozoa, as assessed using flow cytometry, was significantly lower for thawed sperm (72.4±2.5%) compared with fresh sperm (86.4±1.1). However, no significant difference of intracellular sperm ATP content was observed between fresh and thawed sperm. Post thawing, while some spermatozoa showed little or no morphological differences compared with fresh sperm, others had undergone drastic changes, including swelling of the plasma membrane, structural alterations of the chromatin and damage to mitochondria. In conclusion, the descriptive parameters studied in the present work showed that the quality of thawed great scallop sperm was lower than that of fresh cells but was still sufficient for use in aquaculture programs and sperm cryobanking for this species. PMID:26944486

  15. Thermal conductivity tensors of the cladding and active layers of interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Cui, Boya; Vurgaftman, I.; Canedy, C. L.; Kim, C. S.; Kim, M.; Bewley, W. W.; Merritt, C. D.; Abell, J.; Meyer, J. R.; Grayson, M.

    2014-12-01

    The cross-plane and in-plane thermal conductivities of the W-active stages and InAs/AlSb superlattice optical cladding layer of an interband cascade laser (ICL) were characterized for temperatures ranging from 15 K to 324 K. The in-plane thermal conductivity of the active layer is somewhat larger than the cross-plane value at temperatures above about 30 K, while the thermal conductivity tensor becomes nearly isotropic at the lowest temperatures studied. These results will improve ICL performance simulations and guide the optimization of thermal management.

  16. MAPLE prepared heterostructures with arylene based polymer active layer for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, F.; Rasoga, O.; Catargiu, A. M.; Vacareanu, L.; Socol, M.; Breazu, C.; Preda, N.; Socol, G.; Stanculescu, A.

    2015-05-01

    This paper presents some studies about the preparation by matrix-assisted pulsed laser evaporation (MAPLE) technique of heterostructures with single layer of arylene based polymer, poly[N-(2-ethylhexyl)2.7-carbazolyl vinylene]/AMC16 and poly[N-(2-ethylhexyl)2.7-carbazolyl 1.4-phenylene ethynylene]/AMC22, and with layers of these polymers mixed with Buckminsterfullerene/C60 in the weight ratio of 1:2 (AMC16:C60) and 1:3 (AMC22:C60). The deposited layers have been characterized by spectroscopic (UV-Vis-NIR, PL, FTIR) and microscopic (SEM, AFM) methods. The effect of the polymer particularities on the optical and electrical properties of the structures based on polymer and polymer:C60 mixed layer has been analyzed. The study of the electrical properties has revealed typical solar cell behavior for the heterostructure prepared by MAPLE on glass/ITO/PEDOT-PSS with AMC16, AMC22 and AMC22:C60 layer, confirming that this method is adequate for the preparation of polymeric and mixed active layers for solar cells applications. The highest photovoltaic effect was shown by the solar cell structure realized with single layer of AMC16 polymer: glass/ITO/PEDOT-PSS/AMC16/Al.

  17. Material properties and field-effect transistor characteristics of hybrid organic/graphene active layers

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun; Lee, Jongho; Chowdhury, Sk. Fahad; Akinwande, Deji; Dodabalapur, Ananth

    2012-10-01

    We report on the material properties and device characteristics of field-effect transistors (FETs) consisting of hybrid mono-layer graphene/organic semiconductor active layers. By capping with selected organic and polymeric layers, transformation of the electronic characteristics of mono-layer graphene FETs was observed. The off-state current is reduced while the on-state current and field-effect mobility are either unaffected or increased after depositing π-conjugated organic semiconductors. Significantly, capping mono-layer graphene FETs with fluoropolymer improved the on-off current ratio from 5 to 10 as well as increased the field-effect mobility by factor of two compared to plain graphene FETs. Removal of π-conjugated organic semiconductors or fluoropolymer from graphene FETs results in a return to the original electronic properties of mono-layer graphene FETs. This suggests that weak reversible electronic interactions between graphene and π-conjugated organic semiconductors/fluoropolymer favorably tune the material and electrical characteristics of mono-layer graphene.

  18. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer.

    PubMed

    Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  19. Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer

    PubMed Central

    Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.

    2015-01-01

    The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849

  20. Identification and mass spectrometric sequence studies of fragments of l-asparaginase produced during freeze/thaw cycling.

    PubMed

    Jameel, F; Mauri, F; Bogner, R

    1998-01-01

    L-Asparaginase isolated from Er. chrysanthemi was found to lose activity upon exposure to consecutive freeze/thaw cycles. The cause(s) for this loss of activity were investigated using multiple techniques. SEC using UV, RI and light scattering detectors and SDS-PAGE indicated that the l-asparaginase molecule fragments upon exposure to repeated freezing and thawing cycles. Following up on this information, mass spectrometry was used to identify the fragments as small peptides of molecular weight 615 Da, 1424 Da and 1665 Da. Automated Edman sequencing of the frozen and thawed mixture confirmed the presence of fragments and contributed some sequence information. Mass spectral data and sequence studies of these fragments in conjunction with the known sequence of the molecule placed all the fragments within the last 28 C-terminal amino acids. A study of this region using the published 3 dimensional x-ray crystallographic structure of l-asparaginase revealed that the C-terminal region is exposed and can interact with water. The IBI MacVector program "Protein Tool Box" predicted that this region is hydrophilic, has a high surface probability and a strong tendency to interact with water. Both tendencies suggest a potential for bond stress during freeze/thaw cycling. This region is not involved at the catalytic core of the enzyme, but fragmentation in this area may result in unfolding and denaturation of the monomer followed by subsequent aggregation into large, insoluble entities and the loss of enzymatic activity. PMID:9691674

  1. BOREAS RSS-17 1994 ERS-1 Level-3 Freeze/Thaw Backscatter Change Images

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Way, JoBea; McDonald, Kyle C.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-17 team acquired and analyzed imaging radar data from the European Space Agency's (ESA's) European Remote Sensing Satellite (ERS)-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. Two independent transitions corresponding to soil thaw and possible canopy thaw were revealed by the data. The results demonstrated that radar provides an ability to observe thaw transitions at the beginning of the growing season, which in turn helps constrain the length of the growing season. The data set presented here includes change maps derived from radar backscatter images that were mosaicked together to cover the southern BOREAS sites. The image values used for calculating the changes are given relative to the reference mosaic image. The data are stored in binary image format files. The imaging radar data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  2. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Mann, P. J.; Dowdy, K. L.; Davydova, A.; Davydov, S. P.; Zimov, N.; Spencer, R. G. M.; Bulygina, E. B.; Eglinton, T. I.; Holmes, R. M.

    2013-09-01

    Pleistocene Yedoma permafrost contains nearly a third of all organic matter (OM) stored in circum-arctic permafrost and is characterized by the presence of massive ice wedges. Due to its rapid formation by sediment accumulation and subsequent frozen storage, Yedoma OM is relatively well preserved and highly biologically available (biolabile) upon thaw. A better understanding of the processes regulating Yedoma degradation is important to improve estimates of the response and magnitude of permafrost carbon feedbacks to climate warming. In this study, we examine the composition of ice wedges and the influence of ice wedge thaw on the biolability of Yedoma OM. Incubation assays were used to assess OM biolability, fluorescence spectroscopy to characterize the OM composition, and potential enzyme activity rates to examine the controls and regulation of OM degradation. We show that increasing amounts of ice wedge melt water in Yedoma-leached incubations enhanced the loss of dissolved OM over time. This may be attributed to the presence of low-molecular weight compounds and low initial phenolic content in the OM of ice wedges, providing a readily available substrate that promotes the degradation of Yedoma OC. The physical vulnerability of ice wedges upon thaw (causing irreversible collapse), combined with the composition of ice wedge-engrained OM (co-metabolizing old OM), underlines the particularly strong potential of Yedoma to generate a positive feedback to climate warming relative to other forms of non-ice wedge permafrost.

  3. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic

  4. Development of a low activation concrete shielding wall by multi-layered structure for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Sato, Satoshi; Maegawa, Toshio; Yoshimatsu, Kenji; Sato, Koichi; Nonaka, Akira; Takakura, Kosuke; Ochiai, Kentaro; Konno, Chikara

    2011-10-01

    A multi-layered concrete structure has been developed to reduce induced activity in the shielding for neutron generating facilities such as a fusion reactor. The multi-layered concrete structure is composed of: (1) an inner low activation concrete, (2) a boron-doped low activation concrete as the second layer, and (3) ordinary concrete as the outer layer of the neutron shield. With the multi-layered concrete structure the volume of boron is drastically decreased compared to a monolithic boron-doped concrete. A 14 MeV neutron shielding experiment with multi-layered concrete structure mockups was performed at FNS and several reaction rates and induced activity in the mockups were measured. This demonstrated that the multi-layered concrete effectively reduced low energy neutrons and induced activity.

  5. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  6. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    PubMed Central

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-01-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics. PMID:26877263

  7. Discovery of a novel methanogen prevalent in thawing permafrost

    NASA Astrophysics Data System (ADS)

    Mondav, Rhiannon; Woodcroft, Ben J.; Kim, Eun-Hae; McCalley, Carmody K.; Hodgkins, Suzanne B.; Crill, Patrick M.; Chanton, Jeffrey; Hurst, Gregory B.; Verberkmoes, Nathan C.; Saleska, Scott R.; Hugenholtz, Philip; Rich, Virginia I.; Tyson, Gene W.

    2014-02-01

    Thawing permafrost promotes microbial degradation of cryo-sequestered and new carbon leading to the biogenic production of methane, creating a positive feedback to climate change. Here we determine microbial community composition along a permafrost thaw gradient in northern Sweden. Partially thawed sites were frequently dominated by a single archaeal phylotype, Candidatus ‘Methanoflorens stordalenmirensis’ gen. nov. sp. nov., belonging to the uncultivated lineage ‘Rice Cluster II’ (Candidatus ‘Methanoflorentaceae’ fam. nov.). Metagenomic sequencing led to the recovery of its near-complete genome, revealing the genes necessary for hydrogenotrophic methanogenesis. These genes are highly expressed and methane carbon isotope data are consistent with hydrogenotrophic production of methane in the partially thawed site. In addition to permafrost wetlands, ‘Methanoflorentaceae’ are widespread in high methane-flux habitats suggesting that this lineage is both prevalent and a major contributor to global methane production. In thawing permafrost, Candidatus ‘M. stordalenmirensis’ appears to be a key mediator of methane-based positive feedback to climate warming.

  8. Metagenomic analysis of permafrost microbial community response to thaw

    SciTech Connect

    Mackelprang, R.; Waldrop, M.P.; DeAngelis, K.M.; David, M.M.; Chavarria, K.L.; Blazewicz, S.J.; Rubin, E.M.; Jansson, J.K.

    2011-07-01

    We employed deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes and related this data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows for the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses revealed that during transition from a frozen to a thawed state there were rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5°C, permafrost metagenomes converged to be more similar to each other than while they were frozen. We found that multiple genes involved in cycling of C and nitrogen shifted rapidly during thaw. We also constructed the first draft genome from a complex soil metagenome, which corresponded to a novel methanogen. Methane previously accumulated in permafrost was released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.

  9. Projection of surface warming due to thawing permafrost

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schaefer, K. M.; Chase, T. N.; Bracken, C. W.; Zhang, T.; Barrett, A. P.; Bruhwiler, L.

    2011-12-01

    Thawing permafrost and the resulting microbial decomposition of previously frozen organic carbon is one of the most significant potential feedbacks from terrestrial ecosystems to the atmosphere in a changing climate. On the other hand, the additional of billions of tons of greenhouse gases in the atmosphere due to permafrost thawing will intensify the global warming. We investigate the interaction of permafrost thawing and global warming and estimate the surface warming due to permafrost carbon release during period of 1960-2200. We use SiBCASA (land surface model) projections based on A1B scenario to obtain the cumulative permafrost carbon flux to atmosphere, calculate the corresponding increase in atmospheric CO2 concentration and add it to the CO2 concentration of A1B scenario. We will use the PLASIM (General Climate Model) to estimate the additional increase in surface air temperature due to permafrost thawing in 21st and 22nd Century. Our SibCASA projections indicated a cumulative permafrost carbon release of 190±64 Gt by 2200, which is equivalent to an increase in atmospheric CO2 concentration of 87±29 ppm. Based on the Vostok record, an increase of ~80 ppm is associated with 8-10 oC increase in global temperature after glacial termination, so strong surface warming due to permafrost thawing is expected.

  10. Using Observational Data to Inform Physically Based Models of Subsurface Thermal Hydrology Properties and Active Layer Thickness at the Barrow Environmental Observatory, Alaska

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Harp, D. R.; Painter, S. L.; Coon, E.; Wilson, C. J.; Romanovsky, V. E.; Liljedahl, A.

    2014-12-01

    Climate change is profoundly impacting permafrost regions and reshaping carbon rich tundra ecosystems from carbon sinks to potential carbon sources triggering a positive feedback to climate change. The annual maximum depth of ice-free soil with above 0°C temperatures, which is known as the active-layer thickness (ALT), determines the volume of carbon-rich stores available for decomposition and therefore potential greenhouse gas release into the atmosphere. Despite the increased vulnerability of permafrost regions to climate change, predictive tools and precise parameterization of physical characteristics to estimate projected ALT in tundra ecosystems have been developed slowly and often are not adequately representing natural systems due to the complex nature of corresponding atmospheric-surface-subsurface hydrological and energy interactions undergoing freeze-thaw dynamics. A model-observation-experiment process (ModEx) is employed to generate three 1D models representing characteristic micro-topographical land-formations, which are capable of simulating present ALT from current climate conditions. Observational soil temperature data from a tundra site located near Barrow, AK is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Arctic Terrestrial Simulator (ATS) models. In the process of calibration and model formulation key physical processes and appropriate model parameters are identified, which showcases the importance of correctly representing physical processes and reformulating models based on observational data. Iterative execution of the ModEx concept identified key processes that control thermal propagation into the subsurface: 1) physical representation of thermal conduction, 2) liquid, ice, and gas partitioning in the subsurface, 3) snowpack distribution and dynamics, and 4) precipitation delivery of water to the surface/subsurface. This work was supported by LANL Laboratory Directed Research and

  11. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions

    NASA Astrophysics Data System (ADS)

    Rodionov, I. A.; Zvereva, I. A.

    2016-03-01

    The photocatalytic properties of layered perovskite-like oxides corresponding to the Ruddlesen–Popper, Dion–Jacobson and Aurivillius phases are considered. Of the photocatalytic reactions, the focus is on the reactions of water splitting, hydrogen evolution from aqueous solutions of organic substances and degradation of model organic pollutants. Possibilities to conduct these reactions under UV and visible light in the presence of layered perovskite-like oxides and composite photocatalysts based on them are shown. The specific surface area, band gap energy, particle morphology, cation and anion doping and surface modification are considered as factors that affect the photocatalytic activity. Special attention is paid to the possibilities to enhance the photocatalytic activity by intercalation, ion exchange and exfoliation, which are inherent in this class of compounds. Conclusions are made about the prospects for the use of layered perovskite-like oxides in photocatalysis. The bibliography includes 253 references.

  12. The use of capacitive resistivity imaging (CRI) for monitoring laboratory experiments simulating permafrost growth, persistence and thaw in bedrock

    NASA Astrophysics Data System (ADS)

    Kuras, O.; Uhlemann, S.; Krautblatter, M.; Murton, J.; Haslam, E.; Wilkinson, P.; Meldrum, P.

    2012-12-01

    Understanding the impact on bedrock properties of permafrost degradation as a result of climate change is of major interest in a number of areas, including the assessment of rising instability of high-altitude mountain rock walls. The remote sensing of rock walls with the primary aim of monitoring the spatial and temporal behaviour of rock temperature (and thus permafrost distribution) is an emerging field of research for geohazard mitigation where geophysical tomography has the potential to make a significant and lasting contribution. Recent work has shown that temperature-calibrated Electrical Resistivity Tomography (ERT) using galvanic sensors is capable of imaging recession and re-advance of rock permafrost in response to the ambient temperature regime, yet the use of galvanic sensors can impose practical limitations on field measurements. In this study, we evaluate the use of Capacitive Resistivity Imaging (CRI), a technique based upon low-frequency, capacitively-coupled measurements across permanently installed multi-sensor arrays, in order to emulate well-established ERT methodology, but without the need for galvanic contact on frozen soils or rocks. Numerical simulation of multi-sensor CRI measurements on the rock samples under a quasi-static electromagnetic regime allowed us initially to validate our measurement concept and prototype CRI instrumentation. We have subsequently applied CRI as well as conventional ERT to controlled long-term experiments in the Permafrost Laboratory at the University of Sussex, simulating permafrost growth, persistence and thaw in bedrock. Water-saturated samples of limestone and chalk (450 mm high, 300 mm × 300 mm wide) of varying porosity are being monitored. The lower half of each sample is maintained at temperatures below 0°C (simulating permafrost) and the upper half is cycled above and below 0°C (simulating seasonal thawing and freezing of the overlying active layer). Samples are instrumented with both capacitive and

  13. Monitoring of the active layer at Kapp Linne', SVALBARD 1972-2002

    NASA Astrophysics Data System (ADS)

    Akerman, J.

    2003-04-01

    The active layer has been monitored at ten sites in the vicinity of Kapp Linné, (78o03'42" 13o37'07") Svalbard during the period 1972 - 2002. The ten sites differ in elevation, distance from the sea, vegetation cover, substrate and active periglacial processes. From 1994 the International permafrost Association "CALM" standard grids, with measurement within 100x100m squares, has been applied. Microclimate and soil temperatures have been monitored by data logger covering levels form 2 m above to 7m below the ground. The macroclimate is covered by complete data series from the nearby weather station at Kapp Linne’, covering the period 1912 to 2002. A number of periglacial processes, especially slope processes, are monitored parallel with the active layer. The mean active layer for the sites varies between 1,13m and 0,43m. The deepest active layer is found in the exposed, well drained raised beach ridges and the shallowest in the bogs. The interannual variability during the observation period do not correlate well with the MAAT but better with the summer climate, June - August mean or DDT. The data clearly illustrate colder summers during the period 1972 to 1983 and after that steadily increasing summer temperatures. The active layer follows the same general pattern with good correlations. There are several surface indications as a response to the deepening active layer especially in the bogs. Thermokarst scars appear frequently and a majority of the palsa like mounds and pounus have disappeared. A drastic change in the vegetation on the bogs has also occurred, from dry heath to wet Carex vegetation. In summary the observations from Kapp Linne’ are; 1. A clear trend towards milder summers, 2. A clear trend towards deeper active layers, 3. All sites show a similar pattern, 4. The bogs are getting strikingly wetter, 5. Mounds in the bog sites are disappearing, 6. The slow slope processes are getting accelerated, 7. Thermokarst depressions and scars are appearing in

  14. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide.

    PubMed

    Khan, A I; Lei, L; Norquist, A J; O'Hare, D

    2001-11-21

    A series of pharmaceutically active compounds including diclofenac, gemfibrozil, ibuprofen, naproxen, 2-propylpentanoic acid, 4-biphenylacetic acid and tolfenamic acid can be reversibly intercalated into a layered double hydroxide, initial studies suggest that these materials may have application as the basis of a novel tuneable drug delivery system. PMID:12240066

  15. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  16. Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive.

    PubMed

    Zheng, Yifan; Goh, Tenghooi; Fan, Pu; Shi, Wei; Yu, Junsheng; Taylor, André D

    2016-06-22

    The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination. PMID:27253271

  17. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  18. Effect of the addition of beta-mercaptoethanol to a thawing solution supplemented with caffeine on the function of frozen-thawed boar sperm and on the fertility of sows after artificial insemination.

    PubMed

    Yamaguchi, S; Funahashi, H

    2012-03-15

    We have reported that artificial insemination (AI) with frozen-thawed boar semen supplemented with caffeine increased the number of uterine sperm by inhibiting the migration of polymorphonuclear leukocytes (PMNs) into the uterine lumen, thereby improving the fertility of gilts and sows. The objective of the present study was to examine the effects of the addition of the antioxidant beta-mercaptoethanol (bME) and caffeine to the thawing solution on the function of frozen-thawed sperm, on the phagocytic activity of PMNs for sperm, and on the fertility of sows after AI. When frozen-thawed sperm were cultured in the presence of 25 or 50 μm bME, sperm capacitation and spontaneous acrosome reactions were inhibited (P < 0.01). There was no effect of bME on phagocytic activity of PMNs for sperm in vitro. When hormonally treated (400 IU of equine chorionic gonadotropin + 200 IU of human chorionic gonadotropin) weaned sows experienced a single intrauterine insemination with frozen-thawed sperm (25 × 10(8) sperm per 50 ml dose) 40 h after subsequent hCG administration, pregnancy and farrowing rates were unaffected by the addition of 50 μm bME (pregnancy rate, 20 vs 21% in controls; farrowing rate, 20 vs 21%; n = 15 and 14, respectively). However, litter size tended to be higher than in the presence of 50 μm bME compared to its absence (10.0 ± 1.0 vs 5.7 ± 1.5, respectively; P < 0.07). Thus, the addition of bME to the thawing solution containing caffeine could be of benefit for improving the function of frozen-thawed sperm without influencing the phagocytic activity of PMNs for sperm. Although there were no statistically significant effects of bME on pregnancy or farrowing rates, the litter size tended to be higher in the sows subjected to a fixed-time single AI treatment with synchronized ovulation. PMID:22115816

  19. Mapping freeze/thaw boundaries with SMMR data

    NASA Technical Reports Server (NTRS)

    Zuerndorfer, B. W.; England, A. W.; Dobson, M. C.; Ulaby, F. T.

