Science.gov

Sample records for active magma chamber

  1. Crystals in magma chambers

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2011-12-01

    Differentiation processes in igneous systems are one way in which the diversity of igneous rocks is produced. Traditionally, magmatic diversity is considered as variations in the overall chemical composition, such as basalt and rhyolite, but I want to extend this definition to include textural diversity. Such textural variations can be manifested as differences in the amount of crystalline (and immiscible liquid) phases and in the origin and identity of such phases. One important differentiation process is crystal-liquid separation by floatation or decantation, which clearly necessitates crystals in the magma. Hence, it is important to determine if magmas in chambers (sensu lato) have crystals. The following discussion is framed in generalities - many exceptions occur. Diabase (dolerite) dykes are a common, widespread result of regional mafic magmatism. The rims of most diabase dykes have few or no phenocrysts and crystals in the cores are commonly thought to have crystallized in place. Hence, this major mafic magmatic source did not have crystals, although compositional diversity of these dykes is commonly explained by crystal-liquid separation. This can be resolved if crystallisation was on the walls on the magma chamber. Similarly, most flood basalts are low in crystals and separation of those that are present cannot always explain the observed compositional diversity. Crystal-rich flows do occur, for example the 'Giant Plagioclase Basalts' of the Deccan series, but the crystals are thought to form or accumulate in a crystal-rich zone beneath the roof of the chamber - the rest of the chamber probably has few crystals. Some magmas from Hawaii contain significant amounts of olivine crystals, but most of these are deformed and cannot have crystallised in the chamber. In this case the crystals are thought to grow as the magma passes through a decollement zone. They may have grown on the walls or been trapped by filters. Basaltic andesite ignimbrites generally have

  2. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  3. On the Interaction of a Vigorous Hydrothermal System with an Active Magma Chamber: The Puna Magma Chamber, Kilauea East Rift, Hawaii

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.; Marsh, B. D.; Teplow, W.; Fournelle, J.

    2009-12-01

    The extent of the interaction between hydrothermal systems and active magma chambers has long been of fundamental interest to the development of ore deposits, cooling of magma chambers, and dehydration of the subducting lithosphere. As volatiles build up in the residual magma in the trailing edge of magmatic solidification fronts, is it possible that volatiles are transferred from the active magma to the hydrothermal system and vice versa? Does the external fracture front associated with vigorous hydrothermal systems sometimes propagate into the solidification front, facilitating volatile exchange? Or is the magma always sealed at temperatures above some critical level related to rock strength and overpressure? The degree of hydrothermal interaction in igneous systems is generally gauged in post mortem studies of δ18O and δD, where it has been assumed that a fracture front develops about the magma collapsing inward with cooling. H.P. Taylor and D. Norton's (1979; J. Petrol.)seminal work inferred that rocks are sealed with approach to the solidus and there is little to no direct interaction with external volatiles in the active magma. In active lava lakes a fracture front develops in response to thermal contraction of the newly formed rock once the temperature drops to ~950°C (Peck and Kinoshita,1976;USGS PP935A); rainfall driven hydrothermal systems flash to steam near the 100 °C isotherm in the solidified lake and have little effect on the cooling history (Peck et al., 1977; AJS). Lava lakes are fully degassed magmas and until the recent discovery of the Puna Magma Chamber (Teplow et al., 2008; AGU) no active magma was known at sufficiently great pressure to contain original volatiles. During the course of routine drilling of an injection well at the Puna Geothermal Venture (PGV) well-field, Big Island, Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m, continued drilling to 2488 m encountered a melt

  4. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles…

  5. Thermomechanics of shallow magma chamber pressurization: Implications for the assessment of ground deformation data at active volcanoes

    NASA Astrophysics Data System (ADS)

    Gregg, P. M.; de Silva, S. L.; Grosfils, E. B.

    2013-12-01

    In this study, we utilize thermomechanical models to investigate how magma chambers overpressurize as the result of either magmatic recharge or volatile exsolution. By implementing an adaptive reservoir boundary condition we are able to track how overpressure dissipates as the magma chamber expands to accommodate internal volume changes. We find that the size of the reservoir greatly impacts the resultant magma chamber overpressure. In particular, overpressure estimates for small to moderate-sized reservoirs (1-10 km3) are up to 70% lower than previous analytical predictions. We apply our models to Santorini volcano in Greece where recent seismic activity and ground deformation observations suggested the potential for eruption. The incorporation of an adaptive boundary condition reproduces Mogi flux estimates and suggests that the magma reservoir present at Santorini may be quite large. Furthermore, model results suggest that if the magma chamber is >100 km3, overpressures generated due to the high magma flux may not exceed the strength of the host rock, thus requiring an additional triggering mechanism for eruption. Although the adaptive boundary condition approach does not calculate the internal evolution of the magma reservoir, it represents a fundamental step forward from elastic Mogi models and fixed boundary solutions on which future investigations of the evolution of the magma can be built.

  6. Magma chamber dynamics and Vesuvius eruption forecasting

    NASA Astrophysics Data System (ADS)

    Dobran, F.

    2003-04-01

    Magma is continuously or periodically refilling an active volcano and its eruption depends on the mechanical, fluid, thermal, and chemical aspects of the magma storage region and its surroundings. A cyclically loaded and unloaded system can fail from a weakness in the system or its surroundings, and the fluctuating stresses can produce system failures at stress levels that are considerably below the yield strength of the material. Magma in a fractured rock system within a volcano is unstable and propagates toward the surface with the rate depending on the state of the system defined by the inertia, gravity, friction, and permeability parameters of magma and its source region. Cyclic loading and unloading of magma from a reservoir caused by small- or medium-scale eruptions of Vesuvius can produce catastrophic plinian eruptions because of the structural failure of the system and the quiescent periods between these eruptions increase with time until the next eruption cycle which will be plinian or subplinian and will occur with a very high probability this century. Such a system behavior is predicted by a Global Volcanic Simulator of Vesuvius developed for simulating different eruption scenarios for the purpose of urban planning the territory, reducing the number of people residing too close to the cone of the volcano, and providing safety to those beyond about 5 km radius of the crater. The magma chamber model of the simulator employs a thermomechanical model that includes magma inflow and outflow from the chamber, heat and mass transfer between the chamber and its surroundings, and thermoelastoplastic deformation of the shell surrounding the magma source region. These magma chamber, magma ascent, and pyroclastic dispersion models and Vesuvius eruption forecasting are described in Dobran, F., VOLCANIC PROCESSES, Kluwer Academic/Plenum Publishers, 2001, 590 pp.

  7. Processes active in mafic magma chambers: The example of Kilauea Iki Lava Lake, Hawaii

    USGS Publications Warehouse

    Helz, R.T.

    2009-01-01

    Kilauea Iki lava lake formed in 1959 as a closed chamber of 40??million m3 of picritic magma. Repeated drilling and sampling of the lake allows recognition of processes of magmatic differentiation, and places time restrictions on the periods when they operated. This paper focuses on evidence for the occurrence of lateral convection in the olivine-depleted layer, and constraints on the timing of this process, as documented by chemical, petrographic and thermal data on drill core from the lake. Lateral convection appears to have occurred in two distinct layers within the most olivine-poor part of the lake, created a slightly olivine-enriched septum in the center of the olivine-depleted section. A critical marker for this process is the occurrence of loose clusters of augite microphenocrysts, which are confined to the upper half of the olivine-poor zone. This process, which took place between late 1962 and mid-1964, is inferred to be double-diffusive convection. Both this convection and a process of buoyant upwelling of minimum-density liquid from deep within the lake (Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594) result from the fact that melt density in Kilauea Iki compositions decreases as olivine and augite crystallize, above the incoming of plagioclase. The resulting density vs. depth profile creates (1) a region of gravitationally stable melt at the top of the chamber (the locus of double-diffusive convection) and (2) a region of gravitationally unstable melt at the base of the melt column (the source of upwelling minimum-density melt, Helz, R.T., Kirschenbaum H. and Marinenko, J.W., 1989. Diapiric melt transfer: a quick, efficient process of igneous differentiation: Geological Society of America Bulletin, v. 101, 578-594). By contrast the variation of melt density with temperature for the 1965 Makaopuhi lava lake does

  8. Convection and mixing in magma chambers

    NASA Astrophysics Data System (ADS)

    Turner, J. S.; Campbell, I. H.

    1986-08-01

    This paper reviews advances made during the last seven years in the application of fluid dynamics to problems of igneous petrology, with emphasis on the laboratory work with which the authors have been particularly involved. Attention is focused on processes in magma chambers which produce diversity in igneous rocks, such as fractional crystallization, assimilation and magma mixing. Chamber geometry, and variations in the density and viscosity of the magma within it, are shown to play a major role in determining the dynamical behaviour and the composition of the erupted or solidified products. Various convective processes are first reviewed, and in particular the phenomenon of double-diffusive convection. Two types of double-diffusive interfaces between layers of different composition and temperature are likely to occur in magma chambers. A diffusive interface forms when a layer of hot dense magma is overlain by cooler less dense magma. Heat is transported between the layers faster than composition, driving convection in both layers and maintaining a sharp interface between them. If a layer of hot slightly less dense magma overlies a layer of cooler, denser but compositionally lighter magma, a finger interface forms between them, and compositional differences are transported downwards faster than heat (when each is expressed in terms of the corresponding density changes). Processes leading to the establishment of density, compositional and thermal gradients or steps during the filling of a magma chamber are considered next. The stratification produced, and the extent of mixing between the inflowing and resident magmas, are shown to depend on the flow rate and on the relation between the densities and viscosities of the two components. Slow dense inputs of magma may mix very little with resident magma of comparable viscosity as they spread across the floor of the chamber. A similar pulse injected with high upward momentum forms a turbulent "fountain", which is a

  9. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  10. Convective Regimes in Crystallizing Basaltic Magma Chambers

    NASA Astrophysics Data System (ADS)

    Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.

    2015-12-01

    Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a

  11. Magma Chambers, Thermal Energy, and the Unsuccessful Search for a Magma Chamber Thermostat

    NASA Astrophysics Data System (ADS)

    Glazner, A. F.

    2015-12-01

    Although the traditional concept that plutons are the frozen corpses of huge, highly liquid magma chambers ("big red blobs") is losing favor, the related notion that magma bodies can spend long periods of time (~106years) in a mushy, highly crystalline state is widely accepted. However, analysis of the thermal balance of magmatic systems indicates that it is difficult to maintain a significant portion in a simmering, mushy state, whether or not the system is eutectic-like. Magma bodies cool primarily by loss of heat to the Earth's surface. The balance between cooling via energy loss to the surface and heating via magma accretion can be denoted as M = ρLa/q, where ρ is magma density, L is latent heat of crystallization, a is the vertical rate of magma accretion, and q is surface heat flux. If M>1, then magma accretion outpaces cooling and a magma chamber forms. For reasonable values of ρ, L, and q, the rate of accretion amust be > ~15 mm/yr to form a persistent volume above the solidus. This rate is extremely high, an order of magnitude faster than estimated pluton-filling rates, and would produce a body 10 km thick in 700 ka, an order of magnitude faster than geochronology indicates. Regardless of the rate of magma supply, the proportion of crystals in the system must vary dramatically with depth at any given time owing to transfer of heat. Mechanical stirring (e.g., by convection) could serve to homogenize crystal content in a magma body, but this is unachievable in crystal-rich, locked-up magma. Without convection the lower part of the magma body becomes much hotter than the top—a process familiar to anyone who has scorched a pot of oatmeal. Thermal models that succeed in producing persistent, large bodies of magma rely on scenarios that are unrealistic (e.g., omitting heat loss to the planet's surface), self-fulfilling prophecies (e.g., setting unnaturally high temperatures as fixed boundary conditions), or physically unreasonable (e.g., magma is intruded

  12. Pressure of Partial Crystallization of Katla Magmas: Implications for Magma Chamber Depth and for the Magma Plumbing System

    NASA Astrophysics Data System (ADS)

    Tenison, A.; Kelley, D. F.; Barton, M.

    2012-12-01

    Iceland is home to some of the most active volcanoes in the world, and recent eruptions emphasize the need for additional studies to better understand the volcanism and tectonics in this region. Historical patterns of eruptive activity and an increase in seismic activity suggest that Katla is showing signs of an impending eruption. The last major eruption in 1918 caused massive flooding and deposited enough sediment to extend part of Iceland's southern shoreline by 5 km. It also generated sufficient ash over many weeks to cause a brief drop in global temperature. A future eruption similar to the 1918 event could have serious global consequences, including severe disruptions in air travel, short-term global cooling, and shortened growing seasons. Relatively few studies have focused on establishing the depth of the main magma chamber beneath Katla, although knowledge of magma chamber depth is essential for constraining models for magma evolution and for understanding the eruption dynamics of this volcano. The results of seismic and geodetic studies suggest the presence of a shallow magma body at a depth of 2-4 km, but do not provide firm evidence for the presence of deeper chambers in contrast to results obtained for other volcanoes in Iceland. Studies of volcanic ash layers reveal a history of alternating cycles of basaltic and silicic eruptions. We suggest that the shallow magma chamber is primarily the source of silica-rich magma, and postulate that there must be one or more additional chambers in the middle or deep crust that serve as the storage site of the basaltic magma erupted as lava and ash. We have tested this proposal by calculating the pressures of partial crystallization for basalts erupted at Katla using petrological methods. These pressures can be converted to depths and the results provide insight into the likely configuration of the magma plumbing system. Published analyses of volcanic glasses (lava, ash and hyaloclastite) were used as input data

  13. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field.

    PubMed

    Singh, Satish C; Crawford, Wayne C; Carton, Hélène; Seher, Tim; Combier, Violaine; Cannat, Mathilde; Pablo Canales, Juan; Düsünür, Doga; Escartin, Javier; Miranda, J Miguel

    2006-08-31

    Crust at slow-spreading ridges is formed by a combination of magmatic and tectonic processes, with magmatic accretion possibly involving short-lived crustal magma chambers. The reflections of seismic waves from crustal magma chambers have been observed beneath intermediate and fast-spreading centres, but it has been difficult to image such magma chambers beneath slow-spreading centres, owing to rough seafloor topography and associated seafloor scattering. In the absence of any images of magma chambers or of subsurface near-axis faults, it has been difficult to characterize the interplay of magmatic and tectonic processes in crustal accretion and hydrothermal circulation at slow-spreading ridges. Here we report the presence of a crustal magma chamber beneath the slow-spreading Lucky Strike segment of the Mid-Atlantic Ridge. The reflection from the top of the magma chamber, centred beneath the Lucky Strike volcano and hydrothermal field, is approximately 3 km beneath the sea floor, 3-4 km wide and extends up to 7 km along-axis. We suggest that this magma chamber provides the heat for the active hydrothermal vent field above it. We also observe axial valley bounding faults that seem to penetrate down to the magma chamber depth as well as a set of inward-dipping faults cutting through the volcanic edifice, suggesting continuous interactions between tectonic and magmatic processes.

  14. Flow in an experimental micro-magma chamber

    NASA Astrophysics Data System (ADS)

    Carroll, Michael R.; Wyllie, Peter J.

    The chemical evolution and eruptive behavior of magmas may be controlled largely by convective processes within magma chambers. According to a recent National Research Council Report [Committee on Physics and Chemistry of Earth Materials, 1987], “the style of convection itself, whether it is turbulent, laminar, large-scale, of multiple scales, tiered, or localized and intermittent, is very much at question.” In the U.S. National Report to the International Union of Geodesy and Geophysics, Marsh [1987] reviewed recent theoretical and experimental developments related to the style of convection in magma chambers, noting both significant quantitative advances and also the many remaining uncertainties. With regard to double-diffusive convection, he stated “as ever, the critical question concerns whether or not actual magma chambers convect in this style.” Similarly, Spera et al. [1986] , in discussion of double-diffusive convection, cautioned against “applying results from saltwater tanks to magma chambers.”

  15. Location and Pressures Change Prediction of Bromo Volcano Magma Chamber Using Inversion Scheme

    NASA Astrophysics Data System (ADS)

    Kumalasari, Ratih; Srigutomo, Wahyu

    2016-08-01

    Bromo volcano is one of active volcanoes in Indonesia. It has erupted at least 50 times since 1775 and has been monitored by Global Positioning System (GPS) since 1989. We applied the Levenberg-Marquardt inversion scheme to estimate the physical parameters contributing to the surface deformation. Physical parameters obtained by the inversion scheme such as magma chamber location and volume change are useful in monitoring and predicting the activity of Bromo volcano. From our calculation it is revealed that the depth of the magma chamber d = 6307.6 m, radius of magma chamber α = 1098.6 m and pressure change ΔP ≈ 1.0 MPa.

  16. Geologic evidence for a magma chamber beneath Newberry Volcano, Oregon

    SciTech Connect

    Macleod, N.S.; Sherrod, D.R.

    1988-09-10

    At Newberry Volcano, central Oregon, more than 0.5 m.y. of magmatic activity, including caldera collapse and renewed caldera-filling volcanism, has created a structural and thermal chimney that channels magma ascent. Holocene rhyolitic eruptions (1) have been confined mainly within the caldera in an area 5 km in diameter, (2) have been very similar in chemical composition, phenocryst mineralogy, and eruptive style, and (3) have occurred as recently as 1300 years ago, with repose periods of 2000--3000 years between eruptions. Holocene basaltic andesite eruptions are widespread on the flanks but are excluded from the area of rhyolitic volcanism. Basaltic andesite in fissures at the edge of the rhyolite area has silicic inclusions and shows mixed basalt-rhyolite magma relations. These geologic relations and the high geothermal gradient that characterizes the lower part of a drill hole in the caldera (U.S. Geological Survey Newberry 2) indicate that a rhyolitic magma chamber has existed beneath the caldera throughout the Holocene. Its longevity probably is a result of intermittent underplating by basaltic magma.

  17. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    PubMed

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  18. Forecasting magma-chamber rupture at Santorini volcano, Greece

    PubMed Central

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-01-01

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011–2012 unrest period, that the measured 0.02% increase in volume of Santorini’s shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano. PMID:26507183

  19. Magma differentiation rates from ( 226Ra / 230Th) and the size and power output of magma chambers

    NASA Astrophysics Data System (ADS)

    Blake, Stephen; Rogers, Nick

    2005-08-01

    We present a mathematical model for the evolution of the ( 226Ra / 230Th) activity ratio during simultaneous fractional crystallization and ageing of magma. The model is applied to published data for four volcanic suites that are independently known to have evolved by fractional crystallization. These are tholeiitic basalt from Ardoukoba, Djibouti, MORB from the East Pacific Rise, alkali basalt to mugearite from Vestmannaeyjar, Iceland, and basaltic andesites from Miyakejima, Izu-Bonin arc. In all cases ( 226Ra / 230Th) correlates with indices of fractional crystallization, such as Th, and the data fall close to model curves of constant fractional crystallization rate. The best fit rates vary from 2 to 6 × 10 - 4 yr - 1 . Consequently, the time required to generate moderately evolved magmas ( F ≤ 0.7) is of the order of 500 to 1500 yrs and closed magma chambers will have lifetimes of 1700 to 5000 yrs. These rates and timescales are argued to depend principally on the specific power output (i.e., power output per unit volume) of the magma chambers that are the sites of fractional crystallization. Equating the heat flux at the EPR to the heat flux from the sub-axial magma chamber that evolves at a rate of ca. 3 × 10 - 4 yr - 1 implies that the magma body is a sill of ca. 100 m thickness, a value which coincides with independent estimates from seismology. The similarity of the four inferred differentiation rates suggests that the specific power output of shallow magma chambers in a range of tectonic settings covers a similarly narrow range of ca. 10 to 50 MW km - 3 . Their differentiation rates are some two orders of magnitude slower than that of the basaltic Makaopuhi lava lake, Hawaii, that cooled to the atmosphere. This is consistent with the two orders of magnitude difference in heat flux between Makaopuhi and the East Pacific Rise. ( 226Ra / 230Th) data for magma suites related by fractional crystallization allow the magma differentiation rate to be estimated

  20. Evidence for magma mixing within the Laacher See magma chamber (East Eifel, Germany)

    USGS Publications Warehouse

    Worner, G.; Wright, T.L.

    1984-01-01

    The final pyroclastic products of the late Quaternary phonolitic Laacher See volcano (East Eifel, W.-Germany) range from feldspar-rich gray phonolite to dark olivine-bearing rocks with variable amounts of feldspar and Al-augite megacrysts. Petrographically and chemically homogeneous clasts occur along with composite lapilli spanning the compositional range from phonolite (MgO 0.9%) to mafic hybrid rock (MgO 7.0%) for all major and trace elements. Both a basanitic and a phonolitic phenocryst paragenesis occur within individual clasts. The phonolite-derived phenocrysts are characterized by glass inclusions of evolved composition, rare inverse zoning and strong resorption indicating disequilibrium with the mafic hybrid matrix. Basanitic (magnesian) clinopyroxene and olivine, in contrast, show skeletal (normally zoned) overgrowths indicative of post-mixing crystallization. In accord with petrographical and other chemical evidence, mass balance calculations suggest mixing of an evolved Laacher See phonolite containing variable amounts of mineral cumulates and a megacryst-bearing basanite magma. Magma mixing occurred just prior to eruption (hours) of the lowermost magma layer of the Laacher See magma chamber but did not trigger the volcanic activity. ?? 1984.

  1. Crystallization and saturation front propagation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, Ethan T.

    2013-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface-driven processes of conduction and crystallization front migration. In the end-member case of vigorous convection and crystal settling, volatile saturation advances downward from the roof and upward from the floor throughout the chamber. In the end-member case of stagnant magma bodies, volatile saturation occurs along an inward propagating front from all sides of the chamber. Ambient thermal gradient primarily controls the propagation rate; warm (⩾40 °C/km) geothermal gradients lead to thick (1200+ m) crystal mush zones and slow crystallization front propagation. Cold (<40 °C/km) geothermal gradients lead to rapid crystallization front propagation and thin (<1000 m) mush zones. Magma chamber geometry also exerts a first-order control on propagation rates; bodies with high surface to magma volume ratio and large Earth-surface-parallel faces exhibit more rapid propagation and thinner mush zones. Crystallization front propagation occurs at speeds of greater than 10 cm/yr (rhyolitic magma; 1 km thick sill geometry in a 20 °C/km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate, grow, and ascend through the chamber. Numerical simulations indicate saturation front propagation is determined primarily by pressure and magma crystallization rate; above certain initial water contents (4.4 wt.% in a dacite) the mobile magma is volatile-rich enough above 10 km depth to always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt.% in a dacite at 5 km depth), creating an upper saturated interface for most common (4-6 wt.%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. If the fluid

  2. Modeling the Temporal Evolution of the Magma Chamber at Mount Hood (Oregon, USA)

    NASA Astrophysics Data System (ADS)

    Degruyter, W.; Huber, C.; Cooper, K. M.; Kent, A. J.

    2014-12-01

    The evolution of shallow magma reservoirs is complex as new mass is added intermittently and phase proportions (crystals, melt and bubbles) vary because of cooling or mass removal (eruptions). One requirement for eruptions to occur is that the crystal content during storage is low enough (< 0.4-0.6) such that the magma is mobile. Thermal modeling and geochemical data suggest these chambers are mobile only a very small fraction of their lifetime. Data from uranium-series disequilibria, crystal size distributions, and zoning of trace elements in crystals collected at Mount Hood (Oregon, USA) provide constraints on the thermal evolution of this system over the past 21 kyrs years and suggest <10% of this time the magma was mobile. This system also produced at least 3 significant eruptions over the last 10 kyrs based on the stratigraphic record (~220 and ~1500, and ~7700 years ago). Here we investigate the physical conditions of an open-system magma chamber that are in agreement with the thermal history inferred from the crystal record and with the eruption sequence. What are the magma recharge fluxes that are required to keep a system such as Mount Hood active but predominantly crystal-rich over the last 21 kyrs and what combination of processes produces the observed eruption frequency? To answer these questions we use an idealized magma chamber model to solve for the evolution of the thermodynamical state of the chamber (pressure, temperature, gas and crystal content) as new magma is injected into the chamber. Heat is lost to the surrounding colder crust, which responds visco-elastically to the pressure accumulated during recharge and volatile exsolution. If the crystal volume fraction is lower than 0.5 and chamber overpressure reaches 20 MPa we assume an eruption occurs. We analyze what type of injection (constant, periodic, magma lensing), injection rate, and magma chamber volume yields trends consistent with the timescales found at Mount Hood.

  3. Seismic Structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations of Crustal Magma Chamber Properties With Seismicity, Faulting, and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    van Ark, E. M.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J. B.; Harding, A.; Kent, G.; Nedimovic, M. R.; Wilcock, W. S.

    2003-12-01

    Multichannel seismic reflection data collected in July 2002 at the RIDGE2000 Integrated Studies Site at the Endeavour segment, Juan de Fuca Ridge show a high-amplitude, mid-crustal reflector underlying all of the known hydrothermal vent fields at this segment. This reflector, which has been identified with a crustal magma body [Detrick et al., 2002], is found at a two-way travel time of 0.85-1.5 s (1.9-4.0 km) below the seafloor and extends approximately 25 km along axis although it is only 1-2 km wide on the cross-axis lines. The reflector is shallowest (2.5 km depth on the along-axis line) beneath the central, elevated part of the Endeavour segment and deepens toward the segment ends, with a maximum depth of 4 km. The cross axis lines show the mid-crustal reflector dipping from 9 to 50? to the east with the shallowest depths under the ridge axis and greater depths under the eastern flank of the ridge. The amplitude-offset behavior of this mid-crustal axial reflector is consistent with a negative impedance contrast, indicating the presence of melt or a crystallizing mush. We have constructed partial offset stacks at 2-3 km offset to examine the variation of melt-mush content of the axial magma chamber along axis. We see a decrease in P-wave amplitudes with increasing offset for the mid-crustal reflector beneath the Mothra and Main Endeavour vent fields and between the Salty Dawg and Sasquatch vent fields, indicating the presence of a melt-rich body. Beneath the High Rise, Salty Dawg, and Sasquatch vent fields P-wave amplitudes vary little with offset suggesting the presence of a more mush-rich magma chamber. Hypocenters of well-located microseismicity in this region [Wilcock et al., 2002] have been projected onto the along-axis and cross-axis seismic lines, revealing that most axial earthquakes are concentrated in a depth range of 1.5 - 2.7 km, just above the axial magma chamber. In general, seismicity is distributed diffusely within this zone indicating thermal

  4. Efficiency of differentiation in the Skaergaard magma chamber

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L.; Humphreys, M.; Thy, P.

    2011-12-01

    Although it is largely agreed that crystallization occurs inwardly in crystal mushes along the margins of magma chambers, the efficiency and mechanisms of differentiation are not well constrained. The fractionation paradigm hinges on mass exchange between the crystal mush and the main magma reservoir resulting in coarse-grained, refractory (cumulate) rocks of primary crystals, and complementary enrichment of incompatible elements in the main reservoir of magma. Diffusion, convection, liquid immiscibility and compaction have been proposed as mechanisms driving this mass exchange. Here we examine the efficiency of differentiation in basaltic crystal mushes in different regions of the Skaergaard magma chamber. The contents of incompatible elements such as phosphorus and calculated residual porosities are high in the lowermost cumulate rocks of the floor (47-30%) and decrease upsection, persisting at low values in the uppermost two-thirds of the floor rock stratigraphy (~5% residual porosity). The residual porosity is intermediate at the walls (~15%) and highest and more variable at the roof (10-100%). This is best explained by compaction and expulsion of interstitial liquid from the accumulating crystal mush at the floor and the inefficiency of these processes elsewhere in the intrusion. In addition, the roof data imply upwards infiltration of interstitial liquid. Remarkably uniform residual porosity of ~15% for cumulates formed along the walls suggest that their preservation is related to the rheological properties of the mush, i.e. at ≤ 15% porosity the mush is rigid enough to adhere to the wall, while at higher porosity it is easily swept away. We conclude that the efficiency of compaction and differentiation can be extremely variable along the margins of magma chambers. This should be taken into account in models of magma chamber evolution.

  5. Solidification fronts in large magma chambers: insights from the anomalies

    NASA Astrophysics Data System (ADS)

    VanTongeren, J. A.

    2012-12-01

    The emplacement of hot viscous magma into the cold rigid crust causes a thermal disturbance within both the country rock and the magma. With time, heat loss from the molten interior to the walls causes solidification at the floor, roof and margins of the magma chamber. As is observed in both experiment and theory, in the absence of hydrothermal convection, the majority of heat is lost via conduction through the roof of the intrusion. In basaltic sills and layered mafic intrusions (LMIs), this solidification front is manifest in the deposition of mineral assemblages and compositions that become progressively more evolved from the floor of the intrusion upwards (the 'Layered Series'; LS) and from the roof downwards (the UBS) such that the most chemically evolved rocks are found in the interior of the magma body at a 'Sandwich Horizon'. The formation of a UBS, as typified by the Skaergaard Intrusion, is a natural outcome of the progression of the solidification front from the cold roof to the hot center of the magma chamber. There are, however, a few unique LMIs for which little or no UBS exists. Convection of the molten magma, reinjection and mixing of new magma, compaction of cumulates, and porous flow of interstitial liquid, among other processes, can affect the final location and composition of the most differentiated liquids; but ultimately, all are linked to the nature of heat loss from the magma chamber. In this study, I examine the thermal evolution of several classic LMIs as it is recorded in the extent of the preserved upper solidification front (or Upper Border Series; 'UBS'). For those intrusions that have experienced crystallization at the roof, such as the Skaergaard Intrusion, the development of a UBS reduces the temperature gradient at the roof and effectively slows the rate of heat loss from the main magma body. However, for those intrusions that do not have an UBS, such as the Bushveld Complex, the cooling rate is controlled only by the maximum rate

  6. Finite difference seismic modeling of axial magma chambers

    SciTech Connect

    Swift, S.A.; Dougherty, M.E.; Stephen, R.A. )

    1990-11-01

    The authors tested the feasibility of using finite difference methods to model seismic propagation at {approximately}10 Hx through a two-dimensional representation of an axial magma chamber with a thin, liquid lid. This technique produces time series of displacement or pressure at seafloor receivers to mimic a seismic refraction experiment and snapshots of P and S energy propagation. The results indicate that the implementation is stable for models with sharp velocity contrasts and complex geometries. The authors observe a high-energy, downward-traveling shear phase, observable only with borehole receivers, that would be useful in studying the nature and shape of magma chambers. The ability of finite difference methods to model high-order wave phenomena makes this method ideal for testing velocity models of spreading axes and for planning near-axis drilling of the East Pacific Rise in order to optimize the benefits from shear wave imaging of sub-axis structure.

  7. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    NASA Astrophysics Data System (ADS)

    Stoppa, Francesco; Principe, Claudia; Schiazza, Mariangela; Liu, Yu; Giosa, Paola; Crocetti, Sergio

    2017-01-01

    Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  8. The influence of magma viscosity on convection within a magma chamber

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Driesner, T.; Ulmer, P.

    2012-12-01

    Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the

  9. Orientation of the eruption fissures controlled by a shallow magma chamber in Miyakejima

    NASA Astrophysics Data System (ADS)

    Geshi, Nobuo; Oikawa, Teruki

    2016-11-01

    Orientation of the eruption fissures and composition of the lavas of the Miyakejima volcano indicate tectonic influence of a shallow magma chamber on the distribution of eruption fissures. We examined the distributions and magmatic compositions of 23 fissures that formed within the last 2800 years, based on a field survey and a new dataset of 14C ages. The dominant orientation of the eruption fissures in the central portion of the volcano was found to be NE-SW, which is perpendicular to the direction of regional maximum horizontal compressive stress (σHmax). Magmas that show evidences of magma mixing between basaltic and andesitic magmas erupted mainly from the eruption fissures with a higher offset angle from the regional σHmax direction. The presence of a shallow dike-shaped magma chamber controls the distribution of the eruption fissures. The injection of basaltic magma into the shallow andesitic magma chamber caused the temporal rise of internal magmatic pressure in the shallow magma chamber. Dikes extending from the andesitic magma chamber intrude along the local compressive stress field which is generated by the internal excess pressure of the andesitic magma chamber. As the result, the eruption fissures trend parallel to the elongation direction of the shallow magma chamber. Injection of basaltic magma into the shallow andesitic magma chamber caused the magma mixing. Some basaltic dikes from the deep-seated magma chamber reach the ground surface without intersection with the andesitic magma chamber. The patterns of the eruption fissures can be modified in the future as was observed in the case of the destruction of the shallow magma chamber during the 2000 AD eruption.

  10. The Magma Chamber Simulator: Modeling the Impact of Wall Rock Composition on Mafic Magmas during Assimilation-Fractional Crystallization

    NASA Astrophysics Data System (ADS)

    Creamer, J. B.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.

    2012-12-01

    Although stoichiometric titration is often used to model the process of concurrent Assimilation and Fractional Crystallization (AFC) within a compositionally evolving magma body, a more complete treatment of the problem involves simultaneous and self-consistent determination of stable phase relationships and separately evolving temperatures of both Magma (M) and Wall Rock (WR) that interact as a composite M-WR system. Here we present results of M-WR systems undergoing AFC forward modeled with the Magma Chamber Simulator (MCS), which uses the phase modeling capabilities of MELTS (Ghiorso & Sack 1995) as the thermodynamic basis. Simulations begin with one of a variety of mafic magmas (e.g. HAB, MORB, AOB) intruding a set mass of Wall Rock (e.g. lherzolite, gabbro, diorite, granite, metapelite), and heat is exchanged as the M-WR system proceeds towards thermal equilibrium. Depending on initial conditions, the early part of the evolution can involve closed system FC while the WR heats up. The WR behaves as a closed system until it is heated beyond the solidus to critical limit for melt fraction extraction (fc), ranging between 0.08 and 0.12 depending on WR characteristics including composition and, rheology and stress field. Once fc is exceeded, a portion of the anatectic liquid is assimilated into the Magma. The MCS simultaneously calculates mass and composition of the mineral assemblage (Magma cumulates and WR residue) and melt (anatectic and Magma) at each T along the equilibration trajectory. Sensible and latent heat lost or gained plus mass gained by the Magma are accounted for by the MCS via governing Energy Constrained- Recharge Assimilation Fractional Crystallization (EC-RAFC) equations. In a comparison of two representative MCS results, consider a granitic WR intruded by HAB melt (51 wt. % SiO2) at liquidus T in shallow crust (0.1 GPa) with a WR/M ratio of 1.25, fc of 0.1 and a QFM oxygen buffer. In the first example, the WR begins at a temperature of 100o

  11. Buoyancy-driven convection and mixing in magma chambers - the case of Phlegraean Fields caldera

    NASA Astrophysics Data System (ADS)

    Montagna, Chiara P.; Longo, Antonella; Bagagli, Matteo; Papale, Paolo

    2016-04-01

    Ascent of primitive magmas from depth into shallow, partially degassed reservoirs is commonly assumed to be a viable eruption trigger. At Phlegraean Fields (Southern Italy), processes of convection and mixing have been identified as taking an active part both in pre- and syn-eruptive stages in many eruptions of different size. We performed numerical simulations of magma chamber replenishment referring to an archetypal case whereby a shallow, small magma chamber containing degassed phonolite is invaded by volatile-rich shoshonitic magma coming from a deeper, larger reservoir. The system evolution is solely driven by buoyancy, as the magma entering the shallower chamber is less dense than the degassed, resident phonolite. The evolution in space and time of physical quantities such as pressure, gas content and density is highly heterogeneous; nonetheless, an overall decreasing exponential trend in time can be observed and characterizes the whole process. The same exponentially decreasing trend can be observed in the amplitude of the ground deformation signals (seismicity over the whole frequency spectrum) calculated from the results of the magmatic dynamics. Exponential decay in the efficiency of the mixing process has been also observed experimentally, albeit on much smaller length and time scales (Morgavi et al., Contrib. Min. Petr. 2013). Depending on the initial and boundary conditions explored, such as chamber geometry or density contrast, the time constant thus the duration of the process can vary. Independently, the evolution of pressure in the magmatic system also depends on the initial and boundary conditions, leading either to eruption-favourable conditions or not. Relating the time scales for convective processes to be effective with their outcomes in terms of stresses at the chamber boundaries can substantially improve our ability to forecast eruptions at volcanoes worldwide.

  12. Mechanisms of differentiation in the Skaergaard magma chamber

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Lesher, C. E.; Holness, M. B.; Jakobsen, J. K.; Salmonsen, L. P.; Humphreys, M. C. S.; Thy, P.

    2012-04-01

    The Skaergaard intrusion is a superb natural laboratory for studying mechanisms of magma chamber differentiation. The magnificent exposures and new systematic sample sets of rocks that solidified inwards from the roof, walls and floor of the chamber provide means to test the relative roles of crystal settling, diffusion, convection, liquid immiscibility and compaction in different regions of the chamber and in opposite positions relative to gravity. Examination of the melt inclusions and interstitial pockets has demonstrated that a large portion of intrusion crystallized from an emulsified magma chamber composed of immiscible silica- and iron-rich melts. The similarity of ratios of elements with opposite partitioning between the immiscible melts (e.g. P and Rb) in wall, floor and roof rocks, however, indicate that large-scale separation did not occur. Yet, on a smaller scale of metres to hundred of metres and close to the interface between the roof and floor rocks (the Sandwich Horizon), irregular layers and pods of granophyre hosted by extremely iron-rich cumulates point to some separation of the two liquid phases. Similar proportions of the primocryst (cumulus) minerals in roof, wall and floor rocks indicate that crystal settling was not an important mechanism. Likewise, the lack of fractionation of elements with different behavior indicate that diffusion and fluid-driven metasomatism played relatively minor roles. Compositional convection and/or compaction within the solidifying crystal mush boundary layer are likely the most important mechanisms. A correlation of low trapped liquid fractions (calculated from strongly incompatible elements) in floor rocks with high fractionation density (the density difference between the crystal framework and the liquid) indicate that compaction is the dominating process in expelling evolved liquid from the crystal mush layer. This is supported by high and variable trapped liquid contents in the roof rocks, where gravity

  13. Snapshots from deep magma chambers: decoding field observations

    NASA Astrophysics Data System (ADS)

    De Campos, Cristina P.

    2014-05-01

    During the post-orogenic stage of a Neoproterozoic orogen (Araçuaí-West Congo), inversely zoned calc-alkaline to alkaline plutonic structures intruded previous geologic units. Structural measurements, mapping of flow patterns and additional geochemical and isotopic data point towards different compositional domains which have been generated during a time span between 20 to 30 Ma. The result from decades of mapping revealed the architecture of ca. 10 large plutons in more détail. This work will focus on the dynamics of magmatic interaction for six different plutons ranging from c.20 to 200 km2 in outcropping area. Conclusions are based on already published and new unpublished data aiming the state of the art. In the silica-richer structures concentric fragmented and folded layers of granite in a K-basaltic matrix contrast with predominant more homogeneous K-basaltic to gabbroic regions. These may be separated by stretched filament regions (magmatic shear zones) where mixing has been enhanced resulting in hybrid compositions. Locally sharp and pillow-like contacts between granitic and K-basaltic rocks depict a frozen-in situation of different intrusive episodes. In the silica-poorer plutonic bodies gradational contacts are more frequent and may be the result of convection enhanced diffusion. For all plutons, however, mostly sub-vertical internal contacts between most- and least-differentiated rocks suggest generation from predominat large magma bodies of variable composition which crystallized while crossing the middle to lower crust (< 25 km depth). They have been catch in the act on their way up. Accordingly mushroom- to funnel-like magma-chambers and/or conduits could register snapshots of the interaction dynamics between granitic and noritic/dioritic or syeno-monzonitic and gabbroic magmas. Different compositional domains within different plutons suggest distinct kinematics. Nevertheless all studied plutons provide outstanding evidence for mixing, not only

  14. The Sub-Crustal Magma Chamber Existence and Magma Ascent Rate for Klyuchevskoy Volcano (Kamchatka): Constrains from Ni Zonation in Olivine Phenocrysts

    NASA Astrophysics Data System (ADS)

    Ozerov, A.; Gavrilenko, M.

    2014-12-01

    Klyuchevskoy volcano is the highest active volcano in Europe and Asia (~4800 m). Morphologically it is a classic stratovolcano, but its edifice consists entirely of mafic rocks (up to 55% of SiO2). The absence of andesites and dacites suggests that Klyuchevskoy does not have a crustal magma chamber. This is supported by seismological studies, the results of which have shown that stable crustal structures (magma bodies) are not found. However, [2] petrological barometry, indicates the existence of a magma chamber near the base of the crust beneath Klyuchevskoy at pressures of 5 - 9 kbar, (~ 18-33 km). In later studies, [1] and [4] proposed a model of decompression crystallization during continuous magma ascent in the conduit (from 50-60 km depth to the surface), which explains the genesis of the whole variety of Klyuchevskoy mafic rocks without the magma chamber requirement. The most recent detailed seismological studies combined with petrological barometry [3] suggest the existence of a sub-crustal volume (magma chamber) beneath Klyuchevskoy volcano (25-35 km depths) where processes of magma accumulation most likely occur. In this study we attempt to confirm the presence of a sub-crustal magma chamber using Ni zonation in primitive olivines, which may preserve information about mixing between distinct primitive melts in the magma chamber. Moreover, olivine Ni diffusion rates could help to estimate the rate of magma ascent (from the 35 km depths to the surface) beneath Klyuchevskoy using the approach of [5]. Ni concentration in olivines were measured by the electron microprobe high-precision technique (20kV, 300 nA) developed in [6]. [1] Ariskin et al. (1995) Petrology, 3(5): p.449-472. [2] Kersting & Arculus (1994) J. of Petrology, 35(1): p.1-41. [3] Levin et al. (2014) Geology, (in print). [4] Ozerov et al. (1997) Petrology, 1997. 5(6): p. 550-569. [5] Ruprecht & Plank, (2013) Nature, 500(7460): p.68-72. [6] Sobolev et al. (2007) Science, 316(5823): p.412-417.

  15. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions

    SciTech Connect

    Jellinek, A. Mark; DePaolo, Donald J.

    2002-01-02

    The relatively low rates of magma production in island arcs and continental extensional settings require that the volume of silicic magma involved in large catastrophic caldera-forming (CCF) eruptions must accumulate over periods of 10(5) to 10(6) years. We address the question of why buoyant and otherwise eruptible high silica magma should accumulate for long times in shallow chambers rather than erupt more continuously as magma is supplied from greater depths. Our hypothesis is that the viscoelastic behavior of magma chamber wall rocks may prevent an accumulation of overpressure sufficient to generate rhyolite dikes that can propagate to the surface and cause an eruption. The critical overpressure required for eruption is based on the model of Rubin (1995a). An approximate analytical model is used to evaluate the controls on magma overpressure for a continuously or episodically replenished spherical magma chamber contained in wall rocks with a Maxwell viscoelastic rheology. The governing parameters are the long-term magma supply, the magma chamber volume, and the effective viscosity of the wall rocks. The long-term magma supply, a parameter that is not typically incorporated into dike formation models, can be constrained from observations and melt generation models. For effective wall-rock viscosities in the range 10(18) to 10(20) Pa s(-1), dynamical regimes are identified that lead to the suppression of dikes capable of propagating to the surface. Frequent small eruptions that relieve magma chamber overpressure are favored when the chamber volume is small relative to the magma supply and when the wall rocks are cool. Magma storage, leading to conditions suitable for a CCF eruption, is favored for larger magma chambers (>10(2) km(3)) with warm wall rocks that have a low effective viscosity. Magma storage is further enhanced by regional tectonic extension, high magma crystal contents, and if the effective wall-rock viscosity is lowered by microfracturing, fluid

  16. Time Evolution of Thermo-Mechanically and Chemically Coupled Magma Chambers

    NASA Astrophysics Data System (ADS)

    Ozimek, C.; Karlstrom, L.; Erickson, B. A.

    2015-12-01

    Complexity in the volcanic eruption cycle reflects time variation both of magma inputs to the crustal plumbing system and of crustal melt storage zones (magma chambers). These data include timing and volumes of eruptions, as well as erupted compositions. Thus models must take into account the coupled nature of physical attributes. Here we combine a thermo-mechanical model for magma chamber growth and pressurization with a chemical model for evolving chamber compositions, in the limit of rapid mixing, to study controls on eruption cycles and compositions through time. We solve for the mechanical evolution of a 1D magma chamber containing melt, crystals and bubbles, in a thermally evolving and viscoelastic crust. This pressure and temperature evolution constrains the input values of a chemical box model (Lee et al., 2013) that accounts for recharge, eruption, assimilation and fractional crystallization (REAFC) within the chamber. We plan to study the influence of melt supply, input composition, and chamber depth eruptive fluxes and compositions. Ultimately we will explore multiple chambers coupled by elastic-walled dikes. We expect that this framework will facilitate self-consistent inversion of long-term eruptive histories in terms of magma transport physics. Lee, C.-T. A., Lee, T.-C., Wu, C.-T., 2013. Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiationof arc magmas. Geochemica Cosmochimica Acta, http://dx.doi.org/10.1016/j.gca.2013.08.009.

  17. Mechanical constraints on the evolution of magma chambers of intermediate composition and resultant ground displacements

    NASA Astrophysics Data System (ADS)

    Gottsmann, J.

    2012-12-01

    Petrological studies indicate that most intermediate magmas erupted in the recent past were stored within a pressure window of between about 50 and 220 MPa prior to eruption. Most of these eruptions were, however, of small to modest magnitude and few of them have well-documented pre-eruptive geodetic signatures. The pre-eruptive ground deformation of a future large magnitude intermediate eruption similar to that of Tambora in 1815 is thus poorly understood. Here, I explore a potential pre-eruptive geodetic signature of a M7 intermediate magma chamber using constraints from the (data-poor) Tambora case in contrast to the (data-rich) case of the current small-magnitude eruptive period of Soufriere Hills volcano (SHV) combining petrological constraints with analytical and numerical mechanical modeling. I establish a chamber failure criterion based on rock tensile strength and forward model pre-failure ground displacements starting with the simple assumption of elastic mechanical behaviour of surrounding rocks. Accounting for gravitational loading the results demonstrate that a static failure criterion is inadequate to explain cyclic eruptive behaviour at SHV-type systems, given observed pre-eruptive deformation amplitudes and petrologically deduced storage conditions. The same applies for a Tambora-type system, where forward models of permissible (but unrealistically large) chamber pressures predict several meters of uplift with a wavelength of tens of kilometers, when assuming elastic crustal mechanics. Results indicate that pressurisation of a small and shallow-seated chamber (SHV-type) is more likely to rupture and repeatedly feed intrusions or small magnitude eruptions. However, even in this case anelastic effects appear to be important to explain the cyclic behaviour during the current activity at SHV. Although there is a first order influence of edifice load, topography, and mechanical heterogeneity of encasing rocks on the stress distribution and the resultant

  18. Upward migration of Vesuvius magma chamber over the past 20,000 years.

    PubMed

    Scaillet, B; Pichavant, M; Cioni, R

    2008-09-11

    Forecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16 km (refs 3-7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8-9 km depth, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7-8 km to 3-4 km depth between the ad 79 (Pompeii) and ad 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago and the 1944 Vesuvius eruption are included, the total upward migration of the reservoir amounts to 9-11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation or volcano spreading. Reservoir migration, and the possible influence on feeding rates, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius.

  19. Crystallization Processes and Magma Chamber Dynamics at the Mount Erebus Volcano Lava Lake: The Mineralogic Message

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Kyle, P. R.; Dunbar, N. W.

    2006-12-01

    Mount Erebus volcano, Antarctica, hosts a persistently convecting and degassing lake of crystal-rich (30-40 vol.% phenocrysts) phonolite magma, providing a direct view into an active, stable, upper-level magma chamber. Mineral phases in lava bombs ejected by small strombolian eruptions from the lava lake between 1972 and 2004 were examined. Detailed compositional profiles of Ti-magnetite and large (up to 10 cm) anorthoclase feldspar phenocrysts were obtained by electron microprobe (EMP). The EMP data provide insight into the controls on crystallization in the lava lake/shallow magmatic system as well as the processes occurring in the magma chamber. Ti-magnetite are uniform and unzoned. The anorthoclase are complexly compositionally zoned over a restricted range (An10.3-22.9Ab62.8-68.1Or11.4-27.2) and contain abundant melt inclusions (up to ~30 vol. %). Coupled, inverse variations of An and Or account for ~96% of major element compositional variability and independent Ab variations account for ~4%. The anorthoclase compositions and textures suggest crystallization proceeds at low degrees of effective undercooling and is controlled by decompression-induced degassing of water. Unlike microlites that form during a single episode of ascent and eruption, the anorthoclase phenocrysts record multiple episodes of decompression and rim growth due to shallow convection in the lava lake under variable PH2O conditions. Crystals contained within a single lava bomb do not have shared crystallization histories, suggesting that differential movement of crystals and melt occurs within the magma chamber and that lava bombs are a mechanical assembly of crystals brought together a short time before or during an eruption. Large temperature variations at the surface of the lava lake (~400°C) are not reflected in the crystal compositions. Apparently, the kinetics of mineral growth are too sluggish to record the transient cooling (estimated to be ~20 mins.) experienced by crystals at the

  20. Styles of zoning in central Andean ignimbrites - Insights into magma chamber processes

    NASA Technical Reports Server (NTRS)

    De Silva, S. L.

    1991-01-01

    Data are presented showing that calc-alkaline high-K ignimbrites from the Altiplano-Puna Volcanic Complex of the Central Volcanic Zone of the Andes, showing a variety of compositional zonations. The characteristics of the juvenile material from the zoned and heterogenous ignimbrites suggest that crystallization of the observed phenocrysts occurred in prezoned magma chambers consisting of two or more layers. It is suggested that the width/height ratio of a magma chamber plays a critical role in the control of the style of zonation that may develop in a closed magma chamber.

  1. Assembly of a zoned volcanic magma chamber from multiple magma batches: The Cerberean Cauldron, Marysville Igneous Complex, Australia

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Birch, W. D.

    2012-12-01

    The Late Devonian (374 Ma) Cerberean Cauldron forms the northern part of the Marysville Igneous Complex, in Central Victoria, Australia, filled with around 900 km3 of intra-caldera ignimbrites. The basal volcanic formation is the rhyolitic high-Al Rubicon Ignimbrite, overlain by a larger volume of crystal-rich rhyolitic low-Al Rubicon Ignimbrite, which grades upward into the voluminous, rhyodacitic Lake Mountain Ignimbrite. The rocks are S-type in character, with initial 87Sr/86Sr around 0.709 to 0.710 and ɛNdt varying from - 4.7 to - 6.0, suggesting metagreywacke protoliths. The chemistry of the volcanic rocks is incompatible with formation by a differentiation mechanism. Experimentally determined phase relations of a low-Al Rubicon Ignimbrite and a Lake Mountain Ignimbrite show that early crystallisation of the Lake Mountain magma began at > 450 MPa and at > 875 °C (possibly up to 940 °C), with an initial magma H2O content of 4.1 to 5.3 wt.%. In the pre-eruption magma chamber, the Rubicon Ignimbrite magma had a temperature of ≥ 780 °C and contained ≥ 4 wt.% H2O. Each formation, and indeed smaller volumes of rock, appears to have been produced by partial melting of slightly contrasting greywackes in a protolith with spatial variations in its chemistry and mineralogy, with the magma delivered in batches to a high-level chamber. The Rubicon Ignimbrite magmas underwent some internal differentiation, probably by crystal settling, prior to eruption, and variations in the Lake Mountain Ignimbrite are most probably due to small but variable degrees of peritectic phase entrainment. The limited gradation between the Rubicon Ignimbrite and Lake Mountain Ignimbrite is due to minor, pre-eruption mixing across the magma interface. Such limited mixing between individual magma batches appears typical of anatectic granitic magmas.

  2. A large magma chamber and complex magma delivery system revealed beneath Axial volcano

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G.

    2013-12-01

    Axial volcano is located at 46N, 130W at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain. It is the most recent eruptive center of the Cobb hotspot, which last erupted in 2011. The volcano rises ~700 m above the adjacent ridge axis, has two major rift zones extending ~50 km to the north and south and its summit features a 8-km-long, U-shaped caldera with an opening to the southeast where there is an active hydrothermal field and young lava flows. Located at the junction of a mid-ocean ridge and a volcanic hotspot, Axial volcano is part of an atypical segment of the intermediate spreading Juan de Fuca Ridge and its internal structure remains poorly understood. In this study, we have applied an accurate solution for imaging an active volcano combining full waveform inversion (FWI) with reverse time migration (RTM) imaging. Our approach produces images of the magmatic system at Axial volcano with spatial resolutions on the order of ~50 meters, at least an order of magnitude better resolution than traditional tomographic images of active magmatic systems. We show the clearest example to date of an unambiguous basal reflector from a melt lens system beneath a spreading centre. We find that the magma reservoir is up to 1 km thick, the thickest magma reservoir observed beneath a spreading centre to date. Interestingly, the amplitude of the magma reflector is stronger to the southeast of Axial volcano, between 0 and 6 km off axis, which might reflect an offset between the Cobb hotspot at depth and Axial volcano; if this is correct, the narrow ribbon of melt extending away from the caldera may actually funnel melt from a decoupled hotspot toward Axial caldera. In addition, we present a unique image of the magmatic plumbing system underlying an active volcano that appears to be composed of a network of sub-horizontal to shallow dipping features (planes of weakness), which might cyclically be reactivated to transport melt from the magma

  3. Numerical modeling of deformation and stress fields around a magma chamber: Constraints on failure conditions and rheology

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda; Williams, Charles A.

    2014-01-01

    We present a stress-strain analysis using the Finite Element Method to investigate failure conditions of pressured magma chambers embedded in an inelastic domain. The pressure build-up induces variations in the stress field until failure conditions are reached. Therefore, the definition of the failure conditions could have a significant impact on the volcano hazard assessment. Using a numerical approach, we analyze the stresses in a gravitationally loaded model assuming a brittle failure criterion, to determine the favorable conditions for magma chamber failure in different source geometries, reference stress states, pore fluid pressures, rock rheologies and topographic profiles. The numerical results allow us to pinpoint the conditions promoting seismicity near the magma chamber. The methodology places a limit on the pressure that a magma chamber can sustain before failing and provides a quantitative estimate of the uplift expected at the ground surface. Thermally-activated ductile regimes, which may develop in the region surrounding a heated magma chamber, are also investigated. The stress relaxation in a ductile shell may prevent the wall rupture, favoring the growth of large overpressured chambers, which could lead to considerable deformation at the ground surface without significant seismicity. The numerical results suggest that a spherical source, compressive regime, gentle edifice topography, and growth of a ductile shell are important factors for the initial formation and the mechanical stability of magma storage systems. On the other hand, an elongated ellipsoidal source, extensional regime, steep volcano topography and high pore fluid pressure lower the overpressure necessary for inducing failure. These findings could help in gaining insights on the internal state of the volcano and, hence, in advancing the assessment of the likelihood of volcano unrest.

  4. Geophysical Evidence for the Locations, Shapes and Sizes, and Internal Structures of Magma Chambers beneath Regions of Quaternary Volcanism

    NASA Astrophysics Data System (ADS)

    Iyer, H. M.

    1984-04-01

    delineating magma chambers with minimum horizontal and vertical dimensions of about 6 km. This technique has been used successfully to detect low-velocity anomalies, interpreted as magma bodies in the volume range 103-106 km3, in several volcanic centres in the U.S.A. and in Mt Etna, Sicily. Velocity models developed using teleseismic residuals of the Cascades volcanoes of Oregon and California, and Kilauea volcano, Hawaii, do not show appreciable storage of magma in the crust. However, regional models imply that large volumes of parental magma may be present in the upper mantle of these regions. In some volcanic centres, teleseismic delays are accompanied by P-wave attenuation, and linear inversion of spectral data have enabled computation of three-dimensional Q-models for these areas. The use of gravity data for magma chamber studies is illustrated by a study in the Geysers-Clear Lake volcanic field in California, where a strong gravity low has been modelled as a low-density body in the upper crust. This body is approximately in the same location as the low-velocity body delineated with teleseismic delays, and is interpreted as a magma body. In Yellowstone National Park, magnetic field data have been used to map the depth to the Curie isotherm, and the results show that high temperatures may be present at shallow depths beneath the Yellowstone caldera. The main application of electrical techniques in magma-related studies has been to understand the deep structure of continental rifts. Electromagnetic studies in several rift zones of the world provide constraints on the thermal structure and magma storage beneath these regions. Geophysical tools commonly used in resource exploration and earth-structure studies are also suited for the detection of magma chambers. Active seismic techniques, with controlled sources, and passive seismic techniques, with local and regional earthquakes and teleseisms, can be used to detect the drastic changes in velocity and attenuation that occur

  5. Isotopic constraints on open system evolution of the Laacher See magma chamber (Eifel, West Germany)

    NASA Astrophysics Data System (ADS)

    Wörner, G.; Staudigel, H.; Zindler, A.

    1985-09-01

    The Laacher See phonolite tephra sequence (11,000 years B.P.) of the Quaternary East Eifel volcanic field (West Germany) represents an inverted, chemically zoned magma column. Mafic and differentiated phonolites, respectively, represent the lowermost and uppermost erupted portion of the Laacher See magma chamber. Sr and Nd isotopic compositions of whole rocks, matrices and phenocrysts have been analyzed in order to provide constraints for open versus closed system evolution of the Laacher See magma chamber. 87Sr/ 86Sr isotope ratios of mafic phonolites and their phenocrysts are slightly more radiogenic than parental East Eifel basanite magmas. Bulk rock samples show a drastic increase in 87Sr/ 86Sr from mafic towards the most differentiated compositions that were erupted from the top of the magma chamber. Glass matrix separates show a parallel, but less pronounced, increase in 87Sr/ 86Sr . Phenocrysts, in contrast, show a narrow range in 87Sr/ 86Sr with a slight, but significant, increase towards the top of the magma chamber. Phenocrysts from the uppermost portion of the magma column were not in isotopic (or chemical) equilibrium with their host matrices. 143Nd/ 144Nd isotope ratios for whole rocks, matrices, and phenocrysts fall within a restricted range similar to that of East Eifel mafic magmas. A representative suite of crustal rocks (lower crustal granulites, quartzo-feldspathic gneisses, mica schists, Devonian slates and graywacke) was also analyzed in order to permit an evaluation of possible assimilation models. Our results are consistent with chemical evolution of the zoned Laacher See magma chamber mainly through crystal fractionation accompanied by minor amounts of assimilation. Slight contamination of the magma system may have involved (a) the assimilation of gneisses (?) and mica schists during the initial stage of magma chamber evolution (basanite-mafic phonolite), (b) combined assimilation-fractional crystallization (AFC) concurrent with the second

  6. Compositional time-series from tephra and the temporal evolution of Grímsvötn's magma chamber

    NASA Astrophysics Data System (ADS)

    Sigmarsson, Olgeir; Arna Óladóttir, Bergrun; Larsen, Guőrún

    2010-05-01

    Improved understanding of magma chambers and the related plumbing system is needed for active volcanoes. Their architecture, size and location determine the magma dynamics from source to surface, and the rate of magma transfer is in part controlled by variable sizes and forms of magma chambers. Since these are not constant features but evolve with time, only detailed studies of fine-tuned time-series allow quantitative assessment of their physical evolution, such as their volume. The subglacial volcano Grímsvötn is the most active of all Icelandic volcanoes. Interaction between the hot basaltic magma and glacier melt-water results in tephra formation during each eruption. Careful soil inspection around the Vatnajökull ice-cap has revealed an eruption frequency, higher than 7 eruptions per century. A compositional record of major- and trace element concentrations has been obtained by electron microprobe and laser ablation ICP-MS measurements of tephra glasses for the last 7600 years. We combine these results with more precise data from isotope-dilution mass-spectrometry on historical tephra from the Vatnajökull glacier. The Holcene basalts from Grímsvötn clearly form two distinct compositional groups, G-1 and G2. The group G-1 is characterized by Mg#> 47, K2O< 0.4 wt% and Th< 0.9 ppm, whereas the G-2 magma has more evolved composition. Simple fractional crystallization readily explains the compositional variations within group G-1, while the G-2 magmas have suffered from additional crustal contamination (through AFC). The Holocene tephra record reveals that both magma types are erupted contemporaneously, and even during the same eruption such as produced during the last eruption in 2004. This clearly indicates a polybaric origin of the emitted basalts, and eliminates the possibility of a single well-mixed, steady-state magma chamber beneath Grímsvötn. After the large fissure eruption of Laki (1783-84), which is on the same volcanic system, the composition of

  7. Caldera subsidence and magma chamber depth of the Olympus Mons volcano, Mars

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Mouginis-Mark, P. J.

    1992-01-01

    An axisymmetric finite element model is constructed to calculate elastic stresses in a volcanic edifice to examine the relationship between surface tectonism, caldera subsidence, and the physical characteristics of Olympus Mons' magmatic reservoir. Model results indicate that the surface stress state is not strongly sensitive to the aspect ratio or pressure distribution of the magma chamber, or to the contrast in stiffness between the magma chamber and surroundings, but is strongly dependent on the depth and width of the chamber. A gross similarity is suggested between the configurations of the magmatic plumbing systems of Olympus Mons and several well-studied terrestrial volcanoes such as the Hawaiian shields.

  8. Building a large magma chamber at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Karlstrom, L.; Bacon, C. R.

    2012-12-01

    Crater Lake caldera, Oregon, a structure produced by the 50 km3 eruption of Mount Mazama ~7.7 ka, is one of only three identified Quaternary calderas in the Cascades volcanic chain (Hildreth 2007). What were the conditions necessary to build a large volume magma chamber capable of producing this caldera-forming eruption at Mount Mazama? Using the well-documented >400,000 year volcanic history at Mazama (Bacon and Lanphere 2006), an approximation of vent locations for each eruptive unit (Bacon 2008), and a compilation of over 900 whole-rock compositions from Mount Mazama and regional volcanic rocks, we examine questions of magma chamber assembly in an active volcanic arc. These questions include: (1) is magmatic input approximately constant in composition between Mazama and regional monogenetic volcanic centers? (2) how did melt evolution differ in the two cases (Mazama vs. regional volcanism)? (3) is there spatiotemporal evidence in eruption data (including eruptive volume and chemistry) for a growing magma chamber at depth? and (4) does stability of that chamber require pre-warming of the surrounding country rock? An assumption of approximately constant major-element composition magmatic input is consistent with observed compositional overlap between basaltic to basaltic andesitic eruptive products at Mount Mazama and its vicinity (within 15 km of the volcano). MELTS modeling (Ghiorso and Sack 1995) from an initial composition of magnesian basaltic andesite of monogenetic Red Cone (erupted at a distance of ~8 km from the climactic vent) is consistent with water-saturated magmatic evolution at relatively shallow depths (<500 MPa, with the caveat that shallow pressure calibration data are largely lacking from MELTS models). Within this pressure range, differences in whole-rock compositions indicate that regional magmatic rocks evolved at shallower depths and/or drier conditions than those at the Mazama center. Observations of eruptive ages, compositions, vent

  9. Eruption vs. storage: Key thermomechanical controls on the production of large silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Depaolo, D.

    2008-12-01

    The production of large-volume silicic magma chambers in the mid to upper crust is enigmatic: Why would buoyant and otherwise eruptible magma remain ponded at depth rather than drain to the surface roughly at the rate at which it is produced? One way that the rise and eruption of this magma can be checked is if the nucleation and/or propagation of dikes to the surface is suppressed. Additionally, if the average rate at which heat is carried in to the chamber by basaltic or silicic replenishments is insufficiently large relative to the rate of internal crystallization, the magma may become overly crystal rich and effectively "uneruptible". Bearing in mind these two mechanisms favoring chamber growth we will simple models to discuss three issues that ultimately govern whether buoyant magma becomes stored in a high-level magma chamber or erupts at the surface: 1) The long-term average supply of magma to the chamber; 2) the thermal structure, mechanical strength and background stress regime of the crust; and 3) the volume and shape of the magma chamber. For a given chamber volume, shape and cooling rate, the magma supply to a volcanic/plutonic system governs both the mean crystal content and the maximum average chamber overpressure available to propagate dikes to the surface. Whether such an overpressure can drive dike formation and propagation to the surface or lead to magma storage depends on the strength and thermal regime of surrounding crust, which depends, in turn, on their initial thermo-mechanical state and subsequent history of magmatism. In principle, even if a magmatic system is in a regime that favors eruption a very high magma supply (greater than the rates of eruption and crystallization) can ensure that magma accumulate in the crust. Thus, the most import parameter in the problem that must be constrained carefully is the magma supply. The long term magma supply is controlled primarily by the heat transfer properties of underlying mantle convection and

  10. 3D Visualization of "Frozen" Dynamic Magma Chambers in the Duluth Complex, Northeastern Minnesota

    NASA Astrophysics Data System (ADS)

    Peterson, D. M.; Hauck, S. A.

    2005-12-01

    The Mesoproterozoic Duluth Complex and associated intrusions of the Midcontinent Rift in northeastern Minnesota constitute one of the largest, semi-continuous, mafic intrusive complexes in the world, second only to the Bushveld Complex of South Africa. These rocks cover an arcuate area of over 5,000 square kilometers and give rise to two strong gravity anomalies (+50 & +70 mgal) that imply intrusive roots to more than 13 km depth. The geometry of three large mafic intrusions within the Duluth Complex have been modeled by the integration of field mapping and drill hole data with maps of gravity and magnetic anomalies. The igneous bodies include the South Kawishiwi, Partridge River, and Bald Eagle intrusions that collectively outcrop over an area of > 800 square kilometers. The South Kawishiwi and Partridge River intrusions host several billion tons of low-grade Cu-Ni-PGE mineralization near their base, while the geophysical expressions of the Bald Eagle intrusion have the same shape and dimensions as the "bulls eye" pattern of low velocity seismic reflection anomalies along the East Pacific Rise. These anomalies are interpreted to define regions of melt concentrations, i.e., active magma chambers. This suggests that the funnel-shaped Bald Eagle intrusion could be an example of a "frozen" dynamic magma chamber. In support of this analogy we note that the magmatic systems of intracontinental rifts, mid-ocean ridges, extensional regimes in back-arc environments, and ophiolites have a common characteristic: the emplacement of magma in extensional environments, and the common products in all four are varieties of layered intrusions, dikes and sills, and overlying volcanic rocks. 3D visualization of these intrusions is integral to the understanding of the Duluth Complex magmatic system and associated mineralization, and can be used as a proxy for study of similar systems, such as the Antarctic Ferrar dolerites, worldwide.

