Science.gov

Sample records for active magnetosphere particle

  1. Some design characteristics of the AMPTE turn and orbit change maneuvers. [Active Magnetospheric Particle Tracer Explorers

    NASA Technical Reports Server (NTRS)

    Kechichian, J. A.; Kwong, D. D.

    1985-01-01

    The maneuvers carried out by the Active Magnetospheric Particle Tracer Explorers (AMPTE) including the Charge Composition Explorer (CCE) and the Ion Release Module (IRM) spacecraft are analyzed. Analytic and graphical methods are developed in order to carry out sensitivity analyses that helped design the nominal maneuvers, by taking into account errors in burn initiating time, motor performance, and spin axis pointing. A tradeoff analysis between errors in timing and Delta V magnitude is shown for the IRM orbit transfer, and a technique that allows for the determination of the attitude of spinner spacecraft by way of the observed Doppler shift resulting from an unbalanced turn is investigated.

  2. The AMPTE CCE Spacecraft. [Active Magnetospheric Particle Tracer Explorer Charge Composition Explorer

    NASA Technical Reports Server (NTRS)

    Dassoulas, J.; Peterson, M. R.; Margolies, D. L.

    1985-01-01

    The flight segment of the Active Magnetospheric Particle Tracer Explorers (AMPTE) Program consisted of three separate spacecraft which were launched 'piggyback' into orbit aboard a Delta 3924 launch vehicle, from Cape Canaveral, FL, on August 16, 1984. The three spacecaft are the Charge Composition Explorer (CCE), built for NASA by the Applied Physics Laboratory of the Johns Hopkins University (APL/JHU); the Ion Release Module (IRM), built in the Federal Republic of Germany; and the United Kingdom Subsatellite (UKS), built in the United Kingdom. This paper describes the CCE Spacecraft design, development, and early performance in orbit.

  3. Particle transport in planetary magnetospheres

    SciTech Connect

    Birmingham, T.J.

    1984-11-01

    Particle energization in Earth's and Jupiter's magnetospheres is discussed. Understanding of the large scale magnetic and electric fields in which charged particles move is reviewed. Orbit theory in the adiabatic approximation is sketched. General conditions for adiabatic breakdown at each of three levels of periodicity are presented. High energy losses and lower energy sources argue for the existence of magnetospheric accelerations. Nonadiabatic acceleration processes are mentioned. Slow diffusive energization by particle interactions with electromagnetic fluctuations is outlined. This mechanism seems adequate at Earth but, operating alone, is unconvincing for Jupiter. Adding spatial diffusion in the radially distended Jovian magnetodisk may resolve the difficulty. (ESA)

  4. Evidence for particle acceleration during magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Lopez, Ramon E.; Baker, Daniel N.

    1994-01-01

    Magnetospheric substorms represent the episodic dissipation of energy stored in the geomagnetic tail that was previously extracted from the solar wind. This energy release produces activity throughout the entire magnetosphere-ionosphere system, and it results in a wide variety of phenomena such as auroral intensifications and the generation of new current systems. All of these phenomena involve the acceleration of particles, sometimes up to several MeV. We present a brief overview of substorm phenomenology. We then review some of the evidence for particle acceleration in Earth's magnetosphere during substorms. Such in-situ observations in this most accessible of all cosmic plasma domains may hold important clues to understanding acceleration processes in more distant astrophysical systems.

  5. First Observations of a Foreshock Bubble at Earth: Implications for Magnetospheric Activity and Energetic Particle Acceleration

    NASA Technical Reports Server (NTRS)

    Turner, D. L.; Omidi, N.; Sibeck, D. G.; Angelopoulos, V.

    2011-01-01

    Earth?s foreshock, which is the quasi-parallel region upstream of the bow shock, is a unique plasma region capable of generating several kinds of large-scale phenomena, each of which can impact the magnetosphere resulting in global effects. Interestingly, such phenomena have also been observed at planetary foreshocks throughout our solar system. Recently, a new type of foreshock phenomena has been predicted: foreshock bubbles, which are large-scale disruptions of both the foreshock and incident solar wind plasmas that can result in global magnetospheric disturbances. Here we present unprecedented, multi-point observations of foreshock bubbles at Earth using a combination of spacecraft and ground observations primarily from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, and we include detailed analysis of the events? global effects on the magnetosphere and the energetic ions and electrons accelerated by them, potentially by a combination of first and second order Fermi and shock drift acceleration processes. This new phenomena should play a role in energetic particle acceleration at collisionless, quasi-parallel shocks throughout the Universe.

  6. Charged particle periodicity in the Saturnian magnetosphere

    NASA Technical Reports Server (NTRS)

    Carbary, J. F.; Krimigis, S. M.

    1982-01-01

    The present investigation is concerned with the first definitive evidence for charged particle modulations near the magnetic rotation period at Saturn. This periodicity is apparent in the ratios (and spectra) of low energy charged particles in the Saturnian magnetosphere. Most of the data presented were taken during the Voyager 2 outbound portion of the Saturn encounter. During this time the spacecraft was at high latitudes (approximately 30 deg) in the southern hemisphere of the Saturnian magnetosphere. The probe's trajectory was approximately along the dawn meridian at an essentially constant local time. The observation that the charged particle modulation is consistent with the Saturn Kilometric Radiation (SKR) period provides a basic input for the resolution of a puzzle which has existed ever since the discovery of the SKR modulation. The charged particle periodicity identified suggests that a basic asymmetry must exist in the Saturnian magnetosphere.

  7. Planetary Magnetosphere Probed by Charged Dust Particles

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; Horanyi, M.; Gruen, E.; Srama, R.; Auer, S.; Kempf, S.; Krueger, H.

    2010-12-01

    In-situ and remote sensing observations combined with theoretical and numerical modeling greatly advanced our understanding planetary magnetospheres. Dust is an integral component of the Saturnian and Jovian magnetospheres where it can act as a source/sink of plasma particles (dust particles are an effective source for plasma species like O2, OH, etc. through sputtering of ice particles, for example); its distribution is shaped by electrodynamic forces coupled radiation pressure, plasma, and neutral drag, for example. The complex interaction can lead to unusual dust dynamics, including the transport, capture, and ejection of dust grains. The study of the temporal and spatial evolution of fine dust within or outside the magnetosphere thus provides a unique way to combine data from a large number of observations: plasma, plasma wave, dust, and magnetic field measurements. The dust detectors on board the Galileo and Cassini spacecrafts lead to major discoveries, including the jovian dust stream originating from Io or the in-situ sampling and analysis of the plumes of Enceladus. Recent advancement in dust detector technology enables accurate measurement of the dust trajectory and elemental composition that can greatly enhance the understanding of dust magnetorspheric interaction and indentify the source of the dust with high precision. The capabilities of a modern dust detector thus can provide support for the upcoming Europa Jupiter System Mission.

  8. Particle Acceleration in Dissipative Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Kazanas, Z.; Kalapotharakos, C.; Harding, A.; Contopoulos, I.

    2012-01-01

    Pulsar magnetospheres represent unipolar inductor-type electrical circuits at which an EM potential across the polar cap (due to the rotation of their magnetic field) drives currents that run in and out of the polar cap and close at infinity. An estimate ofthe magnitude of this current can be obtained by dividing the potential induced across the polar cap V approx = B(sub O) R(sub O)(Omega R(sub O)/c)(exp 2) by the impedance of free space Z approx eq 4 pi/c; the resulting polar cap current density is close to $n {GJ} c$ where $n_{GJ}$ is the Goldreich-Julian (GJ) charge density. This argument suggests that even at current densities close to the GJ one, pulsar magnetospheres have a significant component of electric field $E_{parallel}$, parallel to the magnetic field, a condition necessary for particle acceleration and the production of radiation. We present the magnetic and electric field structures as well as the currents, charge densities, spin down rates and potential drops along the magnetic field lines of pulsar magnetospheres which do not obey the ideal MHD condition $E cdot B = 0$. By relating the current density along the poloidal field lines to the parallel electric field via a kind of Ohm's law $J = sigma E_{parallel}$ we study the structure of these magnetospheres as a function of the conductivity $sigma$. We find that for $sigma gg OmegaS the solution tends to the (ideal) Force-Free one and to the Vacuum one for $sigma 11 OmegaS. Finally, we present dissipative magnetospheric solutions with spatially variable $sigma$ that supports various microphysical properties and are compatible with the observations.

  9. An update on the Active Magnetospheric Particle Tracer Explorers (AMPTE) program

    NASA Technical Reports Server (NTRS)

    Mcentire, Richard W.

    1987-01-01

    The principles involved in the AMPTE mission's active experiments are discussed together with the role of the AMPTE satellites (the Germany's Ion Release Module, IRM, the United Kingdom Subsatellite, and the U.S Charge Composition Explorer, CCE) in and the results of the ion-release experiments. The AMPTE orbit profile is described, with the times of solar-wind and magnetotail ion releases (two barium and two lithium releases were carried out as the IRM precessed through the magnetosheath) shown schematically. In addition to the results on the Van Allen radiation belts obtained through the ion-release experiments, studies of the radiation belts with the new generation of sensors aboard the CCE and IRM are described.

  10. Observation of particle acceleration in laboratory magnetosphere

    SciTech Connect

    Kawazura, Y.; Yoshida, Z.; Nishiura, M.; Saitoh, H.; Yano, Y.; Nogami, T.; Sato, N.; Yamasaki, M.; Kashyap, A.; Mushiake, T.

    2015-11-15

    The self-organization of magnetospheric plasma is brought about by inward diffusion of magnetized particles. Not only creating a density gradient toward the center of a dipole magnetic field, the inward diffusion also accelerates particles and provides a planetary radiation belt with high energy particles. Here, we report the first experimental observation of a “laboratory radiation belt” created in the ring trap 1 device. By spectroscopic measurement, we found an appreciable anisotropy in the ion temperature, proving the betatron acceleration mechanism which heats particles in the perpendicular direction with respect to the magnetic field when particles move inward. The energy balance model, including the heating mechanism, explains the observed ion temperature profile.

  11. Magnetospheric plasma - Sources, wave-particle interactions and acceleration mechanisms.

    NASA Technical Reports Server (NTRS)

    Speiser, T. W.

    1971-01-01

    Some of the basic problems associated with magnetospheric physics are reviewed. The sources of magnetospheric plasma, with auroral particles included as a subset, are discussed. The possible ways in which the solar wind plasma can gain access to the magnetosphere are outlined. Some important consequences of wave-particle interactions are examined. Finally, the basic mechanisms which energize or accelerate particles by reconnection and convection are explained.

  12. Energetic Particles Dynamics in Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  13. Motion of charged particles in pulsar magnetospheres

    NASA Astrophysics Data System (ADS)

    Zachariades, Haris Andrea

    The motion of charges in the magnetosphere of pulsars is studied from two complementary points of view: (1) for the case of aligned magnetic and rotational axes we solve a fluid version of the Lorentz-Dirac equation, in the Landau approximation, for a two-component plasma. We start from an approximately force-free initial condition and numerically integrate the equations of motion for a time equal to 1.6 percent of one stellar rotation period. We find that the system tends to a charge-separated state in which a negative charge region above the poles is separated by a vacuum gap from a positive charge region near the equator. We see the formation of force-free regions and a tendency of the vacuum gap to spread as the integrations proceed. The energies attained by the charges are only mildly relativistic and radiation reaction does not play an important role during the integrations. The negative charge above the polar region is electrostatically bound and there is a force-free region towards which negative charge tends to flow. Some positive charge is magnetically confined near the stellar equator and other positive charge crosses magnetic field lines moving outward to the region beyond the light cylinder. The outward motion of positive charge is due to the relative magnitudes of the electric and magnetic fields. (2) For the case of non-aligned axes we study the single particle dynamics for electrons moving in the region beyond the light cylinder, again using the Landau approximation to the Lorentz-Dirac equation. The effect of the inner magnetosphere is taken into account by adding a central attractive charge. We find that there exists a class of solutions corresponding to bounded orbits beyond the light cylinder. In an independent particle picture, particles started with different initial conditions within the basin of attraction of this class of orbits eventually form corotating patterns beyond the light cylinder. For a frequently occurring particle configuration

  14. Energetic charged particles in the uranian magnetosphere.

    PubMed

    Stone, E C; Cooper, J F; Cummings, A C; McDonald, F B; Trainor, J H; Lal, N; McGuire, R; Chenette, D L

    1986-07-04

    During the encounter with Uranus, the cosmic ray system on Voyager 2 measured significant fluxes of energetic electrons and protons in the regions of the planets magnetosphere where these particles could be stably trapped. The radial distribution of electrons with energies of megaelectron volts is strongly modulated by the sweeping effects ofthe three major inner satellites Miranda, Ariel, and Umbriel. The phase space density gradient of these electrons indicates that they are diffusing radially inward from a source in the outer magnetosphere or magnetotail. Differences in the energy spectra of protons having energies of approximately 1 to 8 megaelectron volts from two different directions indicate a strong dependence on pitch angle. From the locations of the absorption signatures observed in the electron flux, a centered dipole model for the magnetic field of Uranus with a tilt of 60.1 degrees has been derived, and a rotation period of the planet of 17.4 hours has also been calculated. This model provides independent confirmaton of more precise determinations made by other Voyager experiments.

  15. Wave-particle interactions in the magnetosphere of Uranus

    SciTech Connect

    Kurth, W.S.; Gurnett, D.A.; Scarf, F.L.; Coroniti, F.V.

    1988-07-01

    The Voyager 2 encounter of Uranus has provided observations of plasma waves in and near the magnetosphere. These data, while the first from Uranus, will also be the only direct information on wave-particle interactions at this planet for many years to come. The observations include electrostatic waves upstream of the bow shock, turbulence in the shock, Bernstein emissions and whistler mode waves in the magnetosphere, broadband electrostatic noise in the magnetotail, and a number of the other types of plasma waves which have yet to be clearly identified. Each of these types of waves exist in a plasma environment which both supports the growth of the waves and is modified by interactions with the waves. Wave-particle interactions provide the channels through which the waves can accelerate, scatter, or thermalize the plasmas. The most spectacular example in the case of Uranus is the extremely intense whistler mode activity in the inner magnetosphere which is the source of strong pitch angle diffusion. The resulting electron precipitation is sufficient to produce the auroral emissions observed by Voyager. The strong diffusion, however, presents the problem of supplying electrons in the range of 5 to 40 keV in order to support the losses to the atmosphere.

  16. Wave-particle interactions in the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.; Coroniti, F. V.

    1988-01-01

    The Voyager 2 encounter of Uranus has provided observations of plasma waves in and near the magnetosphere. These data, while the first from Uranus, will also be the only direct information on wave-particle interactions at this planet for many years to come. The observations include electrostatic waves upstream of the bow shock, turbulence in the shock, Bernstein emissions and whistler mode waves in the magnetosphere, broadband electrostatic noise in the magnetotail, and a number of the other types of plasma waves which have yet to be clearly identified. Each of these types of waves exist in a plasma environment which both supports the growth of the waves and is modified by interactions with the waves. Wave-particle interactions provide the channels through which the waves can accelerate, scatter, or thermalize the plasmas. The most spectacular example in the case of Uranus is the extremely intense whistler mode activity in the inner magnetosphere which is the source of strong pitch angle diffusion. The resulting electron precipitation is sufficient to produce the auroral emissions observed by Voyager. The strong diffusion, however, presents the problem of supplying electrons in the range of 5 to 40 keV in order to support the losses to the atmosphere.

  17. Energetic Charged Particles in Saturn's Magnetosphere: Voyager 1 Results.

    PubMed

    Vogt, R E; Chenette, D L; Cummings, A C; Garrard, T L; Stone, E C; Schardt, A W; Trainor, J H; Lal, N; McDonald, F B

    1981-04-10

    Voyager 1 provided the first look at Saturn's magnetotail and magnetosphere during relatively quiet interplanetary conditions. This report discusses the energetic particle populations of the outer magnetosphere of Saturn and absorption features associated with Titan and Rhea, and compares these observations with Pioneer 11 data of a year earlier. The trapped proton fluxes had soft spectra, represented by power laws E(-gamma) in kinetic energy E, with gamma approximately 7 in the outer magnetosphere and gamma approximately 9 in the magnetotail. Structure associated with the magnetotial was observed as close as 10 Saturn radii (R(s)) on the outbound trajectory. The proton and electron fluxes in the outer magnetosphere and in the magnetotail were variable and appeared to respond to changes in interplanetary conditions. Protons with energies >/= 2 million electron volts had free access to the magnetosphere from interplanetary space and were not stably trapped outside approximately 7.5 R(s).

  18. Sources and acceleration of energetic particles in planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Moebius, Eberhard

    1994-01-01

    Energetic particles in the magnetospheres of the solar system originate from various different sources, such as the solar wind, the planetary ionospheres as well as the moons and rings of the planetary systems. Important acceleration sites are the auroral regions, the magnetotail, and the equatorial regions of the magnetospheres where electric fields, wave-particle interactions, and magnetic pumping are among the major acceleration mechanisms proposed. Over the last decade mass- and charge-sensitive particle spectrometers on satellites and space probes have collected a wealth of information about the relative contribution of the various particle sources and the major acceleration processes to the energetic particle populations. Emphasis will be put on recent studies of the source populations and the acceleration processes in the Earth's auroral zones and magnetotail. Furthermore, the Jovian system with the largest magnetosphere and its unique mixture of particle sources with strong contributions from moons will be highlighted in some results from Ulysses.

  19. OSCILLATION-DRIVEN MAGNETOSPHERIC ACTIVITY IN PULSARS

    SciTech Connect

    Lin, Meng-Xiang; Xu, Ren-Xin; Zhang, Bing E-mail: r.x.xu@pku.edu.cn

    2015-02-01

    We study the magnetospheric activity in the polar cap region of pulsars under stellar oscillations. The toroidal oscillation of the star propagates into the magnetosphere, which provides additional voltage due to unipolar induction, changes Goldreich-Julian charge density from the traditional value due to rotation, and hence influences particle acceleration. We present a general solution of the effect of oscillations within the framework of the inner vacuum gap model and consider three different inner gap modes controlled by curvature radiation, inverse Compton scattering, and two-photon annihilation, respectively. With different pulsar parameters and oscillation amplitudes, one of three modes would play a dominant role in defining the gap properties. When the amplitude of oscillation exceeds a critical value, mode changing occurs. Oscillations also lead to a change of the size of the polar cap. As applications, we show the inner gap properties under oscillations in both normal pulsars and anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs). We interpret the onset of radio emission after glitches/flares in AXPs/SGRs as due to oscillation-driven magnetic activities in these objects, within the framework of both the magnetar model and the solid quark star model. Within the magnetar model, radio activation may be caused by the enlargement of the effective polar cap angle and the radio emission beam due to oscillation, whereas within the solid quark star angle, it may be caused by activation of the pulsar inner gap from below the radio emission death line due to an oscillation-induced voltage enhancement. The model can also explain the glitch-induced radio profile change observed in PSR J1119–6127.

  20. Energetic Charged Particles in Saturn's Magnetosphere: Voyager 2 Results.

    PubMed

    Vogt, R E; Chenette, D L; Cummings, A C; Garrard, T L; Stone, E C; Schardt, A W; Trainor, J H; Lal, N; McDonald, F B

    1982-01-29

    Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the >/= 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more variable, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14- to > 1.0- million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approximately 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.

  1. The CUSP as a Source of Magnetospheric Particles

    NASA Technical Reports Server (NTRS)

    Fritz, Theodore A.; Chen, Jiasheng

    1999-01-01

    Observations made by the Polar satellite have shown that plasma of solar wind magnetosheath origin is rammed into the high altitude polar cusp creating a diamagnetic cavity of large dimensions. The Earth's dipole field can be excluded from this region in it turbulent manner with the magnitude of the field strength reaching close to zero nT at times. At such times energetic particles are produced in this region in intensities which exceed those measured in the trapping regions of the magnetosphere beyond L = 6.5. These particles can then flow back out of the cusp along field lines that form the magnetopause. A fraction of these particles can enter the magnetosphere along the magnetopause on the dusk and dawn flanks. Due to existing gradients in the geomagnetic field, cusp accelerated ions can enter the magnetosphere along the dawn flank and electrons along the dusk flank. For those particles entering near the geomagnetic equatorial plane with pitch angles close to ninety degrees they will drift along contours of constant magnetic field strength reaching deep into the nightside inner magnetosphere. From observations made by the Polar ATS-6, and ISEE satellites it is argued that this cusp source appears to be capable of providing energetic ions to the magnetosphere and possibly energetic electrons which form the source population of the Subsequent radial diffusion and formation of the radiation belts.

  2. The problem of low energy particle measurements in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1978-01-01

    The accurate measurement of low energy (less than 100 eV) particle properties in the magnetosphere has been difficult, partly because of the low density of such particles, but more particularly because of spacecraft interference effects. Some early examples of how these phenomena have affected particle measurements on an OGO spacecraft are presented. Data obtained with the UCSD particle detectors on ATS-6 are then presented showing how some of these difficulties have been partially overcome. Future measurements of low energy particles in the magnetosphere can be improved by: (1) improving the low energy resolution of detectors; (2) building electrostatically clean spacecraft; (3) controlling spacecraft potential; and (4) using auxiliary measurements, particularly wave data.

  3. Pioneer 11 observations of energetic particles in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Van Allen, J. A.; Randall, B. A.; Baker, D. N.; Goertz, C. K.; Sentman, D. D.; Thomsen, M. F.; Flindt, H. R.

    1975-01-01

    A preliminary report is presented of energetic electrons and protons observed with the University of Iowa instrument on Pioneer 11. A graph shows absolute, spin-averaged unidirectional intensities of electrons and protons as a function of time during traversal of the central magnetosphere. Another graph shows the effects of the Jovian satellites Io and Amalthea on particle intensities. It is pointed out that a full analysis of satellite effects is the most promising technique for understanding the physical dynamics of the magnetosphere of Jupiter.

  4. Magnetosphere-ionosphere coupling during active aurora

    NASA Astrophysics Data System (ADS)

    Grubbs, Guy, II

    In this work, processes which couple the Earth's magnetosphere and ionosphere are examined using observations of aurora from ground-based imaging, in situ electron measurements, and electron transport modeling. The coupling of these regions relies heavily on the energy transport between the two and the ionospheric conductances, which regulate the location and magnitude of the transport. The combination of the datasets described are used to derive the conductances and electron energy populations at the upper boundary of the ionosphere. These values are constrained using error analysis of the observation and measurement techniques and made available to the global magnetosphere modeling community for inclusion as boundary conditions at the magnetosphere and ionosphere coupling region. A comparative study of the active aurora and incident electron distributions was conducted using ground-based measurements and in-situ sounding rocket data. Three narrow-field (47 degree field-of-view) electron-multiplying charge-coupled device (EMCCD) imagers were located at Venetie, AK which took high spatio-temporal resolution measurements of the aurora using different wavelength filters (427.8 nm, 557.7 nm, and 844.6 nm). The measured emission line ratios were combined with atmospheric modeling in order to predict the total electron energy flux and characteristic electron energy incident on the atmosphere. These predictions were compared with in-situ measurements made by the Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) sounding rocket launched in early 2014. The GREECE particle instruments were modeled using a ray-tracing program, SIMION, in order to predict the instrument responses for different incident particles. Each instrument model was compared with data taken in the lab in order to compare and update the models appropriately. A rocket emulation system was constructed for lab testing prior to and during instrument integration into the rocket and

  5. The Role of Solar and Solar Wind Forcing of Magnetospheric Particle Enhancements

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2015-12-01

    Observational and numerical modeling results demonstrate that solar wind streams and coronal mass ejections drive coherent processes within the coupled magnetosphere-ionosphere system. The magnetosphere progresses through a specific sequence of energy-loading and stress-developing states until the entire system suddenly reconfigures. Long-term studies of high-energy particle fluxes in the Earth's magnetosphere have revealed many of their temporal occurrence characteristics and their relationships to solar wind drivers. In order to observe major energetic particle enhancements, there must typically be a significant interval of southward IMF along with a period of high (VSW≥500 km/s) solar wind speed. This has led to the view that enhancements in geomagnetic activity are normally a key first step in the acceleration of magnetospheric particles to high energies. A second step is suggested to be a period of powerful low-frequency waves that is closely related to high values of VSW or higher frequency ("chorus") waves that rapidly heat and accelerate electrons. Hence, magnetospheric storms and substorms provide a "seed" population, while high-speed solar wind drives the acceleration to relativistic energies in this two-step geomagnetic activity scenario. This picture seems to apply to most events examined whether associated with high-speed streams or with CME-related changes, but not all. In this work, we address transient solar wind phenomena as they pertain to high-energy particle acceleration and transport. We also discuss various models of particle energization that have recently been advanced. We present remarkable new results from the Van Allen Probes mission and the Magnetospheric Multiscale (MMS) mission that confirm and greatly extend these key ideas.

  6. Energetic helium particles trapped in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Chen, Jiasheng; Guzik, T. Gregory; Sang, Yeming; Wefel, John P.; Cooper, John F.

    1994-01-01

    High energy (approximately 40-100 MeV/nucleon) geomagnetically trapped helium nuclei have been measured, for the first time, by the ONR-604 instrument during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission. The helium events observed at L less than 2.3 have a pitch angle distribution peaking perpendicular to the local magnetic field and are contained in peaks located at L = 1.2 and 1.9. The events in each peak can be characterized by power law energy spectra with indices of 10.0 +/- 0.7 for L = 1.9-2.3 and 6.8 +/- 1.0 for L = 1.15-1.3, before the large storm of 24 March 1991. CRRES was active during solar maximum when the anomalous component is excluded from the inner heliosphere, making it unlikely that the observed events derived from the anomalous component. The trapped helium counting rates decrease gradually with time indicating that these high energy ions were not injected by flares during the 1990/91 mission. Flare injection prior to mid-1990 may account for the highest energy particles, while solar wind injection during magnetic storms and subsequent acceleration could account for the helium at lower energies.

  7. Particle entry into the equatorial magnetosphere.

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Barfield, J. N.; Smith, P. H.; Hoffman, R. A.; Konradi, A.

    1973-01-01

    Explorer-45 data are reviewed which concern the behavior and dynamics of protons associated with the storm-time and quiet-time extraterrestrial ring current at the equatorial plane. The quiet-time proton energy spectrum exhibits a peak in the interval between 100 and 200 keV. During storm conditions, the intensities of the higher energy protons decrease while the intensities of protons from 10 to 100 keV are greatly enhanced, making them the dominant contributor to the storm-time particle energy density. It is shown that during magnetic storms, the ratio of the particle energy density to the magnetic field energy density reaches values greater than unity, and that the plasmasphere has a strong influence on the characteristics of particle injection.

  8. Dynamic Particle Injections in the Magnetospheres of the Solar System

    NASA Astrophysics Data System (ADS)

    Mauk, B.

    2014-12-01

    The occurrence of dynamic, planetward injections of plasma and energetic particles on the nightside magnetosphere is one of the defining characteristics of magnetospheric substorms at Earth. And yet, with the exploration of the solar system with planetary probes, it has become clear that dynamic planetward injections are if fact a ubiquitous characteristic of most strongly magnetized planets; only Neptune did not reveal the signatures of such processes when visited. But, within this diversity of magnetospheric environments, it is clear that the driving forces associated with injections can be very different from those at Earth. Jupiter, for example, is known to be powered by planetary rotation rather than the solar wind. Saturn has injections that are clearly powered by rotations, but it also has nightside injections that are, at minimum, triggered by solar wind events if not powered by the solar wind. Even for those magnetospheres clearly powered by rotation, there appears to be substantial similarity between the physical processes involved with the extraterrestrial planetary injections and recent formulations of injections within Earth's near-Earth magnetotail. With a focus on comparisons between Earth, Jupiter, Saturn, Uranus and Neptune, I here review the state of understanding generally of injections within extraterrestrial planets and what the comparisons might tell us about our understanding of substorm phenomena at Earth.

  9. Particle Energization During Magnetic Storms with Steady Magnetospheric Convection

    NASA Astrophysics Data System (ADS)

    Kissinger, J.; Kepko, L.; Baker, D. N.; Kanekal, S. G.; Li, W.; McPherron, R. L.; Angelopoulos, V.

    2013-12-01

    Relativistic electrons pose a space weather hazard to satellites in the radiation belts. Although about half of all geomagnetic storms result in relativistic electron flux enhancements, other storms decrease relativistic electron flux, even under similar solar wind drivers. Radiation belt fluxes depend on a complex balance between transport, loss, and acceleration. A critically important aspect of radiation belt enhancements is the role of the 'seed' population--plasma sheet particles heated and transported Earthward by magnetotail processes--which can become accelerated by wave-particle interactions with chorus waves. While the effect of substorms on seed electron injections has received considerable focus, in this study we explore how quasi-steady convection during steady magnetospheric convection (SMC) events affects the transport and energization of electrons. SMC events are long-duration intervals of enhanced convection without any substorm expansions, and are an important mechanism in coupling magnetotail plasma populations to the inner magnetosphere. We detail the behavior of the seed electron population for stormtime SMC events using the Van Allen Probes in the outer radiation belt and THEMIS in the plasma sheet and inner magnetosphere. Together, the two missions provide the ability to track particle transport and energization from the plasma sheet into the radiation belts. We present SMC events with Van Allen Probes/THEMIS conjunctions and compare plasma sheet fast flows/enhanced transport to radiation belt seed electron enhancements. Finally we utilize statistical analyses to quantify the relative importance of SMC events on radiation belt electron acceleration in comparison to isolated substorms.

  10. Low-Energy Hot Plasma and Particles in Saturn's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Gloeckler, G; Keath, E P; Lanzerotti, L J; Carbary, J F; Hamilton, D C; Roelof, E C

    1982-01-29

    The low-energy charged particle instrument on Voyager 2 measured low-energy electrons and ions (energies greater, similar 22 and greater, similar 28 kiloelectron volts, respectively) in Saturn's magnetosphere. The magnetosphere structure and particle population were modified from those observed during the Voyager 1 encounter in November 1980 but in a manner consistent with the same global morphology. Major results include the following. (i) A region containing an extremely hot ( approximately 30 to 50 kiloelectron volts) plasma was identified and extends from the orbit of Tethys outward past the orbit of Rhea. (ii) The low-energy ion mantle found by Voyager 1 to extend approximately 7 Saturn radii inside the dayside magnetosphere was again observed on Voyager 2, but it was considerably hotter ( approximately 30 kiloelectron volts), and there was an indication of a cooler ( < 20 kiloelectron volts) ion mantle on the nightside. (iii) At energies greater, similar 200 kiloelectron volts per nucleon, H(1), H(2), and H(3) (molecular hydrogen), helium, carbon, and oxygen are important constituents in the Saturnian magnetosphere. The presence of both H(2) and H(3) suggests that the Saturnian ionosphere feeds plasma into the magnetosphere, but relative abundances of the energetic helium, carbon, and oxygen ions are consistent with a solar wind origin. (iv) Low-energy ( approximately 22 to approximately 60 kiloelectron volts) electron flux enhancements observed between the L shells of Rhea and Tethys by Voyager 2 on the dayside were absent during the Voyager 1 encounter. (v) Persistent asymmetric pitch-angle distributions of electrons of 60 to 200 kiloelectron volts occur in the outer magnetosphere in conjunction with the hot ion plasma torus. (vi) The spacecraft passed within approximately 1.1 degrees in longitude of the Tethys flux tube outbound and observed it to be empty of energetic ions and electrons; the microsignature of Enceladus inbound was also observed. (vii

  11. Relationship of The Tropical Cyclogenesis With Solar and Magnetospheric Activities

    NASA Astrophysics Data System (ADS)

    Vishnevsky, O.; Pankov, V.; Erokhine, N.

