An Experimental Method for the Active Learning of Greedy Algorithms
ERIC Educational Resources Information Center
Velazquez-Iturbide, J. Angel
2013-01-01
Greedy algorithms constitute an apparently simple algorithm design technique, but its learning goals are not simple to achieve.We present a didacticmethod aimed at promoting active learning of greedy algorithms. The method is focused on the concept of selection function, and is based on explicit learning goals. It mainly consists of an…
Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Volpi, Michele; Copa, Loris
2010-05-01
The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of
An Active Learning Algorithm for Control of Epidural Electrostimulation.
Desautels, Thomas A; Choe, Jaehoon; Gad, Parag; Nandra, Mandheerej S; Roy, Roland R; Zhong, Hui; Tai, Yu-Chong; Edgerton, V Reggie; Burdick, Joel W
2015-10-01
Epidural electrostimulation has shown promise for spinal cord injury therapy. However, finding effective stimuli on the multi-electrode stimulating arrays employed requires a laborious manual search of a vast space for each patient. Widespread clinical application of these techniques would be greatly facilitated by an autonomous, algorithmic system which choses stimuli to simultaneously deliver effective therapy and explore this space. We propose a method based on GP-BUCB, a Gaussian process bandit algorithm. In n = 4 spinally transected rats, we implant epidural electrode arrays and examine the algorithm's performance in selecting bipolar stimuli to elicit specified muscle responses. These responses are compared with temporally interleaved intra-animal stimulus selections by a human expert. GP-BUCB successfully controlled the spinal electrostimulation preparation in 37 testing sessions, selecting 670 stimuli. These sessions included sustained autonomous operations (ten-session duration). Delivered performance with respect to the specified metric was as good as or better than that of the human expert. Despite receiving no information as to anatomically likely locations of effective stimuli, GP-BUCB also consistently discovered such a pattern. Further, GP-BUCB was able to extrapolate from previous sessions' results to make predictions about performance in new testing sessions, while remaining sufficiently flexible to capture temporal variability. These results provide validation for applying automated stimulus selection methods to the problem of spinal cord injury therapy. PMID:25974925
Gamma-ray active galactic nucleus type through machine-learning algorithms
NASA Astrophysics Data System (ADS)
Hassan, T.; Mirabal, N.; Contreras, J. L.; Oya, I.
2013-01-01
The Fermi Gamma-ray Space Telescope (Fermi) is producing the most detailed inventory of the gamma-ray sky to date. Despite tremendous achievements approximately 25 per cent of all Fermi extragalactic sources in the Second Fermi Large Area Telescope Catalogue (2FGL) are listed as active galactic nuclei (AGN) of uncertain type. Typically, these are suspected blazar candidates without a conclusive optical spectrum or lacking spectroscopic observations. Here, we explore the use of machine-learning algorithms - random forests and support vector machines - to predict specific AGN subclass based on observed gamma-ray spectral properties. After training and testing on identified/associated AGN from the 2FGL we find that 235 out of 269 AGN of uncertain type have properties compatible with gamma-ray BL Lacertae and flat-spectrum radio quasars with accuracy rates of 85 per cent. Additionally, direct comparison of our results with class predictions made after following the infrared colour-colour space of Massaro et al. shows that the agreement rate is over four-fifths for 54 overlapping sources, providing independent cross-validation. These results can help tailor follow-up spectroscopic programmes and inform future pointed surveys with ground-based Cherenkov telescopes.
Cascade Error Projection Learning Algorithm
NASA Technical Reports Server (NTRS)
Duong, T. A.; Stubberud, A. R.; Daud, T.
1995-01-01
A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.
Algorithm-development activities
NASA Technical Reports Server (NTRS)
Carder, Kendall L.
1994-01-01
The task of algorithm-development activities at USF continues. The algorithm for determining chlorophyll alpha concentration, (Chl alpha) and gelbstoff absorption coefficient for SeaWiFS and MODIS-N radiance data is our current priority.
Constructive neural network learning algorithms
Parekh, R.; Yang, Jihoon; Honavar, V.
1996-12-31
Constructive Algorithms offer an approach for incremental construction of potentially minimal neural network architectures for pattern classification tasks. These algorithms obviate the need for an ad-hoc a-priori choice of the network topology. The constructive algorithm design involves alternately augmenting the existing network topology by adding one or more threshold logic units and training the newly added threshold neuron(s) using a stable variant of the perception learning algorithm (e.g., pocket algorithm, thermal perception, and barycentric correction procedure). Several constructive algorithms including tower, pyramid, tiling, upstart, and perception cascade have been proposed for 2-category pattern classification. These algorithms differ in terms of their topological and connectivity constraints as well as the training strategies used for individual neurons.
Ensemble algorithms in reinforcement learning.
Wiering, Marco A; van Hasselt, Hado
2008-08-01
This paper describes several ensemble methods that combine multiple different reinforcement learning (RL) algorithms in a single agent. The aim is to enhance learning speed and final performance by combining the chosen actions or action probabilities of different RL algorithms. We designed and implemented four different ensemble methods combining the following five different RL algorithms: Q-learning, Sarsa, actor-critic (AC), QV-learning, and AC learning automaton. The intuitively designed ensemble methods, namely, majority voting (MV), rank voting, Boltzmann multiplication (BM), and Boltzmann addition, combine the policies derived from the value functions of the different RL algorithms, in contrast to previous work where ensemble methods have been used in RL for representing and learning a single value function. We show experiments on five maze problems of varying complexity; the first problem is simple, but the other four maze tasks are of a dynamic or partially observable nature. The results indicate that the BM and MV ensembles significantly outperform the single RL algorithms. PMID:18632380
The Dropout Learning Algorithm
Baldi, Pierre; Sadowski, Peter
2014-01-01
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879
Cascade Error Projection: A New Learning Algorithm
NASA Technical Reports Server (NTRS)
Duong, T. A.; Stubberud, A. R.; Daud, T.; Thakoor, A. P.
1995-01-01
A new neural network architecture and a hardware implementable learning algorithm is proposed. The algorithm, called cascade error projection (CEP), handles lack of precision and circuit noise better than existing algorithms.
Natural gradient learning algorithms for RBF networks.
Zhao, Junsheng; Wei, Haikun; Zhang, Chi; Li, Weiling; Guo, Weili; Zhang, Kanjian
2015-02-01
Radial basis function (RBF) networks are one of the most widely used models for function approximation and classification. There are many strange behaviors in the learning process of RBF networks, such as slow learning speed and the existence of the plateaus. The natural gradient learning method can overcome these disadvantages effectively. It can accelerate the dynamics of learning and avoid plateaus. In this letter, we assume that the probability density function (pdf) of the input and the activation function are gaussian. First, we introduce natural gradient learning to the RBF networks and give the explicit forms of the Fisher information matrix and its inverse. Second, since it is difficult to calculate the Fisher information matrix and its inverse when the numbers of the hidden units and the dimensions of the input are large, we introduce the adaptive method to the natural gradient learning algorithms. Finally, we give an explicit form of the adaptive natural gradient learning algorithm and compare it to the conventional gradient descent method. Simulations show that the proposed adaptive natural gradient method, which can avoid the plateaus effectively, has a good performance when RBF networks are used for nonlinear functions approximation. PMID:25380332
The annealing robust backpropagation (ARBP) learning algorithm.
Chuang, C C; Su, S F; Hsiao, C C
2000-01-01
Multilayer feedforward neural networks are often referred to as universal approximators. Nevertheless, if the used training data are corrupted by large noise, such as outliers, traditional backpropagation learning schemes may not always come up with acceptable performance. Even though various robust learning algorithms have been proposed in the literature, those approaches still suffer from the initialization problem. In those robust learning algorithms, the so-called M-estimator is employed. For the M-estimation type of learning algorithms, the loss function is used to play the role in discriminating against outliers from the majority by degrading the effects of those outliers in learning. However, the loss function used in those algorithms may not correctly discriminate against those outliers. In this paper, the annealing robust backpropagation learning algorithm (ARBP) that adopts the annealing concept into the robust learning algorithms is proposed to deal with the problem of modeling under the existence of outliers. The proposed algorithm has been employed in various examples. Those results all demonstrated the superiority over other robust learning algorithms independent of outliers. In the paper, not only is the annealing concept adopted into the robust learning algorithms but also the annealing schedule k/t was found experimentally to achieve the best performance among other annealing schedules, where k is a constant and is the epoch number. PMID:18249835
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
ERIC Educational Resources Information Center
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
Collet, Timothé; Pietquin, Olivier
2015-01-01
Active learning is the problem of interactively constructing the training set used in classification in order to reduce its size. It would ideally successively add the instance-label pair that decreases the classification error most. However, the effect of the addition of a pair is not known in advance. It can still be estimated with the pairs already in the training set. The online minimization of the classification error involves a tradeoff between exploration and exploitation. This is a common problem in machine learning for which multiarmed bandit, using the approach of Optimism int the Face of Uncertainty, has proven very efficient these last years. This paper introduces three algorithms for the active learning problem in classification using Optimism in the Face of Uncertainty. Experiments lead on built-in problems and real world datasets demonstrate that they compare positively to state-of-the-art methods. PMID:26681934
Generation of attributes for learning algorithms
Hu, Yuh-Jyh; Kibler, D.
1996-12-31
Inductive algorithms rely strongly on their representational biases. Constructive induction can mitigate representational inadequacies. This paper introduces the notion of a relative gain measure and describes a new constructive induction algorithm (GALA) which is independent of the learning algorithm. Unlike most previous research on constructive induction, our methods are designed as preprocessing step before standard machine learning algorithms are applied. We present the results which demonstrate the effectiveness of GALA on artificial and real domains for several learners: C4.5, CN2, perceptron and backpropagation.
Parameter incremental learning algorithm for neural networks.
Wan, Sheng; Banta, Larry E
2006-11-01
In this paper, a novel stochastic (or online) training algorithm for neural networks, named parameter incremental learning (PIL) algorithm, is proposed and developed. The main idea of the PIL strategy is that the learning algorithm should not only adapt to the newly presented input-output training pattern by adjusting parameters, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly presented as the first-order approximate solution to an optimization problem, where the performance index is the combination of proper measures of preservation and adaptation. The PIL algorithms for the multilayer perceptron (MLP) are subsequently derived. Numerical studies show that for all the three benchmark problems used in this paper the PIL algorithm for MLP is measurably superior to the standard online backpropagation (BP) algorithm and the stochastic diagonal Levenberg-Marquardt (SDLM) algorithm in terms of the convergence speed and accuracy. Other appealing features of the PIL algorithm are that it is computationally as simple as the BP algorithm, and as easy to use as the BP algorithm. It, therefore, can be applied, with better performance, to any situations where the standard online BP algorithm is applicable. PMID:17131658
Automating parallel implementation of neural learning algorithms.
Rana, O F
2000-06-01
Neural learning algorithms generally involve a number of identical processing units, which are fully or partially connected, and involve an update function, such as a ramp, a sigmoid or a Gaussian function for instance. Some variations also exist, where units can be heterogeneous, or where an alternative update technique is employed, such as a pulse stream generator. Associated with connections are numerical values that must be adjusted using a learning rule, and and dictated by parameters that are learning rule specific, such as momentum, a learning rate, a temperature, amongst others. Usually, neural learning algorithms involve local updates, and a global interaction between units is often discouraged, except in instances where units are fully connected, or involve synchronous updates. In all of these instances, concurrency within a neural algorithm cannot be fully exploited without a suitable implementation strategy. A design scheme is described for translating a neural learning algorithm from inception to implementation on a parallel machine using PVM or MPI libraries, or onto programmable logic such as FPGAs. A designer must first describe the algorithm using a specialised Neural Language, from which a Petri net (PN) model is constructed automatically for verification, and building a performance model. The PN model can be used to study issues such as synchronisation points, resource sharing and concurrency within a learning rule. Specialised constructs are provided to enable a designer to express various aspects of a learning rule, such as the number and connectivity of neural nodes, the interconnection strategies, and information flows required by the learning algorithm. A scheduling and mapping strategy is then used to translate this PN model onto a multiprocessor template. We demonstrate our technique using a Kohonen and backpropagation learning rules, implemented on a loosely coupled workstation cluster, and a dedicated parallel machine, with PVM libraries
ERIC Educational Resources Information Center
Jonassen, David H.
2002-01-01
Integrates contemporary theories of learning into a theory of learning as activity. Explains ecological psychology, changes in understanding of learning, activity systems and activity theory (including the integration of consciousness and activity), and activity structure; and discusses learning as a cognitive and social process. (LRW)
Clustering algorithms do not learn, but they can be learned
NASA Astrophysics Data System (ADS)
Brun, Marcel; Dougherty, Edward R.
2005-08-01
Pattern classification theory involves an error criterion, optimal classifiers, and a theory of learning. For clustering, there has historically been little theory; in particular, there has generally (but not always) been no learning. The key point is that clustering has not been grounded on a probabilistic theory. Recently, a clustering theory has been developed in the context of random sets. This paper discusses learning within that context, in particular, k- nearest-neighbor learning of clustering algorithms.
Active Learning with Irrelevant Examples
NASA Technical Reports Server (NTRS)
Mazzoni, Dominic; Wagstaff, Kiri L.; Burl, Michael
2006-01-01
Active learning algorithms attempt to accelerate the learning process by requesting labels for the most informative items first. In real-world problems, however, there may exist unlabeled items that are irrelevant to the user's classification goals. Queries about these points slow down learning because they provide no information about the problem of interest. We have observed that when irrelevant items are present, active learning can perform worse than random selection, requiring more time (queries) to achieve the same level of accuracy. Therefore, we propose a novel approach, Relevance Bias, in which the active learner combines its default selection heuristic with the output of a simultaneously trained relevance classifier to favor items that are likely to be both informative and relevant. In our experiments on a real-world problem and two benchmark datasets, the Relevance Bias approach significantly improved the learning rate of three different active learning approaches.
Initiative learning algorithm based on rough set
NASA Astrophysics Data System (ADS)
Wang, Guoyin; He, Xiao
2003-03-01
Rough set theory is emerging as a new tool for dealing with fuzzy and uncertain data. In this paper, a theory is developed to express, measure and process uncertain information and uncertain knowledge based on our result about the uncertainty measure of decision tables and decision rule systems. Based on Skowron"s propositional default rule generation algorithm, we develop an initiative learning model with rough set based initiative rule generation algorithm. Simulation results illustrate its efficiency.
On Learning Algorithms for Nash Equilibria
NASA Astrophysics Data System (ADS)
Daskalakis, Constantinos; Frongillo, Rafael; Papadimitriou, Christos H.; Pierrakos, George; Valiant, Gregory
Can learning algorithms find a Nash equilibrium? This is a natural question for several reasons. Learning algorithms resemble the behavior of players in many naturally arising games, and thus results on the convergence or non-convergence properties of such dynamics may inform our understanding of the applicability of Nash equilibria as a plausible solution concept in some settings. A second reason for asking this question is in the hope of being able to prove an impossibility result, not dependent on complexity assumptions, for computing Nash equilibria via a restricted class of reasonable algorithms. In this work, we begin to answer this question by considering the dynamics of the standard multiplicative weights update learning algorithms (which are known to converge to a Nash equilibrium for zero-sum games). We revisit a 3×3 game defined by Shapley [10] in the 1950s in order to establish that fictitious play does not converge in general games. For this simple game, we show via a potential function argument that in a variety of settings the multiplicative updates algorithm impressively fails to find the unique Nash equilibrium, in that the cumulative distributions of players produced by learning dynamics actually drift away from the equilibrium.
ERIC Educational Resources Information Center
Tipton, Tom, Ed.
1983-01-01
Presents a flow chart for naming inorganic compounds. Although it is not necessary for students to memorize rules, preliminary skills needed before using the chart are outlined. Also presents an activity in which the mass of an imaginary atom is determined using lead shot, Petri dishes, and a platform balance. (JN)
ERIC Educational Resources Information Center
Zayapragassarazan, Z.; Kumar, Santosh
2012-01-01
Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…
Paradigms for Realizing Machine Learning Algorithms.
Agneeswaran, Vijay Srinivas; Tonpay, Pranay; Tiwary, Jayati
2013-12-01
The article explains the three generations of machine learning algorithms-with all three trying to operate on big data. The first generation tools are SAS, SPSS, etc., while second generation realizations include Mahout and RapidMiner (that work over Hadoop), and the third generation paradigms include Spark and GraphLab, among others. The essence of the article is that for a number of machine learning algorithms, it is important to look beyond the Hadoop's Map-Reduce paradigm in order to make them work on big data. A number of promising contenders have emerged in the third generation that can be exploited to realize deep analytics on big data. PMID:27447253
Active Learning with Irrelevant Examples
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri; Mazzoni, Dominic
2009-01-01
An improved active learning method has been devised for training data classifiers. One example of a data classifier is the algorithm used by the United States Postal Service since the 1960s to recognize scans of handwritten digits for processing zip codes. Active learning algorithms enable rapid training with minimal investment of time on the part of human experts to provide training examples consisting of correctly classified (labeled) input data. They function by identifying which examples would be most profitable for a human expert to label. The goal is to maximize classifier accuracy while minimizing the number of examples the expert must label. Although there are several well-established methods for active learning, they may not operate well when irrelevant examples are present in the data set. That is, they may select an item for labeling that the expert simply cannot assign to any of the valid classes. In the context of classifying handwritten digits, the irrelevant items may include stray marks, smudges, and mis-scans. Querying the expert about these items results in wasted time or erroneous labels, if the expert is forced to assign the item to one of the valid classes. In contrast, the new algorithm provides a specific mechanism for avoiding querying the irrelevant items. This algorithm has two components: an active learner (which could be a conventional active learning algorithm) and a relevance classifier. The combination of these components yields a method, denoted Relevance Bias, that enables the active learner to avoid querying irrelevant data so as to increase its learning rate and efficiency when irrelevant items are present. The algorithm collects irrelevant data in a set of rejected examples, then trains the relevance classifier to distinguish between labeled (relevant) training examples and the rejected ones. The active learner combines its ranking of the items with the probability that they are relevant to yield a final decision about which item
TAO-robust backpropagation learning algorithm.
Pernía-Espinoza, Alpha V; Ordieres-Meré, Joaquín B; Martínez-de-Pisón, Francisco J; González-Marcos, Ana
2005-03-01
In several fields, as industrial modelling, multilayer feedforward neural networks are often used as universal function approximations. These supervised neural networks are commonly trained by a traditional backpropagation learning format, which minimises the mean squared error (mse) of the training data. However, in the presence of corrupted data (outliers) this training scheme may produce wrong models. We combine the benefits of the non-linear regression model tau-estimates [introduced by Tabatabai, M. A. Argyros, I. K. Robust Estimation and testing for general nonlinear regression models. Applied Mathematics and Computation. 58 (1993) 85-101] with the backpropagation algorithm to produce the TAO-robust learning algorithm, in order to deal with the problems of modelling with outliers. The cost function of this approach has a bounded influence function given by the weighted average of two psi functions, one corresponding to a very robust estimate and the other to a highly efficient estimate. The advantages of the proposed algorithm are studied with an example. PMID:15795116
Dictionary Learning Algorithms for Sparse Representation
Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J.
2010-01-01
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error). PMID:12590811
Learning algorithms for stack filter classifiers
Porter, Reid B; Hush, Don; Zimmer, Beate G
2009-01-01
Stack Filters define a large class of increasing filter that is used widely in image and signal processing. The motivations for using an increasing filter instead of an unconstrained filter have been described as: (1) fast and efficient implementation, (2) the relationship to mathematical morphology and (3) more precise estimation with finite sample data. This last motivation is related to methods developed in machine learning and the relationship was explored in an earlier paper. In this paper we investigate this relationship by applying Stack Filters directly to classification problems. This provides a new perspective on how monotonicity constraints can help control estimation and approximation errors, and also suggests several new learning algorithms for Boolean function classifiers when they are applied to real-valued inputs.
Cascade Error Projection: An Efficient Hardware Learning Algorithm
NASA Technical Reports Server (NTRS)
Duong, T. A.
1995-01-01
A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.
Paduszyński, Kamil
2016-08-22
The aim of the paper is to address all the disadvantages of currently available models for calculating infinite dilution activity coefficients (γ(∞)) of molecular solutes in ionic liquids (ILs)-a relevant property from the point of view of many applications of ILs, particularly in separations. Three new models are proposed, each of them based on distinct machine learning algorithm: stepwise multiple linear regression (SWMLR), feed-forward artificial neural network (FFANN), and least-squares support vector machine (LSSVM). The models were established based on the most comprehensive γ(∞) data bank reported so far (>34 000 data points for 188 ILs and 128 solutes). Following the paper published previously [J. Chem. Inf. Model 2014, 54, 1311-1324], the ILs were treated in terms of group contributions, whereas the Abraham solvation parameters were used to quantify an impact of solute structure. Temperature is also included in the input data of the models so that they can be utilized to obtain temperature-dependent data and thus related thermodynamic functions. Both internal and external validation techniques were applied to assess the statistical significance and explanatory power of the final correlations. A comparative study of the overall performance of the investigated SWMLR/FFANN/LSSVM approaches is presented in terms of root-mean-square error and average absolute relative deviation between calculated and experimental γ(∞), evaluated for different families of ILs and solutes, as well as between calculated and experimental infinite dilution selectivity for separation problems benzene from n-hexane and thiophene from n-heptane. LSSVM is shown to be a method with the lowest values of both training and generalization errors. It is finally demonstrated that the established models exhibit an improved accuracy compared to the state-of-the-art model, namely, temperature-dependent group contribution linear solvation energy relationship, published in 2011 [J. Chem
Information Theory, Inference and Learning Algorithms
NASA Astrophysics Data System (ADS)
Mackay, David J. C.
2003-10-01
Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
A Competency-Based Guided-Learning Algorithm Applied on Adaptively Guiding E-Learning
ERIC Educational Resources Information Center
Hsu, Wei-Chih; Li, Cheng-Hsiu
2015-01-01
This paper presents a new algorithm called competency-based guided-learning algorithm (CBGLA), which can be applied on adaptively guiding e-learning. Computational process analysis and mathematical derivation of competency-based learning (CBL) were used to develop the CBGLA. The proposed algorithm could generate an effective adaptively guiding…
Phoneme recognition with kernel learning algorithms
NASA Astrophysics Data System (ADS)
Namarvar, Hassan H.; Berger, Theodore W.
2004-10-01
An isolated phoneme recognition system is proposed using time-frequency domain analysis and support vector machines (SVMs). The TIMIT corpus which contains a total of 6300 sentences, ten sentences spoken by each of 630 speakers from eight major dialect regions of the United States, was used in this experiment. Provided time-aligned phonetic transcription was used to extract phonemes from speech samples. A 55-output classifier system was designed corresponding to 55 classes of phonemes and trained with the kernel learning algorithms. The training dataset was extracted from clean training samples. A portion of the database, i.e., 65338 samples of training dataset, was used to train the system. The performance of the system on the training dataset was 76.4%. The whole test dataset of the TIMIT corpus was used to test the generalization of the system. All samples, i.e., 55655 samples of the test dataset, were used to test the system. The performance of the system on the test dataset was 45.3%. This approach is currently under development to extend the algorithm for continuous phoneme recognition. [Work supported in part by grants from DARPA, NASA, and ONR.
On-line learning algorithms for locally recurrent neural networks.
Campolucci, P; Uncini, A; Piazza, F; Rao, B D
1999-01-01
This paper focuses on on-line learning procedures for locally recurrent neural networks with emphasis on multilayer perceptron (MLP) with infinite impulse response (IIR) synapses and its variations which include generalized output and activation feedback multilayer networks (MLN's). We propose a new gradient-based procedure called recursive backpropagation (RBP) whose on-line version, causal recursive backpropagation (CRBP), presents some advantages with respect to the other on-line training methods. The new CRBP algorithm includes as particular cases backpropagation (BP), temporal backpropagation (TBP), backpropagation for sequences (BPS), Back-Tsoi algorithm among others, thereby providing a unifying view on gradient calculation techniques for recurrent networks with local feedback. The only learning method that has been proposed for locally recurrent networks with no architectural restriction is the one by Back and Tsoi. The proposed algorithm has better stability and higher speed of convergence with respect to the Back-Tsoi algorithm, which is supported by the theoretical development and confirmed by simulations. The computational complexity of the CRBP is comparable with that of the Back-Tsoi algorithm, e.g., less that a factor of 1.5 for usual architectures and parameter settings. The superior performance of the new algorithm, however, easily justifies this small increase in computational burden. In addition, the general paradigms of truncated BPTT and RTRL are applied to networks with local feedback and compared with the new CRBP method. The simulations show that CRBP exhibits similar performances and the detailed analysis of complexity reveals that CRBP is much simpler and easier to implement, e.g., CRBP is local in space and in time while RTRL is not local in space. PMID:18252525
Technology Learning Activities I.
ERIC Educational Resources Information Center
International Technology Education Association, Reston, VA.
This guide contains 30 technology learning activities. Activities may contain all or some of the following: an introduction, objectives, materials and equipment, challenges, limitations, notes and investigations, resources and references used, and evaluation ideas. Activity titles are: (1) Occupations in Construction Technology; (2) Designing a…
Active Learning in the Era of Big Data
Jamieson, Kevin; Davis, IV, Warren L.
2015-10-01
Active learning methods automatically adapt data collection by selecting the most informative samples in order to accelerate machine learning. Because of this, real-world testing and comparing active learning algorithms requires collecting new datasets (adaptively), rather than simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning research. To facilitate the development, testing and deployment of active learning for real applications, we have built an open-source software system for large-scale active learning research and experimentation. The system, called NEXT, provides a unique platform for realworld, reproducible active learning research. This paper details the challenges of building the system and demonstrates its capabilities with several experiments. The results show how experimentation can help expose strengths and weaknesses of active learning algorithms, in sometimes unexpected and enlightening ways.
Gradient descent learning algorithm overview: a general dynamical systems perspective.
Baldi, P
1995-01-01
Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning. PMID:18263297
Location-Aware Mobile Learning of Spatial Algorithms
ERIC Educational Resources Information Center
Karavirta, Ville
2013-01-01
Learning an algorithm--a systematic sequence of operations for solving a problem with given input--is often difficult for students due to the abstract nature of the algorithms and the data they process. To help students understand the behavior of algorithms, a subfield in computing education research has focused on algorithm…
Automated training for algorithms that learn from genomic data.
Cilingir, Gokcen; Broschat, Shira L
2015-01-01
Supervised machine learning algorithms are used by life scientists for a variety of objectives. Expert-curated public gene and protein databases are major resources for gathering data to train these algorithms. While these data resources are continuously updated, generally, these updates are not incorporated into published machine learning algorithms which thereby can become outdated soon after their introduction. In this paper, we propose a new model of operation for supervised machine learning algorithms that learn from genomic data. By defining these algorithms in a pipeline in which the training data gathering procedure and the learning process are automated, one can create a system that generates a classifier or predictor using information available from public resources. The proposed model is explained using three case studies on SignalP, MemLoci, and ApicoAP in which existing machine learning models are utilized in pipelines. Given that the vast majority of the procedures described for gathering training data can easily be automated, it is possible to transform valuable machine learning algorithms into self-evolving learners that benefit from the ever-changing data available for gene products and to develop new machine learning algorithms that are similarly capable. PMID:25695053
MODIS Science Algorithms and Data Systems Lessons Learned
NASA Technical Reports Server (NTRS)
Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.
2009-01-01
For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.
Active Learning: Learning a Motor Skill Without a Coach
Huang, Vincent S.; Shadmehr, Reza; Diedrichsen, Jörn
2008-01-01
When we learn a new skill (e.g., golf) without a coach, we are “active learners”: we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079
Active learning: learning a motor skill without a coach.
Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn
2008-08-01
When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence. PMID:18509079
GreedEx: A Visualization Tool for Experimentation and Discovery Learning of Greedy Algorithms
ERIC Educational Resources Information Center
Velazquez-Iturbide, J. A.; Debdi, O.; Esteban-Sanchez, N.; Pizarro, C.
2013-01-01
Several years ago we presented an experimental, discovery-learning approach to the active learning of greedy algorithms. This paper presents GreedEx, a visualization tool developed to support this didactic method. The paper states the design goals of GreedEx, makes explicit the major design decisions adopted, and describes its main characteristics…
Learning sorting algorithms through visualization construction
NASA Astrophysics Data System (ADS)
Cetin, Ibrahim; Andrews-Larson, Christine
2016-01-01
Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed visualizations on students' programming achievement and students' attitudes toward computer programming, and (ii) explore how this kind of instruction supports students' learning according to their self-reported experiences in the course. The study was conducted with 58 pre-service teachers who were enrolled in their second programming class. They expect to teach information technology and computing-related courses at the primary and secondary levels. An embedded experimental model was utilized as a research design. Students in the experimental group were given instruction that required students to construct visualizations related to sorting, whereas students in the control group viewed pre-made visualizations. After the instructional intervention, eight students from each group were selected for semi-structured interviews. The results showed that the intervention based on visualization construction resulted in significantly better acquisition of sorting concepts. However, there was no significant difference between the groups with respect to students' attitudes toward computer programming. Qualitative data analysis indicated that students in the experimental group constructed necessary abstractions through their engagement in visualization construction activities. The authors of this study argue that the students' active engagement in the visualization construction activities explains only one side of students' success. The other side can be explained through the instructional approach, constructionism in this case, used to design instruction. The conclusions and implications of this study can be used by researchers and
Creative Activity and Learning.
ERIC Educational Resources Information Center
Cunningham, Flora E.
1979-01-01
This article compares three theories of the creative process taken from aesthetic philosophy: aesthetic enjoyment (D. W. Gotshalk), aesthetic experience (John Dewey), and aesthetic knowledge (Susanne Langer). Each shows different versions of the learning that accrues from creative activity. From this, curriculum planning and teaching suggestions…
Geological Mapping Using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Harvey, A. S.; Fotopoulos, G.
2016-06-01
Remotely sensed spectral imagery, geophysical (magnetic and gravity), and geodetic (elevation) data are useful in a variety of Earth science applications such as environmental monitoring and mineral exploration. Using these data with Machine Learning Algorithms (MLA), which are widely used in image analysis and statistical pattern recognition applications, may enhance preliminary geological mapping and interpretation. This approach contributes towards a rapid and objective means of geological mapping in contrast to conventional field expedition techniques. In this study, four supervised MLAs (naïve Bayes, k-nearest neighbour, random forest, and support vector machines) are compared in order to assess their performance for correctly identifying geological rocktypes in an area with complete ground validation information. Geological maps of the Sudbury region are used for calibration and validation. Percent of correct classifications was used as indicators of performance. Results show that random forest is the best approach. As expected, MLA performance improves with more calibration clusters, i.e. a more uniform distribution of calibration data over the study region. Performance is generally low, though geological trends that correspond to a ground validation map are visualized. Low performance may be the result of poor spectral images of bare rock which can be covered by vegetation or water. The distribution of calibration clusters and MLA input parameters affect the performance of the MLAs. Generally, performance improves with more uniform sampling, though this increases required computational effort and time. With the achievable performance levels in this study, the technique is useful in identifying regions of interest and identifying general rocktype trends. In particular, phase I geological site investigations will benefit from this approach and lead to the selection of sites for advanced surveys.
On stochastic approximation algorithms for classes of PAC learning problems
Rao, N.S.V.; Uppuluri, V.R.R.; Oblow, E.M.
1994-03-01
The classical stochastic approximation methods are shown to yield algorithms to solve several formulations of the PAC learning problem defined on the domain [o,1]{sup d}. Under some assumptions on different ability of the probability measure functions, simple algorithms to solve some PAC learning problems are proposed based on networks of non-polynomial units (e.g. artificial neural networks). Conditions on the sizes of these samples required to ensure the error bounds are derived using martingale inequalities.
Learning Behavior Characterization with Multi-Feature, Hierarchical Activity Sequences
ERIC Educational Resources Information Center
Ye, Cheng; Segedy, James R.; Kinnebrew, John S.; Biswas, Gautam
2015-01-01
This paper discusses Multi-Feature Hierarchical Sequential Pattern Mining, MFH-SPAM, a novel algorithm that efficiently extracts patterns from students' learning activity sequences. This algorithm extends an existing sequential pattern mining algorithm by dynamically selecting the level of specificity for hierarchically-defined features…
Pitch-Learning Algorithm For Speech Encoders
NASA Technical Reports Server (NTRS)
Bhaskar, B. R. Udaya
1988-01-01
Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.
Protein sequence classification with improved extreme learning machine algorithms.
Cao, Jiuwen; Xiong, Lianglin
2014-01-01
Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms. PMID:24795876
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
Evolving Stochastic Learning Algorithm based on Tsallis entropic index
NASA Astrophysics Data System (ADS)
Anastasiadis, A. D.; Magoulas, G. D.
2006-03-01
In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.
Robust facial expression recognition algorithm based on local metric learning
NASA Astrophysics Data System (ADS)
Jiang, Bin; Jia, Kebin
2016-01-01
In facial expression recognition tasks, different facial expressions are often confused with each other. Motivated by the fact that a learned metric can significantly improve the accuracy of classification, a facial expression recognition algorithm based on local metric learning is proposed. First, k-nearest neighbors of the given testing sample are determined from the total training data. Second, chunklets are selected from the k-nearest neighbors. Finally, the optimal transformation matrix is computed by maximizing the total variance between different chunklets and minimizing the total variance of instances in the same chunklet. The proposed algorithm can find the suitable distance metric for every testing sample and improve the performance on facial expression recognition. Furthermore, the proposed algorithm can be used for vector-based and matrix-based facial expression recognition. Experimental results demonstrate that the proposed algorithm could achieve higher recognition rates and be more robust than baseline algorithms on the JAFFE, CK, and RaFD databases.
Finite-sample based learning algorithms for feedforward networks
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.
1995-04-01
We discuss two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by FeedForward Networks (FFN). The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can also be directly applied to concept learning problems. A main distinguishing feature of the this work is that the sample sizes are based on explicit algorithms rather than information-based methods.
A fast and convergent stochastic MLP learning algorithm.
Sakurai, A
2001-12-01
We propose a stochastic learning algorithm for multilayer perceptrons of linear-threshold function units, which theoretically converges with probability one and experimentally exhibits 100% convergence rate and remarkable speed on parity and classification problems with typical generalization accuracy. For learning the n bit parity function with n hidden units, the algorithm converged on all the trials we tested (n=2 to 12) after 5.8 x 4.1(n) presentations for 0.23 x 4.0(n-6) seconds on a 533MHz Alpha 21164A chip on average, which is five to ten times faster than Levenberg-Marquardt algorithm with restarts. For a medium size classification problem known as Thyroid in UCI repository, the algorithm is faster in speed and comparative in generalization accuracy than the standard backpropagation and Levenberg-Marquardt algorithms. PMID:11852440
Constructive neural-network learning algorithms for pattern classification.
Parekh, R; Yang, J; Honavar, V
2000-01-01
Constructive learning algorithms offer an attractive approach for the incremental construction of near-minimal neural-network architectures for pattern classification. They help overcome the need for ad hoc and often inappropriate choices of network topology in algorithms that search for suitable weights in a priori fixed network architectures. Several such algorithms are proposed in the literature and shown to converge to zero classification errors (under certain assumptions) on tasks that involve learning a binary to binary mapping (i.e., classification problems involving binary-valued input attributes and two output categories). We present two constructive learning algorithms MPyramid-real and MTiling-real that extend the pyramid and tiling algorithms, respectively, for learning real to M-ary mappings (i.e., classification problems involving real-valued input attributes and multiple output classes). We prove the convergence of these algorithms and empirically demonstrate their applicability to practical pattern classification problems. Additionally, we show how the incorporation of a local pruning step can eliminate several redundant neurons from MTiling-real networks. PMID:18249773
Implementing a self-structuring data learning algorithm
NASA Astrophysics Data System (ADS)
Graham, James; Carson, Daniel; Ternovskiy, Igor
2016-05-01
In this paper, we elaborate on what we did to implement our self-structuring data learning algorithm. To recap, we are working to develop a data learning algorithm that will eventually be capable of goal driven pattern learning and extrapolation of more complex patterns from less complex ones. At this point we have developed a conceptual framework for the algorithm, but have yet to discuss our actual implementation and the consideration and shortcuts we needed to take to create said implementation. We will elaborate on our initial setup of the algorithm and the scenarios we used to test our early stage algorithm. While we want this to be a general algorithm, it is necessary to start with a simple scenario or two to provide a viable development and testing environment. To that end, our discussion will be geared toward what we include in our initial implementation and why, as well as what concerns we may have. In the future, we expect to be able to apply our algorithm to a more general approach, but to do so within a reasonable time, we needed to pick a place to start.