  11. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Ni, Sidao; Zhang, Baolong; Bao, Feng; Zhang, Senqi; Deng, Yang; Yuen, David A.

    2016-05-01

    The Wudalianchi Volcano Field (WDF) is a typical intraplate volcano in northeast China with generation mechanism not yet well understood. As its last eruption was around 300 years ago, the present risk for volcano eruption is of particular public interest. We have carried out a high-resolution ambient noise tomography to investigate the location of magma chambers beneath the volcanic cones with a dense seismic array of 43 seismometers and ~ 6 km spatial interval. Significant low-velocity anomalies up to 10% are found at 7-13 km depth under the Weishan volcano, consistent with the pronounced high electrical-conductivity anomalies from previous magnetotelluric survey. We propose these extremely low velocity anomalies can be interpreted as partial melting in a shallow magma chamber with volume at least 200 km3 which may be responsible for most of the recent volcanic eruptions in WDF. Therefore, this magma chamber may pose a serious hazard for northeast China.

  12. Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Sharp, Z. D.

    1996-11-01

    To examine the potential for volatile fluxing of magma chambers by in situ degassing of hydrous minerals, we obtained complete chemical analyses for biotite separates from silicic lavas. The separates exhibit unusually low H2O contents that inversely correlate with host lava temperatures, high Fe3+/Fe2+ ratios that inversely correlate with host lava oxygen fugacities, and the highest δ D values yet reported for biotite from any silicic igneous rock (up to -19‰). These results are direct evidence for selective loss of protium (1H) from biotite during dehydrogenation in magma chambers heated from below by intrusion of mafic magma. The maximum PΔV energy generated from dehydrogenation alone can approach 2 × 103 joules per kilogram of magma. This finding provides support for the concept that injection of mafic magma coupled with sudden degassing of hydrous minerals in a volatile-rich magma chamber can increase pressure, and thus enhance the possibility of initiating a volcanic eruption.

  13. On the formation and lifetime of large silicic magma chambers in the shallow crust

    NASA Astrophysics Data System (ADS)

    Schöpa, A.; Annen, C.

    2012-04-01

    Most large silicic intrusion are believed to have formed by repeated injections of smaller magma pulses that eventually constitute the whole pluton. Geochronology helps to calculate long-term average emplacement rates of intrusions that are in the order of few mm/a. However, numerical simulations showed that these rates are too low to create large magma chambers. The incremental emplacement style limits the size and lifetime of any large magma chamber because the earlier injected magma pulse would cool down below solidus temperature before the next pulse is injected. To better constrain the formation of large-volume magma chambers, we investigate the influence of a changing emplacement rate over the lifetime of a composite plutonic body. That means that the emplacement rate can be temporarily high although the long-term average rate is low and is in agreement with the geochronological data. This is achieved by thermal modelling via an explicit finite difference scheme. The models calculate temperatures in the Earth's crust according to the equation of conductive heat transfer. They also take heat production of radioactive decay and phase changes into account. The conditions necessary to form a magma chamber that is larger than one single magma pulse, in this case a sill intrusion, are investigated and applied to the Tuolumne Intrusive Suite. This granitic intrusion is part of the Mesozoic Sierra Nevada Batholith in California and covers an area of more than 1000 km2. The Tuolumne Intrusive Suite is normally zoned with nested map units getting progressively younger and more evolved towards the centre. Data provided by U-Pb geochronology give an age range from 93.5 Ma for the outermost unit to 85.4 Ma for the core of the intrusive suite. The modelling results show that specific conditions need to be fulfilled to form a magma chamber for the Tuolumne Intrusive Suite. For most models, one sill intrusion cools down before the emplacement of the next sill. Thus, no more

  14. Why does the Size of the Laacher See Magma Chamber and its Caldera Size not go together? - New Findings with regard to Active Tectonics in the East Eifel Volcanic Field

    NASA Astrophysics Data System (ADS)

    Schreiber, Ulrich; Berberich, Gabriele

    2013-04-01

    The East Eifel's early Cenozoic tectonic development is characterized by a main stress field trending in NW-SE direction, causing a re-organisation of postvariscan dextral strike-slip faults in approximately 105° direction, the formation of the tectonic depression of the Neuwieder Basin and small-scale transtension zones. The 105° trending strike-slip faults are staggered in equidistant intervals of several kilometers. This system continues from the Eifel to the North into the Ruhr Carboniferous, where it has been recognized due to the extensive underground coal mining first (Loos et al. 1999). Our recent research on analyses of tectonics in quarries, quartz/ore-dykes, mapping of minerals springs and gas analyses, has revealed a prominent 105° trending strike-slip fault cutting the South of Laacher See ("Laacher See Strike-slip Fault"). Within the Laacher See caldera, the "Laacher See Strike-slip Fault" can be tracked by a wide mofette zone that was mapped with a self-propelled submarine. At present, the "Laacher See Strike-slip Fault" can be tracked from Holzmühlheim in the West, Spessart, Wehrer Kessel, Laacher See, Plaidt to Bad Ems and furthermore to the South-East. Along this direction five intersections points of the "Laacher See Strike-slip Fault" with the Lahn River are documented, creating small-scale mofette fields in the Lahn River. In the Neuwied Basin, near Plaidt, the "Laacher See Strike-slip Fault" is intersected by the NW-SE-trending Ochtendung Fault. Regional strike-slip faults in combination with block rotation and uplift could have provided the voids for the magma chambers of the Wehrer Kessel and the Laacher See Caldera. Holohan et al. (2005) showed in analogue models that regional strike-slip regimes (including Riedel shears, chamber-localised graben fault, and a partial Y-shear) play a decisive role for caldera formation. In the East Eifel tectonic movement rates of active faults are approx. 1 mm/year (Meyer & Stets 2002, Cambell et al

  15. Origin of modal and rhythmic igneous layering by sedimentation in a convecting magma chamber

    NASA Astrophysics Data System (ADS)

    Sparks, R. Stephen; Huppert, Herbert E.; Koyaguchi, Takehiro; Hallworth, Mark A.

    1993-01-01

    EXPERIMENTAL investigations of convecting, particle-laden fluids show two regimes for convection driven by cooling from above1. In very dilute suspensions, convection will maintain a homogeneous distribution of particles throughout the convecting layer provided that particle fall velocities are small compared with turbulent fluid velocities. Above a critical concentration, convection is unable to keep the particles suspended, so the particles settle, leaving behind a layer of convecting fluid virtually free of particles. Here we apply these results to cooling magma chambers, in which crystallization leads to an increase in suspended crystal content with time. Discrete sedimentation events are predicted each time the concentration exceeds the critical value. For common igneous minerals, critical concentrations are very small (typically 0.002-0.03 wt%) and layers of the order of centimetres to a few metres thick will result. Because minerals of different density and size have different critical concentrations and settling velocities, complex fluctuations in sedimentation rate and mineral proportions can occur in a multi-component melt. This may lead to either regular repetitive cycles or more complex fluctuations. The process is confined to low-viscosity magmas, such as basalts, in which the crystals are able to separate from the active thermal boundary layer during convection.

  16. Growing magma chambers control the distribution of small-scale flood basalts.

    PubMed

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  17. Growing magma chambers control the distribution of small-scale flood basalts

    PubMed Central

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-01-01

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar–Ar and K–Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang–Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4–3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40–0.66; TiO2/MgO = 0.23–0.35) during about 6 Myr (9.4–3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3–3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60–1.28; TiO2/MgO = 0.30–0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment–magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905

  18. Pyroclastic deposits of the Mount Edgecumbe volcanic field, southeast Alaska: eruptions of a stratified magma chamber

    USGS Publications Warehouse

    Riehle, J.R.; Champion, D.E.; Brew, D.A.; Lanphere, M.A.

    1992-01-01

    The Mount Edgecumbe volcanic field in southeastern Alaska consists of 5-6 km3 (DRE) of postglacial pyroclasts that overlie Pleistocene lavas. All eleven pyroclast vents align with the long axis of the field, implying that the pyroclast magma conduits followed a crustal fissure. Most of these vents had previously erupted lavas that are compositionally similar to the pyroclasts, so a persistent magma system (chamber) had likely evolved by the onset of the pyroclastic eruptions. The pyroclastic sequence was deposited in about a millennium and is remarkable for a wide range of upward-increasing silica contents (51-72% SiO2), which is consistent with rise of coexisting magmas at different rates governed by their viscosity. Basaltic and andesitic lava flows have erupted throughout the lifetime of the field. Rhyolite erupted late; we infer that it formed early but was hindered from rising by its high viscosity. Most of the magmas-and all siliceous ones-erupted from vents on the central fissure. Basalt has not erupted from the center of the field during at least the latter part of its lifetime. Thus the field may illustrate basalt underplating: heat and mass flux are concentrated at the center of a stratified magma chamber in which a cap of siliceous melt blocks the rise of basalt. Major-element, strontium isotope, and mineral compositions of unaltered pyroclasts are broadly similar to those of older lavas of similar SiO2 content. Slightly fewer phenocrysts, inherited grains, and trace amphibole in pyroclastic magmas may be due simply to faster rise and less undercooling and degassing before eruption relative to the lavas. Dacite occurs only in the youngest deposits; the magma formed by mixing of andesitic and rhyolitic magmas erupted shortly before by the dacitic vents. ?? 1992.

  19. Multi-scale convective melting in the magma chamber under volcano

    NASA Astrophysics Data System (ADS)

    Simakin, A.

    2009-04-01

    Fresh magma input is necessary attribute of the volcanic activity. Ascending from the depth magma would come into the contact with cooled partially solidified one and may cause its melting (e.g., Izbekov et al., 2004). Viscosity contrast can prevent continuous mixing in the system to keep gravity unstable stratification for some period of time. We consider condition of the convective overturn in the two-layered system composed of the layer of superheated rhyolitic magma overlaid by partially solidified denser counterpart. Temperature at the lower contact of the system is set constant and larger than liquidus one due to contact with more basic and hotter magma. At first problem is treated analytically via analysis of the growth of infinitesimal exponential disturbance of interface in the two layer system with variable viscosity contrast and thicknesses ratio with proper boundary conditions. Time of RTI exponent and melting time for layer half width (at H=200 m, rhyolite material parameters, melting rate 1-4 m/yr) become approximately equal at viscosity ratio 1-5 104. Similar estimate of the critical viscosity ratio for the onset of RTI instability at the half melting of 200 m layer have been obtained at numerical modeling. We use Newtonian temperature dependent representation of viscosity for simplicity. Chosen rheology exactly fits data for rhyolitic melt with 4 wt.% of water. At crystal content up to 50% viscosity follows improved Einstein relation (Toda and Furuse, 2006). At higher crystal content it is close to the experimental data by Rutter and Neumann (1995) at slow strain rate. Variants with initial temperatures of the upper layer in the range 650-720oC were considered with lower boundary hold at T=800oC. Viscosity contrast between the cold and hot parts of the system reaches 13 orders of magnitude. It was demonstrated that the initial temperature of the upper layer plays crucial role in the convective dynamics. At the initial viscosity contrast of 3

  20. The origin of a zoned ignimbrite: Insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy)

    NASA Astrophysics Data System (ADS)

    Forni, Francesca; Bachmann, Olivier; Mollo, Silvio; De Astis, Gianfilippo; Gelman, Sarah E.; Ellis, Ben S.

    2016-09-01

    Caldera-forming eruptions, during which large volumes of magma are explosively evacuated into the atmosphere from shallow crustal reservoirs, are one of the most hazardous natural events on Earth. The Campanian Ignimbrite (CI; Campi Flegrei, Italy) represents a classical example of such events, producing a voluminous pyroclastic sequence of trachytic to phonolitic magma that covered several thousands of squared kilometers in the south-central Italy around 39 ka ago. The CI deposits are known for their remarkable geochemical gradients, attributed to eruption from a vertically zoned magma chamber. We investigate the relationships between such chemical zoning and the crystallinity variations observed within the CI pyroclastic sequence by combining bulk-rock data with detailed analyses of crystals and matrix glass from well-characterized stratigraphic units. Using geothermometers and hygrometers specifically calibrated for alkaline magmas, we reconstruct the reservoir storage conditions, revealing the presence of gradients in temperature and magma water content. In particular, we observe a decrease in crystallinity and temperature and an increase in magma evolution and water content from the bottom to the top of the magma chamber. We interpret these features as the result of protracted fractional crystallization leading to the formation of a cumulate crystal mush at the base of the eruptible reservoir, from which highly evolved, crystal-poor, water-rich and relatively cold melts were separated. The extracted melts, forming a buoyant, easily eruptible cap at the top of the magma chamber, fed the initial phases of the eruption, until caldera collapse and eruption of the deeper more crystalline part of the system. This late-erupted, crystal-rich material represents remobilized portions of the cumulate crystal mush, partly melted following hotter recharge. Our interpretation is supported by: 1) the positive bulk-rock Eu anomalies and the high Ba and Sr contents observed in

  1. Halogen behaviours during andesitic magma degassing: from magma chamber to volcanic plume

    NASA Astrophysics Data System (ADS)

    Balcone-Boissard, H.; Villemant, B.; Boudon, G.; Michel, A.

    2009-04-01

    Halogen (F, Cl, Br and I) behaviours during degassing of H2O-rich silicic magmas are investigated using volatile content analysis in glass (matrix glass and melt inclusions) of volcanic clasts (pumice and lava-dome fragments) in a series of plinian, vulcanian and lava dome-forming eruptions. Examples are taken from andesitic systems in subduction zones: Montagne Pelée and Soufrière Hills of Montserrat (Lesser Antilles) and Santa Maria-Santiaguito (Guatemala). Halogens behaviour during shallow degassing primarily depends on their incompatible character in melts and on H2O solubility. But variations in pre-eruptive conditions, degassing kinetics and syn-eruptive melt crystallisation, induce large variations in halogen extraction efficiency during H2O degassing, up to prevent halogen loss. In all studied systems, Cl, Br and I are not fractionated neither by differentiation nor by degassing processes: thus Cl/Br/I ratios remain well preserved in melts from reservoirs to eruption. These ratios measured in erupted clasts are characteristic of pre-eruptive magma compositions and may be used to trace deep magmatic processes. Moreover, during plinian eruptions, Cl, Br and I are extracted by H2O degassing but less efficiently than predicted by available experimental fluid-melt partition coefficients, by a factor as high as 5. F behaves as an incompatible element and, contrary to other halogens, is never significantly extracted by degassing. Degassing during lava dome-forming eruptions of andesitic magmas occurs mainly at equilibrium and is more efficient at extracting halogens and H2O than explosive degassing. The mobility of H2O and halogens depends on their speciation in both silicate melts and exsolved fluids which strongly varies with pressure. We suggest that the rapid pressure decrease during highly explosive eruptions prevents complete volatile speciation at equilibrium and consequently strongly limits halogen degassing.

  2. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    NASA Astrophysics Data System (ADS)

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-01

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  3. Gabbroic xenoliths from the northern Gorda Ridge: implications for magma chamber processes under slow spreading centers

    USGS Publications Warehouse

    Davis, A.S.; Clague, D.A.

    1990-01-01

    Abundant gabbroic xenoliths in porphyritic pillow basalt were dredged from the northern Gorda Ridge. The host lava is a moderately fractionated, normal mid-ocean ridge basalt with a heterogeneous glass rind (Mg numbers 56-60). Other lavas in the vicinity range from near primary (Mg number 69) to fractionated (Mg number 56). On the basis of textures and mineral compositions, the xenoliths are divided into five types. The xenoliths are not cognate to the host lava, but they are genetically related. Chemistry of mineral phases in conjunction with textural features suggests that the xenoliths formed in different parts of a convecting magma chamber that underwent a period of closed system fractionation. The chamber was filled with a large proportion of crystalline mush when new, more primitive, and less dense magma was injected and mixed incompletely with the contents in the chamber, forming the hybrid host lava. -from Authors

  4. Petrology of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Druitt, T.H.; Bacon, C.R.

    1989-01-01

    Evolution of the magma chamber at Mount Mazama involved repeated recharge by two types of andesite (high-Sr and low-Sr), crystal fractionation, crystal accumulation, assimilation, and magma mixing (Bacon and Druitt 1988). This paper addresses the modal compositions, textures, mineral chemistry and magmatic temperatures of (i) products of the 6845??50 BP climactic eruption, (ii) blocks of partially fused granitoid wallrock found in the ejecta, and (iii) preclimactic rhyodacitic lavas leaked from the chamber in late Pleistocene and early Holocene time. Immediately prior to the climactic eruption the chamber contained ??? 40 km3 of rhyodacite (10 vol% plag + opx + aug + hb + mt + ilm, ???880?? C) overlying high-Sr andesite and cumulus-crystal mush (28-51 vol% plag + hb ?? opx ?? aug + mt ?? ilm, 880?? to ???950?? C), which in turn overlay low-Sr crystal mush (50-66 vol% plag + opx + aug ?? hb ?? ol + mt + ilm, 890?? to ???950??? C). Despite the well known compositional gap in the ejecta, no thermal discontinuity existed in the chamber. Pre-eruptive water contents of pore liquids in most high-Sr and low-Sr mushes were 4-6 wt%, but on average the high-Sr mushes were slightly richer in water. Although parental magmas of the crystal mushes were andesitic, xenocrysts of bytownite and Ni-rich magnesian olivine in some scoriae record the one-time injection of basalt into the chamber. Textures in ol-bearing scoriae preserve evidence for the reactions ol + liq = opx and ol + aug + liq(+ plag?) = hb, which occurred in andesitic liquids at Mount Mazama. Strontium abundances in plagioclase phenocrysts constrain the petrogenesis of preclimactic and climactic rhyodacites. Phenocryst cores derived from high-Sr and low-Sr magmas have different Sr contents which can be resolved by microprobe. Partition coefficients for plagioclase in andesitic to rhyolitic glasses range from 2 to 7, and increase as glass %SiO2 increases. Evolved Pleistocene rhyodacites (???30-25,000 BP) and

  5. Degassing and redox effects in the magma chamber of the Guli massif (Polar Siberia)

    NASA Astrophysics Data System (ADS)

    Ryabchikov, I. D.; Kogarko, L. N.; Kuzmin, D. V.

    2012-04-01

    The Guli massif occupies a large area between the Maymecha and Kotui Rivers at the boundary of the Siberian platform with the Khatanga trough. It has a roughly oval shape of 35-45 km, and, including the two-thirds obscured by Quaternary deposits, has an area of 1500-1600 km2. The Guli massif, like many of the other alkaline-ultrabasic intrusions, is a composite, multi-stage pluton. The predominant rocks of the massif are dunites, which occupy about 60% of the total area, and a range of melanocratic alkaline rocks, which extend over about 30%. The other rock types, including melilitolite, ijolite, alkaline syenite and carbonatite, occupy less than 10% of the area. Dunite intrusives were cut by numerous bodies of Ti-Fe ore pyroxenite (kosvite) that are composed mainly of pyroxene and titanomagnetite with accessory apatite and titanite, and form about 10% of the volume of the dunites. Among the volcanics and dyke rocks in the area surrounding the Guli massif olvine-rich meimechites play substantial role. Variations of Mg# of olivines from dunite indicat presence of cryptic layering, whereas evolution of spinels from chromites to titanomagnetites in less magnesian varieties indicate gradual transition from dunites to kosvites. Original layering is obscured by intense folding. Trace-element diagram normalized to pyrolite and Lu shows that interstitial material present between olivines of dunites is identical to meimechites. This implies that primary magma of the Guli intrusion had meimechite composition. Some zoned olivines show regular decrease in Ni and increase in Mn from core to margin, whereas variation of Ca content in the same grains pass through several maxima and minima. This reflects accumulation of both Ca and CO2 in the residual melt with episodic loss of CO2 leading to the increase in the activity of CaO. Eventually this process leads to the formation of melilite-bearing rocks, alkaline magmas and carbonatites. In many samples of kosvites Ni content in

  6. Relationship between caldera collapse and magma chamber withdrawal: An experimental approach

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Folch, A.; Martí, J.

    2006-10-01

    Collapse calderas have received considerable attention due to their link to Earth's ore deposits and geothermal energy resources, but also because of their tremendous destructive potential. Although calderas have been investigated through fieldwork, numerical models and experimental studies, some important aspects on their formation still remain poorly understood. One key issue concerns the volume of magmas involved in caldera-forming eruptions. We perform analogue experiments to correlate the structural evolution of a collapse with the erupted magma chamber volume fraction. The experimental device consists of a transparent box (60 × 60 × 40 cm) filled with dry quartz sand and a water-filled latex balloon as a magma chamber analogue. Evacuation of water through a pipe causes a progressive deflation of the balloon that leads to a collapse of the overlying structure. The experimental design allows to record the temporal evolution of the collapse and to track the evolution of fractures and faults. We study the appearance and development of specific brittle structures, such as surface fractures or internal reverse faults, and correlate each different structure with the corresponding removed magma chamber volume fraction. We also determine the critical conditions for caldera onset. Experimental results show that, at any stage of caldera developments, the experimental relationship between volume fraction and chamber roof aspect ratio fits a logarithmic curve. It implies that volume fractions required to trigger caldera collapse are lower for chambers with low aspect ratios (shallow and wide) than for chambers with high aspect ratios (deep and small). These results are in agreement with natural examples and previous theoretical studies.

  7. Inverse solution for crystal fractionation in a periodically tapped magma chamber, Sierrita porphyry copper deposit, Arizona

    SciTech Connect

    Anthony, E.Y.; Titley, S.R.

    1985-01-01

    Inversion techniques have been used to simultaneously solve for the initial concentrations, distribution coefficients, and degrees of crystallization for a suite of Laramide rocks related to subduction and porphyry copper mineralization. The suite includes diorite, andesite, and granodiorite. The granodiorite has differentiated in place to a granite core and it is this granite which immediately precedes mineralization. To perform the inversion one must verify that the rocks are genetically related by crystallization or melting. Their comagmatic nature is suggested by the similarity throughout the suite in the ratios of incompatible elements and in the few available isotopic determinations. The geochemical path of crystallization is indicated by the decrease in compatible elements and increase in incompatible elements. Inversion of the trace element data yields high initial concentrations for elements such as Ba and Ce and low concentrations for the transition metals, which is consistent with crustal melting. Thus, there was s substantial magma chamber at depth from which the more felsic liquids the authors sample have separated. The residence time of this chamber was not less than 6 million years. Such a prolonged history has been observed in other porphyry systems for which 10 million years of igneous activity and 2 million years of intermittent mineralization are recorded.

  8. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-02-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber-dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10-30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  9. The Development of a Restless Rhyolite Magma Chamber at Laguna del Maule, Chile

    NASA Astrophysics Data System (ADS)

    Andersen, N.; Singer, B. S.; Jicha, B. R.; Fierstein, J.; Vazquez, J. A.

    2013-12-01

    lower silica rhyolite (72-74%) than the majority erupted during phase 1 (75-76%) but a smaller range of compositions overall as andesite and rhyodacite eruptions become rare and peripheral. The two phases are also distinguished by a small, but consistent, shift in REE contents. Phase 1 is marked by lower REE contents, but higher Ce/Sm ratios. The chemical trends are temporally, rather than spatially, correlated reflecting the evolution of an integrated magma body rather than local vagaries in magmatic process. Early eruptions in both phases 1 and 2 are characterized by elevated two-oxide temperatures, the presence of trace pyrrhotite, and Ta contents 2-3 times greater than subsequent eruptions, an enrichment of similar magnitude to that observed in the early Bishop Tuff. The intrusion of basalt to the base of the magma chamber could provide a source of heat and volatiles catalyzing the crystallization of Fe-sulfide and roofward diffusion of Ta. Such events have been followed by periods of heightened volcanic activity and produced an increasing rate of silicic magma generation. If the current unrest is indicative of basaltic intrusion, it could foreshadow continuing silicic volcanism at LdM, potentially leading to a catastrophic caldera forming eruption.

  10. Improving Student Understanding of Magmatic Differentiation Using an M&M Magma Chamber

    NASA Astrophysics Data System (ADS)

    Wirth, K. R.

    2003-12-01

    Many students, especially those in introductory geology courses, have difficulty developing a deep understanding of the processes of magmatic differentiation. In particular, students often struggle to understand Bowen's reaction series and fractional crystallization. The process of fractional crystallization by gravity settling can be illustrated using a model magma chamber consisting of M&M's. In this model, each major cation (e.g., Si, Ti, Al, Fe, Mg, Ca, Na, K) is represented by a different color M&M; other kinds of differently colored or shaped pieces could also be used. Appropriate numbers of each color M&M are combined to approximate the cation proportions of a basaltic magma. Students then fractionate the magma by moving M&M's to the bottom of the magma chamber forming a series of cumulus layers; the M&M's are removed in the stoichiometric proportions of cations in the crystallizing minerals (e.g., olivine, pyroxene, feldspars, quartz, magnetite, ilmenite). Students observe the changing cation composition (proportions of colors of M&M's) in the cumulus layers and in the magma chamber and graph the results using spreadsheet software. More advanced students (e.g., petrology course) can classify the cumulates and resulting liquid after each crystallization step, and they can compare the model system with natural magmatic systems (e.g., absence of important fractionating phases, volatiles). Students who have completed this exercise generally indicate a positive experience and demonstrate increased understanding of Bowen's reaction series and fractionation processes. They also exhibit greater familiarity with mineral stoichiometry, classification, solid-solution in minerals, element behavior (e.g., incompatibility), and chemical variation diagrams. Other models (e.g., paths of equilibrium and fractional crystallization on phase diagrams) can also be used to illustrate differentiation processes in upper level courses (e.g., mineralogy and petrology).

  11. Water content variability in Ignimbrite Campana melts. New insights on magma chamber history

    NASA Astrophysics Data System (ADS)

    Marianelli, P.; Proto, M.; Sbrana, A.

    2003-04-01

    The Ignimbrite Campana (39 ka) represents the most powerful eruption characterizing the volcanic history of the Campi Flegrei caldera. The study is based on melt inclusions investigations in phenocrysts of juvenile pumice from the fallout unit and from the Breccia Museo Unit. The aim of this work is the determination of both the chemical composition and the pre-eruptive volatile content of Ignimbrite Campana magmas. Glass compositions fall in the trachyte field close to the trachyte-phonolite boundary, similarly to the others Ignimbrite Campana products. FTIR analyses on double-polished melt inclusions were carried out in order to investigate H_2O and CO_2 contents. CO_2 was below detection limit. Melt inclusions from Breccia Museo products and from the fallout layer show a very large range of H_2O contents with a mode of 2--4wt% and higher values of about 5--6%wt%. The variability of water content is independent of the evolutive degree of the melt (CaO=2.5--1.5wt%), and therefore cannot be ascribed to differentiation processes. Minimum pressures of crystallization are estimated assuming saturation conditions for the trapped melts and using the H_2O solubility model of Carroll and Blank (1997). Most of crystallization pressures are in the range 20--60 MPa, whereas a few values are between 100 and 150 MPa. We suggest that the higher values could indicate the pressure of crystallization in a magma chamber, located at a depth of about 4.5--6 Km. The abundance of melt inclusions with lower water content could testify an abrupt change in pre-eruptive conditions of the Ignimbrite Campana magma chamber, such as degassing due to magma rising or opening and decompression of the magma chamber. References Carroll M.R. and Blank J.G. (1997): The solubility of H_2O in phonolitic melts. American Mineralogist, 82: 549--556.

  12. From Magma Chamber to Tephra- what can volcanic titanite tell us about pre-eruptive processes?

    NASA Astrophysics Data System (ADS)

    Iddon, Fiona; McLeod, Graham; Dempster, Tim; Walshaw, Richard; Everard, Lucie

    2014-05-01

    Large volume, apparently homogenous, crystal rich pyroclastic deposits, or so called 'monotonous intermediates' are often considered to represent erupted batholiths. Their formation and life-cycle can be preceded and eruptions triggered by highly complex magma chamber processes, with multiple periods of recharge, mixing and thermal oscillations [1]. This information is difficult to observe, even at the crystal scale due to fragmentation or re-equilibration with subsequent recharge events. Titanite is a geochemically robust mineral that acts as a reservoir for trace elements, in particular the HFSEs and REEs. This ability to act as a primary control on the trace element budget of a melt [2], coupled with its refractory nature, allows titanite to preserve compositional zoning, proven to act as a reliable record of magma chamber conditions even in long-lived plutons [3]. This study extends the use of titanite to volcanic rocks via a coupled micro-textural and geochemical study of titanites from the Fish Canyon Tuff, Colorado. Regarded as the largest ever recorded pyroclastic deposit, it is thought that the batholith-sized magma chamber cooled to a rigid crystalline mush prior to thermal rejuvenation via underplating mafic magma [1]. It is additionally suggested this may have acted as a trigger for the eruption [1]. Results have shown the titanites to possess trace element zoning reflecting changes in melt composition and chamber conditions. Dissolution horizons and inclusion suites additionally provide evidence for multiple changes in temperature and oxygen fugacity aiding the interpretation of pre-eruptive processes. The study is ongoing with investigation of titanite from the Cerro Galan Ignimbrite, Argentina. The deposit again is suggested to have undergone a complex magma chamber growth and recharge history, with further proposals of multiple magma storage locations at different crustal levels [4]. The crystal zoning may provide further evidence for this, however

  13. The effect of pressurized magma chamber growth on melt migration and pre-caldera vent locations through time at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Karlstrom, Leif; Wright, Heather M.; Bacon, Charles R.

    2015-01-01

    The pattern of eruptions at long-lived volcanic centers provides a window into the co-evolution of crustal magma transport, tectonic stresses, and unsteady magma generation at depth. Mount Mazama in the Oregon Cascades has seen variable activity over the last 400 ky, including the 50 km3 climactic eruption at ca. 7.7 ka that produced Crater Lake caldera. The physical mechanisms responsible for the assembly of silicic magma reservoirs that are the precursors to caldera-forming eruptions are poorly understood. Here we argue that the spatial and temporal distribution of geographically clustered volcanic vents near Mazama reflects the development of a centralized magma chamber that fed the climactic eruption. Time-averaged eruption rates at Mount Mazama imply an order of magnitude increase in deep magma influx prior to the caldera-forming event, suggesting that unsteady mantle melting triggered a chamber growth episode that culminated in caldera formation. We model magma chamber–dike interactions over ∼50 ky preceding the climactic eruption to fit the observed distribution of surface eruptive vents in space and time, as well as petrologically estimated deep influx rates. Best fitting models predict an expanding zone of dike capture caused by a growing, oblate spheroidal magma chamber with 10–30 MPa of overpressure. This growing zone of chamber influence causes closest approaching regional mafic vent locations as well as more compositionally evolved Mazama eruptions to migrate away from the climactic eruptive center, returning as observed to the center after the chamber drains during the caldera-forming eruption.

  14. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    PubMed

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  15. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber

    PubMed Central

    Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.

    2013-01-01

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system. PMID:24100542

  16. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber

    NASA Astrophysics Data System (ADS)

    Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.

    2013-10-01

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  17. The impact of rapid recharge events on the evolution of magma chambers: Case studies of Santorini Volcano (Greece) and Volcan Quizapu (Chile)

    NASA Astrophysics Data System (ADS)

    Degruyter, Wim; Huber, Christian; Bachmann, Olivier; Cooper, Kari; Kent, Adam

    2016-04-01

    Magma reservoirs in the crust are thought to be dominantly formed by episodic recharge events at rates that are much larger than the long-term average magma inflow rates. Hence, a better understanding of the evolution of a magma reservoir requires elucidating the mass change, pressurization, heating, deformation and the potential for an eruption associated with different recharge scenarios. Most importantly, the bifurcation in behavior between a recharge event that leads to eruption and one that will grow the chamber requires quantification for better volcanic hazard assessment. We use a numerical model to determine the change in pressure, temperature and volume of a magma chamber as it is exposed to a recharge event. The model is applied to the well-studied volcanic systems of Santorini Volcano (Greece) and Volcan Quizapu (Chile). We establish the rates and the duration of magma recharge events that will lead to an eruption. In doing so, we demonstrate the importance of the state of the magma chamber prior to the recharge event, i.e. its size and exsolved volatile content, on the subsequent evolution of the reservoir. In the case of Santorini, the model successfully reproduces the main features of the Minoan eruption and Nea Kameni activity, providing volume estimates for the active part of the current subvolcanic reservoir as well as information regarding the presence of exsolved volatiles. For Quizapu, we suggest that the change in eruptive style, from an effusive outpouring of lava in 1846-1847 to an explosive Plinian eruption in 1932, was controlled by a shift in the state of the magma chamber induced by the first eruption. These case studies show that thermo-mechanical models offer a new framework to integrate the historic eruption record with geodetic measurements and provide a context to understand the past, present and future of active volcanic centers.

  18. Are magma chamber boundaries brittle or ductile? Rheological insights from thermal stressing experiments

    NASA Astrophysics Data System (ADS)

    Browning, John; Meredith, Philip G.; Gudmundsson, Agust; Lavallée, Yan; Drymoni, Kyriaki

    2015-04-01

    Rheological conditions at magma chamber boundaries remain poorly understood. Many field observations of deeply-eroded and well-exposed plutons, for example Slaufrudalur and Geitafell in SE Iceland, exhibit a sharp transition between what may have been a partially or fully molten magma chamber and its surrounding brittle host rock. Some studies have suggested a more gradual change in the rheological properties of chamber boundaries, marked by a ductile halo, which is likely to exert a significant impact on their rheological response. Understanding the state and rheological conditions of magma-rock interface and interaction is essential for constraining chamber-boundary failure conditions leading to dyke propagation, onset of volcanic eruption as well as caldera fault formation. We present results from a series of thermal stressing experiments in which we attempt to recreate the likely conditions at magma-chamber boundaries. Cores of volcanic material (25 mm diameter x 65 mm long) were heated to magmatic temperatures under controlled conditions in a horizontal tube furnace (at atmospheric pressure) and then held at those temperatures over variable dwell times. At the maximum temperatures reached, the inner part of the samples undergoes partial melting whilst the outer part remains solid. After cooling the brittle shells commonly exhibit axial, fissure-like fractures with protruded blobs of solidified melt. This phenomenon is interpreted as being the result of volume expansion during partial melting. The internal melt overpressure generates fluid-driven fractures analogous to filter-pressing textures or on a large scale, dykes. We complement our observations with acoustic emission and seismic velocity data obtained from measurements throughout the experiments. These complementary data are used to infer the style and timescale of fracture formation. Our results pinpoint the temperature ranges over which brittle fractures form as a result of internal melt overpressure

  19. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers: An experimental study

    NASA Astrophysics Data System (ADS)

    Guo, Haihao; Audétat, Andreas

    2017-02-01

    In order to determine the behavior of metals and volatiles during intrusion of mafic magma into the base of silicic, upper crustal magma chambers, fluid-rock partition coefficients (Dfluid/rock) of Li, B, Na, S, Cl, K, Mn, Fe, Rb, Sr, Ba, Ce, Cu, Zn, Ag, Cd, Mo, As, Se, Sb, Te, W, Tl, Pb and Bi were determined experimentally at 2 kbar and 850 °C close to the solidus of mafic magma. In a first step, volatile-bearing mafic glasses were prepared by melting a natural basaltic trachyandesite in the presence of volatile-bearing fluids at 1200 °C/10 kbar in piston cylinder presses. The hydrous glasses were then equilibrated in subsequent experiments at 850 °C/2 kbar in cold-seal pressure vessels, which caused 80-90% of the melt to crystallize. After 0.5-2.0 days of equilibration, the exsolved fluid was trapped by means of in-situ fracturing in the form of synthetic fluid inclusions in quartz. Both the mafic rock residue and the fluid inclusions were subsequently analyzed by laser-ablation ICP-MS for major and trace elements. Reverse experiments were conducted by equilibrating metal-bearing aqueous solutions with rock powder and then trapping the fluid. In two additional experiments, information on relative element mobilities were obtained by reacting fluids that exsolved from crystallizing mafic magma with overlying silicic melts. The combined results suggest that under the studied conditions S, Cl, Cu, Se, Br, Cd and Te are most volatile (Dfluid/rock >10), followed by Li, B, Zn, As, Ag, Sb, Cs, W, Tl, Pb and Bi (Dfluid/rock = 1-10). Less volatile are Na, Mg, K, Ca, Mn, Fe, Rb, Sr, Mo and Rb (Dfluid/rock 0.1-1), and the least fluid-mobile elements are Al, Si, Ti, Zr, Ba and Ce (Dfluid/rock <0.1). This trend is broadly consistent with relative element volatilities determined on natural high-temperature fumarole gases, although some differences exist. Based on the volatility data and measured mineral-melt and sulfide-melt partition coefficients, volatile fluxing in

  20. Malaguana-Gadao Ridge: Identification and implications of a magma chamber reflector in the southern Mariana Trough

    NASA Astrophysics Data System (ADS)

    Becker, Nathan C.; Fryer, Patricia; Moore, Gregory F.

    2010-04-01

    Six-channel seismic reflection data reveal a magma chamber reflector beneath the Malaguana-Gadao Ridge, the southernmost segment of the spreading center in the Mariana Trough. For most of its length the spreading center in this active back-arc basin is morphologically similar to slow spreading mid-ocean ridges, having a deep central graben flanked by a zone of abyssal hill fabric. This southernmost segment, however, has a broad, smooth cross section, lacks a deep central graben, and is thus similar in morphology to fast spreading ridges (e.g., the East Pacific Rise). We identify a magma chamber at 1.5 s two-way travel time below the crest of the ridge. Observations from remotely operated vehicles along the ridge reveal not only fresh pillows, lobate, and sheet lava flows but also an abundance of volcaniclastic debris and intense hydrothermal activity. These observations, together with the "fast spreading" morphology of the ridge, suggest that this segment has a considerably higher magma supply than is typical in the Mariana Trough. We suggest that the volcanic arc or enhanced melting of a hydrated mantle is supplying volatile-rich magma as evidenced by a highly negative coefficient of reflection, -0.42, for this MCR and the presence of evolved, highly vesicular lava and volcaniclastic materials. The southeastern Mariana back-arc basin spreading ridge does not compare readily with mechanical models for global mid-ocean ridge data sets because of marked asymmetry in both volcanism and deformation that may be the consequence of slab-related geometry in this part of the convergent margin system.

  1. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Druitt, T.H.

    1988-01-01

    The climactic eruption of Mount Mazama has long been recognized as a classic example of rapid eruption of a substantial fraction of a zoned magma body. Increased knowledge of eruptive history and new chemical analyses of ???350 wholerock and glass samples of the climactic ejecta, preclimactic rhyodacite flows and their inclusions, postcaldera lavas, and lavas of nearby monogenetic vents are used here to infer processes of chemical evolution of this late Pleistocene - Holocene magmatic system. The 6845??50 BP climactic eruption vented ???50 km3 of magma to form: (1) rhyodacite fall deposit; (2) welded rhyodacite ignimbrite; and (3) lithic breccia and zoned ignimbrite, these during collapse of Crater Lake caldera. Climactic ejecta were dominantly homogeneous rhyodacite (70.4??0.3% SiO2), followed by subordinate andesite and cumulate scoriae (48-61% SiO2). The gap in wholerock composition reflects mainly a step in crystal content because glass compositions are virtually continuous. Two types of scoriae are distinguished by different LREE, Rb, Th, and Zr, but principally by a twofold contrast in Sr content: High-Sr (HSr) and low-Sr (LSr) scoriae. HSr scoriae were erupted first. Trace element abundances indicate that HSr and LSr scoriae had different calcalkaline andesite parents; basalt was parental to some mafic cumulate scoriae. Parental magma compositions reconstructed from scoria wholerock and glass data are similar to those of inclusions in preclimactic rhyodacites and of aphyric lavas of nearby monogenetic vents. Preclimactic rhyodacite flows and their magmatic inclusions give insight into evolution of the climactic chamber. Evolved rhyodacite flows containing LSr andesite inclusions were emplaced between ???30000 and ???25000 BP. At 7015??45 BP, the Llao Rock vent produced a zoned rhyodacite pumice fall, then rhyodacite lava with HSr andesite inclusions. The Cleetwood rhyodacite flow, emplaced immediately before the climactic eruption and compositionally

  2. Dynamics of a Magma Chamber: Insights Into Time and Length Scales of Internal Processes in the Tuolumne Batholith, CA

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Paterson, S. R.; Matzel, J.; Mundil, R.; Ducea, M.; Miller, J. S.

    2007-12-01

    Recent studies on large, zoned batholiths such as the 95-85 Ma Tuolumne batholith (TB), Sierra Nevada, are slowly advancing our understanding of batholith assembly. However, it is still questioned whether large magma chambers exist at any time during batholith construction and if preserved compositional variations are related to processes at the source, ascent or emplacement level. Moreover, the knowledge about time and length scales of internal processes and their significance in these long lived systems remains challenging. To better understand the importance of different internal processes in the TB, we examined four magmatic lobes composed of the Kuna Crest, equigranular and porphyritic Half Dome and Cathedral Peak granodiorites, three of the four major TB units. Lobes are petrologically less complicated than the main body, freeze quicker and thus preserve snapshots at different stages of batholith evolution. In contrast, the main batholith is more complex and preserved a cumulative compositional imprint and/or the last increments of batholith activity before crystallization. All four lobes are normally zoned with granodioritic units at the margin and leucogranite in the center. Contacts between units are generally gradational and young inward shown by both structural and geochronology data. Linear geochemical trends and relics of cumulates suggest the zonal pattern in the lobes is dominantly due to fractionation crystallization and local mixing, which is supported by Nd and Sr isotopes indicating a homogeneous source for each unit. In comparison to the same units in the main body, Nd and Sr isotopes in the lobes are more primitive in composition and slightly older in age, suggesting that the lobes represent magmas that entered the magma chamber and underwent differentiation, but then crystallized quickly without further interchange. We conclude that compositional pattern in the TB can be explained by short time scale fractionation processes (0.5-1 myrs) that

  3. Monogenetic scoria cones, proxies of an evolutive magma chamber. Llaima volcano, Chile

    NASA Astrophysics Data System (ADS)

    Schonwalder, D. A.; Cortes, J. A.; Calder, E. S.; Ruth, D. C.

    2013-12-01

    Stratovolcanoes are often associated with monogenetic scoria cones (MSC) around their flanks, which can show compositional variations compared to a main volcanic edifice (ME). Such variations are the representation of the state of the magma chamber at the time the MSC were formed. Using textural analysis, whole-rock and mineral chemistry, we investigate the relationship between the products of the ME and MSC at Llaima volcano, Chile; to make inferences about the plumbing system and determine the evolutionary changes of the magma chamber. Thirty MSC and their associated lava flows have been recognized, occurring on the NE, NW and SW flanks of the ME. They do not show clear stratigraphic relationships. Only three lava flows had been dated by C14, ages ranging from 3340 to 320 × 50 yr B.P1, the ages of the other cones have been inferred based in their morphologic state and degree of vegetation. Whole-rock XRF analyses show relevant compositional variations: SiO2 from 50-61 wt%, Na2O+K2O from 2.5-6 wt%, MgO from 2-6 wt% and CaO from 5-12 wt%. At the NE flank, such variations seem to be related to the distance from the ME, where the distal cones have a relatively more primitive composition. The petrography shows that plagioclase is the main mineral phase, with variable contents of olivine and clinopyroxene. At the NE, the olivine-clinopyroxene ratio varies from 3:1 to 1:10, from the closest to the farthest cones. The compositional range of plagioclase (Andesine-Bytownite) and olivine (Fo60-80) is the average, with a few cones to the NE displaying an intermediate olivine composition (Fo40-60). The pyroxene is mainly Augite, with presence of Diopside at the ME. Crystal Size Distribution (CSD) measurements of the mineral phases have also been undertaken. The CSDs of Plagioclase show linear yet slightly curved trends with similar slopes, which is typical of open magmatic systems2. For Olivine, the CSDs are generally convex, but lavas from the ME and the younger MSC display

  4. The origin of a zoned ignimbrite: insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy)

    NASA Astrophysics Data System (ADS)

    Forni, Francesca; Bachmann, Olivier; Mollo, Silvio; De Astis, Gianfilippo

    2016-04-01

    The Campanian Ignimbrite (CI; Campi Flegrei, Italy), dated at 39 ka, is a widespread pyroclastic sequence emplaced during a cataclysmic caldera-forming eruption fed by trachytic to phonolitic magmas. The CI pyroclastic sequence is famous for its remarkable geochemical gradients,attributed to the presence of a vertically zoned magma chamber. Combining bulk-rock data with detailed phenocrysts and matrix glass analyses from well characterized stratigraphic units, we investigate the relatioships between such chemical zoning and the crystallinity variations observed along the CI pyroclastic sequence. Using geothermometers and hygrometers specifically calibrated for alkaline magmas, we reconstruct the reservoir storage conditions, revealing the presence of gradients in temperature and magma water content. In particular, we observe an increase in crystallinity and temperature and a decrease in magma evolution and water content from the bottom to the top of the sequence. We interpret these features as the result of protracted fractional crystallization leading to the formation of a cumulate crystal mush at the base of the eruptible reservoir, from which highly evolved, crystal-poor, water-rich and relatively cold melts were separated. The extracted melts, forming a buoyant, easily eruptible cap at the top of the magma chamber, fed the initial phases of the eruption, until caldera collapse and eruption of the deeper, more crystalline part of the system. This late-erupted, crystal-rich material, represents remobilized portions of the cumulate crystal mush, rejuvenated after mafic recharge. Our interpretation is supported by: 1) the bulk-rock positive Eu anomalies and the high Ba and Sr contents observed in the crystal-rich units, implying feldspar accumulation; 2) the positive Eu anomalies in the matrix glass of the crystal-rich units, testifying to the presence of liquid derived from partial melting of low temperature mineral phases within the crystal mush (feldspars and

  5. Diamond-bearing Rocks among Mantle Xenoliths in Kimberlites as Indicatory for the Chambers of Diamond-parental Carbonatite Magma

    NASA Astrophysics Data System (ADS)

    Litvin, Yuriy; Kuzyura, Anastasia

    2014-05-01

    may originate and evolve by: (1) metasomatic-magmatic stage resulted in partial carbonatization of mantle peridotite under attack of K-CO2-bearing metasomatic agents and generation of carbonate melts; (2) dissolving-magmatic stage when major and accessory minerals of peridotite host-rock, volatiles and carbon dissolve in carbonate melt whereas insoluble sulphide phases penetrate into melts; eventually, completely miscible peridotite-carbonatite-carbon magma parental for diamond and paragenetic minerals (hosting xenogenetic sulphide minerals and melts) are formed; (3) fraction-crystallization stage (in chamber consolidated into a self-dependent body) during natural cooling of parental magma up to solidus temperature; the cooling activates physicochemical control that is created by PT-phase relations for the parental magma composition, i.e., syngenesis phase diagram on a representative polythermal section of peridotite-eclogite-carbonatite-diamond system at 7 GPa under conditions of fractional crystallization (Litvin, 2013). Parental carbonatite melts, while compositionally evolve under fractional crystallization, are physicochemically capable to form diamond and sequentially minerals of peridotitic and eclogitic parageneses (presented as primary inclusions in diamonds). Paragenetic peridotite-eclogite transition in the course of ultrabasic-basic fractional evolution of parental melts is revealed in physicochemical experiments as the effect of 'peridotite-to-eclogite' tonnel (Litvin, 2013). Diamond-bearing peridotite and eclogite rocks and intimate mineral intergrowths with diamond are also formed in the chambers of diamond-parental carbonatite magmas under these physicochemical conditions. Diamond-free rocks among mantle xenoliths in kimberlites represent samples of the enclosing host-rocks for the chambers of diamond-parental carbonatite magma. Support: grant of the RF President #MK-1386.2013.5, RFBR grants 12-05-33044, 13-05-00835 and 14-05-00537.

  6. Geyser's magma chamber, California: constraints from gravity data, density measurements, and well information

    USGS Publications Warehouse

    Blakely, Richard J.; Stanley, W.D.; ,

    1993-01-01

    A new crustal model based on isostatic residual gravity, geologic mapping, well information, and density measurements shows that the high-gradient parts of the residual gravity anomaly can be explained in terms of lithologic variations within the upper 7 km of the crust, consistent with the upper-crustal framework of the area. This conclusion does not rule out the presence of a magma chamber at lower crustal depths; the broad aspects of the gravity anomaly support the presence of low-density partial melting at 15 to 20 km depth, consistent with magnetotelluric soundings and other geophysical measurements.

  7. An integrated model of magma chamber, conduit and column for the analysis of sustained explosive eruptions

    NASA Astrophysics Data System (ADS)

    Colucci, S.; de'Michieli Vitturi, M.; Neri, A.; Palladino, D. M.

    2014-10-01

    Explosive volcanic eruptions comprise a complex series of processes involving withdrawal from the magma chamber, magma ascent along the conduit and eruption column dynamics. Numerous studies have modeled the different sub-domains of a volcanic system, but their interplay has seldom been analyzed. To this end, we developed C3 (C-cubed, that stands for Chamber, Conduit and Column), a new integrated model that describes the dynamics of an explosive eruption as a series of steady state regimes and as a function of geometry and initial conditions of the magma reservoir. We used Global Sensitivity Analysis to quantify the role of the relevant model parameters and describe the interplay between the different volcanic sub-domains. In particular, we analyzed the evolution of a sustained explosive eruption in order to identify the conditions for buoyant, super-buoyant and collapsing columns. Input data were based on field reconstructions of Quaternary explosive eruptions in the Vulsini Volcanic District (Roman Province, central Italy). Model results show that: 1) the column regime, although affected by complex interactions among several factors, mostly depends on the conduit radius, the volatile content (i.e. supersaturation concentration at the top of the chamber) and length of the conduit, in decreasing level of importance; 2) the amount of mass erupted is independent of the conduit radius and depends mostly on volatile supersaturation, the radius of the magma chamber, the length of the conduit and the overpressure at the conduit inlet; 3) the mass flow-rate, column height and duration of the eruption are largely controlled by the conduit radius; 4) the flow pressure and density at the conduit exit are mostly controlled by the conduit inlet overpressure at the onset of the eruption, and by the length of the conduit at the end of the eruption; 5) the exit velocity from the conduit is mostly controlled by the volatile content, the length of the conduit and the inlet

  8. Evidence for a Dying Magma Chamber at Rábida Island, Galápagos

    NASA Astrophysics Data System (ADS)

    Bercovici, H.; Geist, D.; Harpp, K. S.; Almeida, M.

    2015-12-01

    Rábida Island in the Galapagos has experienced both explosive and effusive volcanism. It is located to the east of the most active volcanoes of the Galapagos, and previously determined ages range from 0.9 to 1.1 Ma. An unusually curved escarpment cuts the western sector of the island, which might be part of a caldera wall, although its radius of curvature is much greater than that of the island. Lavas range from basalt to rhyolite, and there are also several intermediate compositions, which are unique in the archipelago. A welded ignimbrite crops out in northeast sector, the only such deposit known in the entire region. The volumetric proportion of evolved rocks is unusually high; 25% of the rocks in our comprehensive sample set are intermediate to felsic. The siliceous rocks occur in two clusters in the southern and southwestern sections of the island, suggesting two separate sources. The intermediate rocks are concentrated in the center and northwestern parts of the island. Despite these foci of more siliceous lavas, basalt is the most widespread rock type across the island. It is notable that Rabida is immediately east of Volcan Alcedo, which is the only active Galápagos volcano that has also erupted rhyolite, and south of Santiago Island, which erupted the trachyte dome observed by Charles Darwin in 1835. These observations, in conjunction with the cumulate xenoliths observed in Rábida explosive deposits, are consistent with the evolved rocks resulting from fractional crystallization of a dying magma chamber, as the volcano is carried away from the hotspot.

  9. The buoyancy of large siliceous magma chambers is sufficient to initiate supereruptions

    NASA Astrophysics Data System (ADS)

    Malfait, W.; Sanchez-Valle, C.; Seifert, R.; Petitgirard, S.; Perrillat, J.; Ota, T.; Nakamura, E.; Lerch, P.; Mezouar, M.

    2012-12-01

    The geological record shows abundant evidence for rare, but extremely large caldera-forming eruptions of siliceous magmas that dwarf all historical volcanic episodes in erupted volume [1] and environmental impact [2, 3]. Because of the large size of the magma chambers that feed these eruptions, the overpressure generated by magma recharge is insufficient to fracture the cap rock and trigger an eruption [4]. For these thick magma chambers, the buoyancy of the magma potentially creates a sufficient overpressure capable of fracturing the cap rock, but the lack of data on the density of rhyolite melts precludes the appropriate estimation of the overpressure and the role of buoyancy in initiating supervolcano eruptions. The density of rhyolite melts has not been determined at super-liquidus temperatures or elevated pressures because traditional techniques, including Archimedean methods, sink/float experiments and acoustic measurements, are limited by the high melt viscosity. Here, we measured the density of rhyolitic/granitic melts with 0, 4.5 and 7.7 wt% of dissolved water at geologically relevant conditions: 0.9 to 3.6 GPa, 1270 to 1950 K. High pressure and temperature conditions were generated in a Paris-Edinburgh large volume press. Before and after each density measurement, the molten state of the sample was verified by X-ray diffraction. The density of the melt (ρPT) was determined from the X-ray attenuation coefficient of the sample, determined in situ (μPT) and at room conditions (μ0), and the density at room conditions (ρ0): ρPT=ρ0.(μPT/μ0). The acquired data were combined with available ambient pressure data on super-cooled liquids [5, 6] to derive a third order Birch-Murnaghan equation of state that accurately predicts the density of rhyolite melts as a function of pressure, temperature and water content, and the partial molar volume of dissolved water. Application of the melt equation of state to calculate the overpressure at the roof of supervolcano

  10. Tidal Dissipation in Basalt Magma Chambers - Implications for Io's Loki Patera and Icy Satellite Cores

    NASA Astrophysics Data System (ADS)

    Castillo, J. C.; Matson, D. L.; Davies, A. G.; Johnson, T. V.; Veeder, G. J.

    2006-05-01

    We discuss tidal dissipation in molten basaltic magma and the results from model application to Io and Enceladus. Magma is a non-newtonian liquid with a complex rheology dependent on interactions between different phases: liquid, crystals and bubbles, resulting in a slurry with each component responding differently to temperature and stress. This study is based on results obtained for terrestrial basalts. For example, the evolution of crystal content as a function of temperature has been described for basalts [e.g., 1]. The behavior of cyclically stressed basalt has been observed in laboratory for frequencies corresponding to seismic waves between 1 and 200 sec. [e.g., 2-5]. While this frequency range is outside the range of dynamical frequencies considered in planetary sciences, these results show variations of the response as a function of the wavelength of the structure involved in the response. From the trend observed at low frequencies we extrapolate these data to tidal frequencies encountered at Io and Enceladus. We apply this result to a silicate magma chamber deep in Enceladus's core. Such a magma body has been proposed by Matson et al. [6, 7] as a heat source for keeping Enceladus warm over geological time and ultimately powering the observed volcanism [8]. We also apply the model to the 'magma sea' at Loki Patera [9] the source of 10-20% of Io's heat flow. In both cases we evaluate how much tidal dissipation can be produced. Our objectives are to chart the development and long-term evolution of magma chambers on bodies heavily influenced by tidal dissipation. From consideration of the relevant processes taking place over appropriate timescales, results show that self- regulation mechanisms are in place, such that crystal content and heat production remain in equilibrium over geological time. Our preliminary results support long-term preservation of a magma chamber in Enceladus' core. Coupled thermal-orbital modeling also indicates consistency between this

  11. P-SV conversions at a shallow boundary beneath Campi Flegrei caldera (Italy) - evidence for the magma chamber

    SciTech Connect

    Ferrucci, F.; Hirn, A.; De Natale, G.; Virieux, J.; Mirabile, L. Inst. de Physique du Globe, Paris Osservatorio Vesuviano, Naples CNRS, Inst. de Geodynamique, Valbonne Ist. Universitario Navale, Naples )

    1992-10-01

    Seismograms from an active seismic experiment carried out at Campi Flegrei caldera (near Naples, Italy), show a large-amplitude SV-polarized shear wave, following by less than 1.5-s P waves reflected at wide angle from a deep crustal interface. Early arriving SV-polarized waves, with the same delay to direct P waves, are also observed in seismograms from a regional 280 km-deep, magnitude 5.1 earthquake. Such short delays of S to P waves are consistent with a P-SV conversion on transmission occurring at a shallow boundary beneath the receivers. The large amplitude of the converted-SV phase, along with that the P waves are near vertical, requires a boundary separating a very low rigidity layer from the upper caldera fill. The converted phases are interpreted as a seismic marker of a magma chamber. The top of this magma chamber is located slightly deeper than the deepest earthquakes observed during the 1982-1984 unrest of Campi Flegrei. 8 refs.

  12. Depth and Pressures of Crystallization of Magma Chambers beneath Hawai'ian Volcanoes

    NASA Astrophysics Data System (ADS)

    Ditkof, J.

    2010-12-01

    The Hawai’ian Emperor Seamount Chain was formed by a mantle plume beginning about 80 Ma. The crust is raised by the plume while continuous eruptions form islands. As the islands begin to slide off the plume, they fall back to the sea floor, becoming a seamount. There are currently more than 80 undersea volcanoes stretching from the Aleutian Trench to the newly formed Loi’hi seamount. There are currently eight major islands which make up the state of Hawai’i. Seismic and other geophysical data have been used previously to determine the depth of magma chambers beneath Hawai’ian Volcanoes. Yang et al (1996) created a method in which three equations are used to calculate liquid compositions along the olivine-plagioclase-clinopyroxene coetectic. I used chemical analyses of glasses, which represent quenched liquid compositions, to calculate the pressure and temperature at which these liquids crystallize the minerals olivine, plagioclase, and clinopyroxene. The depth of crystallization can be calculated from these pressures. I then filtered the data, removing any classes that contained excess aluminum or water. Plotting the results for the filtered data set in CoPlot yields similar trends for all of the Hawai’ian Volcanoes in plots of CaO versus MgO, P versus MgO, T versus MgO, and depth versus MgO. The results agree with geophysical data, showing that the magma chambers lie at shallow depths, less than 10km at a pressure of about 1kilobar. Knowledge of the depths of chambers and pressures of crystallization is important for a number of reasons including understanding the chemical composition of molten rock that is flowing within the chamber and predicting when an eruption will occur.

  13. Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP)

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Ashwal, L. D.; Webb, S. J.; Veksler, I. V.

    2015-05-01

    A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.

  14. Geophysical study of a magma chamber near Mussau Island, Papua New Guinea

    USGS Publications Warehouse

    Dadisman, Shawn V.; Marlow, M. S.

    1988-01-01

    Analysis of a 24-channel seismic-reflection data collected near Mussau Island, Papua New Guinea, shows a high-amplitude, negative-polarity reflection that we believe is from the top of a magma chamber.  The reflecting horizon lies at a depth of about 4.4 s subbottom and can be traced laterally for 2.6 km.  On shot gathers, the reflection demonstrates normal moveout appropriate for an in-place event.  The frequency spectrum of the reflection shows a decrease in high-frequency content when compared to the sea floor reflection, as would be expected for a deep subsurface event.  The polarity of the reflection event is negative, suggesting that the reflection horizon is the top of a low-velocity zone.  Magnetic data indicate that the ridge containing the reflecting horizon is magnetic, and the geology of Massau Island suggests that the ridge is volcanic in its origin.  We speculate that the high-amplitude reflection is from the top of a magma chamber some 7-11 km deep.

  15. Reintrusion of silicic magma chambers by mafic dike complex: evidence from the northern Semail ophiolite

    SciTech Connect

    Stakes, D.S.; Shervais, J.; Ressetar, R.

    1985-01-01

    Late plagiogranite bodies in the Semail ophiolite have been previously suggested to represent late stage fractionates within an episodic spreading center magma chamber or the roots of seamount chains. Field and lab observations suggest that these late silicic magma chambers represent zones of repeated injection by dikes of intermediate to mafic composition. Multiple generations of intrusion, partial resorption and reintrusion are preserved in the plagiogranite as 1) relict phantom xenoliths, 2) angular xenoliths with quartz-rich margins, 3) deformed fine-grained dikes with distinct chilled margins, and 4) planes of rectangular blocks with cuspate margins or ellipsoids of similar fine grained mafic materials. The blocks and ellipsoids are actually dismembered mafic dikes that chilled by intruding a cooler silicic liquid and were either thermally fractured or pinched out. All of the dikes are hydrothermally altered to assemblages including amph., qtz., epi., preh., and chl. and are enriched in delta/sup 18/O. Extremely altered diabase from a copper sulfide-bearing normal fault is isotopically depleted (delta/sup 18/0=2.0 per mil) suggesting that such deep faults are high temperature hydrothermal conduits. Malachite and amphibole bearing veins along the margins of the plagiogranite suggest a genetic relationship between the silicic intrusions, the multiple diking events and copper sulfide deposition.

  16. Petrogenesis of mixed-magma, high-grade, peralkaline ignimbrite 'TL' (Gran Canaria): diverse styles of mixing in a replenished, zoned magma chamber

    NASA Astrophysics Data System (ADS)

    Sumner, Janet M.; Wolff, John

    2003-08-01

    The Miocene (13.4 Ma) high-grade, peralkaline ignimbrite TL on Gran Canaria comprises two overlapping ignimbrite lobes, an eastern lobe which is high-grade, with rheomorphic lithofacies, and a western lobe which is extremely high-grade with lava-like lithofacies. The two lobes were erupted from different vents tapping the same magma chamber during a single eruption; where they overlap the western lobe overlies the eastern lobe [Sumner and Branney (2002) J. Volcanol. Geotherm. Res., 115, 109-138]. Three magma compositions are present: comendite, trachyte and benmoreite. Fiamme of intermediate composition also occur and magma mingling during withdrawal produced compositionally banded juvenile clasts. Both ignimbrite lobes consist of mixed and mingled comendite and trachyte plus small mafic globules of benmoreite in the western lobe. The ignimbrite lobes have a broad vertical compositional zonation with a basal dominantly comenditic zone, grading up into a mixed zone with subequal amounts of comendite and trachyte, which passes into an overlying trachyte-dominated zone; the magma chamber is inferred to have been zoned upwards from trachyte to comendite. Major and trace element compositional variations and phenocryst-whole rock relations among comendite and trachyte are scattered in a fashion consistent with mingling of, and exchange of phenocrysts between, liquids that lie along the fractionation path from trachyte to comendite. Intrusion of benmoreite magma into the chamber over a period of several months to years before the eruption produced mafic globules that equilibrated to varying degrees with the lower trachyte magma layer. This replenishment ultimately triggered the eruption. Most of the trachyte-comendite mingling probably occurred during withdrawal and eruption; some certainly took place after ignimbrite deposition, during rheomorphic flow. Magmatically heterogeneous high-grade ignimbrites that experience an episode of non-particulate flow show particularly

  17. Deciphering the thermal and mixing history of the Pleistocene rhyolite magma chamber at Augustine Volcano

    NASA Astrophysics Data System (ADS)

    Nadeau, P. A.; Webster, J. D.; Mandeville, C. W.; Monteleone, B.; Shimizu, N.; Goldoff, B. A.

    2015-12-01

    Recent activity at Augustine Volcano, located in Cook Inlet, Alaska, has been dominated by intermediate composition lavas and relatively small explosions. Earlier in Augustine's history, however, a thick (~30 m) rhyolite fall was erupted ca. 25 ka, containing at least three distinct rhyolite lithologies. Numerous studies have documented evidence of magma mixing in the more recently-erupted material. Here we attempt to evaluate similar mixing events that may have affected the 25 ka rhyolitic magma prior to its eruption. Basaltic to basaltic-andesitic deposits are found interbedded with the rhyolite at Augustine, so at least two magmas were present in Augustine's plumbing system at the same or nearly the same time. Hints at interactions between two or more magmas are also evident on a smaller scale. Xenocrysts of olivine and clinopyroxene are present in the rhyolite, each with mafic melt inclusions. Additionally, two of the three rhyolitic lithologies studied contain high-aluminum amphiboles that are compositionally similar to amphiboles from mafic enclaves entrained during the 2006 eruption and thus may be xenocrystic. To further investigate possible heating by secondary melts and the history of mixing, we use the titanium-in-quartz geothermometer (TitaniQ) on chemical zonation in quartz phenocrysts. We find that most quartz has a distinct 3-zone pattern, though one lithology also contains some complex zoning patterns in phenocryst cores, perhaps suggesting a xenocrystic origin. Additionally, we examine relationships between trace elements in the silicate melt inclusions from a variety of phenocryst types to determine if there is evidence for input of additional magma of different compositions. Finally, we apply results of a preliminary investigation of the mineralogy of a high-phosphorus dacite that stratigraphically overlies the rhyolite to assess their similarity and the degree of mixing, if any, that may have led to the transition from rhyolitic to dacitic magma.

  18. On the magma chamber characteristics as inferred from surface geology and geochemistry: examples from Mexican geothermal areas

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.