    1989-01-01

    Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) data are used to map daily freeze/thaw patterns in the upper Midwest for the Fall of 1984. The combination of a low 37 GHz radiobrightness and a negative 10.7, 18, and 37 GHz spectral gradient, Partial Derivative of Tb with Respect to f, appears to be an effective discriminant for classifying soil as frozen or thawed. The 37 GHz emissivity is less sensitive to soil moisture than are the lower frequency emissivities so that the 37 GHz radiobrightness appears to track soil surface temperature relatively well. The negative gradient for frozen ground is a consequence of volume scatter darkening at shorter microwave wavelengths. This shorter wavelength darkening is not seen in thawed moist soils.

  20. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes.

    PubMed

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  1. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    PubMed Central

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-01-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them. PMID:27561546

  2. Consumer Attitudes Toward Storing and Thawing Chicken and Effects of the Common Thawing Practices on Some Quality Characteristics of Frozen Chicken.

    PubMed

    Benli, Hakan

    2016-01-01

    In this study, a survey was conducted to both evaluate the consumers' general attitudes for purchasing and storing the raw chicken and determine the thawing practices used for defrosting frozen chicken at home. About 75% of the consumers indicated purchasing chicken meat at least once a week or more. Furthermore, the majority (82.16%) of those who stored at least a portion of the raw chicken stated freezing the raw chicken meat at home. Freezing the chicken meat was considered to have no effect on the quality by 43.49% of the consumers while 56.51% thought that freezing had either negative or positive effects on the quality. The survey study indicated that top five most commonly used thawing practices included thawing on the kitchen counter, thawing in the refrigerator, thawing in the warm water, thawing in the microwave, and thawing under tap water. In addition, an experimental study was conducted to determine the effects of these most commonly used thawing practices on some quality characteristics of the chicken meat including pH, drip loss, cooking loss, color analysis and textural profile analysis. Although, L* value for thawing on the kitchen counter was the lowest, after cooking, none of the thawing treatments have a significant effect on the color values. Thawing in the microwave produced the highest drip loss of 3.47% while the lowest drip loss of 0.62% was observed with thawing in the refrigerator. On the other hand, thawing in the microwave and refrigerator caused the lowest cooking loss values of 18.29% and 18.53%, respectively. Nevertheless, there were no significant differences among textural parameter values of the defrosted and then cooked samples using the home based thawing practices, indicating similar quality characteristics among the samples. PMID:26732333

  3. Consumer Attitudes Toward Storing and Thawing Chicken and Effects of the Common Thawing Practices on Some Quality Characteristics of Frozen Chicken

    PubMed Central

    Benli, Hakan

    2016-01-01

    In this study, a survey was conducted to both evaluate the consumers’ general attitudes for purchasing and storing the raw chicken and determine the thawing practices used for defrosting frozen chicken at home. About 75% of the consumers indicated purchasing chicken meat at least once a week or more. Furthermore, the majority (82.16%) of those who stored at least a portion of the raw chicken stated freezing the raw chicken meat at home. Freezing the chicken meat was considered to have no effect on the quality by 43.49% of the consumers while 56.51% thought that freezing had either negative or positive effects on the quality. The survey study indicated that top five most commonly used thawing practices included thawing on the kitchen counter, thawing in the refrigerator, thawing in the warm water, thawing in the microwave, and thawing under tap water. In addition, an experimental study was conducted to determine the effects of these most commonly used thawing practices on some quality characteristics of the chicken meat including pH, drip loss, cooking loss, color analysis and textural profile analysis. Although, L* value for thawing on the kitchen counter was the lowest, after cooking, none of the thawing treatments have a significant effect on the color values. Thawing in the microwave produced the highest drip loss of 3.47% while the lowest drip loss of 0.62% was observed with thawing in the refrigerator. On the other hand, thawing in the microwave and refrigerator caused the lowest cooking loss values of 18.29% and 18.53%, respectively. Nevertheless, there were no significant differences among textural parameter values of the defrosted and then cooked samples using the home based thawing practices, indicating similar quality characteristics among the samples. PMID:26732333

  4. Antimicrobial efficiency of essential oil and freeze-thaw treatments against Escherichia coli O157:H7 and Salmonella enterica Ser. Enteritidis in strawberry juice.

    PubMed

    Duan, J; Zhao, Y

    2009-04-01

    This study investigated the antimicrobial efficiency of 3 essential oils (EOs), lemongrass, cinnamon leaf, and basil, and freeze-thaw treatment, alone or in combination, against Escherichia coli O157:H7 and Salmonella enterica Ser. Enteritidis inoculated in strawberry juice stored at 7 degrees C. EO of lemongrass or cinnamon leaf at 0.1 to 2 microL/mL and freezing at -23 degrees C for 24 or 48 h followed by thawing at 7 degrees C for 4 h all showed significant antimicrobial activities (P < 0.05) against E. coli O157:H7 and S. Enteritidis in strawberry juice. The antimicrobial activity increased with increasing EO concentration and storage time, but extending freezing time from 24 to 48 h did not enhance the antimicrobial activity of freeze-thaw treatment (P > 0.05). EO of lemongrass or cinnamon leaf at 0.1 microL/mL and freeze-thaw treatment alone obtained a 5 log(10) reduction in the population of S. Enteritidis, while EOs at 0.1 to 0.3 microL/mL or freeze-thaw alone could not achieve a satisfactory protection against E. coli O157:H7 in strawberry juice. Combined EO and freeze-thaw treatment enhanced the overall antimicrobial effect against E. coli O157:H7, with adding EO before the freeze-thaw treatment showed a faster decontamination rate than when added EO after the freeze-thaw. EOs of lemongrass and cinnamon leaf at 0.1 or 0.3 microL/mL followed by the freeze-thawing resulted in a 5 log(10) reduction in E. coli O157:H7 on the 5th and 2nd day of storage, respectively. This study suggested that combined EO and freeze-thaw treatment may be a suitable and inexpensive method to eliminate microorganisms that can be a hazard for the consumers of unpasteurized berry juices. PMID:19397729

  5. Comparison of different irrigation activation techniques on smear layer removal: an in vitro study.

    PubMed

    Akyuz Ekim, Sefika Nur; Erdemir, Ali

    2015-03-01

    The purpose of this study was to evaluate the efficiency of different irrigation activation techniques on smear layer removal. About 80 single-rooted human maxillary central teeth were decoronated to a standardized length.The samples were prepared by using ProTaper system to size F4 and divided into eight equal groups (n = 10) according to the final irrigation activation technique; distilled water was used as an irrigant in Group 1. The other groups were treated with 2.5% NaOCl and 17% EDTA, respectively. Conventional syringe irrigation (CSI) was used in Group 2. Irrigation solutions were activated using passive ultrasonic irrigation (PUI, Group 3), EndoVac apical negative pressure (ANP, Group 4), diode laser (Group 5), Nd:YAG laser (Group 6), Er:YAG laser (Group 7), and Er:YAG laser using with photon-induced photoacoustic streaming (PIPS™, Group 8). Teeth were split longitudinally and subjected to scanning electron microscope (SEM). PIPS showed the best removal of smear layer when compared with PUI, ANP, Nd:YAG, and Er:YAG, but the difference was not statistically significant (P > 0.05). Smear layer scores obtained with PIPS technique were statistically significant different from those of obtained with control, CSI and diode laser groups (P < 0.05). All experimental irrigation techniques except ANP and diode laser removed smear layer more effectively at the coronal and middle levels compared to the apical level (P < 0.05). Irrigation activated/delivered techniques except diode laser have a positive effect on removing of smear layer. PMID:25582378

  6. Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine).

    PubMed

    Li, Ben; Liu, Wanpeng; Jiang, Zhongyi; Dong, Xiao; Wang, Baoyi; Zhong, Yurong

    2009-07-01

    We demonstrate that dopamine is able to self-polymerize and adhere firmly onto the substrate, which can create a hierarchical structure comprising an ultrathin active layer and a porous support layer. Such an approach opens a novel way to fabricating highly efficient and stable composite materials including composite membranes. More specifically, in this study the composite membranes are fabricated by simply dipping microporous substrate in aqueous dopamine solution under mild conditions. Nanoindentation measurement reveals the tight adhesion of dopamine onto microporous substrate, which is ascribed to numerous pi-pi and hydrogen-bonding interactions. The chemical composition of the active layer is analyzed by XPS, which demonstrates the self-polymerization of dopamine. The water contact angle of the dopamine coated membranes is reduced remarkably compared with that of the uncoated counterpart. Stylus profiler measurements display that the poly(dopamine) thickness increases as the coating time increases. FESEM images of the membranes' cross section show that an active layer (<100 nm) is deposited on the porous polysulfone (PS) substrate. Positron annihilation spectroscopy (PAS) is introduced to probe the fractional free volume properties throughout the cross section of the composite membranes and reveal that after dopamine double-coating the active layer becomes thicker and more compact. Moreover, pH and concentration of the dopamine solution exert notable influence on the fractional free volume of the composite membranes. The as-prepared membranes are tentatively employed for pervaporative desulfurization and exhibits satisfying separation performance as well as durability. This facile, versatile, and efficient approach enables a promising prospect for the wide applications of such novel kinds of ultrathin composite materials. PMID:19366196

  7. Influences and interactions of inundation, peat, and snow on active layer thickness

    DOE PAGESBeta

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-18

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  8. Influences of Peat, Surface and Subsurface Water, and Snow on Active Layer Thickness

    SciTech Connect

    Atchley, Adam; Coon, Ethan T.; Painter, Scott L; Harp, Dylan; Wilson, Cathy

    2016-01-01

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but the strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.

  9. Influences of Peat, Surface and Subsurface Water, and Snow on Active Layer Thickness

    DOE PAGESBeta

    Atchley, Adam; Coon, Ethan T.; Painter, Scott L; Harp, Dylan; Wilson, Cathy

    2016-01-01

    The effect of three environmental conditions: 1) thickness of organic soil, 2) snow depth, and 3) soil moisture content or water table height above and below the soil surface, on active layer thickness (ALT) are investigated using an ensemble of 1D thermal hydrology models. Sensitivity analyses of the ensemble exposed the isolated influence of each environmental condition on ALT and their multivariate interactions. The primary and interactive influences are illustrated in the form of color maps of ALT change. Results show that organic layer acts as a strong insulator, and its thickness is the dominant control of ALT, but themore » strength of the effect of organic layer thickness is dependent on the saturation state. Snow depth, subsurface saturation, and ponded water depth are strongly codependent and positively correlated to ALT.« less

  10. Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze-thawing of fibroblast growth factor 20.

    PubMed

    Maity, Haripada; Karkaria, Cyrus; Davagnino, Juan

    2009-08-13

    This study discusses the effect of key factors like containers, buffers and the freeze (controlled vs. flash freezing) and thawing processes on the stability of a therapeutic protein fibroblast growth factor 20 (FGF-20). The freezing profiles monitored by 15 temperature probes located at different regions in a 2-L bottle during freezing can be grouped into three categories. A rapid drop in temperature was observed at the bottom followed by the top and middle center of the bottle. The freeze-thawing behavior in a 50 ml tube is considerably uniform, as expected. Among phosphate, HEPES (4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid), citrate and histidine (each containing 0.5 M arginine-sulfate) buffer systems, a minimum pH change (0.4 pH unit vs. approximately 1.7 pH unit) was observed for the phosphate buffer system. Thawing in a 50 ml tube at room temperature standing resulted in a significant phase separation in citrate, histidine and HEPES buffers; however, phase separation was least in the phosphate buffer system. These phase separations were found to be temperature dependent. No effect of Polysorbate 80 on freeze-thawing of FGF-20 was observed. Significant concentration gradients in major buffer components and protein concentration were observed during freeze-thawing in a 2-L bottle. The segregation patterns of the various components were similar with the top and bottom layers containing lowest and highest concentrations, respectively. In the formulation buffer no pH gradient was formed, and the precipitation of FGF-20 during thawing at the top layer was related to an insufficient amount of arginine-sulfate and the precipitation at the bottom layer was due to a salting out effect. The precipitate generated during thawing goes into solution easily upon mixing whole solution of the bottle and the various gradient formations do not cause any irreversible change in structure, stability and isoform distribution of FGF-20. Comparison of slow freezing and flash

  11. Layered Structure of Bacterial and Archaeal Communities and Their In Situ Activities in Anaerobic Granules▿ †

    PubMed Central

    Satoh, Hisashi; Miura, Yuki; Tsushima, Ikuo; Okabe, Satoshi

    2007-01-01

    The microbial community structure and spatial distribution of microorganisms and their in situ activities in anaerobic granules were investigated by 16S rRNA gene-based molecular techniques and microsensors for CH4, H2, pH, and the oxidation-reduction potential (ORP). The 16S rRNA gene-cloning analysis revealed that the clones related to the phyla Alphaproteobacteria (detection frequency, 51%), Firmicutes (20%), Chloroflexi (9%), and Betaproteobacteria (8%) dominated the bacterial clone library, and the predominant clones in the archaeal clone library were affiliated with Methanosaeta (73%). In situ hybridization with oligonucleotide probes at the phylum level revealed that these microorganisms were numerically abundant in the granule. A layered structure of microorganisms was found in the granule, where Chloroflexi and Betaproteobacteria were present in the outer shell of the granule, Firmicutes were found in the middle layer, and aceticlastic Archaea were restricted to the inner layer. Microsensor measurements for CH4, H2, pH, and ORP revealed that acid and H2 production occurred in the upper part of the granule, below which H2 consumption and CH4 production were detected. Direct comparison of the in situ activity distribution with the spatial distribution of the microorganisms implied that Chloroflexi contributed to the degradation of complex organic compounds in the outermost layer, H2 was produced mainly by Firmicutes in the middle layer, and Methanosaeta produced CH4 in the inner layer. We determined the effective diffusion coefficient for H2 in the anaerobic granules to be 2.66 × 10−5 cm2 s−1, which was 57% in water. PMID:17905889

  12. Vegetation-Soil-Active Layer Relationships Along a Low-Arctic Bioclimate Gradient, Alaska

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Jia, G. J.; Epstein, H. E.; Shiklomanov, N.; Nelson, F.; Hinzman, L. D.; Romanovsky, V. E.

    2002-12-01

    Northern Alaska has three of five Arctic bioclimate subzones, which are representative of the circumpolar Low Arctic. This portion of the Arctic has more or less continuous tundra plant cover and well-developed moss canopies. We examined the biomass and remotely sensed spectral properties of the vegetation canopy, active-layer thickness, and the soil properties at 21 sites on the Arctic Slope and Seward Peninsula of Alaska. The sites were grouped into three bioclimate subzones according the summer warmth at the sites. The summer warmth index (SWI) is the sum of the mean monthly temperatures greater than 0 degrees C. Subzone C, the coldest subzone, occurs in a narrow strip along the northern coast of the Alaska. Subzone D covers most of the Arctic Coastal Plain and the northwest portion of the Seward Peninsula, and Subzone E covers most of the Foothills and most of the unforested portion of the Seward Peninsula. The SWIs in Subzones C, D, and E are generally less than 10-15 degrees C, 15-25 degrees C, and 25-35 degrees C respectively. The average active layer depths were 44, 55, and 47 cm respectively The shallow active layer in Subzone E is to a large degree a response to the denser vegetation canopies in Subzone E. Total plant biomass in Subzone C, D, and E averaged 421 g m-2, 503 g m-2, and 1178 g m-2 respectively. The much higher biomass in Subzone E was due primarily to woody shrubs (40 g m-2 in Subzone C, 51 g m-2 in Subzone D, and 730 g m-2 in Subzone E). The normalized difference vegetation index (NDVI) is one measure of greenness. Highest NDVI values were obtained from acidic tundra regions in Subzone E, and the lowest NDVI values were obtained in the nonacidic areas of Subzone C. In summary, the insulative properties of the vegetation play a very important role controlling the thickness of the active layer, and the amount of vegetation biomass differs according to summer warmth and soil properties. Acidic soils in the warmest parts of the Arctic (Subzone E

  13. Influence of the Halogen Activation on the Ozone Layer in XXIst Century

    NASA Astrophysics Data System (ADS)

    Larin, Igor; Aloyan, Artash; Yermakov, Alexandr

    2016-04-01

    The aim of the work is to evaluate a possible effect of heterophase chemical reactions (HCR) with participation of reservoir gases (ClONO2, HCl) and sulfate particles of the Junge layer on the ozone layer at mid-latitudes in the XXI century, which could be relevant for more accurate predicting a recovery of the ozone layer, taking into account that just these processes were the main cause of the ozone depletion at the end of XXth century. Required for calculating the dynamics of GHR data on the specific volume/surface of the sulfate aerosols in the lower stratosphere were taken from the data of field experiments. Their physico-chemical properties (chemical composition, density, water activity and free protons activity et al.) have been obtained with help of thermodynamic calculations (Atmospheric Inorganic Model, AIM). Altitude concentration profiles of individual gas components, as well as temperature and relative humidity (RH) at a given geographic location and season have been calculated using a two-dimensional model SOCRATES. The calculations have been made for the conditions of June 1995, 2040 and 2080 at 15 km altitude and 50° N latitude. It has been shown that the rate of ozone depletion as a result of processes involving halogen activation for the given conditions in 2040, 2080 is about 35% lower than a corresponding value in 1995 (a year of maximum effect of halogen activation). From this we can conclude that in the XXI century, despite the natural decline of ozone-depleting chlorofluorocarbons. processes of halogen activation of the ozone depletion with participation of sulfate aerosols should be taken into account in the calculations of the recovery of the ozone layer at mid-latitudes.

  14. Air-Coupled Piezoelectric Transducers with Active Polypropylene Foam Matching Layers

    PubMed Central

    Gómez Álvarez-Arenas, Tomás E.

    2013-01-01

    This work presents the design, construction and characterization of air-coupled piezoelectric transducers using 1–3 connectivity piezocomposite disks with a stack of matching layers being the outer one an active quarter wavelength layer made of polypropylene foam ferroelectret film. This kind of material has shown a stable piezoelectric response together with a very low acoustic impedance (<0.1 MRayl). These features make them a suitable candidate for the dual use or function proposed here: impedance matching layer and active material for air-coupled transduction. The transducer centre frequency is determined by the λ/4 resonance of the polypropylene foam ferroelectret film (0.35 MHz), then, the rest of the transducer components (piezocomposite disk and passive intermediate matching layers) are all tuned to this frequency. The transducer has been tested in several working modes including pulse-echo and pitch-catch as well as wide and narrow band excitation. The performance of the proposed novel transducer is compared with that of a conventional air-coupled transducers operating in a similar frequency range. PMID:23666129

  15. Variety, State and Origin of Drained Thaw Lake Basins in West-Siberian North

    NASA Astrophysics Data System (ADS)

    Kirpotin, S.; Polishchuk, Y.; Bryksina, N.; Sugaipova, A.; Pokrovsky, O.; Shirokova, L.; Kouraev, A.; Zakharova, E.; Kolmakova, M.; Dupre, B.

    2009-04-01

    Drained thaw lake basins in Western Siberia have a local name "khasyreis" [1]. Khasyreis as well as lakes, ponds and frozen mounds are invariable element of sub-arctic frozen peat bogs - palsas and tundra landscapes. In some areas of West-Siberian sub-arctic khasyreis occupy up to 40-50% of total lake area. Sometimes their concentration is so high that we call such places ‘khasyrei's fields". Khasyreis are part of the natural cycle of palsa complex development [1], but their origin is not continuous and uniform in time and, according to our opinion, there were periods of more intensive lake drainage and khasyrei development accordingly. These times were corresponding with epochs of climatic warming and today we have faced with one of them. So, last years this process was sufficiently activated in the south part of West-Siberian sub-arctic [2]. It was discovered that in the zone of continuous permafrost thermokarst lakes have expanded their areas by about 10-12%, but in the zone of discontinuous permafrost the process of their drainage prevails. These features are connected with the thickness of peat layers which gradually decreases to the North, and thus have reduced the opportunity for lake drainage in northern areas. The most typical way of khasyrei origin is their drainage to the bigger lakes which are always situated on the lower levels and works as a collecting funnels providing drainage of smaller lakes. The lower level of the big lake appeared when the lake takes a critical mass of water enough for subsidence of the lake bottom due to the melting of underlaying rocks [2]. Another one way of lake drainage is the lake intercept by any river. Lake drainage to the subsurface (underlaying rocks) as some authors think [3, 4] is not possible in Western Siberia, because the thickness of permafrost is at list 500 m here being safe confining bed. We mark out few stages of khasyrei development: freshly drained, young, mature and old. This row reflects stages of

  16. Activated oil sands fluid coke for electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Kirk, Donald W.; Jia, Charles Q.; Tong, Shitang

    2014-12-01

    Electrochemical capacitors are important energy storage devices that have high power density, rapid charging cycles and are highly cyclable. In this study, activated fluid coke has demonstrated high surface area, improved capacitive properties, and high energy density. Fluid coke is a by-product generated from continuous high temperature bitumen upgrading, resulting in the formation of nearly spherical particles with concentric carbon layers. The residual sulphur impurities in fluid coke may enhance its energy storage performance. The activated coke samples have high specific surface areas, up to 1960 m2 g-1, and show promising capacitive performance, in 4 M KOH electrolyte, with high gravimetric and specific capacitances of 228-257 F g-1 and 13-14 μF cm-2, respectively. These results are comparable to other top performing activated carbon materials [1-3]. The activated fluid coke maintains high performance at fast charging rates, greater than 160 F g-1 at a current density of 7500 mA g-1. Activated fluid coke's high capacitance and promising rate performance are potentially associated with its unique layered, and the moderate sulphur content in the chemical structure. Activated fluid coke is a unique opportunity to use a limited use by-product to generate activated carbon that has a high surface area and promising energy storage properties.