Any Two Learning Algorithms Are (Almost) Exactly Identical
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2000-01-01
This paper shows that if one is provided with a loss function, it can be used in a natural way to specify a distance measure quantifying the similarity of any two supervised learning algorithms, even non-parametric algorithms. Intuitively, this measure gives the fraction of targets and training sets for which the expected performance of the two algorithms differs significantly. Bounds on the value of this distance are calculated for the case of binary outputs and 0-1 loss, indicating that any two learning algorithms are almost exactly identical for such scenarios. As an example, for any two algorithms A and B, even for small input spaces and training sets, for less than 2e(-50) of all targets will the difference between A's and B's generalization performance of exceed 1%. In particular, this is true if B is bagging applied to A, or boosting applied to A. These bounds can be viewed alternatively as telling us, for example, that the simple English phrase 'I expect that algorithm A will generalize from the training set with an accuracy of at least 75% on the rest of the target' conveys 20,000 bytes of information concerning the target. The paper ends by discussing some of the subtleties of extending the distance measure to give a full (non-parametric) differential geometry of the manifold of learning algorithms.
Active inference and learning.
Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O'Doherty, John; Pezzulo, Giovanni
2016-09-01
This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. PMID:27375276
Learning algorithms for feedforward networks based on finite samples
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.
1994-09-01
Two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by feedforward networks, are discussed. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can be directly adapted to concept learning problems.
Learning algorithm of environmental recognition in driving vehicle
Qiao, L.; Sato, M.; Takeda, H.
1995-06-01
We consider the problem of recognizing driving environments of a vehicle by using the information obtained from some sensors of the vehicle. Previously, we presented recognition algorithms based on a usual method of pattern matching by use of distance on a vector space and fuzzy reasoning. These algorithms can not be applied to meet the demands of nonstandard drivers and changes of vehicle properties, because the standard pattern or membership function for the pattern matching is always fixed. Then to cover such weakness we presented adaptive recognition algorithms with adaptive change of the standard pattern and membership function. In this work, we put forward a fuzzy supervisor in the learning process. Also we presented an algorithm into which a new learning method is introduced to improve the performance of the previous ones and to meet the above demands. 18 refs.
Optimization of circuits using a constructive learning algorithm
Beiu, V.
1997-05-01
The paper presents an application of a constructive learning algorithm to optimization of circuits. For a given Boolean function f. a fresh constructive learning algorithm builds circuits belonging to the smallest F{sub n,m} class of functions (n inputs and having m groups of ones in their truth table). The constructive proofs, which show how arbitrary Boolean functions can be implemented by this algorithm, are shortly enumerated An interesting aspect is that the algorithm can be used for generating both classical Boolean circuits and threshold gate circuits (i.e. analogue inputs and digital outputs), or a mixture of them, thus taking advantage of mixed analogue/digital technologies. One illustrative example is detailed The size and the area of the different circuits are compared (special cost functions can be used to closer estimate the area and the delay of VLSI implementations). Conclusions and further directions of research are ending the paper.
Gradient Learning Algorithms for Ontology Computing
Gao, Wei; Zhu, Linli
2014-01-01
The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752
TS: a test-split algorithm for inductive learning
NASA Astrophysics Data System (ADS)
Wu, Xindong
1993-09-01
This paper presents a new attribute-based learning algorithm, TS. Different from ID3, AQ11, and HCV in strategies, this algorithm operates in cycles of test and split. It uses those attribute values which occur only in positives but not in negatives to straightforwardly discriminate positives against negatives and chooses the attributes with least number of different values to split example sets. TS is natural, easy to implement, and low-order polynomial in time complexity.
Learning Sorting Algorithms through Visualization Construction
ERIC Educational Resources Information Center
Cetin, Ibrahim; Andrews-Larson, Christine
2016-01-01
Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed…
Activating the Desire to Learn
ERIC Educational Resources Information Center
Sullo, Bob
2007-01-01
Wouldn't your job be easier if students were just more interested in learning? Now, here's a book that will open your eyes to where the desire to learn actually comes from and what teachers can really do to activate it. Using stories from classroom teachers, counselors, administrators, and students, Bob Sullo explains why the desire to learn is…
Cascade Error Projection: A Learning Algorithm for Hardware Implementation
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Daud, Taher
1996-01-01
In this paper, we workout a detailed mathematical analysis for a new learning algorithm termed Cascade Error Projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters. Furthermore, CEP learning algorithm is operated only on one layer, whereas the other set of weights can be calculated deterministically. In association with the dynamical stepsize change concept to convert the weight update from infinite space into a finite space, the relation between the current stepsize and the previous energy level is also given and the estimation procedure for optimal stepsize is used for validation of our proposed technique. The weight values of zero are used for starting the learning for every layer, and a single hidden unit is applied instead of using a pool of candidate hidden units similar to cascade correlation scheme. Therefore, simplicity in hardware implementation is also obtained. Furthermore, this analysis allows us to select from other methods (such as the conjugate gradient descent or the Newton's second order) one of which will be a good candidate for the learning technique. The choice of learning technique depends on the constraints of the problem (e.g., speed, performance, and hardware implementation); one technique may be more suitable than others. Moreover, for a discrete weight space, the theoretical analysis presents the capability of learning with limited weight quantization. Finally, 5- to 8-bit parity and chaotic time series prediction problems are investigated; the simulation results demonstrate that 4-bit or more weight quantization is sufficient for learning neural network using CEP. In addition, it is demonstrated that this technique is able to compensate for less bit weight resolution by incorporating additional hidden units. However, generation result may suffer somewhat with lower bit weight quantization.
Managing and learning with multiple models: Objectives and optimization algorithms
Probert, William J. M.; Hauser, C.E.; McDonald-Madden, E.; Runge, M.C.; Baxter, P.W.J.; Possingham, H.P.
2011-01-01
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. ?? 2010 Elsevier Ltd.
Scalable histopathological image analysis via active learning.
Zhu, Yan; Zhang, Shaoting; Liu, Wei; Metaxas, Dimitris N
2014-01-01
Training an effective and scalable system for medical image analysis usually requires a large amount of labeled data, which incurs a tremendous annotation burden for pathologists. Recent progress in active learning can alleviate this issue, leading to a great reduction on the labeling cost without sacrificing the predicting accuracy too much. However, most existing active learning methods disregard the "structured information" that may exist in medical images (e.g., data from individual patients), and make a simplifying assumption that unlabeled data is independently and identically distributed. Both may not be suitable for real-world medical images. In this paper, we propose a novel batch-mode active learning method which explores and leverages such structured information in annotations of medical images to enforce diversity among the selected data, therefore maximizing the information gain. We formulate the active learning problem as an adaptive submodular function maximization problem subject to a partition matroid constraint, and further present an efficient greedy algorithm to achieve a good solution with a theoretically proven bound. We demonstrate the efficacy of our algorithm on thousands of histopathological images of breast microscopic tissues. PMID:25320821
Robot navigation algorithms using learned spatial graphs
Iyengar, S.S.; Jorgensen, C.C.; Rao, S.V.N.; Weisbin, C.R.
1985-01-01
Finding optimal paths for robot navigation in known terrain has been studied for some time but, in many important situations, a robot would be required to navigate in completely new or partially explored terrain. We propose a method of robot navigation which requires no pre-learned model, makes maximal use of available information, records and synthesizes information from multiple journeys, and contains concepts of learning that allow for continuous transition from local to global path optimality. The model of the terrain consists of a spatial graph and a Voronoi diagram. Using acquired sensor data, polygonal boundaries containing perceived obstacles shrink to approximate the actual obstacles' surfaces, free space for transit is correspondingly enlarged, and additional nodes and edges are recorded based on path intersections and stop points. Navigation planning is gradually accelerated with experience since improved global map information minimizes the need for further sensor data acquisition. Our method currently assumes obstacle locations are unchanging, navigation can be successfully conducted using two-dimensional projections, and sensor information is precise.
LAHS: A novel harmony search algorithm based on learning automata
NASA Astrophysics Data System (ADS)
Enayatifar, Rasul; Yousefi, Moslem; Abdullah, Abdul Hanan; Darus, Amer Nordin
2013-12-01
This study presents a learning automata-based harmony search (LAHS) for unconstrained optimization of continuous problems. The harmony search (HS) algorithm performance strongly depends on the fine tuning of its parameters, including the harmony consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth (bw). Inspired by the spur-in-time responses in the musical improvisation process, learning capabilities are employed in the HS to select these parameters based on spontaneous reactions. An extensive numerical investigation is conducted on several well-known test functions, and the results are compared with the HS algorithm and its prominent variants, including the improved harmony search (IHS), global-best harmony search (GHS) and self-adaptive global-best harmony search (SGHS). The numerical results indicate that the LAHS is more efficient in finding optimum solutions and outperforms the existing HS algorithm variants.
Convergence of reinforcement learning algorithms and acceleration of learning
NASA Astrophysics Data System (ADS)
Potapov, A.; Ali, M. K.
2003-02-01
The techniques of reinforcement learning have been gaining increasing popularity recently. However, the question of their convergence rate is still open. We consider the problem of choosing the learning steps αn, and their relation with discount γ and exploration degree ɛ. Appropriate choices of these parameters may drastically influence the convergence rate of the techniques. From analytical examples, we conjecture optimal values of αn and then use numerical examples to verify our conjectures.
Floriculture. Selected Learning Activity Packages.
ERIC Educational Resources Information Center
Clemson Univ., SC. Vocational Education Media Center.
This series of learning activity packages is based on a catalog of performance objectives, criterion-referenced measures, and performance guides for gardening/groundskeeping developed by the Vocational Education Consortium of States (V-TECS). Learning activity packages are presented in four areas: (1) preparation of soils and planting media, (2)…
Student Perceptions of Active Learning
ERIC Educational Resources Information Center
Lumpkin, Angela; Achen, Rebecca M.; Dodd, Regan K.
2015-01-01
A paradigm shift from lecture-based courses to interactive classes punctuated with engaging, student-centered learning activities has begun to characterize the work of some teachers in higher education. Convinced through the literature of the values of using active learning strategies, we assessed through an action research project in five college…
ERIC Educational Resources Information Center
Pica, Rae
2008-01-01
Effective early childhood teachers use what they know about and have observed in young children to design programs to meet children's developmental needs. Play and active learning are key tools to address those needs and facilitate children's early education. In this article, the author discusses the benefits of active learning in the education of…
ERIC Educational Resources Information Center
Chen, Hsinchun
1995-01-01
Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…
Bornholdt, S.; Graudenz, D.
1993-07-01
A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.
ERIC Educational Resources Information Center
Boulton-Lewis, Gillian M.; Buys, Laurie; Lovie-Kitchin, Jan
2006-01-01
Learning is an important aspect of aging productively. This paper describes results from 2645 respondents (aged from 50 to 74+ years) to a 165-variable postal survey in Australia. The focus is on learning and its relation to work; social, spiritual, and emotional status; health; vision; home; life events; and demographic details. Clustering…
Simple randomized algorithms for online learning with kernels.
He, Wenwu; Kwok, James T
2014-12-01
In online learning with kernels, it is vital to control the size (budget) of the support set because of the curse of kernelization. In this paper, we propose two simple and effective stochastic strategies for controlling the budget. Both algorithms have an expected regret that is sublinear in the horizon. Experimental results on a number of benchmark data sets demonstrate encouraging performance in terms of both efficacy and efficiency. PMID:25108150
Transfer Learning for Activity Recognition: A Survey
Cook, Diane; Feuz, Kyle D.; Krishnan, Narayanan C.
2013-01-01
Many intelligent systems that focus on the needs of a human require information about the activities being performed by the human. At the core of this capability is activity recognition, which is a challenging and well-researched problem. Activity recognition algorithms require substantial amounts of labeled training data yet need to perform well under very diverse circumstances. As a result, researchers have been designing methods to identify and utilize subtle connections between activity recognition datasets, or to perform transfer-based activity recognition. In this paper we survey the literature to highlight recent advances in transfer learning for activity recognition. We characterize existing approaches to transfer-based activity recognition by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred. Finally, we present some grand challenges for the community to consider as this field is further developed. PMID:24039326
Recursive least-squares learning algorithms for neural networks
Lewis, P.S. ); Hwang, Jenq-Neng . Dept. of Electrical Engineering)
1990-01-01
This paper presents the development of a pair of recursive least squares (RLS) algorithms for online training of multilayer perceptrons, which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation, either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is in the order of (N{sup 2}), where N is the number of network parameters. This is due to the estimation of the N {times} N inverse Hessian matrix. Less computationally intensive approximations of the RLS algorithms can be easily derived by using only block diagonal elements of this matrix, thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example, RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6331). 14 refs., 3 figs.
Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.
Xu, Dongpo; Xia, Yili; Mandic, Danilo P
2016-02-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks. PMID:26087504
The No-Prop algorithm: a new learning algorithm for multilayer neural networks.
Widrow, Bernard; Greenblatt, Aaron; Kim, Youngsik; Park, Dookun
2013-01-01
A new learning algorithm for multilayer neural networks that we have named No-Propagation (No-Prop) is hereby introduced. With this algorithm, the weights of the hidden-layer neurons are set and fixed with random values. Only the weights of the output-layer neurons are trained, using steepest descent to minimize mean square error, with the LMS algorithm of Widrow and Hoff. The purpose of introducing nonlinearity with the hidden layers is examined from the point of view of Least Mean Square Error Capacity (LMS Capacity), which is defined as the maximum number of distinct patterns that can be trained into the network with zero error. This is shown to be equal to the number of weights of each of the output-layer neurons. The No-Prop algorithm and the Back-Prop algorithm are compared. Our experience with No-Prop is limited, but from the several examples presented here, it seems that the performance regarding training and generalization of both algorithms is essentially the same when the number of training patterns is less than or equal to LMS Capacity. When the number of training patterns exceeds Capacity, Back-Prop is generally the better performer. But equivalent performance can be obtained with No-Prop by increasing the network Capacity by increasing the number of neurons in the hidden layer that drives the output layer. The No-Prop algorithm is much simpler and easier to implement than Back-Prop. Also, it converges much faster. It is too early to definitively say where to use one or the other of these algorithms. This is still a work in progress. PMID:23140797
Sparse kernel learning with LASSO and Bayesian inference algorithm.
Gao, Junbin; Kwan, Paul W; Shi, Daming
2010-03-01
Kernelized LASSO (Least Absolute Selection and Shrinkage Operator) has been investigated in two separate recent papers [Gao, J., Antolovich, M., & Kwan, P. H. (2008). L1 LASSO and its Bayesian inference. In W. Wobcke, & M. Zhang (Eds.), Lecture notes in computer science: Vol. 5360 (pp. 318-324); Wang, G., Yeung, D. Y., & Lochovsky, F. (2007). The kernel path in kernelized LASSO. In International conference on artificial intelligence and statistics (pp. 580-587). San Juan, Puerto Rico: MIT Press]. This paper is concerned with learning kernels under the LASSO formulation via adopting a generative Bayesian learning and inference approach. A new robust learning algorithm is proposed which produces a sparse kernel model with the capability of learning regularized parameters and kernel hyperparameters. A comparison with state-of-the-art methods for constructing sparse regression models such as the relevance vector machine (RVM) and the local regularization assisted orthogonal least squares regression (LROLS) is given. The new algorithm is also demonstrated to possess considerable computational advantages. PMID:19604671
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
Walter, Florian; Röhrbein, Florian; Knoll, Alois
2015-12-01
The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. PMID:26422422
Improve online boosting algorithm from self-learning cascade classifier
NASA Astrophysics Data System (ADS)
Luo, Dapeng; Sang, Nong; Huang, Rui; Tong, Xiaojun
2010-04-01
Online boosting algorithm has been used in many vision-related applications, such as object detection. However, in order to obtain good detection result, combining a large number of weak classifiers into a strong classifier is required. And those weak classifiers must be updated and improved online. So the training and detection speed will be reduced inevitably. This paper proposes a novel online boosting based learning method, called self-learning cascade classifier. Cascade decision strategy is integrated with the online boosting procedure. The resulting system contains enough number of weak classifiers while keeping computation cost low. The cascade structure is learned and updated online. And the structure complexity can be increased adaptively when detection task is more difficult. Moreover, most of new samples are labeled by tracking automatically. This can greatly reduce the effort by labeler. We present experimental results that demonstrate the efficient and high detection rate of the method.
Inference algorithms and learning theory for Bayesian sparse factor analysis
NASA Astrophysics Data System (ADS)
Rattray, Magnus; Stegle, Oliver; Sharp, Kevin; Winn, John
2009-12-01
Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.
Ye, Cang; Yung, N C; Wang, Danwei
2003-01-01
Fuzzy logic systems are promising for efficient obstacle avoidance. However, it is difficult to maintain the correctness, consistency, and completeness of a fuzzy rule base constructed and tuned by a human expert. A reinforcement learning method is capable of learning the fuzzy rules automatically. However, it incurs a heavy learning phase and may result in an insufficiently learned rule base due to the curse of dimensionality. In this paper, we propose a neural fuzzy system with mixed coarse learning and fine learning phases. In the first phase, a supervised learning method is used to determine the membership functions for input and output variables simultaneously. After sufficient training, fine learning is applied which employs reinforcement learning algorithm to fine-tune the membership functions for output variables. For sufficient learning, a new learning method using a modification of Sutton and Barto's model is proposed to strengthen the exploration. Through this two-step tuning approach, the mobile robot is able to perform collision-free navigation. To deal with the difficulty of acquiring a large amount of training data with high consistency for supervised learning, we develop a virtual environment (VE) simulator, which is able to provide desktop virtual environment (DVE) and immersive virtual environment (IVE) visualization. Through operating a mobile robot in the virtual environment (DVE/IVE) by a skilled human operator, training data are readily obtained and used to train the neural fuzzy system. PMID:18238153
Volume learning algorithm artificial neural networks for 3D QSAR studies.
Tetko, I V; Kovalishyn, V V; Livingstone, D J
2001-07-19
The current study introduces a new method, the volume learning algorithm (VLA), for the investigation of three-dimensional quantitative structure-activity relationships (QSAR) of chemical compounds. This method incorporates the advantages of comparative molecular field analysis (CoMFA) and artificial neural network approaches. VLA is a combination of supervised and unsupervised neural networks applied to solve the same problem. The supervised algorithm is a feed-forward neural network trained with a back-propagation algorithm while the unsupervised network is a self-organizing map of Kohonen. The use of both of these algorithms makes it possible to cluster the input CoMFA field variables and to use only a small number of the most relevant parameters to correlate spatial properties of the molecules with their activity. The statistical coefficients calculated by the proposed algorithm for cannabimimetic aminoalkyl indoles were comparable to, or improved, in comparison to the original study using the partial least squares algorithm. The results of the algorithm can be visualized and easily interpreted. Thus, VLA is a new convenient tool for three-dimensional QSAR studies. PMID:11448223
An active learning approach with uncertainty, representativeness, and diversity.
He, Tianxu; Zhang, Shukui; Xin, Jie; Zhao, Pengpeng; Wu, Jian; Xian, Xuefeng; Li, Chunhua; Cui, Zhiming
2014-01-01
Big data from the Internet of Things may create big challenge for data classification. Most active learning approaches select either uncertain or representative unlabeled instances to query their labels. Although several active learning algorithms have been proposed to combine the two criteria for query selection, they are usually ad hoc in finding unlabeled instances that are both informative and representative and fail to take the diversity of instances into account. We address this challenge by presenting a new active learning framework which considers uncertainty, representativeness, and diversity creation. The proposed approach provides a systematic way for measuring and combining the uncertainty, representativeness, and diversity of an instance. Firstly, use instances' uncertainty and representativeness to constitute the most informative set. Then, use the kernel k-means clustering algorithm to filter the redundant samples and the resulting samples are queried for labels. Extensive experimental results show that the proposed approach outperforms several state-of-the-art active learning approaches. PMID:25180208
An Active Learning Approach with Uncertainty, Representativeness, and Diversity
He, Tianxu; Zhang, Shukui; Xin, Jie; Xian, Xuefeng; Li, Chunhua; Cui, Zhiming
2014-01-01
Big data from the Internet of Things may create big challenge for data classification. Most active learning approaches select either uncertain or representative unlabeled instances to query their labels. Although several active learning algorithms have been proposed to combine the two criteria for query selection, they are usually ad hoc in finding unlabeled instances that are both informative and representative and fail to take the diversity of instances into account. We address this challenge by presenting a new active learning framework which considers uncertainty, representativeness, and diversity creation. The proposed approach provides a systematic way for measuring and combining the uncertainty, representativeness, and diversity of an instance. Firstly, use instances' uncertainty and representativeness to constitute the most informative set. Then, use the kernel k-means clustering algorithm to filter the redundant samples and the resulting samples are queried for labels. Extensive experimental results show that the proposed approach outperforms several state-of-the-art active learning approaches. PMID:25180208
Artificial Bee Colony Algorithm Based on Information Learning.
Gao, Wei-Feng; Huang, Ling-Ling; Liu, San-Yang; Dai, Cai
2015-12-01
Inspired by the fact that the division of labor and cooperation play extremely important roles in the human history development, this paper develops a novel artificial bee colony algorithm based on information learning (ILABC, for short). In ILABC, at each generation, the whole population is divided into several subpopulations by the clustering partition and the size of subpopulation is dynamically adjusted based on the last search experience, which results in a clear division of labor. Furthermore, the two search mechanisms are designed to facilitate the exchange of information in each subpopulation and between different subpopulations, respectively, which acts as the cooperation. Finally, the comparison results on a number of benchmark functions demonstrate that the proposed method performs competitively and effectively when compared to the selected state-of-the-art algorithms. PMID:25594992
Finite Element Learning Modules as Active Learning Tools
ERIC Educational Resources Information Center
Brown, Ashland O.; Jensen, Daniel; Rencis, Joseph; Wood, Kristin; Wood, John; White, Christina; Raaberg, Kristen Kaufman; Coffman, Josh
2012-01-01
The purpose of active learning is to solicit participation by students beyond the passive mode of traditional classroom lectures. Reading, writing, participating in discussions, hands-on activities, engaging in active problem solving, and collaborative learning can all be involved. The skills acquired during active learning tend to go above and…
ERIC Educational Resources Information Center
Nolde Forest Environmental Education Center, Reading, PA.
Seventy field activities, pertinent to outdoor, environmental studies, are described in this compilation. Designed for elementary and junior high school students, the activities cover many discipline areas--science, social studies, language arts, health, history, mathematics, and art--and many are multidisciplinary in use. Topics range from soil…
NASA Astrophysics Data System (ADS)
Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao
2016-04-01
In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.
Open Space Learning Activities
ERIC Educational Resources Information Center
Knapp, Clifford E.
1976-01-01
Describes a science activity in which students are given an opportunity to consider the values of open space. The program includes direct involvement as communicators of feelings and facts, leading students to a position of making wise decisions for land use in the future. (EB)
Analysis of Pollution Patterns Using Unsupervised Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Kanevski, M.; Timonin, V.; Pozdnoukhov, A.; Maignan, M.
2009-04-01
The research presents an application of Machine Learning Algorithms, mainly unsupervised learning techniques like self-organising Kohonen maps (SOM), to study spatial patterns of multivariate environmental spatial data. SOM are well-known neural networks widely used for high-dimensional data analysis, modelling (clustering and classification), and visualization. Self-organising maps belong to the unsupervised machine learning algorithms providing solutions to clustering, classification or density modelling problems using unlabeled data. SOM are efficiently used for the dimensionality reduction and for the visualisation of high-dimensional data (projection into a two-dimensional space). Unlabeled data are points/vectors in a high-dimensional feature space that have some attributes (or coordinates) but have no target values, neither continuous (as in a regression problem) nor discrete labels (as in the case of classification problem). The main task of SOM is to "group" or to "range" in some manner these input vectors and to try to catch regularities (to find patterns) in data by preserving topological structure and by using some well defined similarity measures. A generic methodology presented in this study consists of detailed spatial exploratory data analysis using statistical and geostatistical tools, analysis and modelling of spatial (cross)-correlations anisotropic structures, and application of SOM as a nonlinear modelling and visualisation tool. The case study considers multivariate data of sediments contamination by heavy metals (eight spatially distributes pollutants) in Geneva Lake. The most important modelling task is formulated as a problem of revealing structures or coherent clusters in this multivariate data set that would shed some light on the underlying phenomena of the contamination. Three major clusters, clearly spatially separated, were detected and explained by using the SOM technique.
Adapting Active Learning in Ethiopia
ERIC Educational Resources Information Center
Casale, Carolyn Frances
2010-01-01
Ethiopia is a developing country that has invested extensively in expanding its educational opportunities. In this expansion, there has been a drastic restructuring of its system of preparing teachers and teacher educators. Often, improving teacher quality is dependent on professional development that diversifies pedagogy (active learning). This…
Oral Hygiene. Learning Activity Package.
ERIC Educational Resources Information Center
Hime, Kirsten
This learning activity package on oral hygiene is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…
Active Learning in Introductory Climatology.
ERIC Educational Resources Information Center
Dewey, Kenneth F.; Meyer, Steven J.
2000-01-01
Introduces a software package available for the climatology curriculum that determines possible climatic events according to a long-term climate history. Describes the integration of the software into the curriculum and presents examples of active learning. (Contains 19 references.) (YDS)
Method and Algorithm of Using Ontologies in E-Learning Sessions
NASA Astrophysics Data System (ADS)
Deliyska, Boryana; Manoilov, Peter
2009-11-01
In the article a method and algorithm of using ontologies in e-learning sessions is proposed. The method assumes utilization of software agents and domain and application ontologies. Software agents search, extract and submit learning objects to the learners. Depending on range and level of education, domain ontology of learner and application ontologies of curriculum, syllabus and learning object plans are used. A database of learner model is designed. Under conditions of adaptive learner-oriented e-learning an algorithm of navigation through content learning objects is composed. The algorithm includes dynamic calculation of possible routes of knowledge acquiring.
Stimulating Deep Learning Using Active Learning Techniques
ERIC Educational Resources Information Center
Yew, Tee Meng; Dawood, Fauziah K. P.; a/p S. Narayansany, Kannaki; a/p Palaniappa Manickam, M. Kamala; Jen, Leong Siok; Hoay, Kuan Chin
2016-01-01
When students and teachers behave in ways that reinforce learning as a spectator sport, the result can often be a classroom and overall learning environment that is mostly limited to transmission of information and rote learning rather than deep approaches towards meaningful construction and application of knowledge. A group of college instructors…
Connecting Family Learning and Active Citizenship
ERIC Educational Resources Information Center
Flanagan, Mary
2009-01-01
In Ireland family learning and active citizenship has not been linked together until 2006. It was while the Clare Family Learning Project was involved in a family learning EU learning network project, that a suggestion to create a new partnership project linking both areas was made and FACE IT! was born (Families and Active Citizenship…
Active learning in the presence of unlabelable examples
NASA Technical Reports Server (NTRS)
Mazzoni, Dominic; Wagstaff, Kiri
2004-01-01
We propose a new active learning framework where the expert labeler is allowed to decline to label any example. This may be necessary because the true label is unknown or because the example belongs to a class that is not part of the real training problem. We show that within this framework, popular active learning algorithms (such as Simple) may perform worse than random selection because they make so many queries to the unlabelable class. We present a method by which any active learning algorithm can be modified to avoid unlabelable examples by training a second classifier to distinguish between the labelable and unlabelable classes. We also demonstrate the effectiveness of the method on two benchmark data sets and a real-world problem.
NASA Astrophysics Data System (ADS)
Aher, Sunita B.
2014-01-01
Recommendation systems have been widely used in internet activities whose aim is to present the important and useful information to the user with little effort. Course Recommendation System is system which recommends to students the best combination of courses in engineering education system e.g. if student is interested in course like system programming then he would like to learn the course entitled compiler construction. The algorithm with combination of two data mining algorithm i.e. combination of Expectation Maximization Clustering and Apriori Association Rule Algorithm have been developed. The result of this developed algorithm is compared with Apriori Association Rule Algorithm which is an existing algorithm in open source data mining tool Weka.
Modeling the Swift BAT Trigger Algorithm with Machine Learning
NASA Astrophysics Data System (ADS)
Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori
2016-02-01
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of ≳97% (≲3% error), which is a significant improvement on a cut in GRB flux, which has an accuracy of 89.6% (10.4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of {n}0∼ {0.48}-0.23+0.41 {{{Gpc}}}-3 {{{yr}}}-1 with power-law indices of {n}1∼ {1.7}-0.5+0.6 and {n}2∼ -{5.9}-0.1+5.7 for GRBs above and below a break point of {z}1∼ {6.8}-3.2+2.8. This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting.
Experiments on Supervised Learning Algorithms for Text Categorization
NASA Technical Reports Server (NTRS)
Namburu, Setu Madhavi; Tu, Haiying; Luo, Jianhui; Pattipati, Krishna R.
2005-01-01
Modern information society is facing the challenge of handling massive volume of online documents, news, intelligence reports, and so on. How to use the information accurately and in a timely manner becomes a major concern in many areas. While the general information may also include images and voice, we focus on the categorization of text data in this paper. We provide a brief overview of the information processing flow for text categorization, and discuss two supervised learning algorithms, viz., support vector machines (SVM) and partial least squares (PLS), which have been successfully applied in other domains, e.g., fault diagnosis [9]. While SVM has been well explored for binary classification and was reported as an efficient algorithm for text categorization, PLS has not yet been applied to text categorization. Our experiments are conducted on three data sets: Reuter's- 21578 dataset about corporate mergers and data acquisitions (ACQ), WebKB and the 20-Newsgroups. Results show that the performance of PLS is comparable to SVM in text categorization. A major drawback of SVM for multi-class categorization is that it requires a voting scheme based on the results of pair-wise classification. PLS does not have this drawback and could be a better candidate for multi-class text categorization.
MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Albayrak, A.; Wei, J. C.; Petrenko, M.; Lary, D. J.; Leptoukh, G. G.
2011-12-01
Over the past decade, global aerosol observations have been conducted by space-borne sensors, airborne instruments, and ground-base network measurements. Unfortunately, quite often we encounter the differences of aerosol measurements by different well-calibrated instruments, even with a careful collocation in time and space. The differences might be rather substantial, and need to be better understood and accounted for when merging data from many sensors. The possible causes for these differences come from instrumental bias, different satellite viewing geometries, calibration issues, dynamically changing atmospheric and the surface conditions, and other "regressors", resulting in random and systematic errors in the final aerosol products. In this study, we will concentrate on the subject of removing biases and the systematic errors from MODIS (both Terra and Aqua) aerosol product, using Machine Learning algorithms. While we are assessing our regressors in our system when comparing global aerosol products, the Aerosol Robotic Network of sun-photometers (AERONET) will be used as a baseline for evaluating the MODIS aerosol products (Dark Target for land and ocean, and Deep Blue retrieval algorithms). The results of bias adjustment for MODIS Terra and Aqua are planned to be incorporated into the AeroStat Giovanni as part of the NASA ACCESS funded AeroStat project.
History and Evolution of Active Learning Spaces
ERIC Educational Resources Information Center
Beichner, Robert J.
2014-01-01
This chapter examines active learning spaces as they have developed over the years. Consistently well-designed classrooms can facilitate active learning even though the details of implementing pedagogies may differ.
Overlay improvements using a real time machine learning algorithm
NASA Astrophysics Data System (ADS)
Schmitt-Weaver, Emil; Kubis, Michael; Henke, Wolfgang; Slotboom, Daan; Hoogenboom, Tom; Mulkens, Jan; Coogans, Martyn; ten Berge, Peter; Verkleij, Dick; van de Mast, Frank
2014-04-01
While semiconductor manufacturing is moving towards the 14nm node using immersion lithography, the overlay requirements are tightened to below 5nm. Next to improvements in the immersion scanner platform, enhancements in the overlay optimization and process control are needed to enable these low overlay numbers. Whereas conventional overlay control methods address wafer and lot variation autonomously with wafer pre exposure alignment metrology and post exposure overlay metrology, we see a need to reduce these variations by correlating more of the TWINSCAN system's sensor data directly to the post exposure YieldStar metrology in time. In this paper we will present the results of a study on applying a real time control algorithm based on machine learning technology. Machine learning methods use context and TWINSCAN system sensor data paired with post exposure YieldStar metrology to recognize generic behavior and train the control system to anticipate on this generic behavior. Specific for this study, the data concerns immersion scanner context, sensor data and on-wafer measured overlay data. By making the link between the scanner data and the wafer data we are able to establish a real time relationship. The result is an inline controller that accounts for small changes in scanner hardware performance in time while picking up subtle lot to lot and wafer to wafer deviations introduced by wafer processing.
Effective and efficient optics inspection approach using machine learning algorithms
Abdulla, G; Kegelmeyer, L; Liao, Z; Carr, W
2010-11-02
The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.
Effective and efficient optics inspection approach using machine learning algorithms
NASA Astrophysics Data System (ADS)
Abdulla, Ghaleb M.; Kegelmeyer, Laura Mascio; Liao, Zhi M.; Carr, Wren
2010-11-01
The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is "truthed" or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called "Avatar Tools" is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.
Active Learning: Historical and Contemporary Perspectives.
ERIC Educational Resources Information Center
Page, Marilyn
The purposes of the first two parts of this literature review are to clarify the concept of active learning and discuss the use and value of active learning models. In Part I, the perspectives of five historical proponents of active learning, Rousseau, Pestalozzi, Dewey, Kilpatrick, and Piaget, are discussed. The views of four contemporary…
Student Active Learning Methods in Physical Chemistry
NASA Astrophysics Data System (ADS)
Hinde, Robert J.; Kovac, Jeffrey
2001-01-01
We describe two strategies for implementing active learning in physical chemistry. One involves supplementing a traditional lecture course with heavily computer-based active-learning exercises carried out by cooperative groups in a department computer lab. The other uses cooperative learning almost exclusively, supplemented by occasional mini-lectures. Both approaches seemed to result in better student learning and a more positive attitude toward the subject. On the basis of our respective experiences using active learning techniques, we discuss some of the strengths of these techniques and some of the challenges we encountered using the active-learning approach in teaching physical chemistry.
Active Learning through Service-Learning
ERIC Educational Resources Information Center
Goldberg, Lynette R.; Richburg, Cynthia McCormick; Wood, Lisa A.
2006-01-01
Service-learning (SL) is a relatively new pedagogical approach to facilitate student learning at the university level. In SL, students enrolled in an academic course provide a needed service to a community partner. Through guided reflection, students link classroom-based, theoretical knowledge with clinical applications. Students' active…
Learning Cue Phrase Patterns from Radiology Reports Using a Genetic Algorithm
Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E
2009-01-01
Various computer-assisted technologies have been developed to assist radiologists in detecting cancer; however, the algorithms still lack high degrees of sensitivity and specificity, and must undergo machine learning against a training set with known pathologies in order to further refine the algorithms with higher validity of truth. This work describes an approach to learning cue phrase patterns in radiology reports that utilizes a genetic algorithm (GA) as the learning method. The approach described here successfully learned cue phrase patterns for two distinct classes of radiology reports. These patterns can then be used as a basis for automatically categorizing, clustering, or retrieving relevant data for the user.
Developing Metacognition: A Basis for Active Learning
ERIC Educational Resources Information Center
Vos, Henk; de Graaff, E.
2004-01-01
The reasons to introduce formats of active learning in engineering (ALE) such as project work, problem-based learning, use of cases, etc. are mostly based on practical experience, and sometimes from applied research on teaching and learning. Such research shows that students learn more and different abilities than in traditional formats of…
Predicting mining activity with parallel genetic algorithms
Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.
2005-01-01
We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.
Forsström, J
1992-01-01
The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data. PMID:1551737
NASA Astrophysics Data System (ADS)
Huang, Yin; Chen, Jianhua; Xiong, Shaojun
2009-07-01
Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.
Learning activism, acting with phronesis
NASA Astrophysics Data System (ADS)
Lee, Yew-Jin
2015-12-01
The article "Socio-political development of private school children mobilising for disadvantaged others" by Darren Hoeg, Natalie Lemelin, and Lawrence Bencze described a language-learning curriculum that drew on elements of Socioscientific issues and Science, Technology, Society and Environment. Results showed that with a number of enabling factors acting in concert, learning about and engagement in practical action for social justice and equity are possible. An alternative but highly compatible framework is now introduced—phronetic social research—as an action-oriented, wisdom-seeking research stance for the social sciences. By so doing, it is hoped that forms of phronetic social research can gain wider currency among those that promote activism as one of many valued outcomes of an education in science.
Linking Mission to Learning Activities for Assurance of Learning
ERIC Educational Resources Information Center
Yeung, Shirley Mo-ching
2011-01-01
Can accreditation-related requirements and mission statements measure learning outcomes? This study focuses on triangulating accreditation-related requirements with mission statements and learning activities to learning outcomes. This topic has not been comprehensively explored in the past. After looking into the requirements of AACSB, ISO, and…
Modeling the Swift BAT Trigger Algorithm with Machine Learning
NASA Technical Reports Server (NTRS)
Graff, Philip B.; Lien, Amy Y.; Baker, John G.; Sakamoto, Takanori
2015-01-01
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. (2014) is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of approximately greater than 97% (approximately less than 3% error), which is a significant improvement on a cut in GRB flux which has an accuracy of 89:6% (10:4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of eta(sub 0) approximately 0.48(+0.41/-0.23) Gpc(exp -3) yr(exp -1) with power-law indices of eta(sub 1) approximately 1.7(+0.6/-0.5) and eta(sub 2) approximately -5.9(+5.7/-0.1) for GRBs above and below a break point of z(sub 1) approximately 6.8(+2.8/-3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is analysis is publicly available online.