    1985-12-01

    A procedure is described which enables us to obtain estimates of some physical and chemical characteristics of sub-surface magma chambers. This is applied to three geothermal areas of the Mexican Volcanic Belt (MVB) in central Mexico. The approximate volumes estimated for the underlying chemically and thermally zoned magma chambers are: 1500 km 3 for Los Humeros, 600 km 3 for La Primavera, and 400 km 3 for Los Azufres. These estimates will have to be modified as more geological-geochemical data become available.

  19. The response of visco-elastic crust and mantle to the inflation/deflation of magma chamber

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.

    2015-12-01

    It is important to quantitatively evaluate how magmatic activities at depth are reflected in geodetically (GPS and/or InSAR) observed surface deformation in order to distinguish magma-induced crustal deformation. This study employs 3-D finite element model to examine response of the linear Maxwell visco-elastic crust and mantle to a development of sill. Models with instantaneous and/or time-dependent inflation/deflation of sill at various depths in the crust have predicted geodetically detectable surface deformation, providing important constraints on spatio-temporal-scale of magmatic activities. Instantaneous inflation of sill in the crust causes the surface uplift. The amplitude and wavelength of the uplift are amplified for shallower and deeper inflations, respectively. The inflation occurred over a greater horizontal extent intensify both the amplitude and wavelength. The inflation-induced surface uplift would however abate with time by visco-elastic relaxation. Any signature of sill would disappear in ~ 50 - 100 times Maxwell relaxation time of the crust unless the inflation occurred within the uppermost layer that effectively acts as elastic layer. Time-dependent inflation accompanies with visco-elastic relaxation, and the inflation having occurred over the time-scale of ~ 50 - 100 times crustal relaxation time would provide insignificant signature at the surface, which in turn tells us that crustal deformation would reflect the development of magma chamber only if it has occurred in that time-scale. This study also has found that an ascent of magma into shallower depth may be recognised by an observation such that a horizontal extent over which the surface uplift is progressively intensified focusses into a narrower region.

  20. Temperature field simulation with stratification model of magma chamber under Los Humeros Caldera, Puebla, Mexico

    SciTech Connect

    Verma, M.P.; Verma, S.P.; Sanvicente, H. )

    1990-01-01

    A simulation of the temperature field underlying Los Humeros caldera is obtained through numerical solution of the energy-conservation equation for a conductive heat flow process. The up-date information on geological, geochemical, geophysical and geochronological studies is used to estimate the parameters of the internal structure of the caldera. The simulation is carried out under a model of the stratification of a magma chamber. The existence of such a stratification is supported by geological and geochemical evidence. The boundary conditions, the equality of temperature and heat flux are programmed in the numeric solution of the energy-conservation equation by considering the boundary of a very small, finite thickness and smoothing the temperature curve at every step of calculation.

  1. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ57Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ57Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ57Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  2. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber

    PubMed Central

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-01-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ57Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ57Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ57Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted. PMID:26620121

  3. Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber.

    PubMed

    Zhu, Dan; Bao, Huiming; Liu, Yun

    2015-12-01

    Non-traditional stable isotopes have increasingly been applied to studies of igneous processes including planetary differentiation. Equilibrium isotope fractionation of these elements in silicates is expected to be negligible at magmatic temperatures (δ(57)Fe difference often less than 0.2 per mil). However, an increasing number of data has revealed a puzzling observation, e.g., the δ(57)Fe for silicic magmas ranges from 0‰ up to 0.6‰, with the most positive δ(57)Fe almost exclusively found in A-type granitoids. Several interpretations have been proposed by different research groups, but these have so far failed to explain some aspects of the observations. Here we propose a dynamic, diffusion-induced isotope fractionation model that assumes Si-melts are growing and ascending immiscibly in a Fe-rich bulk magma chamber. Our model offers predictions on the behavior of non-traditional stable isotope such as Fe, Mg, Si, and Li that are consistent with observations from many A-type granitoids, especially those associated with layered intrusions. Diffusion-induced isotope fractionation may be more commonly preserved in magmatic rocks than was originally predicted.

  4. Exploring the relationship between Assimilation and Fractional Crystallization of Basalts with the Magma Chamber Simulator (MCS)

    NASA Astrophysics Data System (ADS)

    Creamer, J. B.; Bohrson, W. A.; Spera, F. J.; Ghiorso, M. S.

    2010-12-01

    Assimilation of partially melted country rock into cooling and Fractionally Crystallizing magma bodies (AFC) is well known but dynamic process that has been explored by laboratory experiments and study of natural occurrences. Case studies of magmatic systems frequently invoke models that feature mass ratios of assimilation to fractional crystallization (e) that are constant. This study explores the relationship between assimilation and fractional crystallization, as affected by magma and country rock composition, water contents, and pressure using the Magma Chamber Simulator (MCS). The MCS is a computational tool that combines the framework of mass and energy conservation equations (EC-RAFC) approach of Spera and Bohrson (2001, 2002, 2003) and Bohrson and Spera (2001, 2003) with the phase equilibria modeling capabilities of MELTS (Ghiorso and Sack 1995). Using MCS results, it is found that e is often hugely dependent on even minor variations in system composition, and that e often varies systematically (usually increasing with time) during an individual instance of AFC, by up to an order of magnitude. A well-documented effect of increasing the water content of magmas is the suppression of crystallization. Indeed, among different types of basalt (Mid-Ocean Ridge Basalt MORB, High-Alumina Basalt HAB, Alkali Basalt AB), assimilation of dry gabbro (e~0.7) is less efficient than assimilation of hydrated gabbro (e~1.5-2.5). However, the effect on efficiency of assimilation, e, of magma water content, though pronounced, is more complex. Generally, however, wet magmas can yield scenarios with higher e values due to the suppression of plagioclase crystallization, which has a relatively large enthalpy of formation. The effect of higher pressure on AFC systems, all else being equal, is quite variable. For example, a MORB, HAB, or AB assimilating gabbro at 1kbar yields an e value of ~1.5. If the pressure is elevated to 5 kbar, the same systems yield an e value of ~0.3. The

  5. Quaternary volcanics from the Broken Top volcano area, Oregon High Cascades: Varied low pressure processes in calc-alkaline magma chambers

    SciTech Connect

    Webster, J.R. . Div. of Science and Math)

    1992-01-01

    Broken Top (BT) is a Quaternary composite volcano in the central Oregon High Cascades. Volcanics in the vicinity of BT range from basalt to rhyodacite with a paucity of andesite. Most pre- and syn-BT lavas were generated through low pressure crystal fractionation (CF) in small, short-lived chambers. Mixing superimposed on CF generally involved magmas with minimal compositional differences. Lavas erupted from BT are dominantly phenocryst-rich bas. andesite which exhibits evidence for a mixing origin. Whole-rock and phenocryst compositions suggest mixing between basalt and andesite. The andesite can be explained by low pressure CF of the basalt. Latest BT activity consisted of bas. andesite, dacite, and rhyodacite lavas which were generated through CF. During BT activity, andesite was produced by CF during rapid sidewall crystallization and ponded at the top of the chamber. Mixing most likely took place during eruptive events, but evidence for a persistent presence of mixed (hybrid) magma in the chamber suggests incomplete evacuation of mixed magma. With time, the andesite layer became less significant due to decreasing rates of sidewall crystallization and/or frequent eruption/replenishment, more widespread crystal settling resulted in eruption of CF-generated bas. andesite and low-Si dacite. Rapid crystallization of dacitic magma followed by buoyant segregation yielded rhyodacite. These processes operating during the latest stages of the BT activity were likely similar to those operating in the short-lived chambers. Paucity of CF-generated andesite is explained by: (1) low density crust which retards andesite ascent, and (2) rapid crystallization over the dacite range. While significant amounts of andesite were produced in the longer-lived BT system, it rarely erupted unmixed.

  6. A forward modeling approach to relate geophysical observables at active volcanoes to deep magma dynamics

    NASA Astrophysics Data System (ADS)

    Montagna, C. P.; Longo, A.; Papale, P.; Vassalli, M.; Saccorotti, G.; Cassioli, A.

    2010-12-01

    Geophysical signals usually recorded at active volcanoes mainly consist of i) seismicity - high frequency volcano-tectonic events, volcanic tremor, and LP, VLP, and ULP events, ii) ground displacement, and iii) gravity changes. These signals are inverted to constrain the characteristics of the underground signal source, usually under the simplifying assumptions of point source or small volume homogeneous source with simple geometry. We have instead designed a forward approach, that complements the more classical inverse approaches, whereby magma chamber dynamics are numerically solved for compressible-to-incompressible multi-component magmas in geometrically complex systems constituted by one or more magma chambers connected through dykes. Our new code, that we named GALES (GAlerkin LEast Squares), solves the complex time-space-dependent dynamics of convection and mixing of magmas with different composition and properties, and reveals patterns of overpressure much more complex than commonly assumed in inverse analyses. Time-space-dependent stress distributions computed along the rigid magma-wall boundaries are employed as boundary conditions in either numerical simulations of wave propagation through the rock system by taking into account wall rock heterogeneities and topographic surface, or semi-analytical solutions of the Green’s functions in homogeneous infinite space. Ground displacement computed at the topographic surface ranges from the seismic to the quasi-static frequency band. Density variations associated to the simulated magma convection dynamics are instead employed to determine the corresponding gravity change at the surface. Seismicity, ground deformation, and gravity changes associated to deep magma dynamics are therefore computed as a function of time at different points on the Earth’s surface. Performed numerical simulations involve cases with largely different magma/dyke size, geometry and depth, and magma compositions from basaltic to

  7. From Map Unit to Magma Chamber: Understanding the 2006 Eruption of Augustine Volcano

    NASA Astrophysics Data System (ADS)

    Coombs, M.; Bull, K.; Cervelli, P.; Larsen, J.; Mandeville, C.; Nye, C.; Tilman, M.; Vallance, J.; Wallace, K.; Webster, J.

    2007-12-01

    In 2006, Augustine Volcano once again sprang to life and erupted ~70 x 106 m3 of magma during three eruptive phases. Variations in magma composition, eruptive style, and deformation of the edifice provide clues to the ascent and interaction of magmas prior to and during the three-month-long eruption. Genetically unrelated end members basaltic andesite (56.5 wt% SiO2) and dacite (63.3 wt% SiO2) bracket erupted magma compositions. Products from all three eruptive phases contain both end members though proportions varied with time, and many pyroclasts have mixing textures. Initial Vulcanian explosions in mid-January 2006 (explosive phase) erupted small-volumes (~14 x 106 m3 DRE) of basaltic andesite as ash fall and pyroclastic flows. In late January, explosions transitioned to continuous "boil over" at the vent (continuous phase), producing relatively voluminous (28.5 x 106 m3 DRE) block-and-ash flows that are rich in dacite and banded clasts. In early February, explosive activity gave way to effusion of basaltic andesite lava (effusive phase; 32 x 106 m3 DRE) highlighted by a pulse of increased effusion from March 7-14. Effusive activity ceased by the end of March. Geophysical and petrologic evidence lead us to a hypothetical series of magmatic processes that drove the eruption. The presence of amphibole in all eruptive products indicates that magma storage must have been within the amphibole stability field at depths greater than ~4 km, in agreement with elevated water (2 - 4 wt% by difference) and chlorine (2400 - 4900 ppm) contents in melt inclusions. Precursory unrest took the form of six months of volcano-tectonic earthquakes and island-wide uplift and radial displacement (recorded by GPS), all centered near sea level. Preliminary textural analysis of the explosively erupted basaltic andesite indicates that it did not undergo the degree of decompression-driven crystallization expected if it had accumulated at sea level (~40 MPa) for longer than a few days. This

  8. Modeling of Convection Driven "Weather" Patterns in Bushveld Type Magma Chambers via Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Rice, A.

    2007-12-01

    Well established and well benchmarked multi-physics finite element codes which are commercially available (e.g., ANSYS, Inc) for modeling (amongst things) fluid flow are proving extremely useful in their application to problems in earth sciences. These codes incorporate the following physical processes: variable viscosity, phase change (e.g., freezing, melting), the impact of latent heat, assimilation, transport of suspended crystal load, porous media flow, chemical evolution, etc. These codes have seen extensive and successful application to fluid environments more complicated than or even similar to magmatic melts and have allowed 3D modeling... with much of their complexity... of the convective cooling and freezing history of magma chambers simulating the Bushveld Complex. Although constrained by much greater viscosities to appropriately diminished velocities, these models yield analogs similar to patterns seen in lakes, oceans and atmospheres: e.g., stratifications, currents, vortices, formation of clouds of crystals, precipitation, etc. The viscosities employed in the Bushveld models are taken to be strongly dependent on temperature (this implicitly includes particulate content and evolving chemistry, etc), increasing over eleven orders of magnitude during cooling. The initial stages of cooling are typified by highly turbulent flow which rapidly settles into more orderly and symmetric forms as the magma cools and "sets" on reaching approximately 65% crystal content. The inclusion of suspended load leads to the build up of stratifications within the model, the lowest in the chamber of primitive composition and the highest (i.e., at the top) of the most evolved composition. This is a natural consequence of the components of highest melting point crystallizing out first, followed by material of lower melting point, etc. Similar to ice crystals gathering along the boundaries of stratified layers in the atmosphere to form thin clouds, primocrysts will be driven by

  9. Melt segregation and assembly of the youngest exposed magma chamber in the world: Takidani Pluton (Japan)

    NASA Astrophysics Data System (ADS)

    Hartung, E.; Caricchi, L.; Floess, D.; Wallis, S.; Harayama, S.

    2014-12-01

    Segregation of residual melt from partially crystallized magmas is a process of paramount importance for the chemical evolution of magmas and the construction of reservoirs of potentially eruptible magma. In this study we investigate the Takidani pluton, one of the youngest exposed plutons on Earth (˜1Ma). This chemically zoned magmatic body is located within the active Norikura Volcanic Chain in the Northern Japan Alps and associated with large dacitic to rhyolitic deposits (Nyukawa Pyroclastic Flow Deposit and Ebisutoge-Fukuda tephra). Our study focuses on the physical processes responsible for the extraction of residual melt from a crystallizing magma and the construction of the subvolcanic reservoirs that fed large silicic eruptions. Detailed structural mapping and sampling along four transects from the base to the top of the pluton were carried out along with a magnetic susceptibility survey. Our preliminary results indicate that the pluton was assembled by multiple intrusions. The pluton can be broadly separated into three distinct lithological units: 1) fine grained granite; 2) equigranular granodiorite that locally grades into either porphyritic granodiorite or granite towards the roof of the intrusion; and 3) mafic granodiorite. Units 1) and 2) form the core of the intrusion and together represent about 70% of the total volume of the pluton. Our results show that the equigranular granodiorite is internally inhomogeneous with felsic lenses of lower magnetic susceptibility. The magnetic susceptibility decreases gradually towards the roof of the pluton reaching its lowest value within leucrocratic porphyritic units. Higher magnetic susceptibility values at the contact with the roof correspond to a slightly more mafic porphyritic unit. Melt segregation and evolution of the Takidani Granodiorite are being further investigated using bulk rock and mineral chemistry (EMPA and LA-ICP-MS) together with anisotropy of magnetic susceptibility.

  10. Nd isotopic gradients in upper crustal magma chambers: Evidence for in situ magma-wall-rock interaction

    SciTech Connect

    Farmer, G.L.; Tegtmeyer, K.J.

    1990-01-01

    Multiple Nd isotopic analyses were obtained for one metaluminous and two peralkaline Tertiary rhyolitic ash-flow tuffs in the Great Basin to determine whether upper crustal silici magmas chemically evolve under closed- or open-system conditions. All the ash-flow tuffs analyzed show significant internal Nd isotopic variations. The largest variations occur within the peralkaline Double-H Mountains Tuff ({epsilon}{sub Nd} = +2.0 to +6.4) at the McDermitt volcanic field in north-central Nevada, and the smallest within the metaluminous Topopah Spring Tuff ({epsilon}{sub Nd} = {minus}10.6 to {minus}11.7) at the southwestern Nevada volcanic field. In all cases the isotopic variation are correlated with magmatic Nd contents, even though the Nd concentrations decreased roofward for the metaluminous rhyolite and increased for the peralkaline rhyolites. The consistent positive correlation between [Nd] and {epsilon}{sub Nd} provides strong evidence for in situ open-system addition of low {epsilon}{sub Nd} wall-rock material to the silicic magmas during their residence in the upper crust. The proportion of wall-rock Nd required to produce the isotopic zonations is small (1 to 15 mol%) for both the peralkaline and metaluminous rhyolites. All levels of the parental magmas sampled by the ash-flow tuffs, and not just magma occupying the roof zone, were open to wall-rock interaction. These results suggest that upper crustal silicic magma bodies evolve under open-system conditions and the effects of such processes should be addressed in models for their chemical differentiation.

  11. High silica granites: Terminal porosity and crystal settling in shallow magma chambers

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty A.; Morton, Douglas M.

    2015-01-01

    High silica (>70 wt.% SiO2) granites (HSGs) are important carriers of highly incompatible elements, thus, understanding their origin is relevant to understanding how the composition of the continental crust evolves. We examined a large-scale geochemical study of plutons in the Peninsular Ranges Batholith in southern California (USA) to better understand the petrogenetic relationships between HSGs and the batholith. Using highly incompatible and compatible elements, we show that HSGs represent residual liquids within a felsic (69-72 wt.% SiO2) magmatic crystal mush at crystal fractions of 50-60% and residual liquid fractions of 40-50%. Trace element systematics show that separation of the HSG liquid from the crystal mush is inefficient, such that no more than 70-80% of the HSG is fully extracted and the remaining greater than 20-30% remains trapped in cumulate mush. We find little evidence of more efficient liquid-crystal segregation, which suggests that compaction-induced segregation may be too slow to be important on a large scale. Instead, the terminal porosity of 20-30% coincides with theoretical maximum packing fraction of unimodal particles settled out of suspension (∼0.74), which may indicate that crystal settling - perhaps in the form of hindered settling - drives segregation of viscous silicic melts and crystals. Unlike compaction, settling operates on timescales of 1-10 ky, fast enough to generate large volumes of HSG and complementary cumulates with trapped melt before magma chambers freeze. Many felsic plutons may thus be cumulates, but because of trapped melt, they are difficult to geochemically distinguish from plutons whose compositions fall along liquid lines of descent. The approach here, using a combination of highly incompatible and compatible elements, provides a way of identifying and quantifying trapped melt fractions. Finally, we show that HSGs appear to form only in the shallow crust (<10 km) and rarely in the middle to lower crust. Where

  12. Deducing the magma chamber processes of middle Eocene volcanics, Sivas and Tokat regions; NE Turkey: Insights from clinopyroxene chemistry

    NASA Astrophysics Data System (ADS)

    Göçmengil, Gönenç; Karacık, Zekiye; Genç, Ş. Can; Prelevic, Dejan

    2016-04-01

    Middle Eocene Tokat and Sivas volcanic successions occur within the İzmir-Ankara-Erzincan suture zone. Different models are suggested for the development of the middle Eocene volcanism such as post-collisional, delamination and slab-breakoff models as well as the arc magmatism. In both areas, volcanic units cover all the basement units with a regional disconformity and comprise lavas spanning a compositional range from mainly basalt-basaltic andesite to a lesser amount trachyte. Here, we report mineral chemistry of different basaltic lavas through transect from northern continent (Tokat region, Pontides) to southern continent (Sivas region, Kırşehir block) to deduce the characteristics of the magma chamber processes which are active during the middle Eocene. Basaltic lavas include olivine bearing basalts (Ol-basalt: ± olivine + clinopyroxene + plagioclase); amphibole bearing basaltic andesite (Amp-basaltic andesite: amphibole + clinopyroxene + plagioclase ± biotite) and pyroxene bearing basaltic andesite (Px-basaltic andesite: clinopyroxene + plagioclase). Microlitic, glomeroporphyric and pilotaxitic texture are common. Clinopyroxene phenocrystals (macro ≥ 750 μm and micro ≤300 μm) are common in all three lava series which are investigated by transecting core to rim compositional profiles. They are generally augite and diopside; euhedral to subhedral in shape with oscillatory, normal and reverse zoning patterns. Also, all clinopyroxene phenocrystals are marked by moderately high Mg# (for Ol-basalt: 67-91; avg. 80; Amp-basaltic andesite: 76-83, avg: 80; Px -basaltic andesite 68-95, avg: 81). In Ol-basalt, clinopyroxene phenocrystals show normal zonation (high Mg# cores and low Mg# rims). In Amp-basaltic andesite, clinopyroxenes are generally homogenous in composition with minor variation of Mg# towards the rims. On the contrary, in Px-basaltic andesite, clinopyroxene macro phenocrystals show reverse zonation with the core with low Mg# and the rims with

  13. High-Mg adakitic rocks and their complementary cumulates formed by crystal fractionation of hydrous mafic magmas in a continental crustal magma chamber

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Xu, Yi-Gang; Zheng, Jian-Ping; Sun, Min; Griffin, William L.; Wei, Ying; Ma, Liang; Yu, Xiaolu

    2016-09-01

    Understanding how adakitic magmas form is important for understanding the formation of the continental crust. Generating such high-Sr/Y rocks by crystal fractionation of basalts/basaltic andesites in magma chambers has been proposed in a wide range of tectonic settings. However, the complementary cumulates predicted by this scenario have rarely been observed. The late Triassic ( 227 Ma) Ningcheng complex from the North China Craton is composed of a websterite - (Ol -/Hbl-) pyroxenite - gabbro unit and a quartz-diorite unit. They are interpreted as the products (cumulates and derivative melts, respectively) of fractionation from hydrous mafic magmas at mid- to lower-crustal pressures (4.9 8.3 kbar). The quartz diorites are high-Mg intermediate rocks with moderate SiO2 (57.0 62.9 wt%), high Mg# (> 49) and adakitic trace element signatures, such as high Sr (≥ 636 ppm) and light rare earth elements (REEs), low Y (≤ 17 ppm) and heavy REEs (Yb ≤ 1.8 ppm), lack of obvious Eu anomalies, and high Sr/Y (≥ 31) and La/Yb (≥ 24)). These adakitic signatures reflect differentiation of hydrous mantle-derived magmas in the deep crust, leaving behind a plagioclase-free residual solid assemblage in the early stages, which is represented by the coeval websterite-pyroxenite complex. This study therefore not only demonstrates that hydrous crystal fractionation is an important mechanism to form adakitic rocks, but also presents an example of a preserved fractionating system, i.e. high-Sr/Y rocks and their complementary cumulates. A geochemical comparison is made between representative adakitic rocks formed by fractionation of hydrous magmas and Archean TTGs. It is suggested that crystal fractionation is an efficient process for making Phanerozoic high Sr/Y rocks but was not responsible for the formation of Archean granitoids.

  14. Compaction and Crystallisation in Magma Chambers: Towards a Model of the Skaergaard Intrusion

    NASA Astrophysics Data System (ADS)

    McKenzie, D. P.

    2010-12-01

    The equations governing the conservation of mass, momentum and energy are first simplified by using the extended Boussinesq approximation, and then solved numerically to study the time dependent behaviour of a compacting solidifying layer at the base of a magma chamber when variations in the horizontal plane can be neglected. The most important result is that the concept of a trapped liquid fraction, which has been widely used to model the bulk composition of layered intrusions, is a useful concept to describe the steady state behaviour of compacting layers. The result is at first sight surprising, because there is relative movement between the melt and crystals during compaction, and the system is therefore open. The reason why it is correct is because both the melt and the crystals are moving downwards in a frame fixed to the upper surface of the compacting layer. Since the mass of all elements must be conserved, what goes into the top of the layer as melt and solid must come out of its bottom as a solid when the behaviour is not time dependent. However, when time dependent behaviour occurs the concept of a trapped liquid fraction ceases to be useful. The governing equations are then used to model the concentration of phosphorous in the lower part of the Skaergaard intrusion, where it behaves incompatibly. The observed behaviour requires the viscosity of the solid part of the compacting layer to have a viscosity of about 10^18 Pa s.

  15. Dynamics of exploding magma chambers: Implications for K-T volcanism and mass extinctions

    NASA Technical Reports Server (NTRS)

    Rice, A. R.

    1988-01-01

    Although it is well known that unconfined chemical explosives may yield pressures to several megabars on detonation in air, the explosive literature has yet to be accessed by some contributors to the volcanological literature who've indicated that pressures in excess of the overburden and/or tensile cannot be obtained. Idealized ballistic assessments of pressures internal to volcanoes yield pressures in the hundreds of kilobar range upon correction by addition of friction, etc. Previous assessments of exploding magma chamber pressure have been made from the characteristics of the Mt. St. Helens explosion. A variety of methods yield pressures of similar value: at least hundreds of kilobars. Such results are consistent with free energy requirements for quench supersaturation explosion, a process occurring in solidifying industrial melts. Several reviews of geochemical literature emphasize the carbon event at the Cretaceous-Tertiary (K-T) boundary as being an indicator of a massive dump of CO2 derived from the mantle and entering the atmosphere by extensive global volcanism. Oxygen isotope data indicates extreme warming at the end of the Cretaceous which is consistent with a greenhouse effect attending the CO2 event. Reaction rate equations for the quench supersaturation explosion mechanism indicated, are consistent with the rise in pressure to 30 kbar on solidification of magmatic melts, these pressures limited by the strength of the experimental apparatus.

  16. Teleseismic studies indicate existence of deep magma chamber below Yellowstone National Park

    USGS Publications Warehouse

    Iyer, H.M.

    1974-01-01

    The secrets of Yellowstone National Park's spectacular geysers and other hot water and steam phenomena are being explored by the U.S Geological Survey with the aid of distant earthquakes (teleseisms). For some time geologists have known that the remarkable array of steam and hot water displays, for which the park is internationally famous, is associated with intense volcanic activity that occurred in the reigon during the last 2 million years. The most recent volcanic eruption took place about 600,000 years ago creating a large caldera, or crater, 75 kilometers long and 50 kilometers wide. This caldera occupies most of the central part of the present-day park. geologists knew from studies of the surface geology that the volcanic activity which creates the present caldera was caused the present caldera was caused by a large body of magma, a mixture composed of molten rock, hot liquids, and gases, that had forced its way from the deep interior of the Earth into the upper mantle and crust below the Yellowstone area. The dimensions and depth below the surface of this magma body were largely unknown, however, because there was no way to "see" deep below the surface. A tool was needed that would enable earth scientists to look into the curst and upper mantle of the Earth. Such a tool became availabe with the installation by the Geological Survey of a network of seismograph stations in the park. 

  17. Self-similar clustering distribution of structural features on Ascraeus Mons (Mars): implications for magma chamber depth

    NASA Astrophysics Data System (ADS)

    Pozzobon, R.; Mazzarini, F.; Massironi, M.; Cremonese, G.

    2012-04-01

    The occurrence and spatial distribution of monogenic eruptive structures within volcanic areas are linked to fracture systems and associated stress fields. Moreover, they testify the presence of deep crustal or subcrustal magma reservoirs directly connected to the surface by a percolating fracture network. The correlation between vent distribution and fracture network properties (the so called backbone) can thus be studied in terms of self-similar (fractal) clustering. Self-similarity in vent distribution is described by a power law distribution with fractal exponent D and defined over a range of lengths (l) comprised between a lower limit (lower cutoff, Lco) and an upper limit (upper cutoff, Uco). The upper cutoff (Uco) for fractal clustering was compared with the respective crustal thickness obtained by existing independent geophysical data in the East African Rift System (Mazzarini and Isola, 2010). The computed Ucos for this sector well match the crustal thickness in these volcanic fields. More in detail this computational model verified the strong linear relationship existing between the upper cutoff of the power law distribution and the magma source depth. This method was thus applied to Ascraeus Mons on Mars, which displays basaltic magmatism and hundreds of collapse pits and vents around its flanks, giving a robust statistic to the calculations. Basing on a structural mapping performed on HRSC (High Resolution Stereo Camera onboard the ESA Mars Express mission) at 12 m/px and CTX (Context Camera, Mars Reconnaissance Orbiter mission) at 6 m/px mosaics, more than 2300 collapse pits and vents were analysed. Data analyses displayed a clustering in the structures distribution, showing two distinct populations. The obtained Uco values revealed the presence and the likely depth of both a deep big magma chamber and a small shallower chamber placed below the main caldera. Moreover, the resulting magma source depths are completely consistent and comparable with those

  18. Cenozoic Ignimbrites, Source Calderas, Relict Magma Chambers, and Tectonic Settings: Perspectives from Cordilleran North America (Invited)

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.

    2009-12-01

    identified at many ignimbrite calderas, building on the pioneering observations of van Bemmelen at Lake Toba, Indonesia. Still many Tertiary caldera systems remain poorly understood where buried beneath younger rocks, others completely eroded to levels of subvolcanic granitic plutons. Links between silicic volcanism and batholith formation in continental crust continue a major research focus; improved petrologic, isotopic, and geophysical techniques are helping evaluate compositional and age relations between extrusive and intrusive components, as well as present-day intrusion geometry relative to times of peak volcanism. Ignimbrites that preserve quenched compositional gradients, commonly from rhyolite upward into crystal-rich dacite, were early recognized as special opportunities for magma-chamber studies, especially as analytical methods improved (XRF and INAA rock chemistry, microprobe mineral compositions, radiogenic and stable isotope geochemistry). These demonstrated the importance of mafic magma from the mantle, melting/assimilation in the lower crust, and mixing of diverse magmas during rise and eruption, even as recent studies by electron and/or ion probe documented complex crystal cargos (mixed phenocrysts, xenocrysts, and antecrysts).

  19. Xenoliths from Late Cretaceous seamounts in the Central Pacific: Cumulates of fractionating alkalic basalt magma chambers

    SciTech Connect

    Davis, A.S.; Friesen, W.B.; Pickthorn, L.; Pringle, M.S.; Clague, D.A. )

    1990-06-01

    Abundant xenoliths in alkalic basalt were recovered from two Late Cretaceous seamounts in the Central Pacific. One seamount, located in the Phoenix archipelago (lat 0{degree}22'5, long 176{degree}05'W), is dated by {sup 40}Ar/{sup 39}Ar techniques as 65 Ma. The other seamount, located in the northern Line Islands (lat 15{degree}39'N, long 170{degree}23'W), is dated as 70 Ma. Host lavas are basanite and differentiated alkalic basalt. Mafic xenolith assemblages consist of clinopyroxene with variable amounts of amphibole and mica. Intermediate assemblages have abundant feldspar in addition to the mafic minerals. Rare felsic xenoliths consist of two or more feldspars. Variable amounts of apatite, titanite, and magnetite are poikilitically enclosed in mafic phases, and minor feldspathoids are present in some xenoliths. Most xenoliths are holocrystalline with fine- to medium-grained, equigranular cumulus texture, but two xenoliths have a seriate, interlocking crystal framework in a small amount of glassy to microcrystalline matrix. Clinopyroxene in the holocrystalline samples is partially replaced by amphibole. In a few samples, extensive replacement of clinopyroxene by rounded amphibole grains results in a nearly granoblastic texture. Clinopyroxene compositions range from diopside to ferrosalite and are essentially Cr-free but generally have high Ti and Al contents. Cr-rich diopside and Al-augite, characteristic of mantle clinopyroxene, are absent. Feldspars include plagioclase, anorthoclase, and sanidine. Mineral compositions of xenoliths are similar to those of phenocrysts in the host lavas, indicating that these xenoliths are not metasomatized mantle material, but rather are cumulates from fractionating alkalic basalt magma chambers.

  20. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry

    USGS Publications Warehouse

    Lipman, P.W.

    1997-01-01

    Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3-5 km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault platesubsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to

  1. Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry

    NASA Astrophysics Data System (ADS)

    Lipman, Peter W.

    Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3-5km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault plate-subsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to

  2. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  3. The role of pre-existing tectonic structures and magma chamber shape on the geometry of resurgent blocks: Analogue models

    NASA Astrophysics Data System (ADS)

    Marotta, Enrica; de Vita, Sandro

    2014-02-01

    A set of analogue models has been carried out to understand the role of an asymmetric magma chamber on the resurgence-related deformation of a previously deformed crustal sector. The results are then compared with those of similar experiments, previously performed using a symmetric magma chamber. Two lines of experiments were performed to simulate resurgence in an area with a simple graben-like structure and resurgence in a caldera that collapsed within the previously generated graben-like structure. On the basis of commonly accepted scaling laws, we used dry-quartz sand to simulate the brittle behaviour of the crust and Newtonian silicone to simulate the ductile behaviour of the intruding magma. An asymmetric shape of the magma chamber was simulated by moulding the upper surface of the silicone. The resulting empty space was then filled with sand. The results of the asymmetric-resurgence experiments are similar to those obtained with symmetrically shaped silicone. In the sample with a simple graben-like structure, resurgence occurs through the formation of a discrete number of differentially displaced blocks. The most uplifted portion of the deformed depression floor is affected by newly formed, high-angle, inward-dipping reverse ring-faults. The least uplifted portion of the caldera is affected by normal faults with similar orientation, either newly formed or resulting from reactivation of the pre-existing graben faults. This asymmetric block resurgence is also observed in experiments performed with a previous caldera collapse. In this case, the caldera-collapse-related reverse ring-fault is completely erased along the shortened side, and enhances the effect of the extensional faults on the opposite side, so facilitating the intrusion of the silicone. The most uplifted sector, due to an asymmetrically shaped intrusion, is always in correspondence of the thickest overburden. These results suggest that the stress field induced by resurgence is likely dictated by

  4. Conductive heat transfer from an isothermal magma chamber and its application to the measured heat flow distribution from mount hood, Oregon

    USGS Publications Warehouse

    Nathenson, Menuel; Tilling, Robert I.; ,

    1993-01-01

    A steady-state solution for heat transfer from an isothermal, spherical magma chamber, with an imposed regional geothermal gradient far from the chamber, is developed. The extensive published heat-flow data set for Mount Hood, Oregon, is dominated by conductive heat transfer in the deeper parts of most drill holes and provides an ideal application of such a model. Magma-chamber volumes or depths needed to match the distribution of heat-flow data are larger or shallower than those inferred from geologic evidence.

  5. The Magma Chamber Simulator: An Interactive Computer Program for Modeling the Chemical and Physical Evolution of Complex Magmatic Systems

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.; Ghiorso, M. S.

    2007-12-01

    The Magma Chamber Simulator (MCS) is an interactive graphical computational tool for modeling the chemical and physical evolution of a complex magmatic system defined here as a magma body-wallrock couple. The tool seamlessly integrates the phase equilibria capabilities of MELTS (Ghiorso & Sack 1995) with trace element and isotope conservation equations based on the energy constrained (EC-RAFC) approach of Spera & Bohrson (2001, 2002, 2004) and Bohrson & Spera (2001, 2003). Evaluation of trace element behavior includes partitioning among coexisting solid, melt and fluid phases (Spera et al. 2007). Each MCS simulation provides a thermodynamically based description of the chemical and energetic state of a magma body and its surrounding wallrock as it evolves along a complex P-T-X path. The MCS is designed to address closed-system fractional or equilibrium crystallization as well as open-system processes such as assimilation of wallrock partial melt, stoping of wallrock blocks, recharge, and eruption. Input includes initial compositions and masses of magma, wallrock, and recharge magma and mineral-melt-fluid partition coefficients for trace elements. Compositions (major, trace element, isotopes) and abundances of solids and melt, and thermodynamic and physical properties of the system (e.g., viscosity, density, volume fraction fluid) are output. Because users may be interested in a subset of the large database generated for each simulation, the MCS offers an efficient method of presenting results tailored to the user's interest. The MCS also includes a graphing tool that allows direct comparison between model results and data for a particular natural system. Because the graphical display is updated after each step, the user can compare model vs. natural data in real-time and modify MCS input. Modifications are accommodated through an interactive module that allows the user to stop the simulation, return to previous states, modify a subset of input parameters (e

  6. Output rate of magma from active central volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1980-01-01

    For part of their historic records, nine of the most active volcanoes on earth have each erupted magma at a nearly constant rate. These output rates are very similar and range from 0.69 to 0.26 cu m/s. The volcanoes discussed - Kilauea, Mauna Loa, Fuego, Santiaguito, Nyamuragira, Hekla, Piton de la Fournaise, Vesuvius and Etna - represent almost the whole spectrum of plate tectonic settings of volcanism. A common mechanism of buoyantly rising magma-filled cracks in the upper crust may contribute to the observed restricted range of the rates of output.

  7. The Torres del Paine intrusion as a model for a shallow magma chamber

    NASA Astrophysics Data System (ADS)

    Baumgartner, Lukas; Bodner, Robert; Leuthold, Julien; Muntener, Othmar; Putlitz, Benita; Vennemann, Torsten

    2014-05-01

    The shallow magmatic Torres del Paine Intrusive Complex (TPIC) belongs to a series of sub-volcanic and plutonic igneous bodies in Southern Chile and Argentina. This trench-parallel belt is located in a transitional position between the Patagonia Batholith in the West, and the alkaline Cenozoic plateau lavas in the East. While volumetrically small amounts of magmatism started around 28 my ago in the Torres del Paine area, and a second period occurred between 17-16 Ma, it peaked with the TPIC 12.59-12.43 Ma ago. The spectacular cliffs of the Torres del Paine National park provide a unique opportunity to study the evolution of a very shallow magma chamber and the interaction with its host rocks. Intrusion depth can be estimated based on contact metamorphic assemblages and granite solidus thermobarometry to 750±250 bars, corresponding to an intrusion depth of ca. 3km, ca. 500m above the base of the intrusion. Hornblende thermobarometry in mafic rocks agrees well with these estimates (Leuthold et al., 2014). The TPIC is composed of a granitic laccolith emplaced over 90ka (Michel et al., 2008) in 3 major, several 100m thick sheets, forming an overall thickness of nearly 2 km. Contacts are sharp between sheets, with the oldest sheet on the top and the youngest on the bottom (Michel et al., 2008). The granitic laccolith is under-plated by a ca. 400m thick mafic laccolith, built up over ca. 50ka (Leuthold et al. 2012), constructed from the bottom up. Granitic and mafic sheets are themselves composed of multiple metric to decametric pulses, mostly with ductile contacts between them, resulting in outcrop patterns resembling braided stream sediments. The contact of the TPIC with the Cretaceous flysch sediments document intrusion mechanism. Pre-existing sub-horizontal fold axes are rotated in the roof of the TPIC, clearly demonstrating ballooning of the roof; no ballooning was observed in the footwall of the intrusion. Extension during ballooning of the roof is indicated by

  8. The Ignimbrite Campana Magma Chamber: Pre-eruptive P-t-x Conditions From Melt Inclusion Data

    NASA Astrophysics Data System (ADS)

    Marianelli, P.; Proto, M.; Sbrana, A.

    The Ignimbrite Campana (36 ka) represents the most powerful eruption characterizing the volcanic history of the Campi Flegrei caldera. The eruption was fed by a stratified magma chamber (Civetta et al., 1997). This study, based on melt inclusion investigations in phenocrysts of pumice, is aimed to better constrain depth, thermal conditions and composition of magmas hosted in the magma chamber. Samples from the Breccia Museo products (proximal deposits of the Ignimbrite Campana) were selected, due to their sin-eruptive and sin-depositional quenching. On the basis of melt inclusions investigations important informations about crystallization conditions (P, T, X) and volatile contents have been obtained. Glass compositions fall in the trachyte field close to the trachyte-phonolite boundary, similarly to the others Ignimbrite Campana products. The temperature of homogenization ranges between 850 and 1135°C. These values of temperature, that can be assumed as crystallization temperatures, correlate to the host crystal compositions with the highest one corresponding to melt inclusions trapped in less Fe-rich pyroxene. FTIR analyses on double -polished melt inclusions were carried out in order to investigate H2O and CO2 contents. Preliminary results indicate values of H2O that range from about 2 up to 8.0wt%, whereas CO2 was not detected. Lowest values of H2O (modal value = 2- 3wt%) correspond to the melt inclusions from layers at the top of the Breccia Museo (pumice flow deposits). Minimum pressures of crystallization are estimated in the range 100-200 MPa, assuming saturation conditions for the trapped melts and calculating the solubility of H2O in trachytic magmas according to the model of Moore et al. (1998). References Civetta L., Orsi G., Pappalardo L., Fisher R.V., Heiken G., Ort M. (1997): Geochemical zoning, mingling, eruptive dynamics and depositional processes ­ the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol. Geoth. Res., 75: 183

  9. Constraints from sill intrusions and their deeper source magma chambers (seismic high velocity bodies) on the origins of volcanic rifted margins

    NASA Astrophysics Data System (ADS)

    Rohrman, M.

    2015-12-01

    Volcanic rifted margins are characterized by massive igneous activity originating from the rift margin, characterized by seaward dipping reflectors. These consist of basalt flows and associated magmatic products, from deep magma chambers imaged on seismic data as High Velocity Bodies (HVB) with seismic velocities between 7 and 7.5 km/s. The relationship between rifting and decompression melting have been well quantified, using the HVB's as constraints on magmatic production to match extension models. Crucial in this approach are the relationship between extension and mantle plumes, with HVB's generated by mantle plumes often indicative of velocities between 7.5 - 7.8 km/s. Here I address information that can be obtained from sill complexes in sedimentary basins associated with rifting, representing the earliest phase of magmatism. I use a simple crustal scale hydrostatic model for dikes while incorporating the presence of sills by calculating magmatic overpressures from differences in pressure gradients. It transpires that the presence of sills as observed on seismic reflection and outcrop data, can be predicted. Modelling further suggests that the source of these sill complexes are large magma chambers at or near the Moho, and equate to HVB's observed on seismic data. Utilizing simple mass balance calculations, the ratio of cumulate thickness (from HVB thickness) and expelled melt (from accumulated sill thicknesses) can be related to MgO content in expelled liquids, primary magma and cumulates. Higher MgO content translates in higher seismic velocities. Thus, HVB velocity can subsequently be used to discriminate between mantle plume, or shallow rift related melting. The theory is applied to various basins bordering the northern North Atlantic (Vøring Basin, Jameson Land Basin and Rockall Basin) and South Atlantic rifts (Namibia), associated with the Paleocene/Eocene Iceland mantle plume and the Early Cretaceous Tristan da Cunha mantle plume magmatism respectively.

  10. The Ioko-Dovyren layered massif (Southern Siberia, Russia): 1. Internal structure, magma compositions, and fingerprints of open magma chamber behavior

    NASA Astrophysics Data System (ADS)

    Ariskin, Alexey; Danyushevsky, Leonid; Nikolaev, Georgy

    2013-04-01

    YDM cumulates. Estimates for Ol-gabbronorites and Pl-dunites from ultramafic sills result in more evolved magma containing Ol~Fo85 at T~1190oC. Both geochemical and cumulate structure of YDM is indicative of a significant amount of mafic melts to be extracted from the original cumulate piles, followed by their expulsion from the magma staging chamber. Fingerprints of such an open-system behavior are recorded in (1) strong depletion in incompatible elements of the bulk YDM composition with respect to parental magmas, (2) a complimentary "over-enrichment" with Ol cumulates and sulfides, (3) insignificant variations of Ol composition throughout the Layered Series, and (4) the absence of the Upper Border Series as a marginal compositional reversal. This research was supported by AngloAmerican, BHP Billiton and Votorantim Metais through AMIRA project P962, by the Australian Research Council funding to the CODES, and the Russian Foundation for Basic Research (projects 08-05-00194a, 11-05-00268a). [1] Ariskin et al. (2013) Geochem. Intern. [2] Ariskin et al. (2012)Abs. 12th Intern. Ni-Cu-(PGE) symp. (China)

  11. Evolution of magma chambers generating the phonolitic Cão Grande Formation on Santo Antão, Cape Verde Archipelago

    NASA Astrophysics Data System (ADS)

    Eisele, S.; Freundt, A.; Kutterolf, S.; Hansteen, T. H.; Klügel, A.; Irion, I. M.

    2016-11-01

    The Cão Grande Formation (CGF) on the western plateau of Santo Antão is a sequence of four phonolitic tephras (Canudo Tephra, Cão Grande I Tephra, Cão Grande II Tephra and Furninha Tephra) produced by highly explosive eruptions that alternatingly originated from a basanitic - phonolitic and a nephelinitic - phonolitic magmatic system. Detailed stratigraphy and petrological investigations of each unit are used to demonstrate the unusual situation that two distinct highly evolved magmas differentiated contemporaneously in separate magmatic systems. Chemical thermobarometry suggests that both magmatic systems not only temporally co-existed, but also that their magma chambers resided close to each other at 7 to 16 km depth, beneath the western plateau of Santo Antão. However, the distinct melt and magma compositions indicate that both systems evolved independently. The only interaction between both magmatic systems was an injection of magma from the nephelinitic - phonolitic magmatic system into the Cão Grande II Tephra (CG II) phonolitic reservoir, which is associated to the basanitic - phonolitic magmatic system. Compositional zonations in the tephra deposits indicate that the eruptions of the CGF tapped stratified magma reservoirs that mainly resulted from crystal accumulation generating downward increasing magma density. However, the CG II tephras also show a significant gradient in melt (glass) compositions. Magmas of the Canudo Tephra (CT) and the Cão Grande I Tephra (CG I) were H2O-saturated and their eruptions were probably triggered by fluid overpressure in the magma chamber. On the other hand, the CG II magma was H2O-undersaturated; we therefore assume that the injection of the hot nephelinitic - phonolitic magma system-type melt/magma triggered the eruption. The zoned deposit of the Furninha Tephra (FT) indicates mafic magma replenishment into a phonolitic reservoir directly prior to the eruption, thus providing a probable triggering mechanism. The

  12. Comagmatic granophyric granite in the Fish Canyon Tuff, Colorado: Implications for magma-chamber processes during a large ash-flow eruption

    USGS Publications Warehouse

    Lipman, P.; Dungan, M.; Bachmann, Olivier

    1997-01-01

    The 27.8 Ma Fish Canyon Tuff, a vast ash-flow sheet (??5000 km3) of uniform phenocryst-rich dacite, is representative of "monotonous intermediate" eruptions from a magma chamber that lacked compositional gradients. Sparse small fragments of comagmatic granophyre in late-erupted tuff and postcaldera lava, having mineral compositions indistinguishable from phenocrysts in the tuff and precaldera lava-like rocks, record complex events in the Fish Canyon chamber just prior to eruption. Sanidine phenocrysts in the granophyre preserve zoning evidence of mingling with andesitic magma, then shattering by decompression and volatile loss accompanying early Fish Canyon eruptions before overgrowth by granophyre. The textural and chemical disequilibria indicate that the eruption resulted from batholith-scale remobilization of a shallow subvolcanic chamber, contrary to previous interpretations of magma storage and phenocryst growth in the lower crust.

  13. Zircon crytallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    USGS Publications Warehouse

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Miff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ??? 60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction). ?? 2007 Geological Society of America.

  14. Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc)

    USGS Publications Warehouse

    Bachman, O.; Charlier, B.L.A.; Lowenstern, J. B.

    2007-01-01

    In contrast to most large-volume silicic magmas in continental arcs, which are thought to evolve as open systems with significant assimilation of preexisting crust, the Kos Plateau Tuff magma formed dominantly by crystal fractionation of mafic parents. Deposits from this ~60 km3 pyroclastic eruption (the largest known in the Aegean arc) lack xenocrystic zircons [secondary ion mass spectrometry (SIMS) U-Pb ages on zircon cores never older than 500 ka] and display Sr-Nd whole-rock isotopic ratios within the range of European mantle in an area with exposed Paleozoic and Tertiary continental crust; this evidence implies a nearly closed-system chemical differentiation. Consequently, the age range provided by zircon SIMS U-Th-Pb dating is a reliable indicator of the duration of assembly and longevity of the silicic magma body above its solidus. The age distribution from 160 ka (age of eruption by sanidine 40Ar/39Ar dating; Smith et al., 1996) to ca. 500 ka combined with textural characteristics (high crystal content, corrosion of most anhydrous phenocrysts, but stability of hydrous phases) suggest (1) a protracted residence in the crust as a crystal mush and (2) rejuvenation (reduced crystallization and even partial resorption of minerals) prior to eruption probably induced by new influx of heat (and volatiles). This extended evolution chemically isolated from the surrounding crust is a likely consequence of the regional geodynamics because the thinned Aegean microplate acts as a refractory container for magmas in the dying Aegean subduction zone (continent-continent subduction).

  15. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers.

    PubMed

    Couch, S; Sparks, R S; Carroll, M R

    2001-06-28

    Characteristic features of many porphyritic andesite and dacite lavas are that they are rich in crystals and display a range of disequilibrium features, including reversely zoned crystals, resorption surfaces, wide ranges of mineral compositions and minerals which are not in equilibrium with the surrounding rock matrix. These features are often interpreted as evidence of the mixing of magmas of contrasting composition, temperature and origin. Here, however, we propose that such features can also be caused by convection within a magma body with a single composition, that is heated from below and cooled from above. We describe petrological observations of andesite lava erupted at the Soufrière Hills volcano, Montserrat, which indicate a heating event and the intermingling of crystals that have very different thermal histories. We present experimental data on a representative groundmass composition of this lava, which indicate that it is difficult to explain the calcic compositions of plagioclase overgrowth rims and microphenocrysts unless parts of the magma were at temperatures much higher than the inferred average temperature. The concept of convective self-mixing allows us to explain the occurrence of compositions of minerals that apparently cannot coexist under equilibrium conditions.

  16. Investigation of MAGMA chambers in the Western Great Basin. Final report, 9 June 1982-31 October 1985

    SciTech Connect

    Peppin, W.A.

    1986-02-10

    This report summarizes efforts made by the Seismological Laboratory toward the detection and delineation of shallow crustal zones in the western Great Basin, and toward the development of methods to accomplish such detection. The work centers around the recently-active volcanic center near Long Valley, California. The work effort is broken down into three tasks: (1) network operations, (2) data analysis and interpretation, and (3) the study of shallow crustal amomalies (magma bodies). Section (1) describes the efforts made to record thousand of earthquakes near the Long Valley caldera, and focusses on the results obtained for the November 1984 round Valley earthquake. Section (2) describes the major effort of this contract, which was to quantify the large volume of seismic data being recorded as it pertains to the goals of this contract. Efforts described herein include (1) analysis of earthquake focal mechanisms, and (2) the classification, categorization, and interpretation of unusual seismic phases in terms of reflections and refractions from shallow-crustal anomalous zones. Section (3) summarizes the status of our research to date on the locations of magma bodies, with particular emphasis on a location corresponding to the map location of the south end of Hilton Creek fault. Five lines of independent evidence suggest that magma might be associated with this spot. Finally, new evidence on the large magma bodies within the Long Valley caldera, of interest to the DOE deep drilling project, is presented.

  17. San Jacinto Intrusive Complex: 1. Geology and mineral chemistry, and a model for intermittent recharge of tonalitic magma chambers

    NASA Astrophysics Data System (ADS)

    Hill, R. I.

    1988-09-01

    Geological mapping within the San Jacinto Mountains of southern California has delineated three major and numerous minor plutons of the Cretaceous Peninsular Ranges batholith. Early minor intrusives emplaced into quartz-rich metasedimentary sequences span the compositional range olivine gabbro to granite. The three large (to 250 km2) plutons span a limited compositional range between mafic tonalite (color index (CI) > 15) and K-feldspar-poor granodiorite (CI ≃ 10). All units are composed of plagioclase (An30-40) (50-55%), quartz (20-30%), K-feldspar (1-8%), biotite (10-15%), hornblende (0-5%), titanite (0-2%), and accessory zircon, apatite, allanite, and ilmenite. Variations in mineral abundances are geographically systematic only within the youngest major mass (unit III), which grades from marginal mafic tonalite to central K-feldsparpoor granodiorite. Mineral foliations and banding, schlieren, and inclusion orientation within each unit usually parallel the nearest contact. Alignment of foliations and apparent flow-sorting and scour features are interpreted as reflecting flow patterns within each chamber. Mafic synplutonic dykes (of quartz diorite and tonalite) intruded the tonalites and were broken up to form extensive inclusion trains. Dyke-tonalite relations are interpreted as showing that (1) magma adjacent to the pluton wall had considerable yield strength, (2) magmatic flow adjacent to pluton walls was capable of moving material some distance (up to kilometers) to form the inclusion trains, and (3) the dykes represent conduits through which a considerable amount of liquid was added to the inflating magma chambers. Mineral compositions throughout the major plutons are relatively uniform. Mean plagioclase composition ranges from An40 in the most mafic tonalites to An30 in the most felsic granodiorites; the total microprobe-observed range is An44 to An25 (and to An47 in a mafic inclusion). Mg/(Mg + Fe + Mn) of biotite and hornblende drop similarly from 0

  18. Carbonate-derived CO 2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Dallai, Luigi; Cioni, Raffaello; Boschi, Chiara; D'Oriano, Claudia

    2011-10-01

    Mafic phenocrysts from selected products of the last 4 ka volcanic activity at Mt. Vesuvius were investigated for their chemical and O-isotope composition, as a proxy for primary magmas feeding the system. 18O/ 16O ratios of studied Mg-rich olivines suggest that near-primary shoshonitic to tephritic melts experienced a flux of sedimentary carbonate-derived CO 2, representing the early process of magma contamination in the roots of the volcanic structure. Bulk carbonate assimilation (physical digestion) mainly occurred in the shallow crust, strongly influencing magma chamber evolution. On a petrological and geochemical basis the effects of bulk sedimentary carbonate digestion on the chemical composition of the near-primary melts are resolved from those of carbonate-released CO 2 fluxed into magma. An important outcome of this process lies in the effect of external CO 2 in changing the overall volatile solubility of the magma, enhancing the ability of Vesuvius mafic magmas to rapidly rise and explosively erupt at the surface.

  19. On the anatomy of magma chamber and caldera collapse: The example of trachy-phonolitic explosive eruptions of the Roman Province (central Italy)

    NASA Astrophysics Data System (ADS)

    Palladino, Danilo M.; Gaeta, Mario; Giaccio, Biagio; Sottili, Gianluca

    2014-06-01

    Textural and compositional features of pyroclastic products erupted during caldera-forming events often reveal the tapping of different portions of variably zoned magma chambers due to changing geometries of the conduit/vent systems. Here we report on ultrapotassic trachytic-phonolitic explosive eruptions of the Roman Province (central Italy), which show remarkable changes of textural features and glass compositions in the juvenile material, even if the bulk chemical composition is essentially constant. In each example, the lower eruption sequence contains whitish, crystal-poor (leucite-free), highly vesicular pumice, emplaced by early Plinian fallout and/or pyroclastic currents; upsection, the eruption sequence contains black, low porphyritic (sanidine + leucite-bearing), moderately vesicular, scoria or spatter, emplaced by major pyroclastic flows (red tuff with black scoria) and associated co-ignimbrite, coarse lithic-rich breccias. This suggests a shift from a central feeder conduit, tapping the central part of the magma chamber, to a ring fracture vent system, tapping the peripheral portions of the magma chamber, during caldera collapse. Key features of these evacuating magma chambers are the thermal and volatile concentration (Xvol) gradients that produce the observed textural and compositional spectrum of trachy-phonolitic rock types. In particular, the degrees of freedom during the crystallization of these ultrapotassic magmas are increased by the variation of the leucite stability field at different PH2O conditions. Both leucite-free and leucite-bearing differentiated ultrapotassic rock types can be produced in the course of individual eruptions, as a result of pre-eruptive conditions in the feeder magma, with no need to invoke different differentiation suites related to mantle source heterogeneities of parental magmas.

  20. Differentiation in the cumulates from a Mauna Loa, Hawaii magma chamber

    SciTech Connect

    Schwindinger, K.R.; Anderson, A.F.

    1985-01-01

    The interstitial glass in cognate nodules from Mauna Loa, has by chemical diffusion or convective fluid transport, remained in equilibrium with the overlying magma. The glass bearing nodules were collected from Damona Cone on the southwest rift zone of Mauna Loas. The nodules have approximately 15% olivine, 40% orthopyroxene plus clinopyroxene (3-20%), and 85% plagioclase plus vescicular glass (2-25%). Olivine norites have anhedral olivine mantled with anhedral orthopyroxene, subhedral to euhedral pyroxene, anhedral plagioclase, and 20 to 25% glass. Olivine gabbros have anhedral olivine, subequant, anhedral to subhedral pyroxene and plagioclase and less than 10% glass. The bulk composition of greater than 15%, MgO, with the textures, indicate the nodules are an accumulative origin. Thus these nodules are partially solidified pieces of crystal/liquid accumulative mush. The compositions of the olivines are Fa 18 to 25 mole percent, of the plagioclases are An 70 to 80 mole percent. The composition of the orthopyroxene is En76 Fs19 Wo5, and of the clinopyroxene is En50 Fall Wo30. The composition of the interstitial glasses is: SiO2 52.54, TiO2 2.04, Al2O3 14.39, FeO 11.47, MgO 7.15, CaO 10.28, Na20 1.42, K2O 0.39, P2O5 0.21. The low Na2O is from two nodules that may have experienced high temperature alteration. The uniformity of the glass composition, in contrast to its large variation in the mode, suggests the interstitial liquid in the mush has remained in equilibrium with some large reservoir of MgO rich liquid, such as the magma above the mush. Two possible mechanisms of cation exchange between the magma and the interstitial liquid of the mush are chemical diffusion and convective fluid transport.

  1. New structural limits on magma chamber locations at the Valley of Ten Thousand Smokes, Katmai National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Wallmann, Peter C.; Pollard, David D.; Hildreth, Wes; Eichelberger, John C.

    1990-12-01

    New structural data from the Novarupta basin, Katmai National Park, Alaska, site of the largest volcanic eruption of this century (1912), provide limits for the location of magma chambers associated with this eruption. To investigate the subsurface structure of the 1912 vents, and to support an interdisciplinary study of this young volcanic system, a project of geologic mapping of surficial and bedrock structures in the vent region of the 1912 eruption has been undertaken.Landslide scarps, arcuate grabens, a monoclinal fold, and truncated ridges circumscribe the Novarupta basin, marking the inferred outer rim of the vent. A set of radial fissures crosses the southern margin of the basin, striking ˜140°, subparallel to the dominant bedrock joint set. These fissures and joints, along with the local plate-motion vector and the inferred regional stress orientation, are consistent with a feeder dike propagating from a reservoir beneath Trident volcano to the eruptive vent.

  2. New structural limits on magma chamber locations at the Valley of Ten Thousand Smokes, Katmai National Park, Alaska

    SciTech Connect

    Wallmann, P.C.; Pollard, D.D. ); Hildreth, W. ); Eichelberger, J.C. )

    1990-12-01

    New structural data from the Novarupta basin, Katmai National Park, Alaska, site of the largest volcanic eruption of this century (1912), provide limits for the location of magma chambers associated with this eruption. To investigate the subsurface structure of the 1912 vents, and to support an interdisciplinary study of this young volcanic system, a project of geologic mapping of surficial and bedrock structures in the vent region of the 1912 eruption has been undertaken. Landslide scarps, arcuate grabens, a monoclinal fold, and truncated ridges circumscribe the Novarupta basin, marking the inferred outer rim of the vent. A set of radial fissures crosses the southern margin of the basin, striking {approximately}140{degree}, subparallel to the dominant bedrock joint set. These fissures and joints, along with the local plate-motion vector and the inferred regional stress orientation, are consistent with a feeder dike propagating from a reservoir beneath Trident volcano to the eruptive vent.

  3. Structural reconstruction and zonation of a tilted mid-crustal magma chamber: the felsic Chemehuevi Mountains plutonic suite

    SciTech Connect

    John, B.E.

    1988-07-01

    Structural relief resulting from middle Tertiary extensional deformation in the Chemehuevi Mountains of California exposes a unique cross section through an extensive (> 280 km/sup 2/) calc-alkalic, compositionally zoned, sill-like granitic intrusion of Late Cretaceous age. Minimum estimates for emplacement pressure, 4 to 6 kbar, imply that the Chemehuevi Mountains plutonic suite was initially intruded at mid-crustal depths and has undergone 10/sup 0/ to 15/sup 0/ of post emplacement tilting, tectonic denudation, and erosion. Reconstruction of the pre-Tertiary (pre-tilt) configuration suggests that this metaluminous to peraluminous granitic suite exhibits crude normal, vertical, and temporal zonation from granodiorite to granite. The zonation involves a decrease in age and an increase in silica away from the walls and roof, the youngest and most evolved members being concentrated toward the center and floor of the intrusion. The lower part of the intrusion had a flat floor, which was penetrated by at least three feeder dikes providing magma to the chamber. Structural reconstruction indicates that the roof is less than 1 km above the exposed top of the intrusion. The magma apparently ponded along the contact between undeformed Proterozoic basement above and subhorizontally foliated mylonitic gneisses below. This reconstruction provides opportunity to observe crosscutting relations between different types of mid-crustal structures (thick mylonitic shear zones, granitic intrusions, and temporally unrelated detachment faults), the geometry of which emphasizes the need for careful evaluation of seismic reflection profiles across complexly deformed and intruded continental crust.

  4. Magma chamber evolution: implication for the generation of continental crust: A case study in Kekeli batholith, North Qilian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Huang, H.; Niu, Y.

    2013-12-01

    plus minor other felsic minerals (Kfs, Qtz). The charnockite sample QL10-26 has the highest TiO2, pyroxene with Amp reaction rims and the most radiogenic WR-Hf (ɛHf(t) = 26) and therefore represent the most primitive mafic endmember. The leucogranite samples have the lowest ɛHf(t) and ɛNd(t) and thus represent the crustal endmember. Other samples with intermediate composition between these two endmembers also have the intermediate isotopic compositions in between. The various zircon types with complex internal structures present in most samples reflect complex source materials. All these observations are consistent with the scenario that the mantle-derived basaltic magmas interacted with granitic magmas derived from the lower crust. Considering the petrotectonic associations, it is probable that the Kekeli Batholith may represent a fossil magma chamber that crystallized at the base of a continental arc crust associated with a subduction zone. Schmitz, M.D., Vervoort, J.D., Bowring, S.A., Patchett, P.J., 2004. Decoupling of the Lu-Hf and Sm-Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa. Geology 32, 405.

  5. Size and Longevity of Magma Chambers in the Tuolumne Batholith: A Comparison of Thermal Modeling and Cooling Thermochronology

    NASA Astrophysics Data System (ADS)

    Paterson, S. R.; Okaya, D.; Matzel, J.; Memeti, V.; Mundil, R.; Nomade, S.

    2007-12-01

    Our field studies on the 1200 km2 Tuolumne batholith and the controversy about how this 95-85 Ma composite batholith was constructed, motivated us to evaluate the thermal evolution of volumetrically large magma bodies formed by an amalgamation of a few to many pulses. We use finite difference 1D and 2D models with full spatial heterogeneity of rock properties, fine-scale internal grid spacing that allows for the definition of intricate rock geometries, and small internal time steps for calculations over any time duration. Careful code construction for numerical stability, computational efficiency, and resource management (dynamic memory allocations and CPU parallelization) allows us to model at scales between sub-m to km's for time durations of days to many millions of years. Several types of initial and boundary conditions including thermal gradients and heat flux and the effects of latent heat of fusion are installed. We have modeled a number of chamber construction scenarios. (1) single intrusions of rectangular or elliptical geometry (i.e., sills, dikes, or blobs) emplaced at variable time; (2) A sequence of intrusions emplaced at specified but arbitrary times or according to a time rate. Shapes in the sequence are fixed or set to randomly vary within a range of dimensions and aspect ratios. (3) A sheeted dike complex can be created wherein the thermal model actually expands according to a growth (extension) rate to accommodate the emplacement of new but thin dikes. Dike width and the time between dikes are coupled based on growth rate; (4) Finally, irregularly shaped bodies from a series of maps or cross-sections can be emplaced into our thermal model and digitally rendered into rock types, which are assigned thermal properties. These mapped shapes are emplaced into the thermal model at specified times so that they represent new thermal pulses. The use of maps or cross-sections allows us to examine the thermal behavior of observed field geometries. This wide

  6. {sup 226}Ra and {sup 231}Pa systematics of axial MORB, crustal residence ages, and magma chamber characteristics at 9--10{degree}N East Pacific Rise

    SciTech Connect

    Goldstein, S.J.; Murrell, M.T.; Perfit, M.R.; Batiza, R.; Fornari, D.J.

    1994-06-01

    Mass spectrometric measurements of {sup 30}Th-22{sup 226}Ra and {sup 235}-U{sup 231}Pa disequilibria for axial basalts are used to determine crustal residence ages for MORB magma and investigate the temporal and spatial characteristics of axial magma chambers (AMC) at 9--10{degrees}N East Pacific Rise (EPR). Relative crustal residence ages can be calculated from variations in {sup 226}Ra/{sup 230}Th and {sup 231}Pa/{sup 235}U activity ratios for axial lavas, if (1) mantle sources and melting are uniform, and mantle transfer times are constant or rapid for axial N-MORB, and (2) {sup 231}Pa/{sup 235}U and {sup 226}Ra/{sup 230}Th in the melt are unaffected by shallow level fractional crystallization. Uniform Th, Sr, and Nd isotopic systematics and incompatible element ratios for N-MORB along the 9--10{degrees}N segment indicate that mantle sources and transfer times are similar. In addition, estimated bulk solid/melt partition coefficients for U, Th, and Pa are small, hence effects of fractional crystallization on {sup 231}Pa/{sup 235}U ratios for the melt are expected to be negligible. However, fractional crystallization of plagioclase in the AMC would lower {sup 226}Ra/{sup 230}Th ratios in the melt and produce a positive bias in {sup 226}Ra crustal residence ages for fractionated lavas.

  7. Effects of magma and conduit conditions on transitions between effusive and explosive activity: a numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; De'Michieli Vitturi, M.; Clarke, A. B.; Voight, B.