  17. Understanding the cellular mechanism of recovery from freeze-thaw injury in spinach: possible role of aquaporins, heat shock proteins, dehydrin and antioxidant system.

    PubMed

    Chen, Keting; Arora, Rajeev

    2014-03-01

    Recovery from reversible freeze-thaw injury in plants is a critical component of ultimate frost survival. However, little is known about this aspect at the cellular level. To explore possible cellular mechanism(s) for post-thaw recovery (REC), we used Spinacia oleracea L. cv. Bloomsdale leaves to first determine the reversible freeze-thaw injury point. Freeze (-4.5°C)-thaw-injured tissues (32% injury vs <3% in unfrozen control) fully recovered during post-thaw, as assessed by an ion leakage-based method. Our data indicate that photosystem II efficiency (Fv/Fm) was compromised in injured tissues but recovered during post-thaw. Similarly, the reactive oxygen species (O2 (•-) and H2 O2 ) accumulated in injured tissues but dissipated during recovery, paralleled by the repression and restoration, respectively, of activities of antioxidant enzymes, superoxide dismutase (SOD) (EC. 1.14.1.1), and catalase (CAT) (EC.1.11.1.6) and ascorbate peroxidase (APX) (EC.1.11.1.11). Restoration of CAT and APX activities during recovery was slower than SOD, concomitant with a slower depletion of H2 O2 compared to O2 (•-) . A hypothesis was also tested that the REC is accompanied by changes in the expression of water channels [aquaporines (AQPs)] likely needed for re-absorption of thawed extracellular water. Indeed, the expression of two spinach AQPs, SoPIP2;1 and SoδTIP, was downregulated in injured tissues and restored during recovery. Additionally, a notion that molecular chaperones [heat shock protein of 70 kDa (HSP70s)] and putative membrane stabilizers [dehydrins (DHNs)] are recruited during recovery to restore cellular homeostasis was also tested. We noted that, after an initial repression in injured tissues, the expression of three HSP70s (cytosolic, endoplasmic reticulum and mitochondrial) and a spinach DHN (CAP85) was significantly restored during the REC. PMID:23981077

  18. Hydrologic impacts of thawing permafrost—A review

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Kurylyk, Barret L.

    2016-01-01

    Where present, permafrost exerts a primary control on water fluxes, flowpaths, and distribution. Climate warming and related drivers of soil thermal change are expected to modify the distribution of permafrost, leading to changing hydrologic conditions, including alterations in soil moisture, connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below ground. The field of permafrost hydrology is undergoing rapid advancement with respect to multiscale observations, subsurface characterization, modeling, and integration with other disciplines. However, gaining predictive capability of the many interrelated consequences of climate change is a persistent challenge due to several factors. Observations of hydrologic change have been causally linked to permafrost thaw, but applications of process-based models needed to support and enhance the transferability of empirical linkages have often been restricted to generalized representations. Limitations stem from inadequate baseline permafrost and unfrozen hydrogeologic characterization, lack of historical data, and simplifications in structure and process representation needed to counter the high computational demands of cryohydrogeologic simulations. Further, due in part to the large degree of subsurface heterogeneity of permafrost landscapes and the nonuniformity in thaw patterns and rates, associations between various modes of permafrost thaw and hydrologic change are not readily scalable; even trajectories of change can differ. This review highlights promising advances in characterization and modeling of permafrost regions and presents ongoing research challenges toward projecting hydrologic and ecologic consequences of permafrost thaw at time and spatial scales that are useful to managers and researchers.

  19. Delicious ice cream, why does salt thaw ice?

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2016-04-01

    During winter, we use to spread salt to thaw ice on the streets. In a physics show, one can be almost sure that after showing this effect, the answer to what happens to temperature will be "it increases". But no! It goes down, in such amount that one can complement the show by producing hand-made ice creams [1].

  20. ANNAGNPS: ACCOUNTING FOR SNOWPACK, SNOWMELT, FREEZING AND THAWING OF SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The watershed model, AnnAGNPS (Annualized AGricultural Non-Point Source Pollution model) has been enhanced by incorporating winter climate algorithms that account for frozen soil conditions. The model includes snowpack accumulation and melt, and the freeze/thaw process in the soil. Three major imp...

  1. MMP activity in the hybrid layer detected with in situ zymography.

    PubMed

    Mazzoni, A; Nascimento, F D; Carrilho, M; Tersariol, I; Papa, V; Tjäderhane, L; Di Lenarda, R; Tay, F R; Pashley, D H; Breschi, L

    2012-05-01

    Dentinal proteases are believed to play an important role in the degradation of hybrid layers (HL). This study investigated the HL gelatinolytic activity by in situ zymography and functional enzyme activity assay. The hypotheses were that HLs created by an etch-and-rinse adhesive exhibit active gelatinolytic activity, and MMP-2 and -9 activities in dentin increase during adhesive procedures. Etched-dentin specimens were bonded with Adper Scotchbond 1XT and restored with composite. Adhesive/dentin interface slices were placed on microscope slides, covered with fluorescein-conjugated gelatin, and observed with a multi-photon confocal microscope after 24 hrs. Human dentin powder aliquots were prepared and assigned to the following treatments: A, untreated; B, etched with 10% phosphoric acid; or C, etched with 10% phosphoric acid and mixed with Scotchbond 1XT. The MMP-2 and -9 activities of extracts of dentin powder were measured with functional enzyme assays. Intense and continuous enzyme activity was detected at the bottom of the HL, while that activity was more irregular in the upper HL. Both acid-etching and subsequent adhesive application significantly increased MMP-2 and -9 activities (p < 0.05). The results demonstrate, for the first time, intrinsic MMP activity in the HL, and intense activation of matrix-bound MMP activity with both etching and adhesive application. PMID:22354448

  2. Field observations, experiments, and modeling of sediment production from freeze and thaw action on a bare, weathered granite slope in a temperate region of Japan

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Daizo; Fujita, Masaharu

    2016-08-01

    In the present study, field observations and model simulations were conducted to examine the process of sediment production due to freeze and thaw action in a temperate climate region. Two small areas were designated and observations were conducted to determine the mechanisms of sediment production due to freeze and thaw action on a bare, weathered granite slope in the Tanakami Mountains in the southern part of Shiga Prefecture, Japan. During the cold season from 2004 to 2005, air, surface, and subsurface temperatures were measured at 10-min intervals. The sediment produced on plot 1 was collected and weighed once per week, whereas the sediment produced on plot 2 was left untouched until the end of the cold season. The freeze and thaw cycle occurred repeatedly, with the frozen zone (i.e., temperature < 0 °C) extending to a depth of 10 cm. Sediment was produced as a result of active freeze and thaw processes and, accordingly, there was no longer sediment production at the end of the cold season. Plots 1 and 2 produced 108 and 44 kg m- 2 year- 1 of sediment, respectively. This difference indicates that sediment cover of the saprolite surface mitigated the destructive effects of freezing. During the cold season from 2005 to 2006, a half of plot 1 was covered by broadleaves (Quercus serrata) and the other half was covered by coniferous leaves (Pinus densiflora); plot 2 was covered by no leaves to understand the effects of surface cover on the reduction in sediment production. The results showed that surface leaf cover dramatically decreased sediment production due to freeze and thaw action versus the no-surface cover. A simulation model combining a thermal conductivity analysis and a simple and empirical sediment production model was developed to estimate the amount of sediment produced by the freeze and thaw action. The observation results of temperature change and amount of sediment during the first season, from 2004 to 2005, were simulated with the model. The model

  3. High Efficiency Alternating Current Driven Organic Light Emitting Devices Employing Active Semiconducting Gate Layers

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Xu, Junwei; Carroll, David

    2015-03-01

    In this work, we describe the role of semiconductor-polymer interfaces in alternating current (AC) driven organic electroluminescent (EL) devices. We implement inorganic semiconducting materials between the external contact and the active layers in organic light EL devices. Precise control of capacitance and charge injection is required to realize bright and efficient large area AC driven devices. We show how this architecture results in active gating to the polymer layers, resulting in the novel ability to control the capacitance and charge injection characteristics. We propose a model based on band bending at the semiconductor-polymer interface. Furthermore, we elucidate the influence of the semiconductor-polymer interface on the internally coupled magnetic field generated in an alternating current driven organic light emitting device configuration. Magnetic fields can alter the ratios of singlet and triplet populations, and we show that internal generation of a magnetic field can dramatically alter the efficiency of light emission in organic EL devices.

  4. Active layer hydrology for Imnavait Creek, Toolik, Alaska. Annual progress report, July 1984--January 1986

    SciTech Connect

    Kane, D.L.

    1986-12-31

    In the annual hydrologic cycle, snowmelt is the most significant event at Imnavait Creek located near Toolik Lake, Alaska. Precipitation that has accumulated for more than 6 months on the surface melts in a relatively short period of 7 to 10 days once sustained melting occurs. During the ablation period, runoff dominates the hydrologic cycle. Some meltwater goes to rewetting the organic soils in the active layer. The remainder is lost primarily because of evaporation, since transpiration is not a very active process at this time. Following the snowmelt period, evapotranspiration becomes the dominate process, with base flow contributing the other watershed losses. It is important to note that the water initally lost by evapotranspiration entered the organic layer during melt. This water from the snowpack ensures that each year the various plant communities will have sufficient water to start a new summer of growth.

  5. Dual Gate Thin Film Transistors Based on Indium Oxide Active Layers

    SciTech Connect

    Kekuda, Dhananjaya; Rao, K. Mohan; Tolpadi, Amita; Chu, C. W.

    2011-07-15

    Polycrystalline Indium Oxide (In{sub 2}O{sub 3}) thin films were employed as an active channel layer for the fabrication of bottom and top gate thin film transistors. While conventional SiO{sub 2} served as a bottom gate dielectric, cross-linked poly-4-vinylphenol (PVP) was used a top gate dielectric. These nano-crystalline TFTs exhibited n-channel behavior with their transport behavior highly dependent on the thickness of the channel. The correlation between the thickness of the active layer and TFT parameters such as on/off ratio, field-effect mobility, threshold voltage were carried out. The optical spectra revealed a high transmittance in the entire visible region, thus making them promising candidates for the display technology.

  6. Greenhouse gas fluxes in a drained peatland forest during spring frost-thaw event

    NASA Astrophysics Data System (ADS)

    Pihlatie, M. K.; Kiese, R.; Brüggemann, N.; Butterbach-Bahl, K.; Kieloaho, A.-J.; Laurila, T.; Lohila, A.; Mammarella, I.; Minkkinen, K.; Penttilä, T.; Schönborn, J.; Vesala, T.

    2009-06-01

    Fluxes of greenhouse gases (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were measured during a two month campaign at a drained peatland forest in Finland by the eddy covariance (EC) technique (CO2 and N2O), and automatic and manual chambers (CO2, CH4 and N2O). In addition, GHG concentrations and soil parameters (mineral nitrogen, temperature, moisture content) in the peat profile were measured. The aim of the measurement campaign was to quantify the GHG fluxes before, during and after thawing of the peat soil, a time period with potentially high GHG fluxes, and to compare different flux measurement methods. The forest was a net CO2 sink during the two months and the fluxes of CO2 dominated the GHG exchange. The peat soil was a small sink of atmospheric CH4 but a small source of N2O. Both CH4 oxidation and N2O production took place in the top-soil whereas CH4 was produced in the deeper layers of the peat. During the thawing of the peat distinct peaks in CO2 and N2O emissions were observed. The CO2 peak followed tightly the increase in soil temperature, whereas the N2O peak occurred with an approx. one week delay after soil thawing. CH4 fluxes did not respond to the thawing of the peat soil. The CO2 and N2O emission peaks were not captured by the manual chambers and hence we conclude that automatic chamber measurements or EC are necessary to quantify fluxes during peak emission periods. Sub-canopy EC measurements and chamber-based fluxes of CO2 and N2O were comparable, although the fluxes of N2O measured by EC were close to the detection limit of the EC system. We conclude that if fluxes are high enough, i.e. greater than 5-10 μg N m-2 h-1, the EC method is a good alternative to measure N2O and CO2 fluxes at ecosystem scale, thereby minimizing problems with chamber enclosures and spatial representativeness of the measurements.

  7. A Comparison of Active and Passive Methods for Control of Hypersonic Boundary Layers on Airbreathing Configurations

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    2003-01-01

    Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.

  8. Constraining Soil C Loss upon Thaw: Comparing Soils with and without Permafrost

    NASA Astrophysics Data System (ADS)

    Harden, J. W.; Ping, C. L.; O'Donnell, J. A.; Koven, C. D.; Michaelson, G. J.; Genet, H.; Xu, X.

    2014-12-01

    Permafrost thaw, with its state change and increased temperature, clearly results in increased decomposition, but constraining directions and amounts of net C exchange is confounded by feedbacks among dynamic vegetation and soil layers, nutrients, and microbial communities. One way to constrain potential loss is to compare soils with and without permafrost. We compared three sets of soil profiles developed in late Pleistocene loess from various slope positions in western Iowa (no permafrost for >10ka), south-central Alaska (no permafrost for > 3550 y), and interior Alaska (current permafrost). In Iowa C where deep C was protected by loess burial, % soil C declined most precipitously with depth (down to < 0.6 %C at 1m). Alaska soils with and without permafrost were similar in %C at 1m depths (up to 2% C). However soils with permafrost had 2X to 4X more C than non-permafrost soils at 1.5 m and maintained high and highly variable (0.8 to 11% C) C contents below 150 cm. Data provide an additional line of evidence that carbon in deep permafrost is highly susceptible to loss upon thawing. Meanwhile modeling and forecasting C fate requires more insight into C protection and stabilization by burial.

  9. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes.

    PubMed

    Lu, Xinglin; Arias Chavez, Laura H; Romero-Vargas Castrillón, Santiago; Ma, Jun; Elimelech, Menachem

    2015-02-01

    In this study, we investigate the influence of surface structure on the fouling propensity of thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, we compare membranes fabricated through identical procedures except for the use of different solvents (dimethylformamide, DMF and N-methyl-2-pyrrolidinone, NMP) during phase separation. FO fouling experiments were carried out with a feed solution containing a model organic foulant. The TFC membranes fabricated using NMP (NMP-TFC) had significantly less flux decline (7.47 ± 0.15%) when compared to the membranes fabricated using DMF (DMF-TFC, 12.70 ± 2.62% flux decline). Water flux was also more easily recovered through physical cleaning for the NMP-TFC membrane. To determine the fundamental cause of these differences in fouling propensity, the active and support layers of the membranes were extensively characterized for physical and chemical characteristics relevant to fouling behavior. Polyamide surface roughness was found to dominate all other investigated factors in determining the fouling propensities of our membranes relative to each other. The high roughness polyamide surface of the DMF-TFC membrane was also rich in larger leaf-like structures, whereas the lower roughness NMP-TFC membrane polyamide layer contained more nodular and smaller features. The support layers of the two membrane types were also characterized for their morphological properties, and the relation between support layer surface structure and polyamide active layer formation was discussed. Taken together, our findings indicate that support layer structure has a significant impact on the fouling propensity of the active layer, and this impact should be considered in the design of support layer structures for TFC membranes. PMID:25564877

  10. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons.

    PubMed

    Bock, Tobias; Stuart, Greg J

    2016-03-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels onN-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  11. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change. PMID:25341787

  12. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  13. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    PubMed Central

    D'Angelo, Egidio; Solinas, Sergio; Mapelli, Jonathan; Gandolfi, Daniela; Mapelli, Lisa; Prestori, Francesca

    2013-01-01

    The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research. PMID:23730271

  14. Enhancing the performance of BHJ solar cell via self-assembly templates in active layer

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Li, Hongfei; Yang, Zhenhua; Nam, Chang-Yong; Satija, Sushil; Rafailovich, Miriam

    The bulk heterojunction (BHJ) solar cell is an important example of a polymer solar cell technology that has been proposed in recent years. However, due to the disordered inner structures in the active layer, control of the inner structure within the active layer is required to enhance the efficiency. In our approach, a self-assembly of tertiary polymer blend film is confined between the air and solid interfaces. The principal has been proved using a blend of PMMA: P3HT: PCBM where we showed that the PMMA phase formed a column structure in the P3HT, which template the PCBM phase between the electrodes. Neutron reflectometry was used to demonstrate the confinement of PCBM at the interface between P3HT and PMMA in the active layer. The columnar structured template is investigated under atomic force microscopy (AFM) and transmission electron microscopy (TEM). SCLC mobility measurement indicated an obvious improvement on both hole and electron mobility. The different morphological structures formed via phase segregation are correlated with the performance of the PEV cells fabricated at the BNL-CFN and significant enhancement for the efficiency is observed.

  15. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-01

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency. PMID:26431263

  16. Self-assembly Columnar Structure in Active Layer of Bulk Heterojunction Solar Cell

    NASA Astrophysics Data System (ADS)

    Pan, Cheng; Segui, Jennifer; Yu, Yingjie; Li, Hongfei; Akgun, Bulent; Satijia, Sushil. K.; Gersappe, Dilip; Nam, Chang-Yong; Rafailovich, Miriam

    2012-02-01

    Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. However, due to the disordered inner structure in active layer, the power conversion efficiency of BHJ solar cell is relatively low. Our research provides the method to produce ordered self-assembly columnar structure within active layer of bulk heterojunction (BHJ) solar cell by introducing polystyrene (PS) into the active layer. The blend thin film of polystyrene, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) at different ratio are spin coated on substrate and annealed in vacuum oven for certain time. Atomic force microscopy (AFM) images show uniform phase segregation on the surface of polymer blend thin film and highly ordered columnar structure is then proven by etching the film with ion sputtering. TEM cross-section technology is also used to investigate the column structure. Neutron reflectometry was taken to establish the confinement of PCBM at the interface of PS and P3HT. The different morphological structures formed via phase segregation will be correlated with the performance of the PEV cells to be fabricated at the BNL-CFN.

  17. Architectural evolution of the Nojima fault and identification of the activated slip layer by Kobe earthquake

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidemi; Omura, Kentaro; Matsuda, Tatsuo; Ikeda, Ryuji; Kobayashi, Kenta; Murakami, Masaki; Shimada, Koji

    2007-07-01

    Evolutionary history of Nojima Fault zone is clarified by comprehensive examinations of petrological, geophysical, and geochemical characterizations on a fault zone in deep-drilled core penetrating the Nojima Fault. On the basis of the results, we reconstruct a whole depth profile of the architecture of the Nojima Fault and identify the primal slip layer activated by 1995 Kobe earthquake. The deepest part (8- to 12-km depth) of the fault zone is composed of thin slip layers of pseudotachylite (5 to 10 mm thick each, 10 cm in total). Middle depth (4- to 8-km depth) of the fault zone is composed of fault core (6 to 10 m thick), surrounded by thick (100 m thick) damage zone, characterized by zeolite precipitation. The shallow part of the fault zone (1- to 4-km depth) is composed of distributed narrow shear zones, which are characterized by combination of thin (0.5 cm thick each, 10 cm in total) ultracataclasite layers at the core of shear zones, surrounded by thicker (1 to 3 m thick) damage zones associated with carbonate precipitation. An extremely thin ultracataclasite layer (7 mm thick), activated by the 1995 Kobe earthquake, is clearly identified from numerous past slip layers, overprinting one of the shear zones, as evidenced by conspicuous geological and geophysical anomalies. The Nojima Fault zone was 10 to 100 times thicker at middle depth than that of shallower and deeper depths. The thickening would be explained as a combination of physical and chemical effects as follows. (1) Thickening of "fault core" at middle depth would be attributed to normal stress dependence on thickness of the shear zone and (2) an extreme thickening of "damage zone" in middle depth of the crust would result from the weakening of the fault zone due to super hydrostatic fluid pressure at middle depths. The high fluid pressure would result from faster sealing with low-temperature carbonate at the shallower fault zone.

  18. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3

    NASA Astrophysics Data System (ADS)

    Westermann, S.; Langer, M.; Boike, J.; Heikenfeld, M.; Peter, M.; Etzelmüller, B.; Krinner, G.

    2015-08-01

    Thawing of permafrost in a warming climate is governed by a complex interplay of different processes, of which only conductive heat transfer is taken into account in most model studies. However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms like thermokarst ponds and lakes even in areas where permafrost is otherwise thermally stable. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and hereby triggered climatic feedbacks. In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes. We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in-situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia. The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground. In addition, we demonstrate a simple 1-D parameterization for thaw process in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulation from 1901-2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides while at the same time the formation of a talik is delayed. If the meltwater pools at the surface, a pond is formed which enhances heat

  19. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3

    NASA Astrophysics Data System (ADS)

    Westermann, S.; Langer, M.; Boike, J.; Heikenfeld, M.; Peter, M.; Etzelmüller, B.; Krinner, G.