Szantoi, Zoltan; Escobedo, Francisco J; Abd-Elrahman, Amr; Pearlstine, Leonard; Dewitt, Bon; Smith, Scot
2015-05-01
Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge fromremotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using highspatial resolutionimagery and machine learning image classification algorithms for mapping heterogeneouswetland plantcommunities. This study addresses this void by analyzing whether machine learning classifierssuch as decisiontrees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedgecommunities usinghigh resolution aerial imagery and image texture data in the Everglades National Park, Florida.In addition tospectral bands, the normalized difference vegetation index, and first- and second-order texturefeatures derivedfrom the near-infrared band were analyzed. Classifier accuracies were assessed using confusiontablesand the calculated kappa coefficients of the resulting maps. The results indicated that an ANN(multilayerperceptron based on backpropagation) algorithm produced a statistically significantly higheraccuracy(82.04%) than the DT (QUEST) algorithm (80.48%) or the maximum likelihood (80.56%)classifier (α<0.05). Findings show that using multiple window sizes provided the best results. First-ordertexture featuresalso provided computational advantages and results that were not significantly different fromthose usingsecond-order texture features. PMID:25893753
NASA Astrophysics Data System (ADS)
Singh, R.; Verma, H. K.
2013-12-01
This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.
Active Learning in the Middle Grades
ERIC Educational Resources Information Center
Edwards, Susan
2015-01-01
What is active learning and what does it look like in the classroom? If students are participating in active learning, they are playing a more engaged role in the learning process and are not overly reliant on the teacher (Bransford, Brown, & Cocking, 2003; Petress, 2008). The purpose of this article is to propose a framework to describe and…
Learning Activities for the Young Handicapped Child.
ERIC Educational Resources Information Center
Bailey, Don; And Others
Presented is a collection of learning activities for the young handicapped child covering 295 individual learning objectives in six areas of development: gross motor skills, fine motor skills, social skills, self help skills, cognitive skills, and language skills. Provided for each learning activity are the teaching objective, teaching procedures,…
Research on Mobile Learning Activities Applying Tablets
ERIC Educational Resources Information Center
Kurilovas, Eugenijus; Juskeviciene, Anita; Bireniene, Virginija
2015-01-01
The paper aims to present current research on mobile learning activities in Lithuania while implementing flagship EU-funded CCL project on application of tablet computers in education. In the paper, the quality of modern mobile learning activities based on learning personalisation, problem solving, collaboration, and flipped class methods is…
Active Learning: The Way Children Construct Knowledge.
ERIC Educational Resources Information Center
Hohmann, Mary; Weikart, David P.
2002-01-01
The High/Scope approach to early childhood education promotes the belief that active learning is fundamental to the development of human potential and occurs most effectively in settings that provide developmentally appropriate learning opportunities. Describes five ingredients of active learning (materials, manipulation, choice, language from…
Validation of Learning Effort Algorithm for Real-Time Non-Interfering Based Diagnostic Technique
ERIC Educational Resources Information Center
Hsu, Pi-Shan; Chang, Te-Jeng
2011-01-01
The objective of this research is to validate the algorithm of learning effort which is an indicator of a new real-time and non-interfering based diagnostic technique. IC3 Mentor, the adaptive e-learning platform fulfilling the requirements of intelligent tutor system, was applied to 165 university students. The learning records of the subjects…
Design of Learning Model of Logic and Algorithms Based on APOS Theory
ERIC Educational Resources Information Center
Hartati, Sulis Janu
2014-01-01
This research questions were "how do the characteristics of learning model of logic & algorithm according to APOS theory" and "whether or not these learning model can improve students learning outcomes". This research was conducted by exploration, and quantitative approach. Exploration used in constructing theory about the…
Reinforcement learning or active inference?
Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J
2009-01-01
This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain. PMID:19641614
Reinforcement Learning or Active Inference?
Friston, Karl J.; Daunizeau, Jean; Kiebel, Stefan J.
2009-01-01
This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain. PMID:19641614
New machine-learning algorithms for prediction of Parkinson's disease
NASA Astrophysics Data System (ADS)
Mandal, Indrajit; Sairam, N.
2014-03-01
This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.
A rank-based Prediction Algorithm of Learning User's Intention
NASA Astrophysics Data System (ADS)
Shen, Jie; Gao, Ying; Chen, Cang; Gong, HaiPing
Internet search has become an important part in people's daily life. People can find many types of information to meet different needs through search engines on the Internet. There are two issues for the current search engines: first, the users should predetermine the types of information they want and then change to the appropriate types of search engine interfaces. Second, most search engines can support multiple kinds of search functions, each function has its own separate search interface. While users need different types of information, they must switch between different interfaces. In practice, most queries are corresponding to various types of information results. These queries can search the relevant results in various search engines, such as query "Palace" contains the websites about the introduction of the National Palace Museum, blog, Wikipedia, some pictures and video information. This paper presents a new aggregative algorithm for all kinds of search results. It can filter and sort the search results by learning three aspects about the query words, search results and search history logs to achieve the purpose of detecting user's intention. Experiments demonstrate that this rank-based method for multi-types of search results is effective. It can meet the user's search needs well, enhance user's satisfaction, provide an effective and rational model for optimizing search engines and improve user's search experience.
An active set algorithm for nonlinear optimization with polyhedral constraints
NASA Astrophysics Data System (ADS)
Hager, William W.; Zhang, Hongchao
2016-08-01
A polyhedral active set algorithm PASA is developed for solving a nonlinear optimization problem whose feasible set is a polyhedron. Phase one of the algorithm is the gradient projection method, while phase two is any algorithm for solving a linearly constrained optimization problem. Rules are provided for branching between the two phases. Global convergence to a stationary point is established, while asymptotically PASA performs only phase two when either a nondegeneracy assumption holds, or the active constraints are linearly independent and a strong second-order sufficient optimality condition holds.
Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.
Tian, Yuling; Zhang, Hongxian
2016-01-01
For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242
Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy
Tian, Yuling; Zhang, Hongxian
2016-01-01
For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic–there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242
Ordering and finding the best of K > 2 supervised learning algorithms.
Yildiz, Olcay Taner; Alpaydin, Ethem
2006-03-01
Given a data set and a number of supervised learning algorithms, we would like to find the algorithm with the smallest expected error. Existing pairwise tests allow a comparison of two algorithms only; range tests and ANOVA check whether multiple algorithms have the same expected error and cannot be used for finding the smallest. We propose a methodology, the MultiTest algorithm, whereby we order supervised learning algorithms taking into account 1) the result of pairwise statistical tests on expected error (what the data tells us), and 2) our prior preferences, e.g., due to complexity. We define the problem in graph-theoretic terms and propose an algorithm to find the "best" learning algorithm in terms of these two criteria, or in the more general case, order learning algorithms in terms of their "goodness." Simulation results using five classification algorithms on 30 data sets indicate the utility of the method. Our proposed method can be generalized to regression and other loss functions by using a suitable pairwise test. PMID:16526425
Topics in Computational Learning Theory and Graph Algorithms.
ERIC Educational Resources Information Center
Board, Raymond Acton
This thesis addresses problems from two areas of theoretical computer science. The first area is that of computational learning theory, which is the study of the phenomenon of concept learning using formal mathematical models. The goal of computational learning theory is to investigate learning in a rigorous manner through the use of techniques…
Fuzzy-Kohonen-clustering neural network trained by genetic algorithm and fuzzy competition learning
NASA Astrophysics Data System (ADS)
Xie, Weixing; Li, Wenhua; Gao, Xinbo
1995-08-01
Kohonen networks are well known for clustering analysis. Classical Kohonen networks for hard c-means clustering (trained by winner-take-all learning) have some severe drawbacks. Fuzzy Kohonen networks (FKCNN) for fuzzy c-means clustering are trained by fuzzy competition learning, and can get better clustering results than the classical Kohonen networks. However, both winner-take-all and fuzzy competition learning algorithms are in essence local search techniques that search for the optimum by using a hill-climbing technique. Thus, they often fail in the search for the global optimum. In this paper we combine genetic algorithms (GAs) with fuzzy competition learning to train the FKCNN. Our experimental results show that the proposed GA/FC learning algorithm has much higher probabilities of finding the global optimal solutions than either the winner-take-all or the fuzzy competition learning.
SAR ATR using a modified learning vector quantization algorithm
NASA Astrophysics Data System (ADS)
Marinelli, Anne Marie P.; Kaplan, Lance M.; Nasrabadi, Nasser M.
1999-08-01
We addressed the problem of classifying 10 target types in imagery formed from synthetic aperture radar (SAR). By executing a group training process, we show how to increase the performance of 10 initial sets of target templates formed by simple averaging. This training process is a modified learning vector quantization (LVQ) algorithm that was previously shown effective with forward-looking infrared (FLIR) imagery. For comparison, we ran the LVQ experiments using coarse, medium, and fine template sets that captured the target pose signature variations over 60 degrees, 40 degrees, and 20 degrees, respectively. Using sequestered test imagery, we evaluated how well the original and post-LVQ template sets classify the 10 target types. We show that after the LVQ training process, the coarse template set outperforms the coarse and medium original sets. And, for a test set that included untrained version variants, we show that classification using coarse template sets nearly matches that of the fine template sets. In a related experiment, we stored 9 initial template sets to classify 9 of the target types and used a threshold to separate the 10th type, previously found to be a 'confusing' type. We used imagery of all 10 targets in the LVQ training process to modify the 9 template sets. Overall classification performance increased slightly and an equalization of the individual target classification rates occurred, as compared to the 10-template experiment. The SAR imagery that we used is publicly available from the Moving and Stationary Target Acquisition and Recognition (MSTAR) program, sponsored by the Defense Advanced Research Projects Agency (DARPA).
Modelling Typical Online Language Learning Activity
ERIC Educational Resources Information Center
Montoro, Carlos; Hampel, Regine; Stickler, Ursula
2014-01-01
This article presents the methods and results of a four-year-long research project focusing on the language learning activity of individual learners using online tasks conducted at the University of Guanajuato (Mexico) in 2009-2013. An activity-theoretical model (Blin, 2010; Engeström, 1987) of the typical language learning activity was used to…
Activities for Science: Cooperative Learning Lessons (Challenging).
ERIC Educational Resources Information Center
Jasmine, Grace; Jasmine, Julia
This book is designed to help advanced elementary students learn science skills while actively engaged in cooperative activities based on the earth sciences and natural disasters. The first section explains how to make cooperative learning a part of the curriculum and includes an overview, instructions and activities to bring cooperative learning…
Distributed learning automata-based algorithm for community detection in complex networks
NASA Astrophysics Data System (ADS)
Khomami, Mohammad Mehdi Daliri; Rezvanian, Alireza; Meybodi, Mohammad Reza
2016-03-01
Community structure is an important and universal topological property of many complex networks such as social and information networks. The detection of communities of a network is a significant technique for understanding the structure and function of networks. In this paper, we propose an algorithm based on distributed learning automata for community detection (DLACD) in complex networks. In the proposed algorithm, each vertex of network is equipped with a learning automation. According to the cooperation among network of learning automata and updating action probabilities of each automaton, the algorithm interactively tries to identify high-density local communities. The performance of the proposed algorithm is investigated through a number of simulations on popular synthetic and real networks. Experimental results in comparison with popular community detection algorithms such as walk trap, Danon greedy optimization, Fuzzy community detection, Multi-resolution community detection and label propagation demonstrated the superiority of DLACD in terms of modularity, NMI, performance, min-max-cut and coverage.
A controllable sensor management algorithm capable of learning
NASA Astrophysics Data System (ADS)
Osadciw, Lisa A.; Veeramacheneni, Kalyan K.
2005-03-01
Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.
A Genetic Algorithm Approach to Recognise Students' Learning Styles
ERIC Educational Resources Information Center
Yannibelli, Virginia; Godoy, Daniela; Amandi, Analia
2006-01-01
Learning styles encapsulate the preferences of the students, regarding how they learn. By including information about the student learning style, computer-based educational systems are able to adapt a course according to the individual characteristics of the students. In accomplishing this goal, educational systems have been mostly based on the…
An analysis dictionary learning algorithm under a noisy data model with orthogonality constraint.
Zhang, Ye; Yu, Tenglong; Wang, Wenwu
2014-01-01
Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high), as represented by the Analysis K-SVD (AK-SVD) algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST) algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure) and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms. PMID:25126605
Machine learning algorithms for damage detection: Kernel-based approaches
NASA Astrophysics Data System (ADS)
Santos, Adam; Figueiredo, Eloi; Silva, M. F. M.; Sales, C. S.; Costa, J. C. W. A.
2016-02-01
This paper presents four kernel-based algorithms for damage detection under varying operational and environmental conditions, namely based on one-class support vector machine, support vector data description, kernel principal component analysis and greedy kernel principal component analysis. Acceleration time-series from an array of accelerometers were obtained from a laboratory structure and used for performance comparison. The main contribution of this study is the applicability of the proposed algorithms for damage detection as well as the comparison of the classification performance between these algorithms and other four ones already considered as reliable approaches in the literature. All proposed algorithms revealed to have better classification performance than the previous ones.
Reinforcement active learning in the vibrissae system: optimal object localization.
Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud
2013-01-01
Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment. PMID:22789551
An Active Sensor Algorithm for Corn Nitrogen Recommendations Based on a Chlorophyll Meter Algorithm
Technology Transfer Automated Retrieval System (TEKTRAN)
In previous work we found active canopy sensor reflectance assessments of corn (Zea mays L.) N status acquired at two growth stages (V11 and V15) have the greatest potential for directing in-season N applications, but emphasized an algorithm was needed to translate sensor readings into appropriate N...
Kinaesthetic Learning Activities and Learning about Solar Cells
ERIC Educational Resources Information Center
Richards, A. J.; Etkina, Eugenia
2013-01-01
Kinaesthetic learning activities (KLAs) can be a valuable pedagogical tool for physics instructors. They have been shown to increase engagement, encourage participation and improve learning outcomes. This paper details several KLAs developed at Rutgers University for inclusion in an instructional unit about semiconductors, p-n junctions and solar…
Adult Learning Principles in Designing Learning Activities for Teacher Development
ERIC Educational Resources Information Center
Gravani, Maria N.
2012-01-01
The research reported in this paper is an investigation of the application of adult learning principles in designing learning activities for teachers' life-long development. The exploration is illustrated by qualitative data from a case study of adult educators' and adult learners' insights and experiences of a teacher development course organised…
Student Activity and Learning Outcomes in a Virtual Learning Environment
ERIC Educational Resources Information Center
Romanov, Kalle; Nevgi, Anne
2008-01-01
The aim of the study was to explore the relationship between degree of participation and learning outcomes in an e-learning course on medical informatics. Overall activity in using course materials and degree of participation in the discussion forums of an online course were studied among 39 medical students. Students were able to utilise the…
Detection of suspicious activity using incremental outlier detection algorithms
NASA Astrophysics Data System (ADS)
Pokrajac, D.; Reljin, N.; Pejcic, N.; Vance, T.; McDaniel, S.; Lazarevic, A.; Chang, H. J.; Choi, J. Y.; Miezianko, R.
2009-08-01
Detection of unusual trajectories of moving objects can help in identifying suspicious activity on convoy routes and thus reduce casualties caused by improvised explosive devices. In this paper, using video imagery we compare efficiency of various techniques for incremental outlier detection on detecting unusual trajectories on simulated and real-life data obtained from SENSIAC database. Incremental outlier detection algorithms that we consider in this paper include incremental Support Vector Classifier (incSVC), incremental Local Outlier Factor (incLOF) algorithm and incremental Connectivity Outlier Factor (incCOF) algorithm. Our experiments performed on ground truth trajectory data indicate that incremental LOF algorithm can provide better detection of unusual trajectories in comparison to other examined techniques.
Rickards, Caroline A; Vyas, Nisarg; Ryan, Kathy L; Ward, Kevin R; Andre, David; Hurst, Gennifer M; Barrera, Chelsea R; Convertino, Victor A
2014-03-01
Due to limited remote triage monitoring capabilities, combat medics cannot currently distinguish bleeding soldiers from those engaged in combat unless they have physical access to them. The purpose of this study was to test the hypothesis that low-level physiological signals can be used to develop a machine-learning algorithm for tracking changes in central blood volume that will subsequently distinguish central hypovolemia from physical activity. Twenty-four subjects underwent central hypovolemia via lower body negative pressure (LBNP), and a supine-cycle exercise protocol. Exercise workloads were determined by matching heart rate responses from each LBNP level. Heart rate and stroke volume (SV) were measured via Finometer. ECG, heat flux, skin temperature, galvanic skin response, and two-axis acceleration were obtained from an armband (SenseWear Pro2) and used to develop a machine-learning algorithm to predict changes in SV as an index of central blood volume under both conditions. The algorithm SV was retrospectively compared against Finometer SV. A model was developed to determine whether unknown data points could be correctly classified into these two conditions using leave-one-out cross-validation. Algorithm vs. Finometer SV values were strongly correlated for LBNP in individual subjects (mean r = 0.92; range 0.75-0.98), but only moderately correlated for exercise (mean r = 0.50; range -0.23-0.87). From the first level of LBNP/exercise, the machine-learning algorithm was able to distinguish between LBNP and exercise with high accuracy, sensitivity, and specificity (all ≥90%). In conclusion, a machine-learning algorithm developed from low-level physiological signals could reliably distinguish central hypovolemia from exercise, indicating that this device could provide battlefield remote triage capabilities. PMID:24408992
Faculty Adoption of Active Learning Classrooms
ERIC Educational Resources Information Center
Van Horne, Sam; Murniati, Cecilia Titiek
2016-01-01
Although post-secondary educational institutions are incorporating more active learning classrooms (ALCs) that support collaborative learning, researchers have less often examined the cultural obstacles to adoption of those environments. In this qualitative research study, we adopted the conceptual framework of activity theory to examine the…
Active Learning in American History Class.
ERIC Educational Resources Information Center
Brill, Janice
1996-01-01
Describes the activities of a high school class that discovered the joy of history through experiential learning. Students learned traditional military tactics for their unit on the French and Indian Wars, and tried to apply them to a nearby woods. Includes similar activities for other historic periods. (MJP)
ERIC Educational Resources Information Center
Kiesmuller, Ulrich
2009-01-01
At schools special learning and programming environments are often used in the field of algorithms. Particularly with regard to computer science lessons in secondary education, they are supposed to help novices to learn the basics of programming. In several parts of Germany (e.g., Bavaria) these fundamentals are taught as early as in the seventh…
A Computer Environment for Beginners' Learning of Sorting Algorithms: Design and Pilot Evaluation
ERIC Educational Resources Information Center
Kordaki, M.; Miatidis, M.; Kapsampelis, G.
2008-01-01
This paper presents the design, features and pilot evaluation study of a web-based environment--the SORTING environment--for the learning of sorting algorithms by secondary level education students. The design of this environment is based on modeling methodology, taking into account modern constructivist and social theories of learning while at…
ERIC Educational Resources Information Center
Laakso, Mikko-Jussi; Myller, Niko; Korhonen, Ari
2009-01-01
In this paper, two emerging learning and teaching methods have been studied: collaboration in concert with algorithm visualization. When visualizations have been employed in collaborative learning, collaboration introduces new challenges for the visualization tools. In addition, new theories are needed to guide the development and research of the…
Active Ageing, Active Learning: Policy and Provision in Hong Kong
ERIC Educational Resources Information Center
Tam, M.
2011-01-01
This paper discusses the relationship between ageing and learning, previous literature having confirmed that participation in continued learning in old age contributes to good health, satisfaction with life, independence and self-esteem. Realizing that learning is vital to active ageing, the Hong Kong government has implemented policies and…
Morita, Kenji; Jitsev, Jenia; Morrison, Abigail
2016-09-15
Value-based action selection has been suggested to be realized in the corticostriatal local circuits through competition among neural populations. In this article, we review theoretical and experimental studies that have constructed and verified this notion, and provide new perspectives on how the local-circuit selection mechanisms implement reinforcement learning (RL) algorithms and computations beyond them. The striatal neurons are mostly inhibitory, and lateral inhibition among them has been classically proposed to realize "Winner-Take-All (WTA)" selection of the maximum-valued action (i.e., 'max' operation). Although this view has been challenged by the revealed weakness, sparseness, and asymmetry of lateral inhibition, which suggest more complex dynamics, WTA-like competition could still occur on short time scales. Unlike the striatal circuit, the cortical circuit contains recurrent excitation, which may enable retention or temporal integration of information and probabilistic "soft-max" selection. The striatal "max" circuit and the cortical "soft-max" circuit might co-implement an RL algorithm called Q-learning; the cortical circuit might also similarly serve for other algorithms such as SARSA. In these implementations, the cortical circuit presumably sustains activity representing the executed action, which negatively impacts dopamine neurons so that they can calculate reward-prediction-error. Regarding the suggested more complex dynamics of striatal, as well as cortical, circuits on long time scales, which could be viewed as a sequence of short WTA fragments, computational roles remain open: such a sequence might represent (1) sequential state-action-state transitions, constituting replay or simulation of the internal model, (2) a single state/action by the whole trajectory, or (3) probabilistic sampling of state/action. PMID:27173430
Learning evasive maneuvers using evolutionary algorithms and neural networks
NASA Astrophysics Data System (ADS)
Kang, Moung Hung
In this research, evolutionary algorithms and recurrent neural networks are combined to evolve control knowledge to help pilots avoid being struck by a missile, based on a two-dimensional air combat simulation model. The recurrent neural network is used for representing the pilot's control knowledge and evolutionary algorithms (i.e., Genetic Algorithms, Evolution Strategies, and Evolutionary Programming) are used for optimizing the weights and/or topology of the recurrent neural network. The simulation model of the two-dimensional evasive maneuver problem evolved is used for evaluating the performance of the recurrent neural network. Five typical air combat conditions were selected to evaluate the performance of the recurrent neural networks evolved by the evolutionary algorithms. Analysis of Variance (ANOVA) tests and response graphs were used to analyze the results. Overall, there was little difference in the performance of the three evolutionary algorithms used to evolve the control knowledge. However, the number of generations of each algorithm required to obtain the best performance was significantly different. ES converges the fastest, followed by EP and then by GA. The recurrent neural networks evolved by the evolutionary algorithms provided better performance than the traditional recommendations for evasive maneuvers, maximum gravitational turn, for each air combat condition. Furthermore, the recommended actions of the recurrent neural networks are reasonable and can be used for pilot training.
Test Generation Algorithm for Fault Detection of Analog Circuits Based on Extreme Learning Machine
Zhou, Jingyu; Tian, Shulin; Yang, Chenglin; Ren, Xuelong
2014-01-01
This paper proposes a novel test generation algorithm based on extreme learning machine (ELM), and such algorithm is cost-effective and low-risk for analog device under test (DUT). This method uses test patterns derived from the test generation algorithm to stimulate DUT, and then samples output responses of the DUT for fault classification and detection. The novel ELM-based test generation algorithm proposed in this paper contains mainly three aspects of innovation. Firstly, this algorithm saves time efficiently by classifying response space with ELM. Secondly, this algorithm can avoid reduced test precision efficiently in case of reduction of the number of impulse-response samples. Thirdly, a new process of test signal generator and a test structure in test generation algorithm are presented, and both of them are very simple. Finally, the abovementioned improvement and functioning are confirmed in experiments. PMID:25610458
Test generation algorithm for fault detection of analog circuits based on extreme learning machine.
Zhou, Jingyu; Tian, Shulin; Yang, Chenglin; Ren, Xuelong
2014-01-01
This paper proposes a novel test generation algorithm based on extreme learning machine (ELM), and such algorithm is cost-effective and low-risk for analog device under test (DUT). This method uses test patterns derived from the test generation algorithm to stimulate DUT, and then samples output responses of the DUT for fault classification and detection. The novel ELM-based test generation algorithm proposed in this paper contains mainly three aspects of innovation. Firstly, this algorithm saves time efficiently by classifying response space with ELM. Secondly, this algorithm can avoid reduced test precision efficiently in case of reduction of the number of impulse-response samples. Thirdly, a new process of test signal generator and a test structure in test generation algorithm are presented, and both of them are very simple. Finally, the abovementioned improvement and functioning are confirmed in experiments. PMID:25610458
Jankovic, Marko; Ogawa, Hidemitsu
2004-10-01
Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method. PMID:15593379
An active foot lifter orthosis based on a PCPG algorithm.
Duvinage, Matthieu; Jiménez-Fábian, René; Castermans, Thierry; Verlinden, Olivier; Dutoit, Thierry
2011-01-01
Central pattern generators (CPGs) are known to play an important role in the generation of rhythmic movements in gait, both in animals and humans. The comprehension of their underlying mechanism has led to the development of an important family of algorithms at the basis of autonomous walking robots. Recently, it has been shown that human gait could be modeled using a subclass of those algorithms, namely a Programmable Central Pattern Generator (PCPG). In this paper, we present a foot lifter orthosis driven by this algorithm. After a learning phase, the PCPG is able to generate adequate rhythmic gait patterns both for constant speeds and acceleration phases. Its output is used to drive the orthosis actuator during the swing phase, in order to help patients suffering from foot drop (the orthosis just follows the movement during the stance phase). The most interesting property of this algorithm is the possibility to generate a smooth output signal even during speed transitions. In practice, given that human gait is not perfectly periodic, the phase of this signal needs to be reset with actual movement. Therefore, two phase-resetting procedures were studied: one standard hard phase-resetting leading to discontinuities and one original soft phase-resetting allowing to recover the correct phase in a smooth way. The simulation results and complete design of the orthosis hardware and software are presented. PMID:22275540
NASA Astrophysics Data System (ADS)
Li, Xiang-Tao; Yin, Ming-Hao
2012-05-01
We study the parameter estimation of a nonlinear chaotic system, which can be essentially formulated as a multidimensional optimization problem. In this paper, an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy. Experiments are conducted on the Lorenz system and the Chen system. The proposed algorithm is used to estimate the parameters for these two systems. Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.
The Topography Tub Learning Activity
NASA Astrophysics Data System (ADS)
Glesener, G. B.
2014-12-01
Understanding the basic elements of a topographic map (i.e. contour lines and intervals) is just a small part of learning how to use this abstract representational system as a resource in geologic mapping. Interpretation of a topographic map and matching its features with real-world structures requires that the system is utilized for visualizing the shapes of these structures and their spatial orientation. To enrich students' skills in visualizing topography from topographic maps a spatial training activity has been developed that uses 3D objects of various shapes and sizes, a sighting tool, a plastic basin, water, and transparencies. In the first part of the activity, the student is asked to draw a topographic map of one of the 3D objects. Next, the student places the object into a plastic tub in which water is added to specified intervals of height. The shoreline at each interval is used to reference the location of the contour line the student draws on a plastic inkjet transparency directly above the object. A key part of this activity is the use of a sighting tool by the student to assist in keeping the pencil mark directly above the shoreline. It (1) ensures the accurate positioning of the contour line and (2) gives the learner experience with using a sight before going out into the field. Finally, after the student finishes drawing the contour lines onto the transparency, the student can compare and contrast the two maps in order to discover where improvements in their visualization of the contours can be made. The teacher and/or peers can also make suggestions on ways to improve. A number of objects with various shapes and sizes are used in this exercise to produce contour lines representing the different types of topography the student may encounter while field mapping. The intended outcome from using this visualization training activity is improvement in performance of visualizing topography as the student moves between the topographic representation and
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-01-01
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738
User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm
Bourobou, Serge Thomas Mickala; Yoo, Younghwan
2015-01-01
This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738
Reconstructing Causal Biological Networks through Active Learning.
Cho, Hyunghoon; Berger, Bonnie; Peng, Jian
2016-01-01
Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205
Reconstructing Causal Biological Networks through Active Learning
Cho, Hyunghoon; Berger, Bonnie; Peng, Jian
2016-01-01
Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205
Baba, Norio; Mogami, Yoshio
2006-08-01
A new learning algorithm for the hierarchical structure learning automata (HSLA) operating in the nonstationary multiteacher environment (NME) is proposed. The proposed algorithm is derived by extending the original relative reward-strength algorithm to be utilized in the HSLA operating in the general NME. It is shown that the proposed algorithm ensures convergence with probability 1 to the optimal path under a certain type of the NME. Several computer-simulation results, which have been carried out in order to compare the relative performance of the proposed algorithm in some NMEs against those of the two of the fastest algorithms today, confirm the effectiveness of the proposed algorithm. PMID:16903364
Single-Iteration Learning Algorithm for Feed-Forward Neural Networks
Barhen, J.; Cogswell, R.; Protopopescu, V.
1999-07-31
A new methodology for neural learning is presented, whereby only a single iteration is required to train a feed-forward network with near-optimal results. To this aim, a virtual input layer is added to the multi-layer architecture. The virtual input layer is connected to the nominal input layer by a specird nonlinear transfer function, and to the fwst hidden layer by regular (linear) synapses. A sequence of alternating direction singular vrdue decompositions is then used to determine precisely the inter-layer synaptic weights. This algorithm exploits the known separability of the linear (inter-layer propagation) and nonlinear (neuron activation) aspects of information &ansfer within a neural network.
SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM
Bobra, M. G.; Couvidat, S.
2015-01-10
We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.
Štourač, Petr; Komenda, Martin; Harazim, Hana; Kosinová, Martina; Gregor, Jakub; Hůlek, Richard; Smékalová, Olga; Křikava, Ivo; Štoudek, Roman; Dušek, Ladislav
2013-01-01
Background Medical Faculties Network (MEFANET) has established itself as the authority for setting standards for medical educators in the Czech Republic and Slovakia, 2 independent countries with similar languages that once comprised a federation and that still retain the same curricular structure for medical education. One of the basic goals of the network is to advance medical teaching and learning with the use of modern information and communication technologies. Objective We present the education portal AKUTNE.CZ as an important part of the MEFANET’s content. Our focus is primarily on simulation-based tools for teaching and learning acute medicine issues. Methods Three fundamental elements of the MEFANET e-publishing system are described: (1) medical disciplines linker, (2) authentication/authorization framework, and (3) multidimensional quality assessment. A new set of tools for technology-enhanced learning have been introduced recently: Sandbox (works in progress), WikiLectures (collaborative content authoring), Moodle-MEFANET (central learning management system), and Serious Games (virtual casuistics and interactive algorithms). The latest development in MEFANET is designed for indexing metadata about simulation-based learning objects, also known as electronic virtual patients or virtual clinical cases. The simulations assume the form of interactive algorithms for teaching and learning acute medicine. An anonymous questionnaire of 10 items was used to explore students’ attitudes and interests in using the interactive algorithms as part of their medical or health care studies. Data collection was conducted over 10 days in February 2013. Results In total, 25 interactive algorithms in the Czech and English languages have been developed and published on the AKUTNE.CZ education portal to allow the users to test and improve their knowledge and skills in the field of acute medicine. In the feedback survey, 62 participants completed the online questionnaire (13
A cross-validation scheme for machine learning algorithms in shotgun proteomics
2012-01-01
Peptides are routinely identified from mass spectrometry-based proteomics experiments by matching observed spectra to peptides derived from protein databases. The error rates of these identifications can be estimated by target-decoy analysis, which involves matching spectra to shuffled or reversed peptides. Besides estimating error rates, decoy searches can be used by semi-supervised machine learning algorithms to increase the number of confidently identified peptides. As for all machine learning algorithms, however, the results must be validated to avoid issues such as overfitting or biased learning, which would produce unreliable peptide identifications. Here, we discuss how the target-decoy method is employed in machine learning for shotgun proteomics, focusing on how the results can be validated by cross-validation, a frequently used validation scheme in machine learning. We also use simulated data to demonstrate the proposed cross-validation scheme's ability to detect overfitting. PMID:23176259
A second-order learning algorithm for multilayer networks based on block Hessian matrix.
Wang, Yi Jen; Lin, Chin Teng
1998-12-01
This article proposes a new second-order learning algorithm for training the multilayer perceptron (MLP) networks. The proposed algorithm is a revised Newton's method. A forward-backward propagation scheme is first proposed for network computation of the Hessian matrix, H, of the output error function of the MLP. A block Hessian matrix, H(b), is then defined to approximate and simplify H. Several lemmas and theorems are proved to uncover the important properties of H and H(b), and verify the good approximation of H(b) to H; H(b) preserves the major properties of H. The theoretic analysis leads to the development of an efficient way for computing the inverse of H(b) recursively. In the proposed second-order learning algorithm, the least squares estimation technique is adopted to further lessen the local minimum problems. The proposed algorithm overcomes not only the drawbacks of the standard backpropagation algorithm (i.e. slow asymptotic convergence rate, bad controllability of convergence accuracy, local minimum problems, and high sensitivity to learning constant), but also the shortcomings of normal Newton's method used on the MLP, such as the lack of network implementation of H, ill representability of the diagonal terms of H, the heavy computation load of the inverse of H, and the requirement of a good initial estimate of the solution (weights). Several example problems are used to demonstrate the efficiency of the proposed learning algorithm. Extensive performance (convergence rate and accuracy) comparisons of the proposed algorithm with other learning schemes (including the standard backpropagation algorithm) are also made. PMID:12662732
A robust regularization algorithm for polynomial networks for machine learning
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.
2011-06-01
We present an improvement to the fundamental Group Method of Data Handling (GMDH) Data Modeling algorithm that overcomes the parameter sensitivity to novel cases presented to derived networks. We achieve this result by regularization of the output and using a genetic weighting that selects intermediate models that do not exhibit divergence. The result is the derivation of multi-nested polynomial networks following the Kolmogorov-Gabor polynomial that are robust to mean estimators as well as novel exemplars for input. The full details of the algorithm are presented. We also introduce a new method for approximating GMDH in a single regression model using F, H, and G terms that automatically exports the answers as ordinary differential equations. The MathCAD 15 source code for all algorithms and results are provided.
NASA Astrophysics Data System (ADS)
Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min
2015-12-01
In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.
Active Learning through Toy Design and Development
ERIC Educational Resources Information Center
Sirinterlikci, Arif; Zane, Linda; Sirinterlikci, Aleea L.
2009-01-01
This article presents an initiative that is based on active learning pedagogy by engaging elementary and middle school students in the toy design and development field. The case study presented in this article is about student learning experiences during their participation in the TOYchallenge National Toy Design Competition. Students followed the…
Child Development: An Active Learning Approach
ERIC Educational Resources Information Center
Levine, Laura E.; Munsch, Joyce
2010-01-01
Within each chapter of this innovative topical text, the authors engage students by demonstrating the wide range of real-world applications of psychological research connected to child development. In particular, the distinctive Active Learning features incorporated throughout the book foster a dynamic and personal learning process for students.…
Conditions for Apprentices' Learning Activities at Work
ERIC Educational Resources Information Center
Messmann, Gerhard; Mulder, Regina H.
2015-01-01
The aim of this study was to investigate how apprentices' learning activities at work can be fostered. This is a crucial issue as learning at work enhances apprentices' competence development and prepares them for professional development on the job. Therefore, we conducted a study with 70 apprentices in the German dual system and examined the…
Incorporating Active Learning into a Traditional Curriculum.
ERIC Educational Resources Information Center
Carroll, Robert G.; Huang, Alice H.
1997-01-01
Discusses self-learning exercises (SLEs) incorporated into the Medical Physiology course for first-year students at the Morehouse School of Medicine in Atlanta, GA. Twenty to thirty percent of course material is presented in these exercises instead of in lectures. The exercises develop active learning and problem-solving skills. Formal analysis…
61 Cooperative Learning Activities in ESL.
ERIC Educational Resources Information Center
Hirsch, Charles; Supple, Deborah Beres
Cooperative learning activities, instructional strategies, and reproducible classroom materials are provided to assist teachers with English-as-a-Second-Language learners in their classes. They are designed to help students develop English language skills using conversation-based cooperative learning principles, with native speakers and ESL…
Where's the Evidence that Active Learning Works?
ERIC Educational Resources Information Center
Michael, Joel
2006-01-01
Calls for reforms in the ways we teach science at all levels, and in all disciplines, are wide spread. The effectiveness of the changes being called for, employment of student-centered, active learning pedagogy, is now well supported by evidence. The relevant data have come from a number of different disciplines that include the learning sciences,…
A complexity analysis of space-bounded learning algorithms for the constraint satisfaction problem
Bayardo, R.J. Jr.; Miranker, D.P.
1996-12-31
Learning during backtrack search is a space-intensive process that records information (such as additional constraints) in order to avoid redundant work. In this paper, we analyze the effects of polynomial-space-bounded learning on runtime complexity of backtrack search. One space-bounded learning scheme records only those constraints with limited size, and another records arbitrarily large constraints but deletes those that become irrelevant to the portion of the search space being explored. We find that relevance-bounded learning allows better runtime bounds than size-bounded learning on structurally restricted constraint satisfaction problems. Even when restricted to linear space, our relevance-bounded learning algorithm has runtime complexity near that of unrestricted (exponential space-consuming) learning schemes.