    Formation of tropical cyclones is a badly studied period in their life cycle even though there are many papers dedicated to analysis of influence of different parameters upon cyclones occurrence frequency (see e.g., Gray W.M.). Present paper is dedicated to study of correlation of solar and magnetospheric activity with the appearance of tropi- cal cyclones in north-west region of Pacific ocean. Study of correlation was performed by using both classical statistical methods (including maximum entropy method) and quite modern ones, for example multifractal analysis. Information about Wolf's num- bers and cyclogenesis intensity in period of 1944-2000 was received from different Internet databases. It was shown that power spectra maximums of Wolf's numbers and appeared tropical cyclones ones corresponds to 11-year period; solar activity and cyclogenesis processes intensity are in antiphase; maximum of mutual correlation co- efficient ( 0.8) between Wolf's numbers and cyclogenesis intensity is in South-China sea. There is a relation of multifractal characteristics calculated for both time series with the mutual correlation function that is another indicator of correlation between tropical cyclogenesis and solar-magnetospheric activity. So, there is the correlation between solar-magnetospheric activity and tropical cyclone intensity in this region. Possible physical mechanisms of such correlation including anomalous precipitations charged particles from the Earth radiation belts and wind intensity amplification in the troposphere are discussed.

  12. Relationship of The Tropical Cyclogenesis With Solar and Magnetospheric Activities

    NASA Astrophysics Data System (ADS)

    Vishnevsky, O. V.; Pankov, V. M.; Erokhine, N. S.

    Formation of tropical cyclones is a badly studied period in their life cycle even though there are many papers dedicated to analysis of influence of different parameters upon cyclones occurrence frequency (see e.g., Gray W.M.). Present paper is dedicated to study of correlation of solar and magnetospheric activity with the appearance of tropical cyclones in north-west region of Pacific ocean. Study of correlation was performed by using both classical statistical methods (including maximum entropy method) and quite modern ones, for example multifractal analysis. Information about Wolf's numbers and cyclogenesis intensity in period of 1944-2000 was received from different Internet databases. It was shown that power spectra maximums of Wolf's numbers and appeared tropical cyclones ones corresponds to 11-year period; solar activity and cyclogenesis processes intensity are in antiphase; maximum of mutual correlation coefficient (~ 0.8) between Wolf's numbers and cyclogenesis intensity is in South-China sea. There is a relation of multifractal characteristics calculated for both time series with the mutual correlation function that is another indicator of correlation between tropical cyclogenesis and solar-magnetospheric activity. So, there is the correlation between solar-magnetospheric activity and tropical cyclone intensity in this region. Possible physical mechanisms of such correlation including anomalous precipitations charged particles from the Earth radiation belts and wind intensity amplification in the troposphere are discussed.

  13. Particle acceleration in the vacuum gaps in black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Ptitsyna, K.; Neronov, A.

    2016-08-01

    Aims: We consider particle acceleration in the vacuum gaps in magnetospheres of black holes powered by the Blandford-Znajek mechanism and embedded in the radiatively-inefficient accretion flow (RIAF) environment. In this situation, the gap height is limited by the onset of gamma-gamma pair production on the infrared photons originating in the RIAF. Methods: We numerically calculated the acceleration and propagation of charged particles by taking the detailed structure of the electric and magnetic fields in the gap and in the entire black hole magnetosphere into account, as well as the radiative energy losses and interactions of γ-rays produced by the propagated charged particles with the background radiation field of the RIAF. Results: We show that the presence of the vacuum gap has clear observational signatures. The spectra of emission from gaps embedded in a relatively high-luminosity RIAF are dominated by the inverse Compton emission with a sharp, super-exponential cut-off in the very-high-energy gamma-ray band. The cut-off energy is determined by the properties of the RIAF and is largely independent of the structure of magnetosphere and geometry of the gap. The spectra of the gap residing in low-luminosity RIAFs are dominated by synchrotron or curvature emission with the spectra extending into 1-100 GeV energy range. We also consider the effect of possible acceleration of protons in the gap and find that proton energies could reach the ultra-high-energy cosmic ray (UHECR) range only in extremely low-luminosity RIAFs.

  14. Modeling ionospheric electron precipitation due to wave particle scattering in the magnetosphere and the feedback effect on the magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Jordanova, V.; Ridley, A. J.; Albert, J.; Horne, R. B.; Jeffery, C. A.

    2015-12-01

    Electron precipitation down to the atmosphere caused by wave-particle scattering in the magnetosphere contribute significantly to the enhancement of auroral ionospheric conductivity. Global MHD models that are incapable of capturing kinetic physics in the inner magnetosphere usually adopt MHD parameters to specify the precipitation flux to estimate auroral conductivity, hence losing self-consistency in the global circulation of the magnetosphere-ionosphere system. In this study we improve the coupling structure in global models by connecting the physics-based (wave-particle scattering) electron precipitation with the ionospheric electrodynamics and investigate the feedback effect on the magnetospheric dynamics. We use BATS-R-US coupled with a kinetic ring current model RAM-SCB that solves pitch angle dependent particle distributions to study the global circulation dynamics during the Jan 25-26, 2013 storm event. Following tail injections, we found enhanced precipitation number and energy fluxes of tens of keV electrons being scattered into loss cone due to interactions with enhanced chorus and hiss waves in the magnetosphere. This results in a more profound auroral conductance and larger electric field imposing on the plasma transport in the magnetosphere. We also compared our results with previous methods in specifying the auroral conductance, such as empirical relation used in Ridley et al. (2004). It is found that our physics-based method develops a larger convection electric field in the near-Earth region and therefore leads to a more intense ring current.

  15. Erosion of Galilean satellite surfaces by Jovian magnetosphere particles

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.; Lanzerotti, L. J.; Brown, W. L.; Armstrong, T. P.

    1981-01-01

    The effects on the surfaces of the Galilean satellites Europa, Ganymede and Callisto of impacts by particles of the Jupiter magnetosphere in which they are immersed are estimated. Differential ion fluxes measured by the Voyager low-energy magnetosphere particle analyzer as a function of ion energy were used to calculate ice erosion fluxes for the satellites under the assumption that each is 50% ice covered. Calculations were performed on the basis of laboratory data concerning the ice sputtering coefficients of protons and oxygen ions of various energies. A water erosion rate of greater than 10 to the 10th/sq cm per sec is obtained for Europa, which implies a total erosion over 1 billion years of an ice layer 100 m deep. Atmospheric column densities of the H2O molecules sputtered from the surface but not escaping the satellites are also calculated for the three satellites assuming a sputtered ion temperature of 2000 K, and are found to dominate those produced by sublimation. Finally, estimates are presented of the source and loss processes for an oxygen atmosphere around Ganymede created by sputtering or sublimation.

  16. Neptune's inner magnetosphere and aurora: Energetic particle constraints

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Krimigis, S. M.; Acuna, M. H.

    1994-01-01

    A dramatic and peculiar dropout of greater than 500-keV ions (but not electrons) was observed within Neptune's inner magnetosphere near 2 R(sub N) as the Voyager 2 spacecraft approached the planet. Unlike a number of other energetic particle features this feature could not be accounted for by known material bodies in the context of the most utilized magnetic field models (neither the offset tilted dipole models nor the spehrical harmonic model 'O8'). However, the configuration of Neptune's inner magnetosphere is highly uncertain. By applying a novel technique, utilizing energetic particle measurements, to constrain the magnetic field configuration of the inner regions, we show that appeals to unobserved materials within Neptune's system are unnecessary, and that the ion dropout feature was, in all likelihood, the result of ion interactions with maximum L excursions of the ring 1989N1R. The constraints also favor the se of the M2 magnetic field model (Selesnick, 1992) over the previous models. An electron feature was probably absent because the electron interactions with the ring occurred substantially before the ion interactions (about 2 hours for the electrons versus a few minutes for the ions). Pitch-angle scattering apparently eliminated the electron signature. Minimum scattering rates determined based on this premise yield enough electron precipitation power to explain the brightest component of Neptune's aurora. We propose that this bright component is analogous to the Earth's diffuse aurora.

  17. Neptune's inner magnetosphere and aurora: Energetic particle constraints

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.; Krimigis, S. M.; Acuna, M. H.

    1994-08-01

    A dramatic and peculiar dropout of greater than 500-keV ions (but not electrons) was observed within Neptune's inner magnetosphere near 2 RN as the Voyager 2 spacecraft approached the planet. Unlike a number of other energetic particle features this feature could not be accounted for by known material bodies in the context of the most utilized magnetic field models (neither the offset tilted dipole models nor the spehrical harmonic model 'O8'). However, the configuration of Neptune's inner magnetosphere is highly uncertain. By applying a novel technique, utilizing energetic particle measurements, to constrain the magnetic field configuration of the inner regions, we show that appeals to unobserved materials within Neptune's system are unnecessary, and that the ion dropout feature was, in all likelihood, the result of ion interactions with maximum L excursions of the ring 1989N1R. The constraints also favor the se of the M2 magnetic field model (Selesnick, 1992) over the previous models. An electron feature was probably absent because the electron interactions with the ring occurred substantially before the ion interactions (about 2 hours for the electrons versus a few minutes for the ions). Pitch-angle scattering apparently eliminated the electron signature. Minimum scattering rates determined based on this premise yield enough electron precipitation power to explain the brightest component of Neptune's aurora. We propose that this bright component is analogous to the Earth's diffuse aurora.

  18. AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF AXISYMMETRIC PULSARS

    SciTech Connect

    Philippov, Alexander A.; Spitkovsky, Anatoly

    2014-04-20

    We perform ''first-principles'' relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitate pair production. As pair plasma supply increases, we observe the transition from a charge-separated ''electrosphere'' solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically dominated pulsar wind. We calculate the magnetospheric structure, current distribution, and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.

  19. Erosion of galilean satellite surfaces by jovian magnetosphere particles.

    PubMed

    Johnson, R E; Lanzerotti, L J; Brown, W L; Armstrong, T P

    1981-05-29

    The Galilean satellites of Jupiter-Io (J1), Europa (J2), Ganymede (J3), and Callisto (J4)-are embedded in the intense ion and electron fluxes of the Jovian magnetosphere. The effect of these particles on the icy surfaces of the outer three satellites depends on the fluxes and the efficiency of the sputtering of water ice by such particles. Recent laboratory measurements provided data on the erosion of water ice by energetic particles and showed that it occurs much faster than would be expected from normal sputtering theory. The Voyager spacecraft encounters with Jupiter provided the first measurements of ion fluxes (energies greater, similar 30 kiloelectron volts) in the vicinity of the Galilean satellites. Using the laboratory sputtering data together with particle measurements from the Voyager 1 low-energy charged particle experiment, the effects of erosion on the surfaces of J2 to J4 are estimated. It is shown that the surface of Europa could be eroded by as much as 100 meters over an eon (10(9) years). Column densities of water vapor that could be produced around the three satellites from particle bombardment of their surfaces are also calculated, and the sources and losses of oxygen in the gravitationally bound gas produced by sputtering or sublimation are estimated.

  20. Charged Particle Environments in Earth's Magnetosphere and their Effects on Space System

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2009-01-01

    This slide presentation reviews information on space radiation environments important to magnetospheric missions including trapped radiation, solar particle events, cosmic rays, and solar winds. It also includes information about ion penetration of the magnetosphere, galactic cosmic rays, solar particle environments, CRRES internal discharge monitor, surface charging and radiation effects.

  1. New Results of Energetic Particle Observations In The Duskside Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Krupp, N.; Woch, J.; Lagg, A.

    We report on new results from in-situ energetic particle measurements in the vicin- ity of Jupiter observed during the last year 2001 and the beginning of 2002 by the Energetic Particles Detector EPD onboard the Galileo spacecraft. We concentrate on so-called realtime data in and outside the Jovian magnetosphere from the outer dusk- side Jovian magnetosphere out the magnetopause location at about 100 planetary radii (RJ). EPD, which measures electrons (15-884 keV), ions (30-3200 keV) and protons (80-1250 keV), Helium (27-1000 keV/n), Oxygen (12-562 keV/n), and Sulfur (16-310 keV/n) ions separately, has the capability to derive energy spectra, relative ion compo- sition and angular distributions. This allows us to investigate relative ion composition, acceleration mechanisms and particle motion in regions of the Jovian magnetosphere where nearly no other data are available. Preliminary results show that the Jovian mag- netosphere at a local time of 1700 LT was very active and dynamic in early 2002 with very sharp boundary crossings around 80-100 RJ. The results will be discussed in the context of previous data sets at other local times and will be compared with MHD simulations

  2. Dynamic Modeling of EMIC Wave Activity in a Realistic Magnetosphere

    NASA Astrophysics Data System (ADS)

    McCollough, J. P., II; Elkington, S. R.; Usanova, M.; Bortnik, J.

    2015-12-01

    On 14-16 December 2006, A geomagnetic storm was observed accompanied by electromagnetic ion-cyclotron (EMIC) wave activity. We use a 3D test particle simulation in a realistic magnetosphere from the global Lyon-Fedder-Mobarry (LFM) MHD code to compute the phase space density dynamics of warm electrons responsible for chorus wave growth. We use these results to compute the temperature anisotropy and density for input into a linear convective wave growth rate for EMIC waves. We then follow Bortnik et al. [2010] to compute EMIC saturation amplitudes to provide a global dynamical picture of EMIC wave activity for this event. We will perform a data-model comparison of the modeled wave amplitudes with the observed wave activity, aiding in understanding the spatio-temporal and spectral response of EMIC wave activity to geomagnetic disturbances.

  3. Interplanetary Magnetic Field Control of the Entry of Solar Energetic Particles into the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Richard, R. L.; El-Alaoui, M.; Ashour-Abdalla, M.; Walker, R. J.

    2002-01-01

    We have investigated the entry of energetic ions of solar origin into the magnetosphere as a function of the interplanetary magnetic field orientation. We have modeled this entry by following high energy particles (protons and 3 He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields from a global magnetohydrodynamic (MHD) model of the magnetosphere and its interaction with the solar wind. For the most part these particles entered the magnetosphere on or near open field lines except for some above 10 MeV that could enter directly by crossing field lines due to their large gyroradii. The MHD simulation was driven by a series of idealized solar wind and interplanetary magnetic field (IMF) conditions. It was found that the flux of particles in the magnetosphere and transport into the inner magnetosphere varied widely according to the IMF orientation for a constant upstream particle source, with the most efficient entry occurring under southward IMF conditions. The flux inside the magnetosphere could approach that in the solar wind implying that SEPs can contribute significantly to the magnetospheric energetic particle population during typical SEP events depending on the state of the magnetosphere.

  4. Particle and field stress balance within a planetary magnetosphere

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Krimigis, S. M.; Lepping, R. P.

    1985-01-01

    A technique is developed for experimentally estimating the local tensor stresses within a planetary magnetic field configuration characterized by local spacecraft measurements. Key to the technique is the determination of the shapes of field lines using the symmetry properties of the system coupled with local and instantaneous measurements of the field line inclination angles. The technique is applied here to the inner and middle Saturnian magnetosphere using data returned by the Magnetic Field Experiment on the Voyager 1 spacecraft. It is concluded that the ring current has substantial radial structure, heretofore not shown. Outside about 13 R(s) the newly derived field stresses match remarkably well the funtional variation of the centrifugal corotation stresses of the cool particle population measured previously by the Plasma Science Experiment. Inside about 13 R(s) the key structure in the derived field stresses, a prominent local maximum, matches the approximate position of an apparent strong pressure gradient in the energetic particles characterized by the Low-Energy Charged Particle detectors.

  5. The role of Kelvin-Helmholtz instability in losses of magnetospheric energetic particles through the magnetopause: High-resolution MHD-test-particle simulations

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, Aleksandr; Sorathia, Kareem; Merkin, Viacheslav

    2016-10-01

    The Earth's magnetopause is a sharp boundary separating the geomagnetic field from interplanetary field and plasma. During increased solar wind driving and geomagnetic activity, energetic particles produced inside the magnetosphere can gain access to the magnetopause and be permanently lost from the system by crossing the boundary into the region of open interplanetary magnetic field lines. The efficiency of the loss process is controlled by the details of particle interaction with the magnetopause boundary. Characterizing this interaction is important for understanding storm-time variability of magnetospheric energetic particle populations including ring current and radiation belts. The magnetopause structure can be very dynamic due, in particular, to the Kelvin-Helmholtz instability (KHI) produced by the velocity shear at the magnetospheric boundary. The goal of this study is to investigate the role of KHI in energetic particle loss through the magnetopause. For the analysis we use large-scale test-particle simulations in the electromagnetic fields computed with a global magnetospheric MHD model with resolution sufficiently high to resolve KHI. We compute the spatial distributions and rates of the magnetopause losses of energetic electrons, hydrogen and oxygen ions, and discuss our results in the context of recent measurements of magnetopause losses from the Magnetospheric Multiscale (MMS) mission.

  6. Energetic particle drift motions in the outer dayside magnetosphere

    SciTech Connect

    Buck, R.M.

    1987-12-01

    Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B ''pockets'' in the geomagnetic field. Drift-shell branching caused by the minimum-B pockets is analyzed and interpreted in terms of an adiabatic shell branching and rejoining process. We examine the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field model. We find that shell branching annd rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. We determine the spatial extent of the stable trapping regions for the Choe-Beard model. We develop an adiabatic branching map methodology which completely identifies and describes the location of shell-branching points and the adiabatic trajectories of particles on branched shells, for any model field. We employ the map to develop synthetic pitch angle distributions near the dayside magnetopause by adiabatically transforming observed midnight distributions to the dayside. We find that outer dayside lines contain particles moving on branched and unbranched shells, giving rise to distinctive pitch angle distribution features. We find a good correlation between the pitch angles which mark the transition from branched to unbranched shells in the model, and the distinctive features of the OGO-5 distributions. In the morning sector, we observe large flux changes at critical pitch angles which correspond to B-pocket edges in the model. Measurements on inbound passes in the afternoon sector show first the adiabatic particle shadow, then the arrival of fluxes on rejoined shells, then fluxes on unbranced shells - in accord with model predictions. 204 refs., 138 figs., 2 tabs.

  7. Hot Plasma and Energetic Particles in Neptune's Magnetosphere.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H; Van Allen, J A

    1989-12-15

    The low-energy charged particle (LECP) instrument on Voyager 2 measured within the magnetosphere of Neptune energetic electrons (22 kiloelectron volts /=0.5 MeV per nucleon) energies, using an array of solid-state detectors in various configurations. The results obtained so far may be summarized as follows: (i) A variety of intensity, spectral, and anisotropy features suggest that the satellite Triton is important in controlling the outer regions of the Neptunian magnetosphere. These features include the absence of higher energy (>/=150 keV) ions or electrons outside 14.4 R(N) (where R(N) = radius of Neptune), a relative peak in the spectral index of low-energy electrons at Triton's radial distance, and a change of the proton spectrum from a power law with gamma >/= 3.8 outside, to a hot Maxwellian (kT [unknown] 55 keV) inside the satellite's orbit. (ii) Intensities decrease sharply at all energies near the time of closest approach, the decreases being most extended in time at the highest energies, reminiscent of a spacecraft's traversal of Earth's polar regions at low altitudes; simultaneously, several spikes of spectrally soft electrons and protons were seen (power input approximately 5 x 10(-4) ergs cm(-2) s(-1)) suggestive of auroral processes at Neptune. (iii) Composition measurements revealed the presence of H, H(2), and He(4), with relative abundances of 1300:1:0.1, suggesting a Neptunian ionospheric source for the trapped particle population. (iv) Plasma pressures at E >/= 28 keV are maximum at the magnetic equator with beta approximately 0.2, suggestive of a relatively empty magnetosphere, similar to that of Uranus. (v) A potential signature of satellite 1989N1 was seen, both inbound and outbound; other possible signatures of the moons and rings are evident in the data but cannot be positively identified in the

  8. AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF OBLIQUE PULSARS

    SciTech Connect

    Philippov, Alexander A.; Spitkovsky, Anatoly; Cerutti, Benoit

    2015-03-01

    We present “first-principles” relativistic particle-in-cell simulations of the oblique pulsar magnetosphere with pair formation. The magnetosphere starts to form with particles extracted from the surface of the neutron star. These particles are accelerated by surface electric fields and emit photons capable of producing electron–positron pairs. We inject secondary pairs at the locations of primary energetic particles whose energy exceeds the threshold for pair formation. We find solutions that are close to the ideal force-free magnetosphere with the Y-point and current sheet. Solutions with obliquities ≤40° do not show pair production in the open field line region because the local current density along the magnetic field is below the Goldreich–Julian value. The bulk outflow in these solutions is charge-separated, and pair formation happens in the current sheet and return current layer only. Solutions with higher inclinations show pair production in the open field line region, with high multiplicity of the bulk flow and the size of the pair-producing region increasing with inclination. We observe the spin-down of the star to be comparable to MHD model predictions. The magnetic dissipation in the current sheet ranges between 20% for the aligned rotator and 3% for the orthogonal rotator. Our results suggest that for low obliquity neutron stars with suppressed pair formation at the light cylinder, the presence of phenomena related to pair activity in the bulk of the polar region, e.g., radio emission, may crucially depend on the physics beyond our simplified model, such as the effects of curved spacetime or multipolar surface fields.

  9. Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements

    NASA Technical Reports Server (NTRS)

    Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.

    1996-01-01

    We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.

  10. Soft Particle Spectrometer, Langmuir Probe, and Data Analysis for Aerospace Magnetospheric/Thermospheric Coupling Rocket Program

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Frahm, R. A.; Scherrer, J. R.

    1997-01-01

    Under this grant two instruments, a soft particle spectrometer and a Langmuir probe, were refurbished and calibrated, and flown on three instrumented rocket payloads as part of the Magnetosphere/Thermosphere Coupling program. The flights took place at the Poker Flat Research Range on February 12, 1994 (T(sub o) = 1316:00 UT), February 2, 1995 (T(sub o) = 1527:20 UT), and November 27, 1995 (T(sub o) = 0807:24 UT). In this report the observations of the particle instrumentation flown on all three of the flights are described, and brief descriptions of relevant geophysical activity for each flight are provided. Calibrations of the particle instrumentation for all ARIA flights are also provided.

  11. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  12. Solar cycle dynamics of solar, magnetospheric, and heliospheric particles, and long-term atmospheric coupling: SAMPLEX

    NASA Technical Reports Server (NTRS)

    Mason, G. M. (Principal Investigator); Hamilton, D. C.; Blake, J. B.; Mewaldt, R. A.; Stone, E. C.; Baker, D. N.; VonRosenvinge, T. T.; Callis, L. B.; Klecker, B.; Hovestadt, D.; Scholer, M.

    1996-01-01

    This report summarizes science analysis activities by the SAMPEX mission science team during the period during the period July 1, 1995 through July 1, 1996. Bibliographic entries for 1995 and 1996 to date (July 1996) are included. The SAMPEX science team was extremely active, with 20 articles published or submitted to refereed journals, 18 papers published in their entirety in Conference Proceedings, and 53 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings of anomalous cosmic rays, solar energetic particles, magnetospheric precipitating electrons, trapped H and He isotopes, and data analysis activities.

  13. The earth's magnetosphere under continued forcing - Substorm activity during the passage of an interplanetary magnetic cloud

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Freeman, M. P.; Burlaga, L. F.; Lepping, R. P.; Takahashi, K.

    1993-01-01

    Magnetic field and energetic particle observations from six spacecraft in the near-earth magnetotail are described and combined with ground magnetograms to document for the first time the magnetospheric substorm activity during a 30-hour long transit of an interplanetary cloud at 1 AU. During an earlier 11-hr interval when B(z) was continuously positive, the magnetosphere was quiescent, while in a later 18-hr interval when B(z) was uninterruptedly negative a large magnetic storm was set off. In the latter interval the substorm onsets recurred on average every 50 min. Their average recurrence frequency remained relatively undiminished even when the magnetic cloud B(z) and other measures of the interplanetary energy input decreased considerably. These results concur with current models of magnetospheric substorms based on deterministic nonlinear dynamics. The substorm onset occurred when the cloud's magnetic field had a persistent northward component but was predominantly westward pointing.

  14. Hot plasma and energetic particles in the earth's outer magnetosphere: new understandings during the IMS

    SciTech Connect

    Baker, D.N.; Fritz, T.A.

    1984-01-01

    In this paper we review the major accomplishments made during the IMS period in clarifying magnetospheric particle variations in the region from roughly geostationary orbit altitudes into the deep magnetotail. We divide our review into three topic areas: (1) acceleration processes; (2) transport processes; and (3) loss processes. Many of the changes in hot plasmas and energetic particle populations are often found to be related intimately to geomagnetic storm and magnetospheric substorm effects and, therefore, substantial emphasis is given to these aspects of particle variations in this review. The IMS data, taken as a body, allow a reasonably unified view as one traces magnetospheric particles from their acceleration source through the plasma sheet and outer trapping regions and, finally, to their loss via ionospheric precipitation and ring current formation processes. It is this underlying, unifying theme which is pursued here. 52 references, 19 figures.

  15. Energetic charged particles in the magnetosphere of neptune.

    PubMed

    Stone, E C; Cummings, A C; Loooper, M D; Selesnick, R S; Lal, N; McDonald, F B; Trainor, J H; Chenette, D L

    1989-12-15

    The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [>/=1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities are maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet.

  16. Energetic charged particles in the magnetosphere of Neptune

    SciTech Connect

    Stone, E.C.; Cummings, A.C.; Looper, M.D.; Selesnick, R.S. ); Lal, N.; McDonald, F.B.; Trainor, J.H. ); Chenette, D.L. )

    1989-12-15

    The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic ({approx lt}1 megaelectron volt (MeV)) trapped electrons and protons in the magnetosphere of Neptune. The intensities at maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet.

  17. Energetic charged particles in the magnetosphere of Neptune

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Cummings, A. C.; Looper, M. D.; Selesnick, R. S.; Lal, N.; Mcdonald, F. B.; Trainor, J. H.

    1989-01-01

    The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic greater than or equal to about 1 megaelectron volt (MeV) trapped electrons and protons in the magnetosphere of Neptune. The intensities are maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet.

  18. A periodically active pulsar giving insight into magnetospheric physics.

    PubMed

    Kramer, M; Lyne, A G; O'Brien, J T; Jordan, C A; Lorimer, D R

    2006-04-28

    PSR B1931+24 (J1933+2421) behaves as an ordinary isolated radio pulsar during active phases that are 5 to 10 days long. However, when the radio emission ceases, it switches off in less than 10 seconds and remains undetectable for the next 25 to 35 days, then switches on again. This pattern repeats quasi-periodically. The origin of this behavior is unclear. Even more remarkably, the pulsar rotation slows down 50% faster when it is on than when it is off. This indicates a massive increase in magnetospheric currents when the pulsar switches on, proving that pulsar wind plays a substantial role in pulsar spin-down. This allows us, for the first time, to estimate the magnetospheric currents in a pulsar magnetosphere during the occurrence of radio emission.

  19. Pioneer 11 observations of energetic particles in the jovian magnetosphere.

    PubMed

    Van Allen, J A; Randall, B A; Baker, D N; Goertz, C K; Sentman, D D; Thomsen, M F; Flindt, H R

    1975-05-02

    Knowledge of the positional distributions, absolute intensities, energy spectra, and angular distributions of energetic electrons and protons in the Jovian magnetosphere has been considerably advanced by the planetary flyby of Pioneer 11 in November-December 1974 along a quite different trajectory from that of Pioneer 10 a year earlier. (i) The previously reported magnetodisc is shown to be blunted and much more extended in latitude on the sunward side than on the dawn side. (ii) Rigid corotation of the population of protons E(p) approximately 1 million electron volts in the magnetodisc is confirmed. (iii) Angular distributions of energetic electrons E(e) > 21 million electron volts in the inner magnetosphere are shown to be compatible with the Kennel-Petschek whistler-mode instability. (iv) A diverse body of magnetospheric effects by the Jovian satellites is found. (v) Observations of energetic electrons in to a radial distance of 1.59 Jovian radii provide a fresh basis for the interpretation of decimetric radio noise emission.

  20. An Overview of Energetic Particle Measurements in the Jovian Magnetosphere with the EPAC Sensor on Ulysses.

    PubMed

    Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J

    1992-09-11

    Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.

  1. Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.

    2015-12-01

    Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.

  2. Understanding of particle acceleration and loss in Jupiter's magnetosphere from Juno mission

    NASA Astrophysics Data System (ADS)

    Bolton, Scott

    2016-07-01

    Juno is the first Jupiter polar mission. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. Juno's extensive suite of fields and particle experiments along with the UV and IR imagers will provide the first detailed investigation of Jupiter's polar magnetosphere. The set of six microwave radiometers on Juno provide an unprecedented view of Jupiter's synchrotron emission from inside Jupiter's powerful radiation belts. The Juno mission design, science goals, and measurements related to the magnetosphere and radiation belts of Jupiter will be presented.

  3. Energetic particle signatures of satellites and rings in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.; Stone, E. C.

    1992-01-01

    The cosmic ray system on Voyager 2 found a trapped radiation environment in Neptune's inner magnetosphere which is controlled primarily by absorption at the rings and satellite surfaces. The intensity of electrons with kinetic energies approximately greater than 1 MeV shows particularly strong and narrow signatures associated with absorption by the satellite 1989N1 at an orbital radius of 4.75 Neptune radii. Closer to the planet are several signatures of the inner satellites and rings. Absorption limits the intensity of the inner radiation belt sufficiently for the maximum intensity to occur outside the orbit of 1989N1 at a magnetic L shell of about 7. Radial profiles of the electron phase space density show that electrons diffuse inward from a source in the outer magnetosphere. Many of the inward-diffusing electrons are absorbed upon reaching a satellite orbital radius, but the finite absorption efficiency allows some of the electrons to pass by unaffected. The locations of the satellite and ring signatures also provide constraints on the nondipolar components of the planetary magnetic field.

  4. Low-Energy Charged Particles in Saturn's Magnetosphere: Results from Voyager 1.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Gloeckler, G; Keath, E P; Lanzerotti, L J; Carbary, J F; Hamilton, D C; Roelof, E C

    1981-04-10

    The low-energy charged particle instrument on Voyager 1 measured low-energy electrons and ions (energies >/= 26 and >/= 40 kiloelectron volts, respectively) in Saturn's magnetosphere. The first-order ion anisotropies on the dayside are generally in the corotation direction with the amplitude decreasing with decreasing distance to the planet. The ion pitch-angle distributions generally peak at 90 degrees , whereas the electron distributions tend to have field-aligned bidirectional maxima outside the L shell of Rhea. A large decrease in particle fluxes is seen near the L shell of Titan, while selective particle absorption (least affecting the lowest energy ions) is observed at the L shells of Rhea, Dione, and Tethys. The phase space density of ions with values of the first invariant in the range approximately 300 to 1000 million electron volts per gauss is consistent with a source in the outer magnetosphere. The ion population at higher energies (>/= 200 kiloelectron volts per nucleon) consists primarily of protons, molecular hydrogen, and helium. Spectra of all ion species exhibit an energy cutoff at energies >/= 2 million electron volts. The proton-to-helium ratio at equal energy per nucleon is larger (up to approximately 5 x 10(3)) than seen in other magnetospheres and is consistent with a local (nonsolar wind) proton source. In contrast to the magnetospheres of Jupiter and Earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. Electron pitch-angle distributions are generally bidirectional andfield-aligned, indicating closed field lines at high latitudes. Ions in this region are generally moving toward Saturn, while in the magnetosheath they exhibit strong antisunward streaming which is inconsistent with purely convective flows. Fluxes of magnetospheric ions downstream from the bow shock are present over distances >/= 200 Saturn radii from the planet. Novel features identified in the Saturnian magnetosphere include a

  5. Effects of Finite Element Resolution in the Simulation of Magnetospheric Particle Motion

    NASA Technical Reports Server (NTRS)

    Hansen, Richard

    2006-01-01

    This document describes research done in conjunction with a degree program. The purpose of the research was to compare particle trajectories in a specified set of global electric and magnetic fields; to study the effect of mesh spacing, resulting in an evaluation of adequate spacing resolution; and to study time-dependent fields in the context of substorm dipolarizations of the magnetospheric tail.