    2016-02-01

    Thawing of permafrost in a warming climate is governed by a complex interplay of different processes of which only conductive heat transfer is taken into account in most model studies. However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms, such as thermokarst ponds and lakes, even in areas where permafrost is otherwise thermally stable. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and subsequent climatic-triggered feedbacks. In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes. We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia. The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground. In addition, we demonstrate a simple 1-D parameterization for thaw processes in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulation from 1901 to 2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides, as well as the formation of a talik, are delayed. If the meltwater pools at the surface, a pond is formed that enhances heat

  20. Surface analytical characterization of chromium-stabilized protecting oxide layers on stainless steel referring to activity buildup

    NASA Astrophysics Data System (ADS)

    Thieme, M.; Scharnweber, D.; Drechsler, L.; Heiser, C.; Adolphi, B.; Weiss, A.

    1992-08-01

    Surface analytical methods were used to characterize both protecting oxide layers formed by hydrothermal chromate treatment (HTCT) on stabilized austenitic stainless steel and hydrothermally grown corrosion product layers (CPL) within the scope of lowering the activity buildup in the primary circuit of nuclear power plants. Morphology, thickness and chromium depth distribution of the layers proved to be considerably different from each other. According to Raman microspectrometry, there were also alterations in the chemical nature of the oxide species. Preceding electropolishing gave rise to particular properties of the respective layers. Prerequisites for an optimal corrosion behaviour of the protecting layers are discussed. Titanium-containing precipitations were oxidatively transformed by HTCT.

  1. Monitoring Freeze-Thaw States in the Pan-Arctic: Application of Microwave Remote Sensing to Monitoring Hydrologic and Ecological Processes

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Kimball, J. S.

    2004-12-01

    The transition of the landscape between predominantly frozen and non-frozen conditions in seasonally frozen environments impacts climate, hydrological, ecological and biogeochemical processes profoundly. Satellite microwave remote sensing is uniquely capable of detecting and monitoring a range of related biophysical processes associated with the measurement of landscape freeze/thaw status. We present the development, physical basis, current techniques and selected hydrological applications of satellite-borne microwave remote sensing of landscape freeze/thaw states for the terrestrial cryosphere. Major landscape hydrological processes embracing the remotely-sensed freeze/thaw signal include timing and spatial dynamics of seasonal snowmelt and associated soil thaw, runoff generation and flooding, ice breakup in large rivers and lakes, and timing and length of vegetation growing seasons and associated productivity and trace gas exchange. Employing both active and passive microwave sensors, we apply a selection of temporal change classification algorithms to examine a variety of hydrologic processes. We investigate contemporaneous and retrospective applications of the QuikSCAT scatterometer, and the SSM/I and SMMR radiometers to this end. Results illustrate the strong correspondence between regional thawing, seasonal ice break up for rivers, and the springtime pulse in river flow. We present the physical principles of microwave sensitivity to landscape freeze/thaw state, recent progress in applying these principles toward satellite remote sensing of freeze/thaw processes over broad regions, and potential for future global monitoring of this significant phenomenon of the global cryosphere. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of Montana, Missoula, under contract to the National Aeronautics and Space Administration.

  2. Real-time monitoring of enzyme activity in a mesoporous silicon double layer

    NASA Astrophysics Data System (ADS)

    Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.

    2009-04-01

    The activity of certain proteolytic enzymes is often an indicator of disease states such as cancer, stroke and neurodegeneracy, so there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules, but coupling a sensitive detection method to such a membrane remains difficult. Here, we demonstrate a single mesoporous nanoreactor that can isolate and quantify in real time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer, with large pore sizes (~100 nm in diameter), traps the protease and acts as the reactor. The lower layer, with smaller pore sizes (~6 nm), excludes the proteases and other large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity, and this allows label-free quantification of enzyme kinetics in real time within a volume of ~5 nl.

  3. Active layer thermal regime at different vegetation covers at Lions Rump, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Almeida, Ivan C. C.; Schaefer, Carlos Ernesto G. R.; Fernandes, Raphael B. A.; Pereira, Thiago T. C.; Nieuwendam, Alexandre; Pereira, Antônio Batista

    2014-11-01

    Climate change impacts the biotic and abiotic components of polar ecosystems, affecting the stability of permafrost, active layer thickness, vegetation, and soil. This paper describes the active layer thermal regimes of two adjacent shallow boreholes, under the same soil but with two different vegetations. The study is location in Lions Rump, at King George Island, Maritime Antarctic, one of the most sensitive regions to climate change, located near the climatic limit of Antarctic permafrost. Both sites are a Turbic Cambic Cryosol formed on andesitic basalt, one under moss vegetation (Andreaea gainii, at 85 m a.s.l.) and another under lichen (Usnea sp., at 86 m a.s.l.), located 10 m apart. Ground temperature at same depths (10, 30 and 80 cm), water content at 80 cm depth and air temperature were recorded hourly between March 2009 and February 2011. The two sites showed significant differences in mean annual ground temperature for all depths. The lichen site showed a higher soil temperature amplitude compared to the moss site, with ground surface (10 cm) showing the highest daily temperature in January 2011 (7.3 °C) and the lowest daily temperature in August (- 16.5 °C). The soil temperature at the lichen site closely followed the air temperature trend. The moss site showed a higher water content at the bottommost layer, consistent with the water-saturated, low landscape position. The observed thermal buffering effect under mosses is primarily associated with higher moisture onsite, but a longer duration of the snowpack (not monitored) may also have influenced the results. Active layer thickness was approximately 150 cm at low-lying moss site, and 120 cm at well-drained lichen site. This allows to classify these soils as Cryosols (WRB) or Gelisols (Soil Taxonomy), with evident turbic features.

  4. Microbial activities at the benthic boundary layer in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Bianchi, A.; Tholosan, O.; Garcin, J.; Polychronaki, T.; Tselepides, A.; Buscail, R.; Duineveld, G.

    2003-05-01

    During the Aegean Sea component of the EU MTP-MATER project, benthic samples were acquired along a depth gradient from two continental margins in the Aegean Sea. Sampling was undertaken during spring and summer 1997 and the microbial metabolic activities measured (Vmax for aminopeptidase activity, 14C-glutamate respiration and assimilation) displayed seasonal variability even in deep-sea conditions. The metabolic rates encountered in the North Aegean (average depth 566±234 m), were approximately five-fold higher than in the deeper (1336±140 m) Southern part of the Aegean. The aminopeptidase rates, however, were the exception with higher values recorded in the more oligotrophic sediments of the Southern stations (1383±152 vs. 766±297 nmol MCA cm -2 h -1). A discrepancy in bacterial metabolism also appeared in the near bottom waters. In the Southern stations, 80% of the glutamate uptake was used for energy yielding processes and only 20% devoted to biomass production, while in the North Aegean, most of the used glutamate was incorporated into bacterial cells. During the early burial stages, bacterial mineralization rates estimated from 14C-glutamate respiration decreased drastically compared to the rates of biopolymer hydrolysis estimated by aminopeptidase assays. Thus, at the 2-cm depth layer, these rates were only 32 and up to 77% of the corresponding average values, respectively, in the superficial layer. Such a discrepancy between the evolution of these two metabolic activities is possibly due to the rapid removal of readily utilizable monomers in the surface deposits. The correlation between bacterial respiration and total organic carbon, or total organic nitrogen, is higher in the surficial sediment (0-2 and 2-4 cm) than in the underlying layer. Conversely, it is only at 4-cm depth layer that the hydrolysis rates appear correlated with organic carbon and nitrogen concentrations. This pattern confirms the drastic degradation of organic matter during the

  5. Past freeze and thaw cycling in the margin of the El'gygytgyn crater deduced from a 141 m long permafrost record

    NASA Astrophysics Data System (ADS)

    Schwamborn, G.; Meyer, H.; Schirrmeister, L.; Fedorov, G.

    2014-06-01

    The continuous sediment record from Lake El'gygytgyn in the northeastern Eurasian Arctic spans the last 3.6 Ma and for much of this time permafrost dynamics and lake level changes have likely played a crucial role for sediment delivery to the lake. Changes in the ground-ice hydrochemical composition (δ18O, δD, pH, electrical conductivity, Na+, Mg2+, Ca2+, K+, HCO3-, Cl-, SO4-) of a 141 m long permafrost record from the western crater plain are examined to reconstruct repeated periods of freeze and thaw at the lake edge. Stable water isotope and major ion records of ground ice in the permafrost reflect both a synsedimentary palaeo-precipitation signal preserved in the near-surface permafrost (0.0-9.1 m core depth) and a post-depositional record of thawing and refreezing in deeper layers of the core (9.1-141.0 m core depth). These lake marginal permafrost dynamics were controlled by lake level changes that episodically flooded the surfaces and induced thaw in the underlying frozen ground. During times of lake level fall these layers froze over again. At least three cycles of freeze and thaw are identified and the hydrochemical data point to a vertical and horizontal talik refreezing through time. Past permafrost thaw and freeze may have destabilised the basin slopes of Lake El'gygytgyn and this has probably promoted the release of mass movements from the lake edge to the deeper basin as known from frequently occurring turbidite layers in the lake sediment column.

  6. Study on Na layer response to geomagnetic activities based on Odin/OSIRIS Na density data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo; Nakamura, Takuji; Hedin, Jonas; Gumbel, Jorg; Hosokawa, Keisuke; Ejiri, Mitsumu K.; Nishiyama, Takanori; Takahashi, Toru

    2016-07-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational data sets obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  7. Design method of the layered active magnetic regenerator (AMR) for hydrogen liquefaction by numerical simulation

    NASA Astrophysics Data System (ADS)

    Park, Inmyong; Kim, Youngkwon; Park, Jiho; Jeong, Sangkwon

    2015-09-01

    The design procedure of an active magnetic regenerator (AMR) operating between liquid nitrogen temperature and liquid hydrogen temperature is discussed with the selected magnetic refrigerants. Selected magnetic refrigerants (GdNi2, Dy0.85Er0.15Al2, Dy0.5Er0.5Al2, and Gd0.1Dy0.9Ni2) that have different transition temperatures are layered in an AMR to widen the temperature span. The optimum volume fraction of the layered refrigerants for the maximum COP with minimum volume is designed in a two-stage active magnetic regenerative refrigerator (AMRR) using one dimensional numerical simulation. The entropy generation in each stage of the AMR is calculated by the numerical simulation to optimize the proposed design. The main sources of the entropy generation in the AMR are pressure drop, convection and conduction heat transfers in the AMR. However, the entropy generation by the convective heat transfer is mostly dominant in the optimized cases. In this paper, the design parameters and the operating conditions such as the distribution of the selected refrigerants in the layered AMR, the intermediate temperature between two stages and the mass flow rate of heat transfer fluid are specifically determined to maximize the performance of the AMR. The proposed design method will facilitate the construction of AMR systems with various magnetic refrigerants and conditions such as AMR size, operating temperature range, and magnetic field variation.

  8. First insight into catalytic activity of anionic iron porphyrins immobilized on exfoliated layered double hydroxides.

    PubMed

    Nakagaki, Shirley; Halma, Matilte; Bail, Alesandro; Arízaga, Gregório Guadalupe Carbajal; Wypych, Fernando

    2005-01-15

    Mg-Al layered double hydroxide (LDH) intercalated with glycinate anions was synthesized through co-precipitation and exfoliated in formamide and the single-layer suspension was reacted with aqueous iron porphyrin solutions (Fe(TDFSPP) and Fe(TCFSPP)). The obtained materials were characterized by X-ray powder diffraction, UV-vis, and electron paramagnetic resonance and investigated in the oxidation reaction of cyclooctene and cyclohexane using iodosylbenzene as oxidant. The iron porphyrin seems to be immobilized at the surface of the glycinate intercalated LDH. The catalytic activities obtained in heterogeneous media for iron porphyrin, Fe(TDFSPP), was superior to the results obtained under homogeneous conditions, but the opposite effect was observed on the Fe(TCFSPP), indicating that, instead of the structural similarity of both iron porphyrins (second-generation porphyrins), the immobilization of each one produced different catalysts. The best catalytic activity of the Fe(TDFSPP)/Gly-LDH, compared to Fe(TCFSPP)/Gly-LDH, can be explained by the easy access of the oxidant and the substrate to the catalytic sites in the former, probably located at the surface of the layered double hydroxide pillared with glycinate anions. A model for the immobilization and a mechanism for the oxidation reaction will be discussed. PMID:15571697

  9. Imaging active layer and permafrost variability in the Arctic using electromagnetic induction data

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Hubbard, S. S.; Ulrich, C.; Peterson, J. E.; Wu, Y.; Chen, J.; Wullschleger, S. D.

    2012-12-01

    Characterizing the spatial variability of active layer and permafrost properties is critical for gaining an understanding of Arctic ecosystem functioning and for parameterizing process-rich models that simulate feedbacks to a changing climate. Due to the sensitivity of electrical conductivity measurements to moisture content, salinity and freeze state in the active layer and permafrost and the ease of collecting electromagnetic induction (EMI) data with portable tools over large regions, EMI holds great potential for characterization of permafrost systems. However, inversion of such EMI data to estimate the subsurface electrical conductivity distribution is challenging. The challenges are due to the insufficient amount of information (even when using multiple configurations that vary coil spacing, orientation and elevation and signal frequency) needed to find a unique solution. The non-uniqueness problem is typically approached by invoking prior information, such as inversion constraints and initial models. Unfortunately, such prior information can significantly influence the obtained inversion result. We describe the development and implementation of a new grid search based method for estimating electrical conductivity from EMI data that evaluates the influence of priors and the information contained in such data. The new method can be applied to investigate two or three layer 1-D models reproducing the recorded data within a specified range of uncertainty at each measurement location over a large surveyed site. Importantly, the method can quickly evaluate multiple priors and data from numerous measurement locations, since the time-consuming simulation of the EMI signals from the multi-dimension search grid needs to be performed only once. We applied the developed approach to EMI data acquired in Barrow, AK at the Next-Generation Ecosystem Experiments (NGEE Arctic) study site on the Barrow Environmental Observatory. Our specific focus was on a 475-meter linear

  10. Advanced activity reporting in a multi-layered unattended ground sensor network

    NASA Astrophysics Data System (ADS)

    Joslin, Todd W.

    2007-04-01

    Sensor networks are emplaced throughout the world to remotely track activity. Typically, these sensors report data such as target direction or target classification. This information is reported to a personnel-based monitor or a command and control center. The ideal sensor system will have a long mission life capability and will report information-rich actionable intelligence with high data integrity at near real-time latency. This paper discusses a multi-layered approach that includes data fusion at the Sensor Node, Sensor Field, and Command and Control Center Layer to create cohesive reports that mitigate false alarms and multiple reports of the same target while providing accurate tracking data on a situational awareness level. This approach is influenced by low-power architecture, and designed to maximize information density and reduce flooding of sensor networks.

  11. Low-noise encoding of active touch by layer 4 in the somatosensory cortex.

    PubMed

    Hires, Samuel Andrew; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-01-01

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise. PMID:26245232

  12. On Active Layer Environments and Processes in Western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Hansen, C. D.; Meiklejohn, I.; Nel, W.

    2012-12-01

    The current understanding of Antarctic permafrost is poor, particularly regarding its evolution, the current thermal characteristics, and relationships with pedogenesis, hydrology, geomorphic, dynamics, biotic activity and response to global changes. Results from borehole temperature measurements over a four-year period in Western Dronning Maud Land suggest that the active layer depth is dependent on the substrate, latitude, altitude and the volume of ground exposed; the latter alludes to the potential impact of surrounding ice on the ground thermal regime. The active layer depths at the monitoring sites, varied between 16 cm at Vesleskarvet, a small nunatak at 850 masl to 28 cm in granitic till at Jutulsessen (1 270 masl). The mean near surface (1.5 cm depth) ground temperatures from 2009 to 2012 in the region have a narrow range from -16.4°C at 850m to -17.5°C at 1270 masl. Permafrost temperatures for the same locations vary between -16.3°C and -18.3°C. While little variability exists between the mean temperatures at the study locations, each site is distinct and seasonal and shorter-term frost cycles have produced landforms that are characteristic of both permafrost and diurnal frost environments. One of the key aspects of investigation is the control that the active layer has on autochthonous blockfield development in the region. The, thus far, exploratory research is being used to understand controls on the landscape and the relationship between distribution and abundance of biota. Given the rapidly changing climates in the region, improving knowledge of what drives patterns of biodiversity at a local and regional scale is vital to assess consequences of environmental change.

  13. Effect of Salvia miltiorrhiza polysaccharides on boar spermatozoa during freezing-thawing.

    PubMed

    Shen, Tao; Jiang, Zhong-Liang; Liu, Hong; Li, Qing-Wang

    2015-08-01

    Salvia miltiorrhiza polysaccharides (SMPs) were extracted from S. miltiorrhiza in this study. The aim of the present study was to evaluate the effect of SMP on the motility of boar sperm, including the antioxidant effect of SMP on boar sperm and the effect of SMP on the in vivo fertilizing ability of frozen-thawed boar sperm. Fifty ejaculates from 5 Swagger boars were collected and diluted with an extender, which contained 3% glycerol (v/v) with five concentrations of SMP (0.2, 0.4, 0.6, 0.8, and 1.0mg/mL). The semen was frozen in 0.25mL straws at 1.0×10(9) cells/mL. Sixty gilts were inseminated using fresh semen, frozen semen with 0.4mg/mL of SMP and frozen semen without SMP. The results indicate that the addition of SMP to the extender results in a higher percentage of motile sperm post-thaw (P<0.05). The activities of superoxide dismutase, lactate dehydrogenase, glutamic-oxalacetic transaminease and catalase were all determined to be significantly higher than the control group after adding SMP to the extender (P<0.05). The artificial insemination (AI) results demonstrated that the litter size was significantly higher in the 0.4mg/mL of SMP group than in the control group (P<0.05). In conclusion, during the process of freezing, SMP can protect boar sperm from peroxidative damage and increase sperm motility and litter size during the process of freezing-thawing. The optimal concentration of SMP for the frozen extenders in this study was determined to be 0.4mg/mL. PMID:26077771

  14. Spaceborne microwave remote sensing of seasonal freeze-thaw processes in theterrestrial high l atitudes : relationships with land-atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  15. Spaceborne Microwave Remote Sensing of Seasonal Freeze-Thaw Processes in the Terrestrial High Latitudes: Relationships with Land-Atmosphere CO2 exchange

    NASA Technical Reports Server (NTRS)

    McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.

    2004-01-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.

  16. Modeling Active Layer and Permafrost Dynamics of Ice Wedge Polygon Dominated Arctic Ecosystems

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Bisht, G.; Liljedahl, A.; Mills, R. T.; Karra, S.; Painter, S. L.; Thornton, P. E.

    2013-12-01

    Permafrost soils contains vast stock of frozen organic carbon. As warming climate accelerates the thaw of the permafrost, increasing amount of organic matter is exposed to respiration leading to release of carbon to the atmosphere in the form of CO2 and CH4 . Permafrost thermal dynamics play a key role influencing hydrologic and biogeochemical processes in these ecosystems. Large areas of Arctic landscape are covered by the patterned ground features created by repeated freezing and thawing of soil underlain by aerially continuous permafrost. These microtopographic features in the landscape controls the local surface-subsurface hydrology and thermal regimes through differential transport of heat and water. Study of these interacting thermal-hydrologic-biogeochemical in permafrost soils are further complicated by the complex topography and heterogeneity of subsurface. We have developed and applied a coupled multiscale-multiphase-multicomponent surface-subsurface flow and reactive transport model PFLOTRAN for modeling of thermal-hydrologic-biogeochemical processes in permafrost soils. We study the permafrost thermal dynamics, role of microtopography in local scale hydrology at the Department of Energy's Next Generation Ecosystem Experiment (NGEE) - Arctic field sites near Barrow, Alaska. High resolution LiDAR data is used to represent the microtopography at sub-meter resolution in PFLOTRAN. Long term simulations have been conducted at the field sites informed by the observations from field and laboratory campaigns to study and understand the hydrologic and biogeochemical processes in these Arctic ecosystems.

  17. Role of interfacial friction for flow instabilities in a thin polar-ordered active fluid layer.

    PubMed

    Sarkar, Niladri; Basu, Abhik

    2015-11-01

    We construct a generic coarse-grained dynamics of a thin inflexible planar layer of polar-ordered suspension of active particles that is frictionally coupled to an embedding isotropic passive fluid medium with a friction coefficient Γ. Being controlled by Γ, our model provides a unified framework to describe the long-wavelength behavior of a variety of thin polar-ordered systems, ranging from wet to dry active matter and free-standing active films. Investigations of the linear instabilities around a chosen orientationally ordered uniform reference state reveal generic moving and static instabilities in the system that can depend sensitively on Γ. Based on our results, we discuss estimation of bounds on Γ in experimentally accessible systems. PMID:26651694

  18. Role of interfacial friction for flow instabilities in a thin polar-ordered active fluid layer

    NASA Astrophysics Data System (ADS)

    Sarkar, Niladri; Basu, Abhik

    2015-11-01

    We construct a generic coarse-grained dynamics of a thin inflexible planar layer of polar-ordered suspension of active particles that is frictionally coupled to an embedding isotropic passive fluid medium with a friction coefficient Γ . Being controlled by Γ , our model provides a unified framework to describe the long-wavelength behavior of a variety of thin polar-ordered systems, ranging from wet to dry active matter and free-standing active films. Investigations of the linear instabilities around a chosen orientationally ordered uniform reference state reveal generic moving and static instabilities in the system that can depend sensitively on Γ . Based on our results, we discuss estimation of bounds on Γ in experimentally accessible systems.