    2013-12-01

    Transitions between effusive and explosive eruptions, common at silicic volcanoes, can occur between distinct eruptive episodes or can occur as changes between effusive and explosive phases within a single episode. The precise causes of these transitions are difficult to determine due to the multitude of mechanisms and variables that can influence fragmentation thresholds. Numerical modeling of magma ascent within a volcanic conduit allows the influence of key variables to be extensively tested. We study the effect of different variables on the mass eruption rate at the vent using a conservative, 1-D, two-phase, steady-state model that allows for lateral gas loss at shallow depths. Several fragmentation criteria are also tested. We are able to generate a number of regime diagrams for a variety of magma and conduit conditions that constrain transitions from effusive to explosive episodes. We show that a transition to explosive activity can occur without changes in the bulk chemistry, crystal volume fraction, or gas mass fraction of the magma. Eruptive style can be controlled by the pressure gradient within the conduit caused by either overpressure in the chamber or varying lava dome size at the vent. Specific results are sensitive to both magma temperature and conduit geometry. It is important that these variables are well constrained when applying this model to different volcanic systems. We apply our model to the recent activity at Merapi Volcano in Indonesia. We constrain model input and output parameters using current petrologic, seismic, and geodetic studies of the Merapi system, and vary critical parameters over reasonable ranges as documented in the literature. Our model is able to reproduce eruption rates observed during both the 2006 effusive and 2010 explosive/effusive eruptions. Our modeling suggests that a combination of chamber overpressure, increased volatile content, and decreased crystal content due to the voluminous injection of new magma into the

  8. Volatile and trace element composition of melt inclusions from the Lower Bandelier Tuff - implications for magma chamber processes and eruptive style

    SciTech Connect

    Dunbar, N.W.; Hervig, R.L. |

    1992-10-01

    The preeruptive volatile gradient that was present in the magma which produced the Lower Bandelier Tuff (LBT) is determined on the basis of an analysis of the H{sub 2}O, Cl, and F contents of melt inclusions (MIs) in LBT phenocrysts. The trace element contents of bulk pumice and MIs are measured in order to facilitate interpretation of the pristine nature of the MIs. The data show that there was a large gradient in the H2O content (hence density) of the magma between an H2O-saturated cap and the body of the chamber. The trace element analysis of the MIs and bulk rocks show that after the water gradient evolved, the chamber underwent about 40 percent eutectic fractional crystallization and was then intruded by a second rhyolitic magma at some time prior to eruption. 75 refs.

  9. Numerical Modeling of Surface Deformation due to Magma Chamber Inflation/Deflation in a Heterogeneous Viscoelastic Half-space

    NASA Astrophysics Data System (ADS)

    Dichter, M.; Roy, M.

    2015-12-01

    Interpreting surface deformation patterns in terms of deeper processes in regions of active magmatism is challenging and inherently non-unique. This study focuses on interpreting the unusual sombrero-shaped pattern of surface deformation in the Altiplano Puna region of South America, which has previously been modeled as the effect of an upwelling diapir of material in the lower crust. Our goal is to investigate other possible interpretations of the surface deformation feature using a suite of viscoelastic models with varying material heterogeneity. We use the finite-element code PyLith to study surface deformation due to a buried time-varying (periodic) overpressure source, a magma body, at depth within a viscoelastic half-space. In our models, the magma-body is a penny-shaped crack, with a cylindrical region above the crack that is weak relative to the surrounding material. We initially consider a magma body within a homogeneous viscoelastic half-space to determine the effect of the free surface upon deformation above and beneath the source region. We observe a complex depth-dependent phase relationship between stress and strain for elements that fall between the ground surface and the roof of the magma body. Next, we consider a volume of weak material (faster relaxation time relative to background) that is distributed with varying geometry around the magma body. We investigate how surface deformation is governed by the spatial distribution of the weak material and its rheologic parameters. We are able to reproduce a "sombrero" pattern of surface velocities for a range of models with material heterogeneity. The wavelength of the sombrero pattern is primarily controlled by the extent of the heterogeneous region, modulated by flexural effects. Our results also suggest an "optimum overpressure forcing frequency" where the lifetime of the sombrero pattern (a transient phenomenon due to the periodic nature of the overpressure forcing) reaches a maximum. Through further

  10. Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy)

    NASA Astrophysics Data System (ADS)

    Fulignati, P.; Marianelli, P.; Proto, M.; Sbrana, A.

    2004-05-01

    This work is focused on juvenile components and some cognate xenoliths of the Breccia Museo (BM) unit. The BM is a coarse-grained proximal unit of the caldera-forming phase of the Ignimbrite Campana (IC) eruption, southern Italy. The BM products show some peculiar characteristics that distinguish them from the other IC deposits. In particular, different types of pumice fragments constitute the juvenile fraction and their crystal contents are remarkably higher than the other IC units. Slightly porphyritic and highly porphyritic trachytic to phonolitic pumices were distinguished in each sample and investigated separately for mineralogy, matrix glass composition, melt and fluid inclusion studies. Most feldspar crystals may have formed at the margins of the magma chamber and the crystal content of both types of pumice fragments can be ascribed to variable entrainment of these crystals (from the solidification front) by the melt. Variably porphyritic (<5 to 30 vol% phenocrysts) pumice and completely crystallized nodules may represent samples of progressively crystallized magma at the chamber walls. Crystallization temperatures of magmas and xenoliths were estimated using two independent methods: a two-feldspar geothermometer and the homogenization temperatures of melt and fluid inclusions in clinopyroxene and K-feldspar. The decrease in the estimated crystallization temperatures from the melt (980-850°C) to the nodules (840-820°C) is consistent with a model of decreasing temperature at a magma chamber solidification front. The study of xenoliths revealed that exsolution of a hypersaline aqueous fluid phase occurred at the peripheral parts of the magma chamber.

  11. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  12. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  13. Götzenite- and combeite-bearing mineral assemblages in peralkaline nephelinite at Nyiragongo, East African Rift: Recrystallization around a degassing alkaline magma chamber

    NASA Astrophysics Data System (ADS)

    Andersen, T.; Elburg, M.; Erambert, M.

    2012-04-01

    In most igneous rocks, the high field strength elements (HFSE) titanium and zirconium reside in minerals such as ilmenite, titanite, zircon and baddelyite. In some highly peralkaline igneous rocks (agpaitic nepheline syenite, elpidite granite) these minerals are not stable, and the HFSE form complex, Na-, Ca- and volatile bearing silicate minerals. The central crater of Nyiragongo volcano in the East African Rift has a semi-permanent lava lake which may be regarded as a high-level magma chamber open to the atmosphere. The lavas and pyroclastic rocks of Nyiragongo range in composition from olivine melilitite to nephelinite and minor alkali olivine basalt. The nephelinites range from metaluminous to peralkaline compositions, including strongly peralkaline combeite nephelinite. In fresh peralkaline nephelinite, titanium is hosted in different minerals or mineral assemblages with titanomagnetite ± perovskite ± Ti-rich clinopyroxene, but in some holocrystalline, thermally metamorphosed nephelinites, götzenite (ideally Na2Ca5Ti(Si2O7)2F4) is the main Ti-bearing mineral. Götzenite is stable with combeite (Na2Ca2Si3O9), diopside and kirschsteinite, which replace primary magmatic minerals and glassy groundmass. The compositions of coexisting nepheline and kalsilite suggest recrystallization temperatures between 500 and 600 °C. A chemographic analysis of the sub-solidus mineral assemblages of götzenite-bearing and götzenite-free peralkaline nephelinite suggests that götzenite is stabilized by elevated fluorine activity combined with moderately high (for nephelinite) silica activity. At increasing peralkalinity, götzenite is likely to break down to perovskite-bearing mineral assemblages coexisting with combeite. The presence of götzenite- and combeite-bearing nephelinite at Nyiragongo is due to the influence of fluorine-rich fluids degassing from magma stored in the lava lake.

  14. Volcanic facies and mineral chemistry of Tertiary volcanics in the northern part of the Eastern Pontides, northeast Turkey: implications for pre-eruptive crystallization conditions and magma chamber processes

    NASA Astrophysics Data System (ADS)

    Yücel, Cem; Arslan, Mehmet; Temizel, İrfan; Abdioğlu, Emel

    2014-06-01

    temperature ranging from 970 to 978 °C at pressure ranging from 8.70 to 9.00 kbar with water content ranging from 8.04 to 8.64 wt.% and oxygen fugacity ranging from 10-8.75 to 10-8.87 (ΔNNO+2). Brown mica thermobarometric data show that Eocene volcanics were characterized by relatively high oxygen fugacity varying from 10-10.32 to 10-12.37 (HM) at temperature ranging from 858 to 953 °C and pressure ranging from 1.08 to 1.41 kbar. Miocene volcanics were crystallized at highly oxidized conditions, which are characterized by high oxygen fugacity of 10-12.0 (HM) at temperature of 875 °C and pressure of 2.09 kbar. The wide range of obtained temperatures for clinopyroxenes of the suites denotes that the equilibration of clinopyroxene crystals initiates from depth until close to the surface before magma eruption. The compositional variations, resorbed core and reverse zoning patterns in clinopyroxene phenocrysts, as well as variable pressures of crystallization, further indicate that the magmas that formed the suites were polybaric in origins and were composite products of more than one petrogenetic stage. The observed range of phenocryst assemblage and different compositional trends possibly originated from fractionation of magmas with different initial water contents under variable pressures of crystallization. The repeated occurrence of magmas from different suites during a single period of activity suggests that the magmatic system consists of several conduit systems and that magma reservoirs are dispersed at different levels of crustal magma chambers.

  15. Contamination of MORB by anatexis of magma chamber roof rocks: Constraints from a geochemical study of experimental melts and associated residues

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Koepke, Juergen; MacLeod, Christopher J.; Ildefonse, Benoit; Godard, Marguerite; Deloule, Etienne

    2014-08-01

    Mid-ocean ridge basalts (MORBs) are the most abundant magmas produced on Earth. They are widely studied to infer mantle compositions and melting processes. However, MORB liquids are also the complex end-product of a variety of intra-crustal processes such as partial or fractional crystallization, melt-rock interaction, and contamination. Deciphering the relative contribution of these different processes is of first-order importance. Contamination at ocean crustal levels is likely, and may occur at magma chamber margins where fresh magmas can interact with previously hydrothermally altered rocks. Characterizing the composition of this crustal contaminant component is critical if we are to understand the relative importance of each component in the resulting MORB liquid. Here we present the results of experiments designed to reproduce the processes occurring at oceanic magma chamber roofs, where crustal contamination should be most extensive, by melting a representative sample of the sheeted dike complex. Anatectic melts thus produced are likely to represent the principal crustal contaminant in MORB. These melts were characterized for major and trace elements, showing B, Zr, Hf, and U enrichment, and Sr, Ti, and V depletion relative to original MORB liquids. In comparison to the starting material, relative element fractionations are observed in the anatectic melts, with enrichments of: U relative to Ba, Nb, and Th; LREE and MREE relative to Sr; and Zr-Hf relative to LREE. Bulk partition coefficients for element partitioning during magma chamber roof anatexis are derived and proposed as valuable tools for tracking MORB contamination. Comparison with natural samples from the East Pacific Rise and the Oman ophiolite shows that anatectic melts can crystallize in situ to form oceanic plagiogranite intrusions, and that residual assemblages associated with the hydrous partial melting stage are represented by hornfelsic dikes and enclaves (also named granoblastic basalts

  16. Crustal structure of Axial Volcano on the Juan de Fuca Ridge, from seafloor depths to the bottom of the magma chamber, using Elastic Full Waveform Inversion.

    NASA Astrophysics Data System (ADS)

    Arnulf, Adrien; Harding, Alistair; Kent, Graham

    2013-04-01

    Axial volcano is located at 46˚N, 130˚W at the intersection of the Juan de Fuca Ridge and the Cobb-Eickelberg seamount chain. It is the most recent eruptive center of the Cobb hotspot, which last erupted in 2011. The volcano rises ~700 m above the adjacent ridge axis and its summit features a 8-km-long, U-shaped caldera with an opening to the southeast where there is an active hydrothermal field and very young lava flows. Located at the junction of a mid-ocean ridge and a volcanic hotspot, Axial volcano is atypical and its internal structure remains poorly understood. Here, we present results from an elastic full waveform inversion (FWI) along multiple seismic lines that span the whole volcano. We have used a multi-stage FWI, inverting successively wide-angle reflections and refractions arrivals from downward extrapolated streamer data, then windowed short offset reflections from the underlying magma chamber. Our final models show fine scale velocity structures with spatial resolutions of tens of meters. Our results indicate that Layer 2A thickness is extremely heterogeneous (350-900 m) within the volcano with abrupt vertical offsets of >300 m at the caldera walls, consistent with faulting of a geologically defined Layer 2A. Interestingly, Layer 2A appears to be extremely thin beneath the active hydrothermal field, where sheeted dikes might lay <100 m beneath the seafloor. On the other hand, the ever-dropping floor of the caldera appears to be a perfect trap for the ponding of lava flows: the thickness of the lava flows increase gradually to the northwest reaching ~450 m at end of the caldera. Surface velocities are low and exhibit limited variation over the whole volcano suggesting relative recent formation, as layer 2A velocity increases rapidly with age at slightly greater depths. Crustal aging (increase in layer 2A velocity with age) appears to be controlled by pipe-like pattern of focused hydrothermal mineralization. Finally, RTM images reveal a large melt

  17. Ore Metal-rich Fluids Degassed from a Fractionating Magma Chamber in the Eastern Manus Basin, Western Pacific: Evidence from Melt Inclusions and Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, K.; Scott, S. D.

    2002-12-01

    Magmatic fluids are found in vesicular volcanic rocks that host several hydrothermal fields in the eastern Manus backarc basin. Dredged samples of fresh lavas, of basalt to rhyolite composition, define a calc-alkalic trend consistent with fractionation of a common source. Their vesicularity decreases with Si, K, Ba and Zr, and increases with Ca, Mg, Fe and Sc of the bulk samples, suggesting that the degassing of volatiles was linked to crystal fractionation of the magma. The felsic rocks have much lower vesicularities (<10%) than the mafic rocks (>30%), indicating that the fractionated felsic magma lost most of its vesicles before its eruption. High concentrations of H2O (0.9 to 2.5%) and Cl (up to 0.45%) observed in the mafic melt inclusions in phenocryst minerals of the basaltic andesite point to a volatile-rich magma. A separate fluid phase is present in the melt inclusions so the magma must have been saturated with volatiles in the magma chamber. The volatiles exsolved as an immiscible fluid with increasing crystal fractionation, and the composition of the degassed magmatic fluid changed with the evolving magma. The fluid is CO2-dominated during the degassing of weakly fractionated mafic magma and becomes a mixture of CO2 and H2O as H2O is increasingly exsolved from the highly-fractionated felsic magma. The ore metals in the degassed fluid, as inferred from the compositions (by EPMA, SEM/EDS and TOF-SIMS) of metallic precipitates in the vesicles of melt inclusions and matrix glass, progressively change from Ni+Cu+Zn+Fe in basalt and basaltic andesite, to Cu+Zn+Fe in andesite, Cu+Fe in dacite, Fe in rhyodacite and Fe+Zn (+Pb?) in rhyolite. This trend provides evidence that fluids, released from a fractionating magma, could be an enriched source of metals for various types of ore deposits. In particular, the pre-eruptive degassing of magmatic fluids from felsic magmas could be responsible for the Fe, Cu, Zn and Pb metals in the sulfide chimneys at PACMANUS and

  18. Magma chamber history related to the shield building stage of Piton des Neiges volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Berthod, Carole; Michon, Laurent; Famin, Vincent; Bascou, Jérôme; Bachelery, Patrick

    2016-04-01

    Piton des Neiges volcano (La Réunion hotspot) experienced a long-lasting shield building stage before entering its degenerative stage 0.4 my ago. The deep edifice incision due to the intense tropical erosion allowed the description for several decades of a layered gabbroic complex interpreted as a piece of magma chamber, which has been tectonically displaced (Chevallier & Vatin-Perignon, 1982; Upton & Wadsworth, 1972). Here, we combine field investigations, petrographic, mineralogical, geochemical and anisotropy of magnetic susceptibility (AMS) studies to constrain the spatial distribution of the plutonic complex, to identify the physical and chemical processes and to integrate this complex in the evolution of Piton des Neiges (PdN). Field investigations allowed us to discover three additional massifs of gabbro and peridotite along the Mât River. The four massifs are overlaid by a pile of basic sills and a breccia interpreted as a debris avalanche deposit. Albeit spatially disconnected, the massifs show a relatively constant dip of the magnetic foliation toward the current summit of the volcano (i.e. toward the SSE). The two massifs cropping in the upper Mât River are exclusively composed of massive dunite and wherlite units with a cumulate texture and no visible dynamic structures. The two massifs located in the lower Mât River are made of olivine-gabbro, ferrogabbro and gabbro showing numerous flow structures and synmagmatic faults that indicates instabilities which trend NNW-SSE. Minerals (olivine, clinopyroxene and oxide) present primitive compositions in the two upper massifs and slightly differentiated ones in the lower massif. Given the consistency of our dataset, we propose that the four massifs correspond to outcrops of a unique chemically stratified magma chamber, whose center would have been located about 4 km North of the current summit of PdN. The existence of an initial PdN, North of the current edifice, is supported by morphological

  19. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Buret, Yannick; von Quadt, Albrecht; Heinrich, Christoph; Selby, David; Wälle, Markus; Peytcheva, Irena

    2016-09-01

    The formation of world class porphyry copper deposits reflect magmatic processes that take place in a deeper and much larger underlying magmatic system, which provides the source of porphyry magmas, as well as metal and sulphur-charged mineralising fluids. Reading the geochemical record of this large magmatic source region, as well as constraining the time-scales for creating a much smaller porphyry copper deposit, are critical in order to fully understand and quantify the processes that lead to metal concentration within these valuable mineral deposits. This study focuses on the Bajo de la Alumbrera porphyry copper deposit in Northwest Argentina. The deposit is centred on a dacitic porphyry intrusive stock that was mineralised by several pulses of porphyry magma emplacement and hydrothermal fluid injections. To constrain the duration of ore formation, we dated zircons from four porphyry intrusions, including pre-, syn- and post-mineralisation porphyries based on intersection relations between successive intrusion and vein generations, using high precision CA-ID-TIMS. Based on the youngest assemblages of zircon grains, which overlap within analytical error, all four intrusions were emplaced within 29 ka, which places an upper limit on the total duration of hydrothermal mineralisation. Re/Os dating of hydrothermal molybdenite fully overlaps with this high-precision age bracket. However, all four porphyries contain zircon antecrysts which record protracted zircon crystallisation during the ∼200 ka preceding the emplacement of the porphyries. Zircon trace element variations, Ti-in-zircon temperatures, and Hf isotopic compositions indicate that the four porphyry magmas record a common geochemical and thermal history, and that the four intrusions were derived from the same upper-crustal magma chamber. Trace element zoning within single zircon crystals confirms a fractional crystallisation trend dominated by titanite and apatite crystallisation. However, zircon

  20. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  1. The eruption of the Breccia Museo (Campi Flegrei, Italy): Fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics

    NASA Astrophysics Data System (ADS)

    Melluso, Leone; Morra, Vincenzo; Perrotta, Annamaria; Scarpati, Claudio; Adabbo, Mariarosaria

    1995-11-01

    The Breccia Museo Member (BMM) was formed by an explosive eruption that occurred in the SW sector of Campi Flegrei about 20 ka ago. The eruptive sequence consists of the Lower Pumice Flow Unit and the overlying Upper Pumice Flow Unit with its associated lithic Breccia Unit. Interlayered with the Breccia Unit is a welded deposit that mainly consists of spatter clasts (Spatter Unit). The products of this eruption range in composition from trachytic to trachyphonolitic with K 2O decreasing from 9.5 to 7 wt.%; Na 2O correspondingly increases from 2.6 to 7.2 wt.% with increasing differentiation (Nb from 23 to 122 ppm). The phenocrysts are mostly sanidine (Or 88-63) with subordinate plagioclase (An 33-27), clinopyroxene (Ca 47Mg 44Fe 9 to Ca 46Mg 35Fe 19), biotite, titanomagnetite, and apatite. The observed major- and trace-element variations are fully consistent with about 80% fractional crystallization of a sanidine-dominated assemblage starting from the least differentiated trachytes. The compositions of the erupted products are compatible with the progressive tapping of a shallow magma chamber that was thermally and chemically zoned. The incompatible trace elements indicate a slightly different magma composition with respect to trachytes of the Campi Flegrei mainland. The geochemical stratigraphy suggests that after an early eruptive phase during which the upper, most differentiated level of the magma chamber was tapped, the sudden collapse of the roof of the reservoir triggered drainage of the remaining magma, which ranged in composition from trachyte to trachyphonolite, and formed the Breccia Unit and the Upper Pumice Flow Unit. The strongly differentiated trachyphonolite composition of the spatter clasts also suggests that they likely originated from the uppermost part of the reservoir soon after the eruption of Lower Pumice Flow Unit and the collapse of the chamber roof. This is in agreement with the eruptive model proposed by Perrotta and Scarpati (1994).

  2. The effects of depth-dependent crustal viscosity variation on visco-elastic response to inflation/deflation of magma chamber

    NASA Astrophysics Data System (ADS)

    Yamasaki, Tadashi

    2016-04-01

    Development of the satellite observations (GPS and/or InSAR) has allowed us to precisely measure surface deformation. However any geodetic observation by itself does not tell us a mechanism of the deformation. All we can do the most is to compare such an observation to some quantitative predictions, only from which we can deduce a possible deformation mechanism. We therefore need to understand characteristic deformation pattern for a given source mechanism. This study particularly pays attention to magmatic activity in depth as the source, aiming to distinguish magma-induced crustal deformation by better knowing how the activity can be reflected in geodetically observable surface deformation. A parallelized 3-D finite element code, OREGANO_VE [e.g., Yamasaki and Houseman, 2015, J. Geodyn., 88, 80-89], is used to solve the linear Maxwell visco-elastic response to an applied internal inflation/deflation of magma chamber. The rectangular finite element model is composed with a visco-elastic layer overlaid by an elastic layer with thickness of H, and the visco-elastic layer extends over the rest of crust and the uppermost mantle. The visco-elastic crust has a depth-dependent viscosity (DDV) as an exponential function of depth due to temperature-dependent viscosity: hc = h0 exp[c(1 - z/L0)], where h0 is the viscosity at the bottom of the crust, c is a constant; c > 0 for DDV model and c = 0 for uniform viscosity (UNV) model, z is the depth, and L0 is a reference length-scale. The visco-elastic mantle has a spatially uniform viscosity hm. The inflation and/or deflation of sill-like magma chamber is implemented by using the split node method developed by Melosh and Raefsky [1981, Bull. Seism. Soc. Am., 71, 1391-1400]. UNV model with c = 0 employed in this study shows that the inflation-induced surface uplift would abate with time by visco-elastic relaxation. The post-inflation subsidence would erase the uplift in ~ 50 - 100 times Maxwell relaxation time of the crust

  3. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Xu, Xing-Wang; Zhang, Bao-Lin; Qin, Ke-Zhang; Mao, Qian; Cai, Xin-Ping

    2007-12-01

    O 2. The melt mixing occurred in magma chambers in the middle-shallow crust at 8-10 km before the derivative lamprophyre melts intruded into the shallow cover in Beiya area. This mixing of basic and alkaline melts might represent a general process for the formation of lamprophyre in the western Yunnan.

  4. Crystallization sequence of the Upper Border Series of the Skaergaard Intrusion: revised subdivision and implications for chamber-scale magma homogeneity

    NASA Astrophysics Data System (ADS)

    Salmonsen, Lars Peter; Tegner, Christian

    2013-06-01

    Although it is one of the best-studied layered mafic intrusions in the world, the crystallization sequence of the Skaergaard Intrusion, east Greenland, remains in debate. In particular, it has been argued that the crystallization sequence in the Upper Border Series, which crystallized downwards from the roof of the magma chamber, differs from that in the Layered Series formed at the floor. The proposed deviation would require chemical stratification of the magma, and a reexamination of the crystallization sequence therefore has important implications for understanding the dynamics of the system. Here, we examine a new sample set from the Upper Border Series, combining field observations, petrography and anorthite contents of plagioclase with bulk rock Ti, V, P, Cu and Mn concentrations. We demonstrate that the first phases on the liquidus were plagioclase and olivine followed by augite, then ilmenite and magnetite (simultaneously), sulfides, apatite and finally ferrobustamite (now inverted to hedenbergite). This crystallization sequence represents extreme differentiation along the tholeiitic trend, and it mirrors those at the floor (Layered Series) and walls (Marginal Border Series). We therefore propose a revised subdivision of the Upper Border Series into equivalents of the subzones in the Layered Series denoted by apostrophes (LZa', LZb', etc.). Moreover, the first appearance of each of the cumulus phases occurs at similar plagioclase core anorthite contents. The mirror images of the crystallization sequences and the anorthite contents of plagioclase cores in the three series imply that the Skaergaard magma chamber solidified by in situ crystallization along the floor, walls and roof from one, largely homogenous, convecting magma body.

  5. Using CO2 and He Concentrations in Hydrothermal Fluids to Constrain Along-Axis Magma Chamber Dimensions at 9°N, EPR

    NASA Astrophysics Data System (ADS)

    Lilley, M. D.; Lupton, J. E.; Olson, E. J.

    2002-12-01

    Magmatic degassing is a common occurrence in subaerial volcanoes and has been reported in shallow submarine volcanoes. It has been speculated that mid-ocean ridge magma chambers may exhibit degassing behavior but to date there has been no direct documentation of its occurrence. Based on very high CO2 and He concentrations, we believe that we now have evidence for a degassing magma chamber at 9°N, East Pacific Rise. M Vent, in the immediate vicinity of the 1991 eruption, exhibited high and relatively stable CO2 concentrations in excess of 150 mmol/kg for at least eight years post-eruption. Such high values are many times the value that can be extracted from basalt by hydrothermal fluid and have previously been seen only at Axial and Loihi Seamounts. Two vents about one km south (Bio 9 and P Vents) had CO2 concentrations around 50 mmol/kg in 1991 which increased to maxima near 200 mmol/kg in 1993. We believe this represents a southward movement of the magma body in this area. He concentrations were also elevated at all the vents but showed different temporal trends from CO2 and reached maximum values in 1994. 3He/heat ratios are significantly different between M and Bio 9 and P Vents implying that separate magma bodies with differing degrees of degassing underlie the two areas. We have seen similarly high concentrations of CO2 and He at 31.8°S on the East Pacific Rise (Lupton et al., 1999) and suggest that magmatic degassing into the hydrothermal convection cell is occurring there as well. This work indicates that the concentrations of magmatic gases in hydrothermal fluids may provide fine scale data bearing on the locations and along-axis dimensions of magma chambers. Reference: Lupton, J., D. Butterfield, M. Lilley, J. Ishibashi, D. Hey and L. Evans, Gas chemistry of hydrothermal fluids along the East Pacific Rise, 5°S to 32°S, EOS, 80, F1099, 1999.

  6. Isotopic zonations in silicic magma chambers: conventional and ion-microprobe data from the late-Oligocene Questa caldera, northern New Mexico

    SciTech Connect

    Johnson, C.M.

    1985-01-01

    The >400km3 peralkaline high-SiO/sub 2/ rhyolite ash-flow tuff erupted form the Questa caldera is strongly zoned in trace elements and in initial 87Sr/86Sr, from 0.7082 at the top to 0.7123 at the base. This is accompanied by increasing abundance of zircons with inherited cores, as identified using the ANU SHRIMP ion-microprobe. Cores that are concordant at 1700, 100 and 1430 Ma occur within late-Oligocene zircons in the ash-flow tuff. Such inherited cores is best explained by a greater degree of assimilation of Precambrian roof rocks toward the top of the magma chamber prior to eruption. In contrast, element of Nd and delta 180 values are constant at -6 and +7, respectively. Mass-balance calculations using observed compositions of the Precambrian wall-rocks and the low Sr peralkaline magmas indicate that the amount of assimilation required is less than 15 percent. Peralkaline and metaluminous intrusions cogenetic with the ash flow tuff also have relatively constant element of Nd and delta 180 values of -6 and +7, but have initial 87Sr/86Sr between from 0.7077 to 0.7050. None of the intrusive bodies contain inherited zircons, in contrast with many other Tertiary granitic rocks in the western US. Comparison of isotopic zonations in magmas that are largely liquid with those in their solidified equivalents is important for distinguishing assimilation vs source effects, since the assimilation potential of volatile-rich, crystal-poor magmas is much different from that of the crystal-rich magmas that become plutons.

  7. Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 kbar, application of transition state theory, and diffusion in zoned magma chambers

    NASA Astrophysics Data System (ADS)

    Baker, Don R.

    1990-07-01

    for the metaluminous system and reflect the slightly higher diffusivities in the peraluminous and peralkaline systems consistent with their lower calculated viscosities when compared to the metaluminous system. 1-atm diffusivities can be calculated from melt viscosities using the Eyring equation to within a factor of 5, except for 75% SiO2 diffusivities which consistently display calculated diffusivities approximately an order of magnitude below measured diffusivities. Using fundamental equations of transition state theory the 1-atm chemical diffusivities of non-alkalies, and alkalies too, can be calculated from thermodynamic data and melt structure models. There are, however, discrepancies in the calculated and measured activation energies and pre-exponential factors. Application of diffusivity measurements to magma chamber processes demonstrates that diffusion is not an effective process for compositional modification and can only begin to have a significant effect on melt compositions if the dacitic and rhyolitic melts are convecting separately and separated by a thin, static zone where diffusive transport is occurring; even in this case diffusion is likely to modify alkali concentrations only, and perhaps isotopic ratios in small magma chambers, or chambers with large aspect ratios (width/height). If the dacitic melt forms enclaves which are mixed into the rhyolitic melt, then diffusion coupled with the physical mixing of enclaves has the potential to rapidly affect alkali and isotopic ratios of the rhyolite melt and dacitic enclaves. Non-alkali concentrations in both dacite enclaves and rhyolite are, however, unlikely to be significantly affected. Because of the ineffectiveness of diffusion, once a magma chamber becomes zoned in major and trace elments it will remain zoned, with the exception of alkalies and possibly isotopic ratios, unless physical mixing between the different compositions occurs.

  8. Unraveling the Eyjafjallajökull 2010 plumbing system and magma chamber dynamics through high-resolution geochemical investigations

    NASA Astrophysics Data System (ADS)

    Laeger, Kathrin; Petrelli, Maurizio; Andronico, Daniele; Scarlato, Piergiorgio; Cimarelli, Corrado; Misiti, Valeria; del Bello, Elisabetta; Perugini, Diego

    2016-04-01

    The April-May 2010 eruption of the Eyjafjallajökull volcano (EFJ, Iceland) was triggered by an intrusion of fresh magma coming from deeper portions of the crust migrating into shallower depth of 3-6 km in the magmatic system. Here, we present new EMPA and LA-ICP-MS analyses on groundmass glasses of ash particles erupted between 18 and 22 May 2010, the last days of the eruption. The glasses define two well separated groups. The first group is basaltic in composition with SiO2 ranging from 49.98 to 51.76 wt.% and a total alkali content (Na2O + K2O) in the range between 4.63 and 5.17 wt.%. The second group ranges between trachyandesitic and rhyolitic compositions with SiO2 ranging between 57.13 to 70.38 wt.% and a total alkali content from 7.21 to 10.90 wt.%. Least square modelling after Störmer and Nicholls (1978) discriminates best the origin of the basaltic glass by both fractional crystallization of a more primitive basalt or mixing of a basalt and a felsic magma. Furthermore, this model proves that the trachyandesitic range is the result of mixing of trachyandesite and trachyte magma. Magma mixing modeling after Langmuir (1978) and element concentration histograms indicate a probable incomplete magma mixing as the main process forming the great compositional variability observed in the erupted products. Finally, we estimated mixing end-members of intermediate (~59 wt.% SiO2) and felsic composition (~66-68 wt.% SiO2) with a felsic melt-proportion of 0.35-0.47. In the 90s, recorded seismicity and ground deformation indicated intrusions at shallow depth under the EFJ edifice probably forming separated sills. Therefore, the origin of the trachyandesite is presumably to find in a discrete magma batch that generated years before eruption. The rhyolite composition can be considered as the residual melt that remained in the plumbing system of EFJ since the last eruption in 1821-23. We suggest that these different magma batches formed the plumbing system of EFJ and have

  9. Magma chamber conditions (P, T, volatiles) of the June 2011 eruption of the Puyehue-Cordon Caulle volcanic complex, South Central Chile

    NASA Astrophysics Data System (ADS)

    Gilbert, D. J.; Freundt, A.; Kutterolf, S.; Hansteen, T. H.; Amigo, A.; Burkert, C.

    2011-12-01

    On June 4th 2011 the Puyehue-Cordon Caulle volcanic complex (PCCVC, 40.590°S, 72.117°W) in South Central Chile woke after 51 years of dormancy. The rhyodacitic eruption produced an ash plume that reached altitudes of 10.7-12.2 km causing severe problems for civil aviation in the southern hemisphere. The PCCVC is part of the Southern Volcanic Zone of the Andes, that formed in response to the oblique subduction of the Nazca Plate beneath the South American Plate. We investigated juvenile components of the June 2011 eruption that were sampled within the very first three days of the eruption from proximal and distal locations. Bulk rock, matrix glass, mineral, and melt inclusion analyses were performed. Matrix glasses show relatively homogeneous major element compositions (e.g. SiO2 ranging from 70 to 71 wt%) indicating a compositionally homogeneous pre-eruptive magma chamber. The mineral paragenesis comprises plagioclase, clinopyroxene, orthopyroxene, Fe-Ti-oxides, and apatite. Mineral and glass data were used to compute pre-eruptive P-T-conditions based on several independent thermobarometers. Cpx-liq-thermobarometry reveals crystallization pressures from 50 to 250 MPa suggesting a shallow magma chamber at depths of 2 to 9 km and magma temperatures of 875 to 900°C. Volatile data and the occurrence of water-dominated magmatic fluid inclusions indicate the exsolution of a sulphur-rich fluid phase occurring at an early stage during differentiation. H2O contents of 4-6 wt% suggest that the erupted melt had become water-saturated at reservoir depth such that the June, 2011 eruption was probably triggered by gas overpressure. Comparison with data from older tephras recorded in the tephrostratigraphy of the PCCVC (Lara et al., 2006) show that relatively shallow reservoirs and pre-eruptive H2O saturation appear to be typical features of explosive eruptive events at this volcanic system.

  10. In Situ Sr Isotope Analysis of Minerals and Groundmass Using Laser Ablation Multi-collector ICPMS: Potentials for Determining Magma Chamber Processes and Residence Times of Phenocrysts

    NASA Astrophysics Data System (ADS)

    Ramos, F. C.; Wolff, J. A.; Tollstrup, D. L.

    2004-05-01

    In situ analyses of Sr isotope ratios using LA-MC-ICPMS hold great promise for identifying the processes and timescales involved in magmagenesis. The rapid analysis time and spatial control of laser ablation analyses offer significant advantages as compared to modern microdrilling techniques, including substantial time-savings. Laser ablation analyses can constrain the effects of contamination on individual mineral crystals and determine individual crystal residence histories. Integrating these analyses with additional isotopic, major and trace element, and mineralogic data allow us an opportunity to build an integrated magmatic history of the processes affecting magmas. The limited applicability of such LA-MC-ICPMS analyses was typically due to its inability to attain similar measurement precision and accuracy as analyses associated with thermal ionization mass spectrometry (TIMS). We introduce a Sr isotope measurement technique that uses LA-MC-ICPMS to obtain Sr isotope ratios that approach the accuracy and precision offered by TIMS. For marine carbonate, LA-MC-ICPMS results are statistically identical to purified samples analyzed by MC-ICPMS. In addition, we have analyzed common, non-abnormally Sr-enriched minerals from alkalic and tholeiitic basalts such as plagioclase, clinopyroxene, and fine-grained groundmass. Results for basaltic minerals and groundmass are generally within 2 sigma accuracy of microdrilled TIMS results on the same minerals. Results can be combined with simple diffusion models to constrain residence ages of individual minerals in magma chambers or identify the effects of processes such as crustal contamination. In addition, differences in signatures between mineral phases can aid in determining the environments in which different minerals crystallize and may offer the best means by which to constrain magma chamber dynamics.

  11. Oxygen isotopes reveal crustal contamination and a large, still partially molten magma chamber in Chaîne des Puys (French Massif Central)

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Demacon, Mickael; Gurenko, Andrey A.; Briot, Danielle

    2016-09-01

    The two main magmatic properties associated with explosive eruptions are high viscosity of silica-rich magmas and/or high volatile contents. Magmatic processes responsible for the genesis of such magmas are differentiation through crystallization, and crustal contamination (or assimilation) as this process has the potential to enhance crystallization and add volatiles to the initial budget. In the Chaîne des Puy series (French Massif Central), silica- and H2O-rich magmas were only emitted during the most recent eruptions (ca. 6-15 ka). Here, we use in situ measurements of oxygen isotopes in zircons from two of the main trachytic eruptions from the Chaîne des Puys to track the crustal contamination component in a sequence that was previously presented as an archetypal fractional crystallization series. Zircons from Sarcoui volcano and Puy de Dôme display homogeneous oxygen isotope compositions with δ18O = 5.6 ± 0.25‰ and 5.6 ± 0.3‰, respectively, and have therefore crystallized from homogeneous melts with δ18Omelt = 7.1 ± 0.3‰. Compared to mantle derived melts resulting from pure fractional crystallization (δ18Odif.mant. = 6.4 ± 0.4‰), those δ18Omelt values are enriched in 18O and support a significant role of crustal contamination in the genesis of silica-rich melts in the Chaîne des Puys. Assimilation-fractional-crystallization models highlight that the degree of contamination was probably restricted to 5.5-9.5% with Rcrystallization/Rassimilation varying between 8 and 14. The very strong intra-site homogeneity of the isotopic data highlights that magmas were well homogenized before eruption, and consequently that crustal contamination was not the trigger of silica-rich eruptions in the Chaîne des Puys. The exceptionally strong inter-site homogeneity of the isotopic data brings to light that Sarcoui volcano and Puy de Dôme were fed by a single large magma chamber. Our results, together with recent thermo-kinetic models and an experimental

  12. Pb isotope variations among Bandelier Tuff feldspars: No evidence for a long-lived silicic magma chamber

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Ramos, F. C.

    2003-06-01

    We report, for the first time, high-precision Pb isotope data from a high-silica rhyolite. Prior work on Sr isotopes in the 1.6 Ma Otowi Member of the Bandelier Tuff (Valles caldera, New Mexico) established that large 87Sr/86Sr variations exist among Otowi glasses and sanidine phenocrysts. While the glasses display unequivocal evidence for wall-rock contamination of the Otowi magma following sanidine growth, a positive correlation between 87Sr/86Sri and 87Rb/86Sr among the feldspars could be interpreted as either a mixing line or an in situ magmatic isochron dating a differentiation event ˜270 k.y. prior to eruption. The 206Pb/204Pb and 87Sr/86Sr ranges for Otowi sanidines are 17.790 ± 0.002 to 17.831 ± 0.002 and 0.7074 0.7052, respectively. This Pb isotope range cannot be produced by radiogenic ingrowth at the U/Pb ratios of the host magma on any geologically reasonable time scale, and hence is unequivocal evidence for open-system behavior of the Otowi magma prior to and/or concurrent with feldspar growth. Open-system behavior is predicted to control Sr isotope variations due to much higher concentrations of Sr, relative to Pb, in the country rock than in the magma. These observations therefore undermine any age significance of the Rb-Sr isotope variations. In the absence of supporting data, Rb-Sr relations alone do not impart any information about residence times of high-silica rhyolite magmas with subchondritic concentrations of Sr.

  13. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    USGS Publications Warehouse

    Lipman, Peter W.

    2007-01-01

    Plutons thus provide an integrated record of prolonged magmatic evolution, while volcanism offers snapshots of conditions at early stages. Growth of subvolcanic batholiths involved sustained multistage open-system processes. These commonly involved ignimbrite eruptions at times of peak power input, but assembly and consolidation processes continued at diminishing rates long after peak volcanism. Some evidence cited for early incremental pluton assembly more likely records late events during or after volcanism. Contrasts between relatively primitive arc systems dominated by andesitic compositions and small upper-crustal plutons versus more silicic volcanic fields and associated batholiths probably reflect intertwined contrasts in crustal thickness and magmatic power input. Lower power input would lead to a Cascade- or Aleutian-type arc system, where intermediate-composition magma erupts directly from middle- and lower-crustal storage without development of large shallow plutons. Andean and southern Rocky Mountain–type systems begin similarly with intermediate-composition volcanism, but increasing magma production, perhaps triggered by abrupt changes in plate boundaries, leads to development of larger upper-crustal reservoirs, more silicic compositions, large ignimbrites, and batholiths. Lack of geophysical evidence for voluminous eruptible magma beneath young calderas suggests that near-solidus plutons can be rejuvenated rapidly by high-temperature mafic recharge, potentially causing large explosive eruptions with only brief precursors.

  14. Glass and mineral analyses from first deposits of Peach Spring Supereruption (SW USA) illuminate initial tapping of a zoned magma chamber

    NASA Astrophysics Data System (ADS)

    Mccracken, R. G.; Miller, C. F.; Buesch, D.; Gualda, G. A.; Covey, A.

    2012-12-01

    The Peach Spring supereruption (18.78±0.02 Ma) was sourced from Silver Creek caldera in the southern Black Mountains, Arizona (Ferguson et al. in press). The resulting ignimbrite, the Peach Spring Tuff (PST), blanketed >32,000 km2 of Arizona, California, and Nevada (Buesch, 1993). Underlying the ignimbrite is a thin (≤ 1m thick) basal layered deposit that consists of texturally distinct layers 1a-e (Valentine et al. 1989) and is present up to ~100 km from the source caldera. Basal layered deposits contain the first material erupted during the PST supereruption, preceding the main eruption event. Petrography and geochemistry of minerals and pumice clasts from basal layered deposits collected ~15-100 km from the caldera, combined with a survey of glass and crystal compositions from both outflow and basal deposits, permit (1) comparisons with the overlying ignimbrite, and (2) insights into the initial stages of the supereruption and extraction of magma from the chamber. Pumice clasts from a pumice-rich layer (1a2) of the basal deposit were characterized by LA-ICPMS and SEM. Unaltered glass has a uniform high-Si rhyolite composition (76.7% SiO2, 13.0% Al2O3, 3.6% Na2O, 5.3% K2O, 0.6% FeO, <0.1% MgO, 0.6% CaO, 0.1% TiO2). Mildly altered glass is similar but has lower Na2O and higher K2O. Pumice clasts are relatively crystal poor (<10% phenocrysts) with an assemblage dominated by sanidine (~Or55Ab43An2), with lesser plagioclase (~Ab73An19Or8), minor hornblende and biotite, and accessory magnetite, sphene, zircon, chevkinite, and apatite; no quartz was identified. Initial LA-ICPMS results for glass reveal REE patterns with large negative Gd (0.21: i.e. U-shaped REE pattern) and Eu (0.31) anomalies, very low Ba and Sr (≤10 ppm), and high Rb (~250 ppm). These compositions are essentially identical to those of the most common pumice from distal outflow ignimbrite, but very different from crystal-rich (>30%) trachyte pumice that dominates the intracaldera fill and is

  15. Dominica Pumiceous Eruptions: Reconstruction of Dynamics and Timescales of Magma Chamber Processes from Crystal Record and Diffusion Modelling.

    NASA Astrophysics Data System (ADS)

    Solaro, C.; Boudon, G.; Balcone Boissard, H.; Martel, C.; Morgan, D. J.

    2015-12-01

    In the last 50ky, Dominica Island (Lesser Antilles Arc) has experienced three major pumiceous ignimbritic eruptions: Layou (~50ka), Roseau (~30ka), and Rosalie (~20ka). These eruptions emitted magma volumes one order of magnitude larger (tens of km3 DRE/eruption) than those of the neighboring islands of Martinique and Guadeloupe (<1 km3/eruption). Reservoir processes and pre-eruptive magma dynamics of these eruptions are still poorly constrained. Our study focuses on the basal Plinian fallout deposit of these three eruptions. We studied the crystal assemblage and performed a detailed analysis of chemical zoning patterns, textures and composition variations on orthopyroxene crystals (12-16% total crystal content). A system analysis approach is conducted to unravel crystals' remobilization processes in the reservoir before eruption. Timescales of these processes have been calculated performing Fe2+-Mg interdiffusion modelling on selected orthopyroxenes by intercalibration of high resolution BSE images with EPMA analyses. Results suggest the existence of a main magmatic environment, containing approximately 80-85% of the total orthopyroxene amount. The remnant 15-20% orthopyroxenes exhibit clear zoning with normal, reverse and double zoning for Layou and Rosalie eruptions and almost reverse and double zoning for Roseau. They display cyclic interaction with smaller magmatic environments of an either more or less evolved composition. Mobilization of crystals in between these different environments causes the simple or double normal and reverse zoning in crystals. In order to constrain timescales of reservoir processes, diffusion has been modelled along the a- and b-axis on zoned orthopyroxenes of Layou and Roseau eruptions at 850°C. For both eruptions, dating of diffusion kinetics on crystal zoning provides comparable timescale distributions of ~3-4 years before each eruption. This suggests magma remobilization of about 3 years prior each eruption, likely acting as a

  16. Trace element evidence for anatexis at oceanic magma chamber roofs and the role of partial melts for contamination of fresh MORB

    NASA Astrophysics Data System (ADS)

    Fischer, Lennart A.; Erdmann, Martin; France, Lydéric; Wolff, Paul E.; Deloule, Etienne; Zhang, Chao; Godard, Marguerite; Koepke, Jürgen

    2016-09-01

    At oceanic spreading centers, interactions between magma and hydrothermal convecting systems trigger major physical, thermal, and chemical exchanges. The two-pyroxene hornfels recovered from the base of the sheeted dike sequence at Integrated Ocean Drilling Program (IODP) Site 1256 (equatorial Eastern Pacific) are interpreted as a conducting boundary layer between the underlying axial melt lens and the hydrothermally cooled sheeted dikes. They are cut by numerous small, felsic veins, which were recently interpreted as a product of hydrous partial melting of sheeted dikes. Here, we present trace element compositions of products (melts and residues) of hydrous partial melting experiments using basalts and hornfels from IODP Site 1256 as starting material. The experimental products generated between 910 °C and 970 °C match the natural lithologies from Site 1256 in terms of major and trace element compositions. The compositions of the anatectic melts correspond to the compositions of the felsic veins, while the residual minerals match the compositions of the two-pyroxene hornfels, evidencing that hydrous partial melting is an important magmatic process in the gabbro/dike transition of fast-spreading mid-oceanic ridges. Our results complement previous experimental studies on anatectic processes occurring at the roof of the magma chambers from fast-spreading mid-ocean ridges. Moreover, calculations of mixing and assimilation fractional crystallization using the experimental partial melts as contaminant/assimilant showed that anatectic melts can only be a minor contributor to the contamination process.

  17. Seismic structure beneath Mt Vesuvius from receiver function analysis and local earthquakes tomography: evidences for location and geometry of the magma chamber

    NASA Astrophysics Data System (ADS)

    Agostinetti, N. Piana; Chiarabba, C.

    2008-12-01

    The recognition and localization of magmatic fluids are pre-requisites for evaluating the volcano hazard of the highly urbanized area of Mt Vesuvius. Here we show evidence and constraints for the volumetric estimation of magmatic fluids underneath this sleeping volcano. We use Receiver Functions for teleseismic data recorded at a temporary broad-band station installed on the volcano to constrain the S-wave velocity structure in the crust. Receiver Functions are analysed and inverted using the Neighbourhood Algorithm approach. The 1-D S-velocity profile is jointly interpreted and discussed with a new Vp and Vp/Vs image obtained by applying double difference tomographic techniques to local earthquakes. Seismologic data define the geometry of an axial, cylindrical high Vp, high Vs body consisting of a shallow solidified materials, probably the remnants of the caldera, and ultramafic rocks paving the crustal magma chamber. Between these two anomalies, we find a small region where the shear wave velocity drops, revealing the presence of magma at relatively shallow depths. The volume of fluids (30 km3) is sufficient to contribute future explosive eruptions.

  18. Oxygen isotopic systematics of an open-system magma chamber:. An example from the Freetown Layered Complex of Sierra Leone

    NASA Astrophysics Data System (ADS)

    Chalokwu, Christopher I.; Ripley, Edward M.; Park, Young-Rok

    1999-03-01

    The Freetown Layered Complex of Sierra Leone is a 7-km thick, rift-related tholeiitic intrusion that formed ˜193 Ma ago during the opening of the middle Atlantic Ocean. The Complex was emplaced above Archean basement gneisses, granulites, and schists of the Kasila Group at pressures of 2.8 to 5.1 kbar. The δ 18O values of bulk cumulates (5.5-6.7), separated plagioclase (5.7-6.0), olivine (5.0-5.7), and clinopyroxene (5.1-5.8) spanning the entire stratigraphic section indicate that the Complex has preserved its primary magmatic oxygen isotopic composition. The δ 18O values of whole-rocks are uniform in Zone 1 (average = 5.74 ± 0.01) but vary widely in Zones 2 and 3 (average = 6.18 ± 0.52 and 5.71 ± 0.32, respectively). Variations in whole-rock δ 18O with stratigraphic height correlate well with plagioclase mode, with δ 18O values being highest in the strongly laminated anorthosites of Zones 2 and 3, and lowest in olivine gabbro from the cyclically layered subzone of Zone 3. The overall pattern of oxygen isotopic variation with stratigraphic height in the intrusion appears to the related to the accumulation of high-δ 18O, plagioclase-rich rocks that are overlain by low-δ 18O, olivine or pyroxene-rich rock types. Fractional crystallization in combination with mineral accumulation can explain the observed oxygen isotopic variations in the Complex. Oxygen isotopic thermometry yields equilibration temperatures of 1040 to 1290°C, which are similar to temperatures (1045 to 1381°C) estimated from the plagioclase-liquid thermometer applied to the Freetown bulk magma for each zone obtained by geochemical summation. The oxygen isotopic temperatures are highest where major influxes of new magmas have occurred, indicating negligible subsolidus resetting of mineral compositions. Contemporary diabase dikes intruding the Complex have whole-rock and plagioclase δ 18O values of 6.6 and 6.7, respectively, suggesting minimal interaction of the dikes with hydrothermal

  19. Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Steuber, Thomas J.

    2004-01-01

    Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.

  20. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    NASA Astrophysics Data System (ADS)

    Corbi, F.; Rivalta, E.; Pinel, V.; Maccaferri, F.; Bagnardi, M.; Acocella, V.

    2015-12-01

    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we show with numerical models that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observations. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control: 1) the shallow accumulation of magma in stacked sills, consistently with observations; 2) the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.

  1. Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: Implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA

    USGS Publications Warehouse

    Salisbury, M.J.; Bohrson, W.A.; Clynne, M.A.; Ramos, F.C.; Hoskin, P.

    2008-01-01

    Products of the 1915 Lassen Peak eruption reveal evidence for a magma recharge-magma mixing event that may have catalyzed the eruption and from which four compositional members were identified: light dacite, black dacite, andesitic inclusion, and dark andesite. Crystal size distribution, textural, and in situ chemical (major and trace element and Sr isotope) data for plagioclase from these compositional products define three crystal populations that have distinct origins: phenocrysts (long axis > 0??5 mm) that typically have core An contents between 34 and 36 mol %, microphenocrysts (long axis between 0??1 and 0??5 mm) that have core An contents of 66-69, and microlites (long axis < 0??1 mm) with variable An core contents from 64 to 52. Phenocrysts are interpreted to form in an isolated dacitic magma chamber that experienced slow cooling. Based on textural, compositional, and isotopic data for the magma represented by the dacitic component, magma recharge was not an important process until just prior to the 1915 eruption. Average residence times for phenocrysts are in the range of centuries to millennia. Microphenocrysts formed in a hybrid layer that resulted from mixing between end-member reservoir dacite and recharge magma of basaltic andesite composition. High thermal contrast between the two end-member magmas led to relatively high degrees of undercooling, which resulted in faster crystal growth rates and acicular and swallowtail crystal habits. Some plagioclase phenocrysts from the dacitic chamber were incorporated into the hybrid layer and underwent dissolution-precipitation, seen in both crystal textures and rim compositions. Average microphenocryst residence times are of the order of months. Microlites may have formed in response to decompression and/ or syn-eruptive degassing as magma ascended from the chamber through the volcanic conduit. Chemical distinctions in plagioclase microlite An contents reveal that melt of the dark andesite was more mafic than

  2. The Chimalpahad anorthosite Complex and associated basaltic amphibolites, Nellore Schist Belt, India: Magma chamber and roof of a Proterozoic island arc

    NASA Astrophysics Data System (ADS)

    Dharma Rao, C. V.; Windley, B. F.; Choudhary, A. K.

    2011-03-01

    New major and trace element data on the Proterozoic Chimalpahad layered anorthositic Complex and associated basaltic amphibolites of the Nellore Schist Belt of South India provide new constraints on their petrogenesis and geodynamic setting. The Complex consists of layered anorthosites, leucogabbros, gabbros, ultramafic rocks and is spatially associated with basaltic amphibolites. Despite deformation and metamorphism, primary cumulate textures and igneous layering are locally well preserved throughout the Complex. Whereas the amphibolites display diverse REE systematics, the Chimalpahad anorthositic-gabbroic rocks are characterized by moderately depleted to strongly enriched LREE patterns and by flat to depleted HREE patterns. The field relations, major and trace element compositions of the basaltic amphibolites suggest that they are petrogenetically related to the anorthositic-gabbroic rocks by fractional crystallization. The anorthositic rocks and the basaltic amphibolites share the depletion of Nb relative to Th and La on primitive mantle-normalized diagrams. They exhibit signatures of arc magmatic rocks, such as high LILE and LREE relative to the HFSE and HREE, as well as high Ba/Nb, Ba/Zr, Sr/Y, La/Yb ratios that mimic chondrite-normalized REE and primitive mantle-normalized trace element patterns of arc magmas. Similarly, on log-transformed tectonic discrimination diagrams, the Chimalpahad rocks plot within the field of Phanerozoic magmatic arcs, consistent with a subduction zone origin. On the basis of field relations and geochemical characteristics, the Chimalpahad Complex is interpreted as a fragment of a magma chamber of an island arc, which is tectonically juxtaposed against its original volcanic cover. A new preliminary Sm-Nd date of anorthosite from the Chimalpahad Complex indicates a model age of 1170 Ma.

  3. A Dual-Porosity, In Situ Crystallisation Model For Fast-Spreading Mid-Ocean Ridge Magma Chambers Based Upon Direct Observation From Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, C. J.

    2014-12-01

    We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity

  4. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes

    NASA Astrophysics Data System (ADS)

    Corbi, Fabio; Rivalta, Eleonora; Pinel, Virginie; Maccaferri, Francesco; Bagnardi, Marco; Acocella, Valerio

    2016-04-01

    Calderas are topographic depressions formed by the collapse of a partly drained magma reservoir. At volcanic edifices with calderas, eruptive fissures can circumscribe the outer caldera rim, be oriented radially and/or align with the regional tectonic stress field. Constraining the mechanisms that govern this spatial arrangement is fundamental to understand the dynamics of shallow magma storage and transport and evaluate volcanic hazard. Here we use numerical models to show that the previously unappreciated unloading effect of caldera formation may contribute significantly to the stress budget of a volcano. We first test this hypothesis against the ideal case of Fernandina, Galápagos, where previous models only partly explained the peculiar pattern of circumferential and radial eruptive fissures and the geometry of the intrusions determined by inverting the deformation data. We show that by taking into account the decompression due to the caldera formation, the modeled edifice stress field is consistent with all the observation. We then develop a general model for the stress state at volcanic edifices with calderas based on the competition of caldera decompression, magma buoyancy forces and tectonic stresses. These factors control the shallow accumulation of magma in stacked sills, consistently with observations as well as the conditions for the development of circumferential and/or radial eruptive fissures, as observed on active volcanoes. This top-down control exerted by changes in the distribution of mass at the surface allows better understanding of how shallow magma is transferred at active calderas, contributing to forecasting the location and type of opening fissures.

  5. Linking enclave formation to magma rheology

    NASA Astrophysics Data System (ADS)

    Hodge, K. F.; Jellinek, A. M.

    2012-10-01

    Magmatic enclaves record the history of deformation and disaggregation (i.e., fragmentation) of relatively hot, compositionally more mafic magmas injected into actively convecting silicic magma chambers through dikes. Enclave size distributions may provide crucial clues for understanding the nature of this mechanical mixing process. Accordingly, we conduct a comprehensive field study to measure enclave size distributions in six Cascade lava flows. Using results from recent fluid dynamics experiments along with thermodynamic and modeling constraints on key physical properties of the injected and host magmas (i.e., temperature, density and effective viscosity), we use the size distributions of enclaves to characterize the magmatic flow regime governing enclave formation. Scaling arguments suggest that the viscous stresses related to magma chamber flow acting against the yield strength of a crystallizing injected magma control the breakup of 1 m-wide mafic dikes into millimeter- to centimeter-scale enclaves. Our data analysis identifies a characteristic length scale of breakup that constrains the yield strength of the injected magmas in a more restrictive way than existing empirical models for yield strength based on crystal content. In all six lava flows, we show that the progressive fragmentation of the injected magma is self-similar and characterized by a fractal dimensionDf ˜ 2, which is comparable to previous studies on enclaves. We also find a small but statistically significant dependence of Df on the effective viscosity ratio between host and enclave magmas, such that large variations in effective viscosity enhance breakup. This work demonstrates that field observations of enclave size distributions can reliably constrain the rheological and flow conditions in which enclaves form.

  6. Open-System Magma Chamber Evolution: an Energy-Constrained Geochemical Model Incorporating the Effects of Concurrent Eruption, Recharge, Imperfect Assimilation and Fractional Crystallization (EC-E'RAχFC)

    NASA Astrophysics Data System (ADS)

    Spera, F. J.; Bohrson, W. A.

    2003-12-01

    , Cao), distribution coefficients (Dm, Dr, Da) and their temperature dependencies (Δ Hm, Δ Hr, Δ Ha), heat of transition for wall rock (Δ ha), pristine (Δ hm) and recharge (Δ hr) and the isobaric specific heat capacity of assimilant (Cp,a), pristine (Cp,m) and recharge melt (Cp,r). The magma recharge mass and eruptive magma mass functions Mr(Tm) and Me(Tm), respectively, are specified a priori and allow one to predict the effects of recharge and magma eruption on the geochemical evolution of the system. Melt productivity functions, which prescribe the relationship between melt mass fraction and temperature, are defined for end-member bulk compositions characterizing the local geologic site. EC-E'RAχFC makes testable quantitative predictions for relative masses and compositions for volcanic and plutonic products of magma system evolution which can be can be compared to information gathered from field studies to critically test petrogenetic hypotheses. The 'systems' approach to understanding magma chamber evolution promises to enhance the ability to describe the efficacy of petrologic processes in various petrotectonic settings. Illustrative examples of complex EC-E'RAχFC simulations are presented to highlight the salient features of the model.

  7. Experimental investigation on H2O, CO2, S and Cl degassing at Stromboli: from the magma chamber towards the surface. (Invited)

    NASA Astrophysics Data System (ADS)

    Lesne, P.; Kohn, S.; Blundy, J.; Witham, F.; Botcharnikov, R. E.; Behrens, H.

    2010-12-01

    H_{2}O, CO_{2}, sulphur and chlorine are major players in controlling magma generation and transport. Monitoring, collecting, and analyzing volatiles in natural samples, i.e. volatiles trapped in melt inclusion from emitted products or chemistry of degassing plumes at vent of volcanoes, are very useful for understanding the eruption processes of volcanic systems and for forecasting major volcanic eruptions. Experimental work is a powerful tool that is complementary to the analysis of natural samples. Techniques have been developed to reproduce conditions of magma storage from deep depth to shallow levels. In this study equilibrium experiments have been performed between a mixed C-H-O-S-Cl fluid basaltic melt from Stromboli. The aim is to better understand the degassing process at this world reference volcano. We used an internal heated pressure vessel, reproducing conditions of magma storage from 0.1 to 400 MPa. Volatiles dissolved in the melt have been analyzed using different techniques and fluid phase compositions has been calculated using mass balance. Our results are in good agreement with natural data obtained from melt inclusions and gas chemistry measured at vent. Melt inclusions from Stromboli show a strong fractionation of S from Cl at low pressures. This fractionation has been reproduced in our experimental data, showing that the sulphur starts to degas at 100 MPa, whereas the Cl remains in the melt. Also, the fluid phase calculated at different pressure reproduces the evolution of gas chemistry prior and during major eruption (e.g. Burton et al., 2007): H_{2}O/CO_{2} ratios in the fluid phase increase systematically with decreasing pressure. These results suggest, according to Burton et al. (2007), that the high magmatic activity comes from deep level (200 to 300 MPa), whereas gases measured during quiescent activity come from a shallow one. The measurements of CO_{2}/S ratios lead to the same conclusion: high CO_{2}/S ratios measured during high

  8. Active convection and magma dynamics at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Katz, Richard

    2010-05-01

    The role of buoyancy-driven, "active" upwelling beneath mid-ocean ridges has been long debated [1,2,3], with the naysayers holding sway in recent years. Recent work on tomographic imaging of the sub-ridge mantle has revealed patterns in velocity variation that seem inconsistent with what we expect of passive upwelling and melting [4]. The irregular distribution, asymmetry, and off-axis locations of slow regions in tomographic results are suggestive of time-dependent convective flow. Using 2D numerical simulations of internally consistent mantle and magmatic flow plus melting/freezing [5,6], I investigate the parametric subspace in which active convection is expected to occur. For low mantle viscosities, convection can break the symmetry of corner flow. This may help to explain the asymmetric distribution of shear-wave velocity beneath the MELT region of the East Pacific Rise. References: [1] Rabinowicz, et al., EPSL, 1984; [2] Buck & Su, GRL, 1989; [3] Scott & Stevenson, JGR, 1989; [4] Toomey et al., Nature, 2007; [5] McKenzie, J.Pet., 1984; [6] Katz, J.Pet., 2008;

  9. Echo-resonance and hydraulic perturbations in magma cavities: application to the volcanic tremor of Etna (Italy) in relation to its eruptive activity

    NASA Astrophysics Data System (ADS)

    Montalto, A.; Longo, V.; Patanè, G.

    1995-08-01

    A study is presented of spectral features of volcanic tremor recorded at Mount Etna (Sicily, Italy) following the methods of analysis suggested by the resonant scattering formalism of Gaunaurd and Überall (1978, 1979a, 1979b) and the model for hydraulic origin of Seidl et al. (1981). The periods investigated include summit and flank eruptions that occurred between 1984 and 1993. Recordings from a permanent station located near the top of the volcano were used, and the temporal patterns associated with (a) the average spacing (bar Δ ) between consecutive spectral peaks in the frequency range 1 6 Hz, (b) the spectral shape and (c) the overall spectral amplitude were analyzed. bar Δ values are thought to depend on the physical properties of magma, such as its density, which, in turn, is controlled by the degree of gas exsolution. Variations in the spectral shape are tentatively attributed to changes in the geometrical scattering from the boundary of resonant conduits and magma batches. Finally, the overall amplitude at the station should essentially reflect the state of turbulence of magma within the superficial ascending path. A limit in the application of the resonant scattering formalism to the study of volcanic tremor is given by the fact that the fundamental modes and integer harmonics are difficult to identify in the frequency spectra, as tremor sources are likely within cavities of very complex geometry, rather than in spherical or cylindrical chambers, as expected by theory. This study gives evidence of some correlations between the analyzed temporal patterns and the major events in the volcanic activity, related to both lava flow and explosions at the summit vents. In particular, relatively high values of bar Δ have been attained during the SE crater eruption of 1984, the complex eruptive phases of September October 1989 and the 1991 1993 flank eruption, suggesting the presence of a relatively dense magma for all of these events. Conversely, very low

  10. Insights into the Geochemical Evolution of the Youngest Toba Tuff Magma Chamber using Zircon-hosted Melt Inclusion

    NASA Astrophysics Data System (ADS)

    Lerner, A. H.; Kent, A. J.

    2015-12-01

    Zircon crystals can provide multidimensional insights into magmatic evolution. We combine zircon U-Th dating and trace element chemistry, with zircon-hosted melt inclusion compositions and volatile abundances to investigate the magmatic evolution preceding the 74 ka Youngest Toba Tuff (YTT) eruption. Zircon have U-Th crystallization ages spanning from eruption age to > 375 ka, reinforcing earlier findings that the YTT system was long-lived. A progressive increase of U in zircon (from < 500 to ~1500 ppm) indicates that the YTT system, or a portion of it, became highly fractionated between 130-200 ka. A possible lull in zircon crystallization is contemporaneous with a previously recognized increase in chemical diversity of allanite ~110-130 ka, suggesting a period of enhanced thermal input into the system. We identify two main populations of zircon-hosted melt inclusions. A low-MgO type is more evolved (> 280 ppm Rb, ~125 ppm Ba, 25-30 ppm Sr, < 0.03 wt% MgO) and has high water contents (3.8-5.7 wt% H2O), consistent with formation and storage in a highly fractionated crystal mush ~ 4-9 km deep. A high-MgO type (250-260 ppm Rb, 160-450 ppm Ba, 35-55 ppm Sr, 0.04-0.07 wt% MgO) has compositions similar to matrix glasses, and is typically less hydrous (0.5-3.5 wt% H2O), suggesting storage and degassing in a somewhat more primitive melt < 3 km deep. Melt inclusions dated via U-Th measurements of surrounding zircon zones, show no clear temporal differences between the two MgO populations. Rather, melt inclusions entrapped throughout the entire YTT history have relatively invariant major element chemistries, and have no temporal trends in volatile abundances. Zircon-hosted melt inclusions (particularly the low-MgO type) of many ages occur within sealed reentrant melt-channels. A number of zircon grains have actively open melt channels rimmed with 1-3 μm of low-U zircon growth. These dissolution/regrowth features are texturally similar to dissolution zones with high

  11. Comparison of ionization chamber efficiencies for activity measurements.

    PubMed

    Schrader, H; Svec, A

    2004-01-01

    The calibration of ionization chamber measuring systems in terms of activity is described. The energy-dependent efficiency curves of three chambers at the Bureau International des Poids et Mesures, the National Physical Laboratory and the Physikalisch-Technische Bundesanstalt are determined and compared using a fitting procedure for the experimental radionuclide efficiencies by the Microsoft (MS) EXCEL Solver program. An estimation of the uncertainty of the efficiency curves and the deviations of experimental and calculated radionuclide efficiencies are given. By this fitting method, discrepancies in the efficiency determination can be detected at a level of about one percent. Systematic deviations entering into the calculations either from emission probabilities per decay or from absolute activity standardization are discussed.