  6. Energetic Particles and Magnetic Fields in the Earth’s Magnetosphere and Interplanetary Space

    DTIC Science & Technology

    1998-01-01

    model for Jupiter’s inner magnetosphere using a microsignature of Amalthea Bruce A. Randall Department of Physics and Astronomy, University of Iowa...Iowa City Abstract. Observation of a particle absorption microsignature of the Jovian satellite Amalthea during the Pioneer 11 close flyby of Jupiter on

  7. Active Magnetospheric Particle Tracing Explorers (AMPTE).

    DTIC Science & Technology

    1985-02-07

    0 0C0D 0 0 0 C3 01) 00 0 O C60 -, 0 ~ 0 *" r, C- ’r) SZ9 LO SSZ h WWI 31dWtj h861 Ill d3S h8 Nnu 01*8 U01 D lISWAI 0 I.nI7 cmc fs ow Jn m...3lO3NJOWdAO NOWi)T13 -00 SZ LO SSZ hG WWI 3idWU hG61 @II d3S ~ZOlh ZO 86Z tiG Nflw 900wu1 t*1OI AD Jli!SW3AINl in =r M N -0 CD OD W~ CO Ifr M N -0 ----- 00...AiIS3AINl CD I ~ II 1111 1 lCD * 13 (D 0npW fd W P ic 3c (V - * 00 9S 60 h9Z hQ 1W 31dWUh910d3 zzOthe zO 96 he NAu SOOfWI b314D 3O )dISWJ3AiNf fLn V M’ N

  8. Advances in Inner Magnetosphere Passive and Active Wave Research

    NASA Technical Reports Server (NTRS)

    Green, James L.; Fung, Shing F.

    2004-01-01

    This review identifies a number of the principal research advancements that have occurred over the last five years in the study of electromagnetic (EM) waves in the Earth's inner magnetosphere. The observations used in this study are from the plasma wave instruments and radio sounders on Cluster, IMAGE, Geotail, Wind, Polar, Interball, and others. The data from passive plasma wave instruments have led to a number of advances such as: determining the origin and importance of whistler mode waves in the plasmasphere, discovery of the source of kilometric continuum radiation, mapping AKR source regions with "pinpoint" accuracy, and correlating the AKR source location with dipole tilt angle. Active magnetospheric wave experiments have shown that long range ducted and direct echoes can be used to obtain the density distribution of electrons in the polar cap and along plasmaspheric field lines, providing key information on plasmaspheric filling rates and polar cap outflows.

  9. Charged particle motions in the distended magnetospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1982-01-01

    Charged particle motion in the guiding center approximation is analyzed for models of the Jovian and Saturnian magnetospheric magnetic fields based on Voyager magnetometer observations. Field lines are traced and exhibit the distention which arises from azimuthally circulating magnetospheric currents. The spatial dependencies of the guiding center bounce period and azimuthal drift rate are investigated for the model fields. Non-dipolar effects in the gradient-curvature drift rate are most important at the equator and affect particles with all mirror latitudes. The effect is a factor of 10-15 for Jupiter with its strong magnetodisc current and 1-2 for Saturn with its more moderate ring current. Limits of adiabaticity, where particle gyroradii become comparable with magnetic scale lengths, are discussed and are shown to occur at quite modest kinetic energies for protons and heavier ions.

  10. High-Energy Charged Particles in the Innermost Jovian Magnetosphere

    PubMed

    Fischer; Pehlke; Wibberenz; Lanzerotti; Mihalov

    1996-05-10

    The energetic particles investigation carried by the Galileo probe measured the energy and angular distributions of the high-energy particles from near the orbit of Io to probe entry into the jovian atmosphere. Jupiter's inner radiation region had extremely large fluxes of energetic electrons and protons; intensities peaked at approximately2.2RJ (where RJ is the radius of Jupiter). Absorption of the measured particles was found near the outer edge of the bright dust ring. The instrument measured intense fluxes of high-energy helium ions (approximately62 megaelectron volts per nucleon) that peaked at approximately1.5RJ inside the bright dust ring. The abundances of all particle species decreased sharply at approximately1.35RJ; this decrease defines the innermost edge of the equatorial jovian radiation.

  11. The Fly's Eye Energetic Particle Spectrometer (FEEPS) Sensors for the Magnetospheric Multiscale (MMS) Mission

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Mauk, B. H.; Baker, D. N.; Carranza, P.; Clemmons, J. H.; Craft, J.; Crain, W. R.; Crew, A.; Dotan, Y.; Fennell, J. F.; Friedel, R. H.; Friesen, L. M.; Fuentes, F.; Galvan, R.; Ibscher, C.; Jaynes, A.; Katz, N.; Lalic, M.; Lin, A. Y.; Mabry, D. M.; Nguyen, T.; Pancratz, C.; Redding, M.; Reeves, G. D.; Smith, S.; Spence, H. E.; Westlake, J.

    2016-03-01

    The Energetic Particle Detector (EPD) Investigation is one of five particles and fields investigations on the Magnetospheric Multiscale (MMS) mission. This mission consists of four satellites operating in close proximity in elliptical, low-inclination orbits, and is focused upon the fundamental physics of magnetic reconnection. The Energetic Particle Detector (EPD) investigation aboard the four MMS spacecraft consists of two instrument designs, the EIS (Energetic Ion Spectrometer) and the FEEPS (Fly's Eye Electron Proton Spectrometer). This present paper describes FEEPS from an instrument physics and engineering point of view, and provides some test and calibration data to facilitate effective analysis and use of the flight data for scientific purposes.

  12. Strategies for dealing with solar particle events in missions beyond the magnetosphere.

    PubMed

    Heckman, G R; Wagner, W J; Hirman, J W; Kunches, J M

    1989-01-01

    For long duration missions beyond the magnetosphere, the hazards posed by solar particle events (SPE) require the development of new strategies to minimize both the radiation dose and the effects. Potential strategies include the development of improved short-term forecasting of SPE through better observations and research, consideration of HZE particles in real-time forecasting and monitoring, improved knowledge of the biological effects of the particles involved in SPE, and the development of methods for combining SPE forecasts with temporary shielding and chemical countermeasures. Evaluation of present capabilities and the identification of areas of further research to achieve the necessary capabilities are discussed.

  13. Global electric field determination in the Earth's outer magnetosphere using energetic charged particles

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Sheldon, R.; Hamilton, D.

    1995-01-01

    Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental measurement (for zeroth order MHD equilibrium) has been made infrequently and with poor spatial coverage - the global electric field. This oversight is due in part to the neglect of theorists. However, there is renewed interest in the convection electric field because it is now realized to be central to many magnetospheric processes, including the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere ionosphere coupling, ring current and radiation belt transport, substorm injections, and several acceleration mechanisms. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models) and we are left with an overly simplistic theoretical field, the Volland-Stern electric field model. Single point measurements of the plasmapause were used to infer the appropriate amplitudes of this model, parameterized by K(sub p). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 20 years. The analysis of current data sets requires a great deal more accuracy than can be provided by the Volland-Stern model. The variability of electric field shielding has not been properly addressed although effects of penetrating magnetospheric electric fields has been seen in mid-and low-latitude ionospheric data sets. The growing interest in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections. Thus we proposed and developed algorithms for extracting electric fields from particle data taken in the Earth's magnetosphere. As a test of the effectiveness of these new techniques, we analyzed data taken by the AMPTE/CCE spacecraft in equatorial orbit from 1984 to 1989.

  14. Solar Flares and Magnetospheric Particles: Investigations Based upon the ONR-602 Experiment.

    DTIC Science & Technology

    2014-09-26

    period vas the most intense flare period available for study . INTERPLANETARY WMOTNS) > MO~V *~tu RO? ""UTINE TAMNING FLAW.$ 0I ] ’ ~r .’ 3 ’~II I top I...u4 8 w% 3 Disrib tio . ... . . . . . . . . . . . .5 0 7 3 2 . . . . . . . .. . . . . . . . . . . . . . N SOLAR FLARES AND MAGNETOSPHERIC PARTICLES...was panted 3 April 1985. Therefore, this report covers the period 1 April 198 to 30 June p1 .. 1985. . -. D trlbutioi/. Avilablity Codes Avail

  15. Motion of charged particles in planetary magnetospheres with nonelectromagnetic forces

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Hill, T. W.; Wolf, R. A.

    1988-01-01

    Expressions are derived for the mirror point, the bounce period, the second adiabatic invariant, and the bounce-averaged azimuthal drift velocity as functions of equatorial pitch angle for a charged particle in a dipole magnetic field in the presence of centrifugal, gravitational, and Coriolis forces. These expressions are evaluated numerically, and the results are displayed graphically. The average azimuthal drift speed for a flux tube containing a thermal equilibrium plasma distribution is also evaluated.

  16. PAMELA's Measurements of Magnetospheric Effects on High Energy Solar Particles

    NASA Astrophysics Data System (ADS)

    de Nolfo, Georgia; Boezio, M.; Bravar, Ulisse; Bruno, A.; Christian, Eric R.; Martucci, M.; Merge, M.; Mocchiutti, E.; Munini, R.; Ricci, M.; Ryan, James Michael; Stochaj, Steven; Thakur, N.

    2015-04-01

    Whether solar energetic particles (SEP) attain energies in excess of a GeV through flare reconnection or through CME-driven shocks is still in debate today. Observations of the properties of SEPs relate both to the acceleration mechanisms at play but also to the influences experienced during transport. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument, provides new observations of SEPs that uniquely set apart the affects of acceleration from those of transport. PAMELA detects the composition and the angular distribution of the particles about the magnetic field, i.e. pitch angle distribution, over a broad energy range (from ~80 MeV to beyond one GeV) -- bridging a critical gap between space-based measurements and ground-based. We report on the observation of high-energy SEP data from PAMELA acquired during the 2012 May 17 ground level enhancement (GLE). These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions; a low-energy population that extends to 90° and a population that is beamed at high energies (> 1 GeV), consistent with neutron monitor measurements. The arrival of SEPs over a broad range in energy at Earth within 20 minutes sets strong constraints on the pitch angle distribution of SEPs originating at the Sun. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.

  17. Radio Emission by Particles Accelerated in Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Thomas, R. M. C.; Gangadhara, R. T.

    2003-03-01

    We present a relativistic model of pulsar radio emission by plasma accelerated along the rotating magnetic field lines projected on to a 2D plane perpendicular to the rotation axis. We have derived the expression for the trajectory of a particle, and estimated the spectrum of radio emission by the plasma bunches. We used the parameters given in the paper by Peyman and Gangadhara (2002). Further the analystical expressions for the Stokes parameters are derived, and compared them with the observed profiles. The one sense of circular polarization, observed in many pulsars, can be explained in the light of our model.

  18. Double layer -- a particle accelerator in the magnetosphere

    SciTech Connect

    Fu, Xiangrong

    2015-07-16

    Slides present the material under the following topics: Introduction (What is a double layer (DL)? Why is it important? Key unsolved problems); Theory -- time-independent solutions of 1D Vlasov--Poisson system; Particle-in-cell simulations (Current-driven DLs); and Electron acceleration by DL (Betatron acceleration). Key problems include the generation mechanism, stability, and electron acceleration. In summary, recent observations by Van Allen Probes show large number of DLs in the outer radiation belt, associated with enhanced flux of relativistic electrons. Simulations show that ion acoustic double layers can be generated by field-aligned currents. Thermal electrons can gain energy via betatron acceleration in a dipole magnetic field.

  19. Magnetospheric Effects on High Energy Solar Particles: PAMELA Measurements

    NASA Astrophysics Data System (ADS)

    de Nolfo, G. A.; Boezio, M.; Ryan, J. M.; Christian, E. R.; Stochaj, S.; Bruno, A.; Mergè, M.; Martucci, M.; Ricci, M.; Mocchiutti, E.; Munini, R.; Bazilevskaya, G.; Bravar, U.

    2015-12-01

    Solar Energetic Particles (SEPs) are thought to be accelerated at the Sun by solar flares or by the shocks formed by Coronal Mass Ejections (CMEs). Even more elusive is the origin of the highest energy SEPs in so-called Ground Level Enhancements (GLEs). At these energies, the effects of transport are often minimal, providing an opportunity to investigate the problem of particle acceleration. However, the effects of transport en route to Earth often obscure the acceleration process(es). The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument provides new data that aid in separating the effects of acceleration and transport. Furthermore, PAMELA bridges a critical gap in energy between the low-energy space-based and highest-energy ground-based measurements. We report on recent PAMELA observations of high-energy SEPs and illustrate some of the governing effects of acceleration and transport with the first GLE of solar cycle 24, i.e., 2012 May 17. The PAMELA data of 2012 May 17 reveal two distinct spectral components, a low-energy SEP component that exhibits significant scattering or redistribution, accompanied by a high-energy component that reaches the Earth relatively unaffected by dispersive transport effects. We postulate that the scattering or redistribution at low energies takes place locally providing one of the first opportunities to witness the effects of SEP transport in the Earth's magnetosheath.

  20. An overview of the solar, anomalous, and magnetospheric particle explorer (SAMPEX) mission

    SciTech Connect

    Baker, D.N. . Lab. for Extraterrestrial Physics); Mason, G.M. . Dept. of Physics); Figueroa, O.; Colon, G.; Watzin, J.G.; Aleman, R.M. . Engineering Directorate)

    1993-05-01

    The scientific objective of the NASA Small-class Explorer Mission SAMPEX are summarized. A brief history of the Small Explorer program is provided along with a description of the SAMPEX project development and structure. The spacecraft and scientific instrument configuration is presented. The orbit of SAMPEX has an altitude of 520 by 670 km and an 82[degree] inclination. Maximum possible power is provided by articulated solar arrays that point continuously toward the sun. Highly sensitive science instruments point generally toward the local zenith, especially over the terrestrial poles, in order to measure optimally the galactic and solar cosmic ray flux. Energetic magnetospheric particle precipitation is monitored at lower geomagnetic latitudes. The spacecraft uses several innovative approaches including an optical fiber bus, powerful onboard computers, and large solid state memories (instead of tape recorders). Spacecraft communication and data acquisition are discussed and the space- and ground-segment data flows are summarized. A mission lifetime of 3 years is sought with the goal of extending data acquisition over an even longer portion of the 11-year solar activity cycle.

  1. Acceleration of charged particles in magnetic reconnection Solar flares, the magnetosphere, and solar wind

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Matthaeus, W. H.; Ambrosiano, J. J.

    1986-01-01

    A possible source of free energy available for accelerating charged particles is conversion of magnetic energy to particle energy in reconnecting magnetic fields. Recent simulations using test particles suggests that reconnection may efficiently accelerate particles to the maximum energies that are observed in several astrophysical contexts. A simple analytic formula is used in conjunction with the simulation results to predict the maximum energy achievable in a particular plasma environment with the result that in solar flares reconnection is capable of accelerating particles to several GeV. In magnetospheric substorms the predicted maximum can reach several hundred keV, and near magnetic sector crossings in the solar wind the maximum energy can approach 100 keV.

  2. Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Hellberg, Manfred A.; Maharaj, Shimul K.

    2014-07-15

    Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.

  3. Validation of the SWMF Magnetosphere: Fields and Particles

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Ridley, A. J.

    2009-05-01

    The Space Weather Modeling Framework has been developed at the University of Michigan to allow many independent space environment numerical models to be executed simultaneously and coupled together to create a more accurate, all-encompassing system. This work explores the capabilities of the framework when using the BATS-R-US MHD code, Rice Convection Model (RCM), the Ridley Ionosphere Model (RIM), and the Polar Wind Outflow Model (PWOM). Ten space weather events, ranging from quiet to extremely stormy periods, are modeled by the framework. All simulations are executed in a manner that mimics an operational environment where fewer resources are available and predictions are required in a timely manner. The results are compared against in-situ measurements of magnetic fields from GOES, Polar, Geotail, and Cluster satellites as well as MPA particle measurements from the LANL geosynchronous spacecraft. Various metrics are calculated to quantify performance. Results when using only two to all four components are compared to evaluate the increase in performance as new physics are included in the system.

  4. Planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Stern, D. P.; Ness, N. F.

    1981-01-01

    A concise overview is presented of our understanding of planetary magnetospheres (and in particular, of that of the Earth), as of the end of 1981. Emphasis is placed on processes of astrophysical interest, e.g., on particle acceleration, collision-free shocks, particle motion, parallel electric fields, magnetic merging, substorms, and large scale plasma flows. The general morphology and topology of the Earth's magnetosphere are discussed, and important results are given about the magnetospheres of Jupiter, Saturn and Mercury, including those derived from the Voyager 1 and 2 missions and those related to Jupiter's satellite Io. About 160 references are cited, including many reviews from which additional details can be obtained.

  5. Enceladus' varying imprint on the magnetosphere of Saturn.

    PubMed

    Jones, G H; Roussos, E; Krupp, N; Paranicas, C; Woch, J; Lagg, A; Mitchell, D G; Krimigis, S M; Dougherty, M K

    2006-03-10

    The bombardment of Saturn's moon Enceladus by >20-kiloelectron volt magnetospheric particles causes particle flux depletions in regions magnetically connected to its orbit. Irrespective of magnetospheric activity, proton depletions are persistent, whereas electron depletions are quickly erased by magnetospheric processes. Observations of these signatures by Cassini's Magnetospheric Imaging Instrument allow remote monitoring of Enceladus' gas and dust environments. This reveals substantial outgassing variability at the moon and suggests increased dust concentrations at its Lagrange points. The characteristics of the particle depletions additionally provide key radial diffusion coefficients for energetic electrons and an independent measure of the inner magnetosphere's rotation velocity.

  6. Energetic charged-particle phenomena in the Jovian magnetosphere - First results from the Ulysses COSPIN collaboration

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Anglin, J. D.; Balogh, A.; Burrows, J. R.; Cowley, S. W. H.; Ferrando, P.; Heber, B.; Hynds, R. J.; Kunow, H.; Marsden, R. G.

    1992-01-01

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes on the dusk side and reached higher magnetic latitudes on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of about 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium; high-energy electron bursts on the dusk side that are apparently associated with field-aligned currents and radio burst emissions; persistence of the global 10-hour relativistic electron 'clock' phenomenon throughout Jupiter's magnetosphere; on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail; and consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  7. Energetic Charged-Particle Phenomena in the Jovian Magnetosphere: First Results from the Ulysses COSPIN Collaboration.

    PubMed

    Simpson, J A; Anglin, J D; Balogh, A; Burrows, J R; Cowley, S W; Ferrando, P; Heber, B; Hynds, R J; Kunow, H; Marsden, R G; McKibben, R B; Müller-Mellin, R; Page, D E; Raviart, A; Sanderson, T R; Staines, K; Wenzel, K P; Wilson, M D; Zhang, M

    1992-09-11

    The Ulysses spacecraft made the first exploration of the region of Jupiter's magnetosphere at high Jovigraphic latitudes ( approximately 37 degrees south) on the dusk side and reached higher magnetic latitudes ( approximately 49 degrees north) on the day side than any previous mission to Jupiter. The cosmic and solar particle investigations (COSPIN) instrumentation achieved a remarkably well integrated set of observations of energetic charged particles in the energy ranges of approximately 1 to 170 megaelectron volts for electrons and 0.3 to 20 megaelectron volts for protons and heavier nuclei. The new findings include (i) an apparent polar cap region in the northern hemisphere in which energetic charged particles following Jovian magnetic field lines may have direct access to the interplanetary medium, (ii) high-energy electron bursts (rise times approximately 17 megaelectron volts) on the dusk side that are apparently associated with field-aligned currents and radio burst emissions, (iii) persistence of the global 10-hour relativistic electron "clock" phenomenon throughout Jupiter's magnetosphere, (iv) on the basis of charged-particle measurements, apparent dragging of magnetic field lines at large radii in the dusk sector toward the tail, and (v) consistent outflow of megaelectron volt electrons and large-scale departures from corotation for nucleons.

  8. Magnetospheric particle injection and the upstream ion event of September 5, 1984

    SciTech Connect

    Krimigis, S.M.; Sibeck, D.G.; McEntire, R.W.

    1986-12-01

    Energetic particle data from the AMPTE Charge Composition Explorer (CCE) spacecraft in the outer dayside magnetosphere are examined during the period of an upstream ion event observed by AMPTE Ion Release Module (IRM) spacecraft on September 5, 1984 (Moebius et al., this issue). The CCE data reveal the following: (a) an ion enhancement was observed at --0040 UT in near coincidence with a substorm onset at --0035 UT, approximately 15 minutes prior to the onset of the event upstream of the shock; (b) ions of both solar wind (He/sup + +/, Fe-group) and ionospheric (O/sup +/) origin over a broad energy range (--20 keV to >1350 keV) were injected at substorm onset; (c) the time evolution of the H/sup +/, He/sup + +/, and O/sup +/ pitch angle distributions markedly differed, with O/sup +/ exhibiting mostly enhancements at off-90/sup 0/ angles for the first hour after injection; (d) an enhancement in the Fe-group ions inside the magnetosphere at L--6.4 occurred simultaneously with the appearance of an O/sup +/ burst upstream of the shock. The CCE observations, taken together with the simultaneously observed IRM ion event, suggest that a plausible explanation for the appearence of upstream ions is leakage from the magnetosphere into the upstream region, rather than the alternate explanation which requires in-situ acceleration of solar wind ions via the Fermi mechanism.

  9. Magnetospheric particle injection and the upstream ion event of September 5, 1984

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Sibeck, D. G.; Mcentire, R. W.

    1986-01-01

    Energetic particle data from the AMPTE Charge Composition Explorer (CCE) spacecraft in the outer dayside magnetosphere are examined during the period of an upstream ion event observed by the AMPTE Ion Release Module (IRM) spacecraft on September 5, 1984. The CCE data reveal the following: (1) an ion enhancement was observed at about 0040 UT in near coincidence with a substorm onset at about 0035 UT, approximately 15 minutes prior to the onset of the event upstream of the shock; (b) ions of both solar-wind - H(2+) Fe-group - and ionospheric O(+) - origin over a broad energy range (about 20 keV to greater than 1350 keV) were injected at substorm onset; (3) the time evolution of the H(+), He(2+), and O(+) pitch angle distributions markedly differed, with O(+) exhibiting mostly enhancements at off-90-deg angles for the first hour after injection; (4) an enhancement in the Fe-group ions inside the magnetosphere at L = about 6.4 occurred simultaneously with the appearance of an O(+) burst upstream of the shock. The CCE observations, taken together with the simultaneously observed IRM ion event, suggest that a plausible explanation for the appearance of upstream ions is leakage from the magnetosphere into the upstream region, rather than the alternative explanation which requires in situ acceleration of solar wind ions via the Fermi Mechanims.

  10. Particle acceleration and transport in the tail and at the front side of the magnetosphere, task 1 and 2

    NASA Technical Reports Server (NTRS)

    Kistler, Lynn M.; Moebius, Eberhard; Lee, Martin A.

    1994-01-01

    The work under this grant involved studies of: (1) the acceleration and heating of ions in the course of magnetospheric substorms and the spatial distributions of the ion populations in the magnetotail; and (2) the comparison in in-situ acceleration at the bow shock and the leakage of energetic particles from the magnetosphere as source of energetic ions upstream of the Earth's bow shock.

  11. Motion of magnetospheric particle clouds in a time-dependent electric field model

    NASA Technical Reports Server (NTRS)

    Roederer, J. G.; Hones, E. H., Jr.

    1974-01-01

    A computer code has been developed to study quantitatively the drift motion of magnetospheric particles in a time-dependent electric field. These calculations were applied to the case of proton and electron injections from the plasma sheet during substorms; the model predictions were checked against observations on board the geosynchronous satellite ATS 5 by DeForest and McIlwain (1971). It was found that it is possible to simulate the observed proton spectrograms with an adequate choice of a time-dependent electric field model. The resulting kinematics is physically quite simple and in its gross features does not depend too strongly on the particular fine structure of the model.

  12. E.l.f./v.l.f. emissions observed on Ariel 4. [wave-particle phenomena in magnetosphere

    NASA Technical Reports Server (NTRS)

    Bullough, K.; Denby, M.; Gibbons, W.; Hughes, A. R. W.; Kaiser, T. R.; Tatnall, A. R. L.

    1975-01-01

    The Ariel 4 satellite was designed to study wave-particle phenomena in the magnetosphere by measuring the electromagnetic wave fields over a wide frequency range and the fluxes and pitch angle distributions of energetic particles. We describe here the results of a preliminary study of the various v.l.f./e.l.f. electromagnetic wave phenomena which are observed. These include man-made signals from v.l.f. transmitters, impulsive noise originating in thunderstorms and emissions arising from magnetospheric energetic charged particles.

  13. Solar flares and magnetospheric particles: Investigations based upon the ONR-602 and ONR-604 experiments. Technical report

    SciTech Connect

    Wefel, J.P.; Guzik, T.G.

    1992-10-15

    The study of solar flares, and the interaction of solar flare radiations with the geospace environment, is one of the most fundamental investigations in space science. Involved are basic questions about the mechanism for energy generation in the flare region, the conversion of this energy into high energy charged particles, neutrons, x-rays and gamma rays, the interplanetary propagation of the particles to Earth, the access of these particles to the magnetosphere and the changes initiated in our local environment due to the solar flare. In the latter case, the solar particles are superposed upon an existing background of geomagnetically trapped and pseudo-trapped charged particles, which are themselves of fundamental importance in the dynamics of the geospace environment. While these questions are quite compelling scientifically, they also have important practical applications. The influence of solar activity and the consequent geomagnetic disturbances on the availability and quality of long range, short wave radio communication is perhaps the best known of the solar effects. With the advent of the space program and the ever increasing use of the space environment for both civilian and military applications, the consequences of space radiations are becoming a major operational concern since possible effects of such radiations include: the long-term degradation of hardware in the space environment, the abrupt failure of space systems due to a short-term event or even a single, intensely ionizing particle, and limitations imposed by the radiation environment on the human presence in orbit.

  14. Correlations of magnetospheric ion composition with geomagnetic and solar activity

    SciTech Connect

    Young, D.T.; Balsiger, H.; Geiss, J.

    1982-11-01

    A large ion composition data set consisting of 1-month averages has been assembled for the energy per charge range 0.9--15.9 keV/e. It includes 48 months of data taken by the Ion Composition Experiments on the ESA/GEOS 1 and 2 satellites at or near geostationary orbit. Data were obtained during the rising and maximum phases of the current solar cycle from May 1977 through November 1981 inclusive. Five ion species are routinely identifiable: H/sup +/, He/sup + +/, He/sup +/, O/sup + +/, and O/sup +/, above a limiting density approx.10/sup -3/ ions cm/sup -3/. Ion densities exhibit a number of very striking statistical correlations with one another and with both Kp and solar EUV as measured by F/sub 10.7/. One principal result is that increases in the densities of magnetospheric He/sup +/, O/sup + +/, and O/sup +/ are observed that are apparently due entirely to increased solar EUV fluxes associated with the ring phase of the current solar cycle. There is a marked rise in O/sup +/ density by a factor of approx.8 with increasing geomagnetic activity, but no correpsonding increase in either He/sup +/ or O/sup + +/ and only a small increase in H/sup +/. The He/sup + +//H/sup +/ ratio is found to be remarkably constant at roughly-equal0.01. Contrary to ion density results, little or no variation is found in mean energy. These observations are interpreted in terms of the composition and dynamics of two sources of magnetospheric plasma: the solar wind and the high-latitude topside ionosphere.

  15. Comment on 'Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics' by Newell and Meng

    NASA Technical Reports Server (NTRS)

    Lockwood, M.; Smith, M. F.

    1993-01-01

    Newell and Meng (1992) present maps of the occurrence probability of various classifications of particle precipitation as seen in the dayside topside ionosphere. It is argued that these are maps of the magnetospheric regions, a contention with which their critics disagree. The latter conclude that, because of convection, any one population of particles seen at low altitudes will have originated from a wide variety of locations, and particle characteristics cannot be mapped back to those in the magnetosphere without detailed knowledge of both the convection and magnetic field. Steplike boundaries between the regions will arise from nonsteady-state conditions and cannot be envisaged as steady-state magnetospheric boundaries between two plasma populations. In their reply Newell and Meng contend that convection does not move plasma from the LLBL into the cusp. Most of the LLBL plasma comes from the magnetosheath, so the direction of plasma transfer is in the other direction.

  16. Motions of charged particles in the magnetosphere under the influence of a time-varying large scale convection electric field

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.

    1979-01-01

    The motions of charged particles under the influence of the geomagnetic and electric fields are quite complex in the region of the inner magnetosphere. The Volland-Stern type large-scale convection electric field with gamma = 2 has been used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 (S3-A) measurements. Recently introduced into the trajectory calculations of Ejiri et al. (1978) is a time dependence in this electric field based on the variation in Kp for actual magnetic storm conditions. The particle trajectories are computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments are allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format. The local time of injection, the particle magnetic moments and the subsequent temporal history of the magnetospheric electric field play important roles in determining whether the injected particles are trapped within the ring current region or whether they are convected to regions outside the inner magnetosphere.

  17. Magnetosphere power budget role in the task of classification of magnetospheric activity sources

    NASA Astrophysics Data System (ADS)

    Barkhatov, N. A.; Dremukhina, L. A.; Gromova, L. I.; Levitin, A. E.; Revunov, S. E.; Ulibina, R. I.

    The self-training artificial neural networks ANN of self-organizing Cohonen map type permitting classification of complexes of perturbed space weather parameters is created In outcome eight basic classes - complexes of perturbed parameters including parameters of solar wind and interplanetary magnetic field power budget of the magnetosphere and Dst-index dynamics adequate to different global magnetospheric situations are determined Validation of the announced number of classes of complexes of perturbed parameters is confirmed by different samplings of studied events The classification of types of solar plasma flows is executed and the basic classification parameters of events corresponding to the physical essence of the task of classification defining the disturbed flow type are determined The revision of classification reliability is executed using the experimental references data on events with known type of disturbing flow and solar source The approach designed here allows to consider the classification of disturbing flows as both space and physical as within the framework of classification the space origin of different types of disturbances is considered The given classification can be used for creation of new standards of space weather phenomena description using ANN technique The ANN method allows to computerize the process of classification and make the magnetic storms prediction possible The work was executed under the financial support of the RFBR

  18. Energetic Particles Investigation (EPI). [during pre-entry of Galileo Probe in Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Fischer, H. M.; Mihalov, J. D.; Lanzerotti, L. J.; Wibberenz, G.; Rinnert, K.; Gliem, F. O.; Bach, J.

    1992-01-01

    The EPI instrument operates during the pre-entry phase of the Galileo Probe. The main objective is the study of the energetic particle population in the inner Jovian magnetosphere and in the upper atmosphere. This will be achieved through omnidirectional measurements of electrons, protons, alpha-particles and heavy ions (Z greater than 2) and recording intensity profiles with a spatial resolution of about 0.02 Jupiter radii. Sectored data will also be obtained for electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted circular silicon surface-barrier detectors surrounded by cylindrical tungsten shielding. The lower energy threshold of the particle species investigated during the Probe's pre-entry phase is determined by the material thickness of the Probe's rear heat shield which is required for heat protection of the scientific payload during entry into the Jovian atmosphere. The EPI instrument is combined with the Lightning and Radio Emission Detector and both instruments share one interface of the Probe's power, command, and data unit.

  19. Titan's induced magnetosphere from plasma wave, particle data and magnetometer observations

    NASA Astrophysics Data System (ADS)

    Modolo, R.; Romanelli, N.; Canu, P.; Coates, A. J.; Berthelier, J.; Bertucci, C.; Leblanc, F.; Piberne, R.; Edberg, N. J.; Kurth, W. S.; Gurnett, D. A.; Wahlund, J.