  19. Spontaneous ovarian hyperstimulation syndrome following a thawed embryo transfer cycle

    PubMed Central

    Kim, Mi Kyoung; Shim, Sung Han; Cha, Dong Hyun; Yoon, Tae Ki

    2014-01-01

    This article reports a case of spontaneous ovarian hyperstimulation syndrome (OHSS) following a thawed embryo transfer cycle. OHSS, a potentially life-threatening condition, is an iatrogenic complication of controlled ovarian stimulation; therefore, it is very important to prevent and treat OHSS during treatment with ovulation-inducing agents. Despite our efforts to prevent OHSS, in this case, severe spontaneous OHSS occurred, which resulted in uncontrolled preterm labor and a preterm delivery and also persisted for 6 weeks after delivery. Freezing all embryos cannot entirely prevent the development of OHSS because OHSS can occur spontaneously. Although spontaneous OHSS remains a rare event, females with a history of OHSS may have an elevated risk for spontaneous OHSS. We suggest closely monitoring cases of pregnancy following thawed embryo transfer for early diagnosis of spontaneous OHSS and the use of conservative management. PMID:25309860

  20. Low latitude F2- and F3- layer variabilities over India: Effects of solar activity and ExB drift

    NASA Astrophysics Data System (ADS)

    Peddapati, PavanChaitanya; Patra, Amit; Balan, Nanan; Vijaya Bhaskara Rao, S.

    In this paper we present and discuss the results on F2 and F3 layers based on ionosonde observations made from low latitude stations in India. We also use ExB drift using daytime 150 km echoes made with the Gadanki MST radar. We present two important aspects of the F2 and F3 layers: (1) The variability of F2 and F3 layer properties during low solar activity period of 2008-2009 and compare them with those observed during the high solar activity period of 2002-2003 (2) The variability of F2 and F3 layer properties with ExB drift values simultaneously observed during low solar activity period. The results show that ionospheric F2 and F3 layers have distinctly different features during high and low solar activities. The critical frequencies of the F2 and F3 layers are 5-6 MHz higher in the high solar activity than those of low solar activity. F2 layer shows stronger semi-annual and solar rotation associated variations during high solar activity than in low solar activity. Occurrence of the F3 layer, however, was quite similar in high and low solar activities except for winter solstice. Simultaneous observations of F2 and F3 layers, and ExB drift made during the low solar activity period clearly suggest that a threshold value of the ExB drift and its time integrated value are important for the formation of the F3 layer. The heights of the F2 and F3 layers linearly increase with ExB drift, indicating the dominant role of zonal electric field in determining the height of the F2 and F3 layers due to the close proximity of Gadanki to the magnetic equator. In order to gain further insight on the role of meridional neutral wind, we study this effect using Sheffield University Plasmasphere Ionosphere Model (SUPIM) by employing the observed ExB drift and F3 layer parameters and meridional neutral wind from Horizontal Wind Model 90 (HWM90).

  1. Carbon dynamics in highly heterotrophic subarctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Roiha, T.; Laurion, I.; Rautio, M.

    2015-07-01

    Global warming has accelerated the formation of permafrost thaw ponds in several subarctic and arctic regions. These ponds are net heterotrophic as evidenced by their greenhouse gas (GHG) supersaturation levels (CO2 and CH4), and generally receive large terrestrial carbon inputs from the thawing and eroding permafrost. We measured seasonal and vertical variations in the concentration and type of dissolved organic matter (DOM) in five subarctic thaw (thermokarst) ponds in northern Quebec, and explored how environmental gradients influenced heterotrophic and phototrophic biomass and productivity. Late winter DOM had low aromaticity indicating reduced inputs of terrestrial carbon, while the high concentration of dissolved organic carbon (DOC) suggests that some production of non-chromophoric dissolved compounds by the microbial food web took place under the ice cover. Summer DOM had a strong terrestrial signature, but was also characterized with significant inputs of algal-derived carbon, especially at the pond surface. During late winter, bacterial production was low (maximum of 0.8 mg C m-3 d-1) and was largely based on free-living bacterioplankton (58 %). Bacterial production in summer was high (up to 58 mg C m-3 d-1), dominated by particle-attached bacteria (67 %), and strongly correlated to the amount of terrestrial carbon. Primary production was restricted to summer surface waters due to strong light limitation deeper in the water column or in winter. The phototrophic biomass was equal to the heterotrophic biomass, but as the algae were mostly composed of mixotrophic species, most probably they used bacteria rather than solar energy in such shaded ponds. According to the δ13C analyses, non-algal carbon supported 51 % of winter and 37 % of summer biomass of the phantom midge larvae, Chaoborus sp., that are at the top of the trophic chain. Our results point to a strong heterotrophic energy pathway in these thaw pond ecosystems, where bacterioplankton dominates

  2. Causes of Warming and Thawing Permafrost in Alaska

    NASA Astrophysics Data System (ADS)

    Osterkamp, T. E.

    2007-11-01

    There is a perception that climatic warming was the cause of the twentieth-century global warming and thawing of permafrost and associated terrain instability (thermokarst) [>Gore, 2006; Perkins, 2007; Zielinski, 2007; Delisle, 2007]. While pertinent data are sparse, published results do not support this viewpoint [Zhang et al., 2001; Osterkamp, 2007]. This brief report reviews the warming of permafrost in Alaska during the twentieth century and shows that snow cover has played a significant role in it.

  3. Carbon dynamics in highly heterotrophic subarctic thaw ponds

    NASA Astrophysics Data System (ADS)

    Roiha, T.; Laurion, I.; Rautio, M.

    2015-12-01

    Global warming has accelerated the formation of permafrost thaw ponds in several subarctic and arctic regions. These ponds are net heterotrophic as evidenced by their greenhouse gas (GHG) supersaturation levels (CO2 and CH4), and generally receive large terrestrial carbon inputs from the thawing and eroding permafrost. We measured seasonal and vertical variations in the concentration and type of dissolved organic matter (DOM) in five subarctic thaw (thermokarst) ponds in northern Quebec, and explored how environmental gradients influenced heterotrophic and phototrophic biomass and productivity. Late winter DOM had low aromaticity indicating reduced inputs of terrestrial carbon, while the high concentration of dissolved organic carbon (DOC) suggests that some production of non-chromophoric dissolved compounds by the microbial food web took place under the ice cover. Summer DOM had a strong terrestrial signature, but was also characterized with significant inputs of algal-derived carbon, especially at the pond surface. During late winter, bacterial production was low (maximum of 0.8 mg C m-3 d-1) and was largely based on free-living bacterioplankton (58 %). Bacterial production in summer was high (up to 58 mg C m-3 d-1), dominated by particle-attached bacteria (67 %), and strongly correlated with the amount of terrestrial carbon. Primary production was restricted to summer surface waters due to strong light limitation deeper in the water column or in winter. The phototrophic biomass was equal to the heterotrophic biomass, but as the algae were mostly composed of mixotrophic species, most probably they used bacteria rather than solar energy in such shaded ponds. Our results point to a strong heterotrophic energy pathway in these thaw pond ecosystems, where bacterioplankton dominates the production of new carbon biomass in both summer and winter.

  4. Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland

    NASA Astrophysics Data System (ADS)

    Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.; McCalley, Carmody K.; Saleska, Scott R.; Crill, Patrick M.; Rich, Virginia I.; Chanton, Jeffrey P.; Cooper, William T.

    2016-08-01

    The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered from various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnum-dominated bogs

  5. Assessment of freshness and freeze-thawing of sea bream fillets (Sparus aurata) by a cytosolic enzyme: Lactate dehydrogenase.

    PubMed

    Diop, Mamadou; Watier, Denis; Masson, Pierre-Yves; Diouf, Amadou; Amara, Rachid; Grard, Thierry; Lencel, Philippe

    2016-11-01

    The evaluation of freshness and freeze-thawing of fish fillets was carried out by assessment of autolysis of cells using a cytosolic enzyme lactate dehydrogenase. Autolysis plays an important role in spoilage of fish and postmortem changes in fish tissue are due to the breakdown of the cellular structures and release of cytoplasmic contents. The outflow of a cytosolic enzyme, lactate dehydrogenase, was studied in sea bream fillets and the Sparus aurata fibroblasts (SAF-1) cell-line during an 8day storage period at +4°C. A significant increase of lactate dehydrogenase release was observed, especially after 5days of storage. The ratio between the free and the total lactate dehydrogenase activity is a promising predictive marker to measure the quality of fresh fish fillets. The effect of freeze-thawing on cytosolic lactate dehydrogenase and lysosomal α-d-glucosidase activities was also tested. Despite the protecting effect of the tissue compared to the cell-line, a loss of lactate dehydrogenase activity, but not of α-d-glucosidase, was observed. In conclusion, lactate dehydrogenase may be used as a marker to both assess freshness of fish and distinguish between fresh and frozen-thawed fish fillets. PMID:27211667

  6. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  7. Lidar observations of Ca and K metallic layers from Arecibo and comparison with micrometeor sporadic activity

    NASA Astrophysics Data System (ADS)

    Raizada, S.; Tepley, C. A.; Janches, D.; Friedman, J. S.; Zhou, Q.; Mathews, J. D.

    2004-04-01

    We report on the first simultaneous observations of Ca and K metallic layers using the low-latitude lidar systems located at the Arecibo Observatory in Puerto Rico (18.35°N, 66.75°W). We often observe sudden increases in both Ca and K densities during early morning hours on nights where meteor showers take place. During these periods, the Ca/K abundance ratio varied between 2 and 3. On occasion, differences were observed in Ca and K layers, which relate to differences in the chemistry of the two metals. It is known that metallic layers display distinct seasonal variations, but chemistry alone cannot explain the measured differences. Thus, we examined whether or not the seasonal distribution of micrometeoroids, derived from meteor observations using the Arecibo 430MHz radar, can account for the dissimilar metallic observations. We found that the deposition flux of micrometeoroids, with particle sizes ranging between 0.5 and 100μm, increased by a factor of two during the summer as compared with the winter, suggesting a seasonal variation of their sporadic activity. In addition, our data support the idea that differential ablation leads to a depletion of Ca atoms in the mesosphere.

  8. Bernal random loose packing through freeze-thaw cycling

    NASA Astrophysics Data System (ADS)

    Ludewig, F.; Vandewalle, N.; Dorbolo, S.; Pakpour, M.; Lumay, G.

    2015-07-01

    We study the effect of freeze-thaw cycling on the packing fraction of equal spheres immersed in water. The water located between the grains experiences a dilatation during freezing and a contraction during melting. After several cycles, the packing fraction converges to a particular value η∞=0.595 independently of its initial value η0. This behavior is well reproduced by numerical simulations. Moreover, the numerical results allow one to analyze the packing structural configuration. With a Voronoï partition analysis, we show that the piles are fully random during the whole process and are characterized by two parameters: the average Voronoï volume μv (related to the packing fraction η ) and the standard deviation σv of Voronoï volumes. The freeze-thaw driving modify the volume standard deviation σv to converge to a particular disordered state with a packing fraction corresponding to the random loose packing fraction ηBRLP obtained by Bernal during his pioneering experimental work. Therefore, freeze-thaw cycling is found to be a soft and spatially homogeneous driving method for disordered granular materials.

  9. Sensitivity of boreal forest carbon balance to soil thaw

    USGS Publications Warehouse

    Goulden, M.L.; Wofsy, S.C.; Harden, J.W.; Trumbore, S.E.; Crill, P.M.; Gower, S.T.; Fries, T.; Daube, B.C.; Fan, S.-M.; Sutton, D.J.; Bazzaz, A.; Munger, J.W.

    1998-01-01

    We used eddy covariance; gas-exchange chambers; radiocarbon analysis; wood, moss, and soil inventories; and laboratory incubations to measure the carbon balance of a 120-year-old black spruce forest in Manitoba, Canada. The site lost 0.3 ?? 0.5 metric ton of carbon per hectare per year (ton C ha-1 year-1) from 1994 to 1997, with a gain of 0.6 ?? 0.2 ton C ha-1 year-1 in moss and wood offset by a loss of 0.8 ?? 0.5 ton C ha-1 year-1 from the soil. The soil remained frozen most of the year, and the decomposition of organic matter in the soil increased 10-fold upon thawing. The stability of the soil carbon pool (~150 tons C ha-1) appears sensitive to the depth and duration of thaw, and climatic changes that promote thaw are likely to cause a net efflux of carbon dioxide from the site.

  10. Effects of storage in different semen extenders on the pre-freezing and post-thawing quality of boar spermatozoa.

    PubMed

    Dziekońska, A; Zasiadczyk, Ł; Lecewicz, M; Strzeżek, R; Koziorowska-Gilun, M; Fraser, L; Mogielnicka-Brzozowska, M; Kordan, W

    2015-01-01

    The aim of this study was to investigate the effects of storage of semen in different commercial extenders on the pre-freezing and post-thawing quality of boar spermatozoa. Semen was diluted in BTS, Androhep (AH) and Gedil (GD), stored for 24 h at 17°C, and then frozen in accordance with the cryopreservation protocol. Analyses of the quality of spermatozoa included: motility, normal apical ridge (NAR) acrosome, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), measurements of ATP content and activity of superoxidase dismutase (SOD) and glutathione peroxidase (GPx). Prior to the freezing process, no significant effect of the extender on the sperm quality parameters was noted. After thawing the spermatozoa it was demonstrated that the type of extender used influenced PMI, MMP, ATP content and activity of GPx. In the AH extender the percentage of spermatozoa with PMI and ATP content in spermatozoa was significantly higher (P<0.05) as compared to the BTS or GD extenders. In addition, semen stored in the AH was characterised by a statistically higher (P<0.05) percentage of spermatozoa with MMP and increased activity of GPx as compared with the BTS. The results obtained indicate that for the cryopreservation process, boar spermatozoa stored for 24 hours in liquid state can be used. However, the type of extender used prior to freezing may have a significant effect on the post-thawing quality of the spermatozoa. The AH extender better secured the quality of thawed boar spermatozoa as compared with the BTS or GD. PMID:26812814

  11. Past freeze and thaw cycling in the margin of the El'gygytgyn Crater deduced from a 141 m long permafrost record

    NASA Astrophysics Data System (ADS)

    Schwamborn, G.; Meyer, H.; Schirrmeister, L.; Fedorov, G.

    2013-07-01

    Past permafrost thaw and freeze has destabilised the basin slopes of Lake El'gygytgyn in the northeastern Eurasian Arctic. This has probably promoted the release of mass movements from the lake edge to the deeper basin as known from frequently occurring turbidite layers in the lake sediment column. The continuous sediment record from the Arctic spans the last 3.6 Ma and for much of this time permafrost dynamics and lake level changes likely have played a crucial role for sediment delivery to the lake. Changes in the ground ice hydrochemical composition (pH, δ18O, δD, electrical conductivity, Na+, Mg2+, Ca2+, K+, HCO3-, Cl-, SO4-) of a 141 m long permafrost record from the western crater plain are examined to reconstruct repeated freeze and thaw cycles at the lake edge. Stable water isotope and major ion records of ground ice in the permafrost reflect both a synsedimentary palaeo-precipitation signal preserved in the near-surface permafrost (0.0 m to 9.1 m core depth) and a postdepositional record of talik thawing and refreezing in deeper layers of the core (9.1 to 141.0 m core depth). The lake marginal permafrost dynamics were controlled by lake level changes that episodically flooded the surfaces and induced thaw in the underlying frozen ground. At least three cycles of freeze and thaw during marine isotope stage (MIS) 7, possibly MIS 5, and the Allerød (AD) are identified and the hydrochemical data point to a vertical and horizontal talik refreezing through time.

  12. Methane transport from the active layer to lakes in the Arctic using Toolik Lake, Alaska, as a case study

    PubMed Central

    Paytan, Adina; Lecher, Alanna L.; Dimova, Natasha; Sparrow, Katy J.; Kodovska, Fenix Garcia-Tigreros; Murray, Joseph; Tulaczyk, Slawomir; Kessler, John D.

    2015-01-01

    Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 104 nM, 61.6 dpm⋅m−3, and 4.5 × 105 dpm⋅m−3 compared with 1.3 × 102 nM, 5.7 dpm⋅m−3, and 4.4 × 103 dpm⋅m−3, respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m−2⋅y−1) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r2 > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs. PMID:25775530

  13. Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement

    NASA Astrophysics Data System (ADS)

    Plug, L. J.; West, J. J.

    2009-03-01

    Thaw lakes, widespread in permafrost lowlands, expand their basins by conduction of heat from warm lake water into adjacent permafrost, subsidence of icy permafrost on thawing, and movement of thawed sediment from lake margins into basins by diffusive and advective mass wasting. We describe a cross-sectional numerical model with thermal processes and mass wasting. To test the model and provide an initial investigation of its utility, the model is driven using historical daily temperatures and permafrost conditions for the northern Seward Peninsula, Alaska (NSP; thick syngenetic ice, mean annual air temperature (MAAT) -6°C) and Yukon coastal plain (YCP; thin epigenetic ice, MAAT -10°C). In the model, lakes develop dynamic equilibrium profiles that are independent of initial morphology. These profiles migrate outward episodically and match the morphology of profiles from lakes that were measured at each site. Modeled NSP lakes expand more rapidly than YCP lakes (0.26 versus 0.10 m a-1) under respective modern climates. When identical climates are imposed, NSP lakes still grow more rapidly because their deeper basins and steeper bathymetric slopes move thawed insulating sediment away from the lake margin. In sensitivity tests, an increase of 3°C in MAAT causes 2.5× (NSP) and 1.6× (YCP) faster expansion of lakes. An 8°C decrease essentially halts expansion for both sites, consistent with paleostudies which attribute basins to postglacial warming. In the model, basins expand monotonically but lakes do not. The 1σ interannual variability of lake expansion is 0.51 (NSP) and 0.44 m a-1 (YCP), with single year rates of up to ±8 m occurring because of instabilities from thermal/mass movement coupling even under a stationary climate. This variability is likely a minimum estimate, compared to natural variability, and suggests that long measurement time series, of basins not lake surfaces, would best detect thermokarst acceleration resulting from a climate change.

  14. Permafrost and active layer monitoring in the maritime Antarctic: Preliminary results from CALM sites on Livingston and Deception Islands

    USGS Publications Warehouse

    Ramos, M.; Vieira, G.; Blanco, J.J.; Hauck, C.; Hidalgo, M.A.; Tome, D.; Nevers, M.; Trindade, A.

    2007-01-01

    This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study’s ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.

  15. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications

  16. Effect of Repeated Freeze-Thaw Cycles on Beef Quality and Safety

    PubMed Central

    Rahman, Mohammad Hafizur; Hossain, Mohammad Mujaffar; Rahman, Syed Mohammad Ehsanur; Hashem, Mohammad Abul

    2014-01-01

    The objectives of this study were to know the effect of repeated freeze-thaw cycles of beef on the sensory, physicochemical quality and microbiological assessment. The effects of three successive freeze-thaw cycles on beef forelimb were investigated comparing with unfrozen fresh beef for 75 d by keeping at −20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to know the best one. As the number of freeze-thaw cycles increased color and odor declined significantly before cook within the cycles and tenderness, overall acceptability also declined among the cycles after cook by thawing methods. The thawing loss increased and dripping loss decreased significantly (p<0.05). Water holding capacity (WHC) increased (p<0.05) until two cycles and then decreased. Cooking loss increased in cycle 1 and 3, but decreased in cycle 2. pH decreased significantly (p<0.05) among the cycles. Moreover, drip loss, cooking loss and WHC were affected (p<0.05) by thawing methods within the cycles. 2-Thiobarbituric acid (TBARS) value increased (p<0.05) gradually within the cycles and among the cycles by thawing methods. Total viable bacteria, total coliform and total yeast-mould count decreased significantly (p<0.05) within and among the cycles in comparison to the initial count in repeated freeze-thaw cycles. As a result, repeated freeze-thaw cycles affected the sensory, physicochemical and microbiological qua- lity of beef, causing the deterioration of beef quality, but improved the microbiological quality. Although repeated freeze-thaw cycles did not affect much on beef quality and safety but it may be concluded that repeated freeze and thaw should be minimized in terms of beef color for commercial value and WHC and tenderness/juiciness for eating quality. PMID:26761286

  17. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Jitsui, Yusuke; Ohtani, Naoki

    2012-10-01

    We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co- N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found.

  18. Transmission electron microscope observation of organic-inorganic hybrid thin active layers of light-emitting diodes.

    PubMed

    Jitsui, Yusuke; Ohtani, Naoki

    2012-01-01

    We performed transmission electron microscope (TEM) observation of organic-inorganic hybrid thin films fabricated by the sol-gel reaction and used as the active layers of organic light-emitting diodes. The cross-sectional TEM images show that the films consist of a triple-layer structure. To evaluate the composition of these layers, the distribution of atoms in them was measured by energy-dispersive X-ray fluorescence spectroscopy. As a result, most of the organic emissive material, poly(9,9-dioctyl-fluorene-co-N-4-butylphenyl-diphenylamine (TFB), was found to be distributed in the middle layer sandwiched by SiO and SiO2 layers. The surface SiO layer was fabricated due to the lack of oxygen. This means that the best sol-gel condition was changed due to the TFB doping; thus, the novel best condition should be found. PMID:23095451

  19. Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Berrier, Bobby L.