Dobkin, Bruce H.; Xu, Xiaoyu; Batalin, Maxim; Thomas, Seth; Kaiser, William
2015-01-01
Background and Purpose Outcome measures of mobility for large stroke trials are limited to timed walks for short distances in a laboratory, step counters and ordinal scales of disability and quality of life. Continuous monitoring and outcome measurements of the type and quantity of activity in the community would provide direct data about daily performance, including compliance with exercise and skills practice during routine care and clinical trials. Methods Twelve adults with impaired ambulation from hemiparetic stroke and 6 healthy controls wore triaxial accelerometers on their ankles. Walking speed for repeated outdoor walks was determined by machine-learning algorithms and compared to a stopwatch calculation of speed for distances not known to the algorithm. The reliability of recognizing walking, exercise, and cycling by the algorithms was compared to activity logs. Results A high correlation was found between stopwatch-measured outdoor walking speed and algorithm-calculated speed (Pearson coefficient, 0.98; P=0.001) and for repeated measures of algorithm-derived walking speed (P=0.01). Bouts of walking >5 steps, variations in walking speed, cycling, stair climbing, and leg exercises were correctly identified during a day in the community. Compared to healthy subjects, those with stroke were, as expected, more sedentary and slower, and their gait revealed high paretic-to-unaffected leg swing ratios. Conclusions Test–retest reliability and concurrent and construct validity are high for activity pattern-recognition Bayesian algorithms developed from inertial sensors. This ratio scale data can provide real-world monitoring and outcome measurements of lower extremity activities and walking speed for stroke and rehabilitation studies. PMID:21636815
"Active Learning for Active Citizenship": Democratic Citizenship and Lifelong Learning
ERIC Educational Resources Information Center
Annette, John
2009-01-01
This article explores to what extent citizenship education for lifelong learning should be based on a more "political" or civic republican conception of citizenship as compared to a liberal individualist conception, which emphasizes individual rights, or a communitarian conception, which emphasizes moral and social responsibilities. It also…
Genetic algorithms: What computers can learn from Darwin
Walbridge, C.T. )
1989-01-01
In this article the author posits a field of computing based on the genetic algorithm. This approach to programming mimics evolution by utilizing a computer to solve problems on a trial and error basis and ascertain the best answer through natural selection of the best of the computer's guesses. The author discusses the viability of this system in comparison to that of artificial intelligence.
Spectral Regularization Algorithms for Learning Large Incomplete Matrices.
Mazumder, Rahul; Hastie, Trevor; Tibshirani, Robert
2010-03-01
We use convex relaxation techniques to provide a sequence of regularized low-rank solutions for large-scale matrix completion problems. Using the nuclear norm as a regularizer, we provide a simple and very efficient convex algorithm for minimizing the reconstruction error subject to a bound on the nuclear norm. Our algorithm Soft-Impute iteratively replaces the missing elements with those obtained from a soft-thresholded SVD. With warm starts this allows us to efficiently compute an entire regularization path of solutions on a grid of values of the regularization parameter. The computationally intensive part of our algorithm is in computing a low-rank SVD of a dense matrix. Exploiting the problem structure, we show that the task can be performed with a complexity linear in the matrix dimensions. Our semidefinite-programming algorithm is readily scalable to large matrices: for example it can obtain a rank-80 approximation of a 10(6) × 10(6) incomplete matrix with 10(5) observed entries in 2.5 hours, and can fit a rank 40 approximation to the full Netflix training set in 6.6 hours. Our methods show very good performance both in training and test error when compared to other competitive state-of-the art techniques. PMID:21552465
Learning interpretive decision algorithm for severe storm forecasting support
Gaffney, J.E. Jr.; Racer, I.R.
1983-01-01
As part of its ongoing program to develop new and better forecasting procedures and techniques, the National Weather Service has initiated an effort in interpretive processing. Investigation has begun to determine the applicability of artificial intelligence (AI)/expert system technology to interpretive processing. This paper presents an expert system algorithm that is being investigated to support the forecasting of severe thunderstorms. 14 references.
Applying active learning to assertion classification of concepts in clinical text.
Chen, Yukun; Mani, Subramani; Xu, Hua
2012-04-01
Supervised machine learning methods for clinical natural language processing (NLP) research require a large number of annotated samples, which are very expensive to build because of the involvement of physicians. Active learning, an approach that actively samples from a large pool, provides an alternative solution. Its major goal in classification is to reduce the annotation effort while maintaining the quality of the predictive model. However, few studies have investigated its uses in clinical NLP. This paper reports an application of active learning to a clinical text classification task: to determine the assertion status of clinical concepts. The annotated corpus for the assertion classification task in the 2010 i2b2/VA Clinical NLP Challenge was used in this study. We implemented several existing and newly developed active learning algorithms and assessed their uses. The outcome is reported in the global ALC score, based on the Area under the average Learning Curve of the AUC (Area Under the Curve) score. Results showed that when the same number of annotated samples was used, active learning strategies could generate better classification models (best ALC-0.7715) than the passive learning method (random sampling) (ALC-0.7411). Moreover, to achieve the same classification performance, active learning strategies required fewer samples than the random sampling method. For example, to achieve an AUC of 0.79, the random sampling method used 32 samples, while our best active learning algorithm required only 12 samples, a reduction of 62.5% in manual annotation effort. PMID:22127105
Point-of-Purchase Advertising. Learning Activity.
ERIC Educational Resources Information Center
Shackelford, Ray
1998-01-01
In this technology education activity, students learn the importance of advertising, conduct a day-long survey of advertising strategies, and design and produce a tabletop point-of-purchase advertisement. (JOW)
An Active Learning Project for Forage Courses.
ERIC Educational Resources Information Center
Hall, M. H.
1989-01-01
Presented is a successfully implemented active learning project and results of a survey to assess the success of the project. Materials and methods are discussed, and an example of one project is provided. (Author/CW)
Learning to play like a human: case injected genetic algorithms for strategic computer gaming
NASA Astrophysics Data System (ADS)
Louis, Sushil J.; Miles, Chris
2006-05-01
We use case injected genetic algorithms to learn how to competently play computer strategy games that involve long range planning across complex dynamics. Imperfect knowledge presented to players requires them adapt their strategies in order to anticipate opponent moves. We focus on the problem of acquiring knowledge learned from human players, in particular we learn general routing information from a human player in the context of a strike force planning game. By incorporating case injection into a genetic algorithm, we show methods for incorporating general knowledge elicited from human players into future plans. In effect allowing the GA to take important strategic elements from human play and merging those elements into its own strategic thinking. Results show that with an appropriate representation, case injection is effective at biasing the genetic algorithm toward producing plans that contain important strategic elements used by human players.
Dopamine, reward learning, and active inference
FitzGerald, Thomas H. B.; Dolan, Raymond J.; Friston, Karl
2015-01-01
Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings. PMID:26581305
NASA Astrophysics Data System (ADS)
Charrier, Christophe; Saadane, AbdelHakim; Fernandez-Maloigne, Christine
2015-01-01
No-reference image quality metrics are of fundamental interest as they can be embedded in practical applications. The main goal of this paper is to perform a comparative study of seven well known no-reference learning-based image quality algorithms. To test the performance of these algorithms, three public databases are used. As a first step, the trial algorithms are compared when no new learning is performed. The second step investigates how the training set influences the results. The Spearman Rank Ordered Correlation Coefficient (SROCC) is utilized to measure and compare the performance. In addition, an hypothesis test is conducted to evaluate the statistical significance of performance of each tested algorithm.
3D Visualization of Machine Learning Algorithms with Astronomical Data
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2016-01-01
We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.
People with Learning Disabilities and "Active Ageing"
ERIC Educational Resources Information Center
Foster, Liam; Boxall, Kathy
2015-01-01
Background: People (with and without learning disabilities) are living longer. Demographic ageing creates challenges and the leading policy response to these challenges is "active ageing". "Active" does not just refer to the ability to be physically and economically active, but also includes ongoing social and civic engagement…
Robust Blind Learning Algorithm for Nonlinear Equalization Using Input Decision Information.
Xu, Lu; Huang, Defeng David; Guo, Yingjie Jay
2015-12-01
In this paper, we propose a new blind learning algorithm, namely, the Benveniste-Goursat input-output decision (BG-IOD), to enhance the convergence performance of neural network-based equalizers for nonlinear channel equalization. In contrast to conventional blind learning algorithms, where only the output of the equalizer is employed for updating system parameters, the BG-IOD exploits a new type of extra information, the input decision information obtained from the input of the equalizer, to mitigate the influence of the nonlinear equalizer structure on parameters learning, thereby leading to improved convergence performance. We prove that, with the input decision information, a desirable convergence capability that the output symbol error rate (SER) is always less than the input SER if the input SER is below a threshold, can be achieved. Then, the BG soft-switching technique is employed to combine the merits of both input and output decision information, where the former is used to guarantee SER convergence and the latter is to improve SER performance. Simulation results show that the proposed algorithm outperforms conventional blind learning algorithms, such as stochastic quadratic distance and dual mode constant modulus algorithm, in terms of both convergence performance and SER performance, for nonlinear equalization. PMID:25706894
A Hybrid Constructive Algorithm for Single-Layer Feedforward Networks Learning.
Wu, Xing; Rózycki, Paweł; Wilamowski, Bogdan M
2015-08-01
Single-layer feedforward networks (SLFNs) have been proven to be a universal approximator when all the parameters are allowed to be adjustable. It is widely used in classification and regression problems. The SLFN learning involves two tasks: determining network size and training the parameters. Most current algorithms could not be satisfactory to both sides. Some algorithms focused on construction and only tuned part of the parameters, which may not be able to achieve a compact network. Other gradient-based optimization algorithms focused on parameters tuning while the network size has to be preset by the user. Therefore, trial-and-error approach has to be used to search the optimal network size. Because results of each trial cannot be reused in another trial, it costs much computation. In this paper, a hybrid constructive (HC)algorithm is proposed for SLFN learning, which can train all the parameters and determine the network size simultaneously. At first, by combining Levenberg-Marquardt algorithm and least-square method, a hybrid algorithm is presented for training SLFN with fixed network size. Then,with the hybrid algorithm, an incremental constructive scheme is proposed. A new randomly initialized neuron is added each time when the training entrapped into local minima. Because the training continued on previous results after adding new neurons, the proposed HC algorithm works efficiently. Several practical problems were given for comparison with other popular algorithms. The experimental results demonstrated that the HC algorithm worked more efficiently than those optimization methods with trial and error, and could achieve much more compact SLFN than those construction algorithms. PMID:25216485
Thermodynamically weighted ART (THWART): a finite-temperature activated algorithm
NASA Astrophysics Data System (ADS)
Barkema, Gerard; Mousseau, Normand
2004-03-01
Much effort has been invested in the last decade to develop accelerated algorithms. Many of these methods are limited either by having to work effectively at T=0 (ART, eigenvector-following or dimer method) or by the complexity level of the system under study (hyper-MD, TAD, etc.). The thermodynamically weighted activation-relaxation technique (THWART) overcomes some of these limitations. Coupling molecular dynamics with ART, this algorithm can be shown to sample the configurational space with the correct ensemble, while generating a trajectory that can go over large activation barriers. Preliminary simulations show that the method is many orders of magnitude faster than MD for sampling the configurational space of amorphous silicon at T=800 K and small peptides at 300 K. This work is supported in part by NSERC (Canada) and FRQNT (Québec). The simulations were performed on the supercomputers of the RQCHP. NM is a Cottrell Scholar of the Research Corporation.
PDT: Photometric DeTrending Algorithm Using Machine Learning
NASA Astrophysics Data System (ADS)
Kim, Dae-Won
2016-05-01
PDT removes systematic trends in light curves. It finds clusters of light curves that are highly correlated using machine learning, constructs one master trend per cluster and detrends an individual light curve using the constructed master trends by minimizing residuals while constraining coefficients to be positive.
Going the Distance: Active Learning.
ERIC Educational Resources Information Center
Notar, Charles E.; Restauri, Sherri; Wilson, Janell D.; Friery, Kathleen A.
The growth and development of distance learning (DL) programs is on the rise. This review examines the literature looking for instructional techniques and methods for the teacher desiring to use DL technology to maximize student achievement and cognitive development and to increase student interaction. The three major relationships within the…
Learning Activism, Acting with Phronesis
ERIC Educational Resources Information Center
Lee, Yew-Jin
2015-01-01
The article "Socio-political development of private school children mobilising for disadvantaged others" by Darren Hoeg, Natalie Lemelin, and Lawrence Bencze described a language-learning curriculum that drew on elements of Socioscientific issues and Science, Technology, Society and Environment. Results showed that with a number of…
Correlates of reward-predictive value in learning-related hippocampal neural activity
Okatan, Murat
2009-01-01
Temporal difference learning (TD) is a popular algorithm in machine learning. Two learning signals that are derived from this algorithm, the predictive value and the prediction error, have been shown to explain changes in neural activity and behavior during learning across species. Here, the predictive value signal is used to explain the time course of learning-related changes in the activity of hippocampal neurons in monkeys performing an associative learning task. The TD algorithm serves as the centerpiece of a joint probability model for the learning-related neural activity and the behavioral responses recorded during the task. The neural component of the model consists of spiking neurons that compete and learn the reward-predictive value of task-relevant input signals. The predictive-value signaled by these neurons influences the behavioral response generated by a stochastic decision stage, which constitutes the behavioral component of the model. It is shown that the time course of the changes in neural activity and behavioral performance generated by the model exhibits key features of the experimental data. The results suggest that information about correct associations may be expressed in the hippocampus before it is detected in the behavior of a subject. In this way, the hippocampus may be among the earliest brain areas to express learning and drive the behavioral changes associated with learning. Correlates of reward-predictive value may be expressed in the hippocampus through rate remapping within spatial memory representations, they may represent reward-related aspects of a declarative or explicit relational memory representation of task contingencies, or they may correspond to reward-related components of episodic memory representations. These potential functions are discussed in connection with hippocampal cell assembly sequences and their reverse reactivation during the awake state. The results provide further support for the proposal that neural
Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly A
2013-02-15
High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652
Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly
2013-01-01
High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652
Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953
Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm.
Wang, Li Jia; Zhang, Hua
2016-01-01
An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feedback update strategy, different weights are assigned to the tracking result and template according to the maximum classifier score. Finally, the presented algorithm is compared with other state-of-the-art algorithms. The experimental results demonstrate that the proposed tracking algorithm runs in real-time and is robust to occlusion and appearance changes. PMID:26843855
Visual Tracking Based on an Improved Online Multiple Instance Learning Algorithm
Wang, Li Jia; Zhang, Hua
2016-01-01
An improved online multiple instance learning (IMIL) for a visual tracking algorithm is proposed. In the IMIL algorithm, the importance of each instance contributing to a bag probability is with respect to their probabilities. A selection strategy based on an inner product is presented to choose weak classifier from a classifier pool, which avoids computing instance probabilities and bag probability M times. Furthermore, a feedback strategy is presented to update weak classifiers. In the feedback update strategy, different weights are assigned to the tracking result and template according to the maximum classifier score. Finally, the presented algorithm is compared with other state-of-the-art algorithms. The experimental results demonstrate that the proposed tracking algorithm runs in real-time and is robust to occlusion and appearance changes. PMID:26843855
NASA Astrophysics Data System (ADS)
Rao, R. V.; Savsani, V. J.; Balic, J.
2012-12-01
An efficient optimization algorithm called teaching-learning-based optimization (TLBO) is proposed in this article to solve continuous unconstrained and constrained optimization problems. The proposed method is based on the effect of the influence of a teacher on the output of learners in a class. The basic philosophy of the method is explained in detail. The algorithm is tested on 25 different unconstrained benchmark functions and 35 constrained benchmark functions with different characteristics. For the constrained benchmark functions, TLBO is tested with different constraint handling techniques such as superiority of feasible solutions, self-adaptive penalty, ɛ-constraint, stochastic ranking and ensemble of constraints. The performance of the TLBO algorithm is compared with that of other optimization algorithms and the results show the better performance of the proposed algorithm.
Actively learning object names across ambiguous situations.
Kachergis, George; Yu, Chen; Shiffrin, Richard M
2013-01-01
Previous research shows that people can use the co-occurrence of words and objects in ambiguous situations (i.e., containing multiple words and objects) to learn word meanings during a brief passive training period (Yu & Smith, 2007). However, learners in the world are not completely passive but can affect how their environment is structured by moving their heads, eyes, and even objects. These actions can indicate attention to a language teacher, who may then be more likely to name the attended objects. Using a novel active learning paradigm in which learners choose which four objects they would like to see named on each successive trial, this study asks whether active learning is superior to passive learning in a cross-situational word learning context. Finding that learners perform better in active learning, we investigate the strategies and discover that most learners use immediate repetition to disambiguate pairings. Unexpectedly, we find that learners who repeat only one pair per trial--an easy way to infer this pair-perform worse than those who repeat multiple pairs per trial. Using a working memory extension to an associative model of word learning with uncertainty and familiarity biases, we investigate individual differences that correlate with these assorted strategies. PMID:23335580
How tracer objects can improve competitive learning algorithms in astronomy
NASA Astrophysics Data System (ADS)
Hernandez-Pajares, M.; Floris, J.; Murtagh, F.
The main objective of this paper is to discuss how the use of tracer objects in competitive learning can improve results in stellar classification. To do this, we work with a Kohonen network applied to a reduced sample of the Hipparcos Input Catalogue, which contains missing values. The use of synthetic stars as tracer objects allows us to determine the discrimination quality and to find the best final values of the cluster centroids, or neuron weights.
Experienced Teachers' Informal Learning: Learning Activities and Changes in Behavior and Cognition
ERIC Educational Resources Information Center
Hoekstra, Annemarieke; Brekelmans, Mieke; Beijaard, Douwe; Korthagen, Fred
2009-01-01
In this study on 32 teachers' learning in an informal learning environment, we analyzed changes in conceptions and behavior regarding students' active and self-regulated learning (ASL), and relations with the teachers' learning activities. Few relations were found between observed changes in "behavior" and learning activities. Changes in…
Active Semi-Supervised Learning Method with Hybrid Deep Belief Networks
Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong
2014-01-01
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively. PMID:25208128
Active semi-supervised learning method with hybrid deep belief networks.
Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong
2014-01-01
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively. PMID:25208128
Quantum Speedup for Active Learning Agents
NASA Astrophysics Data System (ADS)
Paparo, Giuseppe Davide; Dunjko, Vedran; Makmal, Adi; Martin-Delgado, Miguel Angel; Briegel, Hans J.
2014-07-01
Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-life situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.
Implementing a Gaussian Process Learning Algorithm in Mixed Parallel Environment
Chandola, Varun; Vatsavai, Raju
2011-01-01
In this paper, we present a scalability analysis of a parallel Gaussian process training algorithm to simultaneously analyze a massive number of time series. We study three different parallel implementations: using threads, MPI, and a hybrid implementation using threads and MPI. We compare the scalability for the multi-threaded implementation on three different hardware platforms: a Mac desktop with two quad-core Intel Xeon processors (16 virtual cores), a Linux cluster node with four quad-core 2.3 GHz AMD Opteron processors, and SGI Altix ICE 8200 cluster node with two quad-core Intel Xeon processors (16 virtual cores). We also study the scalability of the MPI based and the hybrid MPI and thread based implementations on the SGI cluster with 128 nodes (2048 cores). Experimental results show that the hybrid implementation scales better than the multi-threaded and MPI based implementations. The hybrid implementation, using 1536 cores, can analyze a remote sensing data set with over 4 million time series in nearly 5 seconds while the serial algorithm takes nearly 12 hours to process the same data set.
Classifying Volcanic Activity Using an Empirical Decision Making Algorithm
NASA Astrophysics Data System (ADS)
Junek, W. N.; Jones, W. L.; Woods, M. T.
2012-12-01
Detection and classification of developing volcanic activity is vital to eruption forecasting. Timely information regarding an impending eruption would aid civil authorities in determining the proper response to a developing crisis. In this presentation, volcanic activity is characterized using an event tree classifier and a suite of empirical statistical models derived through logistic regression. Forecasts are reported in terms of the United States Geological Survey (USGS) volcano alert level system. The algorithm employs multidisciplinary data (e.g., seismic, GPS, InSAR) acquired by various volcano monitoring systems and source modeling information to forecast the likelihood that an eruption, with a volcanic explosivity index (VEI) > 1, will occur within a quantitatively constrained area. Logistic models are constructed from a sparse and geographically diverse dataset assembled from a collection of historic volcanic unrest episodes. Bootstrapping techniques are applied to the training data to allow for the estimation of robust logistic model coefficients. Cross validation produced a series of receiver operating characteristic (ROC) curves with areas ranging between 0.78-0.81, which indicates the algorithm has good predictive capabilities. The ROC curves also allowed for the determination of a false positive rate and optimum detection for each stage of the algorithm. Forecasts for historic volcanic unrest episodes in North America and Iceland were computed and are consistent with the actual outcome of the events.
NASA Astrophysics Data System (ADS)
Lin, Wenwen; Yu, D. Y.; Wang, S.; Zhang, Chaoyong; Zhang, Sanqiang; Tian, Huiyu; Luo, Min; Liu, Shengqiang
2015-07-01
In addition to energy consumption, the use of cutting fluids, deposition of worn tools and certain other manufacturing activities can have environmental impacts. All these activities cause carbon emission directly or indirectly; therefore, carbon emission can be used as an environmental criterion for machining systems. In this article, a direct method is proposed to quantify the carbon emissions in turning operations. To determine the coefficients in the quantitative method, real experimental data were obtained and analysed in MATLAB. Moreover, a multi-objective teaching-learning-based optimization algorithm is proposed, and two objectives to minimize carbon emissions and operation time are considered simultaneously. Cutting parameters were optimized by the proposed algorithm. Finally, the analytic hierarchy process was used to determine the optimal solution, which was found to be more environmentally friendly than the cutting parameters determined by the design of experiments method.
Is Peer Interaction Necessary for Optimal Active Learning?
ERIC Educational Resources Information Center
Linton, Debra L.; Farmer, Jan Keith; Peterson, Ernie
2014-01-01
Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of…
Algorithms for Learning Preferences for Sets of Objects
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; desJardins, Marie; Eaton, Eric
2010-01-01
A method is being developed that provides for an artificial-intelligence system to learn a user's preferences for sets of objects and to thereafter automatically select subsets of objects according to those preferences. The method was originally intended to enable automated selection, from among large sets of images acquired by instruments aboard spacecraft, of image subsets considered to be scientifically valuable enough to justify use of limited communication resources for transmission to Earth. The method is also applicable to other sets of objects: examples of sets of objects considered in the development of the method include food menus, radio-station music playlists, and assortments of colored blocks for creating mosaics. The method does not require the user to perform the often-difficult task of quantitatively specifying preferences; instead, the user provides examples of preferred sets of objects. This method goes beyond related prior artificial-intelligence methods for learning which individual items are preferred by the user: this method supports a concept of setbased preferences, which include not only preferences for individual items but also preferences regarding types and degrees of diversity of items in a set. Consideration of diversity in this method involves recognition that members of a set may interact with each other in the sense that when considered together, they may be regarded as being complementary, redundant, or incompatible to various degrees. The effects of such interactions are loosely summarized in the term portfolio effect. The learning method relies on a preference representation language, denoted DD-PREF, to express set-based preferences. In DD-PREF, a preference is represented by a tuple that includes quality (depth) functions to estimate how desired a specific value is, weights for each feature preference, the desired diversity of feature values, and the relative importance of diversity versus depth. The system applies statistical
Karyotype Analysis Activity: A Constructivist Learning Design
ERIC Educational Resources Information Center
Ahmed, Noveera T.
2015-01-01
This classroom activity is based on a constructivist learning design and engages students in physically constructing a karyotype of three mock patients. Students then diagnose the chromosomal aneuploidy based on the karyotype, list the symptoms associated with the disorder, and discuss the implications of the diagnosis. This activity is targeted…
RoboResource Technology Learning Activities.
ERIC Educational Resources Information Center
Keck, Tom, Comp.; Frye, Ellen, Ed.
Preparing students to be successful in a rapidly changing world means showing them how to use the tools of technology and how to integrate those tools into all areas of learning. This booklet is divided into three sections: Design Activities, Experiments, and Resources. The design activities ask students to collaborate on design projects. In these…
Learning Activities for the Growth Season.
ERIC Educational Resources Information Center
Darby, Linda, Ed.
This poster, illustrated with a graphic of a caterpillar changing to a cocoon and emerging as a butterfly, presents learning activities for 7 weeks based on the seven stages of growth in the President's "Call to Action." Each week includes 5 days of activities based on seven themes: (1) "Reading on Your Own"; (2) "Getting Ready for Algebra"; (3)…
Oral Hygiene. Instructor's Packet. Learning Activity Package.
ERIC Educational Resources Information Center
Hime, Kirsten
This instructor's packet accompanies the learning activity package (LAP) on oral hygiene. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, additional resources (student handouts), student performance checklists for both…
Lu, Y; Sundararajan, N; Saratchandran, P
1998-01-01
This paper presents a detailed performance analysis of the minimal resource allocation network (M-RAN) learning algorithm, M-RAN is a sequential learning radial basis function neural network which combines the growth criterion of the resource allocating network (RAN) of Platt (1991) with a pruning strategy based on the relative contribution of each hidden unit to the overall network output. The resulting network leads toward a minimal topology for the RAN. The performance of this algorithm is compared with the multilayer feedforward networks (MFNs) trained with 1) a variant of the standard backpropagation algorithm, known as RPROP and 2) the dependence identification (DI) algorithm of Moody and Antsaklis on several benchmark problems in the function approximation and pattern classification areas. For all these problems, the M-RAN algorithm is shown to realize networks with far fewer hidden neurons with better or same approximation/classification accuracy. Further, the time taken for learning (training) is also considerably shorter as M-RAN does not require repeated presentation of the training data. PMID:18252454
Technology Transfer Automated Retrieval System (TEKTRAN)
Tillage management practices have direct impact on water holding capacity, evaporation, carbon sequestration, and water quality. This study examines the feasibility of two statistical learning algorithms, such as Least Square Support Vector Machine (LSSVM) and Relevance Vector Machine (RVM), for cla...
Validating Machine Learning Algorithms for Twitter Data Against Established Measures of Suicidality
2016-01-01
Background One of the leading causes of death in the United States (US) is suicide and new methods of assessment are needed to track its risk in real time. Objective Our objective is to validate the use of machine learning algorithms for Twitter data against empirically validated measures of suicidality in the US population. Methods Using a machine learning algorithm, the Twitter feeds of 135 Mechanical Turk (MTurk) participants were compared with validated, self-report measures of suicide risk. Results Our findings show that people who are at high suicidal risk can be easily differentiated from those who are not by machine learning algorithms, which accurately identify the clinically significant suicidal rate in 92% of cases (sensitivity: 53%, specificity: 97%, positive predictive value: 75%, negative predictive value: 93%). Conclusions Machine learning algorithms are efficient in differentiating people who are at a suicidal risk from those who are not. Evidence for suicidality can be measured in nonclinical populations using social media data. PMID:27185366
ERIC Educational Resources Information Center
Moreno, Julian; Ovalle, Demetrio A.; Vicari, Rosa M.
2012-01-01
Considering that group formation is one of the key processes in collaborative learning, the aim of this paper is to propose a method based on a genetic algorithm approach for achieving inter-homogeneous and intra-heterogeneous groups. The main feature of such a method is that it allows for the consideration of as many student characteristics as…
A new machine learning algorithm for removal of salt and pepper noise
NASA Astrophysics Data System (ADS)
Wang, Yi; Adhami, Reza; Fu, Jian
2015-07-01
Supervised machine learning algorithm has been extensively studied and applied to different fields of image processing in past decades. This paper proposes a new machine learning algorithm, called margin setting (MS), for restoring images that are corrupted by salt and pepper impulse noise. Margin setting generates decision surface to classify the noise pixels and non-noise pixels. After the noise pixels are detected, a modified ranked order mean (ROM) filter is used to replace the corrupted pixels for images reconstruction. Margin setting algorithm is tested with grayscale and color images for different noise densities. The experimental results are compared with those of the support vector machine (SVM) and standard median filter (SMF). The results show that margin setting outperforms these methods with higher Peak Signal-to-Noise Ratio (PSNR), lower mean square error (MSE), higher image enhancement factor (IEF) and higher Structural Similarity Index (SSIM).
Design and Implementation of an Object Oriented Learning Activity System
ERIC Educational Resources Information Center
Lin, Huan-Yu; Tseng, Shian-Shyong; Weng, Jui-Feng; Su, Jun-Ming
2009-01-01
With the development of e-learning technology, many specifications of instructional design have been proposed to make learning activity sharable and reusable. With the specifications and sufficient learning resources, the researches further focus on how to provide learners more appropriate learning activities to improve their learning performance.…
Bayesian network structure learning based on the chaotic particle swarm optimization algorithm.
Zhang, Q; Li, Z; Zhou, C J; Wei, X P
2013-01-01
The Bayesian network (BN) is a knowledge representation form, which has been proven to be valuable in the gene regulatory network reconstruction because of its capability of capturing causal relationships between genes. Learning BN structures from a database is a nondeterministic polynomial time (NP)-hard problem that remains one of the most exciting challenges in machine learning. Several heuristic searching techniques have been used to find better network structures. Among these algorithms, the classical K2 algorithm is the most successful. Nonetheless, the performance of the K2 algorithm is greatly affected by a prior ordering of input nodes. The proposed method in this paper is based on the chaotic particle swarm optimization (CPSO) and the K2 algorithm. Because the PSO algorithm completely entraps the local minimum in later evolutions, we combined the PSO algorithm with the chaos theory, which has the properties of ergodicity, randomness, and regularity. Experimental results show that the proposed method can improve the convergence rate of particles and identify networks more efficiently and accurately. PMID:24222226
Algorithm Building and Learning Programming Languages Using a New Educational Paradigm
NASA Astrophysics Data System (ADS)
Jain, Anshul K.; Singhal, Manik; Gupta, Manu Sheel
2011-08-01
This research paper presents a new concept of using a single tool to associate syntax of various programming languages, algorithms and basic coding techniques. A simple framework has been programmed in Python that helps students learn skills to develop algorithms, and implement them in various programming languages. The tool provides an innovative and a unified graphical user interface for development of multimedia objects, educational games and applications. It also aids collaborative learning amongst students and teachers through an integrated mechanism based on Remote Procedure Calls. The paper also elucidates an innovative method for code generation to enable students to learn the basics of programming languages using drag-n-drop methods for image objects.
Emotion Estimation Algorithm from Facial Image Analyses of e-Learning Users
NASA Astrophysics Data System (ADS)
Shigeta, Ayuko; Koike, Takeshi; Kurokawa, Tomoya; Nosu, Kiyoshi
This paper proposes an emotion estimation algorithm from e-Learning user's facial image. The algorithm characteristics are as follows: The criteria used to relate an e-Learning use's emotion to a representative emotion were obtained from the time sequential analysis of user's facial expressions. By examining the emotions of the e-Learning users and the positional change of the facial expressions from the experiment results, the following procedures are introduce to improve the estimation reliability; (1) some effective features points are chosen by the emotion estimation (2) dividing subjects into two groups by the change rates of the face feature points (3) selection of the eigenvector of the variance-co-variance matrices (cumulative contribution rate>=95%) (4) emotion calculation using Mahalanobis distance.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhu, Linli; Wang, Kaiyun
2015-12-01
Ontology, a model of knowledge representation and storage, has had extensive applications in pharmaceutics, social science, chemistry and biology. In the age of “big data”, the constructed concepts are often represented as higher-dimensional data by scholars, and thus the sparse learning techniques are introduced into ontology algorithms. In this paper, based on the alternating direction augmented Lagrangian method, we present an ontology optimization algorithm for ontological sparse vector learning, and a fast version of such ontology technologies. The optimal sparse vector is obtained by an iterative procedure, and the ontology function is then obtained from the sparse vector. Four simulation experiments show that our ontological sparse vector learning model has a higher precision ratio on plant ontology, humanoid robotics ontology, biology ontology and physics education ontology data for similarity measuring and ontology mapping applications.
A stochastic learning algorithm for layered neural networks
Bartlett, E.B.; Uhrig, R.E.
1992-12-31
The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given.
A stochastic learning algorithm for layered neural networks
Bartlett, E.B. . Dept. of Mechanical Engineering); Uhrig, R.E. . Dept. of Nuclear Engineering)
1992-01-01
The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given.
Autonomous Motion Learning for Intra-Vehicular Activity Space Robot
NASA Astrophysics Data System (ADS)
Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo
Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.
Active Learning Strategies to Promote Critical Thinking
2003-01-01
Objective: To provide a brief introduction to the definition and disposition to think critically along with active learning strategies to promote critical thinking. Data Sources: I searched MEDLINE and Educational Resources Information Center (ERIC) from 1933 to 2002 for literature related to critical thinking, the disposition to think critically, questioning, and various critical-thinking pedagogic techniques. Data Synthesis: The development of critical thinking has been the topic of many educational articles recently. Numerous instructional methods exist to promote thought and active learning in the classroom, including case studies, discussion methods, written exercises, questioning techniques, and debates. Three methods—questioning, written exercises, and discussion and debates—are highlighted. Conclusions/Recommendations: The definition of critical thinking, the disposition to think critically, and different teaching strategies are featured. Although not appropriate for all subject matter and classes, these learning strategies can be used and adapted to facilitate critical thinking and active participation. PMID:16558680
Learning plan applicability through active mental entities
Baroni, Pietro; Fogli, Daniela; Guida, Giovanni
1999-03-22
This paper aims at laying down the foundations of a new approach to learning in autonomous mobile robots. It is based on the assumption that robots can be provided with built-in action plans and with mechanisms to modify and improve such plans. This requires that robots are equipped with some form of high-level reasoning capabilities. Therefore, the proposed learning technique is embedded in a novel distributed control architecture featuring an explicit model of robot's cognitive activity. In particular, cognitive activity is obtained by the interaction of active mental entities, such as intentions, persuasions and expectations. Learning capabilities are implemented starting from the interaction of such mental entities. The proposal is illustrated through an example concerning a robot in charge of reaching a target in an unknown environment cluttered with obstacles.
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; Ukkusuri, Satish V.
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plans in terms of average delay, number of stops, and vehicular emissions at the network level.
Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; Ukkusuri, Satish V.
2015-01-31
Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less
A Heuristic Algorithm for Planning Personalized Learning Paths for Context-Aware Ubiquitous Learning
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Kuo, Fan-Ray; Yin, Peng-Yeng; Chuang, Kuo-Hsien
2010-01-01
In a context-aware ubiquitous learning environment, learning systems can detect students' learning behaviors in the real-world with the help of context-aware (sensor) technology; that is, students can be guided to observe or operate real-world objects with personalized support from the digital world. In this study, an optimization problem that…
Restoration algorithms and system performance evaluation for active imagers
NASA Astrophysics Data System (ADS)
Gilles, Jérôme
2007-10-01
This paper deals with two fields related to active imaging system. First, we begin to explore image processing algorithms to restore the artefacts like speckle, scintillation and image dancing caused by atmospheric turbulence. Next, we examine how to evaluate the performance of this kind of systems. To do this task, we propose a modified version of the german TRM3 metric which permits to get MTF-like measures. We use the database acquired during NATO-TG40 field trials to make our tests.
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas
2015-04-01
Machine learning (ML) algorithms have been successfully evaluated as valuable tools in satellite-based rainfall retrievals which shows the high potential of ML algorithms when faced with high dimensional and complex data. Moreover, the recent developments in parallel computing with ML offer new possibilities in terms of training and predicting speed and therefore makes their usage in real time systems feasible. The present study compares four ML algorithms for rainfall area detection and rainfall rate assignment during daytime, night-time and twilight using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path are applied as predictor variables. As machine learning algorithms, random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) are chosen. The comparison is realised in three steps. First, an extensive tuning study is carried out to customise each of the models. Secondly, the models are trained using the optimum values of model parameters found in the tuning study. Finally, the trained models are used to detect rainfall areas and to assign rainfall rates using an independent validation datasets which is compared against ground-based radar data. To train and validate the models, the radar-based RADOLAN RW product from the German Weather Service (DWD) is used which provides area-wide gauge-adjusted hourly precipitation information. Though the differences in the performance of the algorithms were rather small, NNET and AVNNET have been identified as the most suitable algorithms. On average, they showed the best performance in rainfall area delineation as well as in rainfall rate assignment. The fast computation time of NNET allows to work with large datasets as it is required in remote sensing based rainfall retrievals. However, since none of the algorithms performed considerably better that the others we conclude that research
Techniques for Promoting Active Learning. The Cross Papers.
ERIC Educational Resources Information Center
Cross, K. Patricia
This guide offers suggestions for implementing active learning techniques in the community college classroom. The author argues that, although much of the literature on active learning emphasizes collaboration and small-group learning, active learning does not always involve interaction. It must also involve reflection and self-monitoring of both…
Astronomy Learning Activities for Tablets
NASA Astrophysics Data System (ADS)
Pilachowski, Catherine A.; Morris, Frank
2015-08-01
Four web-based tools allow students to manipulate astronomical data to learn concepts in astronomy. The tools are HTML5, CSS3, Javascript-based applications that provide access to the content on iPad and Android tablets. The first tool “Three Color” allows students to combine monochrome astronomical images taken through different color filters or in different wavelength regions into a single color image. The second tool “Star Clusters” allows students to compare images of stars in clusters with a pre-defined template of colors and sizes in order to produce color-magnitude diagrams to determine cluster ages. The third tool adapts Travis Rector’s “NovaSearch” to allow students to examine images of the central regions of the Andromeda Galaxy to find novae. After students find a nova, they are able to measure the time over which the nova fades away. A fourth tool, Proper Pair, allows students to interact with Hipparcos data to evaluate close double stars are physical binaries or chance superpositions. Further information and access to these web-based tools are available at www.astro.indiana.edu/ala/.