    2013-12-01

    The Magnetometer (MAG) measurements, the particle data (CAPS) are combined with the Radio and Plasma Wave Science (RPWS) observations to provide an overall and organized description of the electron plasma environment and the pickup ion distribution around Titan. RPWS observations are used to measure the electron number density of the thermal plasma close to Titan. This data set is combined with CAPS-ELS electron number density in Saturn's magnetosphere and Titan's environment. A relatively good correspondence between the number density estimated from CAPS-ELS and RPWS are most of the time observed between 0.1 - 1 cm-3. Combining both ELS and RPWS data allows deducing a continuous electron density profile going from Saturn's magnetosphere to Titan's ionosphere leading to a global electron density map in Titan's vicinity. The MAG observations are used to derive information about the ambient magnetic field environment in the vicinity of Titan and also to emphasize the bipolar tail region. Ion information such the mass composition of the plasma and ion distribution function for specific time intervals are determined from CAPS-IMS. Pick-up ions have been identified from their energy signature and mass composition for few flybys. These observations also emphasized a ring distribution, characteristic of pick-up ions. The pick-up observations, in the DRAP coordinate system, are found to be located in the +E=-vxB hemisphere as expected.

  20. Particle pressure and current density in the magnetosphere of Saturn: Origin of the Saturnian ring current

    NASA Astrophysics Data System (ADS)

    Sergis, N.; Krimigis, S. M.; Roelof, E. C.; Mitchell, D. G.; Rymer, A. M.; Arridge, C. S.; Krupp, N.; Thomsen, M. F.; Hamilton, D. C.; McAndrews, H. J.; Coates, A. J.; Wilson, R. J.; Dougherty, M. K.; Young, D. T.

    2009-12-01

    We report initial results on the distribution of the thermal plasma, energetic particle and magnetic field pressure in the equatorial magnetosphere, as measured by the Magnetospheric Imaging Instrument (MIMI), Cassini Plasma Spectrometer (CAPS) and the flux gate magnetometer (MAG) onboard the Cassini spacecraft, currently orbiting Saturn. Data were obtained during 11 passes from September 2005 to May 2006, when the spacecraft was particularly close (±1 Rs) to the nominal magnetic equator in the range 6 to 15 RS. The radial gradient of the total pressure is compared to the inertial body force in order to determine their relative contribution to the Saturnian ring current, and an average radial profile of the azimuthal current intensity is presented. The results can be summarized as follows: (1) The suprathermal (> 3 keV) pressure contribution to the total particle pressure becomes significant outside 8-9 Rs, exceeding 50% for r between 12 and 15 Rs. (2) The plasma beta (particle pressure/magnetic pressure) remains above 1 outside 8 RS, reaching ~3 to ~10 between 11 and 14 Rs. (3) The comparison between the inertial body force and the radial pressure gradient shows that both terms are close at 9-10 Rs, with the pressure gradient becoming dominant outside of 11 Rs. (4) The azimuthal ring current intensity develops a maximum region between approximately 8 and 12 Rs, reaching values of 100-150 pA/m^2. Outside this region, it drops with radial distance faster than the 1/r dependence that a disk current model would suggest.

  1. Electrodynamics of Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Beloborodov, Andrei M.

    2016-12-01

    We review electrodynamics of rotating magnetized neutron stars, from the early vacuum model to recent numerical experiments with plasma-filled magnetospheres. Significant progress became possible due to the development of global particle-in-cell simulations which capture particle acceleration, emission of high-energy photons, and electron-positron pair creation. The numerical experiments show from first principles how and where electric gaps form, and promise to explain the observed pulsar activity from radio waves to gamma-rays.

  2. Electromagnetic ion cyclotron waves in the Earth's magnetosphere with a kappa-Maxwellian particle distribution

    NASA Astrophysics Data System (ADS)

    Sugiyama, Hajime; Singh, Satyavir; Omura, Yoshiharu; Shoji, Masafumi; Nunn, David; Summers, Danny

    2015-10-01

    A theoretical model to study electromagnetic ion cyclotron (EMIC) waves in kappa-Maxwellian plasma is developed. The plasma is assumed to have five components, i.e., electrons, cool and hot protons, and singly charged helium and oxygen ions. The kappa-Maxwellian anisotropic particle distribution function is assumed for the hot protons. We use the Kyoto University Plasma Dispersion Analysis Package, a full dispersion solver developed at Kyoto University, to obtain the numerical results and delineate the oxygen, helium, and proton bands. Higher harmonics of the EMIC waves are also studied, and the effects of the kappa distribution on the growth of these waves are clearly demonstrated. Our results are applied to Cluster spacecraft observations of EMIC waves in the inner magnetosphere.

  3. Hemispheric and Topographic Asymmetry of Magnetospheric Particle Irradiation for Icy Moon Surfaces

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Sturner, S. J.

    2007-01-01

    All surfaces of icy moons without significant atmospheres, i.e. all except Titan in the giant planet systems, are irradiated by hot plasma and more energetic charged particles from the local magnetospheric environments. This irradiation can significantly impact the chemical composition, albedo, and detectable presence of signs of life on the sensible surfaces, while also limiting lifetimes and science operations of orbital spacecraft for extreme radiation environments as at Europa. Planning of surface remote sensing and lander operations, and interpretation of remote sensing and in-situ measurements, should include consideration of natural shielding afforded by the body of the moon, by any intrinsic or induced magnetic fields as at Ganyrnede, and by topographic structures.

  4. Results of an ISEE-1 experiment to study the interactions between energetic particles and discrete VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Despite the malfunctioning of the digital portion of the experiment which is encoding the absolute amplitude of the wave spectrum with a fixed bias of approximately 20 dB, the analog portion of the instrument is acquiring excellent data concerning the wave function and relative amplitude. Results obtained over a 2-year period which have important implications for magnetospheric wave-particle interactions are examined in the areas of emission generation by nonconducted coherent waves, and cold plasma distribution in the inner magnetosphere.

  5. Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event

    DOE PAGES

    Gkioulidou, Matina; Ohtani, S.; Mitchell, D. G.; ...

    2015-03-20

    Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ –40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within 10 min, with different dipolarization signatures and duration. The first onemore » is a dispersionless, short-timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer-timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations and in situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.« less

  6. Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event

    SciTech Connect

    Gkioulidou, Matina; Ohtani, S.; Mitchell, D. G.; Ukhorskiy, A. Y.; Reeves, G. D.; Turner, D. L.; Gjerloev, J. W.; Nosé, M.; Koga, K.; Rodriguez, J. V.; Lanzerotti, L. J.

    2015-03-20

    Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ –40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within 10 min, with different dipolarization signatures and duration. The first one is a dispersionless, short-timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer-timescale injection pulse accompanied by a gradual dipolarization signature. We combined ground magnetometer data from various stations and in situ particle and magnetic field data from multiple satellites in the inner magnetosphere and near-Earth plasma sheet to determine the spatial extent of these injections, their temporal evolution, and their effects in the inner magnetosphere. Our results indicate that there are different spatial and temporal scales at which injections can occur in the inner magnetosphere and depict the necessity of multipoint observations of both particle and magnetic field data in order to determine these scales.

  7. Magnetospheric Simulations With the Three-Dimensional Magnetohydrodynamics With Embedded Particle-in-Cell Model

    NASA Astrophysics Data System (ADS)

    Toth, G.; Jia, X.; Chen, Y.; Markidis, S.; Peng, B.; Daldorff, L. K. S.; Tenishev, V.; Borovikov, D.; Haiducek, J. D.; Gombosi, T. I.; Glocer, A.; Dorelli, J.; Lapenta, G.

    2015-12-01

    We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient with its block-adaptive grid. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's magnetosphere. Using four PIC regions we have in effect performed a fully kinetic simulation of the moon's mini-magnetosphere with a grid resolution that is about 5 times finer than the ion inertial length. The Hall MHD model provides proper boundary conditions for the four PIC regions and connects them with each other and with the inner and outer outer boundary conditions of the much larger MHD domain. We compare our results with Galileo magnetic observations and find good overall agreement with both Hall MHD and MHD-EPIC simulations. The power spectrum for the small scale fluctuations, however, agrees with the data much better for the MHD-EPIC simulation than for Hall MHD. In the MHD-EPIC simulation, unlike in the pure Hall MHD results, we also find signatures of flux transfer events (FTEs) that agree very well with the observed FTE signatures both in terms of shape and amplitudes. We will also highlight our ongoing efforts to model the magnetospheres of Mercury and

  8. Pulsars Magnetospheres

    NASA Technical Reports Server (NTRS)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  9. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    NASA Astrophysics Data System (ADS)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  10. Energetic Particle Spectral Shapes in Planetary Magnetospheres; Assessment of the Kappa Function

    NASA Astrophysics Data System (ADS)

    Mauk, B.

    2015-12-01

    In assessing the efficacy of the kappa distribution function in space environments, it is useful to follow two paths. First, to what extent do we consider the kappa function (or any function) to represent some kind of universal spectral shape that indicates common physical processes occurring in a wide diversity of space environments? Second, how useful is the kappa function in quantitatively characterizing observed spectral shapes, particularly for the purpose permitting further quantitative analyses of the environment (e. g. wave growth). In this report I evaluate the efficacy of the kappa distribution in representing energetic particle spectral shapes in planetary magnetospheres from both perspectives. In particular, I expand on the extensive treatment provided by Carbary et al. (2014) by taking a more explicit comparative approach between the different planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and also focusing on the most intense (and therefore from my perspective the most interesting) spectra within each of these different planets. There is no question that the "power law tail" represents as close to a universal characteristic of planetary space environments as one could hope to find. Such a universal shape must represent some universality in the energization and/or equilibrating processes. Also, there is no question that such tails must (to be non-divergent) and do roll over to flatter shapes at lower energies. In a number of applications, this basic characteristic has been usefully characterized by the kappa function to extract such parameters of the system as flow velocities. However, at least for the more intense spectra at Earth, Jupiter, Saturn, and Uranus, the kappa function in fact does a relatively poor job in representing the low energy roll-over of energetic particle spectra. Other functional forms have been found to be much more useful for characterizing these spectral shapes over a broad range of energies. And specifically, a very

  11. Distinct sources of particles near the cusp and the dusk flank of the magnetosphere

    NASA Astrophysics Data System (ADS)

    Escoubet, C. P.; Grison, B.; Berchem, J.; Trattner, K. J.; Lavraud, B.; Pitout, F.; Soucek, J.; Richard, R. L.; Laakso, H. E.; Masson, A.; Dunlop, M.; Dandouras, I. S.; Rème, H.; Fazakerley, A. N.; Daly, P. W.

    2015-12-01

    At the magnetopause, the location of the magnetic reconnection sites depends on the orientation of the interplanetary magnetic field (IMF) in the solar wind: on the dayside magnetosphere for an IMF southward, on the lobes for an IMF northward and on the flanks for an IMF in the East-West direction. Since most of observations of reconnection events have sampled a limited region of space simultaneously it is still not yet know if the reconnection line is extended over large regions of the magnetosphere or if is patchy and made of many reconnection lines. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side where we observe multiple sources of reconnection/injections. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. The slope of the ion energy dispersions confirmed these distances. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is also taking place near the exterior cusp quasi-simultaneously. A

  12. Particle pressure, inertial force and ring current density in the magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Sergis, Nick; Krimigis, Stamatios; Arridge, Christopher; Roelof, Edmond; Rymer, Abigail; Mitchell, Donald; Thomsen, Michelle; Kivelson, Margaret; Ramer, Kate; Hamilton, Douglas; Krupp, Norbert; Dougherty, Michele; Coates, Andrew; Young, David

    2010-05-01

    We present the most recent radial profiles for the thermal plasma, energetic particle and magnetic field pressures in the equatorial magnetosphere of Saturn, as measured by the MIMI, CAPS and MAG instruments of Cassini, currently orbiting Saturn. Data were obtained between September 2005 and May 2006, when the spacecraft was particularly close (±0.5 RS) to the nominal magnetic equator in the range 6 to 15 RS. The radial gradient of the total pressure is compared to the inertial body force and an average radial profile of the azimuthal current intensity is presented. The results show that: (1) The suprathermal (keV) pressure contribution to the total particle pressure becomes significant outside 8-9 RS, exceeding 50% for r>12 RS. (2) The plasma beta remains above 1 outside 8 RS, reaching ~3 to ~10 between 11 and 14 RS. (3) The inertial body force and the radial pressure gradient are similar at 9-10 RS, with the pressure gradient prevailing beyond 11 RS. (4) The ring current develops a maximum between ~8 and 12 RS, reaching values of 100-150 pA/m2, and is primarily inertial inside of 8.5 RS but increasingly pressure gradient-driven in its maximum region and beyond. Farther away, it drops with radial distance much faster than the 1/r rate that several disk current models assume. The distribution of various plasma and energetic particle parameters in SLS phase is also examined in connection with the observed periodicity in the radial and azimuthal components of the magnetic field.

  13. Multifractal features of magnetospheric dynamics and their dependence on solar activity

    NASA Astrophysics Data System (ADS)

    Gopinath, Sumesh

    2016-09-01

    In the present study, novel wavelet leaders (WL) based multifractal analysis has been used to get a better knowledge of the self-organization phenomena inherent in complex magnetospheric dynamics during disturbance and quiescent periods, focusing mainly on the intermittent features of auroral electrojet (AE) index. The results derived from the analysis certainly exhibit the phase transition property of magnetosphere system with respect to variabilities in the driving conditions. By using the novel WL method, solar activity dependence/independence of intermittency of magnetospheric proxies such as AE, SYM-H and Dst indices have been compared. The results indicate that the multifractality of AE index does not follow the solar activity cycle while intermittent features of SYM-H and Dst indices show high degree of solar activity dependence. This shows that along with the external solar wind perturbations, certain complex phenomena of internal origin also significantly modulate the dynamics of geomagnetic fluctuations in the auroral region.

  14. Near-horizon Kerr magnetosphere

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2016-05-01

    We exploit the near-horizon conformal symmetry of rapidly spinning black holes to determine universal properties of their magnetospheres. Analytic expressions are derived for the limiting form of the magnetosphere in the near-horizon region. The symmetry is shown to imply that the black hole Meissner effect holds for free Maxwell fields but is generically violated for force-free fields. We further show that in the extremal limit, near-horizon plasma particles are infinitely boosted relative to accretion flow. Active galactic nuclei powered by rapidly spinning black holes are therefore natural sites for high-energy particle collisions.

  15. Solar Anomalous and Magnetospheric Particle Explorer attitude control electronics box design and performance

    NASA Technical Reports Server (NTRS)

    Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.

    1993-01-01

    The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.

  16. Comparison of Mass-loading around Active Comets and Planetary Induced Magnetospheres

    NASA Astrophysics Data System (ADS)

    Mazelle, C. X.; Bertucci, C.; Romanelli, N. J.; Andres, N.; Meziane, K.; Delva, M.; Gomez, D. O.

    2015-12-01

    The phenomenon of massloading is ubiquitous in space plasmas. In situ observations in our solar system have shown that massloading is most conspicuous at active comets as their extended exospheres facilitate the implantation of cometary ions up to a few million km away from their nuclei. But massloading is also important in planetary induced magnetospheres as it contributes to the formation of the obstacle to the incoming plasma winds in addition to gravitationally bound ionosphere. In this work we revisit observations around planets, moons, and active comets with different degree of massloading and discuss the importance of planetary exospheres in the formation of induced magnetospheres. In particular, we focus on the formation of plasma boundaries (induced magnetospheric boundary, bow shock) and in particular the phenomena of accreted, 'fossil' magnetic flux tubes fields - first unveiled at comet P/Halley and more recently observed at Titan.

  17. Sensitivity of the Earth Magnetosphere to the Solar Wind Activity: 3D Macroparticle Model

    NASA Astrophysics Data System (ADS)

    Baraka, S. M.; Ben Jaffel, L.

    2006-05-01

    A new approach is proposed to study the sensitivity of the Earth Magnetosphere to the variability of the Solar Wind bulk velocity. A numerical particles in cell (PIC) method initially proposed by Buneman (1993) has been adopted and modified to carry out the study. Space was stretched as cubic boxes of dimension 155x105x105 Re filled with 2 million of Solar Wind particles, with Earth is located at 60x52x53 Re. The magnetic field of Earth was hypothetically set to zero, and then switched on. The formation of the magnetospheric cavity and its elongation around the planet was observed to evolve with time until a steady state topology of the system is attained with the classical structure of a magnetosphere. We also found that the cavity is repopulated by clouds of particles from the Solar Wind, producing the current sheet-- a thin plasma sheet that stands at the equatorial plane. The study was carried out with the very basic elements of the interaction processes as described by Maxwell and Lorentz equations. IMF was then included as a steady southward magnetic field. Drift velocity of the Solar Wind was changed to simulate compression/depression of the system. 3-D analysis of the response of the magnetosphere dayside to that variation was studied, and the corresponding relaxation time of the magnetopause interface was measured. In response to the Solar Wind drift velocity imposed drop-off, a ~ 15 Re gap in the incoming Solar Wind plasma appeared moving toward Earth. As soon as the gap hit the initial shock of the steady magnetosphere, a reconnection between the Earth magnetic field and IMF was noticed at the dayside magnetopause when IMF was included. Injection of nightside of the magnetosphere by energetic particles due to magnetic erosion and reconnection is observed. During the expansion phase of the disturbance, the outer boundary of the dayside magnetopause broke up during the absence of the IMF as it responded to the reduction of the ram pressure, whilst

  18. FASTSAT-HSV01 Synergistic Observations of the Magnetospheric Response During Active Periods: MINI-ME, PISA and TTI

    NASA Technical Reports Server (NTRS)

    Casas, Joseph C.; Collier, Michael R.; Rowland, Douglas E.; Sigwarth, John B.; Boudreaux, Mark E.

    2010-01-01

    Understanding the complex processes within the inner magnetosphere of Earth particularly during storm periods requires coordinated observations of the particle and field environment using both in-situ and remote sensing techniques. In fact in order to gain a better understanding of our Heliophysics and potentially improve our space weather forecasting capabilities, new observation mission approaches and new instrument technologies which can provide both cost effective and robust regular observations of magnetospheric activity and other space weather related phenomenon are necessary. As part of the effort to demonstrate new instrument techniques and achieve necessary coordinated observation missions, NASA's Fast Affordable Science and Technology Satellite Huntsville 01 mission (FASTSAT-HSVOI) scheduled for launch in 2010 will afford a highly synergistic solution which satisfies payload mission opportunities and launch requirements as well as contributing iri the near term to our improved understanding of Heliophysics. NASA's FASTSAT-HSV01 spacecraft on the DoD Space Test Program-S26 (STP-S26) Mission is a multi-payload mission executed by the DoD Space Test Program (STP) at the Space Development and Test Wing (SDTW), Kirtland AFB, NM. and is an example of a responsive and economical breakthrough in providing new possibilities for small space technology-driven and research missions. FASTSAT-HSV is a unique spacecraft platform that can carry multiple small instruments or experiments to low-Earth orbit on a wide range of expendable launch vehicles for a fraction of the cost traditionally required for such missions. The FASTSAT-HSV01 mission allows NASA to mature and transition a technical capability to industry while increasing low-cost access to space for small science and technology (ST) payloads. The FASTSAT-HSV01 payload includes three NASA Goddard Space Flight Center (GSFC) new technology built instruments that will study the terrestrial space environment and

  19. FASTSAT-HSV01 synergistic observations of the magnetospheric response during active periods: MINI-ME, PISA and TTI

    NASA Astrophysics Data System (ADS)

    Casas, Joseph; Collier, Michael; Rowland, Douglas; Sigwarth, John; Boudreaux, Mark

    Understanding the complex processes within the inner magnetosphere of Earth particularly during storm periods requires coordinated observations of the particle and field environment using both in-situ and remote sensing techniques. In fact in order to gain a better understand-ing of our Heliophysics and potentially improve our space weather forecasting capabilities, new observation mission approaches and new instrument technologies which can provide both cost effective and robust regular observations of magnetospheric activity and other space weather related phenomenon are necessary. As part of the effort to demonstrate new instrument tech-niques and achieve necessary coordinated observation missions, NASA's Fast Affordable Sci-ence and Technology Satellite Huntsville 01 mission (FASTSAT-HSV01) scheduled for launch in 2010 will afford a highly synergistic solution which satisfies payload mission opportunities and launch requirements as well as contributing in the near term to our improved understanding of Heliophysics. NASA's FASTSAT-HSV01 spacecraft on the DoD Space Test Program-S26 (STP-S26) Mission is a multi-payload mission executed by the DoD Space Test Program (STP) at the Space Development and Test Wing (SDTW), Kirtland AFB, NM. and is an example of a responsive and economical breakthrough in providing new possibilities for small space technology-driven and research missions. FASTSAT-HSV is a unique spacecraft platform that can carry multiple small instruments or experiments to low-Earth orbit on a wide range of expendable launch vehicles for a fraction of the cost traditionally required for such missions. The FASTSAT-HSV01 mission allows NASA to mature and transition a technical capability to industry while increasing low-cost access to space for small science and technology (ST) payloads. The FASTSAT-HSV01 payload includes three NASA Goddard Space Flight Center (GSFC) new technology built instruments that will study the terrestrial space environment and

  20. Radar observations of magnetospheric activity during extremely quiet solar wind conditions

    NASA Astrophysics Data System (ADS)

    Walker, A. D. M.; Baker, K. B.; Pinnock, M.; Dudeney, J. R.; Rash, J. P. S.

    2002-04-01

    During a period of extremely quiet solar wind conditions from 8 to 10 March 1997, strong activity was observed by the Southern Hemisphere Auroral Radar Experiment Super Dual Auroral Radar Network radars in the Antarctic premidnight ionosphere. This activity took the form of quasiperiodic flow bursts with ionospheric drift velocities exceeding 2 km s-1. Data from the Satellite Experiments Simultaneous with Antarctic Measurements (SESAME) automated geophysical observatories in Antarctica and Defense Meteorological Satellite Program and Polar satellites are used with the radar data to study the convection flow in the southern polar ionosphere at the time of these flow bursts. The study shows that the bursts occurred with an approximate period of 12 min. Their direction was westward, and they were superimposed on a background westward flow. In the premidnight sector this is interpreted as a flow associated with dipolarization of the magnetotail tail field. There is a band of strong particle precipitation associated with the flow bursts. The location suggests that they occur deep in the magnetotail and cannot be associated with any lobe reconnection. They are at a latitude near the region where a viscously driven convection cell is expected to exist, and their sense is that of the return convection flow in such a cell. The results suggest that there is an internal magnetospheric mechanism for sporadic energy release in the magnetotail that need not be associated with changes in solar wind reconnection on the magnetopause.

  1. Solar flares and magnetospheric particles: Investigations based upon the ONR-602 and ONR-604 experiments. Final technical report

    SciTech Connect

    Wefel, J.P.

    1990-02-14

    The study of solar flares, and the interaction of solar flare radiations with the geospace environment, is one of the most fundamental investigations in space science. Involved are basic questions about the mechanism for energy generation in the flare region, the conversion of this energy into high energy charged particles, neutrons, x-rays and gamma rays, the interplanetary propagation of the particles to Earth, the access of these particles to the magnetosphere and the changes initiated in our local environment due to the solar flare. In the latter case, the solar particles are superposed upon an existing background of geomagnetically trapped and pseudo-trapped charged particles, which are themselves of fundamental importance in the dynamics of the geospace environment.

  2. A Model of Mercury's Magnetospheric Magnetic Field with Dependence on Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Korth, H.; Tsyganenko, N. A.; Johnson, C. L.; Philpott, L. C.; Anderson, B. J.; Solomon, S. C.; McNutt, R. L., Jr.

    2015-12-01

    Accurate knowledge of Mercury's magnetospheric magnetic field is required to characterize the planet's internal field and the structure of the magnetosphere. We present the first model of Mercury's magnetospheric magnetic field that includes a dependence on magnetic activity. The model consists of individual modules for magnetic fields of internal origin, approximated by a dipole of magnitude 190 nT RM3, where RM is Mercury's radius, offset northward by 479 km along the spin axis, and of external origin resulting from currents flowing on the magnetopause boundary and in the cross-tail current sheet. The magnetic field is confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft and dependent on magnetic activity. The cross-tail current is prescribed having a disk shape near the planet and extending into a sheet at larger distances. The magnitude of the tail current, which also depends on magnetic activity, is fit to minimize the root-mean-square residual between the model magnetic field and the field within the magnetosphere observed by MESSENGER. The model was fit separately for magnetic field observations within distinct levels of magnetic activity. Linear fits of model parameters versus magnetic activity allows continuous scaling of the model to magnetic activity. The magnetic field contribution from each module is shielded individually by a scalar potential function, which was fit to minimize the root-mean-square normal magnetic field component at the magnetopause. The resulting model reproduces the dependence of the magnetospheric size and tail current intensity on magnetic activity, and allows more accurate characterization of the internal field.

  3. PET - A proton/electron telescope for studies of magnetospheric, solar, and galactic particles

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Baker, Daniel N.; Von Rosenvinge, Tycho T.

    1993-01-01

    The Proton/Electron Telescope (PET) on SAMPEX is designed to provide measurements of energetic electrons and light nuclei from solar, galactic, and magnetospheric sources. PET is an all solid-state system that will measure the differential energy spectra of electrons from about 1 to about 30 MeV and H and He nuclei from about 20 to about 300 MeV/nuc, with isotope resolution of H and He extending from about 20 to about 80 MeV/nuc. As SAMPEX scans all local times and geomagnetic cutoffs over the course of its near-polar orbit, PET will characterize precipitating relativistic electron events during periods of declining solar activity, and it will examine whether the production rate of odd nitrogen and hydrogen molecules in the middle atmosphere by precipitating electrons is sufficient to affect O3 depletion. In addition, PET will complement studies of the elemental and isotopic composition of energetic heavy (Z greater than 2) nuclei on SAMPEX by providing measurements of H, He, and electrons. Finally, PET has limited capability to identify energetic positrons from potential natural and man-made sources.

  4. PET: a proton/electron telescope for studies of magnetospheric, solar, and galactic particles

    SciTech Connect

    Cook, W.R.; Cummings, A.C.; Cummings, J.R.; Garrard, T.L.; Kecman, B.; Mewaldt, R.A.; Selesnick, R.S.; Stone, E.C. ); Baker, D.N.; Rosenvinge, T.T. von ); Callis, L.B. ); Blake, J.B.

    1993-05-01

    The Proton/Electron Telescope (PET) on SAMPEX is designed to provide measurements of energetic electrons and light nuclei from solar, galactic, and magnetospheric sources. PET is an all solid-state system that will measure the differential energy spectra of electrons from [approximately]1 to [approximately]30 MeV and H and He nuclei from [approximately]20 to [approximately]300 MeV/nuc, with isotope resolution of H and He extending from [approximately]20 to [approximately]80 MeV/nuc. As SAMPEX scans all local times and geomagnetic cutoffs over the course of its near-polar orbit, PET will characterize precipitating relativistic electron events during periods of declining solar activity, and it will examine whether the production rate of odd nitrogen and hydrogen molecules in the middle atmosphere by precipitating electrons is sufficient to affect O[sub 3] depletion. In addition, PET will complement studies of the elemental and isotopic composition of energetic heavy (Z > 2) nuclei on SAMPEX by providing measurements of H, He, and electrons. Finally, PET has limited capability to identify energetic positrons from potential natural and man-made sources.

  5. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  6. Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements

    NASA Astrophysics Data System (ADS)

    Sergis, N.; Krimigis, S. M.; Roelof, E. C.; Arridge, C. S.; Rymer, A. M.; Mitchell, D. G.; Hamilton, D. C.; Krupp, N.; Thomsen, M. F.; Dougherty, M. K.; Coates, A. J.; Young, D. T.

    2010-01-01

    We report initial results on the particle pressure distribution and its contribution to ring current density in the equatorial magnetosphere of Saturn, as measured by the Magnetospheric Imaging Instrument (MIMI) and the Cassini Plasma Spectrometer (CAPS) onboard the Cassini spacecraft. Data were obtained from September 2005 to May 2006, within ±0.5 RS from the nominal magnetic equator in the range 6 to 15 RS. The analysis of particle and magnetic field measurements, the latter provided by the Cassini magnetometer (MAG), allows the calculation of average radial profiles for various pressure components in Saturn's magnetosphere. The radial gradient of the total particle pressure is compared to the inertial body force to determine their relative contribution to the Saturnian ring current, and an average radial profile of the azimuthal current intensity is deduced. The results show that: (1) Thermal pressure dominates from 6 to 9 RS, while thermal and suprathermal pressures are comparable outside 9 RS with the latter becoming larger outside 12 RS. (2) The plasma β (particle/magnetic pressure) remains ≥1 outside 8 RS, maximizing (˜3 to ˜10) between 11 and 14 RS. (3) The inertial body force and the pressure gradient are similar at 9-10 RS, but the gradient becomes larger ≥11 RS. (4) The azimuthal ring current intensity develops a maximum between approximately 8 and 12 RS, reaching values of 100-150 pA/m2. Outside this region, it drops with radial distance faster than the 1/r rate assumed by typical disk current models even though the total current is not much different to the model results.

  7. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    Among the major discoveries made by the Mariner 10 mission to the inner planets was the existence of an intrinsic magnetic field at Mercury with a dipole moment of approx. 300 nT R(sup 3, sub M). This magnetic field is sufficient to stand off the solar wind at an altitude of about 1 R(sub M) (i.e. approx. 2439 km). Hence, Mercury possesses a 'magnetosphere' from which the so]ar wind plasma is largely excluded and within which the motion of charged particles is controlled by the planetary magnetic field. Despite its small size relative to the magnetospheres of the other planets, a Mercury orbiter mission is a high priority for the space physics community. The primary reason for this great interest is that Mercury unlike all the other planets visited thus far, lacks a significant atmosphere; only a vestigial exosphere is present. This results in a unique situation where the magnetosphere interacts directly with the outer layer of the planetary crust (i.e. the regolith). At all of the other planets the topmost regions of their atmospheres become ionized by solar radiation to form ionospheres. These planetary ionospheres then couple to electrodynamically to their magnetospheres or, in the case of the weakly magnetized Venus and Mars, directly to the solar wind. This magnetosphere-ionosphere coupling is mediated largely through field-aligned currents (FACs) flowing along the magnetic field lines linking the magnetosphere and the high-latitude ionosphere. Mercury is unique in that it is expected that FACS will be very short lived due to the low electrical conductivity of the regolith. Furthermore, at the earth it has been shown that the outflow of neutral atmospheric species to great altitudes is an important source of magnetospheric plasma (following ionization) whose composition may influence subsequent magnetotail dynamics. However, the dominant source of plasma for most of the terrestrial magnetosphere is the 'leakage'of solar wind across the magnetopause and more

  8. Particle acceleration and transport in the tail and at the front side of the magnetosphere, task 1 and 2. Final report, 19 February 1991-30 September 1994

    SciTech Connect

    Kistler, L.M.; Moebius, E.; Lee, M.A.

    1994-12-01

    The work under this grant involved studies of: (1) the acceleration and heating of ions in the course of magnetospheric substorms and the spatial distributions of the ion populations in the magnetotail; and (2) the comparison in in-situ acceleration at the bow shock and the leakage of energetic particles from the magnetosphere as source of energetic ions upstream of the Earth's bow shock.

  9. Early results on energetic particle dynamics and structure from the Energetic Ion Spectrometer (EIS) on the Magnetospheric Multiscale (MMS) mission

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Mauk, B.; Westlake, J. H.; Anderson, B. J.; Turner, D. L.; Fennell, J. F.; Spence, H. E.; Baker, D. N.; Pollock, C. J.; Torbert, R. B.; Blake, J. B.; Sibeck, D. G.