    2004-01-01

    This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.

  20. Enhancing photocatalytic activity of LaTiO2N by removal of surface reconstruction layer.

    PubMed

    Matsukawa, Michinori; Ishikawa, Ryo; Hisatomi, Takashi; Moriya, Yosuke; Shibata, Naoya; Kubota, Jun; Ikuhara, Yuichi; Domen, Kazunari

    2014-02-12

    LaTiO2N is an oxynitride photocatalyst that has ability to generate H2 and O2 from water under irradiation of light with wavelengths up to 600 nm. However, LaTiO2N necessitates sacrificial reagents that capture either photoexcited electrons or holes efficiently to be active in the photocatalytic reactions because of a considerable number of defects that cause trapping and recombination of photoexcited carriers. Therefore, identifying defect structures of LaTiO2N is important. In this study, using atomic-resolution scanning transmission electron microscopy, we evidence that eliminating defective surface reconstructed layers of LaTiO2N particles by the treatment with aqua regia can double the photocatalytic activity. PMID:24460145

  1. Topology optimization of magnetorheological fluid layers in sandwich plates for semi-active vibration control

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaopeng; Kang, Zhan

    2015-08-01

    This paper investigates topology optimization of the magnetorheological (MR) fluid layer in a sandwich plate for improving the semi-active vibration control performance. Therein, a uniform magnetic field is applied across the MR fluid layer to provide a semi-active damping control effect. In the optimization model, the pseudo-densities describing the MR fluid material distribution are taken as design variables, and an artificial magneto-rheological fluid model (AMRF) with penalization is proposed to suppress intermediate density values. For reducing the vibration level under harmonic excitations, the dynamic compliance under a specific excitation frequency, or the frequency-aggregated dynamic compliance in a given frequency band, is taken as the objective function to be minimized. In this context, the adjoint-variable sensitivity analysis scheme is derived. The effectiveness and efficiency of the proposed method are demonstrated by numerical examples, in which the structural dynamic performance can be remarkably improved through optimization. The influences of several key factors on the optimal designs are also explored. It is shown that the AMRF model is effective in yielding clear boundaries in the final optimal solutions without use of additional regularization techniques.

  2. Dielectric elastomer based active layer for macro-scaled industrial application in roto-flexographic printing

    NASA Astrophysics Data System (ADS)

    Pinto, F.; D'Oriano, G.; Meo, M.

    2014-03-01

    The use of dielectric elastomer (DE) for the realisation of new generation actuators has attracted the interest of many researchers in the last ten years due to their high efficiency, a very good electromechanical coupling and large achievable strains [1-3]. Although these properties constitute a very important advantage, the industrial exploitation of such systems is hindered by the high voltages required for the actuation [4] that could potentially constitute also a risk for the operators. In this work we present a DE based active layer that can be used in different macro-scaled parts of industrial equipment for roto-flexographic printing substituting traditional mechanical devices, reducing manufacturing costs and enhancing its reliability. Moreover, the specific configuration of the system requires the driving voltage to be applied only in the mounting/dismounting step thus lowering further the operative costs without posing any threat for the workers. Starting from the industrial requirements, a complete thermo-mechanical characterisation using DSC and DMA was undertaken on acrylic elastomer films in order to investigate their behaviour under the operative frequencies and solicitations. Validation of the active layer was experimentally evaluated by manufacturing a DE actuator controlling both prestrain and nature of the complaint electrodes, and measuring the electrically induced Maxwell's strain using a laser vibrometer to evaluate the relative displacement along the z-axis.

  3. Design of Bicontinuous Donor/Acceptor Morphologies for Use as Organic Solar Cell Active Layers

    NASA Astrophysics Data System (ADS)

    Kipp, Dylan; Mok, Jorge; Verduzco, Rafael; Ganesan, Venkat

    Two of the primary challenges limiting the marketability of organic solar cells are i) the smaller device efficiency of the organic solar cell relative to the conventional silicon-based solar cell and ii) the long term thermal instability of the device active layer. The achievement of equilibrium donor/acceptor morphologies with the characteristics believed to yield high device performance characteristics could address each of these two challenges. In this work, we present the results of a combined simulations and experiments-based approach to investigate if a conjugated BCP additive can be used to control the self-assembled morphologies taken on by conjugated polymer/PCBM mixtures. First, we use single chain in mean field Monte Carlo simulations to identify regions within the conjugated polymer/PCBM composition space in which addition of copolymers can lead to bicontinuous equilibrium morphologies with high interfacial areas and nanoscale dimensions. Second, we conduct experiments as directed by the simulations to achieve such morphologies in the PTB7 + PTB7- b-PNDI + PCBM model blend. We characterize the results of our experiments via a combination of transmission electron microscopy and X-ray scattering techniques and demonstrate that the morphologies from experiments agree with those predicted in simulations. Accordingly, these results indicate that the approach utilized represents a promising approach to intelligently design the morphologies taken on by organic solar cell active layers.

  4. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  5. Cooperation between adsorbates accounts for the activation of atomic layer deposition reactions.

    PubMed

    Shirazi, Mahdi; Elliott, Simon D

    2015-04-14

    Atomic layer deposition (ALD) is a technique for producing conformal layers of nanometre-scale thickness, used commercially in non-planar electronics and increasingly in other high-tech industries. ALD depends on self-limiting surface chemistry but the mechanistic reasons for this are not understood in detail. Here we demonstrate, by first-principle calculations of growth of HfO2 from Hf(N(CH3)2)4-H2O and HfCl4-H2O and growth of Al2O3 from Al(CH3)3-H2O, that, for all these precursors, co-adsorption plays an important role in ALD. By this we mean that previously-inert adsorbed fragments can become reactive once sufficient numbers of molecules adsorb in their neighbourhood during either precursor pulse. Through the calculated activation energies, this 'cooperative' mechanism is shown to have a profound influence on proton transfer and ligand desorption, which are crucial steps in the ALD cycle. Depletion of reactive species and increasing coordination cause these reactions to self-limit during one precursor pulse, but to be re-activated via the cooperative effect in the next pulse. This explains the self-limiting nature of ALD. PMID:25786200

  6. Hydrogenated Amorphous Silicon Germanium Active Layer for Top Cell of a Multi Junction Cell Structure.

    PubMed

    Cho, Jaehyun; Iftiquar, S M; Kim, Minbum; Park, Jinjoo; Jung, Junhee; Kim, Jiwoong; Yi, Junsin

    2016-05-01

    Intrinsic hydrogenated amorphous silicon-germanium (a-SiGe:H) alloy is generally used in the bottom cell because of its low band gap. The a-SiGe:H has a higher photo conductivity in comparison to the a-Si:H; thus, it is expected that the a-SiGe:H can show better short circuit current density than that of the a-Si:H based solar cell. Therefore, we optimized a-SiGe:H active layer that can be a suitable choice for the front cell of a multi junction.solar cell. Furthermore, we carried out a comparative study of the solar cells that have a-SiGe:H and a-Si:H as respective active layers. The a-SiGe:H based solar cells show higher short circuit current density, while the a-Si:H based cells show higheropen circuit voltage. The current-voltage characteristics of these cells are as follows: (a) V(oc) = 770 mV, J(sc) = 15.0 mA/cm2, FF = 64.5%, and η = 7.47% for a-SiGe:H based cell; and (b) V(oc) = 826 mV, J(sc) = 13.63 mA/cm2, FF = 72.0%, and η = 8.1% for a-Si:H based cell. PMID:27483837

  7. Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity.

    PubMed

    Song, Yanhua; Lei, Yucheng; Xu, Hui; Wang, Cheng; Yan, Jia; Zhao, Haozhu; Xu, Yuanguo; Xia, Jiexiang; Yin, Sheng; Li, Huaming

    2015-02-21

    Novel few-layer MoS2/Ag3PO4 composites were fabricated. The results indicated that Ag3PO4 nanoparticles were directly formed on the surface of few-layer MoS2. The physical and chemical properties of the few-layer MoS2/Ag3PO4 composite photocatalysts were tested in order to investigate the effects of few-layer MoS2 on the photocatalytic activity of Ag3PO4. The photocatalytic activity of the few-layer MoS2/Ag3PO4 composites was evaluated by the photocatalytic degradation of Rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation. The photocatalytic activity of the few-layer MoS2/Ag3PO4 composites was higher than that of pure Ag3PO4. The optimal few-layer MoS2 content for the organic pollutant degradation of the heterojunction structures was determined. The synergic effect between few-layer MoS2 and Ag3PO4 was found to lead to an improved photogenerated carrier separation. The stability and the possible photocatalytic mechanism of the composites were also discussed. PMID:25567674

  8. Hypoxia Activates Calpains in the Nerve Fiber Layer of Monkey Retinal Explants

    PubMed Central

    Hirata, Masayuki; Shearer, Thomas R.; Azuma, Mitsuyoshi

    2015-01-01

    Purpose The vascular ischemic hypothesis attributes nerve damage in the retina to decreased blood flow in the ophthalmic artery, reduced oxygenation, and impaired axonal transport. Activation of calpain enzymes contributes to retinal cell death during hypoxia. However, we still do not know in which specific retinal layers calpains are activated. Thus, the purpose of the present study was to investigate where and when calpains are activated in an improved culture model of hypoxic monkey retina. Methods Monkey retinal explants were cultured on microporous membranes with the retinal ganglion cell (RGC) side facing up. Explants were incubated under hypoxic conditions, with or without additional reoxygenation. When it was used, the calpain inhibitor SNJ-1945 was maintained throughout the culture period. Immunohistochemistry and immunoblotting assays for α-spectrin, calpains 1 and 2, calpastatin, β-III tubulin, and γ-synuclein were performed with specific antibodies. Cell death was assessed by TUNEL staining. Results Under normoxic conditions, TUNEL-positive cells were minimal in our improved culture conditions. As early as 8 hours after hypoxia, the 150-kDa calpain-specific α-spectrin breakdown product appeared in the nerve fiber layer (NFL), where calpains 1 and 2 were localized. TUNEL-positive RGCs then increased at later time periods. The calpain inhibitor SNJ-1945 ameliorated changes induced by hypoxia or hypoxia/reoxygenation. Conclusions During hypoxia/reoxygenation in an improved, relevant monkey model, calpains were first activated in the NFL, followed by death of the parent RGCs. This observation suggest that calpain-induced degeneration of retinal nerve fibers may be an underlying mechanism for RGC death in hypoxic retinal neuropathies. PMID:26393472

  9. Activated macrophages as a feeder layer for growth of resident cardiac progenitor cells.

    PubMed

    Sepúlveda, Diana E; Cabeza Meckert, Patricia; Locatelli, Paola; Olea, Fernanda D; Pérez, Néstor G; Pinilla, Oscar A; Díaz, Romina G; Crottogini, Alberto; Laguens, Rubén P

    2016-08-01

    The adult heart contains a population of cardiac progenitor cells (CPCs). Growing and collecting an adequate number of CPCs demands complex culture media containing growth factors. Since activated macrophages secrete many growth factors, we investigated if activated isolated heart cells seeded on a feeder layer of activated peritoneal macrophages (PM) could result in CPCs and if these, in turn, could exert cardioprotection in rats with myocardial infarction (MI). Heart cells of inbred Wistar rats were isolated by collagenase digestion and cultured on PM obtained 72 h after intraperitoneal injection of 12 ml thioglycollate. Cells (1 × 10(6)) exhibiting CPC phenotype (immunohistochemistry) were injected in the periphery of rat MI 10 min after coronary artery occlusion. Control rats received vehicle. Three weeks later, left ventricular (LV) function (echocardiogram) was assessed, animals were euthanized and the hearts removed for histological studies. Five to six days after seeding heart cells on PM, spherical clusters composed of small bright and spherical cells expressing mostly c-Kit and Sca-1 antigens were apparent. After explant, those clusters developed cobblestone-like monolayers that expressed smooth muscle actin and sarcomeric actin and were successfully transferred for more than ten passages. When injected in the MI periphery, many of them survived at 21 days after coronary ligature, improved LV ejection fraction and decreased scar size as compared with control rats. CPC-derived cells with cardiocyte and smooth muscle phenotypes can be successfully grown on a feeder layer of activated syngeneic PM. These cells decreased scar size and improved heart function in rats with MI. PMID:25432330

  10. Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation.

    PubMed

    Baranovic, Jelena; Chebli, Miriam; Salazar, Hector; Carbone, Anna L; Faelber, Katja; Lau, Albert Y; Daumke, Oliver; Plested, Andrew J R

    2016-02-23

    Ionotropic glutamate receptors are postsynaptic tetrameric ligand-gated channels whose activity mediates fast excitatory transmission. Glutamate binding to clamshell-shaped ligand binding domains (LBDs) triggers opening of the integral ion channel, but how the four LBDs orchestrate receptor activation is unknown. Here, we present a high-resolution x-ray crystal structure displaying two tetrameric LBD arrangements fully bound to glutamate. Using a series of engineered metal ion trapping mutants, we showed that the more compact of the two assemblies corresponds to an arrangement populated during activation of full-length receptors. State-dependent cross-linking of the mutants identified zinc bridges between the canonical active LBD dimers that formed when the tetramer was either fully or partially bound by glutamate. These bridges also stabilized the resting state, consistent with the recently published full-length apo structure. Our results provide insight into the activation mechanism of glutamate receptors and the complex conformational space that the LBD layer can sample. PMID:26910426

  11. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer.

    PubMed

    Köster, Darius Vasco; Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R Dyche; Rao, Madan; Mayor, Satyajit

    2016-03-22

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  12. Polyethylene/organically-modified layered-silicate nanocomposites with antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Songtipya, P.; Jimenez-Gasco, M. M.; Manias, E.

    2009-03-01

    Despite the very intensive research on polymer nanocomposites, the opportunities for new functionalities possible by nanofillers still remain largely untapped. Here, we present polyethylene/inorganic nanocomposites that exhibit strongly enhanced mechanical performance and, at the same time, also an antimicrobial activity originating from the organo-filler nature. Specifically, PE/organically-modified layered-silicate nanocomposites were prepared via melt-processing, and antimicrobial activity was designed by proper choice of their organic modification. Their antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum) as model soil-borne plant and food contaminants. Montmorillonite-based organofillers, which only differ in their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the nanocomposites. The comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants.

  13. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds.

    PubMed

    Negandhi, Karita; Laurion, Isabelle; Lovejoy, Connie

    2016-08-01

    One consequence of High Arctic permafrost thawing is the formation of small ponds, which release greenhouse gases (GHG) from stored carbon through microbial activity. Under a climate with higher summer air temperatures and longer ice-free seasons, sediments of shallow ponds are likely to become warmer, which could influence enzyme kinetics or select for less cryophilic microbes. There is little data on the direct temperature effects on GHG production and consumption or on microbial communities' composition in Arctic ponds. We investigated GHG production over 16 days at 4°C and 9°C in sediments collected from four thaw ponds. Consistent with an enzymatic response, production rates of CO2 and CH4 were significantly greater at higher temperatures, with Q10 varying from 1.2 to 2.5. The bacterial community composition from one pond was followed through the incubation by targeting the V6-V8 variable regions of the 16S rRNA gene and 16S rRNA. Several rare taxa detected from rRNA accounted for significant community compositional changes. At the higher temperature, the relative community contribution from Bacteroidetes decreased by 15% with compensating increases in Betaproteobacteria, Alphaproteobacteria, Firmicutes, Acidobacteria, Verrucomicrobia and Actinobacteria. The increase in experimental GHG production accompanied by changes in community indicates an additional factor to consider in sediment environments when evaluating future climate scenarios. PMID:27288196

  14. Prospecting for ice association: characterization of freeze-thaw selected enrichment cultures from latitudinally distant soils.

    PubMed

    Wilson, Sandra L; Grogan, Paul; Walker, Virginia K

    2012-04-01

    Freeze-thaw stress has previously been shown to alter soil community structure and function. We sought to further investigate this stress on enriched microbial consortia with the aim of identifying microbes with ice-associating adaptations that facilitate survival. Enrichments were established to obtain culturable psychrotolerant microbes from soil samples from the latitudinal extremes of the Canadian Shield plateau. The resulting consortia were subjected to consecutive freeze-thaw cycles, and survivors were putatively identified by their 16S rRNA gene sequences. Even though the northerly site was exposed to longer, colder winters and large spring-time temperature fluctuations, the selective regime similarly affected both enriched consortia. Quantitative PCR and metagenomic sequencing were used to determine the frequency of a subset of the resistant microbes in the original enrichments. The metagenomes showed 22 initial genera, only 6 survived and these were not dominant prior to selection. When survivors were assayed for ice recrystallization inhibition and ice nucleation activities, over 60% had at least one of these properties. These phenotypes were not more prevalent in the northern enrichment, indicating that regarding these adaptations, the enrichment strategy yielded seemingly functionally similar consortia from each site. PMID:22435705

  15. Induction and modulation of persistent activity in a layer V PFC microcircuit model.

    PubMed

    Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Cutsuridis, Vassilis; Poirazi, Panayiota

    2013-01-01

    Working memory refers to the temporary storage of information and is strongly associated with the prefrontal cortex (PFC). Persistent activity of cortical neurons, namely the activity that persists beyond the stimulus presentation, is considered the cellular correlate of working memory. Although past studies suggested that this type of activity is characteristic of large scale networks, recent experimental evidence imply that small, tightly interconnected clusters of neurons in the cortex may support similar functionalities. However, very little is known about the biophysical mechanisms giving rise to persistent activity in small-sized microcircuits in the PFC. Here, we present a detailed biophysically-yet morphologically simplified-microcircuit model of layer V PFC neurons that incorporates connectivity constraints and is validated against a multitude of experimental data. We show that (a) a small-sized network can exhibit persistent activity under realistic stimulus conditions. (b) Its emergence depends strongly on the interplay of dADP, NMDA, and GABAB currents. (c) Although increases in stimulus duration increase the probability of persistent activity induction, variability in the stimulus firing frequency does not consistently influence it. (d) Modulation of ionic conductances (I h , I D , I sAHP, I caL, I caN, I caR) differentially controls persistent activity properties in a location dependent manner. These findings suggest that modulation of the microcircuit's firing characteristics is achieved primarily through changes in its intrinsic mechanism makeup, supporting the hypothesis of multiple bi-stable units in the PFC. Overall, the model generates a number of experimentally testable predictions that may lead to a better understanding of the biophysical mechanisms of persistent activity induction and modulation in the PFC. PMID:24130519

  16. New paradigm for layered paleoproterozoic PGE intrusions of the Fennoscandian Shield: duration and multistage magmatic activity

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Felix; Bayanova, Tamara; Serov, Pavel

    2014-05-01

    Layered mafic-ultramafic paleoproterozoic PGE intrusions are widespread in the N-E part of Fennoscandian Shield and belongs to two belt: North (Kola) and South (Finland and Karelia). Precise isotope-geochemical data using U-Pb (on zircon and baddeleyite) and Sm-Nd (rock-forming and sulfides minerals), systematic reflect long magmatic activity (with 2.53, 2.50, 2.45, 2.40 pulses) and duration of mantle event from 2.53 to 2.40 Ga. The Kola belt barren phases were dated in Fedorovo-Pansky massifs with 2.53 Ga for orthopyroxenites and olivine gabbro based on U-Pb (on zircon) and Sm-Nd (rock-forming minerals) data. Main PGE-bearing phases of gabbronorite (Mt. Generalskaya) norite (Monchepluton) and gabbronorite (Fedorovo-Pansky) massif have yielded 2.50 Ga on U-Pb and Sm-Nd dating. The second PGE-bearing phases with 2.45 Ga belong to anorthosite of Mt. Generalskaya, Fedorovo-Pansky and Monchetundra massifs. The same ages have layered PGE-bearing intrusions of Finland - Koitelainen, Penikat et. set. and Oulanga group in Karelia (Bayanova et al., 2009). The final mafic magmatic activity connected with dykes of Imandra lopolith with 2.40 Ga. Isotope geochemical ɛNd - ISr indicators for layered intrusions (more than 70 analyses) reflect enriched mantle EM-1 type reservoir with ISr values from 0.703-0.704. Isotope 3He/4He data for accessory minerals (ilmenite, magnetite et. set.) have significant lower and upper mantle contribution. The model Sm-Nd ages of protolith lies in 3.2-2.9 Ga and primary magma source as fertile according to (Arndt, 2010). The geological and isotope-geochemistry data for layered paleoproterozoic PGE-intrusions permit considered Fennoscandian Shield with Superior and Wyoming as a big magmatic LIP, which related with breakup of oldest Kenorland Sypercontitent. We thank to G. Wasserburg for 205 Pb artificial spike, J. Ludden for 91500 and Temora standards, F. Corfu, V. Todt and U. Poller for assistance in the establishing of the U-Pb method for single

  17. Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction

    SciTech Connect

    Xie, Shuifen; Choi, Sang; Lu, Ning; Roling, Luke T.; Herron, Jeffrey A.; Zhang, Lei; Park, Jinho; Wang, Jinguo; Kim, Moon J.; Xie, Zhaoxiong; Mavrikakis, Manos; Xia, Younan

    2014-06-11

    An effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the deposited Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@PnL (n = 1-6) core-shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt2-3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.