  12. Inverse differentiation pathway by multiple mafic magma refilling in the last magmatic activity of Nisyros Volcano, Greece

    NASA Astrophysics Data System (ADS)

    Braschi, Eleonora; Francalanci, Lorella; Vougioukalakis, Georges E.

    2012-07-01

    Based on detailed field, petrographic, chemical, and isotopic data, this paper shows that the youngest magmas of the active Nisyros volcano (South Aegean Arc, Greece) are an example of transition from rhyolitic to less evolved magmas by multiple refilling with mafic melts, triggering complex magma interaction processes. The final magmatic activity of Nisyros was characterized by sub-Plinian caldera-forming eruption (40 ka), emplacing the Upper Pumice (UP) rhyolitic deposits, followed by the extrusion of rhyodacitic post-caldera domes (about 31-10 ka). The latter are rich in magmatic enclaves with textural and compositional (basaltic-andesite to andesite) characteristics that reveal they are quenched portions of mafic magmas included in a cooler more evolved melt. Dome-lavas have different chemical, isotopic, and mineralogical characteristics from the enclaves. The latter have lower 87Sr/86Sr and higher 143Nd/144Nd values than dome-lavas. Silica contents and 87Sr/86Sr values decrease with time among dome-lavas and enclaves. Micro-scale mingling processes caused by enclave crumbling and by widespread mineral exchanges increase from the oldest to the youngest domes, together with enclave content. We demonstrate that the dome-lavas are multi-component magmas formed by progressive mingling/mixing processes between a rhyolitic component ( post-UP) and the enclave-forming mafic magmas refilling the felsic reservoir (from 15 wt.% to 40 wt.% of mafic component with time). We recognize that only the more evolved enclave magmas contribute to this process, in which recycling of cumulate plagioclase crystals is also involved. The post-UP end-member derives by fractional crystallization from the magmas leftover after the previous UP eruptions. The enclave magma differentiation develops mainly by fractional crystallization associated with multiple mixing with mafic melts changing their composition with time. A time-related picture of the relationships between dome-lavas and

  13. Imaging of Lower-crustal Magma Chambers at an Ultraslow Spreading Ridge Segment using Elastic Waveform Inversion of a Sparse OBS Dataset

    NASA Astrophysics Data System (ADS)

    Jian, H.; Singh, S. C.; Chen, Y. J.; Li, J.

    2014-12-01

    The existence of axial magma chambers (AMC) is indicative of the magmatic crustal accretion at Mid-Ocean Ridges. They have been extensively imaged with seismic reflection data (e.g. multichannel seismic data), showing that the depth of the top reflector increases from 1 km to ~3 km below the seafloor, when the spreading rate decreases from fast to slow spreading. Under the ultraslow spreading environment, we have previously reported the discovery of a large lower-crustal low-velocity zone at the Southwest Indian Ridge at 50°28'E from 3-D travel time tomography of refraction data registered by an ocean bottom seismometer (OBS) array. These results suggest the presence of partial melt within the lower crust (>4 km bsf). Here we further improve the resolution of the AMC image by employing a 2-D time-domain elastic full waveform inversion (FWI) method. The FWI gives a higher resolution than travel time tomography as it utilizes amplitude information and does not require the high-frequency approximation used in travel time tomography. The non-linearity of the FWI is overcome by using the tomographic results as a starting model. We have selected a 70-km long profile running across the ridge axis around the segment center, where 340 shots spaced at ~220 m were recorded on 3 OBSs. The small number of OBS poses serious challenge for the success of the full waveform inversionFWI. In order to examine the resolvability of this sparse OBS dataset, we first performed FWI over a sparse synthetic data set. We find that the FWI of these this sparse dataset is capable of retrieving an isolated lower-crustal AMC anomaly beneath the ridge axis, although the resulting velocity anomaly is smeared out, particularly along the lateral direction. For the real-data inversion, the starting model was built from the 3-D travel time tomography. The inverted results clearly show the sharp boundary of the top of the low velocity zone, suggesting that the low velocity zone indeed corresponds to

  14. Evidence of varying magma chambers and magmatic evolutionary histories for the Table Mountain Formation in the Carson-Iceberg Wilderness region, Sonora Pass, California

    NASA Astrophysics Data System (ADS)

    Asami, R.; Putirka, K. D.; Pluhar, C. J.; Farner, M. J.; Torrez, G.; Shrum, B. L.; Jones, S.

    2012-12-01

    The Sonora Pass- Dardanelles region in the Carson- Iceberg Wilderness area is located in the central Sierra Nevada and home to the type section for latites (Slemmons, 1953), a volcanic rock that contains high potassium, clinopyroxene, and plagioclase phenocysts. Latite lavas and tuffs exposed in the Sonora Pass region originated from the sources in the eastern Sierra Nevada (Noble et al., 1974) where lavas flowed toward California's Great Valley, and were emplaced in stream valleys along the way, which are now inverted to form "table mountains", ergo the name "Table Mountain Latite" (TML) (Slemmons, 1966). Similarly high-K volcanic rocks of the same age are exposed at Grouse Meadows, which is just north of the Walker Lane Caldera east of Sonora Pass, and at the type section, between Red Peak and Bald Peak west of Sonora Pass. Latites lavas and tuffs in all three regions were analyzed for major oxides and trace elements with X-ray fluorescence spectrometry at California State University, Fresno. Analysis of three locations of (TML) at the type section show that they (Ransome, 1898), may have a different magmatic evolutionary history compared to other latites, exposed at Sonora Pass and Grouse Meadows, as the latter two show similar major oxide and trace element compositions. Most compelling is the contrast in the behavior of Al2O3 and CaO at the type section. Variation diagrams show that at the type section Al2O3 and CaO enrichment decreases with increasing amounts of MgO as fractional crystallization occurs. Conversely, at Sonora Peak and Grouse Meadows, CaO and Al2O3 concentrations mostly increase as MgO decreases with fractional crystallization. This contrasts shows that plagioclase was a major fractioning phase at the type section, but not at the other two localities. This suggests that the lava flows at the type section were erupted from a distinct set of magma chambers and vents that underwent a very distinct magmatic evolutionary history, perhaps involving

  15. Shallow S wave attenuation and actively degassing magma beneath Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Lacson, Rudy; Maeda, Yuta; Figueroa, Melquiades S.; Yamashina, Tadashi

    2014-10-01

    Taal Volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A real-time broadband seismic network was recently deployed and has detected volcano-tectonic events beneath Taal. Our source location analysis of these volcano-tectonic events, using onset arrival times and high-frequency seismic amplitudes, points to the existence of a region of strong attenuation near the ground surface beneath the east flank of Volcano Island in Taal Lake. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. These features strongly suggest that the high-attenuation region represents an actively degassing magma body near the surface that has existed for more than 20 years.

  16. First Assessment Of Volatiles Dissolved In Magma Feeding Yasur Activity (Vanuatu Arc)

    NASA Astrophysics Data System (ADS)

    Metrich, N.; Bertagnini, A.; Garaebiti, E.; Belhadj, O.; Edouard, D.; Mercier, M.

    2008-12-01

    Yasur is the active volcano of Tanna island, located in the south part of the arc where the convergence rate achieves 12 cm per year. Yasur is known, since its discovery in 1774 by Cook, for its continuous strombolian to vulcanian activity. Proximal pyroclastic deposits are constituted by alternating cm to dm thick fallout layers of highly vesicular scoria and ash, most likely representative of the Yasur early activity, although not dated. The scoriae are basaltic-trachyandesites, with relatively low abundances in Th and Nb (2.1 and 1.0 ppm, respectively), intermediate Nb/Y and La/Yb ratios (0.05 and 5.2, respectively) and high Th/Ta and Ba/La ratios (23 and 37, respectively). They display an unusual low crystal content (~14% in mass), possibly suggesting a high thermal flux. The plagioclase-phyric bombs presently thrown out at the crater, during strombolian activity, have more evolved trace and major element compositions that requires ~25% crystal fractionation. The crystal textures in scoria testify to rapid crystallization. In particular, olivine Fo75-71 contains typical hopper to closed-hopper, melt/glassy inclusions (M.I.) indicative of high cooling rates that prevented significant interactions with their hosts. Their major element compositions cover a wide range encompassing that of the bulk rocks and glassy matrices. There is no evidence of boundary layer effect in M.I. due to high olivine crystallization rate. The very first dataset on dissolved volatiles indicates that these melt inclusions are rather poor in water (H2O <1.3 wt% and CO2 (<0.03 wt%) but rich in Cl (up to 0.3-0.4 wt%) and S (up to 0.25 wt%). The glassy matrices of scoria are strongly degassed (in wt% Cl = 0.07-0.09; S <0.01 to 0.03). Thus both S (>90%) and Cl (up to 75-80%) are extensively degassed from the erupting Yasur magma. The expected S/Cl wt ratio in gas emissions should be close to 1, a factor 2- 3 lower than actually measured [1]. It implies that only one third of S emissions

  17. A three-dimensional tomographic velocity model above Mid Atlantic magma chamber from simulated seafloor multi-channel seismic refraction experiment

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G.; Singh, S. C.

    2009-12-01

    With multi-channel seismic (MCS) data recorded on the sea surface, refraction arrivals from the upper crust typically arrive as secondary arrivals after the seafloor reflection, and therefore they do not contain any information on near seafloor velocity. Here we use a Synthetic On Bottom Experiment (SOBE) method to downward continue both shots and receivers to a depth close to the seafloor, which causes refraction arrivals from the upper crust to become first arrivals that can be followed to close to zero source receiver offsets, providing information about near surface velocity. Moreover, the high density of shots and receivers in MCS-based travel-time tomography produces a multiplicity of ray paths never reached by classical travel time tomography methods based on OBS datasets, and hence providing a high-resolution velocity of the sub-surface. We have applied this new technique to the MCS data from the SISMOMAR 3D seismic reflection survey carried out in 2005 over the Lucky Strike Segment of the Mid-Atlantic Ridge. The survey area was 18.55 km by 3.8 km, with a shot spacing of 37.5 m, receiver spacing of 12.5 m and the line spacing of 100 m. It has been the first segment of the MAR to be shown to have a quasi-steady state magma chamber, and we are creating now a high resolution velocity model to investigate in detail the links between magmatism, hydrothermal circulation and faulting in this segment. First, the data was downward continued to 1.0-1.7 km below the sea surface. Then a highly efficient algorithm was used to pick ~800,000 travel times. Because of the the high density of ray paths (up to 7 million), the first arrivals of every fifth shots was picked. To control the picking consistency along a line, picks from the preceding shot was used to guide the current one. Travel time residuals, ~10 ms, and chi-squared of the final 2D model testify to excellent picking accuracy. A 3D velocity cube was then interpolated using ten equi-spaced 2D velocity models

  18. Cloud Chamber Activities for the High School Classroom.

    ERIC Educational Resources Information Center

    Perry, John Timothy; Sankey, Mary Ann

    1995-01-01

    Presents the idea that cloud chambers can be used by students as an experimental tool enabling them to conduct their own investigations on radiation. Provides detail regarding the construction of a cloud chamber and suggestions for student assignments that involve the cloud chamber. (DDR)

  19. Calderas and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Giordano, Guido

    2014-11-01

    magma chamber (termed the Standard Model by Gualda and Ghiorso, 2013) to eruptions that are better explained by tapping multiple, rather than single, melt lenses stored within a largely crystalline mush (which we term complex magma reservoirs). We then discuss the implications of magma storage within complex, rather than simple, reservoirs for identifying magmatic systems with the potential to produce large eruptions, and for monitoring eruption progress under conditions where successive melt lenses may be tapped. We conclude that emerging views of complex magma reservoir configurations provide exciting opportunities for re-examining volcanological concepts of caldera-forming systems.

  20. Caldera resurgence during magma replenishment and rejuvenation at Valles and Lake City calderas

    NASA Astrophysics Data System (ADS)

    Kennedy, Ben; Wilcock, Jack; Stix, John

    2012-10-01

    A key question in volcanology is the driving mechanisms of resurgence at active, recently active, and ancient calderas. Valles caldera in New Mexico and Lake City caldera in Colorado are well-studied resurgent structures which provide three crucial clues for understanding the resurgence process. (1) Within the limits of 40Ar/39Ar dating techniques, resurgence and hydrothermal alteration at both calderas occurred very quickly after the caldera-forming eruptions (tens of thousands of years or less). (2) Immediately before and during resurgence, dacite magma was intruded and/or erupted into each system; this magma is chemically distinct from rhyolite magma which was resident in each system. (3) At least 1 km of structural uplift occurred along regional and subsidence faults which were closely associated with shallow intrusions or lava domes of dacite magma. These observations demonstrate that resurgence at these two volcanoes is temporally linked to caldera subsidence, with the upward migration of dacite magma as the driver of resurgence. Recharge of dacite magma occurs as a response to loss of lithostatic load during the caldera-forming eruption. Flow of dacite into the shallow magmatic system is facilitated by regional fault systems which provide pathways for magma ascent. Once the dacite enters the system, it is able to heat, remobilize, and mingle with residual crystal-rich rhyolite remaining in the shallow magma chamber. Dacite and remobilized rhyolite rise buoyantly to form laccoliths by lifting the chamber roof and producing surface resurgent uplift. The resurgent deformation caused by magma ascent fractures the chamber roof, increasing its structural permeability and allowing both rhyolite and dacite magmas to intrude and/or erupt together. This sequence of events also promotes the development of magmatic-hydrothermal systems and ore deposits. Injection of dacite magma into the shallow rhyolite magma chamber provides a source of heat and magmatic volatiles

  1. Magma plumbing system and seismicity of an active mid-ocean ridge volcano.

    PubMed

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-20

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  2. Magma plumbing system and seismicity of an active mid-ocean ridge volcano

    NASA Astrophysics Data System (ADS)

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-02-01

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.

  3. Magma plumbing system and seismicity of an active mid-ocean ridge volcano

    PubMed Central

    Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert

    2017-01-01

    At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges. PMID:28218270

  4. Numerical modelling of triple-junction tectonics at Karlıova, Eastern Turkey, with implications for regional magma transport

    NASA Astrophysics Data System (ADS)

    Karaoğlu, Özgür; Browning, John; Bazargan, Mohsen; Gudmundsson, Agust

    2016-10-01

    Few places on Earth are as tectonically active as the Karlıova region of eastern Turkey. In this region, complex interactions between the Arabian, Eurasian and Anatolian plates occur at the Karlıova Triple Junction (KTJ). The relationship between tectonics and magma propagation in triple-junction tectonic settings is poorly understood. Here we present new field and numerical results on the mechanism of magma propagation at the KTJ. We explore the effects of crustal heterogeneity and anisotropy, in particular the geometry and mechanical properties of many faults and layers, on magma propagation paths under a variety of tectonic loadings. We propose that two major volcanic centres in the area, the Turnadağ volcano and the Varto caldera, are both fed by comparatively shallow magma chambers at depths of about 8 km, which, in turn, are fed by a single, much larger and deeper reservoir at about 15-18 km depth. By contrast, the nearby Özenç volcanic area is fed directly by the deeper reservoir. We present a series of two-dimensional and three-dimensional numerical models showing that the present tectonic stresses encourage magma-chamber rupture and dyke injection. The results show that inversion tectonics encourages the formation of magma paths as potential feeder dykes. Our three-dimensional models allow us to explore the local stresses induced by complex loading conditions at the Karlıova triple junction, using an approach that can in future be applied to other similar tectonic regions. The numerical results indicate a great complexity in the potential magma (dyke) paths, resulting from local stresses generated by interaction between mechanical layers, major faults, and magma chambers. In particular, the results suggest three main controls on magma path formation and eventual eruptions at KTJ: (1) the geometry and attitude of the associated faults; (2) the heterogeneity and anisotropy of the crust; and (3) mechanical (stress) interactions between deep and shallow

  5. Variation of volatile concentration in a magma system of Satsuma-Iwojima volcano deduced from melt inclusion analyses

    NASA Astrophysics Data System (ADS)

    Saito, G.; Kazahaya, K.; Shinohara, H.; Stimac, J.; Kawanabe, Y.

    2001-08-01

    Chemical analyses of 30 melt inclusions from Satsuma-Iwojima volcano, Japan, were carried out to investigate volatile evolution in a magma chamber beneath the volcano from about 6300 yr BP to the present. Large variations in volatile concentrations of melts were observed. (1) Water concentration of rhyolitic melts decreases with time; 3-4.6 wt.% at the time of latest caldera-forming eruption of Takeshima pyroclastic flow deposit (ca. 6300 yr BP), 3 wt.% for small pyroclastic flow (ca. 1300 yr BP) of Iwodake, post-caldera rhyolitic dome, and 0.7-1.4 wt.% for submarine lava eruption (Showa-Iwojima) in 1934. (2) Rhyolitic melts of the Takeshima and Iwodake eruptions contained CO 2 of less than 40 ppm, while the Showa-Iwojima melt has higher CO 2 concentration of up to 140 ppm. (3) Water and CO 2 concentrations of basaltic to andesitic melt of Inamuradake, a post-caldera basaltic scoria cone, are 1.2-2.8 wt.% and ≤290 ppm, respectively. Volatile evolution in the magma chamber is interpreted as follows: (1) the rhyolitic magma at the time of the latest caldera-forming eruption (ca. 6300 yr BP) was gas-saturated due to pressure variation in the magma chamber because the large variation in water concentration of the melt was attributed to exsolution of volatile in the magma prior to the eruption. Iwodake eruption (ca. 1300 yr BP) was caused by a remnant of the caldera-forming rhyolitic magma, suggested from the similarity of major element composition between these magmas. (2) Volatile composition of the Showa-Iwojima rhyolitic melt agrees with that of magmatic gases presently discharging from a summit of Iwodake, indicating the low pressure degassing condition. (3) The degassing of the magma chamber by magma convection in a conduit of Iwodake during non-eruptive but active degassing period for longer than 800 years decreased water concentration of the rhyolitic magma. (4) Geological and petrological observations indicate that a stratified magma chamber, which consists

  6. Reflective chamber for hardware-in-the-loop simulation of active/passive millimeter wave sensors

    NASA Astrophysics Data System (ADS)

    Sholes, W. J.; Wilsdorf, T. T.

    A unique reflective chamber has been developed at the MICOM Advanced Simulation Center for hardware-in-the-loop simulation for combined active and passive millimeter sensors. This paper describes the reasons for developing such a reflective chamber and provides results of measurement of active reflection levels and radiometric temperatures within the chamber. Utilization of this chamber in a hardware-in-the-loop simulation for a millimeter wave weapon system is described, including the computer equipment and software system for real-time control of the simulator.

  7. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  8. Pyroclastic flows and lavas of the Mogan and Fataga formations, Tejeda Volcano, Gran Canaria, Canary Islands: mineral chemistry, intensive parameters, and magma chamber evolution

    NASA Astrophysics Data System (ADS)

    Crisp, Joy A.; Spera, Frank J.

    1987-12-01

    The Mogan and Fataga formations on the island of Gran Canaria, Canary Islands, represent a sequence of approximately 30 intercalated pyroclastic and lava flows (total volume about 500 km3 dense-rock equivalent) including subalkaline rhyolitic, peralkaline rhyolitic and trachytic pyroclastic flows, nepheline trachyte lavas and a small volume of alkali basaltic lavas and tephra deposits. The eruption of the intermediate to silicic rocks of the Mogan and Fataga formations follows the roughly 4 Ma duration of basaltic shield volcanism. The most common assemblage in the evolved (Mogan and Fataga) rocks is anorthoclase+ edenitic amphibole+ilmenite+magnetite±augite±hypersthene +apatite+pyrrhotite. A few flows also contain plagioclase, biotite, or sphene. Coexisting Fe-Ti oxides yield equilibrium temperatures between 835 and 930° C and logf_{O_2 } between -11.2 and -12.6. The lowermost pyroclastic flow of the Mogan formation is zoned from a rhyolitic base (848° C) to a basaltic top (931° C). Unit P1 has an oxygen isotope feldspar-magnetite temperature (850° C) very close to its Fe-Ti oxide temperature. One of the youngest Mogan flows is zoned from a comendite (836° C) at the base to a comenditic trachyte (899° C) at the top. The Fataga formation pyroclastic flows show only slight compositional zonation, and one flow has the same Fe-Ti oxide compositions at top and base. Calculations using the reaction 1/3 magnetite+SiO2 (melt)=ferrosilite+1/6 O2 indicate total pressures of 1 4 (±3) kb for six of the Mogan flows and one of the Fataga flows. For four of the pyroclastic flows, equilibria involving tremolite-SiO2-diopside-enstatite-H2O and phlogopite-SiO2-sanidine-enstatite-H2O imply water contents of 0.9 to 2.6 (±0.5) wt% andf_{H_2 O} between 80 and 610 bars, which indicates that magma within the Tejeda reservoir was H2O-undersaturated throughout the entire history of Mogan to Fataga volcanism. The fluorine contents of amphibole, biotite, and apatite, and chlorine

  9. Is magma cooling responsible for the periodic activity of Soufrière Hills volcano, Montserrat, West Indies?

    NASA Astrophysics Data System (ADS)

    Caricchi, Luca; Simpson, Guy; Chelle-Michou, Cyril; Neuberg, Jürgen

    2016-04-01

    After 400 years of quiescence, Soufrière Hills volcano on Montserrat (SHV) started erupting in 1995. Ongoing deformation and sulphur dioxide emission demonstrate that this volcanic systems is still restless, however, after 5 years of inactivity it remains unclear whether magma extrusion will restart. Also, if such periodically observed activity at SHV will restart, can we use past monitoring data to attempt to forecast the reawakening of this volcano? Cooling of volatile saturated magma leads to crystallisation, the formation of gas bubbles and expansion. Such volumetric variations are not only potentially responsible for deformation signals observed at the surface (Caricchi et al., 2014), but also lead to pressurisation of the magmatic reservoir and eventually renewed magma extrusion (Tait et al., 1989). We postulate that volcanic activity observed at SHM over the last 20 years could be essentially the result of the unavoidable progressive cooling of a magmatic body, which was probably assembled over thousands of years and experienced internal segregation of eruptible lenses of magma (Christopher et al., 2015). To test this hypothesis, we performed thermal modelling to test if the cooling of a shallow magma body emplaced since 1990 could account for the monitoring signals observed at SHV. The results show that progressive cooling of a 4km3 volume of melt could explain the deformation rate currently observed. Using the deformation rate obtained from the modelling for the first 15 years of cooling, a reservoir volume of about 13 km3 (Paulatto et al., 2012) and a critical value of overpressure of 10 MPa, it would have taken approximately only 3 years to pressurise the reservoir to the critical pressure and restart magma extrusion. This is in agreement with the time interval between previous pauses at SHV before 2010. Considering the current deformation rates, we speculate that magma extrusion could restart in 6-8 years after the end of the last event in 2010, hence

  10. Gravity fluctuations induced by magma convection at Kilauea Volcano, Hawai'i

    USGS Publications Warehouse

    Carbone, Daniele; Poland, Michael P.

    2012-01-01

    Convection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.

  11. Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011-2013 seismic series associated to the volcanic activity of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Ibáñez, J. M.; De Angelis, S.; García-Yeguas, A.; Prudencio, J.; Morales, J.; Tuvè, T.; García, L.

    2015-11-01

    In this manuscript we present a new interpretation of the seismic series that accompanied eruptive activity off the coast of El Hierro, Canary Islands, during 2011-2013. We estimated temporal variations of the Gutenberg-Richter b value throughout the period of analysis, and performed high-precision relocations of the preeruptive and syneruptive seismicity using a realistic 3-D velocity model. Our results suggest that eruptive activity and the accompanying seismicity were caused by repeated injections of magma from the mantle into the lower crust. These magma pulses occurred within a small and well-defined volume resulting in the emplacement of fresh magma along the crust-mantle boundary underneath El Hierro. We analyzed the distribution of earthquake hypocenters in time and space in order to assess seismic diffusivity in the lower crust. Our results suggest that very high earthquake rates underneath El Hierro represent the response of a stable lower crust to stress perturbations with pulsatory character, linked to the injection of magma from the mantle. Magma input from depth caused large stress perturbations to propagate into the lower crust generating energetic seismic swarms. The absence of any preferential alignment in the spatial pattern of seismicity reinforces our hypothesis that stress perturbation and related seismicity, had diffusive character. We conclude that the temporal and spatial evolution of seismicity was neither tracking the path of magma migration nor it defines the boundaries of magma storage volumes such as a midcrustal sill. Our conceptual model considers pulsatory magma injection from the upper mantle and its propagation along the Moho. We suggest, within this framework, that the spatial and temporal distributions of earthquake hypocenters reflect hydraulic fracturing processes associated with stress propagation due to magma movement.

  12. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals

    USGS Publications Warehouse

    Matthews, Naomi E.; Vazquez, Jorge A.; Calvert, Andrew T.

    2015-01-01

    The last supereruption from the Yellowstone Plateau formed Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff. Tephra from the Lava Creek eruption is a key Quaternary chronostratigraphic marker, in particular for dating the deposition of mid Pleistocene glacial and pluvial deposits in western North America. To resolve the timing of eruption and crystallization history for the Lava Creek magma, we performed (1) 40Ar/39Ar dating of single sanidine crystals to delimit eruption age and (2) ion microprobe U-Pb and trace-element analyses of the crystal faces and interiors of single zircons to date the interval of zircon crystallization and characterize magmatic evolution. Sanidines from the two informal members composing Lava Creek Tuff yield a preferred 40Ar/39Ar isochron date of 631.3 ± 4.3 ka. Crystal faces on zircons from both members yield a weighted mean 206Pb/238U date of 626.5 ± 5.8 ka, and have trace element concentrations that vary with the eruptive stratigraphy. Zircon interiors yield a mean 206Pb/238U date of 659.8 ± 5.5 ka, and reveal reverse and/or oscillatory zoning of trace element concentrations, with many crystals containing high U concentration cores that likely grew from highly evolved melt. The occurrence of distal Lava Creek tephra in stratigraphic sequences marking the Marine Isotope Stage 16–15 transition supports the apparent eruption age of ∼631 ka. The combined results reveal that Lava Creek zircons record episodic heating, renewed crystallization, and an overall up-temperature evolution for Yellowstone's subvolcanic reservoir in the 103−104 year interval before eruption.

  13. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions

    PubMed Central

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Stern, Richard A.; D’Abzac, Francois-Xavier; Schaltegger, Urs

    2015-01-01

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 103 to 104 years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption. PMID:26356304

  14. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    PubMed

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  15. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    PubMed Central

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S.

    2015-01-01

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface. PMID:26133881

  16. Note: A single-chamber tool for plasma activation and surface functionalization in microfabrication

    SciTech Connect

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S.

    2015-06-15

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  17. Deformation of Grímsvötn volcano, Iceland, 1992-2014: Constraints on magma flow in relation to eruptions in 1998, 2004 and 2011

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hreinsdottir, Sigrun; Sturkell, Erik; Ofeigsson, Benedikt; Einarsson, Pall; Roberts, Matthew; Grapenthin, Ronni; Villemin, Thierry; Arnadottir, Thora; Geirsson, Halldor

    2014-05-01

    A time series of ground deformation at Grímsvötn volcano, Iceland from 1992 to 2014 reveals deformation due to plate movements, glacial-isostatic uplift in response to the melting of the Vatnajökull ice cap, annual changes due to snow loading and magma movements. GPS measurements have been made at one nunatak, conducted intermittently since 1992 and continuously since 2004. During this period eruptions have occurred at Grímsvötn in 1998, 2004 and 2011. The component of displacement related to magma movements is obtained after the time series are corrected for signals due to other processes. Uplift and displacement away from the caldera occurs between eruptions at a rate of few cm/yr, interrupted by sudden co-eruptive subsidence and displacement towards the caldera (up to half a meter). This inflation/deflation pattern suggests deformation driven by pressure change in an upper crustal magma chamber, similar to other highly active calderas in Iceland such as Askja and Krafla. A simple model of pressure change variation in a magma chamber at shallow depth, with variable inflow between eruptions and outflow during eruptions can explain the observed deformation pattern. The erupted volume of magma in the 2011 eruption is about 10 times larger than the inferred co-eruptive volume change, attributed to compressibility of magma in the chamber. The magma compressibility is inferred to have remained constant during the 2011 eruption, as about constant scale factor is found during that eruption between eruption rate and displacement rate. This scale factor is, however, about five times lower for the 2004 eruption. This difference implies higher compressibility of magma in the shallow Grímsvötn magma chamber during the 2011 eruption compared to 2004, assuming the active part of the Grimsvötn magma plumbing system remained the same in both eruptions.

  18. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.; Matthews, N. E.; Calvert, A. T.

    2015-12-01

    The last supereruption from the Yellowstone Plateau formed Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff (LCT). Tephra from the eruption blanketed much of the western United States, and is a key Quaternary chronostratigraphic marker, in particular for dating deposition of mid-Pleistocene glacial and pluvial deposits in western North America. We performed 40Ar/39Ar dating of single sanidines to delimit eruption age, and ion microprobe U-Pb and trace-element analyses of crystal faces on single zircons to characterize magmatic evolution and date near-eruption crystallization, as well as analyses of crystal interiors to date the interval of zircon crystallization. Sanidines from the two LCT members A and B yield an 40Ar/39Ar isochron date of 631 ± 4 ka (2σ). Crystal faces on zircons from both members yield a weighted mean 206Pb/238U date of 627 ± 6 ka (2σ) and have trace element concentrations that vary with eruptive stratigraphy. Zircon interiors yield a weighted mean 206Pb/238U date of 660 ± 6 ka, and reveal reverse and/or oscillatory zoning of trace element concentrations, with many crystals containing high-U concentrations and dark cathodoluminescence (CL) cores. These crystals with high-U cores are possibly sourced from 'defrosting' of melt-impregnated margins of the growing subvolcanic reservoir. LCT sanidines mirror the variation of zircon composition within the eruptive stratigraphy, with crystals from upper LCT-A and basal LCT-B having bright-CL rims with high Ba concentrations, suggesting late crystallization after addition of less evolved silicic magma. The occurrence of distal LCT in stratigraphic sequences marking the Marine Isotope Stage 16-15 transition supports the apparent eruption age of ca. 631 ka. These results reveal that Lava Creek zircons record episodic heating, renewed crystallization, and an overall up-temperature evolution for Yellowstone's subvolcanic reservoir in the 103-104 year interval

  19. Recent activity of Anatahan volcano, Northern Marina Islands, and its magma plumbing system

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Morita, Y.; Matsushima, T.; Tabei, T.; Watanabe, A.; Maeno, F.; Camacho, J. T.

    2009-12-01

    . The GPS observation detected the westward displacement of 2cm and subsidence of 2-3cm in the west part of the island during 6 months of 2008. The deformation can be explained by a deflation source at depth of 5km, 2km west offshore, plus a shallow, inflation source in the shape of EW open crack (40cm wide) in the western part. The deflation source has the volume of 10**7 m3, much larger than the volume of inflation source, suggesting that the open crack was accompanied by a small activity in the 2008 summer. The distribution of seismic hypocenters and the deformation sources support the magmatic path rising from the deep part of the west part of the island, as proposed by Watanabe et al. (2005). Interaction of magma with seawater likely became the trigger of phreatic explosions in the waning stage.

  20. Megacrystals track magma convection between reservoir and surface

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Oppenheimer, Clive; Scaillet, Bruno; Buisman, Iris; Kimball, Christine; Dunbar, Nelia; Burgisser, Alain; Ian Schipper, C.; Andújar, Joan; Kyle, Philip

    2015-03-01

    Active volcanoes are typically fed by magmatic reservoirs situated within the upper crust. The development of thermal and/or compositional gradients in such magma chambers may lead to vigorous convection as inferred from theoretical models and evidence for magma mixing recorded in volcanic rocks. Bi-directional flow is also inferred to prevail in the conduits of numerous persistently-active volcanoes based on observed gas and thermal emissions at the surface, as well as experiments with analogue models. However, more direct evidence for such exchange flows has hitherto been lacking. Here, we analyse the remarkable oscillatory zoning of anorthoclase feldspar megacrystals erupted from the lava lake of Erebus volcano, Antarctica. A comprehensive approach, combining phase equilibria, solubility experiments and melt inclusion and textural analyses shows that the chemical profiles are best explained as a result of multiple episodes of magma transport between a deeper reservoir and the lava lake at the surface. Individual crystals have repeatedly travelled up-and-down the plumbing system, over distances of up to several kilometers, presumably as a consequence of entrainment in the bulk magma flow. Our findings thus corroborate the model of bi-directional flow in magmatic conduits. They also imply contrasting flow regimes in reservoir and conduit, with vigorous convection in the former (regular convective cycles of ∼150 days at a speed of ∼0.5 mm s-1) and more complex cycles of exchange flow and re-entrainment in the latter. We estimate that typical, 1-cm-wide crystals should be at least 14 years old, and can record several (from 1 to 3) complete cycles between the reservoir and the lava lake via the conduit. This persistent recycling of phonolitic magma is likely sustained by CO2 fluxing, suggesting that accumulation of mafic magma in the lower crust is volumetrically more significant than that of evolved magma within the edifice.

  1. Role of large flank-collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Boudon, G.; Villemant, B.; Le Friant, A.; Paterne, M.; Cortijo, E.

    2012-12-01

    Flank-collapse events are now recognized as common process of destruction of volcanoes. They can occur several times on a volcanic edifice and may involve a large range of volume of material from km3 to thousands of km3. Large flank-collapse events may have significant effects on magma eruption and evolution. The load exerted by the volcanic edifice on the plumbing system and the magma chamber acts as a density filter for magma ascent. Magmas denser than the density threshold are stored within the magma chamber where they differentiate and thus become less dense with time which favours their eruption. When a flank-collapse event occurs the edifice load suddenly decreases which decreases the density threshold allowing denser magmas to ascend and erupt. Thus construction and destruction of volcanic edifices may control both differentiation and eruptive processes. In the Lesser Antilles Arc, a large number of flank-collapse events have been identified. Here, we show that some of the largest events are correlated to significant variations in erupted magma compositions and eruptive styles. On Montagne Pelée, after the 32 kys old flank-collapse event, the magma production rate is sustained during several thousand years: basic and dense magmas were emitted through open-vent eruptions that generated abundant scoria flows. The pre-flank collapse activity produced significantly more acidic magmas. The rapid building of a new cone after the flank collapse progressively increased the load and the density threshold, leading to a decrease in magma production rate and a change in the magma composition of the erupted products. They are more acidic and less dense and thus generate plinian and dome-forming eruptions up to present. On the contrary, at Soufrière Volcanic Centre of St Lucia and at Pitons du Carbet in Martinique, the flank collapses have an opposite effect: in both cases, more acidic magmas erupted after the flank collapse events. These magmas are highly crystallized

  2. Space-geodetic evidence of shallow magma reservoirs in the West-Sunda arc; Insights from global data compilation on what controls magma ascent in volcanic arcs

    NASA Astrophysics Data System (ADS)

    Chaussard, E.; Amelung, F.

    2011-12-01

    A large proportion of the world's population lives on or near active volcanoes. Ground deformation measurements are key observations for volcano monitoring not only because they allow identification of precursory uplift caused by ascent of new magma towards the surface but also because volcanic hazard assessment relies on interpretations of geodetic data in terms of depth of magma accumulation. Here we conducted a global survey of the West-Sunda volcanic arc using differential InSAR combined with SBAS-time series analysis covering an area of about 500 000 km2 on the islands of Sumatra, Java and Bali. The compiled ground velocity map reveals the background level of activity of the 84 volcanic centers of the West-Sunda arc. We identified uplift at 6 volcanic centers and subsidence at 2 edifices. Interestingly, 3 of the 6 uplifting centers erupted after the time period of our survey, suggesting that edifice inflation is a precursor of eruptions. Elastic half-space models of the measured deformation give quantitative estimates of the depths of the magmatic sources and reveal that the sources of inflation are located at shallow depths, less than 3km under the sea level. To interpret these results from a global point of view we compiled data of magma chamber depths in volcanic arcs. Because magma primarily rises by buoyancy forces, in the absence of exterior stress, magma chambers are expected to develop at the level of neutral buoyancy, where magma first encounters a crustal density similar to its density, typically between 5 and 10km for Andesitic volcanoes [Ryan, 1987]. Magma chambers around these depths are found in most volcanic arcs, such as the Central Andes [Pritchard, 2004; Pritchard and Simons, 2004]. However, some volcanic arcs present in addition to magma chambers at these levels, shallower reservoirs, above 4km depth. It is the case in the Aleutian arc, the Costa-Rican arc and, from our survey, the West-Sunda arc [Lu et al., 2002; Lu, 2007; Alvarado et al

  3. The Magma Transport System of the Mono Craters, California

    NASA Astrophysics Data System (ADS)

    Johnson, M. R.; Putirka, K. D.

    2013-12-01

    The Mono Craters are a series of 28 volcanic domes, coulees, and craters, just 16 km north of Long Valley. The magmatic products of the Mono Craters include mostly small magmatic bodies, sills, and dikes set in a transtensional tectonic setting. New high-density sampling of the domes reveals a wider range of magma compositions than heretofore recognized, and thus reveals what is likely a more complex magmatic system, involving a greater number of batches of magma and a more complex magma storage/delivery system. Here, we present a model for the magma plumbing system based on space-composition patterns and preliminary estimates of crystallization temperatures and pressures based on olivine-, feldspar- and clinopyroxene-liquid equilibria. Whole rock analyses show three compositionally distinct batches of magma within the Mono Craters proper: a felsic (73-78.4% SiO2), intermediate (64.4-68% SiO2) and mafic (52.7-61% SiO2) group. The Mono Lake Islands (Paoha and Negit) fall into the intermediate group, but contain distinctly lower TiO2 and Fe2O3 at a given SiO2 compared to all other Mono Craters; on this basis, we surmise that the Paoha and Negit eruptions represent a distinct episode of magmatism that is not directly related to the magmatic activity that created the Mono Craters proper. The discontinuous nature of the three groups indicates that magma mixing, while evident to some degree within and between certain domes, did not encompass the entire range of compositions at any given time. The three groups, however, do form a rough linear trend, and some subsets of domes have compositions that fall on distinctly linear (if still discontinuous) trends that cannot be reproduced by fractional crystallization, but rather are indicative of magma mixing. Our high-density sampling also reveals interesting geographical patterns: for example, felsic magmas erupt throughout the entire Mono Craters chain, erupting at a wide range of temperatures, ranging from 650-995°C, but

  4. The link between multistep magma ascent and eruption intensity: examples from the recent activity of Piton de la Fournaise (La Réunion Island).

    NASA Astrophysics Data System (ADS)

    Di Muro, Andrea

    2014-05-01

    Caldera collapses represent catastrophic events, which induce drastic modification in a volcano plumbing system and can result in major and fast evolution of the system dynamics. At Piton de la Fournaise (PdF) volcano, the 2007 eruptive sequence extruded the largest lava volume (240 Mm3) since at least 3 centuries, provoking the collapse of a small (1 km wide; 340 m deep) summit caldera. In about 35 days, the 2007 major eruption generated i) the greatest lava output rate, ii) the strongest lava fountaining activity (> 200 m high), iii) the largest SO2 volume (> 230 kt) ever documented at PdF. This event ended a 9 year-long period (1998-2007) of continuous edifice inflation and sustained eruptive activity (3 eruptions per year on average). Unexpectedly and in spite of the large volume of magma erupted in 2007, volcano unrest and eruptive activity resumed quickly in 2008, soon after caldera collapse, and produced several closely spaced intracaldera eruptions and shallow intrusions. The post-2007 activity is associated with a trend of continuous volcano deflation and consists in small-volume (<3 Mm3) weak (< 20 m high fountains; strombolian activity) summit/proximal eruptions of moderate/low MgO magmas and frequent shallow magma intrusions. Non-eruptive tremor and increase in SO2 emissions were interpreted as evidences of magma intrusions at shallow depth (< 2.0 km) preceding the eruptions. The 2007-2011 phase of activity represents an ideal case-study to analyze the influence of magma ascent kinetics on the evolution of volcano dynamics at a persistently active basaltic volcano. In order to track magma storage and ascent, we compare geochemical data on fast quenched glasses (melt inclusions, Pele's hairs, coarse ash fragments produced by lava-sea water interaction, glassy crust of lavas, high-temperature lavas quenched in water, matrix glasses) with the geophysical record of volcano unrest. Petro-chemical data suggest that the shallow PdF plumbing system is formed by

  5. Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.

    1996-01-01

    OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular

  6. Design, construction, activation, and operation of a high intensity acoustic test chamber

    NASA Technical Reports Server (NTRS)

    Kamel, L. T.

    1986-01-01

    The design philosophy, construction, integration, and activation of the high intensity acoustic test chamber for production acceptance testing of satellites are discussed. The 32,000 cubic-foot acoustic test cell consists of a steel reinforced concrete chamber with six electropneumatic noise generators. One of the innovative features of the chamber is a unique quarter horn assembly that acoustically couples the noise generators to the chamber. Design concepts, model testing, and evaluation results are presented. Considerations such as nitrogen versus compressed air source, digital closed loop spectrum control versus manual equalizers, and microprocessor based interlock systems are included. Construction difficulties, anomalies encountered, and their resolution are also discussed. Results of the readiness testing are highlighted.

  7. Magmatic (silicates/saline/sulfur-rich/CO2) immiscibility and zirconium and rare-earth element enrichment from alkaline magma chamber margins : Evidence from Ponza Island, Pontine Archipelago, Italy

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.; Lima, A.; Torok, K.

    1996-01-01

    Fluid inclusions were measured from a feldspathoid-bearing syenite xenolith entrained in trachyte from Ponza, one of the islands of the Pontine Archipelago, located in the Gulf of Gaeta, Italy. The feldspathoid-bearing syenite consists mainly of potassium feldspar, clinopyroxene, amphibole, biotite, titanite, manganoan magnetite, apatite with minor nosean, Na-rich feldspar, pyrrhotite, and rare cheralite. Baddeleyite and zirkelite occur associated with manganoan magnetite. Detailed electron-microprobe analysis reveals enrichments in REE, Y, Nb, U, Th as well as Cl and F in appropriate phases. Fluid inclusions observed in potassium feldspar are either silicate-melt or aqueous inclusions. The aqueous inclusions can be further classified as. (1) one-phase vapor, (2) two-phase (V + L) inclusions, vapor-rich inclusions with a small amount of CO2 in most cases; homogenization of the inclusions always occurred in the vapor phase between 359 and 424??C, salinities vary from 2.9 to 8.5 wt. % NaCl equivalent; and. (3) three-phase and multiphase inclusions (hypersaline/sulfur-rich aqueous inclusions sometimes with up to 8 or more solid phases). Daughter minerals dissolve on heating before vapor/liquid homogenization. Standardless quantitative scanning electron microscope X-ray fluorescence analysis has tentatively identified the following chloride and sulfate daughter crystals; halite, sylvite, glauberite. arcanite, anhydrite, and thenardite. Melting of the daughter crystals occurs between 459 and 536??C (54 to 65 wt. % NaCI equivalent) whereas total homogenization is between 640 and 755??C. The occurrence of silicate-melt inclusions and high-temperature, solute-rich aqueous inclusions suggests that the druse or miarolitic texture of the xenolith is late-stage magmatic. The xenolith from Ponza represents a portion of the peripheral magma chamber wall that has recorded the magmatic/hydrothermal transition and the passage of high solute fluids enriched in chlorides, sulfur, and

  8. Climate effects on volcanism: Influence of ice load variations on magma storage zones with application to Icelandic volcanoes.

    NASA Astrophysics Data System (ADS)

    Albino, F.; Pinel, V.; Sigmundsson, F.

    2011-12-01

    Correlations between deglaciation periods and eruptive activity in the past have been strongly suggested, especially in Iceland, where the end of the last glaciation was characterised by a large pulse in volcanic production. Present-day reduction in ice load on subglacial volcanoes due to global warming is modifying pressure conditions in magmatic systems with a potential to influence magma production as well as shallow storage. Here, we model stress induced by variation in surface loads and evaluate how the resulting pressure conditions can modulate magmatic activity. We focus on the effect on shallow storage zones and show that ice loading can modify their failure conditions in a manner that depends critically on ice retreat timing and spatial distribution, the shape and depth of magma chambers as well the compressibility of the magma. We study in particular two subglacial volcanoes in Iceland: the Katla volcano under the Mýrdalsjökull ice cap and Grímsvötn at the Vatnajökull ice cap. Numerical calculations have been carried out in axisymmetric geometry for elliptical magma chambers. An elastic model is first used to evaluate the effects of the annual load cycle, due to seasonal variation of ice mass, which indicates an annual modulation of failure conditions on magma chambers at subglacial volcanoes. Our model predicts that, in case of a spherical or horizontally elongated magma chamber, eruptions are more likely when the seasonal snow cover is smallest. This triggering effect is small, around few kPa, but appears consistent with the fact that all the nine last major historical eruptions of Katla volcano occurred in period from May - October when the annual snow load is minimum. Viscous effects are then introduced to evaluate the influence of long term ice thinning on the shallow magma storage zones.

  9. Storage and interaction of compositionally heterogeneous magmas from the 1986 eruption of Augustine Volcano, Alaska

    USGS Publications Warehouse

    Roman, Diana C.; Cashman, Katharine V.; Gardner, Cynthia A.; Wallace, Paul J.; Donovan, John J.

    2006-01-01

    Compositional heterogeneity (56–64 wt% SiO2 whole-rock) in samples of tephra and lava from the 1986 eruption of Augustine Volcano, Alaska, raises questions about the physical nature of magma storage and interaction beneath this young and frequently active volcano. To determine conditions of magma storage and evolutionary histories of compositionally distinct magmas, we investigate physical and chemical characteristics of andesitic and dacitic magmas feeding the 1986 eruption. We calculate equilibrium temperatures and oxygen fugacities from Fe-Ti oxide compositions and find a continuous range in temperature from 877 to 947°C and high oxygen fugacities (ΔNNO=1–2) for all magmas. Melt inclusions in pyroxene phenocrysts analyzed by Fourier-transform infrared spectroscopy and electron probe microanalysis are dacitic to rhyolitic and have water contents ranging from <1 to ∼7 wt%. Matrix glass compositions are rhyolitic and remarkably similar (∼75.9–76.6 wt% SiO2) in all samples. All samples have ∼25% phenocrysts, but lower-silica samples have much higher microlite contents than higher-silica samples. Continuous ranges in temperature and whole-rock composition, as well as linear trends in Harker diagrams and disequilibrium mineral textures, indicate that the 1986 magmas are the product of mixing between dacitic magma and a hotter, more mafic magma. The dacitic endmember is probably residual magma from the previous (1976) eruption of Augustine, and we interpret the mafic endmember to have been intruded from depth. Mixing appears to have continued as magmas ascended towards the vent. We suggest that the physical structure of the magma storage system beneath Augustine contributed to the sustained compositional heterogeneity of this eruption, which is best explained by magma storage and interaction in a vertically extensive system of interconnected dikes rather than a single coherent magma chamber and/or conduit. The typically short repose period (∼10

  10. Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber

    NASA Astrophysics Data System (ADS)

    Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.

    2011-03-01

    Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.

  11. Volatile concentrations in variably vesicular pyroclasts from the Rotongaio ash (181 AD Taupo eruption): did shallow magma degassing trigger exceptionally violent phreatomagmatic activity?

    NASA Astrophysics Data System (ADS)

    Tuffen, Hugh; Houghton, Bruce F.; Dingwellp, Donald B.; Pinkerton, Harry

    2010-05-01

    Measurement of dissolved volatile concentrations in pyroclasts has formed the basis of our understanding of the links between magma degassing and the explosivity of silicic eruptions[1]. To date these studies have focussed exclusively on the densest pyroclastic obsidians, which comprise on a tiny proportion of the erupted products, in order to bypass the difficulty of analysing vesicular material. As a consequence, crucial information is missing about how degassing in the densest clasts relates to the behaviour of the bulk of the magma volume. To overcome this shortcoming, the volatile content of variably vesicular pyroclasts from the Rotongaio ash has been analysed using both micro-analytical (SIMS, synchrotron FTIR) and bulk techniques (TGA-MS). The Rotongaio ash was an exceptionally violent phase of phreatomagmatic activity during the 181 AD rhyolitic eruption of Taupo (New Zealand), the most powerful worldwide in the last 5000 years. The Rotongaio phase involved opening of new vents beneath Lake Taupo and the ash is characterised by a wide range of clast vesicularities (<10 to ~80 % by volume). Volatile measurement was challenging due to the high bubble number densities and small clast sizes. The mismatch between the water content of matrix glasses measured using bulk and micro-analytical techniques reflects pervasive post-eruption hydration of vesicle walls, which is most problematic at high vesicularities. Micron-scale maps of water concentration variations around vesicles in 30-50 vol % vesicular samples were acquired using SIMS. They indicate strong hydration within ~5 microns of vesicle walls, with pockets of unhydrated glass remaining in the thickest septa. Analysis of these unhydrated domains allowed robust measurement of water contents in pyroclasts ranging from ~1 to >50 vol % vesicles. Matrix glasses had largely degassed (0.19-0.49 wt % H2O, compared with an initial concentration in melt inclusions of ~3.6 wt %). The water contents measured using SIMS

  12. Mesozoic igneous activity in the southern Cordillera of North America: Implications for tectonics and magma genesis

    SciTech Connect

    Asmerom, Y.

    1988-01-01

    A representative section in Santa Rita Mountains is dated using the zircon U-Th-Pb isotopic method. The oldest unit, the lower member of the Mt. Wrightson Formation, is concordantly dated at 210 {plus minus} 3 Ma. Initial basaltic andesite to andesite volcanism was followed by deposition of red beds and associated volcanic rocks that are dated at 200 Ma. Felsic volcanism and eolian sand deposition may have spanned from 190 to 170 Ma. The Piper Gulch Granodiorite, representing the earliest Mesozoic intrusive equivalent, gives concordant dates of 188 {plus minus}2 Ma. A second cycle of andesite and rhyolitic volcanism and sedimentation is dated at 151 {plus minus} 5 Ma using the whole-rock Rb-Sr isotopic method. The Hovatter Volcanics in the Little Harquahala Mountains, southwestern Arizona is dated at 165 Ma. Whole-rock Rb-Sr isotopic method on the same rocks gives a coherent reset isochron of 70 {plus minus} 3 Ma. A new stratigraphic correlation is proposed based on the dating data. This part of the Cordillera was an uplifted arc terrane during the Early Mesozoic and may have provided volcanic detritus to the Late Triassic Chinle Formation in the Colorado Plateau. The second part deals with magma evolution and crust modification during arc magmatism. Rocks in southeastern Arizona have {sub Nd} values of {minus}3.4 to {minus}6.4, while rocks to the west have {sub Nd} values ranging from {minus}8.5 to {minus}9.2. Combined REE and isotopic data indicate that assimilation of lower crust by mantle melts followed by fractional crystallization took place.

  13. Evaluating the Controls on Magma Ascent Rates Through Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Thomas, M. E.; Neuberg, J. W.

    2015-12-01

    The estimation of the magma ascent rate is a key factor in predicting styles of volcanic activity and relies on the understanding of how strongly the ascent rate is controlled by different magmatic parameters. The ability to link potential changes in such parameters to monitoring data is an essential step to be able to use these data as a predictive tool. We present the results of a suite of conduit flow models that assess the influence of individual model parameters such as the magmatic water content, temperature or bulk magma composition on the magma flow in the conduit during an extrusive dome eruption. By systematically varying these parameters we assess their relative importance to changes in ascent rate. The results indicate that potential changes to conduit geometry and excess pressure in the magma chamber are amongst the dominant controlling variables that effect ascent rate, but the single most important parameter is the volatile content (assumed in this case as only water). Modelling this parameter across a range of reported values causes changes in the calculated ascent velocities of up to 800%, triggering fluctuations in ascent rates that span the potential threshold between effusive and explosive eruptions.

  14. History of the bubble chamber and related active- and internal-target nuclear tracking detectors

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.

    2015-06-01

    Donald Glaser, 1960 Nobel laureate in Physics, recently passed away (2013), as have many of his colleagues who were involved with the early development of bubble chambers at the University of Michigan. In this paper I will review those early years and the subsequent wide-spread application of active-target (AT) bubble chambers that dominated high-energy physics (HEP) research for over thirty years. Some of the related, but more modern nuclear tracking detectors being used in HEP, neutrino astrophysics and dark-matter searches also will be discussed.

  15. On the Itinerant History of Crystals in Magma Reservoirs

    NASA Astrophysics Data System (ADS)

    Reid, M. R.; Cooper, K. M.; Vazquez, J. A.; Simon, J. I.

    2004-12-01

    -226Ra ages for mineral separates are generally indicative of crystallization on timescales that are an order of magnitude greater than those based on kinetic considerations, while 238U-230Th ages may be even another order of magnitude greater still. These observations can collectively be reconciled if "phenocryst" populations include some older crystals thatare not easily distinguished on petrographic grounds. Accessory phase dating indicates that "old" crystals may be derived from earlier intrusions as well as from country rocks and/or source areas. Eruptions may only evacuate a fraction of a magma reservoir. At the same time, magma reservoirs are rarely close to a steady-state balance between influx and efflux nor are they well-mixed. Thus crystals might carry-over from one eruption to next if they are suspended in the most-mobile liquid portions of the chamber or if they are re-entrained in liquid as the liquid-mush transition zone migrates in response to the thermal effects of recharge and/or eruption. The almost ubiquitous evidence for complex and protracted crystal records is especially notable if nucleation occurs largely in solidification fronts: in this case the crystals most susceptible to recycling would represent only the most-recent intervals of crystal growth. The duration of the radiometric crystal record, in contrast, appears to require more dynamic reservoir processes, involving active crystal suspension, and rapid and large migrations in the mush-liquid transition.

  16. Continuous magma recharge at Mt. Etna during the 2011-2013 period controls the style of volcanic activity and compositions of erupted lavas

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Calcagno, Rosario; Garozzo, Ileana; Giuffrida, Marisa; Nicotra, Eugenio

    2015-02-01

    Volcanic rocks erupted during the January 2011 - April 2013 paroxysmal sequence at Mt. Etna volcano have been investigated through in situ microanalysis of mineral phases and whole rock geochemistry. These products have been also considered within the framework of the post-2001 record, evidencing that magmas feeding the 2011-2013 paroxysmal activity inherited deep signature comparable to that of the 2007-2009 volcanic rocks for what concerns their trace element concentration. Analysis performed on plagioclase, clinopyroxene and olivine, which are sensitive to differentiation processes, show respectively fluctuations of the An, Mg# and Fo contents during the considered period. Also major and trace elements measured on the whole rock provide evidence of the evolutionary degree variations through time. Simulations by MELTS at fixed chemical-physical parameters allowed the definition of feeding system dynamics controlling the geochemical variability of magmas during the 2011-2013 period. Specifically, compositional changes have been interpreted as due to superimposition of fractional crystallization and mixing in variable proportions with more basic magma ascending from intermediate to shallower levels of the plumbing system. Composition of the recharging end-member is compatible with that of the most basic magmas emitted during the 2007 and the early paroxysmal eruptions of 2012. Analysis of the erupted volumes of magma combined with its petrologic evolution through time support the idea that large volumes of magma are continuously intruded and stored in the intermediate plumbing system after major recharging phases in the deepest levels of it. Transient recharge from the intermediate to the shallow levels is then responsible for the paroxysmal eruptions.

  17. Magma rheology variation in sheet intrusions (Invited)

    NASA Astrophysics Data System (ADS)

    Magee, C.; O'Driscoll, B.; Petronis, M. S.; Stevenson, C.

    2013-12-01

    The rheology of magma fundamentally controls igneous intrusion style as well as the explosivity and type of volcanic eruptions. Importantly, the dynamic interplay between the viscosity of magma and other processes active during intrusion (e.g., crystallisation, magma mixing, assimilation of crystal mushes and/or xenolith entrainment) will likely bear an influence on the temporal variation of magma rheology. Constraining the timing of rheological changes during magma transit therefore plays an important role in understanding the nuances of volcanic systems. However, the rheological evolution of actively emplacing igneous intrusions cannot be directly studied. While significant advances have been made via experimental modelling and analysis of lava flows, how these findings relate to intruding magma remains unclear. This has led to an increasing number of studies that analyse various characteristics of fully crystallised intrusions in an attempt to ';back-out' the rheological conditions governing emplacement. For example, it has long been known that crystallinity affects the rheology and, consequently, the velocity of intruding magma. This means that quantitative textural analysis of crystal populations (e.g., crystal size distribution; CSD) used to elucidate crystallinity at different stages of emplacement can provide insights into magma rheology. Similarly, methods that measure flow-related fabrics (e.g., anisotropy of magnetic susceptibility; AMS) can be used to discern velocity profiles, a potential proxy for the magma rheology. To illustrate these ideas, we present an integrated AMS and petrological study of several sheet intrusions located within the Ardnamurchan Central Complex, NW Scotland. We focus on the entrainment and transport dynamics of gabbroic inclusions that were infiltrated by the host magma upon entrainment. Importantly, groundmass magnetic fabrics within and external to these inclusions are coaxial. This implies that a deviatoric stress was

  18. Magma production rate along the Ninetyeast Ridge and its relationship to Indian plate motion and Kerguelen hot spot activity

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Krishna, K. S.

    2015-02-01

    The Ninetyeast Ridge, a linear trace of the Kerguelen hot spot in the Indian Ocean, was emplaced on a rapidly drifting Indian plate. Magma production rates along the ridge track are computed using gravity-derived excess crustal thickness data. The production rates change between 2 and 15 m3/s over timescales of 3-16 Myr. Major variations in magma production rates are primarily associated with significant changes in the Indian plate velocity with low-production phases linked to high plate velocity periods. The lowest magma production rate (2 m3/s) at 62 Ma is associated with the rapid northward drift of Indian plate under the influence of the Reunion mantle plume. The contemporaneous slowing of the African plate coincides with increase in magma production rate along the Walvis Ridge in the Atlantic Ocean. The present study suggests that variations in the Indian plate motion and frequent ridge jumps have a major role in controlling the magma production, particularly on long-period cycles (~16 Myr). Short-period variations (~5 Myr) in magma productions may be associated with intrinsic changes in the plume, possibly due to the presence of solitary waves in the plume conduit.

  19. Influence of ice load variations on shallow magma storage zones: Application to Katla volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Albino, F.; Pinel, V.; Sigmundsson, F.

    2009-12-01

    As a consequence of climate warming, many volcanoes are currently located under retreating ice caps. The resulting unloading can modify the eruptive activity as proven by observed correlation between deglaciation periods and eruptive activity in the past. Unloading can modify melt generation in the mantle, or modify magma storage conditions at shallow depth. Here we investigate how ice load variations at the Earth's surface act on shallow magma chambers. Numerical calculations are carried out in axisymmetric geometry for an elliptical chamber embedded in an elastic medium, taking magma compressibility into account. For variable chamber shape, size and depth, we quantify how unloading events induce magmatic pressure change as well as variation of the threshold pressure required for dyke initiation at the chamber wall. Influence on eruption likelihood is determined by the interplay between these two parameters. We evaluate the triggering effect of these surface events on onset of eruptions and find it depends strongly on the surface load location and magnitude, and the shape, depth and size of the magma chamber. We apply this model to Katla volcano, Iceland, which is covered by the Mýrdalsjökull ice cap. Ice load variations include long term thinning, as well as an annual load cycle, with up to 6 meters change in snow thickness from winter to summer. As the seasonal snow load is reduced, a pressure decrease of the same order of magnitude as the load is induced within the magma storage zone. The threshold pressure for failure is modified at the same time. Our model predicts that, in case of a spherical or horizontally elongated magma chamber, eruptions are more likely when the seasonal snow cover is smallest. This triggering effect is small, around few kPa, but appears consistent with the fact that all the nine last major historical eruptions at Katla occurred during the summer period. A long-term ice thinning due to global warming is also occurring, mainly at the

  20. Energy extraction from crustal magma bodies

    SciTech Connect

    Dunn, J.C.

    1982-01-01

    An open heat exchanger system for extracting thermal energy directly from shallow crustal magma bodies is described. The concept relies on natural properties of magma to create a permeable, solidified region surrounding a borehole drilled into the magma chamber. The region is fractured, possessing large surface area, and is sealed from the overburden. Energy is extracted by circulating a fluid through the system. Thermal stress analysis shows that such a fractured region can be developed at depths up to 10 km. An open heat exchanger experiment conducted in the partial melt zone of Kilauea Iki lava lake demonstrated the validity of this concept. Effective heat transfer surface area an order of magnitude greater than the borehole area was established during a two-day test period. The open heat exchanger concept greatly extends the number of magma systems that can be economically developed to produce energy.

  1. Thermal stress fracturing of magma simulant materials

    SciTech Connect

    Wemple, R.P.; Longcope, D.B.

    1986-10-01

    Direct contact heat exchanger concepts for the extraction of energy from magma chambers are being studied as part of the DOE-funded Magma Energy Research Program at Sandia National Laboratories. These concepts require the solidification of molten material by a coolant circulated through a borehole drilled into the magma and subsequent fracture of the solid either as a natural consequence of thermal stress or by deliberate design (intentional flaws, high pressure, etc.). This report summarizes the results of several thermal stress fracturing experiments performed in the laboratory and compares the results with an analysis developed for use as a predictive tool. Information gained from this test series has been the basis for additional work now under way to simulate magma melt solidification processes.

  2. Volcanology: Look up for magma insights

    USGS Publications Warehouse

    Segall, Paul; Anderson, Kyle

    2014-01-01

    Volcanic plumes can be hazardous to aircraft. A correlation between plume height and ground deformation during an eruption of Grímsvötn Volcano, Iceland, allows us to peer into the properties of the magma chamber and may improve eruption forecasts.

  3. The 1998-2002 activity of Piton de la Fournaise, Réunion island: lessons in magma supply and transfers

    NASA Astrophysics Data System (ADS)

    Semet, M. P.; Joron, J.-L.; Staudacher, T.

    2003-04-01

    In March 1998, Piton de la Fournaise, one of the most frequently active aerial volcanoes on earth, awoke after an unusually long sleep of almost 6 years. This eruption, which was also preceded and accompanied by uncommon patterns of seismicity and deformation (Staudacher et al., 1998), lasted about six months and was followed to the end of 2002 by 9 eruptive episodes of about one week to a little more than a month duration. In these episodes, seismicity and deformations were those more customarily observed. The total amount of erupted magma over this 5 year period amounts to ca. 120 Mm3, which yields an average production rate close to 0.3 m3/s. Suites of lava samples were regularly obtained for each of these episodes, often as water-quenched molten lava, and examined in the laboratory for their petrography and geochemistry. Two subtly differing magmas were erupted in the 1998 episode from two locations. The voluminous lavas vented North of the central cone (Kapor and related vents) were of the ordinary Steady State Basalts (SSB) type modeled by Albarède et al. (1997) yet showed minor but significant evolution through the six months of eruption. Those vented to the South of the cone (Hudson crater) were apparently fed directly and rapidly from depths ca. 15 km, the crust-upper-mantle boundary under Réunion. Hudson samples are of a type observed mostly in peripheral vents but rarely in central eruptions. They are characterized by major and trace element signatures indicating enhanced clinopyroxene fractionation (a high pressure fractionating phase) relative to SSB. In the subsequent 9 eruptions, lavas were again of the SSB kindred, sometimes rich (50 modal %) in cumulative xenocrystic olivine (e.g. June 2001 and January, 2002). Significant chemical differences with the Kapor trend indicate that they were not fed from the same reservoir nor were they akin to Hudson samples. Glass analyses in the quenched post-1998 samples have an almost invariable composition

  4. Recent volcanic history of Irazu volcano, Costa Rica: alternation and mixing of two magma batches, and pervasive mixing

    USGS Publications Warehouse

    Alvarado, Guillermo E.; Carr, Michael J.; Turrin, Brent D.; Swisher, Carl C.; Schmincke, Hans-Ulrich; Hudnut, Kenneth W.