    2015-12-01

    The cluster of four, formation-flying spacecraft, comprising the Magnetospheric Multiscale (MMS) mission, launched on 13 March 2015 into near equatorial 1.2 x 12 RE orbits, provides an important new asset for assessing the transport of energy and matter from the distant regions of Earth's magnetosphere into the inner regions. Here we report on early results from the Energetic Ion Spectrometer (EIS) instrument on each of the MMS Spacecraft. EIS provides nearly all-sky energetic ion energy, angle and elemental compositional distributions for < 20 keV for protons and 45 keV for oxygen ions, up to > 1 MeV. It also measures energetic electrons from 25 keV to > 0.5 MeV in support and coordination with the electron-focused Fly's Eye Energetic Particle Spectrometer (FEEPS). During the early phase of the MMS mission, while the full complement of instruments was being commissioned prior to the prime mission phase beginning 1 September 2015, EIS observed dynamic energetic particle injections at the root of the magnetotail between the post-midnight regions and dawn in association with numerous dipolarization fronts and related processes. Here we report on coordinated measurements between MMS's EIS instrument and EIS's sister instrument on the Van Allen Probes, RBSPICE, to further address the relationship between dynamic injections and depolarization fronts in the magnetotail and injections observed deep within the magnetosphere's ring current regions. We also report preliminary result on using energetic particle gradients and anistotropies to diagnose magnetopause structures near mission-identified reconnection sites.

  10. Dipolarizing flux bundles in the cis-geosynchronous magnetosphere: relationship between electric fields and energetic particle injections

    NASA Astrophysics Data System (ADS)

    Liu, J.; Angelopoulos, V.; Zhang, X. J.; Turner, D. L.; Gabrielse, C.; Runov, A.; Funsten, H. O.; Spence, H. E.

    2015-12-01

    Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background field. Although DFBs are known to accelerate particles to create energetic particle injections, their acceleration mechanism and importance in generating injections inside geosynchronous orbit remain open questions. To answer these questions, we investigate DFBs in the inner magnetosphere by conducting a statistical study with data from the Van Allen Probes. The results show that just like DFBs outside geosynchronous orbit, those inside that orbit occur most often in the pre-midnight sector. Half the DFBs are accompanied by energetic particle injection. Statistically, DFBs with injection have an electric field three times that of those without. All the injections accompanying DFBs appear dispersionless within the temporal and energy resolution considered. These findings suggest that the injections are ushered or locally produced by the DFB, and the DFB's strong electric field is an important aspect of the injection generation mechanism.

  11. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  12. Study of the magnetospheres of active regions on the sun by radio astronomy techniques

    NASA Astrophysics Data System (ADS)

    Bogod, V. M.; Kal'tman, T. I.; Peterova, N. G.; Yasnov, L. V.

    2017-01-01

    In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere-corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.

  13. Correlated observations of energetic particles upstream of the bow shock, in the magnetosheath, and in the magnetosphere

    SciTech Connect

    Scholer, M.; Moebius, E.; Kistler, L.M. ); Ipavich, F.M.

    1990-12-01

    Simultaneous measurements of energetic protons and alpha particles by the ISEE 1 and AMPTE/IRM spacecraft in the region upstream of the Earth's bow shock are reported during the period 0700-0900 UT on October 19, 1984. IRM observes a diffuse distribution over the whole two hour period. In the spacecraft frame an anisotropy exists with more particles streaming toward the bow shock. ISEE 1 observes occasional bursts of energetic ions which exhibit a beam like distribution along the magnetic field away from the bow shock. The occurrence of these beams is in most cases correlated with a change of the longitudinal interplanetary magnetic field direction, such that a field line from the position of the spacecraft meets the shock with a smaller angle between magnetic field and shock normal. The differential intensity at IRM is about one order of magnitude higher than at ISEE 1. Simultaneously measured spectra by AMPTE/CCE within the magnetosphere close to the magnetopause are considerably harder than the spectra at both upstream locations. A comparison of a CCE spectrum in the magnetosheath with an upstream IRM spectrum shows that the proton intensity observed just outside of the magnetopause between 15 and 80 keV is lower than the upstream spectrum. In the magnetosheath the protons stream away from the bow shock toward the magnetopause and the anisotropy increases with energy. Predictions of the magnetospheric leakage model and of the bow shock acceleration model are compared, and it is shown that the observations are consistent with bow shock acceleration, whereas there are extreme difficulties with an explanation in terms of magnetospheric leakage.

  14. The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission

    NASA Astrophysics Data System (ADS)

    Mauk, B. H.; Blake, J. B.; Baker, D. N.; Clemmons, J. H.; Reeves, G. D.; Spence, H. E.; Jaskulek, S. E.; Schlemm, C. E.; Brown, L. E.; Cooper, S. A.; Craft, J. V.; Fennell, J. F.; Gurnee, R. S.; Hammock, C. M.; Hayes, J. R.; Hill, P. A.; Ho, G. C.; Hutcheson, J. C.; Jacques, A. D.; Kerem, S.; Mitchell, D. G.; Nelson, K. S.; Paschalidis, N. P.; Rossano, E.; Stokes, M. R.; Westlake, J. H.

    2016-03-01

    The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth's magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly's Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to >0.5 MeV (with capabilities to measure up to >1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to >0.5 MeV, and also measures total ion energy distributions from 45 keV to >0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth

  15. Outline of the Active Magnetospheric Particle Tracer Explorers (AMPTE) mission

    NASA Technical Reports Server (NTRS)

    Bryant, D. A.; Krimigis, S. M.; Haerendel, G.

    1985-01-01

    This paper is intended as an introduction to a series of papers describing the three satellites of the AMPTE mission and their instrumentation. The aims and scientific context of the program are given together with a comparison of the general characteristics of the three spacecraft and their orbits. There is a brief resume of the studies performed so far, and a statement of future plans, together with a calendar of completed and planned experiments and measurements.

  16. Observations of cold magnetospheric ions at geosynchronous orbit during times of high activity

    SciTech Connect

    Elphic, R.C.; Weiss, L.A.; Thomsen, M.F.; McComas, D.J.; Bame, S.J.

    1994-10-01

    Flowing, cold magnetospheric ions have been observed in conjunction with geosynchronous orbit magnetopause crossings since the earliest ATS and OGO missions. The authors have reported on the occurrence and convection of low-energy (10-100 eV) ions seen by multiple satellites in association with geosynchronous orbit magnetopause and low-latitude boundary layer (LLBL) encounters. More generally, Los Alamos 3-D plasma instruments observe these ions following storm sudden commencements (SSCs), when activity levels are high. The ions appear to be convecting radially outward and usually westward at speeds of a few to several tens of kilometers per second. Often the energy spectra reveal peaks at energies appropriate for cold convecting H{sup +}, He{sup +} and O{sup +}. The occurrence frequency distribution of these dense cold ions is peaked near 1400 LT, with an overall range from 1000 to beyond 1800 LT. This local time distribution is greatly skewed from the overall plasmaspheric distribution, which peaks closer to 1800 LT. Multisatellite observations show that the ions are seen first at late afternoon local times and then at progressively earlier and earlier local times (though usually no earlier than 1000 LT). This apparent evolution in local time suggests that the late-afternoon plasmaspheric plasma moves out and dawnward during times of increased magnetospheric activity. The three-satellite observations also allow the authors to track cold plasma convection at multiple points in the magnetosphere, and potentially provide a glimpse of the large-scale convection pattern.

  17. The magnetosphere of Saturn

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.

    1982-01-01

    Information about the magnetosphere of Saturn is provided: the magnetic dipole moment is axisymmetric, the bow shock stand-off distance is about 22 R sub S. The satellites Titan, Dione, and Tethys are probably the primary sources of magnetospheric plasma. Outside of approx. 4 R sub S, energetic particles are energized by diffusing inward while conserving their first and second adiabatic invariants. Particles are lost by satellite sweep-out, absorption byt the E ring and probably also by plasma interactions. The inner magnetosphere is characterized.

  18. Energy- and Activity-Dependent Loss Timescales for Inner Magnetospheric keV-Energy Electrons

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.

    2011-12-01

    The Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric drift physics model has recently been modified to include keV-energy electron scattering rates by VLF chorus and hiss waves, thus allowing for the calculation of the electron phase space distribution in the inner magnetosphere and electron precipitation to the upper atmosphere. Comparisons of calculated electron fluxes are made with low-Earth orbit electron precipitation data and dayside electron measurements to validate the scattering implementation procedure. The energy-dependent scattering rate coefficients are adjusted to take into account geomagnetic activity and plasmapause location, providing a scattering rate that best matches the simulations to the observed electron fluxes. In addition, the electron ring current intensities and spatio-temporal evolution are compared against simulation results for the hot ion species. While the electron total energy content is typically 10 times smaller than the ion total energy content in the inner magnetosphere, it can be significantly higher than this during the late main phase of magnetic storms.

  19. Solar flares and magnetospheric particles: Investigations based upon the ONR-602 and ONR-604 experiments. Quarterly report No. 4

    SciTech Connect

    Wefel, J.P.; Guzik, T.G.

    1993-11-30

    This performance report covers work accomplished under ONR Grant N00014-90-J-1466 related to the radiation environment in near-Earth space. The goal of the research is to measure and describe, quantitatively, the Geospace radiation environment in which men and spacecraft must survive and function. The tools for this investigation are the data returned by the ONR-602 and ONR-604 experiments, both flown under the auspices of ONR and the Air Force Space Test Program, augmented by correlative databases of both space-based and ground-based data. The investigation involves data analysis, modeling and applications to a variety of space equipment and environments. This report builds upon the detailed Technical Report (Fall, 1992) and the previous performance reports. For the current period, the principal effort was in modeling of the Anomalous Component, determining the modulation level during the CRRES Mission, and studying the quiet-time particle access to the magnetosphere.

  20. Solar flares and magnetospheric particles: investigations based upon the ONR-602 and ONR-604 experiments. Annual letter report for period ending 30 November 1988

    SciTech Connect

    Wefel, J.P.

    1988-11-30

    Data from the ONR-602 experiment, obtained in a low-altitude, polar orbit are being analyzed to investigate the composition, intensity levels and time variations of energetic charged particles both trapped within the Earth's magnetosphere and incident upon the magnetosphere from interplanetary space, particularly solar-flare particles. The effort involves both data analysis/interpretation and detailed modeling of the near-Earth environment. The research focusses on the 'global zones' of low-energy particle precipitation, including the South Atlantic Anomaly region from which access to the radiation belts is obtained, and the solar particle events of May-Nov., 1982. In addition, scientific/technical support is being provided to the ONR-604 experiment to be launched on the CRRES mission. The results of these investigations will enhance our understanding of the geospace radiation environment and its effects on men, materials, and electronic systems in space.

  1. Inner magnetosphere coupling: Recent advances

    NASA Astrophysics Data System (ADS)

    Usanova, M. E.; Shprits, Y. Y.

    2017-01-01

    The dynamics of the inner magnetosphere is strongly governed by the interactions between different plasma populations that are coupled through large-scale electric and magnetic fields, currents, and wave-particle interactions. Inner magnetospheric plasma undergoes self-consistent interactions with global electric and magnetic fields. Waves excited in the inner magnetosphere from unstable particle distributions can provide energy exchange between different particle populations in the inner magnetosphere and affect the ring current and radiation belt dynamics. The ionosphere serves as an energy sink and feeds the magnetosphere back through the cold plasma outflow. The precipitating inner magnetospheric particles influence the ionosphere and upper atmospheric chemistry and affect climate. Satellite measurements and theoretical studies have advanced our understanding of the dynamics of various plasma populations in the inner magnetosphere. However, our knowledge of the coupling processes among the plasmasphere, ring current, radiation belts, global magnetic and electric fields, and plasma waves generated within these systems is still incomplete. This special issue incorporates extended papers presented at the Inner Magnetosphere Coupling III conference held 23-27 March 2015 in Los Angeles, California, USA, and includes modeling and observational contributions addressing interactions within different plasma populations in the inner magnetosphere (plasmasphere, ring current, and radiation belts), coupling between fields and plasma populations, as well as effects of the inner magnetosphere on the ionosphere and atmosphere.

  2. Modeling Magnetospheric Sources

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ashour-Abdalla, Maha; Ogino, Tatsuki; Peroomian, Vahe; Richard, Robert L.

    2001-01-01

    We have used global magnetohydrodynamic, simulations of the interaction between the solar wind and magnetosphere together with single particle trajectory calculations to investigate the sources of plasma entering the magnetosphere. In all of our calculations solar wind plasma primarily enters the magnetosphere when the field line on which it is convecting reconnects. When the interplanetary magnetic field has a northward component the reconnection is in the polar cusp region. In the simulations plasma in the low latitude boundary layer (LLBL) can be on either open or closed field lines. Open field lines occur when the high latitude reconnection occurs in only one cusp. In the MHD calculations the ionosphere does not contribute significantly to the LLBL for northward IMF. The particle trajectory calculations show that ions preferentially enter in the cusp region where they can be accelerated by non-adiabatic motion across the high latitude electric field. For southward IMF in the MHD simulations the plasma in the middle and inner magnetosphere comes from the inner (ionospheric) boundary of the simulation. Solar wind plasma on open field lines is confined to high latitudes and exits the tailward boundary of the simulation without reaching the plasma sheet. The LLBL is populated by both ionospheric and solar wind plasma. When the particle trajectories are included solar wind ions can enter the middle magnetosphere. We have used both the MHD simulations and the particle calculations to estimate source rates for the magnetosphere which are consistent with those inferred from observations.

  3. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  4. Solar flares and magnetospheric particles: investigations based upon the ONR-602 and ONR-604 experiments. Annual letter report for period ending 30 November 1987

    SciTech Connect

    Wefel, J.P.

    1988-02-10

    Data from the ONR-602 experiment, obtained in a low-altitude polar orbit, are being analyzed to investigate the composition, intensity levels, and time variations of energetic charged particles both trapped within the Earth's magnetosphere and incident upon the magnetosphere from interplanetary space, particularly solar-flare particles. The effort involves both data analysis/interpretation and detailed modeling of the near-Earth environment. The research focusses on the global zones of low-energy-particle precipitation, including the South Atlantic Anomaly region from which access to the radiation belts is obtained, and the solar particle events of May-Nov., 1982. In addition, scientific/technical support is being provided to the ONR-604 experiment to be launched on the CRRES mission. The results of these investigations will enhance our understanding of the geospace radiation environment and its effects on men, materials, and electronic systems in space. The objectives of this research are to investigate the nature and origins of the particle populations in near Earth space by focusing on their spatial distributions, composition, energy spectra, and temporal variations and to look at couplings between interplanetary (solar-flare-generated) and magnetospheric populations. The goal is to understand the geospace environment in which men and spacecraft must survive and function.

  5. Onset of magnetospheric substorms.

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Bogott, F.

    1972-01-01

    An examination of the onset of magnetospheric substorms is made by using ATS 5 energetic particles, conjugate balloon X rays and electric fields, all-sky camera photographs, and auroral-zone magnetograms. It is shown that plasma injection to ATS distances, conjugate 1- to 10-keV auroral particle precipitation, energetic electron precipitation, and enhancements of westward magnetospheric electric-field component all occur with the star of slowly developing negative magnetic bays. No trapped or precipitating energetic-particle features are seen at ATS 5 when later sharp negative magnetic-bay onsets occur at Churchill or Great Whale River.

  6. Principal component analysis of Birkeland currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Carter, J. A.; Korth, H.; Anderson, B. J.

    2015-12-01

    Principal component analysis is performed on Birkeland or field-aligned current (FAC) measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. Principal component analysis (PCA) identifies the patterns in the FACs that respond coherently to different aspects of geomagnetic activity. The regions 1 and 2 current system is shown to be the most reproducible feature of the currents, followed by cusp currents associated with magnetic tension forces on newly reconnected field lines. The cusp currents are strongly modulated by season, indicating that their strength is regulated by the ionospheric conductance at the foot of the field lines. PCA does not identify a pattern that is clearly characteristic of a substorm current wedge. Rather, a superposed epoch analysis of the currents associated with substorms demonstrates that there is not a single mode of response, but a complicated and subtle mixture of different patterns.

  7. Principle Component Analysis of Birkeland Currents Determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Carter, J. A.; Korth, H.; Anderson, B. J.

    2015-12-01

    Principle Component Analysis is performed on northern and southern hemisphere Birkeland or field-aligned current (FAC) measurements from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). PCA identifies the patterns in the FACs that respond coherently to different aspects of geomagnetic activity. The region 1 and 2 current system is shown to be the most reproducible feature of the currents, followed by cusp currents associated with magnetic tension forces on newly-reconnected field lines. The cusp currents are strongly modulated by season, indicating that their strength is regulated by the ionospheric conductance at the foot of the field lines. PCA does not identify a pattern that is clearly characteristic of a substorm current wedge. Rather, a superposed epoch analysis of the currents associated with substorms demonstrates that there is not a single mode of response, but a complicated and subtle mixture of different patterns. Other interhemispheric differences are discussed.

  8. Magnetospheric control of the bulk ionospheric plasma

    SciTech Connect

    Sojka, J.J.; Schunk, R.W.

    1987-01-01

    The temperature, composition, and circulation of the high-latitude, ionosphere display a marked variation with altitude, latitude, longitude, universal time, season, solar cycle, and geomagnetic activity. This variation is largely a consequence of the effect that magnetospheric electric fields, particle precipitation, and heat flows have on the ionosphere. At F-region altitudes, the entire ionosphere drifts in response to magnetospheric electric fields, with the horizontal drift generally displaying a two-cell pattern of antisunward flow over the polar cap and return flow at lower latitudes. This ionospheric motion, in combination with downward magnetospheric heat flows and ion production due to energetic-particle precipitation, act to produce interesting ionospheric features such as ion and electron temperature hot spots, plasma blobs, localized ionization troughs, and extended tongue of ionization, and anomalous F-region peak altitudes and densities. The time delay for the ionosphere to respond to changing magnetospheric conditions is a strong function of altitude and can be as long as 3 to 4 hours in the upper F-region. The ionosphere's response to changing magnetospheric conditions are described using a time-dependent high-latitude ionospheric model.

  9. PAMELA’S MEASUREMENTS OF MAGNETOSPHERIC EFFECTS ON HIGH-ENERGY SOLAR PARTICLES

    SciTech Connect

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Carbone, R.; Bogomolov, E. A.; Bottai, S.; Bravar, U.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; De Donato, C.; Castellini, G.; Christian, E. R.; Nolfo, G. A. de; and others

    2015-03-01

    The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)—bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90° and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth’s magnetosheath.

  10. Pamela’s Measurements of Magnetospheric Effects On High Energy Solar Particles

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bravar, U.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; Christian, E. R.; De Donato, C.; de Nolfo, G. A.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Lee, M.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Ryan, J. M.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stochaj, S.; Stozhkov, Y. I.; Thakur, N.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2015-03-01

    The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)—bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90° and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth’s magnetosheath.

  11. Saturn's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  12. Magnetospheric Substorm Electrodynamics

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1998-01-01

    It was proposed that the expansion phase of substorms results from a reduction in the large-scale electric field imparted to the magnetosphere from the solar wind, following a greater than or equal to 30 min growth phase due to an enhancement in this electric field. The reduction in the electric field is assumed to propagate anti-sunward within the magnetosphere. Triggering by a reduction in the electric field is suggested by the observation that substorms are often triggered by northward turning of the interplanetary magnetic field (IMF). However, under the theory presented here, substorms may be triggered by anything that causes an electric field reduction such as a reduction in the magnitude of the y-component of the IMF. A reduction in the large-scale electric field disrupts both the inward motion and energization of plasma sheet particles that occurs during the growth phase. It is suggested here that this can lead to formation of the expansion-phase current wedge and active aurora. The current wedge results from the magnetic drift of ions, which has a speed proportional to particle energy, and a large azimuthal gradient in mean particle energy that is expected to develop in the vicinity of magnetic midnight during the growth phase. Current wedge formation will most likely be initiated near the radial distance (approx. 6- 10 R(sub E)) of the peak in the growth-phase plasma pressure distribution, and then propagate tailward from that region. Order-of-magnitude calculations show that the above proposal can account for the rapid development of the expansion phase relative to the growth phase, the magnitude of the reduction in the cross-tail current within the current wedge, the speeds of tailward and westward expansion of the current reduction region, the speeds of poleward and westward motion of active aurora in the ionosphere, and the magnitude of wedge field-aligned currents that connect the ionospheric region of active auroral to the divergent cross

  13. Upstream Structures and Their Effects on the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    2011-01-01

    Kinetic processes within the Earth's foreshock generate a profusion of plasma and magnetic field structures with sizes and durations ranging from the microscale (e.g. SLAMs, solitons, and density holes) to the mesoscale (e.g. foreshock cavities or boundaries, hot flow anomalies, and bubbles). Swept into the bow shock by the solar wind flow, the perturbations associated with these features batter the magnetosphere, driving a wide variety of magnetospheric effects, including large amplitude magnetopause motion, bursty reconnection and the generation of flux transfer events, enhanced pulsation activity within the magnetosphere, diffusion and energization of radiation belt particles, enhanced particle precipitation resulting in dayside aurora and riometer absorption, and the generation of field-aligned currents and magnetic impulse events in high-latitude ground magnetometers. This talk reviews the ever growing menagery of structures observed upstream from the bow shock, examines their possible interrelationships, and considers their magnetospheric consequences.

  14. Solar Wind-Magnetosphere Coupling Influences on Pseudo-Breakup Activity

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.

    1998-01-01

    Pseudo-breakups are brief, localized aurora[ arc brightening, which do not lead to a global expansion, are historically observed during the growth phase of substorms. Previous studies have demonstrated that phenomenologically there is very little difference between substorm onsets and pseudo-breakups except for the degree of localization and the absence of a global expansion phase. A key open question is what physical mechanism prevents a pseudo-breakup form expanding globally. Using Polar Ultraviolet Imager (UVI) images, we identify periods of pseudo-breakup activity. Foe the data analyzed we find that most pseudo-breakups occur near local midnight, between magnetic local times of 21 and 03, at magnetic latitudes near 70 degrees, through this value may change by several degrees. While often discussed in the context of substorm growth phase events, pseudo-breakups are also shown to occur during prolonged relatively inactive periods. These quiet time pseudo-breakups can occur over a period of several hours without the development of a significant substorm for at least an hour after pseudo-breakup activity stops. In an attempt to understand the cause of quiet time pseudo-breakups, we compute the epsilon parameter as a measure of the efficiency of solar wind-magnetosphere coupling. It is noted that quiet time pseudo-breakups occur typically when epsilon is low; less than about 50 GW. We suggest that quiet time pseudo-breakups are driven by relatively small amounts of energy transferred to the magnetosphere by the solar wind insufficient to initiate a substorm expansion onset.

  15. Satellite observations of new particle and field signatures associated with SAR arc field lines at magnetospheric heights

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Gurnett, D. A.; Huff, R. L.; Comfort, R. H.; Waite, J. H., Jr.; Brace, L. H.

    1987-01-01

    Enhancements in thermal ion densities, an oxygen dominated ring current at energies below 17 keV, and invariant latitude-limited bands of intense ELF hiss have been discovered on Stable Auroral Red (SAR) arc field lines at magnetospheric heights. These new signatures were revealed by an examination of 31 coordinated data sets taken simultaneously at magnetospheric and ionospheric heights by the De-1 and -2 satellites during SAR arc traversals within the period September 1981 through April 1982. Data sets from DE-2, for the first time, provide information on the location of a SAR arc (determined by the F region electron temperature enhancement) during the nearly simultaneous passage of these field lines by DE-1 in the magnetosphere. These new high altitude signatures are examined in the context of possible magnetospheric SAR arc energy source mechanisms.

  16. Solar Cycle Dynamics of Solar, Magnetospheric, and Heliospheric Particles, and Long-Term Atmospheric Coupling: SAMPEX

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Blake, J. B.; Mewaldt, R. A.; Stone, E. C.; Baker, D. N.; vonRosenvinge, T. T.; Callis, L. B.; Hamilton, D. C.; Klecker, B.; Hovestadt, D.; Scholer, M.

    1997-01-01

    This report summarizes science analysis activities by the SAMPEX mission science team during the period during the period July 1, 1997 through July 1, 1997. Bibliographic entries for 1996 and 1997 to date (July 1997) are included. The SAMPEX science team was extremely active, with 27 articles published or submitted to refereed journals, 17 papers published in their entirety in Conference Proceedings, and 74 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings, as well as other activities of the team.

  17. Solar Cycle Dynamics of Solar, Magnetospheric, and Heliospheric Particles, and Long-Term Atmospheric Coupling: SAMPEX

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Blake, J. B.; Mewaldt, R. A.; Stone, E. C.; Baker, D. N.

    1998-01-01

    This report summarizes science analysis activities by the SAMPEX mission science team during the period during the period July 1, 1997 through July 1, 1998. Bibliographic entries for 1997 and 1998 to date (July 1998) are included. The SAMPEX science team was extremely active, with 20 articles published or submitted to refereed journals, 11 papers published in their entirety in Conference Proceedings, and 49 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings, as well as other activities of the team.

  18. Magnetosphere of Uranus

    SciTech Connect

    Ness, N.F.

    1986-12-01

    The magnetosphere and magnetic field of Uranus are analyzed using Voyager 2 data. It is observed that the magnetic axis of Uranus is tilted 60 deg from its rotation axis; the magnetic dipole center is displaced almost 7700 km from the center of the planet; the magnetic field intensity varies over its surface between 24,000-69,000 gammas; and the rotation rate of the planet is 17.24 hours. The dynamo generation of the planetary magnetic field is examined. Consideration is given to the auroral activity, magnetic tails, moons, and radiation belts of charged particles of Uranus. The significance of the large tilt and offset magnetic axis for the interior of Uranus is discussed.

  19. Solar Cycle Dynamics of Solar, Magnetospheric, and Heliospheric Particles, and Long-Term Atmospheric Coupling: SAMPEX

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Blake, J. B.; Mazur, J. E.; Mewaldt, R. A.; Stone, E. C.; Baker, D. N.; vonRosenvinge, T. T.; Callis, L. B.; Klecker, B.; Hovestadt, D.; Scholer, M.

    2000-01-01

    This final technical report summarizes science analysis activities by the SAMPEX mission science team during the period July 1, 1995 through September 30, 2000. Bibliographic entries for 1995 to date (October 2000) are included. The SAMPEX science team was extremely active, with 72 articles published or submitted to referred journals, 38 papers published in their entirety in Conference Proceedings, and 260 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings, as well as other activities of the team. One Ph.D. student, Mr. Daniel Williams, completed his thesis at California Institute of Technology based on data from the MAST instrument.

  20. Nonlinear Evolution of Ion Acoustic Solitary Waves in Earth's Magnetosphere: Fluid and Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Kakad, A.; Kakad, B. A.; Omura, Y.

    2014-12-01

    In recent spacecraft observations, coherent electrostatic solitary wave (ESWs) structures are observed in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. It is noted that a long time evolution of Gaussian type perturbations in the equilibrium electron and ion densities generated the nonlinear IASW structures in both fluid and PIC simulations. The IASW structures represent vortices of trapped electrons in PIC simulations. We find that the number of trapped electrons in the wave potential is higher for the large amplitude IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate to model the IASW observations when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.

  1. Ionosphere-magnetosphere coupling

    NASA Technical Reports Server (NTRS)

    Kaufmann, Richard L.

    1994-01-01

    Principal results are presented for the four papers that were supported from this grant. These papers include: 'Mapping and Energization in the Magnetotail. 1. Magnetospheric Boundaries; 'Mapping and Energization in the Magnetotail. 2. Particle Acceleration'; 'Cross-Tail Current: Resonant Orbits'; and 'Cross-Tail Current, Field-Aligned Current, and B(sub y)'.

  2. Active experiments using rocket-borne shaped charge barium releases. [solar-terrestrial magnetospheric physics

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Davis, T. N.

    1980-01-01

    A reliable payload system and scaled down shaped charges were developed for carrying out experiments in solar-terrestrial magnetospheric physics. Four Nike-Tomahawk flights with apogees near 450 km were conducted to investigate magnetospheric electric fields, and two Taurus-Tomahawk rockets were flown in experiments on the auroral acceleration process in discrete auroras. In addition, a radial shaped charge was designed for plasma perturbation experiments.

  3. Proton velocity ring-driven instabilities in the inner magnetosphere: Linear theory and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2016-01-01

    Linear dispersion theory and electromagnetic particle-in-cell (PIC) simulations are used to investigate linear growth and nonlinear saturation of the proton velocity ring-driven instabilities, namely, ion Bernstein instability and Alfvén-cyclotron instability, which lead to fast magnetosonic waves and electromagnetic ion cyclotron waves in the inner magnetosphere, respectively. The proton velocity distribution is assumed to consist of 10% of a ring distribution and 90% of a low-temperature Maxwellian background. Here two cases with ring speeds vr/vA=1 and 2 (vA is the Alfvén speed) are examined in detail. For the two cases, linear theory predicts that the maximum growth rate γm of the Bernstein instability is 0.16Ωp and 0.19Ωp, respectively, and γm of the Alfvén-cyclotron instability is 0.045Ωp and 0.15Ωp, respectively, where Ωp is the proton cyclotron frequency. Two-dimensional PIC simulations are carried out for the two cases to examine the instability development and the corresponding evolution of the particle distributions. Initially, Bernstein waves develop and saturate with strong electrostatic fluctuations. Subsequently, electromagnetic Alfvén-cyclotron waves grow and saturate. Despite their smaller growth rate, the saturation levels of the Alfvén-cyclotron waves for both cases are larger than those of the Bernstein waves. Resonant interactions with the Bernstein waves lead to scattering of ring protons predominantly along the perpendicular velocity component (toward both decreasing and, at a lesser extent, increasing speeds) without substantial change of either the parallel temperature or the temperature anisotropy. Consequently, the Alfvén-cyclotron instability can still grow. Furthermore, the free energy resulting from the pitch angle scattering by the Alfvén-cyclotron waves is larger than the free energy resulting from the perpendicular energy scattering, thereby leading to the larger saturation level of the Alfvén-cyclotron waves.

  4. Active particles on curved surfaces

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael

    Active systems have proved to be very sensitive to the geometry of their environment. This is often achieved by spending significant time at the boundary, probing its shape by gliding along it. I will discuss coarse graining the microscopic dynamics of self-propelled particles on a general curved surface to predict the way the density profile on the surface depends on its geometry. Beyond confined active particles, this formalism is a natural starting point to study objects that cannot leave the boundary at all, such as cells crawling on a curved substrate, animals running on uneven ground, or active colloids trapped at an interface.

  5. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuña, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Livi, Stefano; Mauk, Barry H.; Solomon, Sean C.; Zurbuchen, Thomas H.

    2007-08-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only ˜1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere, allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, ˜1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic tail. Because of Mercury’s proximity to the sun, 0.3-0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions all playing roles in the generation of field-aligned electric currents. However, these field

  6. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; Zurbuchen, Thomas H.