  18. Variability in Canopy Transpiration with Atmospheric Drivers and Permafrost Thaw Depth in an Arctic Siberian Larch Forest

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Berner, L. T.; Alexander, H. D.; Davydov, S. P.

    2014-12-01

    Arctic ecosystems are experiencing rapid change associated with amplified rates of climate warming. A general increase in vegetation productivity has been among the expected responses for terrestrial ecosystems in the Arctic. However, recent evidence from satellite derived productivity metrics has revealed a high degree of spatial heterogeneity in the magnitude, and even the direction, of productivity trends in recent decades. Declines in productivity may seem counterintuitive in what are traditionally thought to be temperature limited ecosystems. However a warmer and drier atmosphere in conjunction with changing permafrost conditions may impose hydrologic stresses on vegetation as well. Many Siberian ecosystems receive annual precipitation inputs characteristics of arid and semiarid regions. Boreal forests persist because permafrost acts as an aquatard trapping water near the surface and because historically cool growing season temperatures have kept atmospheric evaporative demand relatively low. As climate change simultaneously warms the atmosphere and deepens the active layer it is likely that vegetation will experience a higher degree of hydrologic limitation, perhaps necessitating the reallocation of resources. Here we use sap flux observations of canopy transpiration to understand the influence of atmospheric and permafrost conditions on the function of an arctic boreal forest in northeastern Siberia. We find that individual trees exhibit stronger responses to atmospheric vapor pressure deficit (D) as the growing season progresses. Further, the magnitude of this response appears to be positively correlated with changes in the depth of permafrost thaw. These results imply that arctic boreal forests will need to adapt to increasing hydrologic stress in order to benefit from what are typically thought of as increasingly favorable growing conditions with continued climate change.

  19. Damage Evaluation on Freeze-Thawing Process of Food by Using NMR

    NASA Astrophysics Data System (ADS)

    Andou, Hiroko; Fukuoka, Mika; Miyawaki, Osato; Suzuki, Toru

    Freeze-thawing process gives significant damages for food structure. Several new techniques have been attempted for quantitative evaluation of the damages. In this study, using NMR (nuclear magnetic resonance) with a stimulated echo method, restricted diffusion phenomena of water molecules was measured for damaged food (onion and tuna) tissues that were subjected to the repeat of freeze-thawing, Through experiments, water permeability of tissue membrane was calculated. The water permeability of fresh tissues for onion showed clearly restricted diffusion, but after freeze-thawing, it disappeared. On the other hand, the water permeability of fresh tuna tissue was small significantly, even though it was a little higher after freeze-thawing. After all, the damage level after freeze-thawing showed a significant difference between onion and tuna. These results support the view that plant tissue is very sensitive to freeze-thawing and that the water permeability of plant is much lower than that of animal.

  20. Changes in meat quality of ovine longissimus dorsi muscle in response to repeated freeze and thaw.

    PubMed

    Qi, Jun; Li, Chunbao; Chen, Yinji; Gao, Feifei; Xu, Xinglian; Zhou, Guanghong

    2012-12-01

    Changes in eating and technological quality attributes of ovine longissimus dorsi muscle during repeated freeze and thaw were investigated. Shear force value, L* value, a* value and fiber diameter decreased (P<0.05) but lipid oxidation increased (P<0.05) with repeated freeze-thaw cycles. Sarcomere length and pH decreased (P<0.05) within the first 10 freeze-thaw cycles but increased (P<0.05) after 5 further cycles. Total and myofibrillar protein solubility, and intramuscular free fatty acids concentration decreased (P<0.05) after 1 cycle of freeze and thaw but then increased (P<0.05) gradually with further cycles. Hardness, chewiness, cohesiveness and resilience of comminuted lamb products decreased (P<0.05) with increased freeze-thaw cycles. And therefore, repeated freeze and thaw should be minimized in terms of meat color for commercial value and water holding capacity for further processing. PMID:22749539

  1. Low-temperature photo-activated inorganic electron transport layers for flexible inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Wook; Lee, Soo-Hyoung; Kim, Yong-Hoon; Park, Sung Kyu

    2014-09-01

    A simple and versatile route of forming sol-gel-derived metal oxide n-type electron transport layers (ETLs) for flexible inverted polymer solar cells (PSCs) is proposed using low-temperature photochemical activation process. The photochemical activation, which is induced by deep ultraviolet irradiation on sol-gel films, allows formation of metal oxide n-type ETLs such as zinc oxide (ZnO) and indium gallium zinc oxide films at a low temperature. Compared to poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester inverted PSCs with thermally annealed ZnO ETLs (optimized efficiency of 3.26 ± 0.03 %), the inverted PSCs with photo-activated ZnO ETLs showed an improved efficiency of 3.60 ± 0.02 %. The enhanced photovoltaic property is attributed to efficient charge collection from low overall series resistance and high surface area-to-geometric area ratio by the photo-activated ZnO ETLs.

  2. Novel biohybrids of layered double hydroxide and lactate dehydrogenase enzyme: Synthesis, characterization and catalytic activity studies

    NASA Astrophysics Data System (ADS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Hidouri, Slah; Namour, Philippe; Jaffrezic-Renault, Nicole; Ben Haj Amara, Abdesslem

    2016-02-01

    The present work introduces new biohybrid materials involving layered double hydroxides (LDH) and biomolecule such as enzyme to produce bioinorganic system. Lactate dehydrogenase (Lac Deh) has been chosen as a model enzyme, being immobilized onto MgAl and ZnAl LDH materials via direct ion-exchange (adsorption) and co-precipitation methods. The immobilization efficiency was largely dependent upon the immobilization methods. A comparative study shows that the co-precipitation method favors the immobilization of great and tunable amount of enzyme. The structural behavior, chemical bonding composition and morphology of the resulting biohybrids were determined by X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM), respectively. The free and immobilized enzyme activity and kinetic parameters were also reported using UV-Visible spectroscopy. However, the modified LDH materials showed a decrease in crystallinity as compared to the unmodified LDH. The change in activity of the immobilized lactate dehydrogenase was considered to be due, to the reduced accessibility of substrate molecules to the active sites of the enzyme and the partial conformational change of the Lac Deh molecules as a result of the immobilization way. Finally, it was proven that there is a correlation between structure/microstructure and enzyme activity dependent on the immobilization process.

  3. Exploring New Active Regions for Type 1 InasSb Strained-Layer Lasers

    SciTech Connect

    Biefeld, R.M.; Kurtz, S.R.; Phillips, J.D.

    1999-05-13

    We report on the metal-organic chemical vapor deposition (MOCVD) of mid- infrared InAsSb/InPSb optically pumped lasers grown using a high speed rotating disk reactor (RDR). The devices contain AlAsSb claddings and strained, type 1, InAsSb/InPSb active regions. By changing the layer thickness and composition of InAsSb/InPSb SLSs, we have prepared structures with low temperature (<20K) photoluminescence wavelengths ranging from 3.4 to 4.8 µm. We find a variation of bandgap from 0.272 to 0.324 eV for layer thicknesses of 9.0 to 18.2 nm. From these data we have estimated a valence band offset for the InAsSb/InPSb interface of about 400 meV. An InAsSb/InPSb SLS, optically pumped laser structure was grown on an InAs substrate with AlAs0.l6Sb0.84 claddings. A lasing threshold and spectrally narrowed laser emission was seen from 80 K through 200 K, the maximum temperature where Iasing occurred. The temperature dependence of the SLS laser threshold is described by a characteristic temperature, T0 = 72 K, from 80 to 200 K.

  4. Influence of quaternization of ammonium on antibacterial activity and cytocompatibility of thin copolymer layers on titanium.

    PubMed

    Waßmann, Marco; Winkel, Andreas; Haak, Katharina; Dempwolf, Wibke; Stiesch, Meike; Menzel, Henning

    2016-10-01

    Antimicrobial coatings are able to improve the osseointegration of dental implants. Copolymers are promising materials for such applications due to their combined properties of two different monomers. To investigate the influence of different monomer mixtures, we have been synthesized copolymers of dimethyl (methacryloxyethyl) phosphonate (DMMEP) and dipicolyl aminoethyl methacrylate in different compositions and have them characterized to obtain the r-parameters. Some of the copolymers with different compositions have also been alkylated with 1-bromohexane, resulting in quaternized ammonium groups. The copolymers have been deposited onto titanium surfaces resulting in ultrathin, covalently bound layers. These layers have been characterized by water contact angle measurements and ellipsometry. The influence of quaternary ammonium groups on antibacterial properties and cytocompatibility was studied: Activity against bacteria was tested with a gram positive Staphylococcus aureus strain. Cytocompatibility was tested with a modified LDH assay after 24 and 72 h to investigate adhesion and proliferation of human fibroblast cells on modified surfaces. The copolymer with the highest content of DMMEP showed a good reduction of S. aureus and in the alkylated version a very good reduction of about 95%. On the other hand, poor cytocompatibility is observed. However, our results show that this trend cannot be generalized for this copolymer system. PMID:27456132

  5. Low-noise encoding of active touch by layer 4 in the somatosensory cortex

    PubMed Central

    Andrew Hires, Samuel; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-01-01

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise. DOI: http://dx.doi.org/10.7554/eLife.06619.001 PMID:26245232

  6. Comparison of EL emitted by LEDs on Si substrates containing Ge and Ge/GeSn MQW as active layers

    NASA Astrophysics Data System (ADS)

    Schwartz, B.; Arguirov, T.; Kittler, M.; Oehme, M.; Kostecki, K.; Kasper, E.; Schulze, J.

    2015-02-01

    We analyzed Ge- and GeSn/Ge multiple quantum well (MQW) light emitting diodes (LEDs). The structures were grown by molecular beam epitaxy (MBE) on Si. In the Ge LEDs the active layer was 300 nm thick. Sb doping was ranging from 1×1018 to 1×1020 cm-3. An unintentionally doped Ge-layer served as reference. The LEDs with the MQWs consist of ten alternating GeSn/Ge-layers. The Ge-layers were 10 nm thick and the GeSn-layers were grown with 6 % Sn and thicknesses between 6 and 12 nm. The top contact of all LEDs was identical. Accordingly, the light extraction is comparable. The electroluminescence (EL) analysis was performed under forward bias at different currents. Sample temperatures between <300 K and 80 K were studied. For the reference LED the direct transition at 0.8 eV dominates. With increasing current the peak is slightly redshifted due to Joule heating. Sb doping of the active Ge-layer affects the intensity and at 3×1019 cm-3 the strongest emission appears. It is ~4 times higher as compared to the reference. Moreover a redshift of the peak position is caused by bandgap narrowing. The LEDs with undoped GeSn/Ge-MQWs as active layer show a very broad luminescence band with a peak around 0.65 eV, pointing to a dominance of the GeSn-layers. The light emission intensity is at least 17 times stronger as compared to the reference Ge-LED. Due to incorporation of Sn in the MQWs the active layer should approach to a direct semiconductor. In indirect Si and Ge we observed an increase of intensity with increasing temperature, whereas the intensity of GeSn/Ge-MQWs was much less affected. But a deconvolution of the spectra revealed that the energy of indirect transition in the wells is still below the one of the direct transition.

  7. Effect of medium on the kinematics of frozen-thawed ram spermatozoa.

    PubMed

    Mortimer, Sharon T; Maxwell, W M Chis

    2004-02-01

    Cervically inseminated cryopreserved ram spermatozoa have reduced fertility due to poor mucus-penetrating ability. This effect is ameliorated by the addition of 20% (v/v) seminal plasma (SP) to the phosphate-buffered saline (PBS) thawing medium. The aims of this study were to determine whether the impaired mucus penetration was due to alterations in the sperm motility and, if so, whether these alterations were due to the SP or its viscosity, or to the medium components. To this end, artificial SP medium (ASP), a medium which supports motility but not capacitation, was compared with PBS and SP. Thawed, pooled semen from seven mature rams was layered under 1 ml each of PBS, SP and ASP and motile spermatozoa allowed to swim up (37 degrees C, 30 min). Upper regions of the overlays were harvested, and the capacitation status of the spermatozoa in each suspension determined by chlortetracycline (CTC) analysis. Sperm movement was videotaped in 300 microm chambers for both computer-aided sperm analysis assessment and manual flagellar curvature analysis. There was no effect of the culture medium on the concentration of spermatozoa recovered by swim up, nor on the proportion of motile spermatozoa. However, the spermatozoa resuspended in PBS did show changes associated with capacitation in both the CTC-binding patterns and in their movement patterns. These changes were significantly greater than those observed in spermatozoa resuspended in SP or ASP. These results indicated that the differences in sperm movement and function observed in SP medium were not due to changes in viscosity, but rather to components of the medium. PMID:15056794

  8. Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation

    PubMed Central

    Sevanto, Sanna; Holbrook, N. Michele; Ball, Marilyn C.

    2012-01-01

    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically. PMID:22685446

  9. Does Platelet-Rich Plasma Freeze-Thawing Influence Growth Factor Release and Their Effects on Chondrocytes and Synoviocytes?

    PubMed Central

    Cavallo, Carola; Cenacchi, Annarita; Facchini, Andrea; Grigolo, Brunella; Kon, Elizaveta; Mariani, Erminia; Pratelli, Loredana; Marcacci, Maurilio

    2014-01-01

    PRP cryopreservation remains a controversial point. Our purpose was to investigate the effect of freezing/thawing on PRP molecule release, and its effects on the metabolism of chondrocytes and synoviocytes. PRP was prepared from 10 volunteers, and a half volume underwent one freezing/thawing cycle. IL-1β, HGF, PDGF AB/BB, TGF-β1, and VEGF were assayed 1 hour and 7 days after activation. Culture media of chondrocytes and synoviocytes were supplemented with fresh or frozen PRP, and, at 7 days, proliferation, gene expression, and secreted proteins levels were evaluated. Results showed that in the freeze-thawed PRP the immediate and delayed molecule releases were similar or slightly lower than those in fresh PRP. TGF-β1 and PDGF AB/BB concentrations were significantly reduced after freezing both at 1 hour and at 7 days, whereas HGF concentration was significantly lower in frozen PRP at 7 days. In fresh PRP IL-1β and HGF concentrations underwent a significant further increase after 7 days. Similar gene expression was found in chondrocytes cultured with both PRPs, whereas in synoviocytes HGF gene expression was higher in frozen PRP. PRP cryopreservation is a safe procedure, which sufficiently preserves PRP quality and its ability to induce proliferation and the production of ECM components in chondrocytes and synoviocytes. PMID:25136613

  10. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake

    NASA Astrophysics Data System (ADS)

    Stackhouse, Brandon T.; Vishnivetskaya, Tatiana A.; Layton, Alice; Chauhan, Archana; Pfiffner, Susan; Mykytczuk, Nadia C.; Sanders, Rebecca; Whyte, Lyle G.; Hedin, Lars; Saad, Nabil; Myneni, Satish; Onstott, Tullis C.

    2015-09-01

    Previous studies investigating organic-rich tundra have reported that increasing biodegradation of Arctic tundra soil organic carbon (SOC) under warming climate regimes will cause increasing CO2 and CH4 emissions. Organic-poor, mineral cryosols, which comprise 87% of Arctic tundra, are not as well characterized. This study examined biogeochemical processes of 1 m long intact mineral cryosol cores (1-6% SOC) collected in the Canadian high Arctic. Vertical profiles of gaseous and aqueous chemistry and microbial composition were related to surface CO2 and CH4 fluxes during a simulated spring/summer thaw under light versus dark and in situ versus water saturated treatments. CO2 fluxes attained 0.8 ± 0.4 mmol CO2 m-2 h-1 for in situ treatments, of which 85 ± 11% was produced by aerobic SOC oxidation, consistent with field observations and metagenomic analyses indicating aerobic heterotrophs were the dominant phylotypes. The Q10 values of CO2 emissions ranged from 2 to 4 over the course of thawing. CH4 degassing occurred during initial thaw; however, all cores were CH4 sinks at atmospheric concentration CH4. Atmospheric CH4 uptake rates ranged from -126 ± 77 to -207 ± 7 nmol CH4 m-2 h-1 with CH4 consumed between 0 and 35 cm depth. Metagenomic and gas chemistry analyses revealed that high-affinity Type II methanotrophic sequence abundance and activity were highest between 0 and 35 cm depth. Microbial sulfate reduction dominated the anaerobic processes, outcompeting methanogenesis for H2 and acetate. Fluxes, microbial community composition, and biogeochemical rates indicate that mineral cryosols of Axel Heiberg Island act as net CO2 sources and atmospheric CH4 sinks during summertime thaw under both in situ and water saturated states.

  11. Water quality and aquatic toxicity data of 2002 spring thaw conditions in the upper Animas River watershed, Silverton, Colorado

    USGS Publications Warehouse

    Fey, D.L.; Wirt, L.; Besser, J.M.; Wright, W.G.

    2002-01-01

    This report presents hydrologic, water-quality, and biologic toxicity data collected during the annual spring thaw of 2002 in the upper Animas River watershed near Silverton, Colorado. The spring-thaw runoff is a concern because elevated concentrations of iron oxyhydroxides can contain sorbed trace metals that are potentially toxic to aquatic life. Water chemistry of streams draining the San Juan Mountains is affected by natural acid drainage and weathering of hydrothermal altered volcanic rocks and by more than a century of mining activities. The timing of the spring-thaw sampling effort was determined by reviewing historical climate and stream-flow hydrographs and current weather conditions. Twenty-one water-quality samples were collected between 11:00 AM March 27, 2002 and 6:00 PM March 30, 2002 to characterize water chemistry at the A-72 gage on the upper Animas River below Silverton. Analyses of unfiltered water at the A-72 gage showed a relation between turbidity and total-recoverable iron concentrations, and showed diurnal patterns. Copper and lead concentrations were related to iron concentrations, indicating that these elements are probably sorbed to colloidal iron material. Calcium, strontium, and sulfate concentrations showed overall decreasing trends due to dilution, but the loads of those constituents increased over the sampling period. Nine water-quality samples were collected near the confluence of Mineral Creek with the Animas River, the confluence of Cement Creek with the Animas River, and on the upper Animas River above the confluence with Cement Creek (three samples at each site). A total of six bulk water-toxicity samples were collected before, during, and after the spring thaw from the Animas River at the A-72 gage site. Toxicity tests conducted with the bulk water samples on amphipods did not show strong differences in toxicity among the three sampling periods; however, toxicity of river water to fathead minnows showed a decreasing trend

  12. Nanocomposites of polymers with layered inorganic nanofillers: Antimicrobial activity, thermo-mechanical properties, morphology, and dispersion

    NASA Astrophysics Data System (ADS)

    Songtipya, Ponusa

    In the first part of the thesis, polyethylene/layered silicate nanocomposites that exhibit an antimicrobial activity were synthesized and studied. Their antimicrobial activity was designed to originate from non-leaching, novel cationic modifiers---amine-based surfactants---used as the organic-modification of the fillers. Specifically, PE/organically-modified montmorillonite ( mmt) nanocomposites were prepared via melt-processing, and simultaneous dispersion and antimicrobial activity was designed by proper choice of the fillers' organic modification. The antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum ). Various mmt-based organofillers, which only differ in the type or amount of their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the fillers themselves and the respective nanocomposites. A comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants. An attempt to improve the thermomechanical reinforcement of PE/mmt nanocomposites while maintaining their antimicrobial activity, was also carried out by combining two different organically modified montmorillonites. However, a uniform microscopic dispersion could not be achieved through this approach. In the second part of this thesis, a number of fundamental studies relating to structure-property relations in nanocomposites were carried out, towards unveiling strategies that can concurrently optimize selected properties of polymers by the addition of nanofillers. Specifically, the dispersion-crystallinity-reinforcement relations in HDPE/mmt nanocomposites was investigated. The influence of a functional HDPE compatibilizer

  13. Comparison of thawing and freezing dark energy parametrizations

    NASA Astrophysics Data System (ADS)

    Pantazis, G.; Nesseris, S.; Perivolaropoulos, L.

    2016-05-01

    Dark energy equation of state w (z ) parametrizations with two parameters and given monotonicity are generically either convex or concave functions. This makes them suitable for fitting either freezing or thawing quintessence models but not both simultaneously. Fitting a data set based on a freezing model with an unsuitable (concave when increasing) w (z ) parametrization [like Chevallier-Polarski-Linder (CPL)] can lead to significant misleading features like crossing of the phantom divide line, incorrect w (z =0 ), incorrect slope, etc., that are not present in the underlying cosmological model. To demonstrate this fact we generate scattered cosmological data at both the level of w (z ) and the luminosity distance DL(z ) based on either thawing or freezing quintessence models and fit them using parametrizations of convex and of concave type. We then compare statistically significant features of the best fit w (z ) with actual features of the underlying model. We thus verify that the use of unsuitable parametrizations can lead to misleading conclusions. In order to avoid these problems it is important to either use both convex and concave parametrizations and select the one with the best χ2 or use principal component analysis thus splitting the redshift range into independent bins. In the latter case, however, significant information about the slope of w (z ) at high redshifts is lost. Finally, we propose a new family of parametrizations w (z )=w0+wa(z/1 +z )n which generalizes the CPL and interpolates between thawing and freezing parametrizations as the parameter n increases to values larger than 1.