Semi-Supervised Active Learning for Sound Classification in Hybrid Learning Environments.
Han, Wenjing; Coutinho, Eduardo; Ruan, Huabin; Li, Haifeng; Schuller, Björn; Yu, Xiaojie; Zhu, Xuan
2016-01-01
Coping with scarcity of labeled data is a common problem in sound classification tasks. Approaches for classifying sounds are commonly based on supervised learning algorithms, which require labeled data which is often scarce and leads to models that do not generalize well. In this paper, we make an efficient combination of confidence-based Active Learning and Self-Training with the aim of minimizing the need for human annotation for sound classification model training. The proposed method pre-processes the instances that are ready for labeling by calculating their classifier confidence scores, and then delivers the candidates with lower scores to human annotators, and those with high scores are automatically labeled by the machine. We demonstrate the feasibility and efficacy of this method in two practical scenarios: pool-based and stream-based processing. Extensive experimental results indicate that our approach requires significantly less labeled instances to reach the same performance in both scenarios compared to Passive Learning, Active Learning and Self-Training. A reduction of 52.2% in human labeled instances is achieved in both of the pool-based and stream-based scenarios on a sound classification task considering 16,930 sound instances. PMID:27627768
Learning tensegrity locomotion using open-loop control signals and coevolutionary algorithms.
Iscen, Atil; Caluwaerts, Ken; Bruce, Jonathan; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan
2015-01-01
Soft robots offer many advantages over traditional rigid robots. However, soft robots can be difficult to control with standard control methods. Fortunately, evolutionary algorithms can offer an elegant solution to this problem. Instead of creating controls to handle the intricate dynamics of these robots, we can simply evolve the controls using a simulation to provide an evaluation function. In this article, we show how such a control paradigm can be applied to an emerging field within soft robotics: robots based on tensegrity structures. We take the model of the Spherical Underactuated Planetary Exploration Robot ball (SUPERball), an icosahedron tensegrity robot under production at NASA Ames Research Center, develop a rolling locomotion algorithm, and study the learned behavior using an accurate model of the SUPERball simulated in the NASA Tensegrity Robotics Toolkit. We first present the historical-average fitness-shaping algorithm for coevolutionary algorithms to speed up learning while favoring robustness over optimality. Second, we use a distributed control approach by coevolving open-loop control signals for each controller. Being simple and distributed, open-loop controllers can be readily implemented on SUPERball hardware without the need for sensor information or precise coordination. We analyze signals of different complexities and frequencies. Among the learned policies, we take one of the best and use it to analyze different aspects of the rolling gait, such as lengths, tensions, and energy consumption. We also discuss the correlation between the signals controlling different parts of the tensegrity robot. PMID:25951199
Deep learning algorithms for detecting explosive hazards in ground penetrating radar data
NASA Astrophysics Data System (ADS)
Besaw, Lance E.; Stimac, Philip J.
2014-05-01
Buried explosive hazards (BEHs) have been, and continue to be, one of the most deadly threats in modern conflicts. Current handheld sensors rely on a highly trained operator for them to be effective in detecting BEHs. New algorithms are needed to reduce the burden on the operator and improve the performance of handheld BEH detectors. Traditional anomaly detection and discrimination algorithms use "hand-engineered" feature extraction techniques to characterize and classify threats. In this work we use a Deep Belief Network (DBN) to transcend the traditional approaches of BEH detection (e.g., principal component analysis and real-time novelty detection techniques). DBNs are pretrained using an unsupervised learning algorithm to generate compressed representations of unlabeled input data and form feature detectors. They are then fine-tuned using a supervised learning algorithm to form a predictive model. Using ground penetrating radar (GPR) data collected by a robotic cart swinging a handheld detector, our research demonstrates that relatively small DBNs can learn to model GPR background signals and detect BEHs with an acceptable false alarm rate (FAR). In this work, our DBNs achieved 91% probability of detection (Pd) with 1.4 false alarms per square meter when evaluated on anti-tank and anti-personnel targets at temperate and arid test sites. This research demonstrates that DBNs are a viable approach to detect and classify BEHs.
Using Oceanography to Support Active Learning
NASA Astrophysics Data System (ADS)
Byfield, V.
2012-04-01
Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from
Personalized tuning of a reinforcement learning control algorithm for glucose regulation.
Daskalaki, Elena; Diem, Peter; Mougiakakou, Stavroula G
2013-01-01
Artificial pancreas is in the forefront of research towards the automatic insulin infusion for patients with type 1 diabetes. Due to the high inter- and intra-variability of the diabetic population, the need for personalized approaches has been raised. This study presents an adaptive, patient-specific control strategy for glucose regulation based on reinforcement learning and more specifically on the Actor-Critic (AC) learning approach. The control algorithm provides daily updates of the basal rate and insulin-to-carbohydrate (IC) ratio in order to optimize glucose regulation. A method for the automatic and personalized initialization of the control algorithm is designed based on the estimation of the transfer entropy (TE) between insulin and glucose signals. The algorithm has been evaluated in silico in adults, adolescents and children for 10 days. Three scenarios of initialization to i) zero values, ii) random values and iii) TE-based values have been comparatively assessed. The results have shown that when the TE-based initialization is used, the algorithm achieves faster learning with 98%, 90% and 73% in the A+B zones of the Control Variability Grid Analysis for adults, adolescents and children respectively after five days compared to 95%, 78%, 41% for random initialization and 93%, 88%, 41% for zero initial values. Furthermore, in the case of children, the daily Low Blood Glucose Index reduces much faster when the TE-based tuning is applied. The results imply that automatic and personalized tuning based on TE reduces the learning period and improves the overall performance of the AC algorithm. PMID:24110480
Cue-based and algorithmic learning in common carp: A possible link to stress coping style.
Mesquita, Flavia Oliveira; Borcato, Fabio Luiz; Huntingford, Felicity Ann
2015-06-01
Common carp that had been screened for stress coping style using a standard behavioural test (response to a novel environment) were given a learning task in which food was concealed in one of two compartments, its location randomised between trials and its presence in a given compartment signalled by either a red or a yellow light. All the fish learned to find food quickly, but did so in different ways. Fifty five percent learned to use the light cue to locate food; the remainder achieved the same result by developing a fixed movement routine. To explore this variation, we related learning strategy to stress coping style. Time to find food fell identically with successive trials in carp classified as reactive or proactive, but reactive fish tended to follow the light cue and proactive fish to adopt a fixed routine. Among fish that learned to follow the light, reactive individuals took fewer trials to reach the learning criterion than did proactive fish. These results add to the growing body of information on within-species variation in learning strategies and suggest a possible influence of stress coping style on the use of associative learning as opposed to algorithmic searching during foraging. PMID:25725347
Impedance learning for robotic contact tasks using natural actor-critic algorithm.
Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul
2010-04-01
Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment. PMID:19696001
DSP-based on-line NMR spectroscopy using an anti-Hebbian learning algorithm
Razazian, K.; Dieckman, S.L.; Raptis, A.C.; Bobis, J.P. |
1995-07-01
This paper describes a nuclear magnetic resonance (NMR) system that uses an adaptive algorithm to carry out real-time NMR spectroscopy. The system employs a digital signal processor (DSP) chip to regulate the transmitted and received signal together with spectral analysis of the received signal to determine free induction decay (FID). To implement such a signal-processing routine for detection of the desired signal, an adaptive line enhancer filter that uses an anti-Hebbian learning algorithm is applied to the FID spectra. The results indicate that the adaptive filter can be a reliable technique for on-line spectroscopy study.
Concept Learning for Achieving Personalized Ontologies: An Active Learning Approach
NASA Astrophysics Data System (ADS)
Şensoy, Murat; Yolum, Pinar
In many multiagent approaches, it is usual to assume the existence of a common ontology among agents. However, in dynamic systems, the existence of such an ontology is unrealistic and its maintenance is cumbersome. Burden of maintaining a common ontology can be alleviated by enabling agents to evolve their ontologies personally. However, with different ontologies, agents are likely to run into communication problems since their vocabularies are different from each other. Therefore, to achieve personalized ontologies, agents must have a means to understand the concepts used by others. Consequently, this paper proposes an approach that enables agents to teach each other concepts from their ontologies using examples. Unlike other concept learning approaches, our approach enables the learner to elicit most informative examples interactively from the teacher. Hence, the learner participates to the learning process actively. We empirically compare the proposed approach with the previous concept learning approaches. Our experiments show that using the proposed approach, agents can learn new concepts successfully and with fewer examples.
Learning Outcomes of Project-Based and Inquiry-Based Learning Activities
ERIC Educational Resources Information Center
Panasan, Mookdaporn; Nuangchalerm, Prasart
2010-01-01
Problem statement: Organization of science learning activities is necessary to rely on various methods of organization of learning and to be appropriate to learners. Organization of project-based learning activities and inquiry-based learning activities are teaching methods which can help students understand scientific knowledge. It would be more…
Learning Outcomes between Socioscientific Issues-Based Learning and Conventional Learning Activities
ERIC Educational Resources Information Center
Wongsri, Piyaluk; Nuangchalerm, Prasart
2010-01-01
Problem statement: Socioscientific issues-based learning activity is essential for scientific reasoning skills and it could be used for analyzing problems be applied to each situation for more successful and suitable. The purposes of this research aimed to compare learning achievement, analytical thinking and moral reasoning of seventh grade…
Syncope. What Is It? Learning Activity Package.
ERIC Educational Resources Information Center
Stark, Pam
This learning activity packaage on syncope (fainting) is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a glossary, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…
Perspectives on Learning, Thinking, and Activity.
ERIC Educational Resources Information Center
Anderson, John R.; Greeno, James G.; Reder, Lynne M.; Simon, Herbert A.
2000-01-01
Discusses the cognitive and situative research approaches, identifying several points on which they agree (e.g., individual and social perspectives on activity are fundamental in education; learning can be general, and abstractions can be efficacious, but sometimes they are not; and situative and cognitive approaches can cast light on different…
Learning about Outdoor Education through Authentic Activity
ERIC Educational Resources Information Center
Moffett, Pamela
2012-01-01
The potential, for the learner, of a maths trail was documented in MT219. Here, the focus is on the planning element of such an event from the perspective of a group of student teachers. Personal reactions, and insights are used to demonstrate that "real, and authentic, learning" takes place for all those involved in the activity.
Active/Cooperative Learning in Schools
ERIC Educational Resources Information Center
Bandiera, Milena; Bruno, Costanza
2006-01-01
The study describes a teaching action undertaken in the belief that the use of methodologies based on active and cooperative learning could obviate some of the most worrying deficiencies in current scientific teaching, while at the same time supporting the validity of the constructivistic theory that prompted them. A teaching action on genetically…
Active Learning Strategies and Vocabulary Achievement
ERIC Educational Resources Information Center
Griffith, John R.
2015-01-01
Using a quantitative method of data collection, this research explored the question: Do active learning strategies used in grades 5 and 6 affect student vocabulary achievement in a positive or negative direction? In their research, Wolfe (2001), Headley, et al., (1995), Freiberg, et al., (1992), and Brunner (2009) emphasize the importance of…
Active Citizenship, Education and Service Learning
ERIC Educational Resources Information Center
Birdwell, Jonathan; Scott, Ralph; Horley, Edward
2013-01-01
This article explores how active citizenship can be encouraged through education and community action. It proposes that service learning and a renewed focus on voluntarism can both promote social cohesion between different ethnic and cultural groups while also fostering among the population a greater understanding of and commitment to civic…
Cultural Historical Activity Theory and Professional Learning
ERIC Educational Resources Information Center
Daniels, Harry
2004-01-01
In this article I will discuss the route by which I came to work with Cultural Historical Activity Theory (CHAT). The brief tracing of my own biography will highlight theoretical and methodological milestones. I will then discuss my current work, with colleagues, on approaches to investigating and improving the learning of professionals who are…
Cashier/Checker Learning Activity Packets (LAPs).
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…
Active Learning in the Physics Classroom
NASA Astrophysics Data System (ADS)
Naron, Carol
Many students enter physics classes filled with misconceptions about physics concepts. Students tend to retain these misconceptions into their adult lives, even after physics instruction. Constructivist researchers have found that students gain understanding through their experiences. Researchers have also found that active learning practices increase conceptual understanding of introductory physics students. This project study sought to examine whether incorporating active learning practices in an advanced placement physics classroom increased conceptual understanding as measured by the force concept inventory (FCI). Physics students at the study site were given the FCI as both a pre- and posttest. Test data were analyzed using two different methods---a repeated-measures t test and the Hake gain method. The results of this research project showed that test score gains were statistically significant, as measured by the t test. The Hake gain results indicated a low (22.5%) gain for the class. The resulting project was a curriculum plan for teaching the mechanics portion of Advanced Placement (AP) physics B as well as several active learning classroom practices supported by the research. This project will allow AP physics teachers an opportunity to improve their curricular practices. Locally, the results of this project study showed that research participants gained understanding of physics concepts. Social change may occur as teachers implement active learning strategies, thus creating improved student understanding of physics concepts.
The Surgical Scrub. Learning Activity Package.
ERIC Educational Resources Information Center
Runge, Lillian
This learning activity package on the surgical scrub is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These…
Learning Activity Package, Algebra-Trigonometry.
ERIC Educational Resources Information Center
Holland, Bill
A series of ten teacher-prepared Learning Activity Packages (LAPs) in advanced algebra and trigonometry, the units cover logic; absolute value, inequalities, exponents, and complex numbers; functions; higher degree equations and the derivative; the trigonometric function; graphs and applications of the trigonometric functions; sequences and…
Measuring Active Learning to Predict Course Quality
ERIC Educational Resources Information Center
Taylor, John E.; Ku, Heng-Yu
2011-01-01
This study investigated whether active learning within computer-based training courses can be measured and whether it serves as a predictor of learner-perceived course quality. A major corporation participated in this research, providing access to internal employee training courses, training representatives, and historical course evaluation data.…
Learning Activity Package, Pre-Algebra.
ERIC Educational Resources Information Center
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in topics in pre-algebra, the units cover the decimal numeration system; number theory; fractions and decimals; ratio, proportion, and percent; sets; properties of operations; rational numbers; real numbers; open expressions; and open rational…
The Enlightenment Revisited: Sources & Interpretations. Learning Activities.
ERIC Educational Resources Information Center
Donato, Clorinda; And Others
This resource book provides 26 learning activities with background materials for teaching about the Enlightenment. Topics include: (1) "What Was the Enlightenment?"; (2) "An Introduction to the Philosophes"; (3) "Was the Enlightenment a Revolt Against Rationalism?"; (4) "Were the Philosophes Democrats? A Comparison of the 'Enlightened' Ideas of…
Temperature, Pulse, and Respiration. Learning Activity Package.
ERIC Educational Resources Information Center
Runge, Lillian
This learning activity package on temperature, pulse, and respiration is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…
An Active Learning Approach to Teaching Statistics.
ERIC Educational Resources Information Center
Dolinsky, Beverly
2001-01-01
Provides suggestions for using active learning as the primary means to teaching statistics in order to create a collaborative environment. Addresses such strategies as using SPSS Base 7.5 for Windows and course periods centered on answering student-generated questions. Discusses various writing intensive assignments. (CMK)
Active Learning Strategies in Physics Teaching
ERIC Educational Resources Information Center
Karamustafaoglu, Orhan
2009-01-01
The purpose of this study was to determine physics teachers' opinions about student-centered activities applicable in physics teaching and learning in context. A case study approach was used in this research. First, semi-structured interviews were carried out with 6 physics teachers. Then, a questionnaire was developed based on the data obtained…
Live Scale Active Shooter Exercise: Lessons Learned
ERIC Educational Resources Information Center
Ervin, Randy
2008-01-01
On October 23, 2007, the Lake Land College Public Safety Department conducted a full-scale live exercise that simulated an active shooter and barricaded hostage. In this article, the author will emphasize what they learned, and how they intend to benefit from it. He will list the law enforcement issues and general issues they encountered, and then…
[Purity Detection Model Update of Maize Seeds Based on Active Learning].
Tang, Jin-ya; Huang, Min; Zhu, Qi-bing
2015-08-01
Seed purity reflects the degree of seed varieties in typical consistent characteristics, so it is great important to improve the reliability and accuracy of seed purity detection to guarantee the quality of seeds. Hyperspectral imaging can reflect the internal and external characteristics of seeds at the same time, which has been widely used in nondestructive detection of agricultural products. The essence of nondestructive detection of agricultural products using hyperspectral imaging technique is to establish the mathematical model between the spectral information and the quality of agricultural products. Since the spectral information is easily affected by the sample growth environment, the stability and generalization of model would weaken when the test samples harvested from different origin and year. Active learning algorithm was investigated to add representative samples to expand the sample space for the original model, so as to implement the rapid update of the model's ability. Random selection (RS) and Kennard-Stone algorithm (KS) were performed to compare the model update effect with active learning algorithm. The experimental results indicated that in the division of different proportion of sample set (1:1, 3:1, 4:1), the updated purity detection model for maize seeds from 2010 year which was added 40 samples selected by active learning algorithm from 2011 year increased the prediction accuracy for 2011 new samples from 47%, 33.75%, 49% to 98.89%, 98.33%, 98.33%. For the updated purity detection model of 2011 year, its prediction accuracy for 2010 new samples increased by 50.83%, 54.58%, 53.75% to 94.57%, 94.02%, 94.57% after adding 56 new samples from 2010 year. Meanwhile the effect of model updated by active learning algorithm was better than that of RS and KS. Therefore, the update for purity detection model of maize seeds is feasible by active learning algorithm. PMID:26672281
A novel neural-inspired learning algorithm with application to clinical risk prediction.
Tay, Darwin; Poh, Chueh Loo; Kitney, Richard I
2015-04-01
Clinical risk prediction - the estimation of the likelihood an individual is at risk of a disease - is a coveted and exigent clinical task, and a cornerstone to the recommendation of life saving management strategies. This is especially important for individuals at risk of cardiovascular disease (CVD) given the fact that it is the leading causes of death in many developed counties. To this end, we introduce a novel learning algorithm - a key factor that influences the performance of machine learning-based prediction models - and utilities it to develop CVD risk prediction tool. This novel neural-inspired algorithm, called the Artificial Neural Cell System for classification (ANCSc), is inspired by mechanisms that develop the brain and empowering it with capabilities such as information processing/storage and recall, decision making and initiating actions on external environment. Specifically, we exploit on 3 natural neural mechanisms responsible for developing and enriching the brain - namely neurogenesis, neuroplasticity via nurturing and apoptosis - when implementing ANCSc algorithm. Benchmark testing was conducted using the Honolulu Heart Program (HHP) dataset and results are juxtaposed with 2 other algorithms - i.e. Support Vector Machine (SVM) and Evolutionary Data-Conscious Artificial Immune Recognition System (EDC-AIRS). Empirical experiments indicate that ANCSc algorithm (statistically) outperforms both SVM and EDC-AIRS algorithms. Key clinical markers identified by ANCSc algorithm include risk factors related to diet/lifestyle, pulmonary function, personal/family/medical history, blood data, blood pressure, and electrocardiography. These clinical markers, in general, are also found to be clinically significant - providing a promising avenue for identifying potential cardiovascular risk factors to be evaluated in clinical trials. PMID:25576352
Learning deterministic finite automata with a smart state labeling evolutionary algorithm.
Lucas, Simon M; Reynolds, T Jeff
2005-07-01
Learning a Deterministic Finite Automaton (DFA) from a training set of labeled strings is a hard task that has been much studied within the machine learning community. It is equivalent to learning a regular language by example and has applications in language modeling. In this paper, we describe a novel evolutionary method for learning DFA that evolves only the transition matrix and uses a simple deterministic procedure to optimally assign state labels. We compare its performance with the Evidence Driven State Merging (EDSM) algorithm, one of the most powerful known DFA learning algorithms. We present results on random DFA induction problems of varying target size and training set density. We also studythe effects of noisy training data on the evolutionary approach and on EDSM. On noise-free data, we find that our evolutionary method outperforms EDSM on small sparse data sets. In the case of noisy training data, we find that our evolutionary method consistently outperforms EDSM, as well as other significant methods submitted to two recent competitions. PMID:16013754
Prostate cancer diagnosis using quantitative phase imaging and machine learning algorithms
NASA Astrophysics Data System (ADS)
Nguyen, Tan H.; Sridharan, Shamira; Macias, Virgilia; Balla, Andre K.; Do, Minh N.; Popescu, Gabriel
2015-03-01
We report, for the first time, the use of Quantitative Phase Imaging (QPI) images to perform automatic prostate cancer diagnosis. A machine learning algorithm is implemented to learn textural behaviors of prostate samples imaged under QPI and produce labeled maps of different regions for testing biopsies (e.g. gland, stroma, lumen etc.). From these maps, morphological and textural features are calculated to predict outcomes of the testing samples. Current performance is reported on a dataset of more than 300 cores of various diagnosis results.
Efficient algorithm for sparse coding and dictionary learning with applications to face recognition
NASA Astrophysics Data System (ADS)
Zhao, Zhong; Feng, Guocan
2015-03-01
Sparse representation has been successfully applied to pattern recognition problems in recent years. The most common way for producing sparse coding is to use the l1-norm regularization. However, the l1-norm regularization only favors sparsity and does not consider locality. It may select quite different bases for similar samples to favor sparsity, which is disadvantageous to classification. Besides, solving the l1-minimization problem is time consuming, which limits its applications in large-scale problems. We propose an improved algorithm for sparse coding and dictionary learning. This algorithm takes both sparsity and locality into consideration. It selects part of the dictionary columns that are close to the input sample for coding and imposes locality constraint on these selected dictionary columns to obtain discriminative coding for classification. Because an analytic solution of the coding is derived by only using part of the dictionary columns, the proposed algorithm is much faster than the l1-based algorithms for classification. Besides, we also derive an analytic solution for updating the dictionary in the training process. Experiments conducted on five face databases show that the proposed algorithm has better performance than the competing algorithms in terms of accuracy and efficiency.
Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.
2016-07-01
Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.
Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.
2015-05-01
Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.
A hybrid manifold learning algorithm for the diagnosis and prognostication of Alzheimer's disease.
Dai, Peng; Gwadry-Sridhar, Femida; Bauer, Michael; Borrie, Michael
2015-01-01
The diagnosis of Alzheimer's disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. Such data are difficult to compare, visualize, and analyze due to the heterogeneous nature of medical tests. We present a hybrid manifold learning framework, which embeds the feature vectors in a subspace preserving the underlying pairwise similarity structure, i.e. similar/dissimilar pairs. Evaluation tests are carried out using the neuroimaging and biological data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) in a three-class (normal, mild cognitive impairment, and AD) classification task using support vector machine (SVM). Furthermore, we make extensive comparison with standard manifold learning algorithms, such as Principal Component Analysis (PCA), Principal Component Analysis (PCA), Multidimensional Scaling (MDS), and isometric feature mapping (Isomap). Experimental results show that our proposed algorithm yields an overall accuracy of 85.33% in the three-class task. PMID:26958180
Bearing fault component identification using information gain and machine learning algorithms
NASA Astrophysics Data System (ADS)
Vinay, Vakharia; Kumar, Gupta Vijay; Kumar, Kankar Pavan
2015-04-01
In the present study an attempt has been made to identify various bearing faults using machine learning algorithm. Vibration signals obtained from faults in inner race, outer race, rolling element and combined faults are considered. Raw vibration signal cannot be used directly since vibration signals are masked by noise. To overcome this difficulty combined time frequency domain method such as wavelet transform is used. Further wavelet selection criteria based on minimum permutation entropy is employed to select most appropriate base wavelet. Statistical features from selected wavelet coefficients are calculated to form feature vector. To reduce size of feature vector information gain attribute selection method is employed. Modified feature set is fed in to machine learning algorithm such as random forest and self-organizing map for getting maximize fault identification efficiency. Results obtained revealed that attribute selection method shows improvement in fault identification accuracy of bearing components.
A hybrid manifold learning algorithm for the diagnosis and prognostication of Alzheimer’s disease
Dai, Peng; Gwadry-Sridhar, Femida; Bauer, Michael; Borrie, Michael
2015-01-01
The diagnosis of Alzheimer’s disease (AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous data. Such data are difficult to compare, visualize, and analyze due to the heterogeneous nature of medical tests. We present a hybrid manifold learning framework, which embeds the feature vectors in a subspace preserving the underlying pairwise similarity structure, i.e. similar/dissimilar pairs. Evaluation tests are carried out using the neuroimaging and biological data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) in a three-class (normal, mild cognitive impairment, and AD) classification task using support vector machine (SVM). Furthermore, we make extensive comparison with standard manifold learning algorithms, such as Principal Component Analysis (PCA), Principal Component Analysis (PCA), Multidimensional Scaling (MDS), and isometric feature mapping (Isomap). Experimental results show that our proposed algorithm yields an overall accuracy of 85.33% in the three-class task. PMID:26958180
Graduate Faculty Perceptions of Experiential Learning Activities in Multicultural Classrooms
ERIC Educational Resources Information Center
Su, Yu-Han
2012-01-01
Current graduate programs employ many effective teaching methods. One of these methods, using experiential learning activities (Lee & Caffarella, 1994) in class, includes the subcomponents of cooperative learning, self-directed learning, and active learning. While these methods are commonly used, not much scholarly literature has examined the…
Active Learning Environment with Lenses in Geometric Optics
ERIC Educational Resources Information Center
Tural, Güner
2015-01-01
Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…
The Validation of the Active Learning in Health Professions Scale
ERIC Educational Resources Information Center
Kammer, Rebecca; Schreiner, Laurie; Kim, Young K.; Denial, Aurora
2015-01-01
There is a need for an assessment tool for evaluating the effectiveness of active learning strategies such as problem-based learning in promoting deep learning and clinical reasoning skills within the dual environments of didactic and clinical settings in health professions education. The Active Learning in Health Professions Scale (ALPHS)…
Simulating Visual Learning and Optical Illusions via a Network-Based Genetic Algorithm
NASA Astrophysics Data System (ADS)
Siu, Theodore; Vivar, Miguel; Shinbrot, Troy
We present a neural network model that uses a genetic algorithm to identify spatial patterns. We show that the model both learns and reproduces common visual patterns and optical illusions. Surprisingly, we find that the illusions generated are a direct consequence of the network architecture used. We discuss the implications of our results and the insights that we gain on how humans fall for optical illusions
Tuning of active vibration controllers for ACTEX by genetic algorithm
NASA Astrophysics Data System (ADS)
Kwak, Moon K.; Denoyer, Keith K.
1999-06-01
This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.
NASA Astrophysics Data System (ADS)
Valentine, Andrew; Kalnins, Lara
2016-05-01
"Learning algorithms" are a class of computational tool designed to infer information from a data set, and then apply that information predictively. They are particularly well suited to complex pattern recognition, or to situations where a mathematical relationship needs to be modelled but where the underlying processes are not well understood, are too expensive to compute, or where signals are over-printed by other effects. If a representative set of examples of the relationship can be constructed, a learning algorithm can assimilate its behaviour, and may then serve as an efficient, approximate computational implementation thereof. A wide range of applications in geomorphometry and Earth surface dynamics may be envisaged, ranging from classification of landforms through to prediction of erosion characteristics given input forces. Here, we provide a practical overview of the various approaches that lie within this general framework, review existing uses in geomorphology and related applications, and discuss some of the factors that determine whether a learning algorithm approach is suited to any given problem.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Application of neural networks and other machine learning algorithms to DNA sequence analysis
Lapedes, A.; Barnes, C.; Burks, C.; Farber, R.; Sirotkin, K.
1988-01-01
In this article we report initial, quantitative results on application of simple neutral networks, and simple machine learning methods, to two problems in DNA sequence analysis. The two problems we consider are: (1) determination of whether procaryotic and eucaryotic DNA sequences segments are translated to protein. An accuracy of 99.4% is reported for procaryotic DNA (E. coli) and 98.4% for eucaryotic DNA (H. Sapiens genes known to be expressed in liver); (2) determination of whether eucaryotic DNA sequence segments containing the dinucleotides ''AG'' or ''GT'' are transcribed to RNA splice junctions. Accuracy of 91.2% was achieved on intron/exon splice junctions (acceptor sites) and 92.8% on exon/intron splice junctions (donor sites). The solution of these two problems, by use of information processing algorithms operating on unannotated base sequences and without recourse to biological laboratory work, is relevant to the Human Genome Project. A variety of neural network, machine learning, and information theoretic algorithms are used. The accuracies obtained exceed those of previous investigations for which quantitative results are available in the literature. They result from an ongoing program of research that applies machine learning algorithms to the problem of determining biological function of DNA sequences. Some predictions of possible new genes using these methods are listed -- although a complete survey of the H. sapiens and E. coli sections of GenBank will be given elsewhere. 36 refs., 6 figs., 6 tabs.
NASA Astrophysics Data System (ADS)
Lee, Hui Jung; Choi, Dong-Yoon; Song, Byung Cheol
2015-11-01
This paper proposes a learning-based superresolution algorithm using text characteristics for text images. The proposed algorithm consists of a learning stage and an inference stage. In the learning stage, a sufficient number of low-resolution (LR) to high-resolution (HR) block pairs are first extracted from various LR-HR image pairs that are composed of texts. Then, we classify those block pairs into 512 clusters and, for each cluster, calculate the optimal two-dimensional (2-D) finite impulse response (FIR) filter to synthesize a high-quality HR block from an LR block and store the block-adaptive 2-D FIR filters in a dictionary with their associated index. In the inference stage, we find the best-matched candidate to each input LR block from the dictionary and synthesize the HR block using the optimal 2-D FIR filter. Finally, an HR image is produced via proper postprocessing. Experimental results show that the proposed algorithm provides superior visual quality to images from previous works and outperforms previous processes in terms of computational complexity.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas
2016-03-01
Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.
An average-reward reinforcement learning algorithm for computing bias-optimal policies
Mahadevan, S.
1996-12-31
Average-reward reinforcement learning (ARL) is an undiscounted optimality framework that is generally applicable to a broad range of control tasks. ARL computes gain-optimal control policies that maximize the expected payoff per step. However, gain-optimality has some intrinsic limitations as an optimality criterion, since for example, it cannot distinguish between different policies that all reach an absorbing goal state, but incur varying costs. A more selective criterion is bias optimality, which can filter gain-optimal policies to select those that reach absorbing goals with the minimum cost. While several ARL algorithms for computing gain-optimal policies have been proposed, none of these algorithms can guarantee bias optimality, since this requires solving at least two nested optimality equations. In this paper, we describe a novel model-based ARL algorithm for computing bias-optimal policies. We test the proposed algorithm using an admission control queuing system, and show that it is able to utilize the queue much more efficiently than a gain-optimal method by learning bias-optimal policies.
Autoclassification of the Variable 3XMM Sources Using the Random Forest Machine Learning Algorithm
NASA Astrophysics Data System (ADS)
Farrell, Sean A.; Murphy, Tara; Lo, Kitty K.
2015-11-01
In the current era of large surveys and massive data sets, autoclassification of astrophysical sources using intelligent algorithms is becoming increasingly important. In this paper we present the catalog of variable sources in the Third XMM-Newton Serendipitous Source catalog (3XMM) autoclassified using the Random Forest machine learning algorithm. We used a sample of manually classified variable sources from the second data release of the XMM-Newton catalogs (2XMMi-DR2) to train the classifier, obtaining an accuracy of ∼92%. We also evaluated the effectiveness of identifying spurious detections using a sample of spurious sources, achieving an accuracy of ∼95%. Manual investigation of a random sample of classified sources confirmed these accuracy levels and showed that the Random Forest machine learning algorithm is highly effective at automatically classifying 3XMM sources. Here we present the catalog of classified 3XMM variable sources. We also present three previously unidentified unusual sources that were flagged as outlier sources by the algorithm: a new candidate supergiant fast X-ray transient, a 400 s X-ray pulsar, and an eclipsing 5 hr binary system coincident with a known Cepheid.
Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma
2015-01-01
Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698
Premaladha, J; Ravichandran, K S
2016-04-01
Dermoscopy is a technique used to capture the images of skin, and these images are useful to analyze the different types of skin diseases. Malignant melanoma is a kind of skin cancer whose severity even leads to death. Earlier detection of melanoma prevents death and the clinicians can treat the patients to increase the chances of survival. Only few machine learning algorithms are developed to detect the melanoma using its features. This paper proposes a Computer Aided Diagnosis (CAD) system which equips efficient algorithms to classify and predict the melanoma. Enhancement of the images are done using Contrast Limited Adaptive Histogram Equalization technique (CLAHE) and median filter. A new segmentation algorithm called Normalized Otsu's Segmentation (NOS) is implemented to segment the affected skin lesion from the normal skin, which overcomes the problem of variable illumination. Fifteen features are derived and extracted from the segmented images are fed into the proposed classification techniques like Deep Learning based Neural Networks and Hybrid Adaboost-Support Vector Machine (SVM) algorithms. The proposed system is tested and validated with nearly 992 images (malignant & benign lesions) and it provides a high classification accuracy of 93 %. The proposed CAD system can assist the dermatologists to confirm the decision of the diagnosis and to avoid excisional biopsies. PMID:26872778
Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma
2015-01-01
Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698
Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition.
Stallkamp, J; Schlipsing, M; Salmen, J; Igel, C
2012-08-01
Traffic signs are characterized by a wide variability in their visual appearance in real-world environments. For example, changes of illumination, varying weather conditions and partial occlusions impact the perception of road signs. In practice, a large number of different sign classes needs to be recognized with very high accuracy. Traffic signs have been designed to be easily readable for humans, who perform very well at this task. For computer systems, however, classifying traffic signs still seems to pose a challenging pattern recognition problem. Both image processing and machine learning algorithms are continuously refined to improve on this task. But little systematic comparison of such systems exist. What is the status quo? Do today's algorithms reach human performance? For assessing the performance of state-of-the-art machine learning algorithms, we present a publicly available traffic sign dataset with more than 50,000 images of German road signs in 43 classes. The data was considered in the second stage of the German Traffic Sign Recognition Benchmark held at IJCNN 2011. The results of this competition are reported and the best-performing algorithms are briefly described. Convolutional neural networks (CNNs) showed particularly high classification accuracies in the competition. We measured the performance of human subjects on the same data-and the CNNs outperformed the human test persons. PMID:22394690
Incorporation of Socio-scientific Content into Active Learning Activities
NASA Astrophysics Data System (ADS)
King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Moog, R.
2014-12-01
Active learning has gained increasing support as an effective pedagogical technique to improve student learning. One way to promote active learning in the classroom is the use of in-class activities in place of lecturing. As part of an NSF-funded project, a set of in-class activities have been created that use climate change topics to teach chemistry content. These activities use the Process Oriented Guided Inquiry Learning (POGIL) methodology. In this pedagogical approach a set of models and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities in their groups, with the faculty member as a facilitator of learning. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. Each of these climate change activities contains a socio-scientific component, e.g., social, ethical and economic data. In one activity, greenhouse gases are used to explain the concept of dipole moment. Data about natural and anthropogenic production rates, global warming potential and atmospheric lifetimes for a list of greenhouse gases are presented. The students are asked to identify which greenhouse gas they would regulate, with a corresponding explanation for their choice. They are also asked to identify the disadvantages of regulating the gas they chose in the previous question. In another activity, where carbon sequestration is used to demonstrate the utility of a phase diagram, students use economic and environmental data to choose the best location for sequestration. Too often discussions about climate change (both in and outside the classroom) consist of purely emotional responses. These activities force students to use data to support their arguments and hypothesize about what other data could be used in the corresponding discussion to
Workshop on active learning: two examples
NASA Astrophysics Data System (ADS)
Ben Lakhdar, Zohra; Lahmar, Souad; Lakshminarayanan, Vasudevan
2014-07-01
Optics is an enabling science that has far ranging importance in many diverse fields. However, many students do not find it to be of great interest. A solution to this problem is to train teachers in active learning methodologies so that the subject matter can be presented to generate student interest. We describe a workshop to present an example of an active learning process in Optics developed for training of teachers in developing countries (a UNESCO project) and will focus on 2 two different activities: 1. Interference and diffraction is considered by students as being very hard to understand and is taught in most developing countries as purely theoretical with almost no experiments. Simple experiments to enhance the conceptual understanding of these wave phenomena will be presented and 2. Image formation by the eye. Here we will discuss myopia, hyperopia and astigmatism as well as accommodation. In this module we will discuss image. The objective of the workshop will be to provide an experience of the use of the active learning method in optics including the use of experiments, mind's on and hands-on exercises, group and class discussions
Successful Application of Active Learning Techniques to Introductory Microbiology.
ERIC Educational Resources Information Center
Hoffman, Elizabeth A.