    2005-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all

  7. Bifurcation and Hysteresis of the Magnetospheric Structure with a varying Southward IMF: Field Topology and Global Three-dimensional Full Particle Simulations

    NASA Technical Reports Server (NTRS)

    Cai, DongSheng; Tao, Weinfeng; Yan, Xiaoyang; Lembege, Bertrand; Nishikawa, Ken-Ichi

    2007-01-01

    Using a three-dimensional full electromagnetic particle model (EMPM), we have performed global simulations of the interaction between the solar wind and the terrestrial magnetosphere, and have investigated its asymptotic stability. The distance between the dayside magnetopause subsolar point and the Earth center, R(sub mp) is measured, as the intensity of southward IMF |B(sub z)| is slowly varying. Based on the field topology theory, one analyzes the variation of R(sub mp) as a reference index of the dynamics of this interaction, when IMF |B(sub z)| successively increases and decreases to its original value. Two striking results are observed. First, as the IMF |B(sub z)| increases above a critical value, the variation of R(sub mp) suddenly changes (so called 'bifurcation' process in field topology). Above this critical value, the overall magnetic field topology changes drastically and is identified as being the signature of magnetic reconnection at the subsolar point on the magnetopause. Second, this subsolar point recovers its original location R(sub mp) by following different paths as the IMF |B(sub z)| value increases (from zero to a maximum fixed value) and decreases (from this maximum to zero) passing through some critical values. These different paths are the signature of 'hysteresis' effect, and are characteristic of the so-called 'subcritical-type' bifurcation. This hysteresis signature indicates that dissipation processes take place via an energy transfer from the solar wind to the magnetosphere by some irreversible way, which leads to a drastic change in the magnetospheric field topology. This hysteresis is interpreted herein as a consequence of the magnetic reconnection taking place at the dayside magnetopause. The field topology reveals to be a very powerful tool to analyze the signatures of three-dimensional magnetic reconnection without the obligation for determining the mechanisms responsible for, and the consequences of the reconnection on the

  8. Magnetosphere of Saturn

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.

    1978-01-01

    Models of the Saturnian magnetosphere based on the application of magnetospheric scaling relations to a spin-aligned planetary magnetic dipole, that produces a surface equatorial field strength in the range 0.5 to 2 gauss, exhibit the following properties: (1) The orbit of Titan lies inside of the magnetosphere essentially all of the time, even when variations in the size of the magnetosphere resulting from solar wind pressure changes are taken into account; (2) the Brice-type planetary plasmasphere reaches a peak density of about 10 protons cm/3 at L approximately 7 (L = planetocentric distance in units of planetary radii); (3) Saturn's rings have a profound effect on the energetic particle population and the plasmaspheres derived from interstellar neutrals and Titan's torus; (4) the model calculation suggests that the Titan-derived plasmasphere may be self-amplifying with a feed-back factor greater than unity, which implies the possibility of a non-linearly saturated, highly inflated Saturnian magnetosphere; and (5) this same source can have important eroding effects on the outer edge of the rings determined by Brown-Lauzerotti sputtering rates.

  9. The Earth's magnetosphere under continued forcing: Substorm activity during the passage of an interplanetary magnetic cloud

    SciTech Connect

    Farrugia, C.J.; Burlaga, L.F.; Lepping, R.P. ); Freeman, M.P. ); Takahashi, K. )

    1993-05-01

    This is the third of three papers dealing with the interaction of an interplanetary magnetic field with the earth's magnetosphere in Jan 1988. Here the authors report on substorm observations made during this time period. They sampled information from six spacecraft and a larger number of ground based systems to serve as signals for the initiation of substorm behavior. They relate the interplanetary magnetic field and plasma conditions to the time of observation of substorm initiation. Current models tie substorm occurrence to magnetic reconnection in the magnetosphere. The IMF B[sub y] and B[sub z] components varied slowly over a range of 20 nT on both sides of zero during this observation period. During the period of northward IMF the magnetosphere was quiescent, but during the period of southward IMF a large magnetic storm was initiated. During this interval substorms were observed roughly every 50 minutes.

  10. Particle fallout/activity sensor

    NASA Technical Reports Server (NTRS)

    Curtis, Ihlefeld M. (Inventor); Youngquist, Robert C. (Inventor); Moerk, John S. (Inventor); Rose, Kenneth A., III (Inventor)

    1995-01-01

    A particle fallout/activity sensor measures relative amounts of dust or other particles which collect on a mirror in an area to be monitored. The sensor includes a sensor module and a data acquisition module, both of which can be operated independently of one another or in combination with one another. The sensor module includes a housing containing the mirror, an LED assembly for illuminating the mirror and an optical detector assembly for detecting light scattered off of the mirror by dust or other particles collected thereon. A microprocessor controls operation of the sensor module's components and displays results of a measurement on an LCD display mounted on the housing. A push button switch is also mounted on the housing which permits manual initiation of a measurement. The housing is constructed of light absorbing material, such as black delrin, which minimizes detection of light by the optical detector assembly other than that scattered by dust or particles on the mirror. The data acquisition module can be connected to the sensor module and includes its own microprocessor, a timekeeper and other digital circuitry for causing the sensor module to make a measurement periodically and send the measurement data to the data acquisition module for display and storage in memory for later retrieval and transfer to a separate computer. The time tagged measurement data can also be used to determine the relative level of activity in the monitored area since this level is directly related to the amount of dust or particle fallout in the area.

  11. The Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1983-01-01

    Research on Jovian magnetospheric physics from 1979 through 1982 is surveyed, with a focus on the observations of Voyagers 1 and 2. Jovian fields and plasmas are characterized in the order of their distance from the planet, and special emphasis is given to the Io plasma torus (IPT) in the 4.9-8-Jovian-radius region and to the extended Jovian magnetotail. Topics reviewed include synchrotron radiation, magnetic-field models, Na and S emissions in the IPT, aurora, the magnetic-anomaly model, IPT plasma diffusion-convection, Io-generated Alfven wave, plasma configuration beyond the IPT, low-energy charged particles, cosmic-ray-energy particles, particle acceleration, magnetic configuration, tail current sheet and plasma disc, magnetopause and magnetosheath, interplanetary ions of Jovian origin, and the Jovian magnetosphere at Saturnian distances.

  12. Low-dimensional chaos in magnetospheric activity from AE time series

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D. V.; Sharma, A. S.; Eastman, T. E.; Papadopoulos, K.

    1990-01-01

    The magnetospheric response to the solar-wind input, as represented by the time-series measurements of the auroral electrojet (AE) index, has been examined using phase-space reconstruction techniques. The system was found to behave as a low-dimensional chaotic system with a fractal dimension of 3.6 and has Kolmogorov entropy less than 0.2/min. These indicate that the dynamics of the system can be adequately described by four independent variables, and that the corresponding intrinsic time scale is of the order of 5 min. The relevance of the results to magnetospheric modeling is discussed.

  13. Global magnetosphere-like 3D structure formation in kinetics by hot magnetized plasma flow characterized by shape of the particle distribution function

    NASA Astrophysics Data System (ADS)

    Gubchenko, Vladimir

    The task was to provide an analytical elementary magnetosphere-like model in kinetics for verification of the 3D EM PIC codes created for space/aerospace and HED plasmas applications. Kinetic approach versus cold MHD approach takes into account different behavior in the EM fields of resonant and non resonant particles in the velocity phase space, which appears via shape characteristics of the particle velocity distribution function (PVDF) and via the spatial dispersion effect forming the collisionless dissipation in the EM fields. The external flow is a hot collisionless plasma characterized by the particle velocity distribution function (PVDF) with different shapes: Maxwellian, kappa, etc. The flow is in a “hot regime”: it can be supersonic but its velocity remains less the thermal velocity of the electrons. The “internal” part of the magnetosphere formed by trapped particles is the prescribed 3D stationary magnetization considered as a spherical “quasiparticle” with internal magnetodipole and toroidal moments represented as a broadband EM driver. We obtain after the linearization of Vlasov/Maxwell equations a self-consistent 3D large scale kinetic solution of the classic problem. Namely, we: model the “outer” part of the magnetosphere formed by external hot plasma flow of the flyby particles. Solution of the Vlasov equation expressed via a tensor of dielectric permittivity of nonmagnetized and magnetized flowing plasma. Here, we obtain the direct kinetic dissipative effect of the magnetotail formation and the opposite diamagnetic effect of the magnetosphere “dipolization”. We get MHD wave cone in flow magnetized by external guiding magnetic (GM) field. Magnetosphere in our consideration is a 3D dissipative “wave” package structure of the skinned EM fields formed by the “waves” excited at frequency bands where we obtain negative values and singularities (resonances) of squared EM refractive index of the cold plasma. The hot regime

  14. Diffusion of active chiral particles

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.

    2016-12-01

    The diffusion of chiral active Brownian particles in three-dimensional space is studied analytically, by consideration of the corresponding Fokker-Planck equation for the probability density of finding a particle at position x and moving along the direction v ̂ at time t , and numerically, by the use of Langevin dynamics simulations. The analysis is focused on the marginal probability density of finding a particle at a given location and at a given time (independently of its direction of motion), which is found from an infinite hierarchy of differential-recurrence relations for the coefficients that appear in the multipole expansion of the probability distribution, which contains the whole kinematic information. This approach allows the explicit calculation of the time dependence of the mean-squared displacement and the time dependence of the kurtosis of the marginal probability distribution, quantities from which the effective diffusion coefficient and the "shape" of the positions distribution are examined. Oscillations between two characteristic values were found in the time evolution of the kurtosis, namely, between the value that corresponds to a Gaussian and the one that corresponds to a distribution of spherical shell shape. In the case of an ensemble of particles, each one rotating around a uniformly distributed random axis, evidence is found of the so-called effect "anomalous, yet Brownian, diffusion," for which particles follow a non-Gaussian distribution for the positions yet the mean-squared displacement is a linear function of time.

  15. Dynamics of Saturn's magnetosphere from MIMI during Cassini's orbital insertion.

    PubMed

    Krimigis, S M; Mitchell, D G; Hamilton, D C; Krupp, N; Livi, S; Roelof, E C; Dandouras, J; Armstrong, T P; Mauk, B H; Paranicas, C; Brandt, P C; Bolton, S; Cheng, A F; Choo, T; Gloeckler, G; Hayes, J; Hsieh, K C; Ip, W-H; Jaskulek, S; Keath, E P; Kirsch, E; Kusterer, M; Lagg, A; Lanzerotti, L J; Lavallee, D; Manweiler, J; McEntire, R W; Rasmuss, W; Saur, J; Turner, F S; Williams, D J; Woch, J

    2005-02-25

    The Magnetospheric Imaging Instrument (MIMI) onboard the Cassini spacecraft observed the saturnian magnetosphere from January 2004 until Saturn orbit insertion (SOI) on 1 July 2004. The MIMI sensors observed frequent energetic particle activity in interplanetary space for several months before SOI. When the imaging sensor was switched to its energetic neutral atom (ENA) operating mode on 20 February 2004, at approximately 10(3) times Saturn's radius RS (0.43 astronomical units), a weak but persistent signal was observed from the magnetosphere. About 10 days before SOI, the magnetosphere exhibited a day-night asymmetry that varied with an approximately 11-hour periodicity. Once Cassini entered the magnetosphere, in situ measurements showed high concentrations of H+, H2+, O+, OH+, and H2O+ and low concentrations of N+. The radial dependence of ion intensity profiles implies neutral gas densities sufficient to produce high loss rates of trapped ions from the middle and inner magnetosphere. ENA imaging has revealed a radiation belt that resides inward of the D ring and is probably the result of double charge exchange between the main radiation belt and the upper layers of Saturn's exosphere.

  16. Jupiter's magnetosphere and radiation belts

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  17. Origins of magnetospheric plasma

    SciTech Connect

    Moore, T.E. )

    1991-01-01

    A review is given of recent (1987-1990) progress in understanding of the origins of plasmas in the earth's magnetosphere. In counterpoint to the early supposition that geomagnetic phenomena are produced by energetic plasmas of solar origin, 1987 saw the publication of a provocative argument that accelerated ionospheric plasma could supply all magnetospheric auroral and ring current particles. Significant new developments of existing data sets, as well as the establishment of entirely new data sets, have improved the ability to identify plasma source regions and to track plasma through the magnetospheric system of boundary layers and reservoirs. These developments suggest that the boundary between ionospheric and solar plasmas, once taken to lie at the plasmapause, actually lies much nearer to the magnetopause. Defining this boundary as the surface where solar wind and ionosphere contribute equally to the plasma, it is referred to herein as the 'geopause'. It is now well established that the infusion of ionospheric O(+) plays a major role in the storm-time distention of the magnetotail and inflation of the inner magnetosphere. After more than two decades of observation and debate, the question remains whether magnetosheric are protons of solar or terrestrial origin. 161 refs.

  18. Movement of particles using sequentially activated dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2004-02-03

    Manipulation of DNA and cells/spores using dielectrophoretic (DEP) forces to perform sample preparation protocols for polymerized chain reaction (PCR) based assays for various applications. This is accomplished by movement of particles using sequentially activated dielectrophoretic particle trapping. DEP forces induce a dipole in particles, and these particles can be trapped in non-uniform fields. The particles can be trapped in the high field strength region of one set of electrodes. By switching off this field and switching on an adjacent electrodes, particles can be moved down a channel with little or no flow.

  19. Cosmic Rays trajectory reconstruction in the Earth Magnetosphere: External Field models importance during the last solar active period (from 2011 to 2013)

    NASA Astrophysics Data System (ADS)

    Grandi, Davide; Della Torre, Stefano; Pensotti, Simonetta; Bobik, Pavol; Kudela, Karel; Rancoita, Pier Giorgio; Gervasi, Massimo; Jeroen Boschini, Matteo; Rozza, Davide; La vacca, Giuseppe; Tacconi, Mauro

    Geomagsphere is a backtracing code for Cosmic Rays trajectory reconstruction in the Earth Magnetosphere that has been developed with last models of Internal (IGRF-11) and External (Tsyganenko 1996 and 2005) field components. This backtracing technique was used to separate Primary Cosmic Rays Particles, in case of allowed trajectory, from Secondary particles, in case of forbidden trajectory. We compared Magnetic Field measurements with and without the external field model with satellite data in past periods, in particular GOES (1998) and CLUSTER (2004) data. For both periods TS05 reproduces the magnetc field components with good accuracy. The specificity of the TS05 model, designed for solar storms, was tested comparing it with data taken by CLUSTER during the last solar active period (from 2011 to 2013) During Solar Flares (occurred march and May 2012), the usage of such an external field has a relevavant impact on fraction of AMS-02 cosmic rays identified as trapped and secondary particles, especially in high geomagnetic latitudes, as was expecte by some previous simulations, in comparison with the Internal Field only.

  20. Measurements from the Van Allen Probes EFW instrument on the role of electric fields in controlling the structure of the inner magnetosphere and the dynamic of particle energization

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Breneman, A. W.; Dai, L.; Thaller, S. A.; Cattell, C. A.; Bonnell, J. W.; Mozer, F.; Agapitov, O. V.; Ergun, R.; Baker, D. N.; Li, X.; Califf, S.; Malaspina, D.; Hudson, M. K.; Millan, R. M.; Halford, A.; Foster, J. C.; Erickson, P. J.; Strangeway, R. J.; Donovan, E.; Kletzing, C.; Kurth, W. S.; Bounds, S. R.; Fennell, J. F.; Reeves, G. D.; Smith, C. W.; Ukhorskiy, A. Y.; Gkioulidou, M.

    2014-12-01

    The Van Allen Probes electric field experiment (EFW) provides measurements in the inner magnetosphere of quasi-static electric fields and high time resolution burst recordings of wave electric and magnetic fields (from the EMFISIS sensors) at rates as high as 16.4 ksamples/s. The EFW instrument also provides estimates of plasma density. We present electric field measurements from the two probes of these electric fields along with magnetic fields and particles to illustrate the role of the electric fields in the erosion of the plasmasphere, the energization of ring current particles, shock acceleration of relativistic particles, and near earth plasma sheet injection of energetic particles. These analysis include comparisons to dc magnetic fields provided by the EMFISIS fluxgate magnetometer and energetic particle measurements (from 10 eV to 20 MeV) provided by HOPE, MagEIS, and REPT instruments in the ECT suite. We will also present a preliminary comparison over the complete duration of the mission between the structure and intensity of the large-scale convection electric field and its interplanetary drivers, including CMEs and SIRs.

  1. Examining the Dynamics of Llow-Energy Electrons in Saturn's Magnetosphere by combining Cassini CAPS-ELS Data with Charged Particle Transport Model.

    NASA Astrophysics Data System (ADS)

    Santos-Costa, D.; Hill, T. W.; Johnson, R. E.; Rymer, A.; Paty, P. S.; Coates, A. J.; Young, D. T.; Bolton, S. J.; Menietti, J. D.; Dougherty, M.

    2007-12-01

    Our first analysis of electron populations using a diffusion theory model allowed the discussion of plasma production and its distribution in Saturn's inner magnetosphere. Our results in modeling the interactions between low-energy electrons and different components of the Kronian system (satellites, dust, and neutral clouds) showed that 1) part of the cold plasma observed by the Cassini Plasma Spectrometer is produced during the impact-ionization of neutrals, and 2) during such a process, the hot component of the electron populations is redistributed along the field lines. Our primary result was then the theoretical demonstration that the impact- ionization process contributes to the `bimodal' energy distributions and `butterfly' pitch-angle distributions. We now present our recent investigation of the sources, sinks and transports of electron plasma populations obtained by combining CAPS-ELS data with our physical particle transport model. We will focus on presenting our results for the period where Cassini was orbiting near the equatorial plane (from late 2005 to early 2006). Plasma data will be used for constraining our modeling, and assisting with the validation of our new simulations. Interaction with neutrals will be studied in the purpose of analyzing the various Saturnian plasma domains. We will also reexamine the diffusive radial transport by discussing magnetospheric processes susceptible to drive inward transport and outward plasma flow.

  2. Solar Wind Entry into the magnetosphere lobes and its Related Auroral activities

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Gou, X.; Mailyan, B. G.; Maggiolo, R.; Zhang, Y.; Fu, S.; Zong, Q.; Parks, G. K.; Pu, Z.; Dunlop, M. W.

    2014-12-01

    Using Cluster multi-spacecrafts observation between August to October each year from 2002 to 2004, Shi, et al. [2013] have reported an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetospheric lobes where the solar wind plasmas may penetrate into magnetosphere through high-latitude magnetic reconnection when the interplanetary magnetic field (IMF) is northward. From statistical analysis, they found that the IMF Bx component may influence the solar wind entry into the magnetosphere by changing the occurring conditions of high-latitude magnetic reconnection. Based on their studies, in this paper we use another period of Cluster data which is between January to April each year from 2001 to 2006 to do a further study. As a result, the influence of the IMF Bx component is consistent with the results from [Shi, et al. 2013]. We find that the IMF By component affects the events along with the IMF Bx component, which is consistent with the Parker Spiral of the IMF. We have also studied some transpolar arc observations in correlation with the solar wind entry events. The properties of entry plasma, electron and ion properties associated with aurorae are examined using multiple spacecraft data (Cluster, TIMED, DMSP, IMAGE and POLAR etc) , as can be seen from another work presented this meeting by Mailyan et al.

  3. Bursty bulk flows at different magnetospheric activity levels: Dependence on IMF conditions

    NASA Astrophysics Data System (ADS)

    Zhang, L. Q.; Baumjohann, W.; Wang, C.; Dai, L.; Tang, B. B.

    2016-09-01

    Based on concurrent observations of the ACE and Geotail satellites from 1998 to 2005, we statistically analyzed and compared the earthward bursty bulk flows (BBFs) with local positive Bz under different interplanetary magnetic field (IMF) conditions. Four different magnetospheric activity levels (MALs), including quiet times and substorm growth/expansion/recovery phases, are considered. The properties of the BBFs, including their ion temperature (T), Vx component, x component of the energy flux density (Qx), and the solar wind dawn-dusk electric field Ey (observed at 1 AU), are analyzed. Main observations include the following: (1) BBF tends to have less penetration distance for northward IMF (NW-IMF) than for southward IMF (SW-IMF). Inward of 15 RE the BBFs for SW-IMF are dominant. Few BBFs for NW-IMF occur within 15 RE. (2) The occurrence probabilities of the BBFs at each MAL depend highly on the orientations of the IMF. During quiet times, the BBFs for NW-IMF are dominant. Reversely, during the growth and expansion phases of a substorm, the BBFs for SW-IMF are dominant. (3) The strengths of the BBF have significant evolution with substorm development. For SW-IMF condition, the strengths of the BBFs are the lowest for quiet times. The strength of the BBFs tends to increase during the growth phase and reaches to the strongest value during the expansion phase, then, decays during the recovery phase. For NW-IMF condition, the strengths of the BBFs evolve with the substorm development in a similar way as for SW-IMF condition. (4) For SW-IMF, the solar wind Ey evolves with the substorm development in a similar way to the strength of the BBFs. However, no clear evolution is found for NW-IMF. (5) The strengths of the BBF Qx and solar wind Ey are closely related. Both tend to be stronger for growth phase than for quite time, reach the strongest for expansion phase, then decay for recovery phase. It appears that to trigger a substorm, the strength of the BBFs should

  4. Warm Oxygen Enhancements in the Inner Magnetosphere and Their Relation to Geomagnetic Activity, Plasmasphere, and Ring Current.

    NASA Astrophysics Data System (ADS)

    Jahn, J. M.; Skoug, R. M.; Gkioulidou, M.; Bonnell, J. W.; Larsen, B.; Reeves, G. D.; Spence, H. E.

    2014-12-01

    Ionospheric oxygen plays an important role in the dynamics of Earth's magnetosphere. During geomagnetic storms, oxygen transported into the tail can experience significant energization and become a major contributor to the storm-time ring current. At very low energies, a dense cold oxygen torus straddles the outer plasmasphere, frequently with O+/H+ ratios approaching unity. With the Radiation Belt Storm Probes we now also observe a third oxygen population in this region. In this paper we discuss the nature of "warm" (10's eV to few keV, i.e., between plasmasphere and ring current ion energies) oxygen density enhancements over the course of the Van Allen Probes mission. We find that the composition of this warm thermal plasma is very dynamic throughout the inner magnetosphere. The warm oxygen density is highly responsive to changes in geomagnetic activity, varying by more than two orders of magnitude between quiet times and moderate storms. This variation at times is a greater than the variation of the corresponding proton density. The O+/H+ warm plasma density ration will frequently exceed unity, usually during the recovery phase of storms. The region of enhanced warm oxygen density reaches from the plasmasphere boundary out to at least geosynchronous orbit (the largest L-shells covered by the Van Allen Probes). It can be observed at all local times. Barring other geomagnetic activity, warm oxygen density enhancements disappear typically within 5 days of their first detection, which is consistent with drift times through the inner magnetosphere along open drift paths. We are putting these characteristics in context of the composition, location, and evolution of the plasmasphere and the ring current.

  5. Oscillatory flow braking: inner magnetosphere observations

    NASA Astrophysics Data System (ADS)

    Panov, E. V.; Nakamura, R.; Baumjohann, W.; Angelopoulos, V.

    2013-12-01

    We search for damped oscillatory flow braking events observed by THEMIS/ARTEMIS in the near-Earth plasma sheet when their counterpart in the inner magnetosphere was observed. By comparing the particle and magnetic field data in the two locations we analyze the feedback of the inner magnetosphere to plasma sheet oscillatory flow braking. We discuss the possible role of the oscillatory flow events for plasma injection into the inner magnetosphere.

  6. Momentum transfer of solar wind plasma in a kinetic scale magnetosphere

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Kajimura, Yoshihiro; Usui, Hideyuki; Matsumoto, Masaharu; Matsui, Tatsuki; Shinohara, Iku

    2012-03-01

    Solar wind interaction with a kinetic scale magnetosphere and the resulting momentum transfer process are investigated by 2.5-dimensional full kinetic particle-in-cell simulations. The spatial scale of the considered magnetosphere is less than or comparable to the ion inertial length and is relevant for magnetized asteroids or spacecraft with mini-magnetosphere plasma propulsion. Momentum transfer is evaluated by studying the Lorentz force between solar wind plasma and a hypothetical coil current density that creates the magnetosphere. In the zero interplanetary magnetic field (IMF) limit, solar wind interaction goes into a steady state with constant Lorentz force. The dominant Lorentz force acting on the coil current density is applied by the thin electron current layer at the wind-filled front of the magnetosphere. Dynamic pressure of the solar wind balances the magnetic pressure in this region via electrostatic deceleration of ions. The resulting Lorentz force is characterized as a function of the scale of magnetosphere normalized by the electron gyration radius, which determines the local structure of the current layer. For the finite northward IMF case, solar wind electrons flow into the magnetosphere through the reconnecting region. The inner electrons enhance the ion deceleration, and this results in temporal increment of the Lorentz force. It is concluded that the momentum transfer of solar wind plasma could take place actively with variety of kinetic plasma phenomena, even in a magnetosphere with a small scale of less than the ion inertial length.

  7. Physics of the Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Dessler, A. J.

    2002-08-01

    List of tables; Foreword James A. Van Allen; Preface; 1. Jupiter's magnetic field and magnetosphere Mario H. Acuña, Kenneth W. Behannon and J. E. P. Connerney; 2. Ionosphere Darrell F. Strobel and Sushil K. Atreya; 3. The low-energy plasma in the Jovian magnetosphere J. W. Belcher; 4. Low-energy particle population S. M. Krimigis and E. C. Roelof; 5. High-energy particles A. W. Schardt and C. K. Goertz; 6. Spectrophotometric studies of the Io torus Robert A. Brown, Carl B. Pilcher and Darrell F. Strobel; 7. Phenomenology of magnetospheric radio emissions T. D. Carr, M. D. Desch and J. K. Alexander; 8. Plasma waves in the Jovian magnetosphere D. A. Gurnett and F. L. Scarf; 9. Theories of radio emissions and plasma waves Melvyn L. Goldstein and C. K. Goertz; 10. Magnetospheric models T. W. Hill, A. J. Dessler and C. K. Goertz; 11. Plasma distribution and flow Vytenis M. Vasyliunas; 12. Microscopic plasma processes in the Jovian magnetosphere Richard Mansergh Thorne; Appendixes; References; Index.

  8. The solar wind and magnetospheric dynamics

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1974-01-01

    The dynamic processes involved in the interaction between the solar wind and the earth's magnetosphere are reviewed. The evolution of models of the magnetosphere is first surveyed. The existence of the auroral substorm and the cyclical polar magnetic substorm is evidence that the magnetosphere is a dynamic system. The dynamic changes occurring in the magnetosphere, including erosion of the magnetopause, changes in the size of the polar cap, variations in the flaring angle of the tail, neutral point formation, plasma sheet motions, and the inward collapse of the midnight magnetosphere, are discussed. The cyclical variations of geomagnetic activity are explained in terms of the control of the solar wind-magnetosphere interaction by the north-south component of the interplanetary magnetic field. Present phenomenological models allow prediction of geomagnetic activity from interplanetary measurements, but modeling of detailed magnetospheric processes is still in its infancy.

  9. Solar wind energy transfer through the magnetopause of an open magnetosphere

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Roederer, J. G.

    1982-01-01

    An expression is derived for the total power, transferred from the solar wind to an open magnetosphere, which consists of the electromagnetic energy rate and the particle kinetic energy rate. The total rate of energy transferred from the solar wind to an open magnetosphere mainly consists of kinetic energy, and the kinetic energy flux is carried by particles, penetrating from the solar wind into the magnetosphere, which may contribute to the observed flow in the plasma mantle and which will eventually be convected slowly toward the plasma sheet by the electric field as they flow down the tail. While the electromagnetic energy rate controls the near-earth magnetospheric activity, the kinetic energy rate should dominate the dynamics of the distant magnetotail.

  10. The Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection?
In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  11. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  12. The magnetospheric trough

    SciTech Connect

    Thomsen, M.F.; McComas, D.J.; Elphic, R.C.; Borovsky, J.E.

    1997-03-04

    The authors review the history of the concepts of the magnetospheric cold-ion trough and hot-electron trough and conclude that the two regions are actually essentially the same. The magnetospheric trough may be viewed as a temporal state in the evolution of convecting flux tubes. These flux tubes are in contact with the earth`s upper atmosphere which acts both as a sink for precipitating hot plasma sheet electrons and as a source for the cold ionospheric plasma leading to progressive depletion of the plasma sheet and refilling with cold plasma. Geosynchronous plasma observations show that the rate of loss of plasma-sheet electron energy density is commensurate with the precipitating electron flux at the low-latitude edge of the diffuse aurora. The rate at which geosynchronous flux tubes fill with cold ionospheric plasma is found to be consistent with previous estimates of early-time refilling. Geosynchronous observations further indicate that both Coulomb collisions and wave-particle effects probably play a role in trapping ionospheric material in the magnetosphere.

  13. Calculations of the integral invariant coordinates I and L* in the magnetosphere and mapping of the regions where I is conserved, using a particle tracer (ptr3D v2.0), LANL*, SPENVIS, and IRBEM

    NASA Astrophysics Data System (ADS)

    Konstantinidis, K.; Sarris, T.

    2015-09-01

    The integral invariant coordinate I and Roederer's L or L* are proxies for the second and third adiabatic invariants, respectively, that characterize charged particle motion in a magnetic field. Their usefulness lies in the fact that they are expressed in more instructive ways than their counterparts: I is equivalent to the path length of the particle motion between two mirror points, whereas L*, although dimensionless, is equivalent to the distance from the center of the Earth to the equatorial point of a given field line, in units of Earth radii, in the simplified case of a dipole magnetic field. However, care should be taken when calculating the above invariants, as the assumption of their conservation is not valid everywhere in the Earth's magnetosphere. This is not clearly stated in state-of-the-art models that are widely used for the calculation of these invariants. The purpose of this work is thus to investigate where in the near-Earth magnetosphere we can safely calculate I and L* with tools with widespread use in the field of space physics, for various magnetospheric conditions and particle initial conditions. More particularly, in this paper we compare the values of I and L* as calculated using LANL*, an artificial neural network developed at the Los Alamos National Laboratory, SPENVIS, a space environment online tool, IRBEM, a software library dedicated to radiation belt modeling, and ptr3D, a 3-D particle tracing code that was developed for this study. We then attempt to quantify the variations between the calculations of I and L* of those models. The deviation between the results given by the models depends on particle initial position, pitch angle and magnetospheric conditions. Using the ptr3D v2.0 particle tracer we map the areas in the Earth's magnetosphere where I and L* can be assumed to be conserved by monitoring the constancy of I for energetic protons propagating forwards and backwards in time. These areas are found to be centered on the noon

  14. Magnetospheric models for electron acceleration and transport in the heliosphere

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Baker, D. N.

    1993-01-01

    Electron transport and acceleration processes in the earth's magnetosphere have correspondences to analogous processes affecting electrons in the solar magnetosphere (i.e., heliosphere). Energetic electrons in planetary magnetospheres and the heliosphere are test particles probing transport and acceleration dynamics with minimal effects on dominant magnetic field configurations. Parallels are discussed relating to electron entry into the magnetospheres from interplanetary and interstellar space, circulatory transport processes, and acceleration by electric fields in boundary regions including shocks and magnetotails.

  15. How Ionospheric Ions Populate the Magnetosphere during a Magnetic Storm

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Moore, T. E.; Kistler, L. M.; Slinker, S. P.; Fedder, J. A.; Delcourt, D. C.

    2008-01-01

    Ionospheric oxygen ions have been observed throughout the magnetosphere, from the plasma sheet to the ring current region. I t has been found that the O+ /H+ density ratio in the magnetosphere increases with geomagnetic activity and varies with storm phases. During the magnetic storm in late September to earIy October 2002, Cluster was orbiting in the plasma sheet and ring current regions. At prestorm time, Cluster observed high H+ density and low O+ density in the plasma sheet and lobes. During the storm main phase, 0+ density has increased by 10 times over the pre-storm level. Strong field-aligned beams of O+ were observed in the lobes. O+ fluxes were significantly reduced in the central plasma sheet during the storm recovery. However, 0+ was still evident on the boundaries of the plasma sheet and in the lobes. In order to interpret the Cluster observations and to understand how O+ ions populate the magnetosphere during a magnetic storm, we model the storm in early October 2002 using our global ion kinetic simulation (GIK). We use the LFN global simulation model to produce electric and magnetic fields in the outer magnetosphere, the Strangeway outflow scaling with Delcourt ion trajectories to include ionospheric outflows, and the Fok inner magnetospheric model for the plasmaspheric and ring current response to all particle populations. We find that the observed composition features are qualitatively reproduced by the simulations, with some quantitative differences that point to future improvements in the models.