  14. Comparison of Plasma Activation of Thin Water Layers by Direct and Remote Plasma Sources

    NASA Astrophysics Data System (ADS)

    Kushner, Mark

    2014-10-01

    Plasma activation of liquids is now being investigated for a variety of biomedical applications. The plasma sources used for this activation can be generally classified as direct (the plasma is in contact with the surface of the liquid) or remote (the plasma does not directly touch the liquid). The direct plasma source may be a dielectric barrier discharge (DBD) where the surface of the liquid is a floating electrode or a plasma jet in which the ionization wave forming the plasma plume reaches the liquid. The remote plasma source may be a DBD with electrodes electrically isolated from the liquid or a plasma jet in which the ionization wave in the plume does not reach the liquid. In this paper, a comparison of activation of thin water layers on top of tissue, as might be encountered in wound healing, will be discussed using results from numerical investigations. We used the modeling platform nonPDPSIM to simulate direct plasma activation of thin water layers using DBDs and remote activation using plasma jets using up to hundreds of pulses. The DBDs are sustained in humid air while the plasma jets consist of He/O2 mixtures flowed into humid air. For similar number of pulses and energy deposition, the direct DBD plasma sources produce more acidification and higher production of nitrates/nitrites in the liquid. This is due to the accumulation of NxOy plasma jets, the convective flow removes many of these species prior to their diffusing into the water or reacting to form higher nitrogen oxides. This latter effect is sensitive to the repetition rate which determines whether reactive species formed during prior pulses overlap with newly produced reactive species. in the gas phase. In the plasma jets, the convective flow removes many of these species prior to their diffusing into the water or reacting to form higher nitrogen oxides. This latter effect is sensitive to the repetition rate which determines whether reactive species formed during prior pulses overlap with

  15. Evaluation of Physicochemical Deterioration and Lipid Oxidation of Beef Muscle Affected by Freeze-thaw Cycles.

    PubMed

    Rahman, M H; Hossain, M M; Rahman, S M E; Amin, M R; Oh, Deog-Hwan

    2015-01-01

    This study was performed to explore the deterioration of physicochemical quality of beef hind limb during frozen storage at -20℃, affected by repeated freeze-thaw cycles. The effects of three successive freeze-thaw cycles on beef hind limb were investigated comparing with unfrozen beef muscle for 80 d by keeping at -20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to select the best one on the basis of deterioration of physicochemical properties of beef. As the number of repeated freeze-thaw cycles increased, drip loss decreased and water holding capacity (WHC) increased (p<0.05) till two cycles and then decreased. Cooking loss increased in cycle one and three but decreased in cycle two. Moreover, drip loss, WHC and cooking loss affected (p<0.05) by thawing methods within the cycles. However, pH value decreased (p<0.05), but peroxide value (p<0.05), free fatty acids value (p<0.05) and TBARS value increased (p<0.05) significantly as the number of repeated freeze-thaw cycles increased. Moreover, significant (p<0.05) interactive effects were found among the thawing methods and repeated cycles. As a result, freeze-thaw cycles affected the physicochemical quality of beef muscle, causing the degradation of its quality. PMID:26877637

  16. Thermographic studies of phantom and canine kidneys thawed by microwave radiation

    SciTech Connect

    Schmehl, M.K.; Graham, E.F.; Kilkowski, S.M. )

    1990-06-01

    Whole organs, such as kidneys, must be thawed quickly and uniformly to prevent damage during thawing due to excessive heating. Electromagnetic heating with microwaves thaws the kidneys quickly but frequently produces hot spots with heat damage. To study heat damage, phantom gelatin kidneys with different dielectric constants and canine kidneys perfused with 12.5% glycerol, ethylene glycol, or dimethyl sulfoxide before freezing were microwave thawed, and the interior temperature was measured by thermography. Phantom kidneys were thawed free standing and canine kidneys were either free standing or packed in a gel mixture. Both phantom and canine kidneys were split symmetrically and separated with a sheet of Styrofoam to facilitate immediate separation and evaluation of the halves after thawing (approximately 3 sec). All the phantoms, regardless of dielectric properties, had areas less than 0 degrees C or greater than 37 degrees C after thawing. The free-standing canine kidneys and the gel-packed ethylene glycol-perfused kidneys had frozen areas (less than 0 degrees C) and hot spots (greater than 37 degrees C). However, glycerol- and dimethyl sulfoxide-perfused kidneys packed in gel before thawing had no areas less than 0 degrees C or greater than 37 degrees C. Altering the geometry from a kidney shape to a cylindrical shape with increased volume improved the uniformity of thawing and was more effective than altering the dielectric constant over the range evaluated.

  17. Evaluation of Physicochemical Deterioration and Lipid Oxidation of Beef Muscle Affected by Freeze-thaw Cycles

    PubMed Central

    Rahman, M. H.; Hossain, M. M.; Rahman, S. M. E.; Amin, M. R.; Oh, Deog-Hwan

    2015-01-01

    This study was performed to explore the deterioration of physicochemical quality of beef hind limb during frozen storage at −20℃, affected by repeated freeze-thaw cycles. The effects of three successive freeze-thaw cycles on beef hind limb were investigated comparing with unfrozen beef muscle for 80 d by keeping at −20±1℃. The freeze-thaw cycles were subjected to three thawing methods and carried out to select the best one on the basis of deterioration of physicochemical properties of beef. As the number of repeated freeze-thaw cycles increased, drip loss decreased and water holding capacity (WHC) increased (p<0.05) till two cycles and then decreased. Cooking loss increased in cycle one and three but decreased in cycle two. Moreover, drip loss, WHC and cooking loss affected (p<0.05) by thawing methods within the cycles. However, pH value decreased (p<0.05), but peroxide value (p<0.05), free fatty acids value (p<0.05) and TBARS value increased (p<0.05) significantly as the number of repeated freeze-thaw cycles increased. Moreover, significant (p<0.05) interactive effects were found among the thawing methods and repeated cycles. As a result, freeze-thaw cycles affected the physicochemical quality of beef muscle, causing the degradation of its quality. PMID:26877637

  18. Reduction of Free Edge Peeling Stress of Laminated Composites Using Active Piezoelectric Layers

    PubMed Central

    Huang, Bin; Kim, Heung Soo

    2014-01-01

    An analytical approach is proposed in the reduction of free edge peeling stresses of laminated composites using active piezoelectric layers. The approach is the extended Kantorovich method which is an iterative method. Multiterms of trial function are employed and governing equations are derived by taking the principle of complementary virtual work. The solutions are obtained by solving a generalized eigenvalue problem. By this approach, the stresses automatically satisfy not only the traction-free boundary conditions, but also the free edge boundary conditions. Through the iteration processes, the free edge stresses converge very quickly. It is found that the peeling stresses generated by mechanical loadings are significantly reduced by applying a proper electric field to the piezoelectric actuators. PMID:25025088

  19. Some enzyme activities associated with the chlorophyll containing layers of the immature barley pericarp.

    PubMed

    Duffus, C M; Rosie, R

    1973-09-01

    Some photosynthetic and biochemical properties of the chlorophyl containing layers of the pericarp of developing barley have been investigated. The tissue changes from pale green to bright green early in development, chlorophyll disappearing only at the later stages of maturity. It contains chloroplasts and probably amyloplasts and starch bearing chloroplasts. It is capable of high rates of light dependent oxygen evolution. It has been shown that the enzyme phosphoenol pyruvate carboxylase (EC 4.1.1.31) is present in the pericarp and is 100 times as active in carbon dioxide fixation as ribulose diphosphate carboxylase (EC 4.1.1.39). Other enzymes present in the pericarp are phosphoenol pyruvate synthetase, pyrophosphatase (EC 3.6.1.1), malate NAD and NADP dehydrogenases (EC 1.1.1.37), malic enzyme (EC 1.1.1.40), and fructose 1,6 diphosphatase (EC 3.1.3.11). PMID:24458756

  20. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  1. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems. PMID:27124717

  2. Radiative transfer theory for active remote sensing of a layer of nonspherical particles

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1984-01-01

    The radiative transfer theory is applied to calculate the scattering by a layer of randomly positioned and oriented nonspherical particles. The scattering amplitude functions of each individual particle are calculated with Waterman's T matrix method, which utilizes vector spherical wave functions for expansion of incident, scattered, and surface fields. The orientation of the particles is described by a probability density function of the Eulerian angles of rotation. A rotation matrix is used to relate the T matrix of the principal frame to that of the natural frame of the particle. The extinction matrix and phase matrix of the radiative transfer equations are expressed in terms of the T matrix elements. The extinction matrix for nonspherical particles is generally nondiagonal. There are only two attenuation rates in a specified direction of propagation. The radiative transfer equations are solved by an iterative method to first order in albedo. Numerical results are illustrated as functions of incidence angle and frequency with applications to active remote sensing.

  3. Constraining thawing and freezing models with cluster number counts

    SciTech Connect

    Devi, N. Chandrachani; Gonzalez, J.E.; Alcaniz, J.S. E-mail: javierernesto@on.br

    2014-06-01

    Measurements of the cluster abundance as a function of mass and redshift provide an important cosmological test that probe not only the expansion rate but also the growth of perturbations. In this paper we adopt a scalar field scenario which admits both thawing and freezing solutions from an appropriate choice of the model parameters and derived all relevant expressions to calculate the mass function and the cluster number density. We discuss the ability of cluster observations to distinguish between these scalar field behaviors and the standard ΛCDM scenario by considering the eROSITA and SPT cluster surveys.

  4. Vertical structure and biological activity in the bottom nepheloid layer of the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Townsend, D. W.; Mayer, L. M.; Dortch, Q.; Spinrad, R. W.

    1992-02-01

    The bottom nepheloid layer (BNL) was investigated at a number of hydrographically different sites in the Gulf of Maine during August 1987. Observations were based on hydrographic measurements made from a surface ship and closely-spaced, near-bottom samples collected using a submersible. The BNL generally occurred as a turbid layer which extended 15-30 m above the bottom (m.a.b.), as indicated by in situ light transmission and increased concentrations of total suspended particulate matter (SPM). Phytoplankton pigments, electron transport activity (ETS), extracellular proteolytic enzyme activity (EPA), concentrations of particulate organic carbon and nitrogen (POC and PON), and protein were generally elevated in the BNL. They also displayed vertical distribution patterns in relation to near-bottom depth zones of increased abundances of zooplankton, bacteria and autotrophic and heterotrophic nanoplankton. We describe two zones of biological significance in the BNL. The first, at about 20 m.a.b. at most stations, was associated with greater zooplankton biomass (80 μm) and copepod abundances than those depth strata either above or below, and appeared to be related to a higher quality of food particles near the top of the BNL. A second zone was seen 1-3 m.a.b. at most stations in association with the greatest levels of SPM. This deeper zone was generally of a poorer food quality, as reflected by ratios of protein-N to total-N and showed increases in cell-specific EPA. We discuss the areal variability of the BNL in the Gulf of Maine as well as the biological enhancement and vertical structure as likely influenced by both physical and biological processes.

  5. Many-body microhydrodynamics of colloidal particles with active boundary layers

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Ghose, Somdeb; Adhikari, R.

    2015-06-01

    Colloidal particles with active boundary layers—regions surrounding the particles where non-equilibrium processes produce large velocity gradients—are common in many physical, chemical and biological contexts. The velocity or stress at the edge of the boundary layer determines the exterior fluid flow and, hence, the many-body interparticle hydrodynamic interaction. Here, we present a method to compute the many-body hydrodynamic interaction between N spherical active particles induced by their exterior microhydrodynamic flow. First, we use a boundary integral representation of the Stokes equation to eliminate bulk fluid degrees of freedom. Then, we expand the boundary velocities and tractions of the integral representation in an infinite-dimensional basis of tensorial spherical harmonics and, on enforcing boundary conditions in a weak sense on the surface of each particle, obtain a system of linear algebraic equations for the unknown expansion coefficients. The truncation of the infinite series, fixed by the degree of accuracy required, yields a finite linear system that can be solved accurately and efficiently by iterative methods. The solution linearly relates the unknown rigid body motion to the known values of the expansion coefficients, motivating the introduction of propulsion matrices. These matrices completely characterize hydrodynamic interactions in active suspensions just as mobility matrices completely characterize hydrodynamic interactions in passive suspensions. The reduction in the dimensionality of the problem, from a three-dimensional partial differential equation to a two-dimensional integral equation, allows for dynamic simulations of hundreds of thousands of active particles on multi-core computational architectures. In our simulation of 104 active colloidal particle in a harmonic trap, we find that the necessary and sufficient ingredients to obtain steady-state convective currents, the so-called ‘self-assembled pump’, are (a) one

  6. Layer-Specific fMRI Responses to Excitatory and Inhibitory Neuronal Activities in the Olfactory Bulb

    PubMed Central

    Poplawsky, Alexander John; Fukuda, Mitsuhiro; Murphy, Matthew

    2015-01-01

    High-resolution functional magnetic resonance imaging (fMRI) detects localized neuronal activity via the hemodynamic response, but it is unclear whether it accurately identifies neuronal activity specific to individual layers. To address this issue, we preferentially evoked neuronal activity in superficial, middle, and deep layers of the rat olfactory bulb: the glomerular layer by odor (5% amyl acetate), the external plexiform layer by electrical stimulation of the lateral olfactory tract (LOT), and the granule cell layer by electrical stimulation of the anterior commissure (AC), respectively. Electrophysiology, laser-Doppler flowmetry of cerebral blood flow (CBF), and blood oxygenation level-dependent (BOLD) and cerebral blood volume-weighted (CBV) fMRI at 9.4 T were performed independently. We found that excitation of inhibitory granule cells by stimulating LOT and AC decreased the spontaneous multi-unit activities of excitatory mitral cells and subsequently increased CBF, CBV, and BOLD signals. Odor stimulation also increased the hemodynamic responses. Furthermore, the greatest CBV fMRI responses were discretely separated into the same layers as the evoked neuronal activities for all three stimuli, whereas BOLD was poorly localized with some exception to the poststimulus undershoot. In addition, the temporal dynamics of the fMRI responses varied depending on the stimulation pathway, even within the same layer. These results indicate that the vasculature is regulated within individual layers and CBV fMRI has a higher fidelity to the evoked neuronal activity compared with BOLD. Our findings are significant for understanding the neuronal origin and spatial specificity of hemodynamic responses, especially for the interpretation of laminar-resolution fMRI. SIGNIFICANCE STATEMENT Functional magnetic resonance imaging (fMRI) is a noninvasive, in vivo technique widely used to map function of the entire brain, including deep structures, in animals and humans. However, it

  7. Kinetic Monte Carlo simulations of thermally activated magnetization reversal in dual-layer Exchange Coupled Composite recording media

    NASA Astrophysics Data System (ADS)

    Plumer, M. L.; Almudallal, A. M.; Mercer, J. I.; Whitehead, J. P.; Fal, T. J.

    The kinetic Monte Carlo (KMC) method developed for thermally activated magnetic reversal processes in single-layer recording media has been extended to study dual-layer Exchange Coupled Composition (ECC) media used in current and next generations of disc drives. The attempt frequency is derived from the Langer formalism with the saddle point determined using a variant of Bellman Ford algorithm. Complication (such as stagnation) arising from coupled grains having metastable states are addressed. MH-hysteresis loops are calculated over a wide range of anisotropy ratios, sweep rates and inter-layer coupling parameter. Results are compared with standard micromagnetics at fast sweep rates and experimental results at slow sweep rates.

  8. Unpinning the Open-Circuit Voltage in Organic Solar Cells through Tuning Ternary Blend Active Layer Morphology

    NASA Astrophysics Data System (ADS)

    Khlyabich, Petr; Thompson, Barry; Loo, Yueh-Lin

    2015-03-01

    The use of ternary, as opposed to binary, blends having complementary absorption in active layers of organic bulk heterojunction solar cells is a simple approach to increase overall light absorption. While the open-circuit voltage (Voc) of such solar cells have generally been shown to be pinned by the smallest energy level difference between the donor and acceptor constituents, there have been materials systems, that when incorporated into active layers of solar cells, exhibit composition dependent and tunable Voc. Herein, we demonstrate that this Voc tunability in ternary blend solar cells is correlated with the morphology of the active layer. Chemical compatibility between the constituents in the blend, as probed by grazing-incidence X-ray diffraction (GIXD) measurements, affords Voc tuning. The constituents need not ``co-crystallize'' limited miscibility between the constituents in the active layers of solar cells affords Voc tunability. Poor physical interactions between the constituent domains within the active layers, on the other hand, result in devices that exhibit an invariant Voc that is pinned by the smallest energy level difference between the donor(s) and the acceptor(s). Our morphological studies thus support the proposed alloying model that was put forth originally.

  9. Estimations of moisture content in the active layer in an Arctic ecosystem by using ground-penetrating radar profiling

    NASA Astrophysics Data System (ADS)

    Gacitúa, Guisella; Tamstorf, Mikkel Peter; Kristiansen, Søren Munch; Uribe, José Andrés

    2012-04-01

    We applied high-frequency GPR at a study site in the high arctic ecosystem of Northeast Greenland to evaluate its usefulness in assessing depth of, and water content in, the active layer at Zackenberg Valley (74°N; 20°W) to evaluate its usefulness in the high arctic ecosystems. The study site includes different vegetation types, and it well represents of the entire valley, for which we aimed to determine the conditions and characteristics that influence the GPR performance in the active layer. The spatial distribution of moisture content along the transect studied was estimated using GPR data (400 MHz antenna), depth to permafrost, soil samples and vegetation observations. Vertical distribution of the water content in the unfrozen soil bulk was predicted for several points on the transect by combining data that influence the behavior of the radar waves with that of capacitive moisture probes. The statistical models resulted to be highly significant, thus assuming common conditions of the soil to the classified vegetation, we can obtain from the GPR data, truthful estimations of water content, and, moreover, we can predict the distribution to the bottom of the active layer. Hence, we conclude that GPR is a viable option for improving active layer spatial quantification of water contents that can be used to assess changes in the active layer in arctic regions.

  10. Surface modification of polypropylene non-woven fibers with TiO2 nanoparticles via layer-by-layer self assembly method: Preparation and photocatalytic activity.

    PubMed

    Pavasupree, Suttipan; Dubas, Stephan T; Rangkupan, Ratthapol

    2015-11-01

    Polypropylene (PP) meltblown fibers were coated with titanium dioxide (TiO2) nanoparticles using layer-by-layer (LbL) deposition technique. The fibers were first modified with 3 layers of poly(4-styrenesulfonic acid) (PSS) and poly(diallyl-dimethylammonium chloride) (PDADMAC) to improve the anchoring of the TiO2 nanoparticle clusters. PDADMAC, which is positively charged, was then used as counter polyelectrolyte in tandem with anionic TiO2 nanoparticles to construct TiO2/PDADMAC bilayer in the LbL fashion. The number of deposited TiO2/PDADMAC layers was varied from 1 to 7 bilayer, and could be used to adjust TiO2 loading. The LbL technique showed higher TiO2 loading efficiency than the impregnation approach. The modified fibers were tested for their photocatalytic activity against a model dye, Methylene Blue (MB). Results showed that the TiO2 modified fibers exhibited excellent photocatalytic activity efficiency similar to that of TiO2 powder dispersed in solution. The deposition of TiO2 3 bilayer on the PP substrate was sufficient to produce nanocomposite fibers that could bleach the MB solution in less than 4hr. TiO2-LbL constructions also preserved TiO2 adhesion on substrate surface after 1cycle of photocatalytic test. Successive photocatalytic test showed decline in MB reduction rate with loss of TiO2 particles from the substrate outer surface. However, even in the third cycle, the TiO2 modified fibers are still moderately effective as it could remove more than 95% of MB after 8hr of treatment. PMID:26574088

  11. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  12. Recent low-latitude freeze thaw on Mars

    NASA Astrophysics Data System (ADS)

    Page, David P.

    2007-07-01

    Outside polar latitudes, features corresponding to surface thaw have yet to be identified on Mars. The youthful gully landforms observed at mid-high latitude [Malin, M., Edgett, K., 2000. Science 288, 2330-2335] are the nearest candidate, but the source (and nature) of the gully carving agent remains controversial [e.g., Musselwhite, D.S., Swindle, T.D., Lunine, J.I., 2001. Geophys. Res. Lett. 28, 1283-1285; Mellon, M.T., Phillips, R.J., 2001. J. Geophys. Res. 106, 1-15; Knauth, L.P., Burt, D.M., 2002. Icarus 158, 267-271; Costard, F., Forget, F., Mangold, N., Peulvast, J.P., 2002. Science 295, 110-113; Christensen, P.R., 2003. Nature 422, 45-48; Treiman, A.H., 2003. J. Geophys. Res. 108]. At higher obliquity than the present epoch, near-surface ground ice should be present globally [Mellon, M.T., Jakosky, B.M., 1995. J. Geophys. Res. 100 (E6), 11781-11799], populated by condensation of atmospheric water vapour in the top few metres of the regolith, or emplaced as dusty ice sheets reaching down towards the equator. The latitudinal restriction of these gullies to regions poleward of ±30° appears to argue against a thaw component to their formation—since ground ice is present and stable at all latitudes at high obliquity, the current (low) obliquity regime should result in ground ice thaw at low latitudes, where insolation and daytime temperatures are currently greatest, and this is not observed. A previously undescribed meltwater sequence in the Cerberus plains, at 20° N/187° E, shows that comparable, but much more continuous, and mappable melting and surface runoff have occurred i