2001-01-01
Points out the low student achievement in microbiology courses and presents an active learning method applied in an introductory microbiology course which features daily quizzes, cooperative learning activities, and group projects. (Contains 30 references.) (YDS)
NASA Astrophysics Data System (ADS)
Nelson, Kevin; Corbin, George; Blowers, Misty
2014-05-01
Machine learning is continuing to gain popularity due to its ability to solve problems that are difficult to model using conventional computer programming logic. Much of the current and past work has focused on algorithm development, data processing, and optimization. Lately, a subset of research has emerged which explores issues related to security. This research is gaining traction as systems employing these methods are being applied to both secure and adversarial environments. One of machine learning's biggest benefits, its data-driven versus logic-driven approach, is also a weakness if the data on which the models rely are corrupted. Adversaries could maliciously influence systems which address drift and data distribution changes using re-training and online learning. Our work is focused on exploring the resilience of various machine learning algorithms to these data-driven attacks. In this paper, we present our initial findings using Monte Carlo simulations, and statistical analysis, to explore the maximal achievable shift to a classification model, as well as the required amount of control over the data.
Bayer, Immanuel; Groth, Philip; Schneckener, Sebastian
2013-01-01
Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment. PMID:23894636
Multilabel image classification via high-order label correlation driven active learning.
Zhang, Bang; Wang, Yang; Chen, Fang
2014-03-01
Supervised machine learning techniques have been applied to multilabel image classification problems with tremendous success. Despite disparate learning mechanisms, their performances heavily rely on the quality of training images. However, the acquisition of training images requires significant efforts from human annotators. This hinders the applications of supervised learning techniques to large scale problems. In this paper, we propose a high-order label correlation driven active learning (HoAL) approach that allows the iterative learning algorithm itself to select the informative example-label pairs from which it learns so as to learn an accurate classifier with less annotation efforts. Four crucial issues are considered by the proposed HoAL: 1) unlike binary cases, the selection granularity for multilabel active learning need to be fined from example to example-label pair; 2) different labels are seldom independent, and label correlations provide critical information for efficient learning; 3) in addition to pair-wise label correlations, high-order label correlations are also informative for multilabel active learning; and 4) since the number of label combinations increases exponentially with respect to the number of labels, an efficient mining method is required to discover informative label correlations. The proposed approach is tested on public data sets, and the empirical results demonstrate its effectiveness. PMID:24723538
Active Kids Active Minds: A Physical Activity Intervention to Promote Learning?
ERIC Educational Resources Information Center
lisahunter; Abbott, Rebecca; Macdonald, Doune; Ziviani, Jennifer; Cuskelly, Monica
2014-01-01
This study assessed the feasibility and impact of introducing a programme of an additional 30 minutes per day of moderate physical activity within curriculum time on learning and readiness to learn in a large elementary school in south-east Queensland, Australia. The programme, Active Kids Active Minds (AKAM), involved Year 5 students (n = 107),…
Active Learning: The Importance of Developing a Comprehensive Measure
ERIC Educational Resources Information Center
Carr, Rodney; Palmer, Stuart; Hagel, Pauline
2015-01-01
This article reports on an investigation into the validity of a widely used scale for measuring the extent to which higher education students employ active learning strategies. The scale is the active learning scale in the Australasian Survey of Student Engagement. This scale is based on the Active and Collaborative Learning scale of the National…
Reference Framework for Active Learning in Higher Education
ERIC Educational Resources Information Center
Naithani, Pranav
2008-01-01
The work presented in this paper traces the history of active learning and further utilizes the available literature to define the meaning and importance of active learning in higher education. The study highlights common practical problems faced by students and instructors in implementing active learning in higher education and further identifies…
Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di
2015-01-01
In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164
Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di
2015-01-01
In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164
Performance comparison of multi-label learning algorithms on clinical data for chronic diseases.
Zufferey, Damien; Hofer, Thomas; Hennebert, Jean; Schumacher, Michael; Ingold, Rolf; Bromuri, Stefano
2015-10-01
We are motivated by the issue of classifying diseases of chronically ill patients to assist physicians in their everyday work. Our goal is to provide a performance comparison of state-of-the-art multi-label learning algorithms for the analysis of multivariate sequential clinical data from medical records of patients affected by chronic diseases. As a matter of fact, the multi-label learning approach appears to be a good candidate for modeling overlapped medical conditions, specific to chronically ill patients. With the availability of such comparison study, the evaluation of new algorithms should be enhanced. According to the method, we choose a summary statistics approach for the processing of the sequential clinical data, so that the extracted features maintain an interpretable link to their corresponding medical records. The publicly available MIMIC-II dataset, which contains more than 19,000 patients with chronic diseases, is used in this study. For the comparison we selected the following multi-label algorithms: ML-kNN, AdaBoostMH, binary relevance, classifier chains, HOMER and RAkEL. Regarding the results, binary relevance approaches, despite their elementary design and their independence assumption concerning the chronic illnesses, perform optimally in most scenarios, in particular for the detection of relevant diseases. In addition, binary relevance approaches scale up to large dataset and are easy to learn. However, the RAkEL algorithm, despite its scalability problems when it is confronted to large dataset, performs well in the scenario which consists of the ranking of the labels according to the dominant disease of the patient. PMID:26275389
NASA Astrophysics Data System (ADS)
Roder, Paul A.
1994-03-01
Learning algorithms are introduced for use in the inspection of cross-sectional X-ray images of solder joints. These learning algorithms improve measurement accuracy by accounting for localized shading effects that can occur when inspecting double- sided printed circuit board assemblies. Two specific examples are discussed. The first is an algorithm for detection of solder short defects. The second algorithm utilizes learning to generate more accurate statistical process control measurements.
Shahinfar, Saleh; Page, David; Guenther, Jerry; Cabrera, Victor; Fricke, Paul; Weigel, Kent
2014-02-01
When making the decision about whether or not to breed a given cow, knowledge about the expected outcome would have an economic impact on profitability of the breeding program and net income of the farm. The outcome of each breeding can be affected by many management and physiological features that vary between farms and interact with each other. Hence, the ability of machine learning algorithms to accommodate complex relationships in the data and missing values for explanatory variables makes these algorithms well suited for investigation of reproduction performance in dairy cattle. The objective of this study was to develop a user-friendly and intuitive on-farm tool to help farmers make reproduction management decisions. Several different machine learning algorithms were applied to predict the insemination outcomes of individual cows based on phenotypic and genotypic data. Data from 26 dairy farms in the Alta Genetics (Watertown, WI) Advantage Progeny Testing Program were used, representing a 10-yr period from 2000 to 2010. Health, reproduction, and production data were extracted from on-farm dairy management software, and estimated breeding values were downloaded from the US Department of Agriculture Agricultural Research Service Animal Improvement Programs Laboratory (Beltsville, MD) database. The edited data set consisted of 129,245 breeding records from primiparous Holstein cows and 195,128 breeding records from multiparous Holstein cows. Each data point in the final data set included 23 and 25 explanatory variables and 1 binary outcome for of 0.756 ± 0.005 and 0.736 ± 0.005 for primiparous and multiparous cows, respectively. The naïve Bayes algorithm, Bayesian network, and decision tree algorithms showed somewhat poorer classification performance. An information-based variable selection procedure identified herd average conception rate, incidence of ketosis, number of previous (failed) inseminations, days in milk at breeding, and mastitis as the most
ERIC Educational Resources Information Center
Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia
2011-01-01
LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…
NASA Astrophysics Data System (ADS)
Ling, J.; Templeton, J.
2015-08-01
Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests. The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. Feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.
Ling, Julia; Templeton, Jeremy Alan
2015-08-04
Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests. The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.
NASA Astrophysics Data System (ADS)
Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi
2014-03-01
A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.
A novel learning algorithm which improves the partial fault tolerance of multilayer neural networks.
Cavalieri, Salvatore; Mirabella, Orazio
1999-01-01
The paper deals with the problem of fault tolerance in a multilayer perceptron network. Although it already possesses a reasonable fault tolerance capability, it may be insufficient in particularly critical applications. Studies carried out by the authors have shown that the traditional backpropagation learning algorithm may entail the presence of a certain number of weights with a much higher absolute value than the others. Further studies have shown that faults in these weights is the main cause of deterioration in the performance of the neural network. In other words, the main cause of incorrect network functioning on the occurrence of a fault is the non-uniform distribution of absolute values of weights in each layer. The paper proposes a learning algorithm which updates the weights, distributing their absolute values as uniformly as possible in each layer. Tests performed on benchmark test sets have shown the considerable increase in fault tolerance obtainable with the proposed approach as compared with the traditional backpropagation algorithm and with some of the most efficient fault tolerance approaches to be found in literature. PMID:12662719
Evaluation of machine learning algorithms for prediction of regions of high RANS uncertainty
Ling, Julia; Templeton, Jeremy Alan
2015-08-04
Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests.more » The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.« less
Ling, Julia; Templeton, Jeremy Alan
2015-08-04
Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests.more » The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.« less
Evaluation of machine learning algorithms for prediction of regions of high RANS uncertainty
Ling, Julia; Templeton, Jeremy Alan
2015-08-04
Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests. The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. As a result, feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.
Understanding Fatty Acid Metabolism through an Active Learning Approach
ERIC Educational Resources Information Center
Fardilha, M.; Schrader, M.; da Cruz e Silva, O. A. B.; da Cruz e Silva, E. F.
2010-01-01
A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less…
Notetaking Activity as a Logical Classroom Learning Strategy.
ERIC Educational Resources Information Center
Taylor, William; And Others
The impact on learning performance of a notetaking strategy called the Directed Overt Activity Strategy (DOA) was evaluated on three types of instructional tasks: spatial learning, simple concept learning, and complex concept learning. One hundred volunteer freshman psychology students from Ohio State University used either the DOA or their own…
Navigating the Active Learning Swamp: Creating an Inviting Environment for Learning.
ERIC Educational Resources Information Center
Johnson, Marie C.; Malinowski, Jon C.
2001-01-01
Reports on a survey of faculty members (n=29) asking them to define active learning, to rate how effectively different teaching techniques contribute to active learning, and to list the three teaching techniques they use most frequently. Concludes that active learning requires establishing an environment rather than employing a specific teaching…
Uncertain spatial reasoning of environmental risks in GIS using genetic learning algorithms.
Shad, Rouzbeh; Shad, Arefeh
2012-10-01
Modeling the impact of air pollution is one of the most important approaches for managing damages to the ecosystem. This problem can be solved by sensing and modeling uncertain spatial behaviors, defining topological rules, and using inference and learning capabilities in a spatial reasoning system. Reasoning, which is the main component of such complex systems, requires that proper rules be defined through expert judgments in the knowledge-based part. Use of genetic fuzzy capabilities enables the algorithm to learn and be tuned to proper rules in a flexible manner and increases the preciseness and robustness of operations. The main objective of this paper was to design and evaluate a spatial genetic fuzzy system, with the goal of assessing environmental risks of air pollution due to oil well fires during the Persian Gulf War. Dynamic areas were extracted and monitored through images from NOAA, and the data were stored in an efficient spatial database. Initial spatial knowledge was determined by expert consideration of the application characteristics, and the inference engine was performed with genetic learning (GL) algorithms. Finally, GL (0.7 and 0.03), GL (0.7 and 0.08), GL (0.98 and 0.03), GL (0.98 and 0.08), and Cordon learning methods were evaluated with test and training data related to samples extracted from Landsat thematic mapper satellite images. Results of the implementation showed that GL (0.98, 0.03) was more precise than the other methods for learning and tuning rules in the concerned application. PMID:22068317
NASA Astrophysics Data System (ADS)
Chen, Dong; Yuan, Ding; Li, Tan; Sidan, Du
2015-12-01
A novel nonlinear adaptive algorithm named as diagonal structure bilinear filtered-x least mean square (DBFXLMS) for multichannel nonlinear active noise control is proposed in this paper. The performances of the proposed algorithm are shown below and the computational complexity is compared with the second-order Volterra filtered-x LMS (VFXLMS) algorithm and the filtered-s least mean square (FSLMS) algorithm, in terms of normalized mean square error (NMSE), for multichannel active control of nonlinear noise processes. Both the simulations and the computational complexity analyses demonstrate that the proposed method has an improvement as compared to the proposed algorithms.
GAIA Video Processing Embedded Algorithms: Prototyping and Validation Activities
NASA Astrophysics Data System (ADS)
Provost, S.; Le Roy, M.; Mamdy, B.; Flandin, G.; Paulsen, T.
2007-08-01
GAIA is an ambitious mission of the European Space Agency (ESA) whose spacecraft is developed by EADS Astrium. Its objective is to create the largest and most precise three dimensional chart of our Galaxy by providing unprecedented positional and radial velocity measurements for about one billion stars in our Galaxy and throughout the Local Group. The Video Processing Algorithms (VPA), embedded in the Video Processing Unit (VPU), are part of the payload, dedicated to process the raw data issued from the Focal Plane Assembly, and in charge of controlling it. VPA play a major role in terms of data reduction for GAIA. It reaches an unmatched level of autonomy that has to be functionally validated, while feasible implementation proven. While earlier activities[2] had concentrated on the prototyping and high level feasibility demonstration, the VPA study now enters into a phase of systematic validation. In this frame, the VPA have been breadboarded (VPA-RTP Real-Time Prototype), to be fully representative of the final implementation. The VPA validation test bench allows the simulation of the VPU behaviour (through the VPA-RTP) and of the Focal Plane Assembly response. It allows the validation of both scientific performances and implementation performances. Preliminary results show that the associated requirements, although stringent, can be met, at the expense of a constant trade-off between robustness and implementability.
ERIC Educational Resources Information Center
Huffaker, David A.; Calvert, Sandra L.
2003-01-01
This article examines the key concepts of active learning, metacognition, and transfer of knowledge, as put forth by the National Research Council's approach to the new science of learning, in relation to ways that E-Learning applications might improve learning both inside and outside the classroom. Several initiatives are highlighted to…
A novel artificial bee colony algorithm based on modified search equation and orthogonal learning.
Gao, Wei-feng; Liu, San-yang; Huang, Ling-ling
2013-06-01
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions. PMID:23086528
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
NASA Astrophysics Data System (ADS)
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
STEM learning activity among home-educating families
NASA Astrophysics Data System (ADS)
Bachman, Jennifer
2011-12-01
Science, technology, engineering, and mathematics (STEM) learning was studied among families in a group of home-educators in the Pacific Northwest. Ethnographic methods recorded learning activity (video, audio, fieldnotes, and artifacts) which was analyzed using a unique combination of Cultural-Historical Activity Theory (CHAT) and Mediated Action (MA), enabling analysis of activity at multiple levels. Findings indicate that STEM learning activity is family-led, guided by parents' values and goals for learning, and negotiated with children to account for learner interests and differences, and available resources. Families' STEM education practice is dynamic, evolves, and influenced by larger societal STEM learning activity. Parents actively seek support and resources for STEM learning within their home-school community, working individually and collectively to share their funds of knowledge. Home-schoolers also access a wide variety of free-choice learning resources: web-based materials, museums, libraries, and community education opportunities (e.g. afterschool, weekend and summer programs, science clubs and classes, etc.). A lesson-heuristic, grounded in Mediated Action, represents and analyzes home STEM learning activity in terms of tensions between parental goals, roles, and lesson structure. One tension observed was between 'academic' goals or school-like activity and 'lifelong' goals or everyday learning activity. Theoretical and experiential learning was found in both activity, though parents with academic goals tended to focus more on theoretical learning and those with lifelong learning goals tended to be more experiential. Examples of the National Research Council's science learning strands (NRC, 2009) were observed in the STEM practices of all these families. Findings contribute to the small but growing body of empirical CHAT research in science education, specifically to the empirical base of family STEM learning practices at home. It also fills a
Incorporating Active Learning Techniques into a Genetics Class
ERIC Educational Resources Information Center
Lee, W. Theodore; Jabot, Michael E.
2011-01-01
We revised a sophomore-level genetics class to more actively engage the students in their learning. The students worked in groups on quizzes using the Immediate Feedback Assessment Technique (IF-AT) and active-learning projects. The IF-AT quizzes allowed students to discuss key concepts in small groups and learn the correct answers in class. The…
Navigated Active Learning in an International Academic Virtual Enterprise
ERIC Educational Resources Information Center
Horvath, Imre; Wiersma, Meindert; Duhovnik, Joze; Stroud, Ian
2004-01-01
Active learning is an educational paradigm that has been reinvented and methodologically underpinned many times in order to intensify learning in various forms. This paper presents a complex approach to active learning in a design-centred academic course with international participation. Research and design were considered as vehicles of active…
Enhancing Learning Outcomes through Application Driven Activities in Marketing
ERIC Educational Resources Information Center
Stegemann, Nicole; Sutton-Brady, Catherine
2013-01-01
This paper introduces an activity used in class to allow students to apply previously acquired information to a hands-on task. As the authors have previously shown active learning is a way to effectively facilitate and improve students' learning outcomes. As a result to improve learning outcomes we have overtime developed a series of learning…
Effects of Sharing Clickers in an Active Learning Environment
ERIC Educational Resources Information Center
Daniel, Todd; Tivener, Kristin
2016-01-01
Scientific research into learning enhancement gained by the use of clickers in active classrooms has largely focused on the use of individual clickers. In this study, we compared the learning experiences of participants in active learning groups in which an entire small group shared a single clicker to groups in which each member of the group had…
Silent Students' Participation in a Large Active Learning Science Classroom
ERIC Educational Resources Information Center
Obenland, Carrie A.; Munson, Ashlyn H.; Hutchinson, John S.
2012-01-01
Active learning in large science classrooms furthers opportunities for students to engage in the content and in meaningful learning, yet students can still remain anonymously silent. This study aims to understand the impact of active learning on these silent students in a large General Chemistry course taught via Socratic questioning and…
Active Learning in the Library Instruction Environment: An Exploratory Study
ERIC Educational Resources Information Center
Ross, Alanna; Furno, Christine
2011-01-01
This paper describes an exploratory study investigating the impact of problem-based learning and clicker technology as active learning strategies at the American University of Sharjah Library, United Arab Emirates (UAE). Studies compared traditional and active learning classes. The present article maps the successes and challenges of these unique…
Implementation of a new iterative learning control algorithm on real data.
Zamanian, Hamed; Koohi, Ardavan
2016-02-01
In this paper, a newly presented approach is proposed for closed-loop automatic tuning of a proportional integral derivative (PID) controller based on iterative learning control (ILC) algorithm. A modified ILC scheme iteratively changes the control signal by adjusting it. Once a satisfactory performance is achieved, a linear compensator is identified in the ILC behavior using casual relationship between the closed loop signals. This compensator is approximated by a PD controller which is used to tune the original PID controller. Results of implementing this approach presented on the experimental data of Damavand tokamak and are consistent with simulation outcome. PMID:26931852
A framework for porting the NeuroBayes machine learning algorithm to FPGAs
NASA Astrophysics Data System (ADS)
Baehr, S.; Sander, O.; Heck, M.; Feindt, M.; Becker, J.
2016-01-01
The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations.
A Genetic Algorithm for Learning Significant Phrase Patterns in Radiology Reports
Patton, Robert M; Potok, Thomas E; Beckerman, Barbara G; Treadwell, Jim N
2009-01-01
Radiologists disagree with each other over the characteristics and features of what constitutes a normal mammogram and the terminology to use in the associated radiology report. Recently, the focus has been on classifying abnormal or suspicious reports, but even this process needs further layers of clustering and gradation, so that individual lesions can be more effectively classified. Using a genetic algorithm, the approach described here successfully learns phrase patterns for two distinct classes of radiology reports (normal and abnormal). These patterns can then be used as a basis for automatically analyzing, categorizing, clustering, or retrieving relevant radiology reports for the user.
Implementation of a new iterative learning control algorithm on real data
NASA Astrophysics Data System (ADS)
Zamanian, Hamed; Koohi, Ardavan
2016-02-01
In this paper, a newly presented approach is proposed for closed-loop automatic tuning of a proportional integral derivative (PID) controller based on iterative learning control (ILC) algorithm. A modified ILC scheme iteratively changes the control signal by adjusting it. Once a satisfactory performance is achieved, a linear compensator is identified in the ILC behavior using casual relationship between the closed loop signals. This compensator is approximated by a PD controller which is used to tune the original PID controller. Results of implementing this approach presented on the experimental data of Damavand tokamak and are consistent with simulation outcome.
NASA Astrophysics Data System (ADS)
Kaboli, M.; Akhlaghi, M.
2016-06-01
A new efficient binary optimization method based on Teaching-Learning-Based Optimization (TLBO) algorithm is proposed to design an array of plasmonic nanodisks in order to achieve maximum scattering coefficient spectrum. In binary TLBO (BTLBO), a group of learner consists of a matrix with binary entries; control the presence (`1') or the absence (`0') of nanodisks in the array. Simulation results show that scattering coefficient strongly depends on the localized position of nanoparticles and non-periodic structures have more appropriate response in term of scattering coefficient. This approach can be useful in optical applications such as plasmonic nanoantennas.
A Supplier Bidding Strategy Through Q-Learning Algorithm in Electricity Auction Markets
NASA Astrophysics Data System (ADS)
Xiong, Gaofeng; Hashiyama, Tomonori; Okuma, Shigeru
One of the most important issues for power suppliers in the deregulated electric industry is how to bid into the electricity auction market to satisfy their profit-maximizing goals. Based on the Q-Learning algorithm, this paper presents a novel supplier bidding strategy to maximize supplier’s profit in the long run. In this approach, the supplier bidding strategy is viewed as a kind of stochastic optimal control problem and each supplier can learn from experience. A competitive day-ahead electricity auction market with hourly bids is assumed here, where no supplier possesses the market power. The dynamics and the incomplete information of the market are considered. The impacts of suppliers’ strategic bidding on the market price are analyzed under uniform pricing rule and discriminatory pricing rule. Agent-based simulations are presented. The simulation results show the feasibility of the proposed bidding strategy.
Zhang, Huaguang; Qin, Chunbin; Jiang, Bin; Luo, Yanhong
2014-12-01
The problem of H∞ state feedback control of affine nonlinear discrete-time systems with unknown dynamics is investigated in this paper. An online adaptive policy learning algorithm (APLA) based on adaptive dynamic programming (ADP) is proposed for learning in real-time the solution to the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in the H∞ control problem. In the proposed algorithm, three neural networks (NNs) are utilized to find suitable approximations of the optimal value function and the saddle point feedback control and disturbance policies. Novel weight updating laws are given to tune the critic, actor, and disturbance NNs simultaneously by using data generated in real-time along the system trajectories. Considering NN approximation errors, we provide the stability analysis of the proposed algorithm with Lyapunov approach. Moreover, the need of the system input dynamics for the proposed algorithm is relaxed by using a NN identification scheme. Finally, simulation examples show the effectiveness of the proposed algorithm. PMID:25095274
A Novel Harmony Search Algorithm Based on Teaching-Learning Strategies for 0-1 Knapsack Problems
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an
2014-01-01
To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems. PMID:24574905
PEDLA: predicting enhancers with a deep learning-based algorithmic framework
Liu, Feng; Li, Hao; Ren, Chao; Bo, Xiaochen; Shu, Wenjie
2016-01-01
Transcriptional enhancers are non-coding segments of DNA that play a central role in the spatiotemporal regulation of gene expression programs. However, systematically and precisely predicting enhancers remain a major challenge. Although existing methods have achieved some success in enhancer prediction, they still suffer from many issues. We developed a deep learning-based algorithmic framework named PEDLA (https://github.com/wenjiegroup/PEDLA), which can directly learn an enhancer predictor from massively heterogeneous data and generalize in ways that are mostly consistent across various cell types/tissues. We first trained PEDLA with 1,114-dimensional heterogeneous features in H1 cells, and demonstrated that PEDLA framework integrates diverse heterogeneous features and gives state-of-the-art performance relative to five existing methods for enhancer prediction. We further extended PEDLA to iteratively learn from 22 training cell types/tissues. Our results showed that PEDLA manifested superior performance consistency in both training and independent test sets. On average, PEDLA achieved 95.0% accuracy and a 96.8% geometric mean (GM) of sensitivity and specificity across 22 training cell types/tissues, as well as 95.7% accuracy and a 96.8% GM across 20 independent test cell types/tissues. Together, our work illustrates the power of harnessing state-of-the-art deep learning techniques to consistently identify regulatory elements at a genome-wide scale from massively heterogeneous data across diverse cell types/tissues. PMID:27329130
PEDLA: predicting enhancers with a deep learning-based algorithmic framework.
Liu, Feng; Li, Hao; Ren, Chao; Bo, Xiaochen; Shu, Wenjie
2016-01-01
Transcriptional enhancers are non-coding segments of DNA that play a central role in the spatiotemporal regulation of gene expression programs. However, systematically and precisely predicting enhancers remain a major challenge. Although existing methods have achieved some success in enhancer prediction, they still suffer from many issues. We developed a deep learning-based algorithmic framework named PEDLA (https://github.com/wenjiegroup/PEDLA), which can directly learn an enhancer predictor from massively heterogeneous data and generalize in ways that are mostly consistent across various cell types/tissues. We first trained PEDLA with 1,114-dimensional heterogeneous features in H1 cells, and demonstrated that PEDLA framework integrates diverse heterogeneous features and gives state-of-the-art performance relative to five existing methods for enhancer prediction. We further extended PEDLA to iteratively learn from 22 training cell types/tissues. Our results showed that PEDLA manifested superior performance consistency in both training and independent test sets. On average, PEDLA achieved 95.0% accuracy and a 96.8% geometric mean (GM) of sensitivity and specificity across 22 training cell types/tissues, as well as 95.7% accuracy and a 96.8% GM across 20 independent test cell types/tissues. Together, our work illustrates the power of harnessing state-of-the-art deep learning techniques to consistently identify regulatory elements at a genome-wide scale from massively heterogeneous data across diverse cell types/tissues. PMID:27329130
Bipart: Learning Block Structure for Activity Detection
Mu, Yang; Lo, Henry Z.; Ding, Wei; Amaral, Kevin; Crouter, Scott E.
2014-01-01
Physical activity consists complex behavior, typically structured in bouts which can consist of one continuous movement (e.g. exercise) or many sporadic movements (e.g. household chores). Each bout can be represented as a block of feature vectors corresponding to the same activity type. This paper introduces a general distance metric technique to use this block representation to first predict activity type, and then uses the predicted activity to estimate energy expenditure within a novel framework. This distance metric, dubbed Bipart, learns block-level information from both training and test sets, combining both to form a projection space which materializes block-level constraints. Thus, Bipart provides a space which can improve the bout classification performance of all classifiers. We also propose an energy expenditure estimation framework which leverages activity classification in order to improve estimates. Comprehensive experiments on waist-mounted accelerometer data, comparing Bipart against many similar methods as well as other classifiers, demonstrate the superior activity recognition of Bipart, especially in low-information experimental settings. PMID:25328361
ERIC Educational Resources Information Center
Bryant, Diane Pedrotty; Bryant, Brian R.
1998-01-01
Discusses a process for integrating technology adaptations for students with learning disabilities into cooperative-learning activities in terms of three components: (1) selecting adaptations; (2) monitoring use of adaptations during cooperative-learning activities; and (3) evaluating the adaptations' effectiveness. Barriers to and support systems…
Patterns of Field Learning Activities and Their Relation to Learning Outcome
ERIC Educational Resources Information Center
Lee, Mingun; Fortune, Anne E.
2013-01-01
Field practicum is an active learning process. This study explores the different learning stages or processes students experience during their field practicum. First-year master's of social work students in field practica were asked how much they had engaged in educational learning activities such as observation, working independently,…
Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases
ERIC Educational Resources Information Center
Sesen, Burcin Acar; Tarhan, Leman
2011-01-01
Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this study was…
Is Active Learning Like Broccoli? Student Perceptions of Active Learning in Large Lecture Classes
ERIC Educational Resources Information Center
Smith, C. Veronica; Cardaciotto, LeeAnn
2011-01-01
Although research suggests that active learning is associated with positive outcomes (e.g., memory, test performance), use of such techniques can be difficult to implement in large lecture-based classes. In the current study, 1,091 students completed out-of-class group exercises to complement course material in an Introductory Psychology class.…
"Heart Shots": a classroom activity to instigate active learning.
Abraham, Reem Rachel; Vashe, Asha; Torke, Sharmila
2015-09-01
The present study aimed to provide undergraduate medical students at Melaka Manipal Medical College (Manipal Campus), Manipal University, in Karnataka, India, an opportunity to apply their knowledge in cardiovascular concepts to real-life situations. A group activity named "Heart Shots" was implemented for a batch of first-year undergraduate students (n = 105) at the end of a block (teaching unit). Students were divided into 10 groups each having 10-11 students. They were requested to make a video/PowerPoint presentation about the application of cardiovascular principles to real-life situations. The presentation was required to be of only pictures/photos and no text material, with a maximum duration of 7 min. More than 95% of students considered that the activity helped them to apply their knowledge in cardiovascular concepts to real-life situations and understand the relevance of physiology in medicine and to revise the topic. More than 90% of students agreed that the activity helped them to apply their creativity in improving their knowledge and to establish a link between concepts rather than learning them as isolated facts. Based on the feedback, we conclude that the activity was student centered and that it facilitated learning. PMID:26330036
Application of Reinforcement Learning in Cognitive Radio Networks: Models and Algorithms
Yau, Kok-Lim Alvin; Poh, Geong-Sen; Chien, Su Fong; Al-Rawi, Hasan A. A.
2014-01-01
Cognitive radio (CR) enables unlicensed users to exploit the underutilized spectrum in licensed spectrum whilst minimizing interference to licensed users. Reinforcement learning (RL), which is an artificial intelligence approach, has been applied to enable each unlicensed user to observe and carry out optimal actions for performance enhancement in a wide range of schemes in CR, such as dynamic channel selection and channel sensing. This paper presents new discussions of RL in the context of CR networks. It provides an extensive review on how most schemes have been approached using the traditional and enhanced RL algorithms through state, action, and reward representations. Examples of the enhancements on RL, which do not appear in the traditional RL approach, are rules and cooperative learning. This paper also reviews performance enhancements brought about by the RL algorithms and open issues. This paper aims to establish a foundation in order to spark new research interests in this area. Our discussion has been presented in a tutorial manner so that it is comprehensive to readers outside the specialty of RL and CR. PMID:24995352
Application of reinforcement learning in cognitive radio networks: models and algorithms.
Yau, Kok-Lim Alvin; Poh, Geong-Sen; Chien, Su Fong; Al-Rawi, Hasan A A
2014-01-01
Cognitive radio (CR) enables unlicensed users to exploit the underutilized spectrum in licensed spectrum whilst minimizing interference to licensed users. Reinforcement learning (RL), which is an artificial intelligence approach, has been applied to enable each unlicensed user to observe and carry out optimal actions for performance enhancement in a wide range of schemes in CR, such as dynamic channel selection and channel sensing. This paper presents new discussions of RL in the context of CR networks. It provides an extensive review on how most schemes have been approached using the traditional and enhanced RL algorithms through state, action, and reward representations. Examples of the enhancements on RL, which do not appear in the traditional RL approach, are rules and cooperative learning. This paper also reviews performance enhancements brought about by the RL algorithms and open issues. This paper aims to establish a foundation in order to spark new research interests in this area. Our discussion has been presented in a tutorial manner so that it is comprehensive to readers outside the specialty of RL and CR. PMID:24995352
Processing of rock core microtomography images: Using seven different machine learning algorithms
NASA Astrophysics Data System (ADS)
Chauhan, Swarup; Rühaak, Wolfram; Khan, Faisal; Enzmann, Frieder; Mielke, Philipp; Kersten, Michael; Sass, Ingo
2016-01-01
The abilities of machine learning algorithms to process X-ray microtomographic rock images were determined. The study focused on the use of unsupervised, supervised, and ensemble clustering techniques, to segment X-ray computer microtomography rock images and to estimate the pore spaces and pore size diameters in the rocks. The unsupervised k-means technique gave the fastest processing time and the supervised least squares support vector machine technique gave the slowest processing time. Multiphase assemblages of solid phases (minerals and finely grained minerals) and the pore phase were found on visual inspection of the images. In general, the accuracy in terms of porosity values and pore size distribution was found to be strongly affected by the feature vectors selected. Relative porosity average value of 15.92±1.77% retrieved from all the seven machine learning algorithm is in very good agreement with the experimental results of 17±2%, obtained using gas pycnometer. Of the supervised techniques, the least square support vector machine technique is superior to feed forward artificial neural network because of its ability to identify a generalized pattern. In the ensemble classification techniques boosting technique converged faster compared to bragging technique. The k-means technique outperformed the fuzzy c-means and self-organized maps techniques in terms of accuracy and speed.
On-line and Mobil Learning Activities
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Whittaker, T. M.; Jasmin, T.; Mooney, M. E.
2012-12-01
Introductory college-level science courses for non-majors are critical gateways to imparting not only discipline-specific information, but also the basics of the scientific method and how science influences society. They are also indispensable for student success to degree. On-line, web-based homework (whether on computers or mobile devices) is a rapidly growing use of the Internet and is becoming a major component of instruction in science, replacing delayed feedback from a few major exams. Web delivery and grading of traditional textbook-type questions is equally effective as having students write them out for hand grading, as measured by student performance on conceptual and problem solving exams. During this presentation we will demonstrate some of the interactive on-line activities used to teach concepts and how scientists approach problem solving, and how these activities have impacted student learning. Evaluation of the activities, including formative and summative, will be discussed and provide evidence that these interactive activities significantly enhance understanding of introductory meteorological concepts in a college-level science course. More advanced interactive activities are also used in our courses for department majors, some of these will be discussed and demonstrated. Bring your mobile devices to play along! Here is an example on teaching contouring: http://profhorn.aos.wisc.edu/wxwise/contour/index.html
NASA Astrophysics Data System (ADS)
Platnick, Steven; Ackerman, Steven; King, Michael; Zhang, Zhibo; Wind, Galina
2013-04-01
Cloud detection algorithms search for measurement signatures that differentiate a cloud-contaminated or "not-clear" pixel from the clear-sky background. These signatures can be spectral, textural or temporal in nature. The magnitude of the difference between the cloud and the background must exceed a threshold value for the pixel to be classified having a not-clear FOV. All detection algorithms employ multiple tests ranging across some portion of the solar reflectance and/or infrared spectrum. However, a cloud is not a single, uniform object, but rather has a distribution of optical thickness and morphology. As a result, problems can arise when the distributions of cloud and clear-sky background characteristics overlap, making some test results indeterminate and/or leading to some amount of detection misclassification. Further, imager cloud retrieval statistics are highly sensitive to how a pixel identified as not-clear by a cloud mask is determined to be useful for cloud-top and optical retrievals based on 1-D radiative models. This presentation provides an overview of the different 'choices' algorithm developers make in cloud detection algorithms and the impact on regional and global cloud amounts and fractional coverage, cloud type and property distributions. Lessons learned over the course of the MODIS cloud product development history are discussed. As an example, we will focus on the 1km MODIS Collection 5 cloud optical retrieval algorithm (product MOD06/MYD06 for Terra and Aqua, respectively) which removed pixels associated with cloud edges as defined by immediate adjacency to clear FOV MODIS cloud mask (MOD35/MYD35) pixels as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral algorithm. The Collection 6 algorithm attempts retrievals for these two types of partly cloudy pixel populations, but allows a user to isolate or filter out the populations. Retrieval sensitivities for these
How to learn effectively in medical school: test yourself, learn actively, and repeat in intervals.
Augustin, Marc
2014-06-01
Students in medical school often feel overwhelmed by the excessive amount of factual knowledge they are obliged to learn. Although a large body of research on effective learning methods is published, scientifically based learning strategies are not a standard part of the curriculum in medical school. Students are largely unaware of how to learn successfully and improve memory. This review outlines three fundamental methods that benefit learning: the testing effect, active recall, and spaced repetition. The review summarizes practical learning strategies to learn effectively and optimize long-term retention of factual knowledge. PMID:24910566
Jamali, Ali Akbar; Ferdousi, Reza; Razzaghi, Saeed; Li, Jiuyong; Safdari, Reza; Ebrahimie, Esmaeil
2016-05-01
Application of computational methods in drug discovery has received increased attention in recent years as a way to accelerate drug target prediction. Based on 443 sequence-derived protein features, we applied the most commonly used machine learning methods to predict whether a protein is druggable as well as to opt for superior algorithm in this task. In addition, feature selection procedures were used to provide the best performance of each classifier according to the optimum number of features. When run on all features, Neural Network was the best classifier, with 89.98% accuracy, based on a k-fold cross-validation test. Among all the algorithms applied, the optimum number of most-relevant features was 130, according to the Support Vector Machine-Feature Selection (SVM-FS) algorithm. This study resulted in the discovery of new drug target which potentially can be employed in cell signaling pathways, gene expression, and signal transduction. The DrugMiner web tool was developed based on the findings of this study to provide researchers with the ability to predict druggable proteins. DrugMiner is freely available at www.DrugMiner.org. PMID:26821132
Cost-sensitive AdaBoost algorithm for ordinal regression based on extreme learning machine.