  16. Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Harris, B.; Leitner, M.; Moestl, C.; Galvin, A. B.; Simunac, K. D. C.; Torbert, R. B.; Temmer, M. B.; Veronig, A. M.; Erkaev, N. V.; Szabo, A.; Ogilvie, K. W.; Luhman, J. G.; Osherovich, V. A.

    2012-01-01

    We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007 - 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A.We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfven Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions.We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3+/-0.9 mV/m and a CPCP of 37.3+/-20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey.We use the same numerical approach as in Fairfield's empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R(sub E) and 14.35 R(sub E), respectively. When comparing with Fairfield's classic result, we find that the subsolar magnetosheath is thinner by approx. 1 R(sub E). This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared

  17. Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Harris, B.; Leitner, M.; Möstl, C.; Galvin, A. B.; Simunac, K. D. C.; Torbert, R. B.; Temmer, M. B.; Veronig, A. M.; Erkaev, N. V.; Szabo, A.; Ogilvie, K. W.; Luhmann, J. G.; Osherovich, V. A.

    2012-04-01

    We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007- 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A. We find that the density and total field strength were considerably weaker than in the previous minimum. The Alfvén Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions. We then discuss two major aspects that this weak solar activity had on the magnetosphere using data from Wind and ground-based observations: (a) the level of solar wind driving and the associated dayside contribution to the crosspolar cap potential (CPCP), and (b) the shapes of the magnetopause and bow shock. For (a) we find very weak interplanetary electric field (V xBz = -0.05 ± 0.83 mV/m) and a CPCP of 36.6 ± 18.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions.We argue that the Alfvén waves in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this 3-year period. For (b) we determine 328 magnetopause and 271 bow shock crossings made by the Cluster 1, Themis B and C spacecraft during a 3-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the 3 years under survey. We use the same numerical approach as in Fairfield's (1971) empirical model and compare our findings with his classic result. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 RE and 14.35 RE, respectively, making the subsolar magnetosheath thinner by ≈ 1RE. This is mainly due to the low dynamic pressure which result in a sunward shift of the magnetopause The magnetopause is more flared than Fairfield's result. By contrast the bow shock

  18. Deep Solar Activity Minimum 2007-2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere

    NASA Astrophysics Data System (ADS)

    Farrugia, C. J.; Harris, B. S.; Leitner, M.; Moestl, C.; Galvin, A. B.; Simunac, K.; Torbert, R. B.; Temmer, M.; Veronig, A.; Erkaev, N.; Szabo, A.; Ogilvie, K. W.; Luhmann, J. G.; Osherovich, V.

    2012-12-01

    We discuss the temporal variations and frequency distributions of solar wind and IMF parameters during the solar minimum of 2007-2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A. We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfvén Mach number was higher than typical.This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions. We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from textit{Wind} and ground-based observations: (a) the dayside contribution to the cross-polar cap potential (CPCP), and (b) the shapes of the magnetopause and bow shock. For (a) we find a low interplanetary electric field of 1.3 ± 0.9 mV m-1 and a CPCP of 37.3 ± 20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfvén wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For (b) we determine 328 magnetopause and 271 bow shock crossings made by textit{Geotail, Cluster 1}, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey. We use the same numerical approach as in Fairfield's (textit{J. Geophys. Res.} 76, 7600, 1971) empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 RE and 14.35 RE, respectively. When comparing with Fairfield's (1971) classic result, we find that the subsolar magnetosheath is thinner by ˜1 RE. This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause The

  19. Extremely efficient Zevatron in rotating AGN magnetospheres

    NASA Astrophysics Data System (ADS)

    Osmanov, Z.; Mahajan, S.; Machabeli, G.; Chkheidze, N.

    2014-12-01

    A novel model of particle acceleration in the magnetospheres of rotating active galactic nuclei (AGN) is constructed. The particle energies may be boosted up to 1021 eV in a two-step mechanism: in the first stage, the Langmuir waves are centrifugally excited and amplified by means of a parametric process that efficiently pumps rotational energy to excite electrostatic fields. In the second stage, the electrostatic energy is transferred to particle kinetic energy via Landau damping made possible by rapid `Langmuir collapse'. The time-scale for parametric pumping of Langmuir waves turns out to be small compared to the kinematic time-scale, indicating high efficiency of the first process. The second process of `Langmuir collapse' - the creation of caverns or low-density regions - also happens rapidly for the characteristic parameters of the AGN magnetosphere. The Langmuir collapse creates appropriate conditions for transferring electric energy to boost up already high particle energies to much higher values. It is further shown that various energy loss mechanism are relatively weak, and do not impose any significant constraints on maximum achievable energies.

  20. Magnetosphere of the outer planets

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.

    1972-01-01

    Scaling laws for possible outer planet magnetospheres are derived. These suggest that convection and its associated auroral effects will play a relatively smaller role than at earth, and that there is a possibility that they could have significant radiation belts of energetic trapped particles.

  1. AB INITIO PULSAR MAGNETOSPHERE: THE ROLE OF GENERAL RELATIVITY

    SciTech Connect

    Philippov, Alexander A.; Cerutti, Benoit; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2015-12-20

    It has recently been demonstrated that self-consistent particle-in-cell simulations of low-obliquity pulsar magnetospheres in flat spacetime show weak particle acceleration and no pair production near the poles. We investigate the validity of this conclusion in a more realistic spacetime geometry via general-relativistic particle-in-cell simulations of the aligned pulsar magnetosphere with pair formation. We find that the addition of the frame-dragging effect makes the local current density along the magnetic field larger than the Goldreich–Julian value, which leads to unscreened parallel electric fields and the ignition of a pair cascade. When pair production is active, we observe field oscillations in the open field bundle, which could be related to pulsar radio emission. We conclude that general-relativistic effects are essential for the existence of the pulsar mechanism in low-obliquity rotators.

  2. Ratchet transport powered by chiral active particles

    PubMed Central

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  3. Does Enceladus govern magnetospheric dynamics at Saturn?

    PubMed

    Kivelson, Margaret Galland

    2006-03-10

    Instruments on the Cassini spacecraft reveal that a heat source within Saturn's moon Enceladus powers a great plume of water ice particles and dust grains, a geyser that jets outward from the south polar regions and most likely serves as the dominant source of Saturn's E ring. The interaction of flowing magnetospheric plasma with the plume modifies the particle and field environment of Enceladus. The structure of Saturn's magnetosphere, the extended region of space threaded by magnetic-field lines linked to the planet, is shaped by the ion source at Enceladus, and magnetospheric dynamics may be affected by the rate at which fresh ions are created.

  4. Dynamics of the Earth's Inner Magnetosphere and its Connection to the Ionosphere: Current Understanding and Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2010-01-01

    The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.

  5. Dynamics of the Earth's Inner Magnetosphere and Its Connection to the Ionosphere: Current Understanding and Challenges

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2011-01-01

    The Earth's inner magnetosphere, a vast volume in space spanning from 1.5 Re (Earth radii) to 10 Re, is a host to a variety of plasma populations (with energy from 1 eV to few MeV) and physical processes where most of which involve plasma and field coupling. As a gigantic particle accelerator, the inner magnetosphere includes three overlapping regions: the plasmasphere, the ring current, and the Van Allen radiation belt. The complex structures and dynamics of these regions are externally driven by solar activities and internally modulated by intricate interactions and coupling. As a major constituent of Space Weather, the inner magnetosphere is both scientifically intriguing and practically important to our society. In this presentation, I will discuss our recent results from the Comprehensive Ring Current Model, in the context of our current understanding of the inner magnetosphere in general and challenges ahead in making further progresses.

  6. Plasma convection in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    1990-01-01

    The magnetosphere of Neptune changes its magnetic configuration continuously as the planet rotates, leading to a strong modulation of the convection electric field. Even though the corotation speed is considerably larger, the modulation causes the small convection speed to have a cumulative effect, much like the acceleration of particles in a cyclotron. A model calculation shows that plasma on one side of the planet convects out of the magnetosphere in a few planetary rotations, while on the other side it convects slowly planetward. The observation of nitrogen ions from a Triton plasma torus may provide a critical test of the model.

  7. An Interpretation of Banded Magnetospheric Radio Emissions

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Osherovich, V. A.; Fainberg, J.; Vinas, A. F.; Ruppert, D. R.; Vondrak, Richard R. (Technical Monitor)

    2000-01-01

    Recently-published Active Magnetospheric Particle Tracer Explorer/Isothermal Remanent Magnetization (AMPTE/IRM) banded magnetospheric emissions, commonly referred to as '(n + 1/2)f(sub ce)' emissions where f(sub ce) is the electron gyrofrequency, are analyzed by treating them as analogous to sounder-stimulated ionospheric emissions. We show that both individual AMPTE/IRM spectra of magnetospheric banded emissions, and a statistically-derived spectra observed over the two-year lifetime of the mission, can be interpreted in a self-consistent manner. The analysis, which predicts all spectral peaks within 4% of the observed peaks, interprets the higher-frequency emissions as due to low group-velocity Bernstein-mode waves and the lower-frequency emissions as eigen modes of cylindrical-electromagnetic-plasma-oscillations. The demarcation between these two classes of emissions is the electron plasma frequency f(sub pe), where an emission is often observed. This f(sub pe), emission is not necessarily the strongest. None of the observed banded emissions were attributed to the upper-hybrid frequency. We present Alouette-2 and ISIS-1 plasma-resonance data, and model electron temperature (T(sub e)) values, to support the argument that the frequency-spectrum of ionospheric sounder-stimulated emissions is not strongly temperature dependent and thus that the interpretation of these emissions in the ionosphere is relevant to other plasmas (such as the magnetosphere) where N(sub e) and T(sub e) can be quite different but where the ratio f(sub pe)/f(sub ce) is identical.

  8. Magnetospheric electric fields and currents

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Zanetti, L. J.

    1987-01-01

    The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.

  9. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude.

  10. Magnetospheric access of solar particles and the configuration of the distant geomagnetic field, volume 1. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Evans, L. C.

    1972-01-01

    The access of 1.2 to 40 MeV protons and 0.4 to 1.0 MeV electrons from interplanetary space to the polar cap regions was investigated with an experiment on board a low altitude, polar-orbiting satellite (0G0 4). A total of 333 quiet time observations of the electron polar cap boundary give a mapping of the boundary between open and closed geomagnetic field lines. Observations of events associated with co-rotating regions of enhanced proton flux in interplanetary space were used to establish the characteristics of the 1.2 to 40 MeV proton access windows. The results were compared to particle access predictions of the distant geomagnetic tail configurations. The role played by interplanetary anisotropies in the observation of persistent polar cap features is discussed. Special emphasis is given to the problem of nonadiabatic particle entry through regions where the magnetic field is changing direction.

  11. Magnetospheric radio and plasma wave research - 1987-1990

    SciTech Connect

    Kurth, W.S. )

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  12. An active particle in a complex fluid

    NASA Astrophysics Data System (ADS)

    Datt, Charu; Natale, Giovanniantonio; Hatzikiriakos, Savvas G.; Elfring, Gwynn J.

    2016-11-01

    Active particles are self-driven units capable of converting stored or ambient free-energy into systematic movement. We discuss here the case when such particles move through non-Newtonian fluids. Neglecting inertial forces, we employ the reciprocal theorem to calculate the propulsion velocity of a single swimmer in a weakly non-Newtonian fluid with background flow. We also derive a general expression for the velocity of an active particle modelled as a squirmer in a second-order fluid. We then discuss how active colloids are affected by the medium rheology, namely viscoelasticity and shear-thinning.

  13. Investigation of the Triggering Mechanism of Magnetospheric Substorm via 2-1/2 D Full-Particle Simulation

    NASA Astrophysics Data System (ADS)

    Uchino, H.; Machida, S.

    2012-12-01

    A physical process of the substorm triggering in the Earth's Magnetotail is thought to be closely related to the magnetic reconnection and the tearing instability. Recently we proposed a new scheme of the substorm onset called "Catapult Current Sheet Relaxation (CCSR) Model " to physically understand the results from GEOTAIL and THEMIS data. The CCSR Model has characters that are the decrease of the total pressure and thinning of the current sheet at the distance about -12Re in the magnetotail a few minutes before the substorm onset, and the simultaneous occurrence of the dipolarization at X~-10Re and the magnetic reconnection at X~-20Re at the time of the onset. In this study, we investigate a stability of the current sheet and the particle acceleration via particle simulation in order to assess the validity of the CCSR model and to clarify the mechanism of substorm onset. We give an initial magnetic field structure which is akin to the Earth's dipole magnetic field together with a stretched magnetic field by thin current sheet, and further add a weak northward magnetic field at the place where Near-Earth Neutral Line is expected to be formed. The results of simulation contain similar features that characterize the CCSR Model. A physically interpretation of the simulation result with the linear instability theory as well as comparison with observations will be given.

  14. Persistent long-term (1944-2015) ionosphere-magnetosphere associations at the area of intense seismic activity and beyond

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Stanislawska, I.

    2017-02-01

    Analysis of the earthquakes catalogues since 1944 reveals the area of the peak global earthquake occurrence in the Pacific Ocean southwards from the magnetic equator, in particular, at Australia. In the present study a long series of geomagnetic aa indices gathered from two antipodal magnetic observatories at Melbourne (Australia) and Greenwich (UK) are compared with the monthly-hourly critical frequency, foF2, from the nearby ionosonde measurements at Canberra and Slough (Chilton) and Moscow (control site) for 1944-2015. The annual percentage occurrence of the positive ionosphere storms W index (pW+) and negative index (pW-) is determined. It is found that the occurrence of the ionosphere plasma depletion pW- of the instant foF2 as compared to the monthly median is well correlated with the aa index at all three sites (cc > 0.85). The positive storm signatures of the plasma density enhancement pW+ show high correlation with the geomagnetic activity aa index at Slough (cc = 0.68) and Moscow (cc = 0.92) but drastic difference of missing correlation at Canberra (cc = 0.06). It has been suggested that the frequent earthquake occurrence over Australia may produce the persistent significant ionosphere plasma enhancements at Canberra which disrupts balance between the ionosphere-magnetosphere activities.

  15. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  16. Velocity distribution in active particles systems

    PubMed Central

    Marconi, Umberto Marini Bettolo; Gnan, Nicoletta; Paoluzzi, Matteo; Maggi, Claudio; Di Leonardo, Roberto

    2016-01-01

    We derive an analytic expression for the distribution of velocities of multiple interacting active particles which we test by numerical simulations. In clear contrast with equilibrium we find that the velocities are coupled to positions. Our model shows that, even for two particles only, the individual velocities display a variance depending on the interparticle separation and the emergence of correlations between the velocities of the particles. When considering systems composed of many particles we find an analytic expression connecting the overall velocity variance to density, at the mean-field level, and to the pair distribution function valid in the limit of small noise correlation times. Finally we discuss the intriguing analogies and main differences between our effective free energy functional and the theoretical scenario proposed so far for phase-separating active particles. PMID:27001289

  17. Satellites of Uranus control its magnetosphere

    SciTech Connect

    Cheng, A.F.; Hill, T.W.

    1984-10-01

    The importance of the satellites of Uranus as sources of magnetospheric plasma were investigated. It is found that neither an Io like plasma source nor a Titan like source is likely at Uranus. The likely presence of a heavy ion plasma torus maintained by charged particle sputtering of the icy satellites is examined. Sputtering of Saturn's icy satellites is considered an important source of heavy ion (oxygen) plasma in Saturn's inner magnetosphere. A major unresolved question is whether this sputtering process does depend on the preexistence of magnetospheric heavy ions derived from another source, Titian.

  18. Space weather models for radiation conditions outside and inside of the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Nymmik, Rikho; Kalegaev, Vladimir; Panasyuk, Mikhail

    2016-07-01

    Radiation environment in the Earth magnetosphere can not be considered without taking into account the physical conditions in interplanetary space due to solar activity. Therefore, any realistic model of radiation inside the magnetosphere should take into account the physical condition determined by the models out of it. Since the flux of galactic and solar cosmic rays in the magnetosphere based on the model of radiation outside the magnetosphere with an indispensable view of the magnetic field of the Earth, due to changes in the solar wind, interplanetary shock waves and magnetic field. These factors are also influence the models of trapped radiation and circular current. Particularly, this report addressed to the methodological issues of generalization of experimental data to the level of computational models, which is unchanged properties of predicting all kinds of extreme situations. The complex of these problems has long been discussed under the pressure of public attention in connection with the problems of weather forecasting and hydrology. In the field of space weather the problem of operational models evaluation (so called "metric & validation" activity) is also of great interest now. In the light of changes in the factors of solar activity in the last minimum and in the solar cycle 24, the report discusses the problems of modeling particle fluxes outside the magnetosphere. Current status of near- Earth radiation modeling including radiation belt particles transport, acceleration and losses will be discussed as well from the experimental and theoretical viewpoint.

  19. Fluctuating neutron star magnetosphere: braking indices of eight pulsars, frequency second derivatives of 222 pulsars and 15 magnetars

    NASA Astrophysics Data System (ADS)

    Ou, Z. W.; Tong, H.; Kou, F. F.; Ding, G. Q.

    2016-04-01

    Eight pulsars have low braking indices, which challenge the magnetic dipole braking of pulsars. 222 pulsars and 15 magnetars have abnormal distribution of frequency second derivatives, which also make contradiction with classical understanding. How neutron star magnetospheric activities affect these two phenomena are investigated by using the wind braking model of pulsars. It is based on the observational evidence that pulsar timing is correlated with emission and both aspects reflect the magnetospheric activities. Fluctuations are unavoidable for a physical neutron star magnetosphere. Young pulsars have meaningful braking indices, while old pulsars' and magnetars' fluctuation item dominates their frequency second derivatives. It can explain both the braking index and frequency second derivative of pulsars uniformly. The braking indices of eight pulsars are the combined effect of magnetic dipole radiation and particle wind. During the lifetime of a pulsar, its braking index will evolve from three to one. Pulsars with low braking index may put strong constraint on the particle acceleration process in the neutron star magnetosphere. The effect of pulsar death should be considered during the long term rotational evolution of pulsars. An equation like the Langevin equation for Brownian motion was derived for pulsar spin-down. The fluctuation in the neutron star magnetosphere can be either periodic or random, which result in anomalous frequency second derivative and they have similar results. The magnetospheric activities of magnetars are always stronger than those of normal pulsars.

  20. Solar flares and magnetospheric particles: Investigations based upon the ONR-602 and ONR-604 experiments. Quarterly report No. 3

    SciTech Connect

    Wefel, J.P.; Guzik, T.G.

    1993-09-03

    This performance report covers work accomplished under ONR Grant N00014-90-J-1466 related to the radiation environment in near-Earth space. The goal of the research is to measure and describe, quantitatively, the Geospace radiation environment in which men and spacecraft must survive and function. The tools for this investigation are the data returned by the ONR-602 and ONR-604 experiments, both flown under the auspices of ONR and the Air Force Space Test Program, augmented by correlative databases of both space-based and ground-based data. The investigation involves data analysis, modeling and applications to a variety of space equipment and environments. This report builds upon the detailed Technical Report (Fall, 1992) and the previous performance reports. For the current period, the principal effort was in the analysis of the solar energetic particle events that occurred during the CRRES mission, focusing upon the helium component. In addition, the authors have looked at the galactic quiet-time helium to help determine the modulation level during the CRRES Mission.

  1. The Properties of Large Amplitude Whistler Mode Waves in the Magnetosphere: Propagation and Relationship with Geomagnetic Activity

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Wygant, J. R.; Goetz, K.; Breneman, A.; Kersten, K.

    2011-01-01

    Wepresent resultsof a studyof the characteristicsof very large amplitude whistler mode waves inside the terrestrial magnetosphere at radial distances of less than 15 RE using waveform capture data from the Wind spacecraft. We observed 247 whistler mode waves with at least one electric field component (105/247 had !80 mV/m peak!to!peak amplitudes) and 66 whistler mode waves with at least one search coil magnetic field component (38/66 had !0.8 nT peak!to!peak amplitudes). Wave vectors determined from events with three magnetic field components indicate that 30/46 propagate within 20 of the ambient magnetic field, though some are more oblique (up to "50 ). No relationship was observed between wave normal angle and GSM latitude. 162/247 of the large amplitude whistler mode waves were observed during magnetically active periods (AE > 200 nT). 217 out of 247 total whistler mode waves examined were observed inside the radiation belts. We present a waveform capture with the largest whistler wave magnetic field amplitude (^8 nT peak!to!peak) ever reported in the radiation belts. The estimated Poynting flux magnitude associated with this wave is ^300 mW/m2, roughly four orders of magnitude above estimates from previous satellite measurements. Such large Poynting flux values are consistent with rapid energization of electrons.

  2. Observing Dynamics in Large-Scale Birkeland Currents with the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE)

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Korth, H.; Waters, C. L.; Barnes, R. J.; Olson, C.

    2015-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides continuous global observations of the magnetic perturbations that predominantly reflect Birkeland currents. The data are acquired by avionics magnetometers of the Iridium satellites and allow measurements from 66 satellites in near-polar circular, low altitude orbits. The configuration of the Iridium satellite constellation determines the longitude sampling spacing of ~ 2 hours and the re-sampling cadence of the system which is 9 minutes. From 2008 to 2013 the AMPERE system was developed which included new flight software on the Iridium satellites to allow telemetry of higher rate data to the ground and the Science Data Center to derive Birkeland current perturbations from the data and invert these signals to derive the global distributions of the currents using data windows of ten minutes. There were many challenges in developing AMPERE including automating inter-calibration between satellites and the baseline determination and removals. The results of AMPERE provide stunning confirmation of many of the statistical estimates for the distribution of currents but more significantly open a new window to understand their instantaneous distribution and dynamics. Examples of new features of the currents and their dynamics revealed by AMPERE are presented. In addition, prospects for new data products and increased data quality anticipated from AMPERE-NEXT to be implemented on the Iridium-NEXT generation of satellites are discussed.

  3. Acoustic-gravity waves in the nonisothermal atmosphere and its influence on the magnetospheric quasi-periodic vlf emissions

    NASA Astrophysics Data System (ADS)

    Savina, Olga; Bespalov, Peter; Misonova, Vera; Petrov, Kiril

    2014-05-01

    We examine two mutually complementing tasks related to the theoretical analysis of acoustic-gravity disturbances in the Earth's atmosphere and its influence on magnetosphere processes. Our research is based on modern atmospherical models. We study waves propagation, absorption, and filtration. The atmospheric nonisothermicity is taken into account, for example, by introduction of a two-layered atmosphere temperature model. For a study of more delicate effects, a piecewise-linear model, for which the analytical solution is written by the hypergeometric functions, is employed. Also we consider an influence of acoustic-gravity waves on VLF electromagnetic wave excitation in the magnetosphere. This influence occurs as a result of the following processes: a modulation of the plasma density by acoustic-gravity waves in the ionosphere, a modulation of reflection from the ionosphere for VLF waves, and a modification of the magnetospheric resonator Q-factor for VLF waves. Variation of the magnetospheric resonator Q-factor has an influence on the operation of the plasma magnetospheric maser, where the active substances are radiation belts particles and the working modes are electromagnetic VLF waves (whistler-type waves). The plasma magnetospheric maser can be responsible for an excitation of self-oscillations. These self-oscillations are frequently characterized by alternating stages of accumulation and precipitation of energetic particles into the ionosphere during a pulse of whistler emissions. Numerical and analytical investigations of the response of self-oscillations to harmonic oscillations of the whistler reflection coefficient shows that even a small modulation rate can significantly changes the magnetospheric VLF emissions. Our results can explain the causes of the modulation of energetic electron fluxes and whistler wave intensity with a time scale from 10 to 150 seconds in the day-side magnetosphere. Such quasi-periodic VLF emissions are often observed in the sub

  4. MESSENGER Observations of Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2010-01-01

    During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic field (IMF) produced intense reconnection signatures in the dayside and nightside magnetosphere and markedly different system-level responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active, with large magnetic field components normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 to 90 s. However, the strength and direction of the tail magnetic field was stable. In contrast, the IMF during the third flyby varied from north to south on timescales of minutes. Although the MESSENGER measurements were limited during that encounter to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Instead, plasmoid release was highly correlated with four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects provide a basis for comparison and contrast with what is known about the response of the Earth s magnetosphere to variable versus steady southward IMF.

  5. Juno Magnetometer Observations in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Connerney, J. E.; Oliversen, R. J.; Espley, J. R.; MacDowall, R. J.; Schnurr, R.; Sheppard, D.; Odom, J.; Lawton, P.; Murphy, S.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M.; Denver, T.; Bloxham, J.; Smith, E. J.; Murphy, N.

    2013-12-01

    The Juno spacecraft enjoyed a close encounter with Earth on October 9, 2013, en route to Jupiter Orbit Insertion (JOI) on July 5, 2016. The Earth Flyby (EFB) provided a unique opportunity for the Juno particles and fields instruments to sample mission relevant environments and exercise operations anticipated for orbital operations at Jupiter, particularly the period of intense activity around perijove. The magnetic field investigation onboard Juno is equipped with two magnetometer sensor suites, located at 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads which provide accurate attitude determination for the FGM sensors. This very capable magnetic observatory sampled the Earth's magnetic field at 64 vector samples/second throughout passage through the Earth's magnetosphere. We present observations of the Earth's magnetic field and magnetosphere obtained throughout the encounter and compare these observations with those of other Earth-orbiting assets, as available, and with particles and fields observations acquired by other Juno instruments operated during EFB.

  6. The Parameterization of Top-Hat Particle Sensors with Microchannel-Plate-Based Detection Systems and its Application to the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Pollock, Craig J.

    2015-01-01

    The most common instrument for low energy plasmas consists of a top-hat electrostatic analyzer geometry coupled with a microchannel-plate (MCP)-based detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Furthermore, due to finite resources, for large sensor suites such as the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission, calibration data are increasingly sparse. Measurements must be interpolated and extrapolated to understand instrument behavior for untestable operating modes and yet sensor inter-calibration is critical to mission success. To characterize instruments from a minimal set of parameters we have developed the first comprehensive mathematical description of both sensor electrostatic optics and particle detection systems. We include effects of MCP efficiency, gain, scattering, capacitive crosstalk, and charge cloud spreading at the detector output. Our parameterization enables the interpolation and extrapolation of instrument response to all relevant particle energies, detector high voltage settings, and polar angles from a small set of calibration data. We apply this model to the 32 sensor heads in the Dual Electron Sensor (DES) and 32 sensor heads in the Dual Ion Sensor (DIS) instruments on the 4 MMS observatories and use least squares fitting of calibration data to extract all key instrument parameters. Parameters that will evolve in flight, namely MCP gain, will be determined daily through application of this model to specifically tailored in-flight calibration activities, providing a robust characterization of sensor suite performance throughout mission lifetime. Beyond FPI, our model provides a valuable framework for the simulation and evaluation of future detection system designs and can be used to maximize instrument understanding with minimal calibration

  7. Plasma in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1975-01-01

    It is shown that the plasma in Jupiter's ionosphere is collisionless above a certain level. In the outer magnetosphere, where the rotational force dominates the gravitational force, the collisionless plasma has a beam-like distribution and gives rise to a two-stream instability. This leads to trapping of plasma in the centrifugally dominated region of the magnetosphere. Plasma is lost by recombination. Equilibrium-trapped particle densities are calculated by requiring a balance between trapping by wave-particle interaction and loss by recombination. The results are compared with recent observations from Pioneer 10. It is suggested that the observations require an unexplained ion-heating mechanism. Some consequences of the model are discussed.

  8. Currents and Flows in Distant Magnetospheres

    NASA Technical Reports Server (NTRS)

    Kivelson, Margaret Galland

    2000-01-01

    Space scientists have explored, described, and explained the terrestrial magnetosphere for four decades. Rarely do they point out that the planetary and solar wind parameters controlling the size, shape, and activity of Earth's magnetosphere map out only a small portion of the space of dimensionless parameters that govern magnetospheric properties. With the discovery of Ganymede's magnetosphere, the range of parameters relevant to magnetospheric studies has grown by orders of magnitude. Consider the extremes of Ganymede's and Jupiter's magnetospheres. Jupiter's magnetosphere forms within a plasma flowing at super-Alfvenic speed, whereas Ganymede's forms in a sub-Alfvenic flow. The scale sizes of these magnetospheres, characterized by distances to the magnetopause of order 7x10(exp 6) km and 5x10(exp 3) km, respectively, differ by three orders of magnitude, ranging from 100 to 0.1 times the scale of Earth's magnetosphere. The current systems that control the structure and dynamics of a magnetosphere depend on specific plasma and field properties. Magnetopause currents at Ganymede differ greatly from the forms familiar for Earth and Jupiter, principally because the Mach number of the ambient plasma flow greatly influences the shape of the magnetosphere. A magnetodisk current, present at Jupiter because of its rapid rotation, is absent at Earth and Ganymede. The ring current, extensively investigated at Earth, is probably unimportant at Ganymede because the dynamical variations of the external flow are slow. The ring current is subsumed within the magnetodisk current at Jupiter. This paper describes and contrasts aspects of these and other current systems for the three bodies.

  9. Magnetospheric MultiScale (MMS) System Manager

    NASA Technical Reports Server (NTRS)

    Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David

    2014-01-01

    The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.

  10. Collective surfing of chemically active particles.

    PubMed

    Masoud, Hassan; Shelley, Michael J

    2014-03-28

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  11. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.

  12. Collisionless Coupling in the AMPTE (Active Magnetospheric Particle Tracer Explorers) Artificial Comet.

    DTIC Science & Technology

    1986-09-29

    time coupling studies using a ID hybrid code," NRL Memo Rept. 5553, 1985. Gurnett, D.A., R.R. Anderson, B. Hausler , G. Haerendel, O.H. Bauer, R.A...400 U 0 > 2.2 CL* L 06 CL Q 0 L 0 a.a 0. 0.. E > C. >> 0. 0. 0 % 0 0 % C14 *p.N~ 0 % % 33 232 0.V. . FU 0 g- F -~ ~~~ - ... DISTRIBUTION LIST

  13. Magnetospheric convection pattern and its implications

    NASA Technical Reports Server (NTRS)

    Zhu, Xiaoming

    1993-01-01

    When we use 14 months of the Fast Plasma Experiment ion velocity measurements, the mean magnetospheric circulation pattern is constructed. It is shown that the magnetospheric convection velocity is of the order tens of kilometers per second. The convection is largely restricted to the outer magnetosphere. During magnetically active periods the convection velocity increases and the convection boundary extends to the region closer to the Earth, indicating more magnetic field flux is being transported to the dayside magnetosphere. It is also shown that the convective flows tend to follow contours of constant unit flux volume as they move around the Earth, especially on the duskside of the magnetosphere. This helps to avoid the pressure balance inconsistency often found in two-dimensional magnetotail models.

  14. Saturn: An Inside-Out Magnetosphere

    NASA Astrophysics Data System (ADS)

    Thomsen, M. F.; Tokar, R. L.; Barraclough, B.; Delapp, D.; Funsten, H. O.; Reisenfeld, D.; Steinberg, J. T.; Sittler, E. C.; Hill, T. W.; Young, D. T.; Crary, F. J.; Andre, N.; Coates, A. J.

    2005-05-01

    At the Earth, the dominant sources of magnetospheric plasma are the solar wind and the upper atmosphere, both in a sense "external" to the magnetosphere itself. The path from source to sink is largely a solar-wind-driven convection into the magnetospheric tail, inward through and around the inner magnetosphere, and out through the dayside magnetopause. By contrast, at Saturn the magnetospheric plasma appears to be dominantly produced in situ, by local ionization of neutral material within the magnetospheric volume. Relevant evidence includes the plasma composition observed so far, the thermal structure, and the strong inward gradient in the density. There is also considerable evidence that this material is transported outward from the source region, at least in part through a very active process of centrifugally-driven flux-tube interchange. Ultimately, the plasma must be lost from the magnetosphere, through the magnetopause or down the tail as a planetary wind. We present observations from the Cassini CAPS instrument that demonstrate this "inside-out" character of Saturn's magnetospheric plasma sources, transport, and loss.