    2006-01-01

    40Ar/39Ar dates, field observations, and geochemical data are reported for Irazú volcano, Costa Rica. Volcanism dates back to at least 854 ka, but has been episodic with lava shield construction peaks at ca. 570 ka and 136–0 ka. The recent volcanic record on Irazú volcano comprises lava flows and a variety of Strombolian and phreatomagmatic deposits, with a long-term trend toward more hydrovolcanic deposits. Banded scorias and hybridized rocks reflect ubiquitous magma mixing and commingling. Two distinct magma batches have been identified. One magma type or batch, Haya, includes basalt with higher high field strength (HFS) and rare-earth element contents, suggesting a lower degree melt of a subduction modified mantle source. The second batch, Sapper, has greater enrichment of large ion lithophile elements (LILE) relative to HFS elements and rare-earth elements, suggesting a higher subduction signature. The recent volcanic history at Irazú records two and one half sequences of the following pattern: eruptions of the Haya batch; eruptions of the Sapper batch; and finally, an unusually clear unconformity, indicating a pause in eruptions. In the last two sequences, strongly hybridized magma erupted after the eruption of the Haya batch. The continuing presence of two distinct magma batches requires two active magma chambers. The common occurrence of hybrids is evidence for a small, nearer to the surface chamber for mixing the two batches. Estimated pre-eruptive temperatures based on two-pyroxene geothermometry range from ∼1000–1176 °C in basalts to 922 °C in hornblende andesites. Crystallization occurred mainly between 4.6 and 3 kb as measured by different geobarometers. Hybridized rocks show intermediate pressures and temperatures. High silica magma occurs in very small volumes as banded scorias but not as lava flows. Although eruptions at Irazú are not often very explosive, the pervasiveness of magma mixing presents the danger of larger, more explosive

  5. Viscosity of Campi Flregrei (Italy) magmas

    NASA Astrophysics Data System (ADS)

    Misiti, Valeria; Vetere, Francesco; Scarlato, Piergiorgio; Behrens, Harald; Mangiacapra, Annarita; Freda, Carmela

    2010-05-01

    Viscosity is an important factor governing both intrusive and volcanic processes. The most important parameters governing silicate melts viscosity are bulk composition of melt and temperature. Pressure has only minor effect at crustal depths, whereas crystals and bubbles have significant influence. Among compositional parameters, the water content is critical above all in terms of rheological behaviour of melts and explosive style of an eruption. Consequently, without an appropriate knowledge of magma viscosity depending on the amount of dissolved volatiles, it is not possible to model the processes (i.e., magma ascent, fragmentation, and dispersion) required to predict realistic volcanic scenarios and thus forecast volcanic hazards. The Campi Flegrei are a large volcanic complex (~150 km2) located west of the city of Naples, Italy, that has been the site of volcanic activity for more than 60 ka and represents a potential volcanic hazard owing to the large local population. In the frame of a INGV-DPC (Department of Civil Protection) project devoted to design a multidisciplinary system for short-term volcano hazard evaluation, we performed viscosity measurements, under dry and hydrous conditions, of primitive melt compositions representative of two Campi Flegrei eruptions (Minopoli-shoshonite and Fondo Riccio-latite). Viscosity of the two melts have been investigated in the high temperature/low viscosity range at atmospheric pressure in dry samples and at 0.5 GPa in runs having water content from nominally anhydrous to about 3 wt%. Data in the low temperature/high viscosity range were obtained near the glass transition temperature at atmospheric pressure on samples whose water contents vary from 0.3 up to 2.43 wt%. The combination of high- and low-viscosity data permits a general description of the viscosity as a function of temperature and water content using a modified Tamman-Vogel-Fulcher equation. logν = a+ --b--+ --d--×exp(g × w-) (T - c) (T - e) T (1) where

  6. Evaluation of radioisotope tracer and activation analysis techniques for contamination monitoring in space environment simulation chambers

    NASA Technical Reports Server (NTRS)

    Smathers, J. B.; Kuykendall, W. E., Jr.; Wright, R. E., Jr.; Marshall, J. R.

    1973-01-01

    Radioisotope measurement techniques and neutron activation analysis are evaluated for use in identifying and locating contamination sources in space environment simulation chambers. The alpha range method allows the determination of total contaminant concentration in vapor state and condensate state. A Cf-252 neutron activation analysis system for detecting oils and greases tagged with stable elements is described. While neutron activation analysis of tagged contaminants offers specificity, an on-site system is extremely costly to implement and provides only marginal detection sensitivity under even the most favorable conditions.

  7. Simulation of the Etna 2001 flank eruption with a steady-state numerical model of magma ascent

    NASA Astrophysics Data System (ADS)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia

    2015-04-01

    Volcanoes exhibit a wide range of eruption styles, from relatively slow effusive eruptions, generating lava flows and lava domes, to explosive eruptions, in which very large volumes of fragmented magma and volcanic gas are ejected high into the atmosphere. Magma ascent dynamics in a volcanic conduit play a key role in determining the eruptive style of a volcano. However, due to the lack of direct observations in the conduit itself, numerical models, constrained with observational data, provide invaluable tools for quantitative insights into the complex magma ascent processes. We have developed a 1D steady-state multiphase multicomponent gas-magma-solid mathematical model, consisting of a set of non-linear partial differential and constitutive equations. The governing equations used in this work are designed to model multiphase fluid with disequilibrium processes, represented through the formalism of thermodynamically compatible hyperbolic systems as a system of conservative partial differential equations with relaxation terms. This numerical model has been used to reproduce the 2001 flank eruption at mount Etna. During this eruption, seven fissures at different altitude were active, showing different eruptive styles: fire fountains, Strombolian activities and lava effusions. From a mineralogical point of view, two different lavas were erupted. The vent higher than 2600 m a.s.l. (hereafter Upper vents, UV) erupted plagioclase-rich magma with an high crystal content. On the other hand, the vents located at 2550 and 2100 m a.s.l. (hereafter Lower vents, LV) produced a plagioclase-poor magma with a lower crystal content than UV magmas. With our numerical model we have investigated both eruptive events at UV and LV. Using the estimation for volume flow rate and for crystal content we are able to constraint the conduit radius and the temperature of the magma chamber. Furthermore, our numerical results indicate that UV and LV magmas are originated from the same magma, but

  8. Warm storage for arc magmas

    NASA Astrophysics Data System (ADS)

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-01

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  9. Warm storage for arc magmas.

    PubMed

    Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2016-12-06

    Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.

  10. Compositional evolution of magma from Parícutin Volcano, Mexico: The tephra record

    NASA Astrophysics Data System (ADS)

    Erlund, E. J.; Cashman, K. V.; Wallace, P. J.; Pioli, L.; Rosi, M.; Johnson, E.; Granados, H. Delgado

    2010-11-01

    The birth of Parícutin Volcano, Mexico, in 1943 provides an unprecedented opportunity to document the development of a monogenetic cinder cone and its associated lava flows and tephra blanket. Three 'type' sections provide a complete tephra record for the eruption, which is placed in a temporal framework by comparing both bulk tephra and olivine phenocryst compositions to dated samples of lava and tephra. Our data support the hypothesis of Luhr (2001) that the first four months of activity were fed by a magma batch (Phase 1) that was distinct from the magma that supplied the subsequent eight years of activity. We further suggest that the earliest erupted (vanguard) magma records evidence of temporary residence at shallow levels prior to eruption, suggesting early development of a dike and sill complex beneath the vent. Depletion of this early batch led to diminished eruptive activity in June and July of 1943, while arrival of the second magma batch (Phase 2) reinvigorated activity in late July. Phase 2 fed explosive activity from mid-1943 through 1946, although most of the tephra was deposited by the end of 1945. Phase 3 of the eruption began in mid-1947 with rapid evolution of magma compositions from basaltic andesite to andesite and dominance of lava effusion. The combined physical and chemical characteristics of the erupted material present a new interpretation of the physical conditions that led to compositional evolution of the magma. We believe that syn-eruptive assimilation of wall rock in a shallow complex of dikes and sills is more likely than pre-eruptive assimilation within a large magma chamber, as previously assumed. We further suggest that waning rates of magma supply from the deep feeder system allowed evolved, shallowly stored magma to enter the conduit in 1947, thus triggering the rapid observed change in the erupted magma composition. This physical model predicts that assimilation should be observable in other monogenetic eruptions, particularly

  11. Numerical Simulations of the Incremental Intrusion of Granitic Magma into Continental Crust

    NASA Astrophysics Data System (ADS)

    Cao, W.; Kaus, B. J.; Paterson, S. R.

    2012-12-01

    We have employed the visco-elasto-plastic Finite-Element & Marker-in-cell code, MILAMIN_VEP, to carry out a 2D modeling study of the incremental intrusion of granitic magma into continental crust. Algorithms of multiple pulses of magma and pseudo-diking are implemented into the code. New magma of an initial circular shape is regularly replenished at "magma source" regions at sub-crustal depths. Pseudo-dikes of rectangular shapes are added at location where the maximum differential stress along the melt-solid interface is greater than an assigned tensile strength of the surrounding solid host rock. Preliminary results show that when diking and multiple pulses of magma are included, later pulses of magma rise higher and faster and even reach the Earth's surface in some cases by taking advantage of the pre-heated low-viscosity pathways created by earlier dikes and pulses of magma. Host rocks display bedding rotation, and downward flow at two sides of a growing magma chamber but show discordantly truncation when magma ascend through the weak channels made by dikes. The effect of the thermal structure of the crust was tested as well. In a cold crust, "diking" is critical in breaking the high-viscosity crust, guiding the direction of magma rising, and facilitating later magma pulses to form chambers. In a warmer crust, magma rises in the form of diapirs, after which dikes take over in transporting later pulses of magma to the surface. The simulations also suggest that a magma chamber incrementally constructed by multiple magma bathes is a very dynamic environment featuring intra-chamber convection and recycling previous batches of magma. In simulations without diking and multiple pulses, magma is unable to reach the shallow crust. Instead, it is stuck in the middle crust, as the viscosity of the upper crust is too large to permit rapid motion, and at the same time magma-induced stresses are insufficient to deform the upper crust in a plastic manner. Intra

  12. Magma mixing in a zoned alkalic intrusion

    SciTech Connect

    Price, J.G.; Henry, C.D.; Barker, D.S.; Rubin, J.N.

    1985-01-01

    The Marble Canyon stock is unique among the alkalic intrusions of the Trans-Pecos magmatic province in being zoned from a critically silica-undersaturated rim of alkali gabbro (AG) to a silica-oversaturated core of quartz syenite (QS). Hybrid rocks of intermediate chemical and mineralogical compositions occur between the rim and core. Nepheline-syenite dikes occur only within the AG. Silica-rich dikes of quartz trachyte, pegmatite, and aplite cut the AG, QS, and hybrid rocks. Thermodynamic calculations of silica activity in the magmas illustrate the presence of two trends with decreasing temperature: a silica-poor trend from AG to nepheline syenite and a silica-rich trend from hybrid rocks to QS. Least-square modeling of rock and mineral compositions suggests 1) the nepheline syenites were derived by crystal-liquid fractionation from nearly solidified AG at the rim of the stock, 2) AG magma farther from the rim mixed with a small proportion of granitic magma, and 3) the mixture then differentiated to produce the hybrid rocks and QS. Zirconium dioxide inclusions in plagioclase crystals of the hybrid rocks and QS indicate that the AG magma contained some crystals before it mixed with the granitic magma. Two origins for the granitic magma are possible: 1) a late-stage differentiate of a mantle-derived hypersthene-normative magma and 2) melting of crustal material by the AG magma. Recognition of magma mixing might not have been possible if the AG had been hypersthene-normative.

  13. Development and Characterization a Single-Active-Chamber Piezoelectric Membrane Pump with Multiple Passive Check Valves

    PubMed Central

    Zhang, Ronghui; You, Feng; Lv, Zhihan; He, Zhaocheng; Wang, Haiwei; Huang, Ling

    2016-01-01

    In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves’ configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur. PMID:27973449

  14. Development and Characterization a Single-Active-Chamber Piezoelectric Membrane Pump with Multiple Passive Check Valves.

    PubMed

    Zhang, Ronghui; You, Feng; Lv, Zhihan; He, Zhaocheng; Wang, Haiwei; Huang, Ling

    2016-12-12

    In order to prevent the backward flow of piezoelectric pumps, this paper presents a single-active-chamber piezoelectric membrane pump with multiple passive check valves. Under the condition of a fixed total number of passive check valves, by means of changing the inlet valves and outlet valves' configuration, the pumping characteristics in terms of flow rate and backpressure are experimentally investigated. Like the maximum flow rate and backpressure, the testing results show that the optimal frequencies are significantly affected by changes in the number inlet valves and outlet valves. The variation ratios of the maximum flow rate and the maximum backpressure are up to 66% and less than 20%, respectively. Furthermore, the piezoelectric pump generally demonstrates very similar flow rate and backpressure characteristics when the number of inlet valves in one kind of configuration is the same as that of outlet valves in another configuration. The comparison indicates that the backflow from the pumping chamber to inlet is basically the same as the backflow from the outlet to the pumping chamber. No matter whether the number of inlet valves or the number of outlet valves is increased, the backflow can be effectively reduced. In addition, the backpressure fluctuation can be significantly suppressed with an increase of either inlet valves or outlet valves. It also means that the pump can prevent the backflow more effectively at the cost of power consumption. The pump is very suitable for conditions where more accurate flow rates are needed and wear and fatigue of check valves often occur.

  15. Conduit Magma Storage during the 800 BP Quilotoa Eruption, Ecuador

    NASA Astrophysics Data System (ADS)

    Ort, M. H.; Cashman, K. V.; Di Muro, A.; Best, J. A.; Rosi, M.; Mothes, P. A.; Bustillos, J.

    2013-12-01

    The 800 BP eruption of Quilotoa produced two large ignimbrites, U1 (~5.8 km3 DRE) and U3 (~1.8 km3 DRE). These eruptions were separated by a series of much smaller eruptions over one to several weeks, as inferred from 1) the intercalation of secondary pyroclastic and debris flow deposits between U1 and U3, 2) deposits from phreatic explosions from the U1 ignimbrite surface, 3) oxidation of the upper 2 m of U1, and 4) a lack of erosion of the U1 surface. Why did the main phase of the eruption (U1) stall when eruptable magma was available? How did explosive activity stop and restart? We address these questions by examining deposits (U2) emplaced during the 'hiatus' that provide information on the conditions in the conduit and vent area between explosive episodes. The lowest sub-unit, U2a, forms a series of pumiceous surge deposits found only within 5 km of the crater rim. U2b is a vitric-poor, crystal- and lithic-rich fall deposit distributed to about 15 km from the crater. U2c is a thin gray fine ash containing 2-5-mm-diameter rhyolite lapilli that is present within 6 km of the vent. Similar lapilli also occur in the lowermost few centimeters of U3 and appear to be from a dome that exploded as the new magma arrived at the surface; their presence as small ballistic fragments ties U2c to lowermost U3 in time. U2a appears to have been emplaced by episodic surges and weak fallout plumes, whereas U2b and U2c were deposited from a series of sustained eruption columns. Moreover, the lack of U2b grain-size variation with distance suggests that the grain size was determined at the vent, not by transport. FTIR analysis of CO2 and H2O in melt inclusions (MIs) indicates that a deep magma chamber (>400 MPa; ~12 km) fed U1. U2a and U2b MIs plot along vapor isopleths, suggesting equilibration at pressures to about 300 MPa as CO2 outgassed. U2b MIs have lower CO2 than U2a, perhaps indicating continued degassing during the 'hiatus'. MIs from the lower few centimeters of U3 lie along

  16. Experimental evidence for millisecond activation timescales using the Fast IN Chamber (FINCH) measurements

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Jaenicke, R.; Klein, H.; Nillius, B.; Reimann, B.; Wetter, T.; Bingemer, H.

    2009-04-01

    Ice formation in clouds is a subject of great practical and fundamental importance since the occurrence of ice particle initializes dramatic changes in the microphysical structure of the cloud, which finally ends in the formation of precipitation. The initially step of ice formation is largely unknown. Homogenous nucleation of ice occurs only below -40 °C. If an ice nucleus (IN) is present, heterogeneous nucleation may occur at higher temperature. Here deposition freezing, condensation and immersion freezing as well as contact freezing are known. Also growth rates of ice particles are known as function of crystal surface properties, temperature and super saturation. Timescales for homogenous freezing activation in the order of 0.01 seconds and nucleation rates have been measured by Anderson et al. (1980) and Hagen et al., (1981) using their expansion cloud chamber. This contribution of deposition mode freezing measurements by the ice nucleus counter FINCH presents evidence that the activation timescale of this freezing mode is in the order of 1E-3 seconds. FINCH is an Ice Nucleus counter which activates IN in a supersaturated environment at freezing temperatures. The activation conditions are actively controlled by mixing three gas flows (aerosol, particle-free cold-dry and warm-humid flows).See Bundke et al. 2008 for details. In a special operation mode of FINCH we are able to produce a controlled peak super saturation in the order of 1 ms duration. For several test aerosols the results observed in this particular mode are comparable to normal mode operations, where the maximum super saturation remains for more than a second, thus leading to the conclusion that the time for activation is in the order of 1ms or less. References: R.J. Anderson et al, "A Study of Homogeneous Condensation Freezing Nucleation of Small Water Droplets in an Expansion Cloud Chamber, Journal of the Atmospheric Sciences, Vol. 37, 2508-2520, 1980 U.Bundke et al., "The fast Ice Nucleus

  17. Flow chamber

    SciTech Connect

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  18. Volatiles in pantellerite magmas: A case study of the Green Tuff Plinian eruption (Island of Pantelleria, Italy)

    NASA Astrophysics Data System (ADS)

    Lanzo, Giovanni; Landi, Patrizia; Rotolo, Silvio G.

    2013-07-01

    The Green Tuff (GT) Plinian eruption, the largest in magnitude at Pantelleria, erupted 3 to 7 km3 DRE of pantellerite magma and a small volume of trachyte. Fifty-nine anorthoclase-hosted melt inclusions from the two basal pumice members were analyzed by FT-IR spectroscopy in order to assess the pre-eruptive H2O content in the pantellerite melt. Microanalytical methods were used to determine major element, Cl, F and S contents. Melt inclusions and glassy groundmasses have a nearly homogeneous pantelleritic composition (peralkaline index = 1.9-2.2) and variable water contents ranging from 1.4 to as high as 4.2 wt %, i.e. much higher than the 1.4 wt % of earlier published studies. The chlorine content is constant at about 1 wt %. Combined Cl and H2O data were used to estimate a confining pressure of about 50 MPa (depth around 2-3 km) for the GT magma chamber. The chamber was characterized by a compositional zoning with a dominant pantellerite overlying a trachyte magma. Soon after the GT eruption, intra-caldera volcanism was dominated by the eruption of voluminous trachyte lava flows, while pantellerite melt production resumed after about 20 ka with numerous low-volume, mildly explosive (Strombolian) to effusive eruptions. Comparison with data from the literature reveals that, despite the different explosivity, the post-caldera Strombolian eruptions and the GT Plinian eruption were fed by pantelleritic magmas with similar water contents. Chlorine and CO2 contents suggest that the young magma reservoirs feeding the Strombolian to effusive activity were deeper (h ≥ 4.5 km) than the much larger (based on erupted volumes) magma chamber which fed the GT eruption.

  19. In vitro study of the pulp chamber temperature rise during light-activated bleaching.

    PubMed

    Carrasco, Thaise Graciele; Carrasco-Guerisoli, Laise Daniela; Fröner, Izabel Cristina

    2008-01-01

    This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38+/-0.66 degrees C). The LED unit produced the lowest temperature increase (0.29+/-0.13 degrees C); but there was no significant difference between LED unit and LED-laser system (0.35+/-0.15 degrees C) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41+/-0.64 degrees C), and LED-laser system the lowest (0.33+/-0.12 degrees C); however, there was no difference between LED-laser system and LED unit (0.44+/-0.11 degrees C

  20. Magma Energy Extraction

    SciTech Connect

    Dunn, J.C.; Ortega, A.; Hickox, C.E.; Chu, T.Y.; Wemple, R.P.; Boehm, R.F.

    1987-01-20

    The rate at which energy can be extracted from crustal magma bodies has an important influence on the economic viability of the magma energy concept. Open heat exchanger systems where fluid is circulated through solidified magma offer the promise of high energy extraction rates. This concept was successfully demonstrated during experiments in the molten zone of Kilauea Iki lava lake. Ongoing research is directed at developing a fundamental understanding of the establishment and long term operation of open systems in a crustal magma body. These studies show that magma solidifying around a cooled borehole will be extensively fractured and form a permeable medium through which fluid can be circulated. Numerical modeling of the complete magma energy extraction process predicts that high quality thermal energy can be delivered to the wellhead at rates that will produce from 25 to 30 MW electric. 10 figs., 10 refs.

  1. Pre-eruption recharge of the Bishop magma system

    USGS Publications Warehouse

    Wark, D.A.; Hildreth, W.; Spear, F.S.; Cherniak, D.J.; Watson, E.B.

    2007-01-01

    The 650 km3 rhyolitic Bishop Tuff (eastern California, USA), which is stratigraphically zoned with respect to temperatures of mineral equilibration, reflects a corresponding thermal gradient in the source magma chamber. Consistent with previous work, application of the new TitaniQ (Ti-in-quartz) thermometer to quartz phenocryst rims documents an ???100 ??C temperature increase with chamber depth at the time of eruption. Application of TitaniQ to quartz phenocryst cores, however, reveals lower temperatures and an earlier gradient that was less steep, with temperature increasing with depth by only ???30 ??C. In many late-erupted crystals, sharp boundaries that separate low-temperature cores from high-temperature rims cut internal cathodoluminescent growth zoning, indicating partial phenocryst dissolution prior to crystallization of the high-temperature rims. Rimward jumps in Ti concentration across these boundaries are too abrupt (e.g., 40 ppm across a distance of <10 ??m) to have survived magmatic temperatures for more than ???100 yr. We interpret these observations to indicate heating-induced partial dissolution of quartz, followed by growth of high-temperature rims (made possible by lowering of water activity due to addition of CO2) within 100 yr of the climactic 760 ka eruption. Hot mafic melts injected into deeper parts of the magma system were the likely source of heat and CO2, raising the possibility that eruption and caldera collapse owe their origin to a recharge event. ?? 2007 Geological Society of America.

  2. Active Target-Time Projection Chambers for Reactions Induced by Rare Isotope Beams: Physics and Technology

    NASA Astrophysics Data System (ADS)

    Mittig, Wolfgang

    2013-04-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Great progress in experimental sensitivity has been attained by increase in rare isotope beam intensities and by the development of new high efficiency detectors. It is now possible to study reactions leading to bound and unbound states in systems with very unbalanced neutron to proton ratios. Application of Active Target-Time Projection Chambers to this domain of physics will be illustrated by experiments performed with existing detectors. The NSCL is developing an Active Target-Time Projection Chamber (AT-TPC) to be used to study reactions induced by rare isotope beams at the National Superconducting Cyclotron Facility (NSCL) and at the future Facility for Rare Isotope Beams (FRIB). The AT-TPC counter gas acts as both a target and detector, allowing investigations of fusion, isobaric analog states, cluster structure of light nuclei and transfer reactions to be conducted without significant loss in resolution due to the thickness of the target. The high efficiency and low threshold of the AT-TPC will allow investigations of fission barriers and giant resonances with fast fragmentation rare isotope beams. This detector type needs typically a large number of electronic channels (order of magnitude 10,000) and a high speed DAQ. A reduced size prototype detector with prototype electronics has been realized and used in several experiments. A short description of other detectors of this type under development will be given.

  3. Magma flow, eruption column and magma pressure change during 2010 Eyjafjallajökull and 2011 Grímsvötn eruptions, Iceland: Constraints from volcano geodesy on physical models of eruptive processes

    NASA Astrophysics Data System (ADS)

    Sigmundsson, F.; Hreinsdottir, S.; Hooper, A. J.; Grapenthin, R.; Heimisson, E. R.; Ofeigsson, B.; Sturkell, E. C.; Roberts, M. J.; Gudmundsson, M. T.; Hoskuldsson, A.; Bjornsson, H.; Arason, P.; Parks, M.; Dumont, S.; Drouin, V.

    2014-12-01

    Ground deformation in relation to 2010 Eyjafjallajökull and 1998, 2004 and 2011 Grímsvötn eruptions in Iceland provide constraints on subsurface magma flow and pressure change. When compared with eruptive activity, eruption column and estimates of mass flow rate they can be used to constrain physical models of eruptive processes. The 1998 and 2004 Grímsvötn eruptions were captured by intermittent GPS observations but in 2011 the detailed temporal evolution of co-eruptive deformation was revealed by a kinematic 1 Hz solutions for the position of a single continuous GPS site on the volcano, supplemented with ground tilt observations. The observations can be explained by inflow of magma and pressure buildup between eruptions in a shallow chamber at about 1.7 km depth beneath the center of the Grímsvötn caldera complex, and pressure drop and magma outflow during eruptions. The rate of pressure change in the magma chamber correlates with the height of the volcanic plume over the course of the 2011 eruption. Peaks in activity relate to periods of rapid pressure drop in the chamber. GPS observations and interferometric analysis of satellite radar images from the TerraSAR-X satellite show that the explosive 2010 eruption at Eyjafjallajökull was on the other hand associated with gradual contraction of a source, distinct from pre-eruptive inflation sources at the volcano. For the initial 10-days of the summit eruption, a deflating sill source under the summit at about 5 km depth can explain the observed deformation, but then the source geometry appears to evolve. The rate of deflation was interrupted by inflow of new magma into the deflating source during the eruption in relation to peaks in explosive activity. The contrasting behavior of the two volcanoes is interpreted in terms of different magma plumbing systems of the volcanoes. In both cases, the erupted volume of magma is much larger than the inferred co-eruptive volume change, attributed to compressibility of

  4. Resonant proton scattering on 46Ar using the Active-Target Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bradt, J.; Ahn, T.; Ayyad Limonge, Y.; Bazin, D.; Beceiro Novo, S.; Carpenter, L.; Kuchera, M. P.; Lynch, W.; Mittig, W.; Rost, S.; Watwood, N.; Barney, J.; Datta, U.; Estee, J.; Gillibert, A.; Manfredi, J.; Morfouace, P.; Perez Loureiro, D.; Pollacco, E.; Sammut, J.; Sweany, S.

    2016-09-01

    A well-known technique for studying the single-particle properties of neutron-rich nuclei is to use resonant proton scattering on a parent nucleus to populate the isobaric analog states of the corresponding neutron-rich nucleus. The locations and amplitudes of these resonances are directly related to the structure of the nucleus of interest by isospin symmetry. We performed an experiment of this type at the National Superconducting Cyclotron Laboratory to commission the recently completed Active-Target Time Projection Chamber (AT-TPC). A 4.6-MeV/u radioactive beam of 46Ar was injected into the AT-TPC. The detector was filled with isobutane gas-which provided the protons for the reaction and served as the tracking medium-and placed inside a 2-T magnetic field. We will present preliminary results from this experiment and discuss the benefits of the active-target method for this type of measurement.

  5. Magma accumulation or second boiling - Investigating the ongoing deformation field at Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Collinson, Amy; Neuberg, Jurgen; Pascal, Karen

    2016-04-01

    For over 20 years, Soufriere Hills Volcano, Montserrat has been in a state of volcanic unrest. Intermittent periods of dome building have been punctuated by explosive eruptions and dome collapse events, endangering the lives of the inhabitants of the island. The last episode of active magma extrusion was in February 2010, and the last explosive event (ash venting) in March 2012. Despite a lack of eruptive activity recently, the volcano continues to emit significant volumes of SO2 and shows an ongoing trend of island inflation. Through the aid of three-dimensional numerical modelling, using a finite element method, we explore the potential sources of the ongoing island inflation. We consider both magmatic (dykes and chamber) and tectonic sources. Whilst a magmatic source suggests the possibility for further eruption, a tectonic source may indicate cessation of volcanic activity. We show that a magmatic source is the most likely scenario, and illustrate the effect of different sources (shapes, characters and depths) on the surface displacement. Furthermore, through the inclusion of topographic data, we investigate how the topography may affect the displacement pattern at the surface. We investigate the conflicting scenarios of magma chamber resupply versus second boiling - crystallisation-induced degassing. Based on numerical modelling results, we suggest the required pressurisation is too high for crystallisation-induced degassing to be the dominant process - thereby suggesting magma accumulation may be ongoing. However, we show that second boiling may be a contributing factor, particularly when taking into account the local tectonics and regional stretching.

  6. Using a combined population-based and kinetic modelling approach to assess timescales and durations of magma migration activities prior to the 1669 flank eruption of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Kahl, M.; Morgan, D. J.; Viccaro, M.; Dingwell, D. B.

    2015-12-01

    The March-July eruption of Mt. Etna in 1669 is ranked as one of the most destructive and voluminous eruptions of Etna volcano in historical times. To assess threats from future eruptions, a better understanding of how and over what timescales magma moved underground prior to and during the 1669 eruption is required. We present a combined population based and kinetic modelling approach [1-2] applied to 185 olivine crystals that erupted during the 1669 eruption. By means of this approach we provide, for the first time, a dynamic picture of magma mixing and magma migration activity prior to and during the 1669 flank eruption of Etna volcano. Following the work of [3] we have studied 10 basaltic lava samples (five SET1 and five SET2 samples) that were erupted from different fissures that opened between 950 and 700 m a.s.l. Following previous work [1-2] we were able to classify different populations of olivine based on their overall core and rim compositional record and the prevalent zoning type (i.e. normal vs. reverse). The core plateau compositions of the SET1 and SET2 olivines range from Fo70 up to Fo83 with a single peak at Fo75-76. The rims differ significantly and can be distinguished into two different groups. Olivine rims from the SET1 samples are generally more evolved and range from Fo50 to Fo64 with a maximum at Fo55-57. SET2 olivine rims vary between Fo65-75 with a peak at Fo69. SET1 and SET2 olivines display normal zonation with cores at Fo75-76 and diverging rim records (Fo55-57 and Fo65-75). The diverging core and rim compositions recorded in the SET1 and SET2 olivines can be attributed to magma evolution possibly in three different magmatic environments (MEs): M1 (=Fo75-76), M2 (=Fo69) and M3 (=Fo55-57) with magma transfer and mixing amongst them. The MEs established in this study differ slightly from those identified in previous works [1-2]. We note the relative lack of olivines with Fo-rich core and rim compositions indicating a major mafic magma

  7. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  8. Dehydrogenase activity in association with poised potential during biohydrogen production in single chamber microbial electrolysis cell.

    PubMed

    Venkata Mohan, S; Lenin Babu, M

    2011-09-01

    Variation in the dehydrogenase (DH) activity and its simultaneous influence on hydrogen (H2) production, substrate degradation rate (SDR) and volatile fatty acid (VFA) generation was investigated with respect to varying poised potential in single chambered membrane-less microbial electrolysis cell (MEC) using anaerobic consortia as biocatalyst. Poised potential showed significant influence on H2 production and DH activity. Maximum H2 production was observed at 1.0V whereas the control system showed least H2 production among the experimental variations studied. DH activity was observed maximum at 0.6V followed by 0.8, 0.9 and 1.0V, suggests the influence of poised potential on the microbial metabolism. Almost complete degradation of substrate was observed in all the experimental conditions studied irrespective of the applied potential. Experimental data was also analysed employing multiple regression analysis and 3D-surface plots to find out the best theoretical poised potential for maximum H2 production and DH activity.

  9. Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions

    NASA Astrophysics Data System (ADS)

    Dahren, Börje; Troll, Valentin R.; Andersson, Ulf B.; Chadwick, Jane P.; Gardner, Màiri F.; Jaxybulatov, Kairly; Koulakov, Ivan

    2012-04-01

    Understanding magma plumbing is essential for predicting the behaviour of explosive volcanoes. We investigate magma plumbing at the highly active Anak Krakatau volcano (Indonesia), situated on the rim of the 1883 Krakatau caldera by employing a suite of thermobarometric models. These include clinopyroxene-melt thermobarometry, plagioclase-melt thermobarometry, clinopyroxene composition barometry and olivine-melt thermometry. Petrological studies have previously identified shallow magma storage in the region of 2-8 km beneath Krakatau, while existing seismic evidence points towards mid- to deep-crustal storage zone(s), at 9 and 22 km, respectively. Our results show that clinopyroxene in Anak Krakatau lavas crystallized at a depth of 7-12 km, while plagioclase records both shallow crustal (3-7 km) and sub-Moho (23-28 km) levels of crystallization. These magma storage regions coincide with well-constrained major lithological boundaries in the crust, implying that magma ascent and storage at Anak Krakatau is strongly controlled by crustal properties. A tandem seismic tomography survey independently identified a separate upper crustal (<7 km) and a lower to mid-crustal magma storage region (>7 km). Both petrological and seismic methods are sensitive in detecting magma bodies in the crust, but suffer from various limitations. Combined geophysical and petrological surveys, in turn, offer increased potential for a comprehensive characterization of magma plumbing at active volcanic complexes.

  10. Magma, crust and water fluid. From the imbalance of their interaction to the modeling of volcanic eruption

    NASA Astrophysics Data System (ADS)

    Nechayev, A.

    2012-12-01

    The work describes a simple physical model that provides a theoretical justification for a single origin of the different types of volcanic eruptions. The leading mechanism of this model is that a vertical column of magma under certain conditions starts to be erupted by the critical action of water vapor fluid contained by the crust under high pressure and high temperature. This fundamental mechanism of imbalance between liquid and gas was first described as a mechanism of geyser eruption (Nechayev 2012a). A generalization of this mechanism in case of volcanic eruptions is developed in (Nechayev 2012b). We assume that the acceleration of magma and its eruption results from a pressure difference between magma and fluid in the contact zone at depths exceeding 1 km. Water vapor as a fluid can be found in the subduction zones where the oceanic crust with the sedimentary layer saturated by water is pushing under the continental crust delivering water fluid in the zone of active volcanism. Water vapor fluid in the supercritical state behaves as an ideal gas. The greater the volume of fluid the smaller the decrease of its pressure during the expansion. If the fluid penetrates the magma conduit and its volume exceeds a certain critical value, the fluid starts to push magma as a piston. The critical volume is equal to γSH, where γ is the adiabatic coefficient of water vapor (γ=1,4), S is the section of the magmatic conduit, H is the bedding depth of fluid layer. The greater the volume of superheated water fluid and the distance separating it from the magma chamber, the higher may be the eruption power. During volcanic eruption the fluid does work and expands, its pressure and density decrease, the eruption ends. To be repeated and to form a stratovolcano the eruption need some time to restore the critical volume of the fluid. This can occur due to the diffusion of fluid from the periphery. Perhaps it is just the fluid diffusion time which determines the interval between

  11. Variation of spectral response curves of GaAs photocathodes in activation chamber

    NASA Astrophysics Data System (ADS)

    Zou, Jijun; Chang, Benkang; Yang, Zhi; Wang, Hui; Gao, Pin

    2006-09-01

    The spectral response curves of reflection-mode GaAs (100) photocathodes are measured in activation chamber by multi-information measurement system at RT, and by applying quantum efficiency formula, the variation of spectral response curves have been studied. Reflection-mode GaAs photocathodes materials are grown over GaAs wafer (100) by MBE with p-type beryllium doping, doping concentration is 1×10 19 cm -3 and the active layer thickness is 1.6μm. During the high-temperature activation process, the spectral response curves varied with activation time are measured. After the low-temperature activation, the photocathode is illuminated by a white light source, and the spectral response curves varied with illumination time are measured every other hour. Experimental results of both high-temperature and low-temperature activations show that the spectral response curve shape of photocathodes is a function of time. We use traditional quantum efficiency formulas of photocathodes, in which only the Γ photoemission is considered, to fit experimental spectral response curves, and find the theoretical curves are not in agreement with the experimental curves, the reason is other valley and hot-electron yields are necessary to be included in yields of reflection-mode photocathodes. Based on the two-minima diffusion model and the fit of escape probability, we modified the quantum efficiency formula of reflection-mode photocathodes, the modified formula can be used to explain the variation of yield curves of reflection-mode photocathodes very well.

  12. Seismic tomography model reveals mantle magma sources of recent volcanic activity at El Hierro Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    García-Yeguas, Araceli; Ibáñez, Jesús M.; Koulakov, Ivan; Jakovlev, Andrey; Romero-Ruiz, M. Carmen; Prudencio, Janire

    2014-12-01

    We present a 3-D model of P and S velocities beneath El Hierro Island, constructed using the traveltime data of more than 13 000 local earthquakes recorded by the Instituto Geográfico Nacional (IGN, Spain) in the period from 2011 July to 2012 September. The velocity models were performed using the LOTOS code for iterative passive source tomography. The results of inversion were thoroughly verified using different resolution and robustness tests. The results reveal that the majority of the onshore area of El Hierro is associated with a high-velocity anomaly observed down to 10-12-km depth. This anomaly is interpreted as the accumulation of solid igneous rocks erupted during the last 1 Myr and intrusive magmatic bodies. Below this high-velocity pattern, we observe a low-velocity anomaly, interpreted as a batch of magma coming from the mantle located beneath El Hierro. The boundary between the low- and high-velocity anomalies is marked by a prominent seismicity cluster, thought to represent anomalous stresses due to the interaction of the batch of magma with crust material. The areas of recent eruptions, Orchilla and La Restinga, are associated with low-velocity anomalies surrounding the main high-velocity block. These eruptions took place around the island where the crust is much weaker than the onshore area and where the melted material cannot penetrate. These results put constraints on the geological model that could explain the origin of the volcanism in oceanic islands, such as in the Canaries, which is not yet clearly understood.

  13. Temporal magma source changes at Gaua volcano, Vanuatu island arc

    NASA Astrophysics Data System (ADS)

    Beaumais, Aurélien; Bertrand, Hervé; Chazot, Gilles; Dosso, Laure; Robin, Claude

    2016-08-01

    Gaua Island (also called Santa Maria), from the central part of the Vanuatu arc, consists of a large volcano marked by a caldera that hosts the active Mount Garet summit cone. In this paper, a geochemical study including Sr, Nd, Pb and Hf isotopic compositions of 25 lavas emitted since 1.8 Ma is presented, with a focus on the volcanic products that preceded (old volcanics, main cone and pyroclastic series) and followed (Mount Garet) the caldera forming event. All lavas show an island arc signature with enrichment in LILE and depletion in HFSE. Post-caldera lavas define a medium-K calc-alkaline trend, whereas lavas from the former main cone have high-K calc-alkaline compositions. Compared to the pre-caldera volcanic suite, the Mount Garet lavas have similar Th/Nb ( 1.5), 143Nd/144Nd ( 0.51295) and 176Hf/177Hf ( 0.28316) ratios, but higher Ba/La ( 42 vs. 27) and 87Sr/86Sr (0.70417 vs. 0.70405) ratios and lower Ce/Pb ( 2.7 vs. 4.6), La/Sm ( 2.5 vs. 4.0) and 206Pb/204Pb (18.105 vs. 18.176) ratios. High Th/Nb and low Nd and Hf isotopic ratios compared to N-MORB suggest the contribution of 2% of subducted sediment melt to the mantle source of Gaua magmas. Most of the observed differences between pre- and post-caldera lavas can be accounted for by the involvement of at least two portions of the mantle wedge, metasomatized by different slab-derived aqueous fluids. In addition, the lower La/Sm (at a given 143Nd/144Nd) ratios of Mount Garet lavas suggest a higher degree of partial melting ( 10-15%) compared to the pre-caldera lavas ( 5%). The Santa Maria Pyroclastic Series (SMPS) eruption probably triggered the caldera collapse, in response to emptying of the magmatic chamber. This event may have allowed new access to the surface for a geochemically distinct batch of magma issued from a separate magma chamber, resulting in the birth and construction of Mount Garet within the caldera. As both magmatic suites were emitted over a very short time, the storage of their parental

  14. Volatile budget of Eyjafjallajokull magmas

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Mandeville, C. W.

    2010-12-01

    Volatile elments played a critical role in the style of activity during the 2010 eruptions of the glacier-covered Eyjafjallajokull volcano in Iceland. The alkali basalt flank eruption at Fimmvorduhals was dominated by vigorous fire fountaining that produced dominantly spatter-fed aa lava flows. Production of fine ash during the subsequent summit eruption has been variously attributed to magma fragmentation, either due to water-ice-magma interaction related to the 250 m thick glacier cover over the crater, or juvenile volatile content of the magma. Considering the great impact of the ash dispersal on trans-North Atlantic aviation, knowledge of the fragmentation mechanism and the relative roles of juvenile magmatic gases versus phreatomagmatic fragmentation is of prime significance. To evaluate the potential importance of juvenile components, the concentrations of volatiles in magmas erupted in 2010 from Eyjafjallajokull volcano in Iceland have been measured. Analysis of glass inclusions in olivine Fo 77-85 and plagioclase phenocrysts in the alkali basalt magma erupted at Fimmvorduhals flank eruption contain high total volatiles in the range 0.96 - 2.12 wt.%, and sulfur 0.10 - 0.16 wt.%. These glass inclusions are comparable to major element bulk composition of Fimmvörduháls alkali basalt lavas. In contrast, tephra from the explosive summit crater eruption are trachy-andesitic. This magma contains a rather wide range of olivine and plagioclase phenocrysts of Fo48-79 and An 69-81, with both basaltic and andesitic glass inclusions. This diversity is also reflected in a much wider range of total volatile content from 0.1 - 2.88 wt.% and sulfur 0.1 - 0.24 wt.%. At the basic end, the glass inclusions are comparable to the Fimmvorduhals alkali basalt lava, but some have andesitic composition. The highest volatile content is observed in the andesitic glass inclusions in plagioclase An78. Further analysis of glass inclusions and matrix glass by FTIR and ion probe is in

  15. Intrusion of granitic magma into the continental crust facilitated by magma pulsing and dike-diapir interactions: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Cao, Wenrong; Kaus, Boris J. P.; Paterson, Scott

    2016-06-01

    We conducted a 2-D thermomechanical modeling study of intrusion of granitic magma into the continental crust to explore the roles of multiple pulsing and dike-diapir interactions in the presence of visco-elasto-plastic rheology. Multiple pulsing is simulated by replenishing source regions with new pulses of magma at a certain temporal frequency. Parameterized "pseudo-dike zones" above magma pulses are included. Simulation results show that both diking and pulsing are crucial factors facilitating the magma ascent and emplacement. Multiple pulses keep the magmatic system from freezing and facilitate the initiation of pseudo-dike zones, which in turn heat the host rock roof, lower its viscosity, and create pathways for later ascending pulses of magma. Without diking, magma cannot penetrate the highly viscous upper crust. Without multiple pulsing, a single magma body solidifies quickly and it cannot ascent over a long distance. Our results shed light on the incremental growth of magma chambers, recycling of continental crust, and evolution of a continental arc such as the Sierra Nevada arc in California.

  16. Magma Storage Conditions, Eruption Initiation and Magma Evolution Over Time: Investigating the Eruptions of Organ Caldera, Southern NM

    NASA Astrophysics Data System (ADS)

    Lente, J. L.; Johnson, E. R.

    2015-12-01

    The Organ caldera in southern New Mexico formed ~36 Ma from a series of three explosive, voluminous eruptions. The volcanic deposits are now exposed in the Organ Mountains and have a combined thickness of nearly 3 km and an estimated volume between 500 and1000 km3 (Seager & McCurry, 1988). This research uses analyses of quartz-hosted melt inclusions from the first- and last-erupted units to study the storage and differentiation of the magma body prior-to and during the initial eruption, as well as changes in the magma chamber over time as the eruptions progressed and ultimately ceased. Previous work suggests the Organ magma chamber was compositionally stratified (Seager, 1981) erupting top-down and tapping less-evolved magmas over time. However, preliminary results suggest a more complex system; possibly a convecting, homogenized magma chamber or a series of dykes and sills. Results obtained using FTIR analyses of H2O and CO2 in melt inclusions have shown variable volatile contents from the first erupted unit (~2.3 to 6.8 weight percent H2O, 0-118 ppm CO2). Using these values, saturation pressures of 45 to 266 MPa were calculated, indicating a minimum pressure at which the melt inclusion was trapped. These pressures suggest magma storage depths for the first erupted magmas of ~2 to 9 km (with most inclusions trapped between 4 and 8 km) which is inconsistent with the initial eruption coming from the top of a normally stratified chamber. The large variation in volatile contents and storage depths can have many explanations, such as degassing and shallow crystallization during ascent, or perhaps a more complex, elongate magma storage system. These possibilities, and whether or not magma mixing/rejuvenation triggered the initial eruption, will be explored with the acquisition of major and trace element compositions of melt inclusions. Additionally, analyses of melt inclusions from the last erupted ignimbrite, which erupted ~0.5 Ma after the first eruption, will enable

  17. The effect of water activity and oxygen fugacity on the phase relations and oxidation state of Fe in parental ferrobasaltic magma of Skaergaard

    NASA Astrophysics Data System (ADS)

    Botcharnikov, R.; Koepke, J.; Holtz, F.; McCammon, C.

    2003-04-01

    Phase relations and differentiation in the ferrobasaltic (FeO*=13wt%) system "SC1", an assumed parental liquid of the Skaergaard layered intrusion, have been investigated experimentally at dry conditions (1 atm) [1, 2]. However, the Skaergaard magma is believed to contain water. The present study investigates the role of water and fO2 on the phase relations and differentiation of the "SC1" ferrobasaltic system. The crystallization experiments have been performed in an internally heated pressure vessel equipped with a rapid quench facility and Shaw-membrane to determine the prevailing oxygen fugacity within the sample capsule [3]. To prevent the Fe-loss into the capsule material and ensure the desired conditions inside the capsule, the AuPd capsules were presaturated with iron and starting glasses were preequilibrated at the expected fO2 of the run. Water activity was varied by changing the H2O/CO2 ratio in the fluid phase. The first results of the experiments at P=200 MPa, T=1200-1000°C, various oxygen fugacities (logfO2=FMQ+4 to FMQ-1) and water activities (0 to 1) show that water influences not only the liquidus temperatures and temperature interval of mineral crystallization but also the sequence of crystallizing minerals; when compared with the dry system. Since water solubility strongly depends on pressure in the pressure range of 200-300 MPa, corresponding to the storage conditions of Skaergaard magma, the aH2O of hydrous magma may change significantly as a result of convection. Thus, convection has the potential to produce significant differences in stability and proportions of the prevailing minerals. This, in turn, may contribute to the formation of complex layering of the Skaergaard intrusion. The Moessbauer analysis of the quenched glasses shows that the Fe3+ / Sum Fe ratio of the silicate melt is a positive function of the water activity and has a linear dependence on water mole fraction in the system at 1200°C. The decrease of Fe3+ / Sum Fe ratio of

  18. Development and characterization of an equine behaviour chamber and the effects of amitraz and detomidine on spontaneous locomotor activity.

    PubMed

    Harkins, J D; Queiroz-Neto, A; Mundy, G D; West, D; Tobin, T

    1997-10-01

    This report describes the development of a behaviour chamber and the validation of the chamber of measure locomotor activity of a horse. Locomotor activity was detected by four Mini-beam sensors and recorded on a data logger every 5 min for 22 h. Horses were more active during daytime than in the evening, which was at least partially related to human activity in their surroundings. To validate the ability of the chambers to detect changes in activity, fentanyl citrate and xylazine HCl, agents well-characterized as a stimulant and a depressant, respectively, were administered to five horses. Fentanyl citrate (0.016 mg/kg) significantly increased locomotor activity which persisted for 30 min. Xylazine HCl (1 mg/kg) significantly reduced locomotor activity for 90 min. Amitraz produced a dose-dependent decrease in locomotor activity, lasting 75 min for the 0.05 mg/kg dose, 120 min for the 0.10 mg/kg dose, and 180 min for the 0.15 mg/kg dose. In a separate experiment, yohimbine administration immediately reversed the sedative effect of amitraz. This suggests there is a similarity in the mode of action of amitraz, xylazine and detomidine, as yohimbine acts primarily by blocking central alpha 2 -adrenoceptors that are stimulated by agents like xylazine. There was also a significant decrease in locomotor activity following injection of detomidine (0.02, 0.04 and 0.08 mg/kg) for 1.5, 3.5 and 5.0 h, respectively. The locomotor chamber is a useful, sensitive and highly reproducible tool for measuring spontaneous locomotor activity in the horse, which allows investigators to determine an agent's average time of onset, duration and intensity of effect on movement.

  19. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  20. Crystallization kinetics in magmas during decompression

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Burton, Mike; Carroll, Michael R.

    2016-04-01

    aspect to understand magma evolution in the magma chamber and in the conduit, which in turn has strong effects on magma rheology. The onset of the crystallization process in basaltic melts during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase [3]. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density and crystal fraction, triggering a significant textural evolution in only 1 h. The obtained results show that crystallization kinetics are strictly related to undercooling, time, final pressure, superheating and water content in the melt. Here we show that a small decrease in pressure could induce a dramatic increase of crystallinity in few hours, in natural systems this may affect the magma rheology and eruptive dynamics on very short time scales. References: [1] Ghiorso MS (1997) Thermodynamic models of igneous. Annu Rev Earth Planet Sci 25:221-241. [2] Arzilli F, Carroll MR (2013) Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt. Contrib Mineral Petrol 166:1011-1027. [3] Arzilli F, Agostini C, Landi P, Fortunati A, Mancini L, Carroll MR (2015) Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments. Contrib Mineral Petrol 170:55.

  1. Cloud droplet activity changes of soot aerosol upon smog chamber ageing

    NASA Astrophysics Data System (ADS)

    Wittbom, C.; Pagels, J. H.; Rissler, J.; Eriksson, A. C.; Carlsson, J. E.; Roldin, P.; Nordin, E. Z.; Nilsson, P. T.; Swietlicki, E.; Svenningsson, B.

    2014-04-01

    Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC), to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA) precursors were processed by UV-radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤ 2%, i.e. the black carbon core coated with primary organic aerosol (POA) from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatile organic compounds (IVOC) in the diesel engine exhaust. The change of cloud condensation nuclei (CCN) properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I) organic fraction of the particle, (II) chemical properties of this fraction (POA or SOA), (III) particle size, and (IV) particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input parameters describing the

  2. Cloud droplet activity changes of soot aerosol upon smog chamber ageing

    NASA Astrophysics Data System (ADS)

    Wittbom, C.; Eriksson, A. C.; Rissler, J.; Carlsson, J. E.; Roldin, P.; Nordin, E. Z.; Nilsson, P. T.; Swietlicki, E.; Pagels, J. H.; Svenningsson, B.

    2014-09-01

    Particles containing soot, or black carbon, are generally considered to contribute to global warming. However, large uncertainties remain in the net climate forcing resulting from anthropogenic emissions of black carbon (BC), to a large extent due to the fact that BC is co-emitted with gases and primary particles, both organic and inorganic, and subject to atmospheric ageing processes. In this study, diesel exhaust particles and particles from a flame soot generator spiked with light aromatic secondary organic aerosol (SOA) precursors were processed by UV radiation in a 6 m3 Teflon chamber in the presence of NOx. The time-dependent changes of the soot nanoparticle properties were characterised using a Cloud Condensation Nuclei Counter, an Aerosol Particle Mass Analyzer and a Soot Particle Aerosol Mass Spectrometer. The results show that freshly emitted soot particles do not activate into cloud droplets at supersaturations ≤2%, i.e. the BC core coated with primary organic aerosol (POA) from the exhaust is limited in hygroscopicity. Before the onset of UV radiation it is unlikely that any substantial SOA formation is taking place. An immediate change in cloud-activation properties occurs at the onset of UV exposure. This change in hygroscopicity is likely attributed to SOA formed from intermediate volatility organic compounds (IVOCs) in the diesel engine exhaust. The change of cloud condensation nuclei (CCN) properties at the onset of UV radiation implies that the lifetime of soot particles in the atmosphere is affected by the access to sunlight, which differs between latitudes. The ageing of soot particles progressively enhances their ability to act as cloud condensation nuclei, due to changes in: (I) organic fraction of the particle, (II) chemical properties of this fraction (e.g. primary or secondary organic aerosol), (III) particle size, and (IV) particle morphology. Applying κ-Köhler theory, using a κSOA value of 0.13 (derived from independent input

  3. Watching magma from space

    USGS Publications Warehouse

    Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Thatcher, Wayne R.; Freymueller, Jeffrey T.; McNutt, Stephen R.; Mann, Dorte

    2000-01-01

    Westdahl is a broad shield volcano at the western end of Unimak Island in the Aleutian chain. It has apparently been dormant since a 1991-92 eruption and seismicity levels have been low. However, satellite radar imaging shows that in the years following 1992 the upper flanks of Westdahl have risen several centimeters, probably from the influx of new magma deep below its summit. Until now, deep magma reservoirs have been difficult to detect beneath most volcanoes. But using space geodetic technologies, specifically interferometric synthetic aperture radar (InSAR), we have discovered a deep magmatic source beneath Westdahl. 

  4. Evidence for a homogeneous primary magma at Piton de la Fournaise (La Réunion): A geochemical study of matrix glass, melt inclusions and Pélé's hairs of the 1998-2008 eruptive activity

    NASA Astrophysics Data System (ADS)

    Villemant, B.; Salaün, A.; Staudacher, T.

    2009-07-01

    Magmas erupted at Piton de la Fournaise volcano since 0.5 Ma, display a large petrological and chemical range (picrites, 2 types of transitional basalts and differentiated magmas) and low amplitude isotopic heterogeneities. The recent activity (1998-2008) includes all magma types except evolved magmas. Matrix glass compositions from quenched lavas and Pélé's hairs of the whole 1998-2008 period define a single differentiation trend from a common basaltic melt (MgO ~ 9%) for the first time identified in the 2007 magmas. More primitive melt compositions (MgO ~ 12.5%) are only evidenced by olivine crystals with high Fo contents (Fo 85-88.4). Evolutions of major and trace element of glass and mineral compositions are consistently modelled by a unique low pressure crystal fractionation process. The composition range of olivine melt inclusions is distinct from that of matrix glass and Pélé's hair and corresponds to equilibrium crystallisation in closed system of melts trapped from the main differentiation series at high temperature. The range of basaltic types at Piton de la Fournaise is the result of large variations in the differentiation degree (10 to 35% crystallisation) of a single primary basaltic melt and the addition in highly variable amounts (up to 50% in picrites) of co-genetic olivine or gabbroic cumulates. These cumulates may represent the shallow and dense bodies identified by seismic tomography and have likely been produced by the repetitive intrusion and differentiation of basalts along Piton de la Fournaise history. Depending on the shallow transfer paths, ascending magmas may disaggregate and incorporate various types of cumulates, explaining all particular features of basaltic magmas and picrites. These results emphasize the exceptional chemical homogeneity of the primary basaltic melt and of the differentiation process involved in volcanic activity of La Réunion hotspot since 0.5 Ma and the increasingly recognised role of melt-wall rock

  5. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    PubMed

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate.

  6. Solidification of Kilauea Magmas: the Mauna Ulu and Kilauea Iki Examples

    NASA Astrophysics Data System (ADS)

    Vinet, N.; Higgins, M.

    2011-12-01

    Kilauea volcano is a very intensively studied, active mafic magma system and thus, represents an ideal location to study magma solidification in nature. We examined and quantified processes of magma solidification using lava samples from the 1969-74 Mauna Ulu rift eruption, along with scoria and drill core samples from the 1959 Kilauea Iki lava lake. Quantification of olivine crystal size, compositional content and zoning, along with deformation state enabled us to discuss time scales of magmatic history and magma pathways in the Kilauea volcanic edifice. Two distinct olivine populations are inferred from the crystal size distribution (CSD) analysis, with consistent estimated residence times in magma of 1-15 years for population A and 3-60 years for population B, using the steady-state model of Marsh (1988) and a growth rate range of 2.5x10-9 to 5x10-10 mm/s. Two main olivine populations were also evident from the crystal core chemical compositions of Kilauea Iki samples, Fo86-90 and Fo78-82, but no such clear distinction was seen in the Mauna Ulu samples. Interestingly, for both localities deformed crystals of olivine are widespread and have compositions covering the same wide range as for undeformed crystals. Thus, we propose that before the eruption, all crystals grew from a range of different magmas, probably closely related by crystal fractionation, and no true xenocrysts are involved; the deformed crystals are presumed to originate from a deep-seated, disrupted cumulate body. In addition to this, late in situ crystallization and extensive chemical reequilibration occurred during cooling of Kilauea Iki lava lake, leading to the formation of a third olivine population, Fo74-78. Most samples have a curved concave-up CSD, which reflects crystal or magma mixing, and a hump-shaped CSD at smallest sizes, which may be explained by coarsening. From our textural and petrochemical results, we propose two different routes for the magma that fed these two eruptions: (1

  7. Dynamics of an open basaltic magma system: The 2008 activity of the Halema‘uma‘u Overlook vent, Kīlauea Caldera

    USGS Publications Warehouse

    Eychenne, Julia; Houghton, Bruce; Swanson, Don; Carey, Rebecca; Swavely, Lauren

    2015-01-01

    On March 19, 2008 a small explosive event accompanied the opening of a 35-m-wide vent (Overlook vent) on the southeast wall of Halema‘uma‘u Crater in Kīlauea Caldera, initiating an eruptive period that extends to the time of writing. The peak of activity, in 2008, consisted of alternating background open-system outgassing and spattering punctuated by sudden, short-lived weak explosions, triggered by collapses of the walls of the vent and conduit. Near-daily sampling of the tephra from this open system, along with exceptionally detailed observations, allow us to study the dynamics of the activity during two eruptive sequences in late 2008. Each sequence includes background activity preceding and following one or more explosions in September and October 2008 respectively. Componentry analyses were performed for daily samples to characterise the diversity of the ejecta. Nine categories of pyroclasts were identified in all the samples, including wall-rock fragments. The six categories of juvenile clasts can be grouped in three classes based on vesicularity: (1) poorly, (2) uniformly highly to extremely, and (3) heterogeneously highly vesicular. The wall-rock and juvenile clasts show dissimilar grainsize distributions, reflecting different fragmentation mechanisms. The wall-rock particles formed by failure of the vent and conduit walls above the magma free surface and were then passively entrained in the eruptive plume. The juvenile componentry reveals consistent contrasts in degassing and fragmentation processes before, during and after the explosive events. We infer a crude ‘layering’ developed in the shallow melt, in terms of both rheology and bubble and volatile contents, beneath a convecting free surface during background activity. A tens-of-centimetres thick viscoelastic surface layer was effectively outgassed and relatively cool, while at depths of less than 100 m, the melt remained slightly supersaturated in volatiles and actively vesiculating

  8. A multidisciplinary approach to detect active pathways for magma migration and eruption at Mt. Etna (Sicily, Italy) before the 2001 and 2002-2003 eruptions

    NASA Astrophysics Data System (ADS)

    Alparone, S.; Andronico, D.; Giammanco, S.; Lodato, L.

    2004-08-01

    Two strong flank eruptions occurred in July-August 2001 and from late October 2002 to late January 2003 at Mt. Etna volcano. The two eruptions mainly involved the upper southern flank of the volcano, a particularly active area during the last 30 years, damaging several tourist facilities and threatening some villages. The composite eruptive activity on the upper southern flank of Mt. Etna during 2001-2003 has confirmed "a posteriori" the results of a multidisciplinary study, started well before its occurrence by combining geological, seismic and geochemical data gathered in this part of the volcano. We were able, in fact, to highlight fractured zones likely to be re-activated in the near future in this area, where the largest majority of eruptive fissures in the recent past opened along N120° to N180° ranging directions. The spatial distribution of earthquake epicentres during the period June 30th 2000-June 30th 2001 showed the greatest frequency in a sector compatible with both the direction of the main fissures of the pre-2001 period and that of the 2001 and 2002 lateral eruptions. Soil CO 2 and soil temperature surveys carried out in the studied area during the last 3 years have revealed anomalous release of magmatic fluids (mainly CO 2 and water vapour) along some NNW-SSE-trending volcano-tectonic structures of the area even during inter-eruptive periods, indicating persistent convective hydrothermal systems at shallow depth connected with the main feeder conduits of Etna. The temporal changes in both seismic and geochemical data from June 30th, 2000 to June 30th, 2001 were compared with the evolution of volcanic activity. The comparison allowed to recognize at least two sequences of anomalous signals (August to December 2000 and April to June 2001), likely related to episodes of step-like magma ascent towards the surface, as indicated by the following eruptive episodes. The N120° to N180° structural directions are in accord with one of the main structural

  9. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of

  10. Self Sealing Magmas

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Wadsworth, Fabian B.; Kennedy, Ben M.; Lavallee, Yan

    2015-04-01

    During ascent of magma, pressure decreases and bubbles form. If the volume increases more rapidly than the relaxation timescale, the magma fragments catastrophically. If a permeable network forms, the magma degasses non-violently. This process is generally assumed to be unidirectional, however, recent studies have shown how shear and compaction can drive self sealing. Here, we additionally constrain skin formation during degassing and sintering. We heated natural samples of obsidian in a dry atmosphere and monitored foaming and impermeable skin formation. We suggest a model for skin formation that is controlled by diffusional loss of water and bubble collapse at free surfaces. We heated synthetic glass beads in a hydrous atmosphere to measure the timescale of viscous sintering. The beads sinter at drastically shorter timescales as water vapour rehydrates an otherwise degassed melt, reducing viscosity and glass transition temperatures. Both processes can produce dense inhomogeneities within the timescales of magma ascent and effectively disturb permeabilities and form barriers, particularly at the margins of the conduit, where strain localisation takes place. Localised ash in failure zones (i.e. Tuffisite) then becomes associated with water vapour fluxes and alow rapid rehydration and sintering. When measuring permeabilities in laboratory and field, and when discussing shallow degassing in volcanoes, local barriers for degassing should be taken into account. Highlighting the processes that lead to the formation of such dense skins and sintered infills of cavities can help understanding the bulk permeabilities of volcanic systems.

  11. Magma energy for power generation

    SciTech Connect

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  12. Magma energy: a feasible alternative

    SciTech Connect

    Colp, J.L.

    1980-03-01

    A short review of the work performed by Sandia Laboratories in connection with its Magma Energy Research Project is provided. Results to date suggest that boreholes will remain stable down to magma depths and engineering materials can survive the downhole environments. Energy extraction rates are encouraging. Geophysical sensing systems and interpretation methods require improvement, however, to clearly define a buried magma source.

  13. Origin of compositional heterogeneities in tuffs of the Timber Mountain Group: The relationship between magma batches and magma transfer and emplacment in an extenional enviroment

    SciTech Connect

    Cambray, F.W.; Vogel, T.A.

    1995-08-10

    Compositionally zoned ash flow sheets provide convincing evidence for chemically zoned magma bodies. Most workers have assumed that the high-silica portions of these magma bodies evolved largely by differentiation processes that occurred within the magma chamber. However, chemical heterogeneities within some ash flow sheets are not consistent with these diferentiation processes. The chemical variation of pumice fragments in the large volume (>1200 km{sup 3}), Rainier Mesa ash flow sheet ranges from 55 to 76.3% silica. These pumice fragments occur in three distinct chemical groups. A low- and high-silica group is separated by a compositional gap at about 72% silica, and within the high-silica group there are two distinct populations based on trace element variations. There is little overlap between populations. These three magma types have been resident in same magma chamber at the same time and cannot be produced by any differentiation process of a single magma body. They must reflect discrete magma batches generated in the source area. Furthermore, the lower silica portion (<72% SiO{sub 2}) of the Rainer Mesa ash flow sheet is chemically distinct from the lower silica portion of the overlying Ammonia Tanks ash flow sheet, even though they erupted within 200,000 years of each other. These ash flow sheets from the SW Nevada volcanic field are associated in time and place with Basin and Range extension, and all models for extension involve detachment surfaces that extend to great depth. A model for the relationship of these compositional heterogeneities and the regional extension involves (1) the generation of magma batches by either continuous melting of the source at different temperatures, or by melting of different sources, (2) the use of faults (shears) as conduits for transport of magma, and (3) the use of a dilatant releasing step on a detachment as storage chamber for the magma. 80 refs., 12 figs., 1 tab.

  14. Smog Chamber Investigation on the Iron-Catalyzed Activation of Chloride from Modeled Saltpans

    NASA Astrophysics Data System (ADS)

    Wittmer, Julian; Bleicher, Sergej; Oeste <, Franz Dietrich; Zetzsch, Cornelius

    2014-05-01

    Halogen activation on sea spray aerosols and other halide surfaces and thus the formation of reactive halogen species (RHS), influencing trace and greenhouse gases, has become an important topic of research in recent years. In this context the chloride and bromide activation, in particular the formation of RHS by photochemically induced halogen release from (sea) salt surface and reactions with ozone (O3) and nitrogen oxides (NOx), came into focus [1,2]. Our studies concentrate on the quantification of atomic chlorine (Cl), bromine (Br) and hydroxyl (OH) radicals in the gas phase above lab-models of salt pans, enriched in iron(III) chloride (FeCl3), that are exposed to simulated sunlight in a smog chamber. The applied radical clock method [3] results in time profiles and source strengths for Cl, Br and OH, which are combined with the various compositions of humidified salts. In particular, the influence of bromine, sulfate, oxalate, and catechol on the FeCl3 enriched salt is investigated. Comparable investigations only exist for the aqueous phase chemistry of FeCl3 (e.g. [4]). Driven by the photolytic reduction from Fe(III) to Fe(II), an enormous amount of chlorine atoms (>107 cm-3) could be detected for sodium chloride (NaCl) salt pans with low addition of FeCl3 (0.5 - 2 wt%), even in an O3 and NOx free environment. The Cl2 source strength reaches a maximum of 8×1011 Cl2 molecules per cm3 within the first hour of the experiment, corresponding to a Cl2 mixing ratio of 30 ppbv at standard pressure. These concentrations exceeded the release above pure NaCl samples by a factor of 1000. A crucial factor for the Cl2 release is the pH and thus the formation of iron(III) complexes on the salt crystals that differ in their sensitivity for photolysis. Whereas the presence of sodium bromide normally strengthens the chlorine release, a suppression accompanied by strong bromine activation (>1010 cm-3) could be observed for iron enriched samples. Furthermore, the addition of

  15. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  16. Sources and formation conditions of sulfide-silicate magmas in the Noril'sk district

    NASA Astrophysics Data System (ADS)

    Gorbachev, N. S.