Riccardi, Annalisa; Fernández-Navarro, Francisco; Carloni, Sante
2014-10-01
In this paper, the well known stagewise additive modeling using a multiclass exponential (SAMME) boosting algorithm is extended to address problems where there exists a natural order in the targets using a cost-sensitive approach. The proposed ensemble model uses an extreme learning machine (ELM) model as a base classifier (with the Gaussian kernel and the additional regularization parameter). The closed form of the derived weighted least squares problem is provided, and it is employed to estimate analytically the parameters connecting the hidden layer to the output layer at each iteration of the boosting algorithm. Compared to the state-of-the-art boosting algorithms, in particular those using ELM as base classifier, the suggested technique does not require the generation of a new training dataset at each iteration. The adoption of the weighted least squares formulation of the problem has been presented as an unbiased and alternative approach to the already existing ELM boosting techniques. Moreover, the addition of a cost model for weighting the patterns, according to the order of the targets, enables the classifier to tackle ordinal regression problems further. The proposed method has been validated by an experimental study by comparing it with already existing ensemble methods and ELM techniques for ordinal regression, showing competitive results. PMID:25222730
Lars Onsager Prize: Optimization and learning algorithms from the theory of disordered systems
NASA Astrophysics Data System (ADS)
Zecchina, Riccardo
The extraction of information from large amounts of data is one of the prominent cross disciplinary challenges in contemporary science. Solving inverse and learning problems over large scale data sets requires the design of efficient optimization algorithms over very large scale networks of constraints. In such a setting, critical phenomena of the type studied in statistical physics of disordered systems often play a crucial role. This observation has lead in the last decade to a cross fertilization between statistical physics, information theory and computer science, with applications in a variety of fields. In particular a deeper geometrical understanding of the ground state structure of random computational problems and novel classes of probabilistic algorithms have emerged. In this talk I will give a brief overview of these conceptual advances and I will discuss the role that subdominant states play in the design of algorithms for large scale optimization problems. I will conclude by showing how these ideas can lead to novel applications in computational neuroscience.
Khalil, Abedalrazq F.; Kaheil, Yasir H.; Gill, Kashif; Mckee, Mac
2010-01-01
Contemporary and water resources engineering and management rely increasingly on pattern recognition techniques that have the ability to capitalize on the unrelenting accumulation of data that is made possible by modern information technology and remote sensing methods. In response to the growing information needs of modern water systems, advanced computational models and tools have been devised to identify and extract relevant information from the mass of data that is now available. This chapter presents innovative applications from computational learning science within the fields of hydrology, hydrogeology, hydroclimatology, and water management. The success of machine learning is evident from the growing number of studies involving the application of Artificial Neural Networks (ANN), Support Vector Machines (SVM), Relevance Vector Machines (RVM), and Locally Weighted Projection Regression (LWPR) to address various issues in hydrologic sciences. The applications that will be discussed within the chapter employ the abovementioned machine learning techniques for intelligent modeling of reservoir operations, temporal downscaling of precipitation, spatial downscaling of soil moisture and evapotranspiration, comparisons of various techniques for groundwater quality modeling, and forecasting of chaotic time series behavior. Combinatorial algorithms to capture the intrinsic complexities in the modeled phenomena and to overcome disparate scales are developed; for example, learning machines have been coupled with geostatistical techniques, non-homogenous hidden Markov models, wavelets, and evolutionary computing techniques. This chapter does not intend to be exhaustive; it reviews the progress that has been made over the past decade in the use of learning machines in applied hydrologic sciences and presents a summary of future needs and challenges for further advancement of these methods.
Implementation of FFT Algorithm using DSP TMS320F28335 for Shunt Active Power Filter
NASA Astrophysics Data System (ADS)
Patel, Pinkal Jashvantbhai; Patel, Rajesh M.; Patel, Vinod
2016-07-01
This work presents simulation, analysis and experimental verification of Fast Fourier Transform (FFT) algorithm for shunt active power filter based on three-level inverter. Different types of filters can be used for elimination of harmonics in the power system. In this work, FFT algorithm for reference current generation is discussed. FFT control algorithm is verified using PSIM simulation results with DLL block and C-code. Simulation results are compared with experimental results for FFT algorithm using DSP TMS320F28335 for shunt active power filter application.
Classification and authentication of unknown water samples using machine learning algorithms.
Kundu, Palash K; Panchariya, P C; Kundu, Madhusree
2011-07-01
This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. PMID:21507400
Is Peer Interaction Necessary for Optimal Active Learning?
Farmer, Jan Keith; Peterson, Ernie
2014-01-01
Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of inexperience, we should try to provide more explicit implementation recommendations based on research into the key components of effective active learning. We investigated the optimal implementation of active-learning exercises within a “lecture” course. Two sections of nonmajors biology were taught by the same instructor, in the same semester, using the same instructional materials and assessments. Students in one section completed in-class active-learning exercises in cooperative groups, while students in the other section completed the same activities individually. Performance on low-level, multiple-choice assessments was not significantly different between sections. However, students who worked in cooperative groups on the in-class activities significantly outperformed students who completed the activities individually on the higher-level, extended-response questions. Our results provide additional evidence that group processing of activities should be the recommended mode of implementation for in-class active-learning exercises. PMID:26086656
NASA Astrophysics Data System (ADS)
Alexandre, E.; Cuadra, L.; Nieto-Borge, J. C.; Candil-García, G.; del Pino, M.; Salcedo-Sanz, S.
2015-08-01
Wave parameters computed from time series measured by buoys (significant wave height Hs, mean wave period, etc.) play a key role in coastal engineering and in the design and operation of wave energy converters. Storms or navigation accidents can make measuring buoys break down, leading to missing data gaps. In this paper we tackle the problem of locally reconstructing Hs at out-of-operation buoys by using wave parameters from nearby buoys, based on the spatial correlation among values at neighboring buoy locations. The novelty of our approach for its potential application to problems in coastal engineering is twofold. On one hand, we propose a genetic algorithm hybridized with an extreme learning machine that selects, among the available wave parameters from the nearby buoys, a subset FnSP with nSP parameters that minimizes the Hs reconstruction error. On the other hand, we evaluate to what extent the selected parameters in subset FnSP are good enough in assisting other machine learning (ML) regressors (extreme learning machines, support vector machines and gaussian process regression) to reconstruct Hs. The results show that all the ML method explored achieve a good Hs reconstruction in the two different locations studied (Caribbean Sea and West Atlantic).
An Innovative Teaching Method To Promote Active Learning: Team-Based Learning
NASA Astrophysics Data System (ADS)
Balasubramanian, R.
2007-12-01
Traditional teaching practice based on the textbook-whiteboard- lecture-homework-test paradigm is not very effective in helping students with diverse academic backgrounds achieve higher-order critical thinking skills such as analysis, synthesis, and evaluation. Consequently, there is a critical need for developing a new pedagogical approach to create a collaborative and interactive learning environment in which students with complementary academic backgrounds and learning skills can work together to enhance their learning outcomes. In this presentation, I will discuss an innovative teaching method ('Team-Based Learning (TBL)") which I recently developed at National University of Singapore to promote active learning among students in the environmental engineering program with learning abilities. I implemented this new educational activity in a graduate course. Student feedback indicates that this pedagogical approach is appealing to most students, and promotes active & interactive learning in class. Data will be presented to show that the innovative teaching method has contributed to improved student learning and achievement.
Individualized Instruction in Science, Earth Space Project, Learning Activities Package.
ERIC Educational Resources Information Center
Kuczma, R. M.
Learning Activity Packages (LAP) relating to the earth and space are presented for use in sampling a new type of learning for a whole year. Eighteen topics are incorporated into five units: (1) introduction to individualized learning, (2) observation versus interpretation, (3) chemistry in the space age, (4) the space age interdisciplines, and (5)…
Informal Forum: Fostering Active Learning in a Teacher Preparation Program
ERIC Educational Resources Information Center
Huang, Grace Hui-Chen
2006-01-01
"Informal Forum," grounded in constructivism has been developed to foster active learning and deep understanding. Learning is an interdependent process, and is most effective when students construct their own meaning of knowledge. If one believes in the value of constructivist learning, it is important to teach how we preach in higher education.…
Teacher Feedback during Active Learning: Current Practices in Primary Schools
ERIC Educational Resources Information Center
van den Bergh, Linda; Ros, Anje; Beijaard, Douwe
2013-01-01
Background: Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears dif?cult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning.…
Active Learning by Play Dough Modeling in the Medical Profession
ERIC Educational Resources Information Center
Herur, Anita; Kolagi, Sanjeev; Chinagudi, Surekharani; Manjula, R.; Patil, Shailaja
2011-01-01
Active learning produces meaningful learning, improves attitudes toward learning, and increases knowledge and retention, but is still not fully institutionalized in the undergraduate sciences. A few studies have compared the effectiveness of PowerPoint presentations, student seminars, quizzes, and use of CD-ROMs with blackboard teaching and…
CurioCity, Developing an "Active Learning" Game.
ERIC Educational Resources Information Center
Ferguson, Lynne
1999-01-01
Describes a case study that takes readers through a human-centered design process used in developing an "Active Learning" tool, CurioCity, a game for students in grades 7-10. Attempts to better understand multiculturalism and to bridge formal in-school learning with informal field trip learning. (SC)
Oxalate Blockage of Calcium and Iron: A Student Learning Activity.
ERIC Educational Resources Information Center
Walker, Noojin
1988-01-01
Describes a student learning activity used to teach the meaning of percentage composition, mole concept, selective precipitation, and limiting factors. Presents two word problems and their solutions. (CW)
Computationally efficient algorithm for high sampling-frequency operation of active noise control
NASA Astrophysics Data System (ADS)
Rout, Nirmal Kumar; Das, Debi Prasad; Panda, Ganapati
2015-05-01
In high sampling-frequency operation of active noise control (ANC) system the length of the secondary path estimate and the ANC filter are very long. This increases the computational complexity of the conventional filtered-x least mean square (FXLMS) algorithm. To reduce the computational complexity of long order ANC system using FXLMS algorithm, frequency domain block ANC algorithms have been proposed in past. These full block frequency domain ANC algorithms are associated with some disadvantages such as large block delay, quantization error due to computation of large size transforms and implementation difficulties in existing low-end DSP hardware. To overcome these shortcomings, the partitioned block ANC algorithm is newly proposed where the long length filters in ANC are divided into a number of equal partitions and suitably assembled to perform the FXLMS algorithm in the frequency domain. The complexity of this proposed frequency domain partitioned block FXLMS (FPBFXLMS) algorithm is quite reduced compared to the conventional FXLMS algorithm. It is further reduced by merging one fast Fourier transform (FFT)-inverse fast Fourier transform (IFFT) combination to derive the reduced structure FPBFXLMS (RFPBFXLMS) algorithm. Computational complexity analysis for different orders of filter and partition size are presented. Systematic computer simulations are carried out for both the proposed partitioned block ANC algorithms to show its accuracy compared to the time domain FXLMS algorithm.
NASA Astrophysics Data System (ADS)
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
Imaging non-uniformity of infrared focal plane array (IRFPA) behaves as fixed-pattern noise superimposed on the image, which affects the imaging quality of infrared system seriously. In scene-based non-uniformity correction methods, the drawbacks of ghosting artifacts and image blurring affect the sensitivity of the IRFPA imaging system seriously and decrease the image quality visibly. This paper proposes an improved neural network non-uniformity correction method with adaptive learning rate. On the one hand, using guided filter, the proposed algorithm decreases the effect of ghosting artifacts. On the other hand, due to the inappropriate learning rate is the main reason of image blurring, the proposed algorithm utilizes an adaptive learning rate with a temporal domain factor to eliminate the effect of image blurring. In short, the proposed algorithm combines the merits of the guided filter and the adaptive learning rate. Several real and simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. The experiment results indicate that the proposed algorithm can not only reduce the non-uniformity with less ghosting artifacts but also overcome the problems of image blurring in static areas.
ERIC Educational Resources Information Center
Westberry, Nicola; Franken, Margaret
2015-01-01
This paper provides an Activity Theory analysis of two online student-driven interactive learning activities to interrogate assumptions that such groups can effectively learn in the absence of the teacher. Such an analysis conceptualises learning tasks as constructed objects that drive pedagogical activity. The analysis shows a disconnect between…
Caraviello, D Z; Weigel, K A; Craven, M; Gianola, D; Cook, N B; Nordlund, K V; Fricke, P M; Wiltbank, M C
2006-12-01
The fertility of lactating dairy cows is economically important, but the mean reproductive performance of Holstein cows has declined during the past 3 decades. Traits such as first-service conception rate and pregnancy status at 150 d in milk (DIM) are influenced by numerous explanatory factors common to specific farms or individual cows on these farms. Machine learning algorithms offer great flexibility with regard to problems of multicollinearity, missing values, or complex interactions among variables. The objective of this study was to use machine learning algorithms to identify factors affecting the reproductive performance of lactating Holstein cows on large dairy farms. This study used data from farms in the Alta Genetics Advantage progeny-testing program. Production and reproductive records from 153 farms were obtained from on-farm DHI-Plus, Dairy Comp 305, or PCDART herd management software. A survey regarding management, facilities, labor, nutrition, reproduction, genetic selection, climate, and milk production was completed by managers of 103 farms; body condition scores were measured by a single evaluator on 63 farms; and temperature data were obtained from nearby weather stations. The edited data consisted of 31,076 lactation records, 14,804 cows, and 317 explanatory variables for first-service conception rate and 17,587 lactation records, 9,516 cows, and 341 explanatory variables for pregnancy status at 150 DIM. An alternating decision tree algorithm for first-service conception rate classified 75.6% of records correctly and identified the frequency of hoof trimming maintenance, type of bedding in the dry cow pen, type of cow restraint system, and duration of the voluntary waiting period as key explanatory variables. An alternating decision tree algorithm for pregnancy status at 150 DIM classified 71.4% of records correctly and identified bunk space per cow, temperature for thawing semen, percentage of cows with low body condition scores, number of
Zhang, Y; Li, X R
1999-01-01
A fast learning algorithm for training multilayer feedforward neural networks (FNN's) by using a fading memory extended Kalman filter (FMEKF) is presented first, along with a technique using a self-adjusting time-varying forgetting factor. Then a U-D factorization-based FMEKF is proposed to further improve the learning rate and accuracy of the FNN. In comparison with the backpropagation (BP) and existing EKF-based learning algorithms, the proposed U-D factorization-based FMEKF algorithm provides much more accurate learning results, using fewer hidden nodes. It has improved convergence rate and numerical stability (robustness). In addition, it is less sensitive to start-up parameters (e.g., initial weights and covariance matrix) and the randomness in the observed data. It also has good generalization ability and needs less training time to achieve a specified learning accuracy. Simulation results in modeling and identification of nonlinear dynamic systems are given to show the effectiveness and efficiency of the proposed algorithm. PMID:18252590
Students´ Perspectives on eLearning Activities in Person-Centered, Blended Learning Settings
ERIC Educational Resources Information Center
Haselberger, David; Motsching, Renate
2016-01-01
Blended or hybrid learning has become a frequent practice in higher education. In this article our primary research interest was to find out how students perceived eLearning activities in blended learning courses based on the person-centered paradigm. Through analyzing the content of a series of semi-structured interviews we found out that…
Experiential Learning and Learning Environments: The Case of Active Listening Skills
ERIC Educational Resources Information Center
Huerta-Wong, Juan Enrique; Schoech, Richard
2010-01-01
Social work education research frequently has suggested an interaction between teaching techniques and learning environments. However, this interaction has never been tested. This study compared virtual and face-to-face learning environments and included active listening concepts to test whether the effectiveness of learning environments depends…
How Do Teachers Learn in the Workplace? An Examination of Teacher Learning Activities
ERIC Educational Resources Information Center
Meirink, Jacobiene A.; Meijer, Paulien C.; Verloop, Nico; Bergen, Theo C. M.
2009-01-01
In this study, two data collection instruments were used to examine how Dutch secondary school teachers learn in the workplace. Firstly, they completed a questionnaire on their preferences for learning activities on two occasions. Secondly, during the intermediate period, they reported learning experiences in digital logs. Results of both…
Advancing the M-Learning Research Agenda for Active, Experiential Learning: Four Case Studies
ERIC Educational Resources Information Center
Dyson, Laurel Evelyn; Litchfield, Andrew; Lawrence, Elaine; Raban, Ryszard; Leijdekkers, Peter
2009-01-01
This article reports on an m-learning research agenda instituted at our university in order to explore how mobile technology can enhance active, experiential learning. Details of the implementation and results of four areas of m-learning are presented: mobile supported fieldwork, fostering interactivity in large lectures with mobile technology,…
Multiliteracies and Active Learning in CLIL--The Development of Learn Web2.0
ERIC Educational Resources Information Center
Marenzi, I.; Zerr, S.
2012-01-01
This paper discusses the development of LearnWeb2.0, a search and collaboration environment for supporting searching, organizing, and sharing distributed resources, and our pedagogical setup based on the multiliteracies approach. In LearnWeb2.0, collaborative and active learning is supported through project-focused search and aggregation, with…
Designing for Inquiry-Based Learning with the Learning Activity Management System
ERIC Educational Resources Information Center
Levy, P.; Aiyegbayo, O.; Little, S.
2009-01-01
This paper explores the relationship between practitioners' pedagogical purposes, values and practices in designing for inquiry-based learning in higher education, and the affordances of the Learning Activity Management System (LAMS) as a tool for creating learning designs in this context. Using a qualitative research methodology, variation was…
NASA Astrophysics Data System (ADS)
Rose, R.; Aizenman, H.; Mei, E.; Choudhury, N.
2013-12-01
High School students interested in the STEM fields benefit most when actively participating, so I created a series of learning modules on how to analyze complex systems using machine-learning that give automated feedback to students. The automated feedbacks give timely responses that will encourage the students to continue testing and enhancing their programs. I have designed my modules to take the tactical learning approach in conveying the concepts behind correlation, linear regression, and vector distance based classification and clustering. On successful completion of these modules, students will learn how to calculate linear regression, Pearson's correlation, and apply classification and clustering techniques to a dataset. Working on these modules will allow the students to take back to the classroom what they've learned and then apply it to the Earth Science curriculum. During my research this summer, we applied these lessons to analyzing river deltas; we looked at trends in the different variables over time, looked for similarities in NDVI, precipitation, inundation, runoff and discharge, and attempted to predict floods based on the precipitation, waves mean, area of discharge, NDVI, and inundation.
Students' Learning Activities While Studying Biological Process Diagrams
NASA Astrophysics Data System (ADS)
Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert
2015-08-01
Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal data and eye-tracking data were collected as indications of students' learning activities. For the verbal data, we applied a fine-grained coding scheme to optimally describe students' learning activities. For the eye-tracking data, we used fixation time and transitions between areas of interest in the process diagrams as indices of learning activities. Various learning activities while studying process diagrams were found that distinguished between more and less successful students. Results showed that between-student variance in comprehension score was highly predicted by meaning making of the process arrows (80%) and fixation time in the main area (65%). Students employed successful learning activities consistently across learning tasks. Furthermore, compared to unsuccessful students, successful students used a more coherent approach of interrelated learning activities for comprehending process diagrams.
A new backpropagation learning algorithm for layered neural networks with nondifferentiable units.
Oohori, Takahumi; Naganuma, Hidenori; Watanabe, Kazuhisa
2007-05-01
We propose a digital version of the backpropagation algorithm (DBP) for three-layered neural networks with nondifferentiable binary units. This approach feeds teacher signals to both the middle and output layers, whereas with a simple perceptron, they are given only to the output layer. The additional teacher signals enable the DBP to update the coupling weights not only between the middle and output layers but also between the input and middle layers. A neural network based on DBP learning is fast and easy to implement in hardware. Simulation results for several linearly nonseparable problems such as XOR demonstrate that the DBP performs favorably when compared to the conventional approaches. Furthermore, in large-scale networks, simulation results indicate that the DBP provides high performance. PMID:17381272
Architecture for High Speed Learning of Neural Network using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Yoshikawa, Masaya; Terai, Hidekazu
This paper discusses the architecture for high speed learning of Neural Network (NN) using Genetic Algorithm (GA). The proposed architecture prevents local minimum by using the GA characteristic of holding several individual populations for a population-based search and achieves high speed processing adopting dedicated hardware. To keep general purpose equal software processing, the proposed architecture can be flexible genetic operations on GA and is introduced both Sigmoid function and Heaviside function on NN. Furthermore, the proposed architecture is not optimized only the pipeline at evaluation phase on NN, but also optimized hierarchic pipelines on the whole at evolutionary phase. We have done the simulation, verification and logic synthesis using library of 0.35μm CMOS standard cell. Simulation results evaluating the proposed architecture show to achieve 22 times speed on average compared with software processing.
Tang, Xiao-yan; Gao, Kun; Ni, Guo-qiang; Zhu, Zhen-yu; Cheng, Hao-bo
2013-09-01
An improved N-FINDR endmember extraction algorithm by combining manifold learning and spatial information is presented under nonlinear mixing assumptions. Firstly, adaptive local tangent space alignment is adapted to seek potential intrinsic low-dimensional structures of hyperspectral high-diemensional data and reduce original data into a low-dimensional space. Secondly, spatial preprocessing is used by enhancing each pixel vector in spatially homogeneous areas, according to the continuity of spatial distribution of the materials. Finally, endmembers are extracted by looking for the largest simplex volume. The proposed method can increase the precision of endmember extraction by solving the nonlinearity of hyperspectral data and taking advantage of spatial information. Experimental results on simulated and real hyperspectral data demonstrate that the proposed approach outperformed the geodesic simplex volume maximization (GSVM), vertex component analysis (VCA) and spatial preprocessing N-FINDR method (SPPNFINDR). PMID:24369664
Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei
2014-09-01
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. PMID:25016308
Active-Learning Processes Used in US Pharmacy Education
Brown, Stacy D.; Clavier, Cheri W.; Wyatt, Jarrett
2011-01-01
Objective To document the type and extent of active-learning techniques used in US colleges and schools of pharmacy as well as factors associated with use of these techniques. Methods A survey instrument was developed to assess whether and to what extent active learning was used by faculty members of US colleges and schools of pharmacy. This survey instrument was distributed via the American Association of Colleges of Pharmacy (AACP) mailing list. Results Ninety-five percent (114) of all US colleges and schools of pharmacy were represented with at least 1 survey among the 1179 responses received. Eighty-seven percent of respondents used active-learning techniques in their classroom activities. The heavier the teaching workload the more active-learning strategies were used. Other factors correlated with higher use of active-learning strategies included younger faculty member age (inverse relationship), lower faculty member rank (inverse relationship), and departments that focused on practice, clinical and social, behavioral, and/or administrative sciences. Conclusions Active learning has been embraced by pharmacy educators and is used to some extent by the majority of US colleges and schools of pharmacy. Future research should focus on how active-learning methods can be used most effectively within pharmacy education, how it can gain even broader acceptance throughout the academy, and how the effect of active learning on programmatic outcomes can be better documented. PMID:21769144
NASA Astrophysics Data System (ADS)
Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail
2015-04-01
Within the Alps, knowledge on mountain permafrost characteristics (thermal state and related processes) and distribution has significantly increased within the last 15 years thanks to many field studies and monitoring projects. They reveal the complexity of mountain permafrost, both in term of spatial repartition and sensitivity to current warming. This can be illustrated by the situation in talus slopes, where permafrost is only present in the lower part of the landform in reason of a reversible mechanism of air advection that leads to negative thermal anomalies downslope and to positive ones upslope. Moreover, performances of existing equilibrium models are optimal basically only at a local or regional scale. At the micro scale, the nonlinear interrelationship that exists between the climatic components and the terrain surface/subsurface properties controlling the occurrence of permafrost is not well considered by this type of models. We often need to appeal to physical models, which are sometimes difficult to calibrate, often require heavy computational power to run and become increasingly complex as the amounts of empirical data grow. By disposing of a large amount of spatial data, the application of robust and nonlinear algorithms is possible. In the present study, we investigate the potential of two classification algorithms that belong to machine learning (ML) domain: Random Forest (RF) and Support Vector Machines (SVM). With ML algorithms, functional dependencies are derived directly from data (a dataset of thousands of field observations and topo-climatic data). With this approach data speak for themselves and there is any need to appeal to physical models. The RF algorithm has recently gained a great popularity and also provides a weight of the contribution of each variable. This measure can be used to detect and display the main factors affecting the studied phenomenon. The SVM has proven to be efficient in past permafrost distribution modelling attempts
NASA Astrophysics Data System (ADS)
Belchansky, G.; Alpatsky, I.; Mordvintsev, I.; Douglas, D.
Investigating new methods to estimate sea-ice geophysical parameters using multisensor satellite data is critical for global change studies. The most widely used and consistent data to study sea ice at global scale are SMMR and SSM/I passive microwave measurements available since 1978. However, comparisons with LANDSAT, AVHRR and ERS-1 SAR have demonstrated substantial seasonal and regional differences in SSM/I ice parameter estimates (Belchansky and Douglas, 2000, 2002). This report presents investigating methods of improving SSM/I and OKEAN sea ice inversion parameters using MLP neural networks, and compare the sea ice classification results from different neural networks and linear mixture model. Efficiency of four sea ice type inversion (classification) algorithms utilizing SSM/I, OKEAN-01, ERS and RADARSAT satellite data were compared and investigated. The first one applied different linear mixture models (NASA Team, Bootstrap, and OKEAN). The second, third and fourth algorithms applied the modified MLP neural networks with different learning algorithms based, respectively, on 1) error back propagation and simulated annealing (Kirkpatrick, 1983); 2) dynamic learning and polynomial basis function (Chen et al., 1996); and 3) dynamic learning and two-step optimization. Both last algorithms used the Kalman filtering technique. Our studies demonstrated that both modified MLP neural networks with dynamic learning were more efficient (in terms of learning time, accuracy, and ability to generalize the selected learning data) than modified MLP neural network with learning algorithms based on the error back propagation and simulated annealing for simple approximation problems. MY sea ice and albedo inversion from SSM/I brightness temperatures and respective OKEAN learning data sets demonstrated that these algorithms caused over-fitting in comparison with the MLP neural network with the error back propagation and simulated annealing. Therefore, for MY sea ice inversion
NASA Astrophysics Data System (ADS)
Verrelst, Jochem; Rivera, J. P.; Alonso, L.; Guanter, L.; Moreno, J.
2012-04-01
ESA’s upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT- 5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms could be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from the ESA-led field campaign SPARC (Barrax, Spain), it was recently found [1] that Gaussian processes regression (GPR) outperformed competitive machine learning algorithms such as neural networks, support vector regression) and kernel ridge regression both in terms of accuracy and computational speed. For various Sentinel configurations (S2-10m, S2- 20m, S2-60m and S3-300m) three important biophysical parameters were estimated: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). GPR was the only method that reached the 10% precision required by end users in the estimation of Chl. In view of implementing the regressor into operational monitoring applications, here the portability of locally trained GPR models to other images was evaluated. The associated confidence maps proved to be a good indicator for evaluating the robustness of the trained models. Consistent retrievals were obtained across the different images, particularly over agricultural sites. To make the method suitable for operational use, however, the poorer confidences over bare soil areas suggest that the training dataset should be expanded with inputs from various land cover types.
NASA Technical Reports Server (NTRS)
Das, Santanu; Srivastava, Ashok N.; Matthews, Bryan L.; Oza, Nikunj C.
2010-01-01
The world-wide aviation system is one of the most complex dynamical systems ever developed and is generating data at an extremely rapid rate. Most modern commercial aircraft record several hundred flight parameters including information from the guidance, navigation, and control systems, the avionics and propulsion systems, and the pilot inputs into the aircraft. These parameters may be continuous measurements or binary or categorical measurements recorded in one second intervals for the duration of the flight. Currently, most approaches to aviation safety are reactive, meaning that they are designed to react to an aviation safety incident or accident. In this paper, we discuss a novel approach based on the theory of multiple kernel learning to detect potential safety anomalies in very large data bases of discrete and continuous data from world-wide operations of commercial fleets. We pose a general anomaly detection problem which includes both discrete and continuous data streams, where we assume that the discrete streams have a causal influence on the continuous streams. We also assume that atypical sequence of events in the discrete streams can lead to off-nominal system performance. We discuss the application domain, novel algorithms, and also discuss results on real-world data sets. Our algorithm uncovers operationally significant events in high dimensional data streams in the aviation industry which are not detectable using state of the art methods
Stoica, C; Camejo, J; Banciu, A; Nita-Lazar, M; Paun, I; Cristofor, S; Pacheco, O R; Guevara, M
2016-01-01
Environmental issues have a worldwide impact on water bodies, including the Danube Delta, the largest European wetland. The Water Framework Directive (2000/60/EC) implementation operates toward solving environmental issues from European and national level. As a consequence, the water quality and the biocenosis structure was altered, especially the composition of the macro invertebrate community which is closely related to habitat and substrate heterogeneity. This study aims to assess the ecological status of Southern Branch of the Danube Delta, Saint Gheorghe, using benthic fauna and a computational method as an alternative for monitoring the water quality in real time. The analysis of spatial and temporal variability of unicriterial and multicriterial indices were used to assess the current status of aquatic systems. In addition, chemical status was characterized. Coliform bacteria and several chemical parameters were used to feed machine-learning (ML) algorithms to simulate a real-time classification method. Overall, the assessment of the water bodies indicated a moderate ecological status based on the biological quality elements or a good ecological status based on chemical and ML algorithms criteria. PMID:27191562
Faster learning algorithm convergence utilizing a combined time-frequency representation as basis
NASA Astrophysics Data System (ADS)
Hendriks, A. J.; Uys, Hermann; du Plessis, Anton; Steenkamp, Christine
2013-10-01
Light is capable of directly manipulating and probing molecular dynamics at its most fundamental level. One versatile approach to influencing such dynamics exploits temporally shaped femtosecond laser pulses. Oftentimes the control mechanisms necessary to induce a desired reaction cannot be determined theoretically a priori. However under certain circumstances these mechanisms can be extracted experimentally through trial and error. This can be implemented systematically by using an evolutionary learning algorithm (LA) with closed loop feedback. Most frequently, pulse shaping algorithms operate within either the time or frequency domain, however seldom both. This may influence the physical insight gained due to dependence on the search basis, as well as influence the speed the algorithm takes to converge. As an alternative to the Fourier domain basis, we make use of a combined time-frequency representation known as the von Neumann basis where we observe temporal and spectral effects at the same time. We report on the numerical and experimental results obtained using the Fourier, as well as the von Neumann basis to maximize the second harmonic generation (SHG) output in a non-linear crystal. We show that the von Neumann representation converges faster than the Fourier domain when compared to searches in the Fourier domain. We also show a reduced parameter space is required for the Fourier domain to converge efficiently, but not for von Neumann domain. Finally we show the highest SHG signal is not only a consequence of the shortest pulse, but that the pulse central frequency also plays a key role. Taken together these results suggest that the von Neumann basis can be used as a viable alternative to the Fourier domain with improved convergence time and potentially deeper physical insight.
Photography. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…
E-Collaboration Technologies in Teaching/Learning Activity
ERIC Educational Resources Information Center
Zascerinska, Jelena; Ahrens, Andreas
2009-01-01
A proper use of e-collaboration technologies in the teaching/learning process is provided by varied cooperative networks, which penetrate teachers' and students' activity more thoroughly with the availability of broadband services. However, the successful use of e-collaboration technologies in teaching/learning activity within a multicultural…
Students as Doers: Examples of Successful E-Learning Activities
ERIC Educational Resources Information Center
Tammelin, Maija; Peltonen, Berit; Puranen, Pasi; Auvinen, Lis
2012-01-01
This paper discusses learning language and communication activities that focus on students' concrete involvement in their learning process. The activities first deal with student-produced blogs and digital videos in business Spanish. They then present student-produced podcasts for Swedish business communication learners that are meant for…
Incorporating Active Learning with Videos: A Case Study from Physics
ERIC Educational Resources Information Center
Lee, Kester J.; Sharma, Manjula D.
2008-01-01
Watching a video often results in passive learning and does not actively engage students. In this study, a class of 20 HSC Physics students were introduced to a teaching model that incorporated active learning principles with the watching of a video that explored the Meissner Effect and superconductors. Students would watch short sections of the…
Brain Gym. Simple Activities for Whole Brain Learning.
ERIC Educational Resources Information Center
Dennison, Paul E.; Dennison, Gail E.
This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…
Tractor Mechanics: Learning Activity Packages 1-19.
ERIC Educational Resources Information Center
Clemson Univ., SC. Vocational Education Media Center.
Learning activity packages are presented for teaching tractor mechanics. The first of two sections deals with miscellaneous tasks and contains learning activity packages on cleaning the tractor and receiving new tractor parts. Section 2 is concerned with maintaining and servicing the electrical system, and it includes the following learning…
Structural Engineering. Technology Learning Activity. Teacher Edition. Technology Education Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…
Active Learning's Effect upon Preservice Teachers' Attitudes toward Inclusion.
ERIC Educational Resources Information Center
Andrews, Sharon; Clementson, John J.
The purpose of this study was to determine the effect of active learning techniques and the use of supplemental literature dealing with disabilities in a required introduction to education and special education course on preservice teachers (N=67) attitudes toward inclusion. The active learning techniques included participation in simulation…
Service Learning and Active Citizenship Education in England
ERIC Educational Resources Information Center
Jerome, Lee
2012-01-01
This article compares the English tradition of active citizenship education with the US tradition of service learning. It starts by outlining service learning and noting some of the defining characteristics as well as some of the tensions. It then discusses the model of active citizenship that has been promoted in England's secondary school…
Supporting "Learning by Design" Activities Using Group Blogs
ERIC Educational Resources Information Center
Fessakis, Georgios; Tatsis, Konstantinos; Dimitracopoulou, Angelique
2008-01-01
The paper presents a case study of the educational exploitation of group blogging for the implementation of a "learning by design" activity. More specifically, a group of students used a blog as a communication and information management tool in the University course of ICT-enhanced Geometry learning activities. The analysis of the designed…
The Learning Activities Questionnaire: A Tool to Enhance Teaching
ERIC Educational Resources Information Center
Ager, Richard
2012-01-01
This article describes the Learning Activities Questionnaire (LAQ) and how it can be employed to evaluate learning tasks not typically examined in course evaluation instruments such as readings and assignments. Drawing from behavioral theory in its focus on specific activities, this instrument is simple to interpret and provides clear direction…
Teaching Sociological Theory through Active Learning: The Irrigation Exercise
ERIC Educational Resources Information Center
Holtzman, Mellisa
2005-01-01
For students, theory is often one of the most daunting aspects of sociology--it seems abstract, removed from the concrete events of their everyday lives, and therefore intimidating. In an attempt to break down student resistance to theory, instructors are increasingly turning to active learning approaches. Active learning exercises, then, appear…
Teaching for Engagement: Part 3: Designing for Active Learning
ERIC Educational Resources Information Center
Hunter, William J.
2015-01-01
In the first two parts of this series, ("Teaching for Engagement: Part 1: Constructivist Principles, Case-Based Teaching, and Active Learning") and ("Teaching for Engagement: Part 2: Technology in the Service of Active Learning"), William J. Hunter sought to outline the theoretical rationale and research basis for such active…
The Green Revolution in Transportation. Resource Recovery. Technology Learning Activities.
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
These two learning activities provide context, objectives, list of materials, student activity, and evaluation criteria. The first involves an automotive class in developing a model alternative fueled vehicle, and the second involves the design of a useful recyclable product. (JOW)
NASA Astrophysics Data System (ADS)
Kon, Yohsuke; Hashiguchi, Kazuki; Ito, Masato; Hasegawa, Mikio; Ishizu, Kentaro; Murakami, Homare; Harada, Hiroshi
It is important to optimize aggregation schemes for heterogeneous wireless networks for maximizing communication throughput utilizing any available radio access networks. In the heterogeneous networks, differences of the quality of service (QoS), such as throughput, delay and packet loss rate, of the networks makes difficult to maximize the aggregation throughput. In this paper, we firstly analyze influences of such differences in QoS to the aggregation throughput, and show that it is possible to improve the throughput by adjusting the parameters of an aggregation system. Since manual parameter optimization is difficult and takes much time, we propose an autonomous parameter tuning scheme using a machine learning algorithm for the heterogeneous wireless network aggregation. We implement the proposed scheme on a heterogeneous cognitive radio network system. The results on our experimental network with network emulators show that the proposed scheme can improve the aggregation throughput better than the conventional schemes. We also evaluate the performance using public wireless network services, such as HSDPA, WiMAX and W-CDMA, and verify that the proposed scheme can improve the aggregation throughput by iterating the learning cycle even for the public wireless networks. Our experimental results show that the proposed scheme achieves twice better aggregation throughput than the conventional schemes.
NASA Astrophysics Data System (ADS)
Jang, Dong-Doo; Park, Jeongsu; Jung, Hyung-Jo
2013-04-01
The feasibility of an active mass damper (AMD) system employing the time delay control (TDC) algorithm, which is one of the robust and adaptive control algorithms, for effectively suppressing the wind-induced vibration of a building structure is investigated. The TDC algorithm has several attractive features such as the simplicity and the excellent robustness to unknown system dynamics and disturbance. Based on the characteristics of the algorithm, it has the potential to be an effective control system for mitigating excessive vibration of civil engineering structures such as buildings, bridges and towers. However, it has not been used for structural response reduction yet. In order to verify the effectiveness of the proposed active control method combining an AMD system with the TDC algorithm, a series of labscale tests are carried out.
Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal
2015-01-01
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191
ERIC Educational Resources Information Center
Losee, Robert M.
1996-01-01
The grammars of natural languages may be learned by using genetic algorithm systems such as LUST (Linguistics Using Sexual Techniques) that reproduce and mutate grammatical rules and parts-of-speech tags. In document retrieval or filtering systems, applying tags to the list of terms representing a document provides additional information about…
2014-01-01
Background The huge quantity of data produced in Biomedical research needs sophisticated algorithmic methodologies for its storage, analysis, and processing. High Performance Computing (HPC) appears as a magic bullet in this challenge. However, several hard to solve parallelization and load balancing problems arise in this context. Here we discuss the HPC-oriented implementation of a general purpose learning algorithm, originally conceived for DNA analysis and recently extended to treat uncertainty on data (U-BRAIN). The U-BRAIN algorithm is a learning algorithm that finds a Boolean formula in disjunctive normal form (DNF), of approximately minimum complexity, that is consistent with a set of data (instances) which may have missing bits. The conjunctive terms of the formula are computed in an iterative way by identifying, from the given data, a family of sets of conditions that must be satisfied by all the positive instances and violated by all the negative ones; such conditions allow the computation of a set of coefficients (relevances) for each attribute (literal), that form a probability distribution, allowing the selection of the term literals. The great versatility that characterizes it, makes U-BRAIN applicable in many of the fields in which there are data to be analyzed. However the memory and the execution time required by the running are of O(n3) and of O(n5) order, respectively, and so, the algorithm is unaffordable for huge data sets. Results We find mathematical and programming solutions able to lead us towards the implementation of the algorithm U-BRAIN on parallel computers. First we give a Dynamic Programming model of the U-BRAIN algorithm, then we minimize the representation of the relevances. When the data are of great size we are forced to use the mass memory, and depending on where the data are actually stored, the access times can be quite different. According to the evaluation of algorithmic efficiency based on the Disk Model, in order to
Postnatal TLR2 activation impairs learning and memory in adulthood.
Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan
2015-08-01
Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559
Postnatal TLR2 activation impairs learning and memory in adulthood
Madar, Ravit; Rotter, Aviva; Ben-Asher, Hiba Waldman; Mughal, Mohamed R.; Arumugam, Thiruma V.; Wood, WH; Becker, KG; Mattson, Mark P.; Okun, Eitan
2015-01-01
Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559
Belyakov, A.A.; Mal`tsev, A.A.; Medvedev, S.Yu.
1995-04-01
A modified least squares algorithm, preventing the overflow of the discharge grid of weight coefficients of an adaptive transverse filter and guaranteeing stable system operation, is suggested for the tuning of an adaptive system of an actively quenched sound field. Experimental results are provided for an adaptive filter with a modified algorithm in a system of several harmonic components of an actively quenched sound field.
Status report: Data management program algorithm evaluation activity at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Jayroe, R. R., Jr.
1977-01-01
An algorithm evaluation activity was initiated to study the problems associated with image processing by assessing the independent and interdependent effects of registration, compression, and classification techniques on LANDSAT data for several discipline applications. The objective of the activity was to make recommendations on selected applicable image processing algorithms in terms of accuracy, cost, and timeliness or to propose alternative ways of processing the data. As a means of accomplishing this objective, an Image Coding Panel was established. The conduct of the algorithm evaluation is described.
Orchestrating Learning Activities Using the CADMOS Learning Design Tool
ERIC Educational Resources Information Center
Katsamani, Maria; Retalis, Symeon
2013-01-01
This paper gives an overview of CADMOS (CoursewAre Development Methodology for Open instructional Systems), a graphical IMS-LD Level A & B compliant learning design (LD) tool, which promotes the concept of "separation of concerns" during the design process, via the creation of two models: the conceptual model, which describes the…
Learning Comes to Life: An Active Learning Program for Teens.
ERIC Educational Resources Information Center
Ilfeld, Ellen Meredith
The High/Scope Institute for IDEAS began in the early 1960s as a summer camp program and is now a dynamic learning program for teens that emphasizes working with them in an environment which supports emotional, social, and intellectual development. The High/Scope model for adolescent programs is based on the following principles: (1) adolescents…
Learning To Learn: 15 Vocabulary Acquisition Activities. Tips and Hints.
ERIC Educational Resources Information Center
Holden, William R.
1999-01-01
This article describes a variety of ways learners can help themselves remember new words, choosing the ones that best suit their learning styles. It is asserted that repeated exposure to new lexical items using a variety of means is the most consistent predictor of retention. The use of verbal, visual, tactile, textual, kinesthetic, and sonic…
ERIC Educational Resources Information Center
Pang, Katherine
2010-01-01
The purpose of this paper is to present a novel way to stimulate learning, creativity, and thinking based on a new understanding of activity-based learning (ABL) and two methods for developing metacognitive-based activities for the classroom. ABL, in this model, is based on the premise that teachers are distillers and facilitators of information…
ERIC Educational Resources Information Center
Clemson Univ., SC. Vocational Education Media Center.
This series of learning activity packages is based on a catalog of performance objectives, criterion-referenced measures, and performance guides for gardening/groundskeeping developed by the Vocational Education Consortium of States (V-TECS). Learning Activity packages are presented in three areas: (1) preparing or improving soil, (2) operating…
ERIC Educational Resources Information Center
Kimonen, Eija; Nevalainen, Raimo
As part of an international comparative study of active learning in seven countries, a case study examined active learning practices of students and teachers in a small rural school in Finland. Small schools have traditionally existed in the sparsely populated Finnish countryside, and 60 percent of Finnish elementary schools have 1-3 teachers.…
Hunting for seamounts using neural networks: learning algorithms for geomorphic studies
NASA Astrophysics Data System (ADS)
Valentine, A. P.; Kalnins, L. M.; Trampert, J.
2012-04-01
Many geophysical studies rely on finding and analysing particular topographic features: the various landforms associated with glaciation, for example, or those that characterise regional tectonics. Typically, these can readily be identified from visual inspection of datasets, but this is a tedious and time-consuming process. However, the development of techniques to perform this assessment automatically is often difficult, since a mathematical description of the feature of interest is required. To identify characteristics of a feature, such as its spatial extent, each characteristic must also have a mathematical description. Where features exhibit significant natural variations, or where their signature in data is marred by noise, performance of conventional algorithms may be poor. One potential avenue lies in the use of neural networks, or other learning algorithms, ideal for complex pattern recognition tasks. Rather than formulating a description of the feature, the user simply provides the algorithm with a training set of hand-classified examples: the problem then becomes one of assessing whether some new example shares the characteristics of this training data. In seismology, this approach is being developed for the identification of high-quality seismic waveforms amidst noisy datasets (e.g. Valentine & Woodhouse, 2010; Valentine & Trampert, in review): can it also be applied to topographic data? To explore this, we attempt to identify the locations of seamounts from gridded bathymetric data (e.g. Smith & Sandwell, 1997). Our approach involves assessing small 'patches' of ocean floor to determine whether they might plausibly contain a seamount, and if so, its location. Since seamounts have been extensively studied, this problem provides an ideal testing ground: in particular, various catalogues exist, compiled using 'traditional' approaches (e.g. Kim & Wessel, 2011). This allows us to straightforwardly generate training datasets, and compare algorithmic
NASA Astrophysics Data System (ADS)
Biswas, Rahul; Blackburn, Lindy; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Kim, Young-Min; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.; Tao, Ye; Vaulin, Ruslan; Wang, Xiaoge
2013-09-01
The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitational-wave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high enough rate such that accidental coincidence across multiple detectors is non-negligible. These “glitches” can easily be mistaken for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational waves. We apply machine-learning algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Noise sources may produce artifacts in these auxiliary channels as well as the gravitational-wave channel. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well suited. We demonstrate the feasibility and applicability of three different MLAs: artificial neural networks, support vector machines, and random forests. These classifiers identify and remove a substantial fraction of the glitches present in two different data sets: four weeks of LIGO’s fourth science run and one week of LIGO’s sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth-science-run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar performance to the benchmark algorithm, the ordered veto list, which is optimized to detect pairwise correlations between transients in LIGO auxiliary channels and glitches in the gravitational-wave data. This suggests that most of the useful information currently extracted from the auxiliary channels is already described
ERIC Educational Resources Information Center
Gerber, M.; Grund, S.; Grote, G.
2008-01-01
The aim of this study was to investigate the nature of tutor and student online communication and collaboration activities in a blended learning course. The hypothesis that these activities are related to student learning performance (exam results) was tested based on the number of messages posted, as well as the nature of these messages (type of…
Attitudes of Face-to-Face and E-Learning Instructors toward "Active Learning"
ERIC Educational Resources Information Center
Pundak, David; Herscovitz, Orit; Shacham, Miri
2010-01-01
Instruction in higher education has developed significantly over the past two decades, influenced by two trends: promotion of active learning methods and integration of web technology in e-Learning. Many studies found that active teaching improves students' success, involvement and thinking skills. Nevertheless, internationally, most instructors…
ERIC Educational Resources Information Center
Trempy, Janine E.; Skinner, Monica M.; Siebold, William A.
2002-01-01
Describes the course "The World According to Microbes" which puts science, mathematics, engineering, and technology majors into teams of students charged with problem solving activities that are microbial in origin. Describes the development of learning activities that utilize key components of cooperative learning including positive…
Active Inference and Learning in the Cerebellum.
Friston, Karl; Herreros, Ivan
2016-09-01
This letter offers a computational account of Pavlovian conditioning in the cerebellum based on active inference and predictive coding. Using eyeblink conditioning as a canonical paradigm, we formulate a minimal generative model that can account for spontaneous blinking, startle responses, and (delay or trace) conditioning. We then establish the face validity of the model using simulated responses to unconditioned and conditioned stimuli to reproduce the sorts of behavior that are observed empirically. The scheme's anatomical validity is then addressed by associating variables in the predictive coding scheme with nuclei and neuronal populations to match the (extrinsic and intrinsic) connectivity of the cerebellar (eyeblink conditioning) system. Finally, we try to establish predictive validity by reproducing selective failures of delay conditioning, trace conditioning, and extinction using (simulated and reversible) focal lesions. Although rather metaphorical, the ensuing scheme can account for a remarkable range of anatomical and neurophysiological aspects of cerebellar circuitry-and the specificity of lesion-deficit mappings that have been established experimentally. From a computational perspective, this work shows how conditioning or learning can be formulated in terms of minimizing variational free energy (or maximizing Bayesian model evidence) using exactly the same principles that underlie predictive coding in perception. PMID:27391681
Learning active fusion of multiple experts' decisions: an attention-based approach.
Mirian, Maryam S; Ahmadabadi, Majid Nili; Araabi, Babak N; Siegwart, Roland R
2011-02-01
In this letter, we propose a learning system, active decision fusion learning (ADFL), for active fusion of decisions. Each decision maker, referred to as a local decision maker, provides its suggestion in the form of a probability distribution over all possible decisions. The goal of the system is to learn the active sequential selection of the local decision makers in order to consult with and thus learn the final decision based on the consultations. These two learning tasks are formulated as learning a single sequential decision-making problem in the form of a Markov decision process (MDP), and a continuous reinforcement learning method is employed to solve it. The states of this MDP are decisions of the attended local decision makers, and the actions are either attending to a local decision maker or declaring final decisions. The learning system is punished for each consultation and wrong final decision and rewarded for correct final decisions. This results in minimizing the consultation and decision-making costs through learning a sequential consultation policy where the most informative local decision makers are consulted and the least informative, misleading, and redundant ones are left unattended. An important property of this policy is that it acts locally. This means that the system handles any nonuniformity in the local decision maker's expertise over the state space. This property has been exploited in the design of local experts. ADFL is tested on a set of classification tasks, where it outperforms two well-known classification methods, Adaboost and bagging, as well as three benchmark fusion algorithms: OWA, Borda count, and majority voting. In addition, the effect of local experts design strategy on the performance of ADFL is studied, and some guidelines for the design of local experts are provided. Moreover, evaluating ADFL in some special cases proves that it is able to derive the maximum benefit from the informative local decision makers and to
NASA Astrophysics Data System (ADS)
Graham, James; Ternovskiy, Igor V.
2013-06-01
We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.
Metaphor, computing systems, and active learning
Carroll, J.M.; Mack, R.L.
1982-01-01
The authors discuss the learning process that is directed towards particular goals and is initiated by the learner, through which metaphors become relevant and effective in learning. This allows an analysis of metaphors that explains why metaphors are incomplete and open-ended, and how this stimulates the construction of mental models. 9 references.
Learning Choices, Older Australians and Active Ageing
ERIC Educational Resources Information Center
Boulton-Lewis, Gillian M.; Buys, Laurie
2015-01-01
This paper reports on the findings of qualitative, semistructured interviews conducted with 40 older Australian participants who either did or did not engage in organized learning. Phenomenology was used to guide the interviews and analysis to explore the lived learning experiences and perspectives of these older people. Their experiences of…
An Activity Theory View on Learning Studies
ERIC Educational Resources Information Center
Mosvold, Reidar; Bjuland, Raymond
2011-01-01
Learning study has been used by many to develop exemplary teaching in school, and this approach has recently been adopted for use in kindergarten as well. When using such approaches in different settings than they were intended for, several challenges potentially arise. This article discusses the implementation of a learning study approach in a…
Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.
2012-01-01
We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.
Using neural networks and Dyna algorithm for integrated planning, reacting and learning in systems
NASA Technical Reports Server (NTRS)
Lima, Pedro; Beard, Randal
1992-01-01
The traditional AI answer to the decision making problem for a robot is planning. However, planning is usually CPU-time consuming, depending on the availability and accuracy of a world model. The Dyna system generally described in earlier work, uses trial and error to learn a world model which is simultaneously used to plan reactions resulting in optimal action sequences. It is an attempt to integrate planning, reactive, and learning systems. The architecture of Dyna is presented. The different blocks are described. There are three main components of the system. The first is the world model used by the robot for internal world representation. The input of the world model is the current state and the action taken in the current state. The output is the corresponding reward and resulting state. The second module in the system is the policy. The policy observes the current state and outputs the action to be executed by the robot. At the beginning of program execution, the policy is stochastic and through learning progressively becomes deterministic. The policy decides upon an action according to the output of an evaluation function, which is the third module of the system. The evaluation function takes the following as input: the current state of the system, the action taken in that state, the resulting state, and a reward generated by the world which is proportional to the current distance from the goal state. Originally, the work proposed was as follows: (1) to implement a simple 2-D world where a 'robot' is navigating around obstacles, to learn the path to a goal, by using lookup tables; (2) to substitute the world model and Q estimate function Q by neural networks; and (3) to apply the algorithm to a more complex world where the use of a neural network would be fully justified. In this paper, the system design and achieved results will be described. First we implement the world model with a neural network and leave Q implemented as a look up table. Next, we use a
Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery
Giguère, Sébastien; Laviolette, François; Marchand, Mario; Tremblay, Denise; Moineau, Sylvain; Liang, Xinxia; Biron, Éric; Corbeil, Jacques
2015-01-01
The discovery of peptides possessing high biological activity is very challenging due to the enormous diversity for which only a minority have the desired properties. To lower cost and reduce the time to obtain promising peptides, machine learning approaches can greatly assist in the process and even partly replace expensive laboratory experiments by learning a predictor with existing data or with a smaller amount of data generation. Unfortunately, once the model is learned, selecting peptides having the greatest predicted bioactivity often requires a prohibitive amount of computational time. For this combinatorial problem, heuristics and stochastic optimization methods are not guaranteed to find adequate solutions. We focused on recent advances in kernel methods and machine learning to learn a predictive model with proven success. For this type of model, we propose an efficient algorithm based on graph theory, that is guaranteed to find the peptides for which the model predicts maximal bioactivity. We also present a second algorithm capable of sorting the peptides of maximal bioactivity. Extensive analyses demonstrate how these algorithms can be part of an iterative combinatorial chemistry procedure to speed up the discovery and the validation of peptide leads. Moreover, the proposed approach does not require the use of known ligands for the target protein since it can leverage recent multi-target machine learning predictors where ligands for similar targets can serve as initial training data. Finally, we validated the proposed approach in vitro with the discovery of new cationic antimicrobial peptides. Source code freely available at http://graal.ift.ulaval.ca/peptide-design/. PMID:25849257
Activity Book. Catch the Spirit of Learning's Cooperation Games.
ERIC Educational Resources Information Center
Bernagozzi, Tom; And Others
1992-01-01
This activity book includes across-the-curriculum activities with Olympic themes; a "cooperation relay" (four competitive team activities based on a cooperative learning model); highlights of African Americans' Olympic achievements; a poster on teamwork and activities based on the theme of keeping the Olympic torch alive; and a reproducible…
Learning Risk Factors for Suicide: A Scenario-Based Activity
ERIC Educational Resources Information Center
Madson, Laura; Vas, Corey J.
2003-01-01
We created a classroom activity to illustrate factors that may predict suicide. In the activity, students rank 4 fictional individuals in terms of their relative risk for attempting or committing suicide. Students described the activity as "eye-opening," and students who participated in the activity learned more about the warning signs of an…
NASA Technical Reports Server (NTRS)
Biswas, Rahul; Blackburn, Lindy L.; Cao, Junwei; Essick, Reed; Hodge, Kari Alison; Katsavounidis, Erotokritos; Kim, Kyungmin; Young-Min, Kim; Le Bigot, Eric-Olivier; Lee, Chang-Hwan; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.; Vaulin, Ruslan; Wang, Xiaoge; Ye, Tao
2014-01-01
The sensitivity of searches for astrophysical transients in data from the Laser Interferometer Gravitationalwave Observatory (LIGO) is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high-enough rate such that accidental coincidence across multiple detectors is non-negligible. Furthermore, non-Gaussian noise artifacts typically dominate over the background contributed from stationary noise. These "glitches" can easily be confused for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational-waves. We apply Machine Learning Algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. Terrestrial noise sources may manifest characteristic disturbances in these auxiliary channels, inducing non-trivial correlations with glitches in the gravitational-wave data. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; high dimensionality is an area where MLAs are particularly well-suited. We demonstrate the feasibility and applicability of three very different MLAs: Artificial Neural Networks, Support Vector Machines, and Random Forests. These classifiers identify and remove a substantial fraction of the glitches present in two very different data sets: four weeks of LIGO's fourth science run and one week of LIGO's sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth science run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar limiting performance, suggesting that most of the useful information currently contained in the auxiliary channel parameters we extract
How to measure metallicity from five-band photometry with supervised machine learning algorithms
NASA Astrophysics Data System (ADS)
Acquaviva, Viviana
2016-02-01
We demonstrate that it is possible to measure metallicity from the SDSS five-band photometry to better than 0.1 dex using supervised machine learning algorithms. Using spectroscopic estimates of metallicity as ground truth, we build, optimize and train several estimators to predict metallicity. We use the observed photometry, as well as derived quantities such as stellar mass and photometric redshift, as features, and we build two sample data sets at median redshifts of 0.103 and 0.218 and median r-band magnitude of 17.5 and 18.3, respectively. We find that ensemble methods, such as random forests of trees and extremely randomized trees and support vector machines all perform comparably well and can measure metallicity with a Root Mean Square Error (RMSE) of 0.081 and 0.090 for the two data sets when all objects are included. The fraction of outliers (objects for which |Ztrue - Zpred| > 0.2 dex) is 2.2 and 3.9 per cent, respectively and the RMSE decreases to 0.068 and 0.069 if those objects are excluded. Because of the ability of these algorithms to capture complex relationships between data and target, our technique performs better than previously proposed methods that sought to fit metallicity using an analytic fitting formula, and has 3× more constraining power than SED fitting-based methods. Additionally, this method is extremely forgiving of contamination in the training set, and can be used with very satisfactory results for sample sizes of a few hundred objects. We distribute all the routines to reproduce our results and apply them to other data sets.
Motor skill learning requires active central myelination.
McKenzie, Ian A; Ohayon, David; Li, Huiliang; de Faria, Joana Paes; Emery, Ben; Tohyama, Koujiro; Richardson, William D
2014-10-17
Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain's white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a "complex wheel" with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills. PMID:25324381
Active controllers and the time duration to learn a task
NASA Technical Reports Server (NTRS)
Repperger, D. W.; Goodyear, C.
1986-01-01
An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.
Wisconsin College for Kids Stresses Active, Independent Learning.
ERIC Educational Resources Information Center
Notar, Ellen Elms; Deutsch, Robin
1983-01-01
This report describes the second year of an award-winning summer enrichment program aimed at developing independent learning skills and encouraging lifelong learning in gifted elementary students. The program featured contact with university scholars actively involved in problem solving, introduction to general bodies of knowledge, and in-depth…
Using Active Learning Strategies in Psychology Classes: Illustrative Articles.
ERIC Educational Resources Information Center
Becker, Judith A.; Eison, James
This bibliography was designed to assist psychology instructors in incorporating active learning strategies into their courses. The document contains articles that describe specific techniques that should help students to become more involved in learning about psychology than traditional lecture methods allow. The bibliography was prepared by…
A Theory Bite on Learning through Mathematical Activity
ERIC Educational Resources Information Center
Steffe, Leslie P.
2011-01-01
In this article, the author wishes to emphasize two fundamental points related to theory that were significantly underplayed in Simon et al.'s "A Developing Approach to Studying Students' Learning through Their Mathematical Activity" (2010). The author believes these points are central to any study of children's mathematical learning. The first…
Resource Letter ALIP-1: Active-Learning Instruction in Physics
NASA Astrophysics Data System (ADS)
Meltzer, David E.; Thornton, Ronald K.
2012-06-01
This Resource Letter provides a guide to the literature on research-based active-learning instruction in physics. These are instructional methods that are based on, assessed by, and validated through research on the teaching and learning of physics. They involve students in their own learning more deeply and more intensely than does traditional instruction, particularly during class time. The instructional methods and supporting body of research reviewed here offer potential for significantly improved learning in comparison to traditional lecture-based methods of college and university physics instruction. We begin with an introduction to the history of active learning in physics in the United States, and then discuss some methods for and outcomes of assessing pedagogical effectiveness. We enumerate and describe common characteristics of successful active-learning instructional strategies in physics. We then discuss a range of methods for introducing active-learning instruction in physics and provide references to those methods for which there is published documentation of student learning gains.
Canada and the United States. Perspective. Learning Activity Packet.
ERIC Educational Resources Information Center
Maine Univ., Orono. New England - Atlantic Provinces - Quebec Center.
The similarities and differences of Canada and the United States are explored in this Learning Activity Packet (LAP). Ten learning objectives are given which encourage students to examine: 1) the misconceptions Americans and Canadians have about each other and their ways of life; 2) the effect and influence of French and English exploration and…
Learning French through Ethnolinguistic Activities and Individual Support
ERIC Educational Resources Information Center
Lafond, Celia; Bovey, Nadia Spang
2013-01-01
For the last six years, the university has been offering a Tutorial Programme for learning French, combining intensive courses and highly individualised learning activities. The programme is based on an ethnolinguistic approach and it is continuously monitored. It aims at rapid progress through contact with the local population, real-life…
Promoting Technology-Assisted Active Learning in Computer Science Education
ERIC Educational Resources Information Center
Gao, Jinzhu; Hargis, Jace
2010-01-01
This paper describes specific active learning strategies for teaching computer science, integrating both instructional technologies and non-technology-based strategies shown to be effective in the literature. The theoretical learning components addressed include an intentional method to help students build metacognitive abilities, as well as…
Using Guided, Corpus-Aided Discovery to Generate Active Learning
ERIC Educational Resources Information Center
Huang, Li-Shih
2008-01-01
Over the years, educators have proposed a variety of active learning pedagogical approaches that focus on encouraging students to discover for themselves the principles and solutions that will engage them in learning and enhance their educational outcomes. Among these approaches are problem-based, inquiry-based, experiential, and discovery…
Active Learning in a Math for Liberal Arts Classroom
ERIC Educational Resources Information Center
Lenz, Laurie
2015-01-01
Inquiry-based learning is a topic of growing interest in the mathematical community. Much of the focus has been on using these methods in calculus and higher-level classes. This article describes the design and implementation of a set of inquiry-based learning activities in a Math for Liberal Arts course at a small, private, Catholic college.…
Intergenerational Service Learning with Elders: Multidisciplinary Activities and Outcomes
ERIC Educational Resources Information Center
Krout, John A.; Bergman, Elizabeth; Bianconi, Penny; Caldwell, Kathryn; Dorsey, Julie; Durnford, Susan; Erickson, Mary Ann; Lapp, Julia; Monroe, Janice Elich; Pogorzala, Christine; Taves, Jessica Valdez
2010-01-01
This article provides an overview of the activities included in a 3-year, multidisciplinary, intergenerational service-learning project conducted as part of a Foundation for Long-Term Care Service Learning: Linking Three Generations grant. Courses from four departments (gerontology, psychology, occupational therapy, and health promotion and…
Learning Through Movement: Teaching Cognitive Content through Physical Activities.
ERIC Educational Resources Information Center
Werner, Peter H.; Burton, Elsie C.
Action-oriented learning activities are focused on in this book which attempts to outline an approach for stimulating and motivating children to learn through movement. The book is divided into five parts, each dealing with an aspect of the elementary school curriculum. Part one is concerned with the language arts and is divided into three…
Model Activity Systems: Dialogic Teacher Learning for Social Justice Teaching
ERIC Educational Resources Information Center
Hoffman-Kipp, Peter
2003-01-01
Interest of teacher educators working in the field of social justice focuses on the ways in which teachers learn to inscribe their professional activity within social movements (for progressive change. The community of practice (COP) approach to understanding learning as a social process has a lot of currency right now in teacher education…
Creating Activating Events for Transformative Learning in a Prison Classroom
ERIC Educational Resources Information Center
Keen, Cheryl H.; Woods, Robert
2016-01-01
In this article, we interpreted, in light of Mezirow's theory of transformative learning, interviews with 13 educators regarding their work with marginalized adult learners in prisons in the northeastern United States. Transformative learning may have been aided by the educators' response to unplanned activating events, humor, and respect, and…
Active Learning of Biochemistry Made Easy (for the Teacher)
ERIC Educational Resources Information Center
Bobich, Joseph A.
2008-01-01
This active learning pedagogical technique aims to improve students' learning in a two-semester, upper-division biochemistry course sequence in which the vast majority of students enrolled will continue on to medical or graduate schools. Instead of lecturing, the Instructor moves to the side of the room, thereby becoming "the guide on the side".…
Critique in Academic Disciplines and Active Learning of Academic Content
ERIC Educational Resources Information Center
Ford, Michael J.
2010-01-01
This article argues for increased theoretical specificity in the active learning process. Whereas constructivist learning emphasizes construction of meaning, the process articulated here complements meaning construction with disciplinary critique. This process is an implication of how disciplinary communities generate new knowledge claims, which…
Individualized Instruction in Science, Introductory Physical Science, Learning Activity Packages.
ERIC Educational Resources Information Center
Kuczma, R. M.
Learning Activity Packages (LAP) mostly relating to the Introductory Physical Science Text are presented in this manual for use in sampling a new type of instruction. The total of 14 topics are incorporated into five units: (1) introduction to individualized learning; (2) observation versus interpretation; (3) quantity of matter; (4) introduction…
A Hybrid Approach to University Subject Learning Activities
ERIC Educational Resources Information Center
Osorio Gomez, Luz Adriana; Duart, Josep M.
2012-01-01
In order to get a better understanding of subject design and delivery using a hybrid approach, we have studied a hybrid learning postgraduate programme offered by the University of the Andes, Bogota, Colombia. The study analyses students' perceptions of subject design and delivery, with particular reference to learning activities and the roles of…
Students' Learning Activities While Studying Biological Process Diagrams
ERIC Educational Resources Information Center
Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert
2015-01-01
Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…
Enhancing learning in geosciences and water engineering via lab activities
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Cheng, Ming
2016-04-01
This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.
An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks.
Penumalli, Chakradhar; Palanichamy, Yogesh
2015-01-01
A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1986-01-01
A new active-passive airborne data correlation technique has been developed which allows the validation of existing in-water oceoan color algorithms and the rapid search, identification, and evaluation of new sensor band locations and algorithm wavelength intervals. Thus far, applied only in conjunction with the spectral curvature algorithm (SCA), the active-passive correlation spectroscopy (APCS) technique shows that (1) the usual 490-nm (center-band) chlorophyll SCA could satisfactorily be placed anywhere within the nominal 460-510-nm interval, and (2) two other spectral regions, 645-660 and 680-695 nm, show considerable promise for chlorophyll pigment measurement. Additionally, the APCS method reveals potentially useful wavelength regions (at 600 and about 670 nm) of very low chlorophyll-in-water spectral curvature into which accessory pigment algorithms for phycoerythrin might be carefully positioned. In combination, the APCS and SCA methods strongly suggest that significant information content resides within the seemingly featureless ocean color spectrum.
An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks
Penumalli, Chakradhar; Palanichamy, Yogesh
2015-01-01
A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627
Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity
Louis, S.J.; Raines, G.L.
2003-01-01
We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.
Munsell, Brent C.; Wee, Chong-Yaw; Keller, Simon S.; Weber, Bernd; Elger, Christian; da Silva, Laura Angelica Tomaz; Nesland, Travis; Styner, Martin; Shen, Dinggang; Bonilha, Leonardo
2015-01-01
The objective of this study is to evaluate machine learning algorithms aimed at predicting surgical treatment outcomes in groups of patients with temporal lobe epilepsy (TLE) using only the structural brain connectome. Specifically, the brain connectome is reconstructed using white matter fiber tracts from presurgical diffusion tensor imaging. To achieve our objective, a two-stage connectome-based prediction framework is developed that gradually selects a small number of abnormal network connections that contribute to the surgical treatment outcome, and in each stage a linear kernel operation is used to further improve the accuracy of the learned classifier. Using a 10-fold cross validation strategy, the first stage in the connectome-based framework is able to separate patients with TLE from normal controls with 80% accuracy, and second stage in the connectome-based framework is able to correctly predict the surgical treatment outcome of patients with TLE with 70% accuracy. Compared to existing state-of-the-art methods that use VBM data, the proposed two-stage connectome-based prediction framework is a suitable alternative with comparable prediction performance. Our results additionally show that machine learning algorithms that exclusively use structural connectome data can predict treatment outcomes in epilepsy with similar accuracy compared with “expert-based” clinical decision. In summary, using the unprecedented information provided in the brain connectome, machine learning algorithms may uncover pathological changes in brain network organization and improve outcome forecasting in the context of epilepsy. PMID:26054876
Effect of Learning Activity on Students' Motivation, Physical Activity Levels and Effort/Persistence
ERIC Educational Resources Information Center
Gao, Zan; Lee, Amelia M.; Xiang, Ping; Kosma, Maria
2011-01-01
The type of learning activity offered in physical education may influence students' motivational beliefs, physical activity participation and effort/persistence in class. However, most empirical studies have focused on the individual level rather than on the learner-content interactions. Accordingly, the potential effects of learning activities on…
TREMPY, JANINE E.; SKINNER, MONICA M.; SIEBOLD, WILLIAM A.
2002-01-01
A microbiology course and its corresponding learning activities have been structured according to the Cooperative Learning Model. This course, The World According to Microbes, integrates science, math, engineering, and technology (SMET) majors and non-SMET majors into teams of students charged with problem solving activities that are microbial in origin. In this study we describe development of learning activities that utilize key components of Cooperative Learning—positive interdependence, promotive interaction, individual accountability, teamwork skills, and group processing. Assessments and evaluations over an 8-year period demonstrate high retention of key concepts in microbiology and high student satisfaction with the course. PMID:23653547
Development through Dissent: Campus Activism as Civic Learning
ERIC Educational Resources Information Center
Biddix, J. Patrick
2014-01-01
This chapter traces two decades of published research on learning outcomes related to campus activism and reports results from a speculative study considering civic outcomes from participation in campus political and war demonstrations.
Learning Activities: Students and Recycling. [and] Automobile Aerodynamics.
ERIC Educational Resources Information Center
McLaughlin, Charles H., Jr.; Schieber, Rich
1994-01-01
The first learning activity is intended to heighten students' awareness of the need for recycling, reuse, and reduction of materials; the second explores the aerodynamics of automobiles. Both include context, concept, objectives, procedure, and materials needed. (SK)
Physical Activity and Wellness: Applied Learning through Collaboration
ERIC Educational Resources Information Center
Long, Lynn Hunt; Franzidis, Alexia
2015-01-01
This article describes how two university professors teamed up to initiate a university-sponsored physical activity and wellness expo in an effort to promote an authentic and transformative learning experience for preservice students.
ERIC Educational Resources Information Center
Wolford, Patricia L.; Heward, William L.; Alber, Sheila R.
2001-01-01
Four 8th graders with learning disabilities were taught to recruit assistance from peers during cooperative learning activities in two general classrooms. Training consisted of modeling, role playing, corrective feedback, and praise. Recruitment training increased the productivity and accuracy with which the students completed their language arts…
Student's Reflections on Their Learning and Note-Taking Activities in a Blended Learning Course
ERIC Educational Resources Information Center
Nakayama, Minoru; Mutsuura, Kouichi; Yamamoto, Hiroh
2016-01-01
Student's emotional aspects are often discussed in order to promote better learning activity in blended learning courses. To observe these factors, course participant's self-efficacy and reflections upon their studies were surveyed, in addition to the surveying of the metrics of student's characteristics during a Bachelor level credit course.…
ERIC Educational Resources Information Center
Caruana, Vicki; Woodrow, Kelli; Pérez, Luis
2015-01-01
The Learning Activities Survey (LAS) detected whether, and to what extent, a perspective transformation occurred during two graduate courses in teacher preparation. The LAS examined the types of learning identified as contributing to their transformative experiences. This study examined pre-service teachers' critical reflection of the course…
Active Learning "Not" Associated with Student Learning in a Random Sample of College Biology Courses
ERIC Educational Resources Information Center
Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.
2011-01-01
Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses…
ERIC Educational Resources Information Center
Akar, Bassel
2016-01-01
Education for active citizenship continues to be a critical response for social cohesion and reconstruction in conflict-affected areas. Oftentimes, approaches to learning and teaching in such contexts can do as much harm as good. This study qualitatively examines 435 students' reflections of their civics classroom learning experiences and their…
ERIC Educational Resources Information Center
Kim, Heesung; Ke, Fengfeng
2016-01-01
The pedagogical and design considerations for the use of a virtual reality (VR) learning environment are important for prospective and current teachers. However, empirical research investigating how preservice teachers interact with transformative content representation, facilitation, and learning activities in a VR educational simulation is still…
NASA Astrophysics Data System (ADS)
Cartes, David A.; Ray, Laura R.; Collier, Robert D.
2002-04-01
An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. [``Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection,'' Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields.
Cartes, David A; Ray, Laura R; Collier, Robert D
2002-04-01
An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. ["Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection," Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields. PMID:12002860
Activity Theory and Higher Education: Evaluating Learning Technologies
ERIC Educational Resources Information Center
Scanlon, E.; Issroff, K.
2005-01-01
This paper examines current practice in the evaluation of learning technology in the UK and proposes a new approach informed by Activity Theory. It is based on our experiences of using Activity Theory to understand students' and lecturers' experiences of technology-based teaching environments. We discuss the activity of evaluating learning…
Active-Learning Exercises for Consumer Behavior Courses.
ERIC Educational Resources Information Center
Lawson, Timothy J.
1995-01-01
Presents 13 active-learning activities designed for use in consumer behavior courses. The exercises involve students in brief activities, such as analysis of persuasion techniques in advertising, and follow-up discussion. Reports that students found the exercises enjoyable and worthwhile. (CFR)
Active Reading Behaviors in Tablet-Based Learning
ERIC Educational Resources Information Center
Palilonis, Jennifer; Bolchini, Davide
2015-01-01
Active reading is fundamental to learning. However, there is little understanding about whether traditional active reading frameworks sufficiently characterize how learners study multimedia tablet textbooks. This paper explores the nature of active reading in the tablet environment through a qualitative study that engaged 30 students in an active…
Ciliary motility activity measurement using a dense optical flow algorithm.
Parrilla, Eduardo; Armengot, Miguel; Mata, Manuel; Cortijo, Julio; Riera, Jaime; Hueso, José L; Moratal, David
2013-01-01
Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. In this study, an automatic method has been established to determine the ciliary motility activity from cell cultures by means of optical flow computation, and has been applied to 136 control cultures and to 144 RSV-infected cultures. The control group presented an average of cell surface with cilia motility per field of 41 ± 15 % (mean ± standard deviation), while the infected group presented a 11 ± 5 %, t-Student p<0.001. The cutoff value to classify a infected specimen was <17.89 % (sensitivity 0.94, specificity 0.93). This methodology has proved to be a robust technique to evaluate cilia motility in cell cultures. PMID:24110720
Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.
MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-kuei; Adcock, R Alison
2016-03-16
Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. PMID:26948894