    2012-05-01

    Geology, tectonomagmatic reactivation of the Noril'sk district, as well as stratigraphy and geochemistry of the volcanic sequence are considered. Sources and formation mechanism of ore-bearing magma and the scope of ore formation are discussed. The Permian-Triassic flood-basalt magmatism of the Noril'sk district developed in part of the Siberian Platform with Archean-Paleoproterozoic basement broken into blocks and overlapped by a sedimentary cover up to 13 km thick and a volcanic sequence reaching 3.7 km in thickness. The geophysical data show that remnants of the subducted ancient oceanic crust exist in the mantle and fragments of transitional magma chambers and conduits are retained at different levels of the Earth's crust. The cyclic tectonomagmatic evolution of the territory was characterized by alternation of extension with intense volcanic activity and compression accompanied by waning of volcanic eruptions. The early rifting, transitional stage, and late dispersed spreading are distinguished. The associations of volcanic (lavas and tuffs) and intrusive rocks were formed during each stage. The volcanic sequence is subdivided into 11 formations. The intrusions of the Talnakh and Noril'sk ore fields are distinguished by two-level structure with the Upper Noril'sk ore-bearing intrusions above and the Lower Noril'sk barren intrusions below. Two types of primary magmas differ in geochemistry of lavas and intrusions: (1) OIB-type high-Ti magma (iv, sv, gd formations of the first stage from bottom to top) and (2) low-Ti magma (hk, tk, nd formations of the second stage and mr-mk formations of the third stage). The nd formation depleted in ore elements and the ore-bearing cumulus composed of silicate and sulfide melts in combination with early silicate minerals and chromite are products of the fractionation of the primary low-Ti magma. As follows from geochemical parameters, intrusions of the Lower Noril'sk type are comagmatic to the evolved lavas of the nd3

  17. Activated macrophages as key mediators of capsule formation on adipose constructs in tissue engineering chamber models.

    PubMed

    Zhan, Weiqing; Lu, Feng

    2017-04-01

    In plastic and reconstructive field, it would be much beneficial to fabricate an engineered adipose tissue substitute allowing reliable and complete fat tissue regeneration. Tissue engineering chamber (TEC) holds the promise to optimize an adipogenic configuration that is efficacious as well as reproducible. A frequently occurring complication involves the adipose tissue flap encapsulation and, effectively, its shielding, by a thick fibrous membrane, which hinders development into the proliferative stage. The reason for the deposition of the collagen capsule remains unclear. Numerous studies have highlighted that macrophages play a key role in adipogenesis in a TEC model using a silicone chamber enclosing the fat flap with a superficial epigastric pedicle. As a verification of the role of macrophages in capsule formation, we propose the inhibition of transforming growth factor β1 (TGF-β1) synthesis by macrophage populations in the local microenvironment by administrating tranilast into the TEC. We hypothesize that upon reduction of TGF-β1 levels, capsule formation and inhibition of new adipose tissue development will decrease. Furthermore, we propose that a tissue engineering chamber model in which macrophages are closely related to both neo-adipogenesis and capsule formation.

  18. Measuring of low activity materials resulted from decommissioning of NPP`s in low-background chamber

    SciTech Connect

    Kornitski, A.S.; Kazakov, V.A.; Lysenko, V.V.

    1993-12-31

    The decommissioning of power plants results in dismantled equipment of which some is not radioactive and could be used without restrictions. The IAEA has released recommendations for such materials useage. The definition of unrestricted useage is fulfiled by the organization of the radiation control procedure providing the principle of not exceeding the radioactive contamination level of this material set by criteria for unrestricted use. Gamma spectroscopic analysis must be performed on a great number of samples for which activity is less than or equal to background radiation. For this purpose, the low-background activity chambers can be utilized.

  19. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  20. Interdisciplinary Studies of Magma-Tectonic Interactions

    NASA Astrophysics Data System (ADS)

    LaFemina, Peter; Stix, John; Saballos, Armando

    2013-08-01

    The Pan-American Advanced Studies Institute (PASI) Magma-Tectonic Interactions in the Americas brought together researchers, postdoctoral fellows, and graduate students from every country in the Americas with active volcanoes and one participant from Iceland. Lecturers presented the latest geochemical and geophysical approaches to studying magma-tectonic interactions. Participants were introduced to the tectonics and volcanism of Nicaragua through a daylong field trip and given opportunities to collect and analyze their own data, including seismic, geodetic, and geochemical data, at the Cerro Negro volcano.

  1. Lunar magma transport phenomena

    NASA Technical Reports Server (NTRS)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  2. The Surtsey Magma Series

    PubMed Central

    Ian Schipper, C.; Jakobsson, Sveinn P.; White, James D.L.; Michael Palin, J.; Bush-Marcinowski, Tim

    2015-01-01

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50th anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption’s four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland’s Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume. PMID:26112644

  3. Middle Triassic magma mixing in an active continental margin: Evidence from mafic enclaves and host granites from the Dewulu pluton in West Qinling, central China

    NASA Astrophysics Data System (ADS)

    Huang, X.; Mo, X.; Yu, X.

    2015-12-01

    The Qinling-Dabie-Sulu orogen was formed through the collision of the North and South China blocks, but the precise timing of the closure of the Paleo-Tethys ocean between the two blocks remains debated. Large volumes of Triassic granites associated with mafic microgranular enclaves (MMEs) were emplaced in the Qinling terrane. This paper presents field observations, petrography, geochronology and geochemistry of the MMEs and their host granites from the Dewulu pluton in West Qinling. The host rocks comprise granodiorite and granodioritic porphyry, and the The MMEs range in composition from gabbroic diorite to diorite. Zircon LA-ICP-MS U-Pb ages suggest that the granites and MMEs were coeval at ca. 245 Ma. The granites are relatively enriched in LILE and depleted in HFSE, and have evolved Sr-Nd-Pb and zircon Hf isotopic compositions [initial 87Sr/86Sr = 0.7070-0.7076, ɛNd(t) = -7.5 to -6.8, ɛHf(t) = -8.2 to -4.2], indicative of an origin from the amphibolitic lower crust. The near-primitive gabbro-dioritic MMEs bear a remarkable geochemical resemblance to the high-magnesium andesite (HMA), such as moderate SiO2 (~55 wt.%), low FeOT/MgO (~0.75), high Cr (268-308 ppm) and MgO (8.58-8.77 wt.%) with Mg# of ~70. Additionally, they exhibit lower initial 87Sr/86Sr, higher ɛNd(t) and ɛHf(t), and more radiogenic Pb isotopes than the dioritic MMEs which share similar isotopic compositions with the granites. These features, together with the presence of the specific minerals in the MMEs (e.g., felsic xenocrysts and acicular apatite), point to mixing process between the lower crust-derived magmas and the melts produced by the reaction of the subducting sediment-derived components and the overlying mantle. Taking into account the regional occurrence of synchronous plutonic-volcanic complexes (250-234 Ma) ranging from basaltic to granitic variants, we suggest that the Dewulu pluton formed in an active continental margin in response to the local extension triggered by the

  4. Stress modelling of magma storage zones and its implications for rapid kimberlitic magma ascent

    NASA Astrophysics Data System (ADS)

    Baruah, A.; Mandal, N.

    2012-12-01

    Rapid ascent of low viscous kimberlitic magmas is reflected from the presence of meta-stable diamond phenocrysts. Existing models suggest that high velocity magma ascent takes place as a mechanical coupling interaction between the CO2-rich volatile phase originating from the magma and the hydraulic fracture (Type-I). However, for such fracturing to occur at a depth of ~200 km, the system need to have a huge tensile stress to overcome the lithostatic pressure (~60 Kb) and the tensile strength of the rocks (0.4 - 0.5 Kb). The objective of the present work is to present a mechanical model and show the specific conditions in which the magma storage zone (MSZ) can build up such large tensile stresses to cause fracturing for magma ascent. Finite Element (FE) method was employed to map the stress field in the mantle rock around a magma chamber. MSZ was modeled as a semi-elliptical zone at bottom of the model of 150 km depth and 300 km width. Two types of FE modelling was performed considering two factors: (1) density contrast (Δρ) between magma and ambient mantle, and (2) shape (Ar: ratio of vertical and horizontal dimensions) of the MSZ. Figure 1 show the Δρ contrasts required for tensile fracturing to occur at the MSZ tip for different values of their Ar. Results reveal a distinct zone of maximum tensile stresses in the neighborhood of the MSZ, suggesting the potential locations of tensile fracturing. It shows that the tensile stress magnitude decreases exponentially away from the MSZ top vertically. The results illustrate a nonlinear relation of stress with increasing Δρ (Figure 1). We show that for models with Ar >1 there is a localization of tensile stress at the MSZ tip, and for the models with Ar << 1 it diffuse along the boundary (Figure 2). We also show that for a particular Δρ, tensile stress increases for increasing Ar. The results indicate that MSZ with large Ar are more potential for tensile fracturing to occur at their vertices. Considering the

  5. A method for recording single unit activity in lumbar spinal cord in rats anesthetized with nitrous oxide in a hyperbaric chamber.

    PubMed

    Antognini, Joseph F; Atherley, Richard J; Laster, Michael J; Carstens, Earl; Dutton, Robert C; Eger, Edmond I

    2007-03-15

    The limited potency of nitrous oxide mandates the use of a hyperbaric chamber to produce anesthesia. Use of a hyperbaric chamber complicates anesthetic delivery, ventilation, and electrophysiological recording. We constructed a hyperbaric acrylic-aluminum chamber allowing recording of single unit activity in spinal cord of rats anesthetized only with N(2)O. Large aluminum plates secured to each other by rods that span the length of the chamber close each end of the chamber. The 122 cm long, 33 cm wide chamber housed ventilator, intravenous infusion pumps, recording headstage, including hydraulic microdrive and stepper motors (controlled by external computers). Electrical pass-throughs in the plates permitted electrical current or signals to enter or leave the chamber. In rats anesthetized only with N(2)O we recorded extracellular action potentials with a high signal-to-noise ratio. We also recorded electroencephalographic activity. This technique is well-suited to study actions of weak anesthetics such as N(2)O and Xe at working pressures of 4-5 atm or greater. The safety of such pressures depends on the wall thickness and chamber diameter.

  6. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in

  7. Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse

    NASA Astrophysics Data System (ADS)

    Gavrilenko, Maxim; Ozerov, Alexey; Kyle, Philip R.; Carr, Michael J.; Nikulin, Alex; Vidito, Christopher; Danyushevsky, Leonid

    2016-07-01

    A series of large caldera-forming eruptions (361-38 ka) transformed Gorely volcano, southern Kamchatka Peninsula, from a shield-type system dominated by fractional crystallization processes to a composite volcanic center, exhibiting geochemical evidence of magma mixing. Old Gorely, an early shield volcano (700-361 ka), was followed by Young Gorely eruptions. Calc-alkaline high magnesium basalt to rhyolite lavas have been erupted from Gorely volcano since the Pleistocene. Fractional crystallization dominated evolution of the Old Gorely magmas, whereas magma mixing is more prominent in the Young Gorely eruptive products. The role of recharge-evacuation processes in Gorely magma evolution is negligible (a closed magmatic system); however, crustal rock assimilation plays a significant role for the evolved magmas. Most Gorely magmas differentiate in a shallow magmatic system at pressures up to 300 MPa, ˜3 wt% H2O, and oxygen fugacity of ˜QFM + 1.5 log units. Magma temperatures of 1123-1218 °C were measured using aluminum distribution between olivine and spinel in Old and Young Gorely basalts. The crystallization sequence of major minerals for Old Gorely was as follows: olivine and spinel (Ol + Sp) for mafic compositions (more than 5 wt% of MgO); clinopyroxene and plagioclase crystallized at ˜5 wt% of MgO (Ol + Cpx + Plag) and magnetite at ˜3.5 wt% of MgO (Ol + Cpx + Plag + Mt). We show that the shallow magma chamber evolution of Old Gorely occurs under conditions of decompression and degassing. We find that the caldera-forming eruption(s) modified the magma plumbing geometry. This led to a change in the dominant magma evolution process from fractional crystallization to magma mixing. We further suggest that disruption of the magma chamber and accompanying change in differentiation process have the potential to transform a shield volcanic system to that of composite cone on a global scale.

  8. A tale of two magmas, Fuego, Guatemala

    NASA Astrophysics Data System (ADS)

    Berlo, Kim; Stix, John; Roggensack, Kurt; Ghaleb, Bassam

    2012-03-01

    Fuego volcano in Guatemala erupted in 1974 in a basaltic sub-Plinian event, which has been well documented and studied. In 1999, after a period of quiescence lasting 20 years, Fuego erupted again, this time less violently, but with persistent low-level activity. This study investigates the link between these episodes. Previous melt inclusion studies have shown magma erupted in 1974 to have been a volatile-rich hybrid tapped from a vertically extensive system. By contrast, magma erupted in 1999 and 2003 is similar in composition to that erupted in 1974, but melt inclusions are more evolved. Although melt inclusions from the later period are CO2 rich (up to ˜1,500 ppm), they have low H2O concentration (max 1.5 wt.%, compared to ˜6 wt.% in 1974). These melt inclusions have a modified H2O concentration due to diffusive re-equilibration at shallow pressures. Despite this diffusive exchange, both eruptions show evidence of recent mingling of the same low and higher K melts, one of which was slightly cooler than the other and as a result traversed the amphibole stability field. (210Pb/226Ra) data on selected bulk rock samples from 1974 suggest that whereas the cooler, more evolved end-member may have been degassing since the last major eruption in the 1930s, the warmer end-member intruded at most a decade prior to the 1974 eruption. The two end-members are thus batches of the same magma emplaced shallowly ˜30 years apart during which time the older batch was cooled and differentiated before mixing with the younger influx. The presence of the same two melts in the later eruptions suggests that magma in 1999 and 2003 is partly residual from 1974. The current eruptive activity is clearing the system of this residual magma prior to an expected new magma batch.

  9. Deep magma feeding system of Fuji volcano, Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, E.; Asano, K.; Nakajima, J.

    2012-12-01

    Fuji volcano is known for its perfect cone shape and it is the largest among Japanese Quaternary volcanoes. For the last 100kya, Fuji has erupted dominantly basalt magma (>>99 vol%), but its eruption style changed (from debris flow and tephra dominant Ko-Fuji or Older Fuji, to lava flow dominant Shin-Fuji or Younger Fuji) at ~15 kya BP. The incompatible trace element composition of the magma changed abruptly between Ko-Fuji and Shin-Fuji. The origin of the voluminous yet monotonous basalt production and the simultaneous changes in volcanic style and magma chemistry in Fuji volcano have been discussed but remain unanswered. Here we report the first high-pressure melting experimental results on Fuji Basalt (Hoei-IV, AD1707) and demonstrate that its main magma chamber is located at ca.25km depth (Asano et al, this conference). We also show seismic tomographic images of Fuji volcano for the first time, which reveal the existence of strong upwelling flow in the mantle and its connection to the voluminous lower crustal magma chamber (Fig.1). The chemistry of Fuji magma is buffered by a lower crustal AFC magma chamber located at 25-35km depth. Mantle derived primitive basalt (FeO/MgO~1.0, saturated with mantle peridotite assemblage, oliv+opx+cpx) changes to evolved basalt (FeO/MgO~2.0, saturated with lower crustal gabbroic assemblage, opx+cpx+pl) by the AFC process. Very frequent low frequency earthquakes just above the magma chamber (red circles in Fig.1) may be due to the injection of basalt magma and/or fluids (Ukawa, 2007). The total lack of silica-rich rocks (basaltic andesite and andesite) in Fuji volcano must be due to the special location of the volcano. As shown in Fig.1 (solid line), the plate boundary between the Eurasia plate and the subducting Phillipine sea plate is located just beneath Fuji volcano (~5 km depth). Large tectonic stress and deformation associated with the plate boundary inhibit the survival of a shallow level magma chamber, which would allow

  10. Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge.

    PubMed

    West, M; Menke, W; Tolstoy, M; Webb, S; Sohn, R

    2001-10-25

    Axial volcano, which is located near the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain beneath the northeast Pacific Ocean, is a locus of volcanic activity thought to be associated with the Cobb hotspot. The volcano rises 700 metres above the ridge, has substantial rift zones extending about 50 kilometres to the north and south, and has erupted as recently as 1998 (ref. 2). Here we present seismological data that constrain the three-dimensional velocity structure beneath the volcano. We image a large low-velocity zone in the crust, consisting of a shallow magma chamber and a more diffuse reservoir in the lower crust, and estimate the total magma volume in the system to be between 5 and 21 km3. This volume is two orders of magnitude larger than the amount of melt emplaced during the most recent eruption (0.1-0.2 km3). We therefore infer that such volcanic events remove only a small portion of the reservoir that they tap, which must accordingly be long-lived compared to the eruption cycle. On the basis of magma flux estimates, we estimate the crustal residence time of melt in the volcanic system to be a few hundred to a few thousand years.

  11. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot

  12. Geology of magma systems: background and review

    SciTech Connect

    Peterfreund, A.R.

    1981-03-01

    A review of basic concepts and current models of igneous geology is presented. Emphasis is centered on studies of magma generation, ascent, emplacement, evolution, and surface or near-surface activity. An indexed reference list is also provided to facilitate future investigations.

  13. Along-strike magma mixing beneath mid-ocean ridges - Effects on isotopic ratios

    NASA Technical Reports Server (NTRS)

    Kenyon, P. M.; Turcotte, D. L.

    1987-01-01

    The effects of mixing processes on the isotopic variability of midocean ridge basalts are studied. The processes considered are porous flow dispersion and convective mixing in magma chambers. Porous flow dispersion is capable of mixing magmas over distances of only a few tens of meters. Convective mixing, on the other hand, is found to produce continuous magma chambers, where mixing is limited by convective processes, and for discontinuous chambers, where mixing is limited by chamber size. Preliminary comparison of the calculations with observations along the midocean ridges shows that the calculations are consistent with the existence of a correlation between bathymetry and isotopic ratio at long, but not at short, wavelengths. They are also capable of explaining a decrease in isotopic variability with increasing spreading rate.

  14. Magma energy: engineering feasibility of energy extraction from magma bodies

    SciTech Connect

    Traeger, R.K.

    1983-12-01

    A research program was carried out from 1975 to 1982 to evaluate the scientific feasibility of extracting energy from magma, i.e., to determine if there were any fundamental scientific roadblocks to tapping molten magma bodies at depth. The next stage of the program is to evaluate the engineering feasibility of extracting energy from magma bodies and to provide insight into system economics. This report summarizes the plans, schedules and estimated costs for the engineering feasibility study. Tentative tasks and schedules are presented for discussion and critique. A bibliography of past publications on magma energy is appended for further reference. 69 references.

  15. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  16. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    SciTech Connect

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  17. Crystallization of the magma ocean

    NASA Astrophysics Data System (ADS)

    Caracas, R.; Nomura, R.; Hirose, K.; Ballmer, M. D.

    2015-12-01

    We model the crystallization of the magma ocean using pyrolite as a proxy for its composition. We employ first-principles molecular-dynamics calculations to determine the density of the magmas. We use diamond-anvil cell experiments to trace the chemical evolution of the magmas during cooling and crystallization. We build a grid of pressure and temperature points, following the chemical evolution of the magma during the entire fractional crystallization of perovskite. Then we construct a geodynamical model of the evolving magma fully taking into account the density and chemistry of the melts and crystals. We show that the dynamics of the crystallization of the magma ocean is highly dependent (i) on extrinsic parameters, like pressure at the core-mantle boundary and temperature profile through the magma ocean, and (ii) on intrinsic parameters, like relative density relations between the melt and the crystals and vigor of the stirring. Formation of a solid layer in the middle of the magma ocean is possible, which can lead to the eventual formation of a basal magma ocean.

  18. Smog Chamber Investigation on the Iron-Catalyzed Activation of Chloride from Seasalt for a Depletion of Tropospheric Methane

    NASA Astrophysics Data System (ADS)

    Zetzsch, C.; Bleicher, S.; Wittmer, J.

    2013-12-01

    Investigations on NaCl saltpans in an environmental simulation chamber under artificial sunlight yield high concentrations of chlorine atoms in the gas phase if FeCl3 is added to the salt mixture. The impact of chlorine atoms led in a direct experiment to a methane reduction of 8% within 24 h. This corresponds to a methane lifetime of only 12 days in a constantly illuminated chamber (or a half-life of 8 days). In quantitative measurements almost 1E6 Cl atoms per cm3 were observed as peak concentrations in the chamber above mixtures of NaCl and 0.5% FeCl3. This would decrease the lifetime of methane under atmospheric conditions of usually 8-10 years down to a hundredth of it. Typical values ranged from 105 to 106 Cl atoms per cm3. The direct Cl measurements allowed us to calculate the Cl2 source strength to reach a maximum of 8E11 Cl2 molecules per cm3 within the first hour of the experiment, corresponding to a Cl2 mixing ratio of 30 ppbv at standard pressure. The salt samples consisted of 100 g total mass with various mixing ratios of NaCl and FeCl3, NaBr, catechol, oxalate, sulfate and MgCl2. The additions of catechol, Na-oxalate and Na-sulfate led to a distinct reduction of the chloride activation by a complexation of the iron ions. Samples with added NaBr showed very high concentrations of Br atoms above 1E10 atoms per cm3, though only low Cl values. Whether the activation of chloride still occurs under addition of other iron species like Fe2O3 remained unresolved. Pending questions are moreover a possible formation of organochlorine compounds and the absolute surface of the saltpan samples.

  19. Icelandic Volcanoes Geohazard Supersite and FUTUREVOLC: role of interferometric synthetic aperture radar to identify renewed unrest and track magma movement beneath the most active volcanoes in Iceland

    NASA Astrophysics Data System (ADS)

    Parks, Michelle; Dumont, Stéphanie; Spaans, Karsten; Drouin, Vincent; Sigmundsson, Freysteinn; Hooper, Andrew; Michalczewska, Karolina; Ófeigsson, Benedikt

    2014-05-01

    FUTUREVOLC is an integrated volcano monitoring project, funded by the European Commission (FP7) and led by the University of Iceland and the Icelandic Meteorological Office (IMO). The project is a European collaborative effort, comprising 26 partners, aimed at integrating ground based and satellite observations for improved monitoring and evaluation of volcanic hazards. Iceland has also recently been declared a Geohazard Supersite by the Committee on Earth Observation Satellites, based on its propensity for relatively frequent eruptions and their potentially hazardous, long ranging effects. Generating a long-term time series of ground displacements is key to gaining a better understanding of sub-volcanic processes, including the detection of new melt and migration of magma within the crust. The focus of the FUTUREVOLC deformation team is to generate and interpret an extended time series of high resolution deformation measurements derived from InSAR observations, in the vicinity of the four most active volcanoes in Iceland: Grímsvötn, Katla, Hekla and Bárdarbunga. A comprehensive network of continuous deformation monitoring equipment, led by IMO and collaborators, is already deployed at these volcanoes, including GPS, tilt and borehole strainmeters. InSAR observations are complementary to field based measurements and their high spatial resolution assists in resolving the geometry and location of the source of the deformation. InSAR and tilt measurements at Hekla indicate renewed melt supply to a sub-volcanic reservoir after the last eruption in 2000. Recent deformation studies utilising data spanning this eruption, have provided insight into the shallow plumbing system which may explain the large reduction in eruption repose interval following the 1970 eruption. Although InSAR and GPS observations at Katla volcano (between 2001 and 2009) suggest no indication of magma induced deformation outside the ice-cap, it is possible that a small flood at Mýrdalsjökull in

  20. Focal Mechanisms for Local Earthquakes within a Rapidly Deforming Rhyolitic Magma System, Laguna del Maule, Chile

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Keranen, K. M.; Cardona, C.; Thurber, C. H.; Singer, B. S.

    2015-12-01

    Large shallow rhyolitic magma systems like the one underlying the Laguna del Maule Volcanic Field (LdM) atop the Southern Andes, Chile, that comprises the largest concentration of rhyolitic lava and tephra younger than 20 ka at earth's surface, are capable of producing modest to very large explosive eruptions. Moreover, LdM is currently exhibiting magma migration, reservoir growth, and crustal deformation at rates higher than any volcano that is not actively erupting. The long-term build-up of a large silicic magmatic system toward an eruption has yet to be monitored, therefore, precursory phenomena are poorly understood. In January of 2015, 12 broadband, 3-component seismometers were installed at LdM to detect local microearthquakes and tele-seismic events with the goals of determining the migration paths of fluids as well as the boundaries of the magma chamber beneath LdM. These stations complement the 6 permanent stations installed by the Southern Andes Volcano Observatory in 2011. Focal mechanisms were calculated using FOCMEC (Snoke et al., 1984) and P-wave first motions for local events occurring between January and March of 2015 using these 18 broadband stations. Results from six of the largest local events indicate a mixture of normal and reverse faulting at shallow (<10 km) depths surrounding the lake. This may be associated with the opening of fractures to accommodate rising magma in the subsurface and/or stresses induced by the rapid deformation. Two of these events occurred near the center of maximum deformation where seismic swarms have previously been identified. Focal mechanisms from smaller magnitude events will be calculated to better delineate subsurface structure. Source mechanisms will be refined using P-S amplitude ratios and full waveform inversion.

  1. Modeling and simulation of combustion chamber and propellant dynamics and issues in active control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Isella, Giorgio Carlo

    A method for a comprehensive approach to analysis of the dynamics of an actively controlled combustion chamber, with detailed analysis of the combustion models for the case of a solid rocket propellant, is presented here. The objective is to model the system as interconnected blocks describing the dynamics of the chamber, combustion and control. The analytical framework for the analysis of the dynamics of a combustion chamber is based on spatial averaging, as introduced by Culick. Combustion dynamics are analyzed for the case of a solid propellant. Quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface layer. The models are constructed so that they produce a combustion response function for the solid propellant that can be immediately introduced in the our analytical framework. The principal objective mechanisms responsible for the large sensitivity, observed experimentally, of propellant response to small variations. We show that velocity coupling, and not pressure coupling, has the potential to be the mechanism responsible for that high sensitivity. We also discuss the effect of particulate modeling on the global dynamics of the chamber and revisit the interpretation of the intrinsic stability limit for burning of solid propellants. Active control is also considered. Particular attention is devoted to the effect of time delay (between sensing and actuation); several methods to compensate for it are discussed, with numerical examples based on the approximate analysis produced by our framework. Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an unstable burning mode, defined through the measurement of the pressure trace and shadowgraph imaging. The transition between stable and unstable modes of operation is characterized by the presence of hysteresis, also observed in other experimental works, and hence not a special characteristic of this combustor. Control is introduced in the

  2. A Recent Volcanic Eruption on a "Magma Starved" Segment of the East Pacific Rise ISS, "10\\deg44'N

    NASA Astrophysics Data System (ADS)

    McClain, J. S.; Zierenberg, R. A.; Voight, J. R.; von Damm, K. L.; Rubin, K. H.

    2004-12-01

    In November 2003, three Alvin dives were made on the East Pacific Rise at 10\\deg44'N, (funded by NSF DEB-0072695). We discovered evidence for extremely young lava flows, indicating a recent volcanic eruption. Most of the flow is relatively thin, perhaps only 1 to 2 meters thick, but locally thicker with voids beneath of over 10 meters. The basalts were very glassy, with little devitrification. The pillows were lined with abundant bacterial deposits. We found a number of collapse pits and fissures. Several of these were emitting warm water with bacterial floc, features often referred to as snow blowers. The most prominent collapse feature is a central sinuous feature that extends for several hundred meters, and has a depth of about 10 meters. Initial dating of the basalts is described in an accompanying abstract, and is consistent with a very recent eruption. Global seismicity data do not reveal any events on the EPR at this latitude, and as of this writing, the NOAA (PMEL) hydrophone data for the equatorial Pacific have not yet been recovered. Even the most magma deficient segments of the world's mid-ocean ridge system must undergo magmatism and volcanic activity to produce the basalts that are nearly ubiquitous on the seafloor. Most of the fast spreading East Pacific Rise displays evidence of an abundant magma supply, including the presence of an axial magma chamber (AMC) reflector and an elevated axial high. An exception is the segment of the EPR north of the Clipperton Transform between 10\\deg18'N and 10\\deg55'N. Along that 70 kilometer length of ridge no AMC reflector was detected in the original survey by Detrick and others in 1985. In contrast, later seismic refraction work indicated anomalously low velocities and high attenuation in the lower crust beneath the axis in this area. Near the Transform, the ridge is narrow and relatively deep ~2800 m). It shoals and widens to the north, suggesting a more abundant magma supply. The 10\\deg44'N site lies at the

  3. Physical inter-relationships between hydrothermal activity, faulting and magmatic processes at the center of a slow-spreading, magma-rich mid-ocean ridge segment: A case study of the Lucky Strike segment (MAR, 37°03'-37‧N)

    NASA Astrophysics Data System (ADS)

    Fontaine, F. J.; Cannat, M.; Escartin, J.; Crawford, W. C.; Singh, S. C.

    2012-12-01

    The modalities and efficiency of hydrothermal heat evacuation at mid-ocean ridges (25% of the global heat loss) are controlled by the lithosphere thermal and permeability structures for which we had robust constraints only for fast/intermediate spreading axis until the last past few years during which integrated geophysical, geological and geochemical studies focused on some hydrothermal sites at slow-spreading ridges. At the Lucky Strike vent field of the mid-atlantic ridge - a hydrothermal complex composed of high-temperature (maximum T=340°C), smoker-like vents and associated diffuse flow and extracting a few hundreds MW from the oceanic lithosphere - a seafloor observatory which installation started in 2005 highlights local interactions between hydrothermal, tectonic and magmatic processes. Detailed geophysical and geological investigations stress the role of the local axial fault system on localizing high- and low-temperature ventings around the faulted rim of a paleo lava lake. Microseismic studies bring constraints on the subseafloor hydrology and suggest an along-axis flow pattern, with a privileged recharge area located about a kilometer north off the active discharges. Seismic reflection studies image a central magma chamber fueling the hydrothermal sites and also reveal its along-axis depth variations likely influencing hydrothermal cell organization and flow focusing. Such linkages among hydrothermal dynamics, heat source and crustal permeability geometries usually lack quantitative constraints at mid-ocean ridges in general, and the Lucky Strike segment settings offers a unique opportunity to couple high-resolution geophysical data to hydrodynamic model. Here we develop a series of original two- and three-dimensional numerical and physical models of hydrothermal activity, tailored to this slow-spreading environment. Our results highlight physical linkages among magmatism, tectonics and crustal hydrology stressing the key role of faulting and magma

  4. Crustal Magma Evolution: the View from the Chemistry of Large Central Andean Ignimbrites

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Coira, B.

    2006-12-01

    Voluminous andesitic to rhyodacitic ignimbritic fields linked to giant calderas are distinctive features of the Neogene magmatic record of the central Andean Altiplano-Puna plateau. These magmas evolved in a thickened backarc crust of an active subduction regime at a compressional margin. Their chemistry reflects the thermo-mechanical conditions that control the generation of large crustal magma systems, and tracks changes in a crust subjected to thickening, flow and delamination. Correlations with high resolution geophysical images help to decipher magma generation and eruption processes. A compilation of some 400 published and new chemical analyses allows a view of the spatial-temporal crustal evolution of large complexes in the Puna (22° -28°S) over the last 12 Ma. Data are from the 11-10 Ma Granada and Pairique, 9 to 8 Ma Vilama, 6.8 to 6.5 Ma Coranzulí, 6.7-6.1 Ma Panizos, 5.3-4 Ma Toconao, 4.2-3.8 Ma Atana, and 1.3 Ma Purico complexes in the north, the 12-10 Ma Aguas Calientes complex in the central Puna and the 5.1-3.6 Ma Laguna Amarga/Verde and 6.4 2.2 Ma Cerro Galan complexes in the south. A notable older to younger chemical trend that is seen is for La/Yb (40 to 10) and Sm/Yb (7.5 to 2) ratios to decrease without a corresponding pattern in Eu anomalies. This trend suggests a change from garnet to amphibole as a controlling residual phase at depth followed by feldspar fractionation at higher levels, possibly in magmas chambers near 20 km imaged by seismic data. Xenocrysts in mafic andesitic lavas could be phenocrysts from magmas at this level. A correlated temporal change to lower Al/(K+Na+Ca) and ^8^7Sr/^86Sr ratios and increasing epsilon Nd in the northern Puna requires a changing source linked to an evolving crust. Other patterns are better linked to regional basement differences and variability in the mantle-derived mafic magmas that supply the heat for melting.

  5. Phase relations and volatiles content of the Minopoli2 Campi Flegrei caldera shoshonitic magma

    NASA Astrophysics Data System (ADS)

    Mangiacapra, A.; Rutherford, M.; Civetta, L.

    2009-04-01

    New constraints on pre-eruption conditions of the Minopoli2 shoshonitic magma are provided by experimental studies. The products of this eruption represent the least evolved magma composition erupted in the first epoch of Campi Flegrei caldera activity (10.3-9.5 ka). Recent geochemical investigations (Mangiacapra et al.,2008)* on dissolved volatiles in the Minopoli2 phenocryst-hosted melt inclusions (MIs), revealed a H2O- and CO2-rich shoshonitic magma, stored at two depths (8-9 and 2-3 km) where it experienced both open-system degassing, driven by crystallization, and flushing with a CO2-rich gas phase coming from deeper levels. Phase equilibrium experiments dry and with 3.5wt% H2O have been guided by the dissolved H2O and CO2 in MIs. The phase equilibria of the shoshonite with 3.5 wt% H2O shows that the observed phenocryst assemblage (olivine, Ca-pyroxene, plagioclase and biotite) becomes stable at 1020±15 °C over the pressure range of 40 to 150 MPa and to higher pressures. The experimental data indicate that the shoshonite crystallised the phenocryst assemblage (15 vol%) at a depth of circa 9 Km and 1025 °C; only small degrees of additional crystallization occurred as the magma ascended to a depth of circa 3 km with degassing of some MIs. Sulphur speciation in glassy MIs was determined as ≥ 79% sulphate which is equivalent to a log fO2≥ NNO + 1.5. The low end of the fO2 range is interpreted to represent the pre-eruption magma at depth. The solubility of CO2 and H2O as a function of pressure in the Minopoli2 shoshonite have been experimentally calibrated. These results contribute to the understanding of magma chamber processes and conduit dynamics, relevant parameters for hazard assessment. * Mangiacapra A., R. Moretti, M. Rutherford, L. Civetta, G. Orsi and P. Papale (2008) The deep magmatic system of the Camp Flegrei caldera (Italy). Geophys. Res. Lett., 35, doi: 10.1029/2008GL035550

  6. Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Coppola, D.; Di Muro, A.; Peltier, A.; Villeneuve, N.; Ferrazzini, V.; Favalli, M.; Bachèlery, P.; Gurioli, L.; Harris, A. J. L.; Moune, S.; Vlastélic, I.; Galle, B.; Arellano, S.; Aiuppa, A.

    2017-04-01

    Basaltic magma chambers are often characterized by emptying and refilling cycles that influence their evolution in space and time, and the associated eruptive activity. During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system (> 240 ×106 m3) and resulted in collapse of the 1-km-wide summit crater. Following these major events, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system consisting of a vertically-zoned network of relatively small-volume magma pockets. Continuous inflation provoked four small (< 5 ×106 m3) eruptions from vents located close to the summit cone and culminated, during August-October 2015, with a chemically zoned eruption that erupted 45 ± 15 ×106 m3 of lava. This two-month-long eruption evolved through (i) an initial phase of waning discharge, associated to the withdrawal of differentiated magma from the shallow system, into (ii) a month-long phase of increasing lava and SO2 fluxes at the effusive vent, coupled with CO2 enrichment of summit fumaroles, and involving emission of less differentiated lavas, to end with, (iii) three short-lived (∼2 day-long) pulses in lava and gas flux, coupled with arrival of cumulative olivine at the surface and deflation. The activity observed at Piton de la Fournaise in 2014 and 2015 points to a new model of shallow system rejuvenation and discharge, whereby continuous magma supply causes eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continues until unloading of the

  7. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    PubMed

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-07

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  8. Search for α -Cluster Structure in Exotic Nuclei with the Prototype Active-Target Time-Projection Chamber

    NASA Astrophysics Data System (ADS)

    Fritsch, A.; Ayyad, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Carpenter, L.; Cortesi, M.; Mittig, W.; Suzuki, D.; Ahn, T.; Kolata, J. J.; Howard, A. M.; Becchetti, F. D.; Wolff, M.

    Some exotic nuclei appear to exhibit α -cluster structure, which may impact nucleosynthesis reaction rates. While various theoretical models currently describe such clustering, more experimental data are needed to constrain model predictions. The Prototype Active-Target Time-Projection Chamber (PAT-TPC) has low-energy thresholds for charged-particle decay and a high detection efficiency due to its thick gaseous active target volume, making it well-suited to search for low-energy α -cluster reactions. Radioactive-ion beams produced by the TwinSol facility at the University of Notre Dame were delivered to the PAT-TPC to study 14C via α -resonant scattering. Differential cross sections and excitation functions were measured and show evidence of three-body exit channels. Additional data were measured with an updated Micromegas detector more sensitive to three-body decay. Preliminary results are presented.

  9. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Head, J. W., III

    1993-01-01

    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  10. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  11. Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California

    SciTech Connect

    Blackett, Robert

    1985-09-01

    The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

  12. Petrology and geochemistry of Late Holocene felsic magmas from Rungwe volcano (Tanzania), with implications for trachytic Rungwe Pumice eruption dynamics

    NASA Astrophysics Data System (ADS)

    Fontijn, Karen; Elburg, Marlina A.; Nikogosian, Igor K.; van Bergen, Manfred J.; Ernst, Gerald G. J.

    2013-09-01

    Rungwe in southern Tanzania is an active volcanic centre in the East African Rift System, characterised by Plinian-style explosive eruptions of metaluminous to slightly peralkaline trachytic silica-undersaturated magmas during its late Holocene history. Variations in whole-rock major and trace element compositions of erupted products have been investigated, in combination with electron microprobe data for melt inclusions and phenocrysts comprising sanidine, biotite, clinopyroxene, titanomagnetite, ilmenite, haüyne, titanite, apatite and traces of plagioclase and amphibole. Compositional variations largely reflect fractional crystallisation, with a limited influence of magma mixing. Subtle variations in whole-rock composition and mineralogical characteristics between and within deposits, suggest the existence of a chemically zoned trachytic magma chamber beneath Rungwe. For the two most important studied deposits, the Isongole and Rungwe Pumice, co-existing Fe-Ti oxides constrain pre-eruptive temperature to 915-950 °C and oxygen fugacity to NNO + 0.25-NNO + 0.45. For the Rungwe Pumice, melt inclusions suggest that the melt was water-undersaturated (maximum inferred H2O concentration 5.5 wt.%). In the range of the defined pre-eruptive temperatures, this corresponds to melt viscosities as low as 103.3 Pa · s, i.e. significantly lower than magmas that typically generate highly explosive eruptions. Because no microlites formed in the conduit during ascent, which would have strongly increased the effective magma viscosity, the highly explosive nature of the eruptions may be attributable to a crucial role of exsolved CO2 and S phases, and very high ascent rates.

  13. Geophysical observations of Kilauea Volcano, Hawaii, 2. Constraints on the magma supply during November 1975-September 1977

    USGS Publications Warehouse

    Dzurisin, D.; Anderson, L.A.; Eaton, G.P.; Koyanagi, R.Y.; Lipman, P.W.; Lockwood, J.P.; Okamura, R.T.; Puniwai, G.S.; Sako, M.K.; Yamashita, K.M.

    1980-01-01

    Following a 22-month hiatus in eruptive activity, Kilauea volcano extruded roughly 35 ?? 106 m3 of tholeiitic basalt from vents along its middle east rift zone during 13 September-1 October, 1977. The lengthy prelude to this eruption began with a magnitude 7.2 earthquake on 29 November, 1975, and included rapid summit deflation episodes in June, July, and August 1976 and February 1977. Synthesis of seismic, geodetic, gravimetric, and electrical self-potential observations suggests the following model for this atypical Kilauea eruptive cycle. Rapid summit deflation initiated by the November 1975 earthquake reflected substantial migration of magma from beneath the summit region of Kilauea into the east and southwest rift zones. Simultaneous leveling and microgravity observations suggest that 40-90 ?? 106 m3 of void space was created within the summit magma chamber as a result of the earthquake. If this volume was filled by magma from depth before the east rift zone intrusive event of June 1976, the average rate of supply was 6-13 ?? 106 m3/month, a rate that is consistent with the value of 9 ?? 106 m3/month suggested from observations of long-duration Kilauea eruptions. Essentially zero net vertical change was recorded at the summit during the 15-month period beginning with the June 1976 intrusion and ending with the September 1977 eruption. This fact suggests that most magma supplied from depth during this interval was eventually delivered to the east rift zone, at least in part during four rapid summit deflation episodes. Microearthquake epicenters migrated downrift to the middle east rift zone for the first time during the later stages of the February 1977 intrusion, an occurrence presumably reflecting movement of magma into the eventual eruptive zone. This observation was confirmed by tilt surveys in May 1977 that revealed a major inflation center roughly 30 km east of the summit in an area of anomalous steaming and forest kill first noted in March 1976. ?? 1980.

  14. Evidence for variations in magma production along oceanic spreading centers - A critical appraisal

    NASA Technical Reports Server (NTRS)

    Karson, J. A.; Elthon, D.

    1987-01-01

    Recent studies of the oceanic lithosphere near fracture zones have resulted in the proposal that the 'magma budget', defined as the amount of magma delivered to magma chambers or conduits beneath a spreading center for a given amount of spreading, decreases as fracture zones are approached. Geochemical variations in basaltic glasses collected near fracture zones are consistent with a decrease in partial melting as fracture zones are approached, but they could also be produced by variations in open-system magmatic processes with no change in the extent of partial melting. Although a decrease in the magma budget as fracture zones are approached is consistent with these data, so are alternative models that incorporate a constant magma budget.

  15. The rheology of crystal-rich magmas (Kuno Award Lecture)

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Aldin Faroughi, Salah; Degruyter, Wim

    2016-04-01

    of dispersion of the magma (change in the state variables caused by either shear localization or crystal breakage). We argue that the model we propose is a first step to go beyond fitting experimental data and towards building a predictive rheology model for crystal-bearing magmas. Cooper, K.M., and Kent, A.J.R. (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature, 506(7489), 480-483. Dufek, J., and Bachmann, O. (2010) Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology, 38(8), 687-690. Huber, C., Bachmann, O., and Manga, M. (2009) Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth and Planetary Science Letters, 283(1-4), 38-47.

  16. Io: Loki Patera as a Magma Sea

    NASA Technical Reports Server (NTRS)

    Matson, Dennis L.; Davies, Ashley Gerard; Veeder, Glenn J.; Rathbun, Julie A.; Johnson, Torrence V.; Castillo, Julie C.

    2006-01-01

    We develop a physical model for Loki Patera as a magma sea. We calculate the total volume of magma moving through the Loki Patera volcanic system every resurfacing cycle (approx.540 days) and the resulting variation in thermal emission. The rate of magma solidification at times reaches 3 x 10(exp 6) kg per second, with a total solidified volume averaging 100 cu km per year. A simulation of gas physical chemistry evolution yields the crust porosity profile and the timescale when it will become dense enough to founder in a manner consistent with observations. The Loki Patera surface temperature distribution shows that different areas are at different life cycle stages. On a regional scale, however, there can be coordinated activity, indicated by the wave of thermal change which progresses from Loki Patera's SW quadrant toward the NE at a rate of approx.1 km per day. Using the observed surface temperature distribution, we test several mechanisms for resurfacing Loki Patera, finding that resurfacing with lava flows is not realistic. Only the crustal foundering process is consistent with observations. These tests also discovered that sinking crust has a 'heat deficit' which promotes the solidification of additional magma onto the sinking plate ("bulking up"). In the limiting case, the mass of sinking material can increase to a mass of approx.3 times that of the foundering plate. With all this solid matter sinking, there is a compensating upward motion in the liquid magma. This can be in excess of 2 m per year. In this manner, solid-liquid convection is occurring in the sea.

  17. Trace element and isotopic effects arising from magma migration beneath mid-ocean ridges

    NASA Technical Reports Server (NTRS)

    Kenyon, Patricia M.

    1990-01-01

    The trace element concentrations and isotopic ratios in the magma erupted on mid-ocean ridges may differ from those in the source material due to physical effects such as porous flow dispersion, exchange of trace elements between the fluid and solid phases during magma migration, and convective mixing in magma chambers. These differences are in addition to those produced by better known processes such as fractional crystallization and partial melting. The effects of the three former processes are described. It is predicted that magma typically reaches the subridge magma chambers with a spatial heterogeneity only slightly reduced from that of the source material, but with a subdued variation in time. Convective mixing then further reduces the spatial heterogeneity. Application of the results for convective mixing to a recent Fourier analysis of Sr-87/Sr-86 variations along the Mid-Atlantic Ridge suggests that the falloff in amplitude of variation observed with decreasing wavelength in the Mid-Atlantic Ridge data cannot be explained by convective mixing in magma chambers. Instead, it is postulated that this falloff is due to the mechanics of the production and/or the solid-state convective mixing of chemical and isotopic heterogeneities in the solid mantle.

  18. Magma beneath Yellowstone National Park

    USGS Publications Warehouse

    Eaton, G.P.; Christiansen, R.L.; Iyer, H.M.; Pitt, A.M.; Mabey, D.R.; Blank, H.R.; Zietz, I.; Gettings, M.E.

    1975-01-01

    The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a

  19. Magma Beneath Yellowstone National park.

    PubMed

    Eaton, G P; Christiansen, R L; Iyer, H M; Pitt, A D; Mabey, D R; Blank, H R; Zietz, I; Gettings, M E

    1975-05-23

    The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a

  20. Ultra-rapid formation of large volumes of evolved magma

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Jaupart, C.

    2006-10-01

    We discuss evidence for, and evaluate the consequences of, the growth of magma reservoirs by small increments of thin (⋍ 1-2 m) sills. For such thin units, cooling proceeds faster than the nucleation and growth of crystals, which only allows a small amount of crystallization and leads to the formation of large quantities of glass. The heat balance equation for kinetic-controlled crystallization is solved numerically for a range of sill thicknesses, magma injection rates and crustal emplacement depths. Successive injections lead to the accumulation of poorly crystallized chilled magma with the properties of a solid. Temperatures increase gradually with each injection until they become large enough to allow a late phase of crystal nucleation and growth. Crystallization and latent heat release work in a positive feedback loop, leading to catastrophic heating of the magma pile, typically by 200 °C in a few decades. Large volumes of evolved melt are made available in a short time. The time for the catastrophic heating event varies as Q- 2 , where Q is the average magma injection rate, and takes values in a range of 10 5-10 6 yr for typical geological magma production rates. With this mechanism, storage of large quantities of magma beneath an active volcanic center may escape detection by seismic methods.

  1. Anti-HIV-1 Activity of Flavonoid Myricetin on HIV-1 Infection in a Dual-Chamber In Vitro Model

    PubMed Central

    Pasetto, Silvana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2014-01-01

    HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01–100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic), H9 and PBMC cells plus HIV-1 MN (X4 tropic), and the dual tropic (X4R5) HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research. PMID:25546350

  2. The intrusion of new magma triggered the 2011-2012 unrest at Santorini: evidence from noble-gas isotopes

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; Barberi, F.; Carapezza, M.; Di Piazza, A.; Francalanci, L.; Sortino, F.; D'Alessandro, W.

    2013-12-01

    Santorini is one of the most famous active volcanoes of the world for its catastrophic explosive eruption that occurred during the Minoan civilization. Since then the Kameni eruptive centers that formed within the caldera erupted repeatedly until 1950. In 2011-2012 the volcano has been characterized by a seismic unrest, that was unprecedented at Santorini at least since the 1950 eruption, and that led to fear for an imminent eruption. Because more than 100,000 visitors are present on the island during the tourist season, and considering the eruptive potential of Santorini, it is crucial to evaluate the hazard of this volcano, which depends on the type of magma actually present in the volcanic system. With the aim to address this question, this research shows the first comparison between noble-gas isotope composition of the present fumarolic gases with that of fluid inclusions hosted in enclaves contained in the 1570 and 1925 AD dacitic magmas erupted at Nea Kameni. These enclaves are a portion of mafic magma batches that replenished the shallow chamber of the plumbing system hosting cooler and more silicic melts. Their Sr-Nd isotope ratios are quite similar to those measured in the host dacitic rocks, implying a common parental magma. Therefore, the analyzed enclaves may be considered representative of the historic magma erupted at Nea Kameni which could be still present in the volcano plumbing system feeding the crater fumaroles. The 3He/4He ratios of enclaves, once corrected for air contamination (3.1-3.6 Ra), partially overlap those of the gases (3.5-4.0 Ra) collected from Nea and Palea Kameni. The range of 3He/4He ratios (3.1-4.0 Ra) is appreciably lower than typical arc volcanoes (R/Ra ~7-8), implying that a contamination by 4He-rich fluids occurred either directly in the mantle and/or in the plumbing system. Comparison of 3He/4He and 4He/40Ar* ratios measured in enclaves with those of gases, as well as long-term monitoring of R/Ra in the latters, coherently

  3. Volatile Changes in Magma Related to Magma Evolution: Influences From Magma Mixing, Crustal Assimilation, and Crystallization

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.; Gardner, J.

    2008-12-01

    The volatile budget of magma is the cumulative product of magma mixing, crustal assimilation, and crystallization, with the concentration of each volatile resulting from how much is added by each process and whether the magma is gas saturate. In order to clarify how volatile budgets fluctuate during magma evolution, we are measuring volatile concentrations in melt inclusions trapped within individual zones of plagioclase crystals from different dacitic Plinian eruptions and a recent small-scale explosion of Popocatépetl Volcano. The plagioclase zones were analyzed for their anorthite (An) composition and their Sr isotopic (87Sr/86Sr) composition in order to investigate the evolutionary processes responsible for crystal growth and their relation to volatile concentrations measured in the melt inclusions. In general, plagioclase from all eruptions display three different correlations between An content and Sr isotopes, with each recording different conditions under which crystals grew. Some crystals have nearly constant 87Sr/86Sr compositions from core to rim with either variable An compositions or a continuous decrease in An, suggesting these crystals were affected only by crystallization and, in some cases, thermal fluctuations. Other crystals display anti-correlations between An and Sr isotopes, which record mass inputs into the system from either magma mixing or crustal assimilation. Single crystals record a variety of processes during their growth, and single pumices contain an extremely heterogeneous population of such crystals, suggesting that the magma system is highly dynamic. Our preliminary results show that water can vary by several weight percent and carbon dioxide by hundreds of ppm between different zones of individual crystals. Interestingly, we find that inclusions related to recharge events by hotter, more primitive magma are more hydrous than those related to assimilation of more radiogenic wall rock. This suggests that the volatile budget of

  4. Catalytic activity of Ni-YSZ anodes in a single-chamber solid oxide fuel cell reactor

    NASA Astrophysics Data System (ADS)

    Savoie, Sylvio; Napporn, Teko W.; Morel, Bertrand; Meunier, Michel; Roberge, Réal

    The importance of heterogeneous catalysis in single-chamber solid oxide fuel cells (SC-SOFC) is universally recognized, but little studied. This work presents a thorough investigation of the catalytic activity of three Ni-YSZ half-cells in a well-described single-chamber reactor. One in-house electrolyte-supported and two commercially available anode-supported half-cells composed of anodes with thicknesses ranging from 50 μm to 1.52 mm are investigated. They are exposed to methane and oxygen gas mixtures within CH 4:O 2 flow rate ratios (R in) of 0.8-2.0 and furnace temperatures of 600-800 °C. The conversion of methane always results in the formation of syngas species (H 2 and CO). However, their yields vary considerably based on the individual anode, the operating temperature, and R in. The SC-reactor design and the presence of hot-spots at the reactor entrance bring the methane and oxygen conversion rates well above the limit expected from experiments carried out with anode half-cells only. Major variations in the H 2/CO ratio are observed. In lowering the temperature from 800 °C to 600 °C, it spreads from well below to well above the stoichiometric value of 2.0 expected for the partial oxidation reaction. To optimize the SC-SOFC any further, the findings stress the need to undertake even more catalytic studies of its electrode materials under actual structure and morphology as well as final reactor configuration.

  5. Magma storage under Iceland's Eastern Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Maclennan, J.; Neave, D.; Hartley, M. E.; Edmonds, M.; Thordarson, T.; Morgan, D. J.

    2014-12-01

    The Eastern Volcanic Zone (EVZ) of Iceland is defined by a number of volcanic systems and large basaltic eruptions occur both through central volcanoes (e.g. Grímsvötn) and on associated fissure rows (e.g. Laki, Eldgjá). We have collected a large quantity of micro-analytical data from a number of EVZ eruptions, with the aim of identifying common processes that occur in the premonitory stages of significant volcanic events. Here, we focus on the AD 1783 Laki event, the early postglacial Saksunarvatn tephra and the sub-glacially erupted Skuggafjöll tindar and for each of these eruptions we have >100 olivine-hosted or plagioclase-hosted melt inclusion analyses for major, trace and volatile elements. These large datasets are vital for understanding the history of melt evolution in the plumbing system of basaltic volcanoes. Diverse trace element compositions in melt inclusions hosted in primitive macrocrysts (i.e. Fo>84, An>84) indicate that the mantle melts supplied to the plumbing system of EVZ eruptions are highly variable in composition. Concurrent mixing and crystallisation of these melts occurs in crustal magma bodies. The levels of the deepest of these magma bodies are not well constrained by EVZ petrology, with only a handful of high-CO2 melt inclusions from Laki providing evidence for magma supply from >5 kbar. In contrast, the volatile contents of melt inclusions in evolved macrocrysts, which are close to equilibrium with the carrier liquids, indicate that final depths of inclusion entrapment are 0.5-2 kbar. The major element composition of the matrix glasses shows that the final pressure of equilibration between the melt and its macrocryst phases also occurred at 0.5-2 kbar. The relationship between these pressures and seismic/geodetic estimates of chamber depths needs to be carefully evaluated. The melt inclusion and macrocryst compositional record indicates that injection of porphyritic, gas-rich primitive melt into evolved/enriched and degassed shallow

  6. Melt inclusion evidence of second immiscibility within a magma derived non-silicate phase (Mt Vesuvius)

    NASA Astrophysics Data System (ADS)

    Fulignati, P.; Kamenetsky, V.; Marianelli, P.; Sbrana, A.

    2003-04-01

    Processes of melt immiscibility occurring during late magmatic differentiation play important role in the generation of many magmatic-hydrothermal ore deposits and may activate and control the style of volcanic eruptions. The exsolution of a non-silicate, volatile-rich phase from the phonolitic magma occurred at the peripheral parts of the 79AD Vesuvius magma chamber. The results of our work suggest that this immiscible phase can further experience another unmixing event that occurs in essentially "post-magmatic" environment. Heating/cooling experiments were carried out on the cogenetic multiphase (clear daughter crystals + vapour bubble(s) + interstial liquid) inclusions, hosted in K-feldspar of cognate felsic xenoliths, representative of rocks in the peripheral parts of the magma chamber. During heating, solid phases begin to dissolve at about 150^oC and melt completely at 530^oC. These low temperatures of melting argue for a non-silicate composition of daughter minerals, and thus bulk inclusion content. The remaining vapour bubble dissolves at 880^oC. During subsequent cooling, vapour bubble nucleates at 785^oC and increases in size. Unmixing of at least two melt phases occurs instantaneously at 500^oC in all studied inclusions. Globules of one melt float freely in the matrix of another melt, change their shape and size, coalesce and split apart continuously down to 100--150^oC. The movements of globules slow down with decreasing temperature until final solidification at 40--50^oC. The similarity of observed phase transformations inside inclusions suggests their homogeneous trapping at magmatic temperatures. By analogy with results of the study of xenoliths from the Vesuvius 472AD eruption (Fulignati et al., 2001) we interpret unmixed phases as globules of the Na-K chloride melt set in the matrix of Ca-carbonate melt. We infer that immiscibility between low viscosity, highly fugitive non-silicate melts may significantly influence partitioning of metals

  7. The Topopah Spring Tuff: Evidence for dynamic withdrawal from a layered magma body

    SciTech Connect

    Schuraytz, B.C.; Vogel, T.A.; Younker, L.W.

    1987-08-15

    The Topopah Spring Tuff is a classic example of a compositionally zoned ash-flow sheet resulting from eruption of a compositionally zoned magma body. Geochemical and petrographic analyses of whole-rock tuff samples indicate that the base of the ash-flow sheet and the dominant volume of erupted material consist of crystal-poor high-silica rhyolite, with a gradational transition into overlying crystal-rich quartz latite. Major and trace element analyses of glassy pumices and microprobe analyses of their oxide and silicate phenocrysts provide closer approximations to the chemical and thermal gradients within the magma body. The gradients inferred from these data indicate that the transition from high-silica rhyolitic to quartz latitic magma was abrupt, rather than gradational, with a distinct liquid-liquid interface separating the contrasting magmas. Observations are consistent with fluid dynamic models in which the angular velocity field developed near the entrance region of the vents results in simultaneous withdrawal of magma from a continually greater lateral and vertical extent within the chamber. The abrupt transition to chemically variable pumices, dominated by those of quartz latitic composition, implies that the interface between the magma layers remained relatively stable until drawdown breached the interface and preferentially erupted higher temperature, more mafic magma along with subordinate amounts of the incompletely exhausted high-silica rhyolitic magma.

  8. Tracking dynamics of magma migration in open-conduit systems

    NASA Astrophysics Data System (ADS)

    Valade, Sébastien; Lacanna, Giorgio; Coppola, Diego; Laiolo, Marco; Pistolesi, Marco; Donne, Dario Delle; Genco, Riccardo; Marchetti, Emanuele; Ulivieri, Giacomo; Allocca, Carmine; Cigolini, Corrado; Nishimura, Takeshi; Poggi, Pasquale; Ripepe, Maurizio

    2016-11-01

    Open-conduit volcanic systems are typically characterized by unsealed volcanic conduits feeding permanent or quasi-permanent volcanic activity. This persistent activity limits our ability to read changes in the monitored parameters, making the assessment of possible eruptive crises more difficult. We show how an integrated approach to monitoring can solve this problem, opening a new way to data interpretation. The increasing rate of explosive transients, tremor amplitude, thermal emissions of ejected tephra, and rise of the very-long-period (VLP) seismic source towards the surface are interpreted as indicating an upward migration of the magma column in response to an increased magma input rate. During the 2014 flank eruption of Stromboli, this magma input preceded the effusive eruption by several months. When the new lateral effusive vent opened on the Sciara del Fuoco slope, the effusion was accompanied by a large ground deflation, a deepening of the VLP seismic source, and the cessation of summit explosive activity. Such observations suggest the drainage of a superficial magma reservoir confined between the crater terrace and the effusive vent. We show how this model successfully reproduces the measured rate of effusion, the observed rate of ground deflation, and the deepening of the VLP seismic source. This study also demonstrates the ability of the geophysical network to detect superficial magma recharge within an open-conduit system and to track magma drainage during the effusive crisis, with a great impact on hazard assessment.

  9. Composition and origin of basaltic magma of the Hawaiian Islands

    USGS Publications Warehouse

    Powers, H.A.

    1955-01-01

    Silica-saturated basaltic magma is the source of the voluminous lava flows, erupted frequently and rapidly in the primitive shield-building stage of activity, that form the bulk of each Hawaiian volcano. This magma may be available in batches that differ slightly in free silica content from batch to batch both at the same and at different volcanoes; differentiation by fractionation of olivine does not occur within this primitive magma. Silica-deficient basaltic magma, enriched in alkali, is the source of commonly porphyritic lava flows erupted less frequently and in relatively negligible volume during a declining and decadent stage of activity at some Hawaiian volcanoes. Differentiation by fractionation of olivine, plagioclase and augite is evident among these lavas, but does not account for the silica deficiency or the alkali enrichment. Most of the data of Hawaiian volcanism and petrology can be explained by a hypothesis that batches of magma are melted from crystalline paridotite by a recurrent process (distortion of the equatorial bulge by forced and free nutational stresses) that accomplishes the melting only of the plagioclase and pyroxene component but not the excess olivine and more refractory components within a zone of fixed and limited depth. Eruption exhausts the supply of meltable magma under a given locality and, in the absence of more violent melting processes, leaves a stratum of crystalline refractory components. ?? 1955.

  10. Modelling the petrogenesis of high Rb/Sr silicic magmas

    USGS Publications Warehouse

    Halliday, A.N.; Davidson, J.P.; Hildreth, W.; Holden, P.

    1991-01-01

    Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb Sr > 2,000. In contrast, granite batholiths are commonly comprised of rocks with Rb Sr 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefore commonly in error because of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations (???1 ppm) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fractional crystallization involving substantial volumes of cumulates. A variety of methods for modelling the differentiation of magmas with extremely high Rb/Sr is discussed. In each case it is concluded that the bulk partition coefficients for Sr have to be large. In the simplest models, the bulk DSr of the most evolved types is modelled as > 50. Evidence from phenocryst/glass/whole-rock concentrations supports high Sr partition coefficients in feldspars from high silica rhyolites. However, the low modal abundance of plagioclase commonly observed in such rocks is difficult to reconcile with such simple fractionation models of the observed trace-element trends. In certain cases, this may be because the apparent trace-element trend defined by the suite of cognetic rhyolites is the product of different batches of magma with separate differentiation histories accumulating in the magma chamber roof zone. ?? 1991.

  11. Thermal and rheological controls on magma migration in dikes: Examples from the east rift zone of Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Wilson, L.; Pinkerton, H.

    1993-01-01

    Long-lived eruptions from basaltic volcanoes involving episodic or steady activity indicate that a delicate balance has been struck between the rate of magma cooling in the dike system feeding the vent and the rate of magma supply to the dike system from a reservoir. We describe some key factors, involving the relationships between magma temperature, magma rheology, and dike geometry that control the nature of such eruptions.

  12. Activated carbons from end-products of tree nut and tree fruit production as sorbents for removing methyl bromide in ventilation effluent from postharvest chamber fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    End-products of tree nuts and tree fruits grown in California, USA were evaluated for the ability to remove methyl bromide from the ventilation effluent of postharvest chamber fumigations. Activated carbon sorbents from walnut and almond shells as well as peach and prune pits were prepared using dif...

  13. Investigating magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions.

    NASA Astrophysics Data System (ADS)

    Dahren, Börje; Troll, Valentin R.; Andersson, Ulf-Bertil; Chadwick, Jane P.; Gardner, Mairi F.

    2010-05-01

    Improving our understanding of magma plumbing and storage remains one of the major challenges for petrologists and volcanologists today. This is especially true for explosive volcanoes, where constraints on magma plumbing are essential for predicting dynamic changes in future activity and thus for hazard mitigation. This study aims to investigate the magma plumbing system at Anak Krakatau; the post-collapse cone situated on the rim of the 1883 Krakatau caldera. Since 1927, Anak Krakatau has been highly active, growing at a rate of ~8 cm/week. The methods employed are a.) clinopyroxene-melt thermo-barometry [1,2] b.) plagioclase-melt thermo-barometry [3] c.) clinopyroxene composition barometry [2,4] and d.) olivine-melt thermometry [5]. The minerals analysed are from basaltic-andesites erupted between 1990-2002, with an average modal composition of 70% groundmass, 25% plagioclase, 4% clinopyroxene and <1% olivine. Clinopyroxenes are homogenous and display no obvious zoning. Plagioclases are considerably more heterogenous, exhibiting complex zoning and An content between An45-80. In addition, mineral compositions of older clinopyroxenes, erupted between 1883-1981, are used for comparison [6,7]. Previously, both seismic [8] and petrological studies [6,7,9] have addressed the magma plumbing beneath Anak Krakatau. Interestingly, petrological studies indicate shallow magma storage in the region of 2-8 km, while the seismic evidence points towards a mid-crustal and a deep storage, at 9 and 22 km respectively. Our results imply that clinopyroxene presently crystallizes in a mid-crustal storage region (8-12 km), a previously identified depth level for magma storage, using seismic methods [8]. Plagioclases, in turn, form at shallower depths (4-6 km), in concert with previous petrological studies [6,7,9]. Pre-1981 clinopyroxenes record deeper levels of storage (8-22 km), indicating that there may have been an overall shallowing of the plumbing system over the last ~40 years

  14. Chapter 9 The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data

    USGS Publications Warehouse

    Piochi, M.; de Vivo, B.; Ayuso, R.A.

    2006-01-01

    A large database of major, trace and isotope (Sr, Nd, Pb, O) data exists for rocks produced by the volcanic activity of Somma-Vesuvius volcano. Variation diagrams strongly suggest a major role for evolutionary processes such as fractional crystallization, contamination, crystal trapping and magma maxing, occurring after magma genesis in the mantle. Most mafic magmas are enriched in LILE (Light Ion Lithophile Elements; K. Rb, Ba), REE (Ce, Sm) and Y, show small Nb-Ta negative anomalies, and have values of Nb/Zr at about 0.15. Enrichments in LILE, REE, Nb and Ta do not correlate with Sr isotope values or degree of both K enrichment and silica undersaturation. The results indicate mantle source heterogeneity produced by slab-derived components beneath the volcano. However, the Sr isotope values of Somma-Vesuvius increase from 0.7071 up to 0.7081 with transport through the uppermost 11-12 km of the crust. The Sr isotope variation suggests that the crustal component affected the magmas during ascent through the lithosphere to the surface. Our new geochemical assessment based on chemical, isotopic and fluid inclusion data points to the existence of three main levels of magma storage. Two of the levels are deep and may represent long-lived reservoirs; the uppermost crustal level probably coincides with the volcanic conduit. The deeper level of magma storage is deeper than 12 km and fed the 1944 AD eruption. The intermediate level coincides with the seismic discontinuity detected by Zollo et al. (1996) at about 8 km. This intermediate level supplies magmas with 87Sr/86Sr values between 0.7071 and 0.7074, and ??O18<8% that typically erupted both during interplinian (i.e. 1906 AD) and sub-plinian (472 AD, 1631 AD) events. The shallowest level of magma storage at about 5 km was the site of magma chambers for the Pompei and Avellino plinian eruptions. New investigations are necessary to verify the proposed magma feeding system. ?? 2006 Elsevier B.V. All rights reserved.

  15. Fusion studies with low-intensity radioactive ion beams using an active-target time projection chamber

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Howard, A. M.; Mittig, W.; Ahn, T.; Bazin, D.; Becchetti, F. D.; Beceiro-Novo, S.; Chajecki, Z.; Febbrarro, M.; Fritsch, A.; Lynch, W. G.; Roberts, A.; Shore, A.; Torres-Isea, R. O.

    2016-09-01

    The total fusion excitation function for 10Be+40Ar has been measured over the center-of-momentum (c.m.) energy range from 12 to 24 MeV using a time-projection chamber (TPC). The main purpose of this experiment, which was carried out in a single run of duration 90 h using a ≈100 particle per second (pps) 10Be beam, was to demonstrate the capability of an active-target TPC to determine fusion excitation functions for extremely weak radioactive ion beams. Cross sections as low as 12 mb were measured with acceptable (50%) statistical accuracy. It also proved to be possible to separate events in which charged particles were emitted from the fusion residue from those in which only neutrons were evaporated. The method permits simultaneous measurement of incomplete fusion, break-up, scattering, and transfer reactions, and therefore fully exploits the opportunities presented by the very exotic beams that will be available from the new generation of radioactive beam facilities.

  16. A cellular automaton model for the rise of magma

    NASA Astrophysics Data System (ADS)

    Piegari, Ester; di Maio, Rosa; Milano, Leopoldo; Scandone, Roberto

    2010-05-01

    Eruptions of volcanoes are complex natural events highly variable in size and time. Over the last couple of decades, statistical analyses of erupted volume and repose time catalogues have been performed for a large number of volcanoes. The aim of such analyses is either to predict future eruptive events or to define physical models for improving our understanding of the volcanic processes that cause eruptions. In particular, for this latter purpose we study a statistical model of eruption triggering caused by the fracturing of the crust above a magma reservoir residing in the crust. When the fracturing reaches the reservoir, magma is allowed to ascend because of its buoyancy. It will be found in batches along the transport region and it will ascend as long as fractures are developed to its tip; when a path is opened to the surface, an eruption occurs involving all batches connected to the opening. We model the vertical section of a volcanic edifice by means of a two-dimensional grid and characterize the state of each cell of the grid by assigning the values of two dynamical variables: a time dependent variable e describing the status of the local stress and a time-dependent variable n describing the presence of magma. At first step of approximation, we treat the magma presence field n as a diffusing lattice gas, and, therefore, we assume its value to be either zero or one if the corresponding cell is empty or filled by magma, respectively. We study the probability distribution, P(V), of eruptions of volume V and the probability distribution, P(t), of inter-event time t and find that the model is able to reproduce, at least in a descriptive way, the essential statistical features of the activity of volcanoes. A key component of magma is the quantity of dissolved gas as it gives magma its explosive character, because the volume of gas expands as the pressure decreases on raising towards the surface. Then, to more accurately describe the rise of magma in a volcanic

  17. Revealing the magmas degassing below closed-conduit active volcanoes: noble gases in volcanic rocks versus fumarolic fluids at Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Mandarano, Michela; Paonita, Antonio; Martelli, Mauro; Viccaro, Marco; Nicotra, Eugenio; Millar, Ian L.

    2016-04-01

    With the aim to constrain the nature of magma currently feeding the fumarolic field of Vulcano, we measured the elemental and isotopic compositions of noble gases (He, Ne, and Ar) in olivine- and clinopyroxene-hosted fluid inclusions in high-K calcalcaline-shoshonitic and shoshonitic-potassic series so as to cover the entire volcanological history of Vulcano Island (Italy). The major and trace-element concentrations and the Sr- and Pb-isotope compositions for whole rocks were integrated with data obtained from the fluid inclusions. 3He/4He in fluid inclusions is within the range of 3.30 and 5.94 R/Ra, being lower than the value for the deep magmatic source expected for Vulcano Island (6.0-6.2 R/Ra). 3He/4He of the magmatic source is almost constant throughout the volcanic record of Vulcano. Integration of the He- and Sr-isotope systematics leads to the conclusion that a decrease in the He-isotope ratio of the rocks is mainly due to the assimilation of 10-25% of a crustal component similar to the Calabrian basement. 3He/4He shows a negative correlation with Sr isotopes except for the last-emitted Vulcanello latites (Punta del Roveto), which have high He- and Sr-isotope ratios. This anomaly has been attributed to a flushing process by fluids coming from the deepest reservoirs. Indeed, an input of deep magmatic volatiles with high 3He/4He values increases the He-isotope ratio without changing 87Sr/86Sr. A comparison of the He isotope ratios between fluid inclusions and fumarolic gases showed that only the basalts of La Sommata and the latites of Vulcanello have comparable values. Taking into account that the latites of Vulcanello relate to one of the most-recent eruptions at Vulcano (in the 17th century), we infer that that the most probable magma which actually feeds the fumarolic emissions is a latitic body ponding at about 3-3.5 km of depth and flushed by fluids coming from a deeper and basic magma.

  18. The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico

    USGS Publications Warehouse

    Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.

    1999-01-01

    Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.

  19. Magma flow pattern in dykes of the Azores revealed by anisotropy of magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Moreira, M. A.; Geoffroy, L.; Pozzi, J. P.

    2015-02-01

    The localization of magma melting areas at the lithosphere bottom in extensional volcanic domains is poorly understood. Large polygenetic volcanoes of long duration and their associated magma chambers suggest that melting at depth may be focused at specific points within the mantle. To validate the hypothesis that the magma feeding a mafic crust, comes from permanent localized crustal reservoirs, it is necessary to map the fossilized magma flow within the crustal planar intrusions. Using the AMS, we obtain magmatic flow vectors from 34 alkaline basaltic dykes from São Jorge, São Miguel and Santa Maria islands in the Azores Archipelago, a hot-spot related triple junction. The dykes contain titanomagnetite showing a wide spectrum of solid solution ranging from Ti-rich to Ti-poor compositions with vestiges of maghemitization. Most of the dykes exhibit a normal magnetic fabric. The orientation of the magnetic lineation k1 axis is more variable than that of the k3 axis, which is generally well grouped. The dykes of São Jorge and São Miguel show a predominance of subhorizontal magmatic flows. In Santa Maria the deduced flow pattern is less systematic changing from subhorizontal in the southern part of the island to oblique in north. These results suggest that the ascent of magma beneath the islands of Azores is predominantly over localized melting sources and then collected within shallow magma chambers. According to this concept, dykes in the upper levels of the crust propagate laterally away from these magma chambers thus feeding the lava flows observed at the surface.

  20. Extremely High Magma Emplacement Rates Recorded in the Golden Horn Batholith, WA

    NASA Astrophysics Data System (ADS)

    Eddy, M. P.; Bowring, S. A.; Tepper, J. H.; Miller, R. B.

    2015-12-01

    High SiO2 rhyolites emplaced during 'super-eruptions' demonstrate that large volumes of eruptible magma can exist in the upper crust. However, the timescale over which the magma reservoirs that source these eruptions are built remains controversial. Thermal models suggest that magma emplacement rates need to be > 0.005-0.01 km3/yr in order to accumulate enough eruptible magma to source a 'super-eruption'. Yet, these rates are higher than the time-averaged rates (< 0.001 km3/yr) for nearly all well-studied granitoid plutonic complexes. This disparity contradicts geologic evidence suggesting that the high SiO2 rhyolites emplaced during 'super-eruptions' are extracted from crystal rich magma chambers that should be preserved in the geologic record as granodioritic and granitic plutons. We quantify time-averaged magma emplacement rates for the upper crustal Golden Horn batholith, WA based on new geologic mapping and U-Pb zircon CA-IDTIMS geochronology. The batholith is exposed over 310 km3 and can be separated in the field into five intrusive units. High topography allows the 3D geometry of each phase to be constrained and their volumes range from < 100 km3 to > 400 km3. U-Pb zircon geochronology reveals that four of the five phases were assembled incrementally and distinct zircon populations from samples within these phases suggest that individual magmatic pulses had fully crystallized before the next arrived. However, six nearly identical U-Pb zircon dates from a > 400 km3 rapakivi granite show that this phase was built in ca. 50 kyr and that large portions may have been emplaced nearly simultaneously. The implied emplacement rate for this phase (≥ 0.008 km3/yr) is in agreement with those predicted for assembly of the upper crustal magma chambers that source 'super-eruptions', and it may provide a rare and unprecedented opportunity to study the processes that occur in such chambers.

  1. Ion chamber based neutron detectors

    DOEpatents

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  2. Mare basalt magma source region and mare basalt magma genesis

    SciTech Connect

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regions (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.

  3. Evidence for dynamic withdrawal from a layered magma body: The Topopah Spring Tuff, southwestern Nevada

    SciTech Connect

    Schuraytz, B. C.; Vogel, T. A.; Younker, L. W.

    1989-05-10

    The Topopah Spring Tuff is a classic example of a compositionally zoned ash flow sheet resulting from eruption of a compositionally zoned magma body. Geochemical and petrographic analyses of whole rock tuff samples indicate that the base of the ash flow sheet and the predominant volume of erupted material consist of crystal-poor high-silica rhyolite, with agradational transition into overlying crystal-rich quartz latite. However, major and trace element analyses of glassy pumice lumps and microprobe analyses of their silicate and oxide phenocrysts provide closer approximations of the chemical and thermal gradients within the magma body. The gradients inferred from these data indicate that the transition from high-silica rhyolitic to quartz latitic magma within the chamber was abrupt, rather than gradational, with a distinct liquid-liquid interface separating the contrasting magma layers. Compositionally and texturally distinct pumice lumps are present throughout the ash flow sheet. The degree of heterogeneity within and among pumice lumps increases with stratigraphic height, becoming most pronounced in the uppermost quartz latite, where the chemical variability among pumice lumps is as great as that of the entire ash flow sheet. These observations are consistent with fluid dynamic models in which the velocity field developed near the entrance region of the vent(s) results in simultaneous withdrawal of magma from all points of a continuously expanding lateral and vertical region within the chamber. The abrupt transition to chemically bimodal pumice types near the top of the ash flowsheet, dominated by those of quartz latitic composition, implies that the interface between the magma layers remained relatively stable until drawdown breached the interface and preferentially erupted hotter, more mafic magma along with lesser amounts of remaining high-silica rhyolitic magma.

  4. Prolonged, episodic evacuation of discrete magma bodies at the onset of the Huckleberry Ridge Tuff supereruption

    NASA Astrophysics Data System (ADS)

    Myers, M.; Wallace, P. J.; Wilson, C. J. N.; Morter, B. K.; Swallow, E. J.

    2015-12-01

    Integration of geochemical data with time breaks inferred from physical characteristics in early-erupted fall deposits shed light on the triggering mechanisms and initial episodic behavior1 of the Huckleberry Ridge Tuff (HRT: 2500 km3) supereruption2. In each layer sampled in the basal 2 m of fall deposits at Mount Everts, wide H2O variations (1.0-4.7 wt.%) in co-erupted, fully enclosed, quartz-hosted rhyolitic melt inclusions (MI) imply <1 day to a week of diffusive loss. These data indicate highly variable and surprisingly slow ascent conditions during the opening stages of the eruption. The second largest Quaternary eruption on Earth2 started hesitatingly, with magma slowly ascending to feed periodic explosive activity, with time breaks manifested by contemporaneous reworking in the fall deposits1. Importantly, this behavior requires low degrees of overpressure in the feeding magma body to permit such slow ascent4, and we thus propose that external rather than internal (i.e. chamber overpressure) controls were central to initiation of the HRT eruption. In addition, multi-variant cluster analysis on trace elements for all MI reveals that the fall deposit contains six statistically distinct host-quartz populations. CO2 vs. restored H2O data show that the first erupted, most evolved compositions crystallized deeper (150-200 MPa), whereas the later-erupted, least evolved compositions crystallized shallower (100-140 MPa). This diversity indicates that the quartz populations represent magma bodies that were spatially separated to some extent during crystallization and evolution from a chemically similar parent. However, trace element analysis of reentrants and co-erupted obsidian clasts, which represent the compositions of melts at the time of eruption, although clustered, have values that correspond to only three of the six quartz populations. Taken all together, we conclude that the HRT eruption onset saw several vents active simultaneously and sequentially

  5. Magma Genesis of Sakurajima, the Quaternary post- Aira caldera volcano, southern Kyushu Island, Japan

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Suzuki, J.; Yoshikawa, M.; Kobayashi, T.; Miki, D.; Takemura, K.

    2012-12-01

    Sakurajima volcano is the Quaternary post-caldera volcano of Aira caldera, which was caused by the eruption of huge amount of silicic pyroclastics, situated on Ryukyu arc, southern Kyushu Island, Japan. This volcano is quite active, so it can be considered that the preparation of next caldera-forming eruption with huge amount of silicic magma is proceeding. It is, therefore, expected that the investigation of magma genesis of Sakurajima volcano give us information for the mechanism generating huge amount of silicic magma, which cause the caldera formation. We analyzed major and trace elements with Sr, Nd and Pb isotopic compositions of volcanic rocks from Sakurajima volcano. We sampled (ol) - opx - cpx - pl andesite and dacite from almost all the volcanic units defined by Fukuyama and Ono (1981). In addition to Sakurajima samples, we also studied basaltic rocks erupted at pre-caldera stage of the Aira caldera to estimate the primary magma of Sakurajima volcano. Major and trace element variations generally show linear trends on the Harker diagrams, with the exception of P2O5 and TiO2. Based on the trend of P2O5 vs.SiO2, we divided studied samples low-P (P2O5 < 0.15 wt. %) and high-P (P2O5 > 0.15 wt. %) groups and these groups also display two distinct trends on TiO2-SiO2 diagram. The composition of trace elements shows typical island arc character as depletion of Nb and enrichments of Rb, K and Pb, suggesting addition of aqueous fluids to the mantle wedge. The Zr and Nb concentrations make a liner trend (Zr/Nb = 27) and this trend across from tend of MORB (Zr/Nb = 35) to that of crustal materials (Zr/Nb=17). The Sr, Nd and Pb isotopic compositions broadly plot to on the mixing curve connecting MORB-type mantle and sediments of the Philippine Sea Plate, indicating that the primary magma was generated by partial melting of MORB-type mantle wedge, which was hydrated with fluids derived from the subducted Philippine Sea sediments. But we found that our data plot apart

  6. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    PubMed

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  7. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-01

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  8. Simulation of pre-eruptive magma migration and accumulation based on hydrokinetic modeling of magma plumbing system beneath Sakurajima Volcano (Japan)

    NASA Astrophysics Data System (ADS)

    Minami, S.; Iguchi, M.; Mikada, H.; Goto, T.; Takekawa, J.

    2012-12-01

    We numerically simulated a transient magma accumulating process in the magma plumbing system beneath an active Showa crater of Sakurajima Volcano (Japan). Our objective is to find dominant geophysical parameters in the accumulating process before eruption. Geodetic observations showed that a periodic inflation and deflation event had lasted 30 hours before an explosive eruption. Our model consists of shallower gas and deeper magma reservoirs connected by a volcanic conduit as inferred from the past geophysical observations. A pressure difference between the two reservoirs forces the magma to move from the deeper up to the shallower reservoir. We assumed a constant rate of magma supply to the deeper reservoir as an input to the magma plumbing system. In a cylindrical volcanic conduit, a viscous multiphase magma flow is demonstrated by 1-dimentional transient flow simulations with the effects of the relative motion of gas in magma, the exsolution of volatiles in melt, the crystallization of microlites in groundmass, the change in height of magma head, etc. As a result, we found that the radius of the volcanic conduit, the magma supply rate and the compressibility of the deeper reservoir are key parameters to reproduce the observed volumetric variations before the eruption. These three parameters are estimated about 13 m, 3.5 m3/s and 10 GPa, respectively by means of a least squares method. Finally, the inflation and deflation event observed before the eruption are well reproduced. We would like to propose our numerical model as one of quantitative simulation methods that could be applied to the future eruptive events not only at Sakurajima Volcano but for the other volcanoes. Some of parameters of the magma plumbing system need to be fixed as in this study should be discussed in terms of the sensitivity in the analysis at the time of the application.

  9. Revealing magma degassing below closed-conduit active volcanoes: Geochemical features of volcanic rocks versus fumarolic fluids at Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Mandarano, Michela; Paonita, Antonio; Martelli, Mauro; Viccaro, Marco; Nicotra, Eugenio; Millar, Ian L.

    2016-04-01

    The elemental and isotopic compositions of noble gases (He, Ne, and Ar) in olivine- and clinopyroxene-hosted fluid inclusions have been measured for rocks at various degrees of evolution and belonging to high-K calcalkaline-shoshonitic and shoshonitic-potassic series in order to cover the entire volcanological history of Vulcano Island (Italy). The major- and trace-element concentrations and the Sr- and Pb-isotope compositions for whole rocks were integrated with data obtained from the fluid inclusions. 3He/4He in fluid inclusions is within the range of 3.30 and 5.94 R/Ra, being lower than the theoretical value for the deep magmatic source expected for Vulcano Island (6.0-6.2 R/Ra). 3He/4He of the magmatic source is almost constant throughout the volcanic history of Vulcano. Integration of the He- and Sr-isotope systematics leads to the conclusion that a decrease in the He-isotope ratio of the rocks is mainly due to the assimilation of 10-25% of a crustal component similar to the Calabrian basement. 3He/4He shows a negative correlation with Sr isotopes except for the last-erupted Vulcanello latites (Punta del Roveto), which have anomalously high He isotope ratios. This anomaly has been attributed to a flushing process by fluids coming from the deepest reservoirs, since an input of deep magmatic volatiles with high 3He/4He values increases the He-isotope ratio without changing 87Sr/86Sr. A comparison of the He-isotope ratios between fluid inclusions and fumarolic gases shows that only the basalts of La Sommata and the latites of Vulcanello have comparable values. Taking into account that the latites of Vulcanello relate to one of the most-recent eruptions at Vulcano (in the 17th century), we infer that the most probable magma which actually feeds the fumarolic emissions is a latitic body that ponded at about 3-3.5 km of depth and is flushed by fluids coming from a deeper and basic magma.

  10. Disclosing Multiple Magma Degassing Sources Offers Unique Insights of What's Behind the Campi Flegrei Caldera Unrest

    NASA Astrophysics Data System (ADS)

    Moretti, R.; Civetta, L.; Orsi, G.; Arienzo, I.; D'Antonio, M.; Di Renzo, V.

    2013-12-01

    The definition of the structure and evolution of the magmatic system of Campi Flegrei caldera (CFc), Southern Italy, has been a fundamental tool for the assessment of the short-term volcanic hazard. The ensemble of geophysical and petrologic data show that the CFc magmatic system has been -and still is- characterized by two major reservoirs at different depths. From the deep one (around 8 km), less evolved magmas crystallize and degas, supplying fluids and magmas to the shallow (3-4 km) reservoirs. A thorough reconstruction of processes occurring in magma chamber/s prior and/or during the CFc eruptions has shown that magmas entering shallow reservoirs mixed with resident and crystallized batches. Also the 1982-85 unrest episode has been related to a magma intrusion of 2.1 x 10^7 m^3 at 3-4 km depth, on the basis of geophysical data (ground deformation, gravimetry, seismic imaging) and their interpretation. Thermodynamic evaluation of magma properties, at the time of emplacement, suggests for such an intrusion a bulk density of 2.000 kg/m^3 . Such a value testifies the high amount of exsolved volatiles within the system. The available record of geochemical and isotopic data on surface fumaroles, coupled with melt inclusion data, has already shown that dual (deep and shallow) magma degassing from such two reservoirs, as well as their interaction with the hydrothermal system, allows explaining the relevant fluctuations observed at crater fumaroles after the 1982-85 magma intrusion. An important role was played by the rapid crystallization (around 30 years) of the shallow magma, such that in the recent years gas discharges should be fuelled mostly by the deep magma. Such a process is well recorded in the fumarolic gas composition of the last ~10 years, but has to be reconciled with the unrest dynamics which took place after year 2000, characterized by a slow but continuous ground uplift. All geochemical indicators (major species and noble gases) point to three possible

  11. Interpretation of open system petrogenetic processes: Phase equilibria constraints on magma evolution

    NASA Astrophysics Data System (ADS)

    Defant, Marc J.; Nielsen, Roger L.

    1990-01-01

    We have used a computer model (TRACES) to simulate low pressure differentiation of natural basaltic magmas in an attempt to investigate the chemical dynamics of open system magmatic processes. Our results, in the form of simulated liquid lines of descent and the calculated equilibrium mineralogy, were determined for perfect fractional crystallization; fractionation paired with recharge and eruption (PRF); fractionation paired with assimilation (AFC); and fractionation paired with recharge, eruption, and assimilation (FEAR). These simulations were calculated in an attempt to assess the effects of combinations of petrogenetic processes on major and trace element evolution of natural systems and to test techniques that have been used to decipher the relative roles of these processes. If the results of PRF calculations are interpreted in terms of a mass balance based fractionation model (e.g., Bryan et al., 1969), it is possible to generate low residuals even if one assumes that fractional crystallization was the only active process. In effect, the chemical consequences of recharge are invisible to mass balance models. Pearce element ratio analyses, however, can effectively discern the effects of PRF versus simple fractionation. The fractionating mineral proportions, and therefore, bulk distribution coefficients ( D¯) of a differentiating system are dependent on the recharge or assimilation rate. Comparison of the results of simulations assuming constant D¯ with the results calculated by TRACES show that the steady state liquid concentrations of some elements can differ by a factor of 2 to 5. If the PRF simulation is periodic, with episodes of mixing separated by intervals of fractionation, parallel liquidus mineral control lines are produced. Most of these control lines do not project back to the parental composition. This must be an important consideration when attempting to calculate a potential parental magma for any natural suite where magma chamber recharge has

  12. Death Valley bright spot: a midcrustal magma body in the southern Great Basin, California

    SciTech Connect

    de Voogd, B.; Serpa, L.; Brown, L.; Hauser, E.; Kaufman, S.; Oliver, J.; Troxel, B.W.; Willemin, J.; Wright, L.A.

    1986-01-01

    A previously unrecognized midcrustal magma body may have been detected by COCORP deep seismic reflection profiles in the Death Valley region of the southern Great Basin. High-amplitude, relatively broad-band reflections at 6 s (15 km) are attributed to partially molten material within a subhorizontal intrusion. This bright spot extends laterally at least 15 km beneath central Death Valley. A moderately dipping normal fault can be traced from the inferred magma chamber upward to a 690,000-yr-old basaltic cinder cone. The fault zone is inferred to have been a magma conduit during the formation of the cinder cone. Vertical variations in crustal reflection character suggest that the Death Valley magma body may have been emplaced along a zone of decoupling that separates a faulted brittle upper crust from a more ductile and/or intruded lower crust. The Death Valley bright spot is similar to reflections recorded by COCORP in 1977 in the Rio Grande rift, where both geophysical and geodetic evidence support the inference of a tabular magma chamber at 20-km depth.

  13. A simple analytical solution for the transient dike volume change and dike velocity for the chamber - dike coupled problem

    NASA Astrophysics Data System (ADS)

    Rivalta, Eleonora

    2010-05-01

    In the past decades volcano seismologists and geodesists have collected many observations on the transient regime of dike emplacement that current models of dike propagation do not explain. The cause of this failure has been already identified by several authors in the common assumption that magma chambers can maintain their pressure constant while feeding dikes. This assumption collides e.g. with the convex upward shape of the volume evolution during the 1997 dike intrusion at KIlauea, as noted by Owen et al. [2000] and Segall et al. [2001]. Segall et al. [2001] described the flow of the magma from a chamber to a dike with an ordinary differential equation for the unknown pressures of chamber and dike. The feeding of dikes is then associated to a pressure drop in the magma chamber, controlled by magma bulk modulus and elastic compressibility of surrounding rock. Here I present a model developing on that intuition, which makes use of mass conservation (instead of volume conservation) as a constraint for pressure, as magma flows from the chamber to the dike. This ansatz allows to solve the problem analytically. The model predicts that chamber and intrusion volume change exponentially with time as V (t) = V ∞[1 - exp(-t-?)]. Intrusion velocity is found to change as v = v0 exp(-t-?), where v0 is the initial dike velocity. The asymptotic volume V ∞ and the time scale ? can be expressed in terms of rock, magma, chamber and dike parameters and of the initial pressure conditions. Fitting volume or velocity curves can provide independent constraints on parameters difficult to retrieve otherwise. I validate my model with data from the 2000 Miyakejima intrusion (Japan), the 1978 Krafla event (Iceland) and from some intrusions following the 2005 event in Afar (Ethiopia). The fit between model and observations is excellent. This paper confirms and extends the results of a previous study [Rivalta and Segall , 2008] that explained the volume imbalance found during some dike

  14. Reconstructing Magma Degassing and Fragmentation: The 1060 CE Plinian Eruption of Medicine Lake Volcano, California

    NASA Astrophysics Data System (ADS)

    Giachetti, T.; Gonnermann, H. M.; Crozier, J.

    2015-12-01

    Magma fragmentation during explosive volcanic eruptions occurs when the bubble overpressure exceeds some threshold. Because bubble coalescence and ensuing permeable outgassing allow partial release of bubble overpressure, high magma permeabil
ity is thought to adversely affect magma fragmentation and the ability of magma to erupt explosively. We used the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California, to show that this is not necessarily the case. We performed numerical modeling of eruptive magma ascent and bubble growth to predict the development of magma porosity, permeability, and the built-up of gas pressure inside bubbles. We explicitly took into account permeable outgassing in the model. We used the measured porosity and permeability of the Plinian pyroclasts, together with percolation modeling, to reconstruct the conditions for magma degassing and fragmentation. Our results show that the porosity and permeability of pyroclasts coincide with the conditions required for fragmentation of the erupting magma. The onset of fragmentation occurs when the decompression rate reaches about 2 MPa.s-1, corresponding to a constant melt viscosity of ˜107 Pa.s and a magma porosity of approximately 0.75, conditions met for a mass discharge rate of about 107 kg.s-1, a cross sectional area of about 2,000 m2, and at a depth of approximately 1 km. Pyroclasts formed from magma that fragmented over a depth range of several tens of meters, probably reflecting some degree of lateral variability in magma porosity in the conduit. The model also indicates that, even if the magma was highly permeable at the onset of fragmentation, permeable outgassing did not affect fragmentation. The transition to an effusive activity and the emission of obsidian after the Plinian phase of the Glass Mountain eruption is most probably due to a decrease in decompression rate.

  15. Open-system degassing of sulfur from Krakatau 1883 magma

    NASA Astrophysics Data System (ADS)

    Mandeville, Charles W.; Sasaki, Akira; Saito, Genji; Faure, Kevin; King, Robert; Hauri, Erik

    1998-08-01

    We present the first sulfur and oxygen isotopic data for tephra from the catastrophic 1883 eruption of Krakatau. Sulfur isotopic ratios in unaltered Krakatau tephra erupted August 26-27, 1883 are markedly enriched in 34S relative to mantle sulfur. High δ34S values of +6.3 to +16.4‰ can best be explained by open-system or multi-stage degassing of SO 2 from the oxidized rhyodacitic and gray dacitic magmas with 34S enrichment of SO 2-4 remaining in the melt. Lower whole-rock δ34S values of +2.6‰ and +4.0‰ in two oxidized gray dacitic samples indicate more primitive subarc mantle sulfur in the 1883 magma chamber. Initial δ34S of the rhyodacitic magma was probably in the +1.5‰ to +4.0‰ range and similar to δ34S values measured in arc volcanic rocks from the Mariana Arc.

  16. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  17. Modeling magma flow in volcanic conduit with non-equilibrium crystallization

    NASA Astrophysics Data System (ADS)

    Yulia, Tsvetkova

    2010-05-01

    Modeling magma flow in volcanic conduit including with non -equilibrium crystallization There is a set of models of magma flow in volcanic conduits which predicts oscillations in magma discharge during extrusion of lava domes. These models neglect heating of surrounding rocks and use 1D approximation of the flow in the conduit. Here magma flow is investigated with an account of heat exchange between surrounding rocks and magma and different dependences viscosity on temperature and crystal concentration. Stick-slip conditions were applied at the wall. The flow is assumed to be quasi-static and quasi 1D. Only vertical component of velocity vector is present, thus, we do not consider horizontal momentum balance. At the top of the conduit the pressure is assumed to be fixed, chamber pressure changes according with magma influx and outflux. First set of simulation was made for the viscosity that depends on cross-section average crystal concentration and parabolic velocity profile. In earlier models that account for crystal growth kinetics the temperature was allowed to change only due to the release of latent heat of crystallization. Heat transfer leads to cooling of the outer parts of the conduit leading to high crystal contents and high magma viscosities. Changes in viscosity result in changes in discharge rate. For the non-isothermal case there is no motion during most part of the cycle and a portion of magma solidifies at the top of the conduit forming a plug. During repose period chamber pressure is growing due to influx of fresh magma, and magma discharge rate starts to increase. Influx of hot magma into the conduit leads to decrease in friction resulting in a jump in discharge rate that lead to depressurization of magma chamber. Discharge rate decreases and magma solidifies again. For isothermal model with the same parameters discharge rate monotonically tends to the value of Qin. Simulation reveal that crystal content changes significantly across the conduit

  18. The 21,700 yr b.p. Lower Toluca Pumice Plinian Eruption of Nevado de Toluca Volcano (Mexico): Evidences of Magma Mixing Process as Triggering Mechanism.

    NASA Astrophysics Data System (ADS)

    Capra, L.; Arce, J.; Macias, J.

    2006-05-01

    Approximately 21,700 yr B.P., after a period of quiescence of 4800 yr, Nevado de Toluca volcano erupted, producing the Lower Toluca Pumice deposit. The activity generated a 24-km-high Plinian column that lasted ~11 h and dispersed 2.3 km3 (0.8 km3 dense rock equivalent) of tephra toward the NE, blanketing the Lerma basin, an area occupied today by the city of Toluca, with up to 5 cm of ash. Subsequent eruptive pulses were sub-Plinian in style, accompanied by phreatomagmatic explosions that emplaced surge deposits. Finally, the column collapsed toward the NE with the emplacement of a pumice flow deposit. The high vesicularity of the pumice from the basal Plinian layer, up to 83% by volume, indicates that exsolution was dominantly magmatic, and that pressurization of the magma chamber was probably due to a magma mixing process. Evidence for this includes the compositional range of juvenile products (from 55 to 65 wt% SiO2), as well as the presence of two types of plagioclase, one in equilibrium and the other one with disequilibrium textures and reverse zoning. This suggests input of an andesitic liquid into the dacitic magma chamber. Based on the eruptive record, the most likely future eruptive activity at Nevado de Toluca volcano will be Plinian. Although quiet for more than 3250 yr, Plinian activity could occur after a long period of quiescence, and it could represent a hazard for the entire Toluca basin, where more than one million people live today.

  19. Magma, Magma, Quite Contaminated, How Does Your Garnet Grow?

    NASA Astrophysics Data System (ADS)

    Lackey, J.; Romero, G. A.; Valley, J. W.

    2010-12-01

    Garnet in granitoid rocks has drawn considerable attention and discussion because of uncertainty surrounding its origins. For example, enrichment of Al, resulting in peraluminous magmas capable of crystallizing garnets, may be controlled by contamination or extreme differentiation; Mn enrichment in aplitic and pegmatitic phases suggests garnet may appear only at relatively low, near solidus temperatures. Peritectic garnet, grown by magma-wallrock reaction, may be confused with magmatic garnet, and xenocrysts of metamorphic garnet, entrained from wallrocks, further complicate interpretation. We address these uncertainties with the SIMS analysis of oxygen isotope variations in single garnet crystals and crystal populations in granitic rocks. Values of δ18O were measured on a CAMECA IMS 1280 using a 10 µm spot size and typical precision of ± 0.3 at 2 standard deviations. Analyses were corrected for instrumental mass fractionation according to the newly solved bias correction protocol for garnet (Page et al. 2010). Samples were collected from the Devonian Togus and Hallowell plutons in the south central Maine. These plutons are an ideal site for this study because they are peraluminous and contain pervasive garnet, they locally intrude pelitic, garnet-bearing wallrocks, and they have field evidence of xenolith entrainment and peritectic reaction of xenoliths and the host magmas. Garnet δ18O values of 7.5-10.5‰ show a large range of crustal input to host magmas. Crystal-to-crystal variation of δ18O in hand-samples varies up to 2‰, confirming that garnet populations have complex origins. Traverses (20-50 spots) of single crystals show that δ18O varies up to 1‰, with rims of crystals (outer 50-100µm) being up to 1‰ higher or lower than interiors. Increases of δ18O are interpreted as late-stage contamination, whereas lower δ18O rims, with correspondence to decreasing Fe/Mg ratio, suggest growth during falling magma temperature (50-100°C). Some garnet

  20. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  1. Partially molten magma ocean model

    SciTech Connect

    Shirley, D.N.

    1983-02-15

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model.

  2. Eruption of Deep Mushy Magma from the Searchlight Magma System, Southern Nevada (USA): a Crystal Size Distribution and Geochemical Analysis

    NASA Astrophysics Data System (ADS)

    Bazar, D.; Miller, J.; Miller, C.; Dodge, M.; Hodge, K.; Faulds, J.

    2006-12-01

    differ from straight CSD's in the main upper Searchlight quartz monzonite unit. Geochemical comparisons between all intrusive units indicate that the porphyries that intrude the upper unit and the trachydacite lava flows are essentially identical geochemically, in agreement with the CSD's. The porphyries and lava flows are also similar geochemically to the lower cumulate unit (Sr-rich, weak-to-absent Eu anomalies). However the trachydacites are slightly more felsic and have higher incompatible element abundances (Rb, Th) and slightly lower total REEs. The CSD's and geochemical data establish clear relationships between the erupted rocks and specific intrusive units of the pluton and suggest that the trachydacites are eruptions of partially accumulative, crystal- rich portions of the active chamber beneath the mostly solidified and slightly older roof quartz monzonite unit. These data are also consistent with the observation that the trachydacite dikes and pods do not cut the lower unit (despite their age overlap) or the younger middle granite unit. ref: Bachl, CA, Miller, CF, Miller JS, Faulds JE (2001) Geol Soc Am Bull, 113:1213-1228

  3. Evidence for variations in magma production along oceanic spreading centers - A critical appraisal

    NASA Technical Reports Server (NTRS)

    Karson, J. A.; Elthon, D.

    1987-01-01

    Recent geologic, geophysical, and geochemical studies of the oceanic lithosphere near fracture zones have resulted in the proposal that the 'magma budget,' defined as the amount of magma delivered to magma chambers or conduits beneath a spreading center for a given amount of spreading, decreases as fracture zones are approached. Seismic reflection and refraction studies indicate that the crust becomes anomalously thin near fracture zones, but reference must be made to the boundary between residual upper mantle peridotites and overlying cumulate rocks in order to assess potential variations in the magma budget. The position of this interface, however, generally is not constrained by geophysical studies. Geochemical variations in basaltic glasses collected near fracture zones are consistent with a decrease in partial melting as fracture zones are approached, but they could also be produced by variations in open-system magmatic processes with no change in the extent of partial melting. Although a decrease in the magma budget as fracture zones are approached is consistent with these data, so are alternative models that incorporate a constant magma budget.

  4. Mineralogical evidence for lamproite magma mixing and storage at mantle depths: Socovos fault lamproites, SE Spain

    NASA Astrophysics Data System (ADS)

    Cambeses, A.; Garcia-Casco, A.; Scarrow, J. H.; Montero, P.; Pérez-Valera, L. A.; Bea, F.

    2016-12-01

    Detailed textural and mineral chemistry characterisation of lamproites from the Socovos fault zone, SE Spain Neogene Volcanic Province (NVP) combining X-ray element maps and LA-ICP-MS spot analyses has provided valuable information about mantle depth ultrapotassic magma mixing processes. Despite having similar whole-rock compositions, rocks emplaced in the Socovos fault are mineralogically varied: including type-A olivine-phlogopite lamproites; and type-B clinopyroxene-phlogopite lamproites. The Ol-lacking type-B predates Ol-bearing type-A by c. 2 million years. We propose that the mineralogical variations, which are representative of lamproites in the NVP as a whole, indicate mantle source heterogeneities. Major and trace element compositions of mineral phases suggest both metasomatised harzburgite and veined pyroxenite sources that were most likely closely spatially related. Thin section scale textural and compositional variations in mineral phases reveal heterogeneous mantle- and primitive magma-derived crystals. The variety of crystals points to interaction and mingling-mixing of ultrapotassic magma batches at mantle depths prior crustal emplacement. The mixing apparently occurred in a mantle melting zone with a channelised flow regime and localised magma chambers-reservoirs. Magma interaction was interrupted when the Socovos and other lithosphere-scale faults tore down to the mantle source region, triggering rapid ascent of the heterogeneous lamproite magma.

  5. A cellular automaton to model magma/crust interactions and volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; Shcherbakov, R.

    2012-12-01

    Volcanic eruptions are the outcomes of complex dynamical interactions between magma and the Earth's crust and are characterized by non-trivial temporal correlations. It is of major importance to study the processes involved in magma ascent within the crust which can lead to a better under-standing of the failure mechanism that leads to an eruption. In a previous study, we showed that the interevent time distributions of volcanic eruptions were characterized by a universal behavior, independent of the type of volcanism and geographical location. The distribution for interevent times between successive eruptions were shown to deviate from the simple Poisson statistics. Instead, occurrence of volcanic eruptions can be modeled by a log-normal distribution. In the present work, we investigate the interactions between the magma and the host rock at the microscopic level using a cellular automaton approach. We consider a two-dimensional system on a rectangular lattice consisting of the magma chamber and the overlying crust. The magma particles coming from the chamber rise through the crust by damaging it to its failure point, and eventually reach the surface resulting in an eruption. While not damaged by magma, the crust can heal with time and fractures will close. The amount of damage that a particle can afflict on a crustal site and the healing capability of the crust are two model parameters and mimic various crustal settings. We consider two different definitions of the eruption sizes: i) only the magma in the vertical fractures directly under the eruption point is considered to define the eruption; ii) the entire fracture network (vertical and horizontal) filled with magma and connected to the eruption point is considered to define the eruption. In order to investigate further what controls the explosivity of eruptions, we introduce a binary system to model the magma and dissolved gases: magma and dissolved gases which are characterized by dierent damage capacities

  6. ARE the Merensky Reef and Massive Chromitites of the Bushveld Complex Formed from Crystal Slurries or Superheated Magmas?

    NASA Astrophysics Data System (ADS)

    Latypov, R.; Chistyakova, S.

    2014-12-01

    Many recent models attribute the origin of the Merensky Reef and massive chromitites of the Bushveld Complex, South Africa to replenishment of a magma chamber by phenocryst-rich magmas (crystal slurries). In particular, the emplacement of chromite-rich slurries from the staging chamber is currently thought to be responsible for the formation of massive chromitites of the Bushveld Complex. There are, however, first-order observations that are not compatible with this popular idea. One of the key features of the Merensky Reef and almost all layers of massive chromitites is their close association with so-called potholes, the circular to elliptical depressions with gently to steeply inclined sidewalls that are transgressive relative to their footwall rocks. Portions of magmatic stratigraphy are totally absent from the footwall rocks in pothole areas. Here we summarize abundant field evidence from several localities of the Eastern and Western Bushveld Complex that provide strong support to an idea that these portions of footwall rocks were thermally and partly mechanically eroded away by new magma pulses refilling the chamber. To be able to erode the footwall rocks so effectively, the new magmas must have been superheated upon emplacement into the chamber (no phenocrysts in the magmas). Otherwise the phenocrysts will immediately settle to the floor of the chamber to form a blanket protecting footwall rocks from the thermal erosion. The geological observations thus suggest that the origin of the Merensky Reef and massive chromitites must be tackled in the frame of the models that involve the emplacement of superheated, rather than phenocryst-laden magmas. The important lesson to be drawn from this study is that the field observations are still one of the primary tools for the rigorous testing of our hypotheses in modern igneous/ore petrology.

  7. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.

    PubMed

    Patil, Sunil A; Surakasi, Venkata Prasad; Koul, Sandeep; Ijmulwar, Shrikant; Vivek, Amar; Shouche, Y S; Kapadnis, B P

    2009-11-01

    Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m(2), respectively, at 100 ohms external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m(2). The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of beta-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), alpha-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and gamma-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community.

  8. Dike injection and magma mixing in Kenya rift volcanoes

    NASA Astrophysics Data System (ADS)

    Anthony, E. Y.; Espejel, V.; Biggs, J.

    2009-12-01

    A nexus of volcanoes in the rift graben at approximately the latitude of Nairobi consist of central vent trachyte, phonolite, and peralkaline rhyolite and cinder cone and fissure-fed flows of basalt to benmoreite. The volcanoes are referred to as the Central Kenya Peralkaline Province (CKPP, Macdonald and Scaillet, 2006, Lithos 91, 59-73) and formed by a combination of processes including fractional crystallization, magma mixing, and volatile transport (Ren et al., 2006, Lithos 91, 109-124; Macdonald et al., 2008, JPet 49, 1515-1547). This presentation focuses on magma mixing for trachytes and phonolites for Suswa rocks, which are the southernmost part of the CKPP. We also explore the contribution of magma process studies to the interpretation of recent geodetic data, which indicate inflation/deflation of up to 21 cm for Kenyan volcanoes from 1997 to present (Biggs et al., 2009, Geology, in press). Incontrovertible evidence for magma mixing is found in field evidence, where a basaltic trachyandesite ash horizon is found interbedded with syncaldera trachyte (Skilling, 1993, J. Geol. Society London 150, 885-896), hand-specimen and thin-section petrography, and disequilibrium mineral chemistry. Precaldera lavas contain a homogeneous group of anorthoclase crystals with An content 6% or less. Syncaldera samples contain this same group and two other populations: polysynthetic twinned labradorite and andesine and anorthoclase with An content of 17%. Textures for all three groups indicate disequilibrium. Postcaldera flows contain the high and low An anorthoclase populations but lack the polysynthetic twinned labradorite and andesine. These observations suggest a model of injection of mafic magmas via diking into shallow trachtytic magma systems. Recent geodetic studies of dike injection and subsequent seismic/volcanic activity in both Ethiopia and Lengai point to the ongoing importance of these processes to rift evolution in East Africa.

  9. Shallow magma targets in the western US

    SciTech Connect

    Hardee, H.C.

    1984-10-01

    Within the next few years a hole will be drilled into a shallow magma body in the western US for the purpose of evaluating the engineering feasibility of magma energy. This paper examines potential drilling sites for these engineering feasibility experiments. Target sites high on the list are ones that currently exhibit good geophysical and geological data for shallow magma and also have reasonable operational requirements. Top ranked sites for the first magma energy well are Long Valley, CA, and Coso/Indian Wells, CA. Kilauea, HI, also in the top group, is an attractive site for some limited field experiments. A number of additional sites offer promise as eventual magma energy sites, but sparsity of geophysical data presently prevents these sites from being considered for the first magma energy well.

  10. Geochemical characteristics of hydrous basaltic magmas due to assimilation and fractional crystallization: the Ikoma gabbroic complex, southwest Japan

    NASA Astrophysics Data System (ADS)

    Koizumi, N.; Okudaira, T.; Ogawa, D.; Yamashita, K.; Suda, Y.

    2016-10-01

    To clarify the processes that occur in hydrous basaltic magma chambers, we have undertaken detailed petrological and geochemical analyses of mafic and intermediate rocks from the Ikoma gabbroic complex, southwest Japan. The complex consists mainly of hornblende gabbros, hornblende gabbronorites, and hornblende leucogabbros. The hornblende leucogabbros are characterized by low TiO2 and high CaO contents, whereas the hornblende gabbronorites have high TiO2 and low CaO contents. The initial 87Sr/86Sr ratios (SrI) of the hornblende gabbronorites and hornblende gabbros are higher than those of the hornblende leucogabbros and plagioclase, and they may have resulted from a higher degree of assimilation of metasediments. The geochemical features of the hornblende leucogabbros and hornblende gabbronorites can be explained by accumulation of plagioclase and ilmenite, respectively, in a hybrid magma that formed by chemical interaction between mafic magma and metasediment, whereas the hornblende gabbros were produced by a high degree of crustal assimilation and fractional crystallization of this hybrid magma. As a result of the density differences between crystals and melt, the Ikoma gabbroic rocks formed by the accumulation of plagioclase in the middle of the magma chamber and by the accumulation of ilmenite in the bottom of the chamber. Taking into account the subsequent assimilation and fractional crystallization, our observations suggest an enriched mantle (SrI = ~0.7071) as the source material for the Ikoma gabbros.

  11. Strontium Isotopes and Magma Dynamics

    NASA Astrophysics Data System (ADS)

    Wolff, J. A.; Ellis, B. S.; Ramos, F. C.

    2010-12-01

    Over the past decade, it has become clear that volcanic rocks commonly exhibit internal heterogeneity in radiogenic isotopes. In particular, strontium isotopic disequilibrium between co-exisitng phenocrysts, between phenocrysts and matrix, and isotopic zoning within single crystals has been demonstrated in basalts, andesites, dacites, rhyolites and alkaline magmas; in some cases, the range in 87Sr/86Sr among different components in the same rock may equal or exceed the bulk-rock range seen in the entire formation, volcanic center, or province. High-temperature “Snake River type” rhyolites appear to be an exception. Despite the occurrence of Snake River Plain rhyolites in a region of isotopically highly variable crust and mantle, and significant differences from rhyolite unit to rhyolite unit, internally they are near-homogeneous in 87Sr/86Sr. Little or no zoning is found within feldspar phenocrysts, and feldspars within a single unit are tightly grouped. Some units show minor contrasts between phenocrysts and matrix. High temperature rhyolitic magmas possess a unique combination of temperature and melt viscosity. Although they are typically 200°C hotter than common rhyolites, the effect on visocity is offset by lower water contents (~2 wt%), hence their melt viscosities are in the same range as common, water-rich, cool rhyolites (105 - 106 Pa s). Yet magmatic temperatures are in the same range as basaltic andesites and andesites, consequently cation diffusion rates in feldspar are 2 - 3 orders of magnitude greater than in common rhyolites. We hypothesize that this combination of characteristics promotes Sr isotopic homogeneity: high melt viscosities tend to inhibit crystal transfer and mixing of isotopically distinct components on timescales shorter than those required for diffusive homogenization of Sr between phenocrysts and matrix (100 - 1000 years). This is not the case for most magmas, in which either crystal transfer is rapid (<< 100 years) due to low

  12. Activated carbons from end-products of tree nut and tree fruit production as sorbents for removing methyl bromide in ventilation effluent following postharvest chamber fumigation.

    PubMed

    Hall, Wiley A; Bellamy, David E; Walse, Spencer S

    2015-04-01

    End-products of tree nuts and tree fruits grown in California, USA were evaluated for the ability to remove methyl bromide (MB) from ventilation effluent following postharvest chamber fumigation. Activated carbon sorbents from walnut and almond shells as well as peach and prune pits were prepared using different methods of pyrolysis, activation, and quenching. Each source and preparation was evaluated for yield from starting material (%, m/m) and performance on tests where MB-containing airstreams were directed through a columnar bed of the activated carbon in an experimental apparatus, termed a parallel adsorbent column tester, which was constructed as a scaled-down model of a chamber ventilation system. We report the number of doses needed to first observe the breakthrough of MB downstream of the bed and the capacity of the activated carbon for MB (%, m/m) based on a fractional percentage of MB mass sorbed at breakthrough relative to mass of the bed prior to testing. Results were based on a novel application of solid-phase microextraction with time-weighted averaging sampling of MB concentration in airstreams, which was quantitative across the range of fumigation-relevant conditions and statistically unaffected by relative humidity. Activated carbons from prune pits, prepared either by steam activation or carbon dioxide activation coupled to water quenching, received the greatest number of doses prior to breakthrough and had the highest capacity, approximately 12-14%, outperforming a commercially marketed activated carbon derived from coconut shells. Experimental evidence is presented that links discrepancy in performance to the relative potential for activated carbons to preferentially sorb water vapor relative to MB.

  13. Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body

    NASA Technical Reports Server (NTRS)

    Mcsween, H. Y., Jr.; Jarosewich, E.

    1983-01-01

    The EETA 79001 achondrite consists of two distinct igneous lithologies joined along a planar, non-brecciated contact. Both are basaltic rocks composed primarily of pigeonite, augite, and maskelynite, but one contains zoned megacrysts of olivine, orthopyroxene, and chromite that represent disaggregated xenoliths of harzburzite. Both lithologies probably formed from successive volcanic flows or multiple injections of magma into a small, shallow chamber. Many similarities between the two virtually synchronous magmas suggest that they are related. Possible mechanisms to explain their differences involve varying degrees of assimilation, fractionation from similar parental magmas, or partial melting of a similar source peridotite; of these, assimilation of the observed megacryst assemblage seems most plausible. However, some isotopic contamination may be required in any of these petrogenetic models. The meteorite has suffered extensive shock metamorphism and localized melting during a large impact event that probably excavated and liberated it from its parent body.

  14. Magmas and reservoirs beneath the Rabaul caldera (Papua New Guinea)

    NASA Astrophysics Data System (ADS)

    Bouvet de Maisonneuve, C.; Costa Rodriguez, F.; Huber, C.

    2013-12-01

    trace element geochemistry, volatile contents, and the comparison of successive eruptions since 1400 y BP to address the question of whether another potentially caldera-forming magma is presently brewing beneath Rabaul. In addition, we apply kinetic modeling of olivine and plagioclase zoning to the recently erupted products to address the prolonged period of seismic and deformational precursory activity. We estimate that at least 20-35 wt% basalt has mixed with the resident silicic magma at time scales that coincide with the main period of unrest (1971 to 1985).

  15. The Relationship Between Amphibole Cumulates and Adakite Magma

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.

    2009-12-01

    fractionation is needed. New 39Ar/40Ar ages (~25-26 Ma) for these andesites show that they are among the earliest products of the Central American Arc in Panama. During this initial stage of activity, the lithospheric thickness of the arc may have been insufficient to stabilize garnet and the magmas were dominated by amphibole fractionation. Changing lithospheric conditions during the Pliocene-Quaternary may have led to the stabilization of garnet in these same water-saturated andesites, producing the modern adakite magmas of the Panama Arc.

  16. Magma mixing and degassing processes of 2011 eruption series of Kirishima volcano, Japan, based on chemical analyses of minerals and melt inclusions

    NASA Astrophysics Data System (ADS)

    Saito, G.

    2012-12-01

    Petrological studies of the essential products of phreato-magmatic, sub-Plinian, Vulcanian and minor ash eruptions in 2011 eruption series of Shinmoedake, Kirishima volcanic group, Japan, were carried out. Using the combined geological, petrological and gas emission observations from the 2011 eruptions, I investigated magma ascent and degassing processes of the eruptions. The bimodal plagioclase core composition, relatively small rims of olivines and pyroxenes, and diffusion profiles of the olivines indicate the mixing of mafic magma and felsic magma in several days before the sub-Plinian eruption. Melt inclusion analysis indicated that the end members of the magma mixing were basaltic andesite and dacite magmas and its mixing ratio was estimated to be 0.4 of the basaltic andesite. Magmas of the following Vulcanian and ash eruptions in February to June have similar mode composition, chemical compositions of phenocrysts, groundmass minerals and groundmass and zoning profiles of olivines of the eruptive products of to those of the sub-Plinian eruptions. These results indicate that magma mixing process proposed for the sub-Plinian eruptions also occurred in eruptions showing various styles. These results suggest that the mafic magma input to felsic magma intermittently occurred after the sub-Plinian eruptions to cause the minor eruptions in March to June. The amount of the degassed magma that was estimated based on sulfur content of melt inclusions of the end member magmas and SO2 flux observation was larger than that of eruptive products in 2011, indicating the degassing of the magma in the chamber due to convection of the magma in a conduit.

  17. Pressures of Partial Crystallization of Magmas from the Juan de Fuca Ridge: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Barton, M.

    2010-12-01

    Plate spreading at the mid-ocean ridges is accompanied by intrusion of dikes and eruption of lava along the ridge axis. It has been suggested that the depth of magma chambers that feed the flows and dikes is related to the rate of spreading. As part of a larger effort to examine this hypothesis, we determined the depths of magma chambers beneath the intermediate spreading Juan de Fuca Ridge (JdF) which extends from the Blanco fracture zone at about 44.5 degrees North to the Triple junction of the JdF, Nootka Fault, and the Socanco fracture zone at 48.7 degrees North. Pressures of partial crystallization were determined by comparing the compositions of natural liquids (glasses) with those of experimental liquids in equilibrium with olivine, plagioclase, and clinopyroxene at different pressures and temperatures using the method described by Kelley and Barton (2008). Chemical analyses mid-ocean ridge basalts glasses sampled from along the JdF were used as liquid compositions. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The calculated pressures for the remaining 533 samples were used to calculate the depths of partial crystallization and to identify the likely location of magma chambers. Preliminary results indicate that the pressure of partial crystallization decreases from 2 to 1±0.5 kbars from the Blanco fracture zone to the north along the Cleft segment of the ridge. Calculated pressures remain approximately constant at 0.87±0.53 kbars along ridge segments to the north of the Cleft. These low pressures for the remaining segments of the ridge are interpreted to indicate magma chambers at depths of 1.3-4.9 km and agree reasonably well with the depths of seismically imaged tops of axial magma chambers (2-3 km) (Canales et al 2009). The higher pressures obtained for lavas erupted along the Cleft segment of the JdF agree very well with recent

  18. Magma mixing at mid-ocean ridges - Evidence from legs 45 and 46-DSDP. [petrologic and geochemical study of basalts

    NASA Technical Reports Server (NTRS)

    Dungan, M. A.; Long, P. E.; Rhodes, J. M.

    1978-01-01

    An integrated petrologic and geochemical study of basalts recovered in Legs 45 and 46 (DSDP) has indicated, on the basis of disequilibrium mineralogy, that these moderately evolved basalts are mixtures of primitive mantle-derived tholeiites with more evolved magmas. Plagioclase phenocrysts are characterized by substantial diversity in composition and zoning pattern. Many olivine and plagioclase phenocrysts are too refractory to be in equilibrium with liquids of the host basalt composition but possess a composition consistent with crystallization from a primitive mantle-derived basalt liquid. On the basis of melt inclusions trapped in the olivine phenocrysts, features of the primitive melt are estimated. It is suggested that subvolcanic magma chambers beneath midocean ridges receive periodic injections of this primitive melt and its attendant phenocrysts which mix with fractionated chamber-bound magmas, resulting in observed moderately evolved lavas.

  19. Explosive eruption of rhyodacitic magma at the Cordón-Caulle volcanic complex, southern Chile

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Schipper, C.

    2011-12-01

    After lying dormant for decades, the Cordón-Caulle volcanic complex (CCVC) reactivated again on 4 June, 2011 with an explosive eruption that produced a sustained vertical ash column reaching roughly 14,000 m a.s.l. This explosive phase produced a tephra plume that dispersed E-SE across the Chilean Patagonia into Argentina, and within a week encircled the globe prompting widespread disruption to air traffic and several airport closures. After about 3 weeks of fluctuating explosive activity, a lava flow began effusing from the same vent as the initial activity. We analyzed pumice and ash samples of the Plinian fall from 4 June for their major and trace element makeup, mineralogical characteristics, and 3D textural relationships within pyroclasts. The light beige, phenocryst-poor (<5 vol%) pumice contains plagioclase (~1mm) as its primary phase, and magnetite, orthopyroxene and clinopyroxene in sub-equal amounts. The crystals often form intergrowth clusters but may also be found separate and enclosed in highly vesicular microlite-free glass. As shown by XRF analyses on bulk pumice and ash samples collected from two localities southeast of the vent, the current eruptives comprise the following (in wt.%): SiO2 = 69.6, TiO2 = 0.70, Al2O3 = 14.3, Fe2O3 = 4.56, MnO = 0.11, MgO = 0.54, CaO = 2.3, Na2O = 5.14, K2O = 2.75, P2O5 = 0.11; and, (in ppm): Cr = 6.7, Ni = 2.3, Rb = 70.3, Sr = 163.3, Y = 51.7, Zr = 328, Ba = 702, Pb = 23.7. Interestingly, these compositions are virtually identical to those of magma erupted during 1960 and closely resemble rhyodacite erupted in 1921 from nearby vents. The primary difference between the present eruption and its recent predecessors is the much greater eruptive vigour of the current phase. Another distinction between the present and past historical eruptions is the presence of conspicuous mafic-felsic mingling textures in a small percentage (~0.5 vol%) of the current pumice. Textural and chemical analyses of the mafic blobs are

  20. Experimental investigation of active adaptability of the SMArt (SMA reseTtable) dual-chamber pneumatic lift device for pedestrian protection

    NASA Astrophysics Data System (ADS)

    Otten, James; Luntz, Jonathan; Brei, Diann; Strom, Kenneth A.; Browne, Alan L.; Johnson, Nancy L.

    2008-03-01

    The rapid urbanization of the world has led to an increase in pedestrian involvement in automotive crashes, prompting some countries to establish pedestrian regulations. A promising approach to address pedestrian safety is the use of active lift devices to raise the hood upon detection of a pedestrian impact, thereby increasing the crush distance between the hood and vehicle hard points (i.e. engine). Current systems are generally not reusable or resettable and lack extrinsic effect compensation. The dual chamber SMArt (SMA ReseTtable) lift system presented in this paper is a fully automatically resettable system utilizing a stored energy approach with a pneumatic cylinder and a two stage ultrafast shape memory alloy (SMA) actuated valve. This active lift possesses the unique functionality to tailor lift performance and compensate for extrinsic effects such as changes in temperature, mass, and platform using cylinder pressure and exhaust valve opening timing profile as operating parameters. As a proof of concept, a dual chamber SMArt lift system was designed, fabricated, and installed in a vehicle hood bay testbed. Full cycle tests demonstrated the functions of lift, lower and reset within the proper timing. The effect of additional mass, was experimentally characterized and two insitu device parameters, pressure and valve profile, were investigated as means to mitigate these extrinsic effects. This experimental study indicates that the dual chamber SMArt lift device may be a feasible alternative for pedestrian protection with automatic reset/reusability along with capability to adapt in-situ to maintain performance within a narrow timing window by compensating for extrinsic effects.

  1. Field relationships and petrographic evidence of magma mingling and mixing processes in the Arequipa Segment of the Coastal Batholith in Southern Peru

    NASA Astrophysics Data System (ADS)

    Martinez, A. M.; Clausen, B. L.; Gonzalez, L. U.; Poma, O.

    2013-12-01

    The Cretaceous plutonic rocks of the Arequipa segment in the Coastal Batholith of Peru provide an interesting natural laboratory to study evidence for magma mingling and mixing at outcrop or map scale (mainly mingling) and at thin-section or crystal scale (mingling and mixing) through the integration of fieldwork and petrographic analysis. These plutonic rocks display an important record of field and petrographic evidence for mingling and mixing processes involving the interaction of felsic and mafic magmas taking place within active magma chambers in continental arc settings. The research area in the Arequipa segment near Ica is approximately 60 km wide area and is divided into four super-units younging from west to east: Linga, Pampahausi, Tiabaya, and Incahuasi. The plutonic rocks are made up of several intrusions of diorites, quartz diorites, tonalites, quartz monzodiorites, quartz monzonites, granodiorites, and granites. The transects chosen to develop a detailed and systematic sampling of the early gabbros and the four super-units were selected on the degree of accessibility and outcrop exposure. These six transects are along the river canyons: Rio Pisco, Seco, Ica, Curis, Tingo, and Grande. From field evidence, the best areas for identifying of mingling textures correspond to Rio Pisco, Ica, Tingo, and Grande. Mingling features that preserve a record of magma interaction styles observed at the outcrop level in these transects are: abundant alkali feldspar megacrysts, dikes, interfingering, flow bands, enclaves, mafic sheets, and stoping. The largest number of mingling features from fieldwork are found in the Pampahuasi, Tiabaya, and Incahuasi super-units. From petrographic analysis, a variety of important microtextures indicating magma mixing and mingling processes were also identified such as: calcic zones in plagioclase, contact melting, sieve texture, truncating zoning, poikilitic quartz and feldspar, ocellar texture, porphyritic texture, and acicular

  2. Sulfate Saturated Hydrous Magmas Associated with Hydrothermal Gold Ores

    NASA Astrophysics Data System (ADS)

    Chambefort, I.; Dilles, J. H.; Kent, A. J.

    2007-12-01

    -ICP-MS. Yanacocha anhydrite, hosted by amphiboles, are enriched in FeO (up to 0.6 wt%) and present positive anomalies in Eu and SrO (up to 8000ppm in anhydrite blebs hosted by high Al amphibole of the sample RC6). Anhydrite hosted by clinopyroxene (CPx) and low Al amphibole present higher Ce2O3 content (up to 2000ppm in CPx). In comparison, hydrothermal anhydrite analyzed from El Salvador, Butte and Ajo ore deposits contain less SrO (~ 2000 ppm) and no FeO. Pinatubo anhydrite phenocrysts and inclusions from the 1991 Pinatubo dacite yield low FeO contents, except anhydrite included in amphibole. These data suggest FeO in anhydrite is a product of subsolidus diffusion from the host. The breakdown of abundant anhydrite crystals "stored" in the magma may source of SO2-rich hydrothermal fluids that produced the sulfur enrichment (>500 M Tonnes) observed the Yanacocha hydrothermal gold deposits. The two populations of amphibole are evidence of magma mixing in the Yanacocha magmatic rocks. A sulfate-saturated oxidized dacitic magma chamber resided at about 4 to 8 km depth and 800°C was periodically underplated or fed by hydrous sulfate-rich oxidized basaltic-andesite magma. The shape of the irregular anhydrite blebs suggest that these inclusions could have been trapped as an immiscible sulfate- phosphate rich melt, despite the fact that anhydrite normally has a liquidus temperature of 1450°C and the host amphiboles crystallized at no more than 1050°C based on experiments on andesites and dacites.

  3. Three-dimensional numerical analysis of magma transport through a pre-existing fracture in the crust

    NASA Astrophysics Data System (ADS)

    Chen, Zuan; Cheng, Xu; Huang, Xiaoge; Bai, Wuming; Jin, Zhi-He

    2014-05-01

    Magmas are transported through pre-existing fractures in many repeatedly erupting volcanoes. The study of this special process of magma transport is fundamentally important to understand the mechanisms and conditions of volcanic eruptions. In this paper, we numerically simulate the magma propagation process through a pre-existing vertical fracture in the crust by using the combined finite difference method (FDM), finite element method (FEM) and discontinuous deformation analysis (DDA) approach. FDM is used to analyze magma flow in the pre-existing fracture, FEM is used to calculate the opening of the fracture during magma intrusion, and DDA is used to deal with the contact of the closed fracture surfaces. Both two-dimensional (2D) and three-dimensional (3D) examples are presented. Parametric studies are carried out to investigate the influence of various physical and geometric parameters on the magma transport in the pre-existing fracture. We have considered magma chamber depth ranging from 7 km to 10 km under the crust surface, magma viscosity ranging from 2 × 10-2 to 2 × 10-7 MPa s, and the density difference between the magma and host rock ranging from 300 to 700 kg/m3. The numerical results indicate that (1) the fluid pressure p varies gradually along the depth, (2) the shape of the magma body during propagation is like a torch bar and its width ranges from 2 m to 4 m approximately in the 3D case and 10 m to 50 m in the 2D case for the same physical parameters used, (3) the crust surface around the pre-existing fracture begins to increase on both sides of the fracture, forms a trough between them, then gradually uplifts during the transport of the magma, and finally takes the shape of a crater when the magma reaches the surface. We have also examined the influence of physical and geometric parameters on the minimum overpressure for magma transport in the 3D case. The numerical results show that our numerical technique presented in this paper is an effective

  4. Magma Energy Research Project, FY80 annual progress report

    SciTech Connect

    Colp, J.L.

    1982-04-01

    The technical feasibility of extracting energy from magma bodies is explored. Five aspects of the project are studied: resource location and definition, source tapping, magma characterization, magma/material compatibility, and energy extraction.

  5. Chemical versus temporal controls on the evolution of tholeiitic and calc-alkaline magmas at two volcanoes in the Alaska-Aleutian arc

    USGS Publications Warehouse

    George, R.; Turner, S.; Hawkesworth, C.; Bacon, C.R.; Nye, C.; Stelling, P.; Dreher, S.

    2004-01-01

    The Alaska-Aleutian island arc is well known for erupting both tholeiitic and calc-alkaline magmas. To investigate the relative roles of chemical and temporal controls in generating these contrasting liquid lines of descent we have undertaken a detailed study of tholeiitic lavas from Akutan volcano in the oceanic A1eutian arc and calc-alkaline products from Aniakchak volcano on the continental A1askan Peninsula. The differences do not appear to be linked to parental magma composition. The Akutan lavas can be explained by closed-system magmatic evolution, whereas curvilinear trace element trends and a large range in 87 Sr/86 Sr isotope ratios in the Aniakchak data appear to require the combined effects of fractional crystallization, assimilation and magma mixing. Both magmatic suites preserve a similar range in 226 Ra-230 Th disequilibria, which suggests that the time scale of crustal residence of magmas beneath both these volcanoes was similar, and of the order of several thousand years. This is consistent with numerical estimates of the time scales for crystallization caused by cooling in convecting crustal magma chambers. During that time interval the tholeiitic Akutan magmas underwent restricted, closed-system, compositional evolution. In contrast, the calc-alkaline magmas beneath Aniakchak volcano underwent significant open-system compositional evolution. Combining these results with data from other studies we suggest that differentiation is faster in calc-alkaline and potassic magma series than in tholeiitic series, owing to a combination of greater extents of assimilation, magma mixing and cooling.

  6. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)