  15. Are there physical links between Saturn's magnetospheric planetary period oscillations, neutral atmosphere circulation, and thunderstorm activity? (Invited)

    NASA Astrophysics Data System (ADS)

    Provan, G.; Cowley, S. W.

    2013-12-01

    Suggestions that the planetary period oscillations (PPOs) observed in Saturn's magnetosphere may be driven or influenced by neutral atmospheric perturbations, motivates an exploratory comparison of PPO rotation periods with available tropospheric and stratospheric determinations. Non-polar atmospheric rotation periods occupy the range ~10.2-10.7 h associated with the latitudinal jet structure, are similar north and south, and independent of season, while PPO periods lie in a narrower partly overlapping range ~10.6-10.8 h, are persistently shorter north than south, and undergo a seasonal cycle. In this cycle, widely-separated north-south PPO periods during southern summer converge across equinox to values lying within the atmospheric west jet band, remaining well-separated from east jet periods. Closest convergence occurred one year post-equinox, contemporaneously with the switch in seasonal thunderstorm activity from southern to northern hemispheres. Since most large-scale atmospheric phenomena are related to the west jets, rotating with closely similar periods, they also rotate with periods close to the PPOs under post-equinoctial conditions, but not otherwise. Specifically, post-equinox northern PPOs rotate with a period close to the southern thunderstorms, as well as the north polar spot and hexagon features, while the post equinox southern PPOs rotate with a period close to the pre-equinox northern ';string of pearls' and the first co-located post-equinox northern thunderstorm, the Great White Spot event. However, even under these conditions no consistent correspondences in period are found at a detailed level, which taken together with the lack of correspondence at other times, does not suggest a direct physical link exists between these phenomena.

  16. Saturn's magnetospheric planetary period oscillations, neutral atmosphere circulation, and thunderstorm activity: Implications, or otherwise, for physical links

    NASA Astrophysics Data System (ADS)

    Cowley, S. W. H.; Provan, G.

    2013-11-01

    that the planetary period oscillations (PPOs) observed in Saturn's magnetosphere may be driven or influenced by neutral atmospheric perturbations motivate an exploratory comparison of PPO rotation periods with available tropospheric and stratospheric determinations. Nonpolar atmospheric rotation periods occupy the range ~10.2-10.7 h associated with the latitudinal jet structure, are similar north and south, and are independent of season, while PPO periods lie in a narrower partly overlapping range ~10.6-10.8 h, are persistently shorter north than south, and undergo a seasonal cycle. In this cycle, widely separated north-south PPO periods during southern summer converge across equinox to values lying within the atmospheric west jet band, remaining well-separated from east jet periods. Closest convergence occurred 1 year post equinox, contemporaneously with the switch in seasonal thunderstorm activity from Southern to Northern Hemispheres. Since most large-scale atmospheric phenomena are related to the west jets, rotating with closely similar periods, they also rotate with periods close to the PPOs under post equinoctial conditions but not otherwise. Specifically, post equinox northern PPOs rotate with a period close to the southern thunderstorms, as well as the north polar spot and hexagon features, while the post equinox southern PPOs rotate with a period close to the pre-equinox northern "string of pearls" and the first colocated post equinox northern thunderstorm, the Great White Spot event. However, even under these conditions, no consistent correspondences in period are found at a detailed level, which taken together with the lack of correspondence at other times does not suggest a direct physical link exists between these phenomena.

  17. The protean magnetospheres of the solar system

    NASA Astrophysics Data System (ADS)

    Kivelson, Margaret G.

    2002-04-01

    Protean implies changeful, fluid, mobile, mutable, unsettled, unstable, unsteady, variable, or weathery according to the Merriam Webster Collegiate Thesaurus. All of these terms apply to the magnetospheres of the solar system. Comparative magnetospheric studies are becoming ever more rewarding as increasingly sophisticated and extensive spacecraft measurements reveal the versatility of plasma processes that control magnetospheric dynamics. Several aspects of these processes are particularly relevant to the extension of our knowledge from the local to the universal. The importance of the magnetic field for organization of structure and dynamics is dramatically illustrated even by simple models of magnetospheres of differing scales in different plasma regimes. Variations of the large scale structure are controlled by magnetic reconnection whose inner workings have been identified in a few events and by planetary rotation, a process that becomes dominant at Jupiter. Still poorly understood are the processes by which particles are accelerated to ultra-relativistic energies, although great progress is being made in this area.

  18. Antibacterial activity of nanosilver ions and particles.

    PubMed

    Sotiriou, Georgios A; Pratsinis, Sotiris E

    2010-07-15

    The antibacterial activity of nanosilver against Gram negative Escherichia coli bacteria is investigated by immobilizing nanosilver on nanostructured silica particles and closely controlling Ag content and size. These Ag/SiO(2) nanoparticles were characterized by S/TEM, EDX spectroscopy, X-ray diffraction the exposed Ag surface area was measured qualitatively by O(2) chemisorption. Furthermore, the fraction of dissolved nanosilver was determined by measuring the released (leached) Ag(+) ion concentration in aqueous suspensions of such Ag/SiO(2) particles. The antibacterial effect of Ag(+) ions was distinguished from that of nanosilver particles by monitoring the growth of E. coli populations in the presence and absence of Ag/SiO(2) particles. The antibacterial activity of nanosilver was dominated by Ag(+) ions when fine Ag nanoparticles (less than about 10 nm in average diameter) were employed that release high concentrations of Ag(+) ions. In contrast, when relatively larger Ag nanoparticles were used, the concentration of the released Ag(+) ions was lower. Then the antibacterial activity of the released Ag(+) ions and nanosilver particles was comparable.

  19. Radiation hazards on space missions outside the magnetosphere.

    PubMed

    Letaw, J R; Silberberg, R; Tsao, C H

    1989-01-01

    Future space missions outside the magnetosphere will subject astronauts to a hostile and unfamiliar radiation environment. An annual dose equivalent to the blood-forming organs (BFOs) of approximately 0.5 Sv is expected, mostly from heavy ions in the galactic cosmic radiation. On long-duration missions, an anomalously-large solar energetic particle event may occur. Such an event can expose astronauts to up to approximately 25 Gy (skin dose) and up to approximately 2 Sv (BFO dose) with no shielding. The anticipated radiation exposure may necessitate spacecraft design concessions and some restriction of mission activities. In this paper we discuss our model calculations of radiation doses in several exo-magnetospheric environments. Specific radiation shielding strategies are discussed. A new calculation of aluminum equivalents of potential spacecraft shielding materials demonstrates the importance of low-atomic-mass species for protection from galactic cosmic radiation.

  20. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  1. Magnetospheric convection at Uranus

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.

    1987-01-01

    The unusual configuration of the Uranian magnetosphere leads to differences in the relative effects of solar wind induced magnetospheric convection and plasma corotation from those at the other planets. At the present epoch the orientation of the rotation axis of Uranus with respect to the solar wind flow direction leads to a decoupling of the convective and corotational flows, allowing plasma from the tail to move unimpeded through the inner magnetosphere. As Uranus progresses in its orbit around the sun, corotation plays a gradually more important role and the plasma residence times within the magnetosphere increase. When the rotation axis finally becomes perpendicular to the solar wind flow, corotation is dominant.

  2. Electron sources in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Mauk, B. H.; Hill, T. W.; Paranicas, C.; André, N.; Sittler, E. C.; Mitchell, D. G.; Smith, H. T.; Johnson, R. E.; Coates, A. J.; Young, D. T.; Bolton, S. J.; Thomsen, M. F.; Dougherty, M. K.

    2007-02-01

    We investigate the sources of two different electron components in Saturn's inner magnetosphere (5 < L < 12 Rs) by performing phase space density (f(v)) analyses of electron measurements made by the Cassini CAPS instrument (1 eV to 28 keV). Because pitch angle distributions indicate that the traditional single particle invariants of gyration and bounce are not appropriate, we use a formulation of the isotropic invariant derived by Wolf (1983) and Schulz (1998) and show that it is similar in functional form to the first adiabatic invariant. Our f(v) analyses confirm that the cooler electrons (<100 eV) have a source in the inner magnetosphere and are likely products of neutral ionization processes in Saturn's neutral cloud. The mystery is how the electrons are heated to energies comparable to the proton thermal energy (which is approximately equal to the proton pickup energy), a process that reveals itself as a source of electrons at given invariant values in our f(v) analyses. We show that Coulomb collisions provide a viable mechanism to achieve the near equipartition of ion and electron energies in the time available before particles are lost from the region. We find that the source of the hotter electron component (>100 eV) is Saturn's middle or outer magnetosphere, perhaps transported to the inner magnetosphere by radial diffusion regulated by interchange-like injections. Hot electrons undergo heavy losses inside L ~ 6 and the distance to which the hot electron component penetrates into the neutral cloud is energy-dependent, with the coolest fraction of the hot plasma penetrating to the lowest L-shells. This can arise through energy-dependent radial transport during the interchange process and/or loss through the planetary loss cone.

  3. Active Particles in Complex and Crowded Environments

    NASA Astrophysics Data System (ADS)

    Bechinger, Clemens; Di Leonardo, Roberto; Löwen, Hartmut; Reichhardt, Charles; Volpe, Giorgio; Volpe, Giovanni

    2016-10-01

    Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachines hold a great potential as autonomous agents for health care, sustainability, and security applications. With a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.

  4. Reconfiguring active particles by electrostatic imbalance

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Han, Ming; Zhang, Jie; Xu, Cong; Luijten, Erik; Granick, Steve

    2016-10-01

    Active materials represent a new class of condensed matter in which motile elements may collectively form dynamic, global structures out of equilibrium. Here, we present a general strategy to reconfigure active particles into various collective states by introducing imbalanced interactions. We demonstrate the concept with computer simulations of self-propelled colloidal spheres, and experimentally validate it in a two-dimensional (2D) system of metal-dielectric Janus colloids subjected to perpendicular a.c. electric fields. The mismatched, frequency-dependent dielectric responses of the two hemispheres of the colloids allow simultaneous control of particle motility and colloidal interactions. We realized swarms, chains, clusters and isotropic gases from the same precursor particle by changing the electric-field frequency. Large-scale polar waves, vortices and jammed domains are also observed, with the persistent time-dependent evolution of their collective structure evoking that of classical materials. This strategy of asymmetry-driven active self-organization should generalize rationally to other active 2D and three-dimensional (3D) materials.

  5. Magnetosphere-ionosphere interactions

    NASA Technical Reports Server (NTRS)

    Vondrak, R. R.; Chiu, Y. T.; Evans, D. S.; Patterson, V. G.; Romick, G. J.; Stasiewicz, K.

    1979-01-01

    The present understanding of magnetosphere ionosphere interactions is described, and present and future predictive capabilities are assessed. Ionospheric features directly coupled to the magnetosphere to a significant degree are considered, with emphasis given to those phenomena of major interest to forecasters and users.

  6. Overview of Solar Wind-Magnetosphere-Ionosphere-Atmosphere Coupling and the Generation of Magnetospheric Currents

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Clausen, L. B. N.; Coxon, J. C.; Carter, J. A.; Walach, M.-T.; Laundal, K.; Østgaard, N.; Tenfjord, P.; Reistad, J.; Snekvik, K.; Korth, H.; Anderson, B. J.

    2017-03-01

    We review the morphology and dynamics of the electrical current systems of the terrestrial magnetosphere and ionosphere. Observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) over the three years 2010 to 2012 are employed to illustrate the variability of the field-aligned currents that couple the magnetosphere and ionosphere, on timescales from minutes to years, in response to the impact of solar wind disturbances on the magnetosphere and changes in the level of solar illumination of the polar ionospheres. The variability is discussed within the context of the occurrence of magnetic reconnection between the solar wind and terrestrial magnetic fields at the magnetopause, the transport of magnetic flux within the magnetosphere, and the onset of magnetic reconnection in the magnetotail. The conditions under which the currents are expected to be weak, and hence minimally contaminate measurements of the internally-produced magnetic field of the Earth, are briefly outlined.

  7. Overview of Solar Wind-Magnetosphere-Ionosphere-Atmosphere Coupling and the Generation of Magnetospheric Currents

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Clausen, L. B. N.; Coxon, J. C.; Carter, J. A.; Walach, M.-T.; Laundal, K.; Østgaard, N.; Tenfjord, P.; Reistad, J.; Snekvik, K.; Korth, H.; Anderson, B. J.

    2017-02-01

    We review the morphology and dynamics of the electrical current systems of the terrestrial magnetosphere and ionosphere. Observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) over the three years 2010 to 2012 are employed to illustrate the variability of the field-aligned currents that couple the magnetosphere and ionosphere, on timescales from minutes to years, in response to the impact of solar wind disturbances on the magnetosphere and changes in the level of solar illumination of the polar ionospheres. The variability is discussed within the context of the occurrence of magnetic reconnection between the solar wind and terrestrial magnetic fields at the magnetopause, the transport of magnetic flux within the magnetosphere, and the onset of magnetic reconnection in the magnetotail. The conditions under which the currents are expected to be weak, and hence minimally contaminate measurements of the internally-produced magnetic field of the Earth, are briefly outlined.

  8. Temperature (de)activated patchy colloidal particles.

    PubMed

    de Las Heras, Daniel; da Gama, Margarida M Telo

    2016-06-22

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim's first order perturbation theory, and use Flory-Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation.

  9. Thermosphere-Ionosphere-Magnetosphere Coupling and Mass Outflow - the Magnetosphere/Ionosphere Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Wiltberger, M. J.

    2010-12-01

    Global scale models of the solar wind-magnetosphere-ionosphere interaction have long established history of including magnetosphere-ionosphere coupling through the electrodynamic coupling. Typically this coupling includes closure of field aligned currents from the magnetosphere in the electrostatic ionosphere with the conductances being modified by particle precipitation processes. Recent advances in simulation technology, namely multi-fluid MHD, allow the scope of MI coupling in simulations to include mass outflows from the thermosphere-ionosphere into the magnetosphere. Multiple approaches to addressing this challenge have been developed. In one approach empirical parametrization of the outflow characteristics, namely velocity and flux, are used to include high intensity sources such as the auroral zone and cusp. Another approach starts by modeling the plasma flow along a single field line and then expands to include multiple field lines convecting over the polar cap. In both approaches the ionospheric outflow has profound effects on the state of the magnetosphere. Generally speaking it improves agreement with Dst observations, alters the cross polar cap potential, and can fundamentally alter the evolution of the modeled magnetospheric state. Initial indications from some of the model efforts show that including this plasma source may also alter the solar wind-magnetosphere interaction. While significant advances on including these effects in global scale models has been accomplished many challenges remain.

  10. Active Brownian particles with velocity-alignment and active fluctuations

    NASA Astrophysics Data System (ADS)

    Großmann, R.; Schimansky-Geier, L.; Romanczuk, P.

    2012-07-01

    We consider a model of active Brownian particles (ABPs) with velocity alignment in two spatial dimensions with passive and active fluctuations. Here, active fluctuations refers to purely non-equilibrium stochastic forces correlated with the heading of an individual active particle. In the simplest case studied here, they are assumed to be independent stochastic forces parallel (speed noise) and perpendicular (angular noise) to the velocity of the particle. On the other hand, passive fluctuations are defined by a noise vector independent of the direction of motion of a particle, and may account, for example, for thermal fluctuations. We derive a macroscopic description of the ABP gas with velocity-alignment interaction. Here, we start from the individual-based description in terms of stochastic differential equations (Langevin equations) and derive equations of motion for the coarse-grained kinetic variables (density, velocity and temperature) via a moment expansion of the corresponding probability density function. We focus here on the different impact of active and passive fluctuations on onset of collective motion and show how active fluctuations in the active Brownian dynamics can change the phase-transition behaviour of the system. In particular, we show that active angular fluctuations lead to an earlier breakdown of collective motion and to the emergence of a new bistable regime in the mean-field case.

  11. Magnetospheric and Thermospheric Influence on Ionospheric Outflow

    NASA Astrophysics Data System (ADS)

    Garcia-Sage, K.; Moore, T. E.; Mitchell, E. J.; Olson, D. K.

    2013-12-01

    The Fast Auroral SnapshoT (FAST) small explorer has been used extensively to study ionospheric outflow. Past research has used particle and field data to examine the contemporaneous transfer of electromagnetic energy and particle flow downward from the magnetosphere and upward from the ionosphere. Single event studies published by Strangeway et al. [2005] and Brambles et al. [2011, Supporting Online Material] showed that downward electromagnetic energy and particle flow into the ionosphere are correlated with the upward flow of ions out of the ionosphere. It is expected, however, that this correlation will be affected by circumstances that are unique to each specific event, including but not limited to the outflow location (cusp or nightside), preconditioning due to prior geomagnetic activity, and thermospheric neutral densities. Although knowledge of the thermospheric neutral density is usually unavailable, data from the CHAllenging Minisatellite Payload (CHAMP) is able to provide insight into thermospheric populations at altitudes of about 400 km for a few select events. We expand on the previously-mentioned studies by looking at FAST particle and field data for additional events, and we further examine the influence of thermospheric neutral populations, based on CHAMP data.

  12. The relationship between the magnetosphere and magnetospheric/auroral substorms

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    2013-03-01

    On the basis of auroral and polar magnetic substorm studies, the relationship between the solar wind-magnetosphere dynamo (the DD dynamo) current and the substorm dynamo (the UL dynamo) current is studied. The characteristics of both the DD and UL currents reveal why auroral substorms consist of the three distinct phases after the input power ɛ is increased above 1018 erg s-1. (a) The growth phase; the magnetosphere can accumulate magnetic energy for auroral substorms, when the ionosphere cannot dissipate the power before the expansion phase. (b) The expansion phase; the magnetosphere releases the accumulated magnetic energy during the growth phase in a pulse-like manner in a few hours, because it tries to stabilize itself when the accumulated energy reaches to about 1023 erg s-1. (c) The recovery phase; the magnetosphere becomes an ordinary dissipative system after the expansion phase, because the ionosphere becomes capable of dissipating the power with the rate of 1018 ~ 1019 erg s-1. On the basis of the above conclusion, it is suggested that the magnetosphere accomplishes the pulse-like release process (resulting in spectacular auroral activities) by producing plasma instabilities in the current sheet, thus reducing the current. The resulting contraction of the magnetic field lines (expending the accumulated magnetic energy), together with break down of the "frozen-in" field condition at distances of less than 10 RE, establishes the substorm dynamo that generates an earthward electric field (Lui and Kamide, 2003; Akasofu, 2011). It is this electric field which manifests as the expansion phase. A recent satellite observation at a distance of as close as 8.1 RE by Lui (2011) seems to support strongly the occurrence of the chain of processes suggested in the above. It is hoped that although the concept presented here is very crude, it will serve in providing one way of studying the three phases of auroral substorms. In turn, a better understanding of auroral

  13. TOWARD A REALISTIC PULSAR MAGNETOSPHERE

    SciTech Connect

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice

    2012-04-10

    We present the magnetic and electric field structures and the currents and charge densities of pulsar magnetospheres that do not obey the ideal condition, E {center_dot} B = 0. Since the acceleration of particles and the production of radiation require the presence of an electric field component parallel to the magnetic field, E{sub ||}, the structure of non-ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-ideal pulsar magnetospheres is important because their comparison (including models for the production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support non-zero values for E{sub ||} and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) force-free electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that this is at most 20%-40% (depending on the non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = {rho}c and discuss their possible implication on the determination of the 'on/off' states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E{sub ||} locally produce oscillations, potentially observable in the data.

  14. Plasma-neutral interaction processes in the magnetosphere of Saturn

    NASA Technical Reports Server (NTRS)

    Eviatar, Aharon

    1992-01-01

    Models of Saturnian magnetospheric processes are reviewed emphasizing the interaction of charged and neutral particles in the gaseous phase and mentioning the role of solid matter. It is found that interpretations of different Voyager datasets regarding the Saturnian magnetosphere can vary. Specific interactions examined to resolve these discrepancies include charge exchange, ion-atom interchange, isotropizing and thermalizing collisions, and interactions between magnetospheric charged particles and surface layers of the icy satellites. The latter interactions result in sputtering of the surface or atmosphere as well as neutral injections into the magnetosphere. Constraints based on known reaction rates are shown to be useful in analyzing the abundances of the water-group molecules. The composition of the magnetospheric plasma is shown to be related to the differences between the interactions of atomic and molecular plasmas with neutral matter.

  15. Collective dynamics of soft active particles

    NASA Astrophysics Data System (ADS)

    van Drongelen, Ruben; Pal, Anshuman; Goodrich, Carl P.; Idema, Timon

    2015-03-01

    We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.

  16. Magnetospheres in the solar system

    SciTech Connect

    Mcnutt, R.L.

    1984-11-01

    Intrinsic and induced magnetospheres of planets, moons, and comets in the solar system are described. Magnetospheric electric fields, the plasmasphere, rotational effects, and corotation and convection dominated intrinsic magnetospheres are considered. Supersonic and subsonic interactions in induced magnetospheres are discussed. (ESA)

  17. Magnetospheric Image Unfolding

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Grant was a three year grant funded under the Space Physics Supporting Research and Technology and Suborbital Program. Our objective was to develop automated techniques needed to unfold or "invert" global images of the magnetospheric ion populations obtained by the new magnetospheric imaging techniques (ENA, EUV) in anticipation of future missions such as the Magnetospheric Imager and, now, IMAGE. Our focus on the present three year grant is to determine the degree to which such images can quantitatively constrain the global electromagnetic properties of the magnetosphere. In a previous three year grant period we successfully automated a forward modeling inversion algorithm, demonstrated that these inversions are robust in the face of realistic instrumental considerations such as counting statistics and backgrounds, applied error analysis techniques to the extracted parameters using variational procedures, implemented very realistic magnetospheric test images to test the inversion algorithms using the Rice University Magnetospheric Specification Model, and began the process of generating parametric models with the flexibility to handle the realistic magnetospheric images (e.g. Roelof et al, 1992; 1993). Our plan for the present 3 year grant period was to complete the development of the inversion tools needed to handle realistic magnetospheric images, assess the degree to which global electrodynamics is quantitatively constrained by ENA images of the magnetosphere, and bring the inversion of EUV images up to the maturity that we will have achieved for the ENA imaging. Below the accomplishments of our three year effort are present followed by a list of our presentations and publications. The accomplishments of all three years are presented here, and thus some of these items appeared on interim progress reports.

  18. A multi-instrument study of a Jovian magnetospheric disturbance

    NASA Astrophysics Data System (ADS)

    Louarn, P.; Mauk, B. H.; Kivelson, M. G.; Kurth, W. S.; Roux, A.; Zimmer, C.; Gurnett, D. A.; Williams, D. J.

    2001-12-01

    Using observations from different Galileo experiments (plasma wave system, magnetometer and energetic particle detector), we analyze a strong magnetospheric disturbance that occurs on day 311 of 1996 as Galileo was close to Jupiter (less than 15 Jovian radii). This perturbation is characterized by multiple injections of energetic particles in the inner magnetosphere and has been described as a possible analog of the terrestrial magnetic storm by Mauk et al. [1999]. We show here that it also corresponds to a large-scale magnetospheric perturbation similar to the ``energetic events'' described by Louarn et al., [1998, 2000]. It is associated with the development of a particular magnetic activity in the outermost part of the Io torus, over periods of 2-4 hours and in sectors of longitude with a typical 30°-80° longitudinal extension. At distances ranging from 10 to 13Rj, the activity itself is characterized by the generation of low-frequency magnetic oscillations (18 min periodicity in the present case) that correlate with dispersionless energetic electron injections and modulations of the auroral radio flux. When they are observed a few hours after their formation, these injections present a weak energy-time dispersion and are still periodic. They then progressively mix and finally define a region of limited longitudinal extension where the density of energetic particles is particularly large. We show that this region corresponds to the source of the narrowband kilometric radiation (n-KOM). By combining remote sensing radio observations, in situ particle, and magnetic field measurements, we show that the active zone where the large scale disturbance initially develops most probably does not corotate and would even be almost fixed in local time. In the present case, the magnetospheric event is the consequence of two activations separated by a few hours. They occur in two separated longitude sectors and give rise to two different n-KOM sources. During the event, some

  19. Space physics: A fast lane in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Hudson, Mary K.

    2013-12-01

    A marriage between satellite observations and modelling has shown that acceleration of electrons in the magnetosphere can be explained by scattering of these particles by plasma oscillations known as chorus waves. See Letter p.411

  20. Stokesian spherical swimmers and active particles

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2015-04-01

    The net steady state flow pattern of a distorting sphere is studied in the framework of the bilinear theory of swimming at low Reynolds number. It is argued that the starting point of a theory of interacting active particles should be based on such a calculation, since any arbitrarily chosen steady state flow pattern is not necessarily the result of a swimming motion. Furthermore, it is stressed that as a rule the phase of stroke is relevant in hydrodynamic interactions, so that the net flow pattern must be used with caution.

  1. A New Standard Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-01

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  2. A new standard pulsar magnetosphere

    SciTech Connect

    Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes

    2014-01-20

    In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.

  3. Analysis and visualization of global magnetospheric processes

    SciTech Connect

    Winske, D.; Mozer, F.S.; Roth, I.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project is to develop new computational and visualization tools to analyze particle dynamics in the Earth`s magnetosphere. These tools allow the construction of a global picture of particle fluxes, which requires only a small number of in situ spacecraft measurements as input parameters. The methods developed in this project have led to a better understanding of particle dynamics in the Earth`s magnetotail in the presence of turbulent wave fields. They have also been used to demonstrate how large electromagnetic pulses in the solar wind can interact with the magnetosphere to increase the population of energetic particles and even form new radiation belts.

  4. LANL Studies Earth's Magnetosphere

    ScienceCinema

    Daughton, Bill

    2016-07-12

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  5. Solar and magnetospheric science

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.; Schmerling, E. R.; Chapman, R. D.

    1976-01-01

    The current status of the Solar Physics Program and the Magnetospheric Physics Program is discussed. The scientific context for each of the programs is presented, then the current programs and future plans are outlined.

  6. LANL Studies Earth's Magnetosphere

    SciTech Connect

    Daughton, Bill

    2011-04-15

    A new 3-D supercomputer model presents a new theory of how magnetic reconnection works in high-temperature plasmas. This Los Alamos National Laboratory research supports an upcoming NASA mission to study Earth's magnetosphere in greater detail than ever.

  7. The Pulsating Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.

    2015-06-01

    Following the basic principles of a charge-separated pulsar magnetosphere, we consider the magnetosphere to be stationary in space, instead of corotating, and the electric field to be uploaded from the potential distribution on the pulsar surface, set up by the unipolar induction. Consequently, the plasma of the magnetosphere undergoes guiding center drifts of the gyromotion due to the forces transverse to the magnetic field. These forces are the electric force, magnetic gradient force, and field line curvature force. Since these plasma velocities are of drift nature, there is no need to introduce an emf along the field lines, which would contradict the {{E}\\parallel }={\\boldsymbol{E}} \\cdot {\\boldsymbol{B}} =0 plasma condition. Furthermore, there is also no need to introduce the critical field line separating the electron and ion open field lines. We present a self-consistent description where the magnetosphere is described in terms of electric and magnetic fields and also in terms of plasma velocities. The fields and velocities are then connected through the space-charge densities self-consistently. We solve the pulsar equation analytically for the fields and construct the standard steady-state pulsar magnetosphere. By considering the unipolar induction inside the pulsar and the magnetosphere outside the pulsar as one coupled system, and under the condition that the unipolar pumping rate exceeds the Poynting flux in the open field lines, plasma pressure can build up in the magnetosphere, in particular, in the closed region. This could cause a periodic opening up of the closed region, leading to a pulsating magnetosphere, which could be an alternative to pulsar beacons. The closed region can also be opened periodically by the build up of toroidal magnetic field through a positive feedback cycle.

  8. Plasmasphere formation in arbitrarily oriented magnetospheres

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.; Richardson, J. D.

    1986-01-01

    The formation of plasmaspheres in planetary magnetospheres with arbitrary orientations of the rotation and magnetic dipole axes is investigated. A traditional plasmasphere with closed orbits inside the plasmapause and open trajectories outside it only occurs for the limiting case of aligned rotation and dipole axes. A time-variable plasmapause exists if the rotation axis is perpendicular to the solar win flow direction. In any other case, no definite plasmapause exists. Solar wind-driven convection transports plasma throughout the magnetosphere with an effectiveness which increases as the orientation goes further from one of the two limiting cases of strict plasmapause formation. The present analysis is applied to earth and Uranus using the actual orientations of the rotation and dipole axes. Particle trajectories at earth deviate only slightly from those obtained with traditional models. Uranus has no plasmasphere, and plasma convects sunwards throughout the inner magnetosphere.

  9. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.

  10. Global and Seasonal Assessments of Magnetosphere / Ionosphere Coupling via Lightning-Induced Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Sousa, Austin; Marshall, Robert; Close, Sigrid

    2016-07-01

    Pitch-angle scattering by radio waves in the VLF (~3-30kHz) band is thought to be a major loss mechanism for energetic radiation-belt electrons. Resonant interactions with Whistler-mode VLF waves can alter the reflection altitude of trapped electrons ~100keV - 1MeV; when a particle reflects at a low enough altitude, it can be removed from the magnetosphere through collisions with ionospheric constituents. Terrestrial lightning provides a natural and constantly-occurring source of VLF waves. Here we present a global assessment of lightning-induced electron precipitation (LEP) due to resonant pitch-angle scattering from whistler-mode waves, which represent a coupling process between the magnetosphere and ionosphere. We combine an end-to-end model of the LEP process with terrestrial lightning activity data from the GLD360 sensor network to construct a realtime geospatial model of LEP-driven energy deposition into the ionosphere. We explore global and seasonal statistics, provide precipitation estimates across a variety of magnetospheric conditions, and compare the total impact to other magnetospheric loss processes. Additionally, we use our model to optimize event selection from the energetic-particle detectors on board the FIREBIRD CubeSats, in order to download data over the satellite's low-bandwidth downlink. Ultimately, FIREBIRD data will be used to validate our model, and to provide one-to-one correlative measurements of lightning strokes and subsequent precipitation.

  11. Energetics of the magnetosphere, revised

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1984-01-01

    The approximate magnitudes of power inputs and energies associated with the Earth's magnetosphere were derived. The nearest 40 R sub E of the plasma sheet current receive some 3.10 to the 11th power watt, and much of this goes to the Birkeland currents, which require 1-3 10 to the 11th power watt. Of that energy, about 30% appears as the energy of auroral particles and most of the rest as ionosphere joule heating. The ring current contains about 10 to the 15th power joule at quiet times, several times as much during magnetic storms, and the magnetic energy stored in the tail lobes is comparable. Substorm energy releases may range at 1.5 to 30 10 to the 11th power watt. Compared to these, the local energy release rate by magnetic merging in the magnetosphere is small. Merging is essential for the existence of open field lines, which make such inputs possible. Merging also seems to be implicated in substorms: most of the released energy only becomes evident far from the merging region, though some particles may gain appreciable energy in that region itself, if the plasma sheet is squeezed out completely and the high latitude lobes interact directly.

  12. Observations of azimuthal mode numbers at different local times and geomagnetic activity levels and test particle simulations of their effects on energetic particles

    NASA Astrophysics Data System (ADS)

    Sarris, Theodore; Li, Xinlin

    2016-07-01

    A key parameter that characterizes ULF (Ultra-Low Frequency) waves in the magnetosphere and which is important in order to accurately approximate the radial diffusion that these waves can inflict on relativistic electrons in the radiation belts, is the ULF wave mode number m, which describes the azimuthal wavelength of the waves. We use cross-spectrogram phase-differences between multiple pairs of satellites at different local times to get an estimate of m and we find that the distribution of power in the various mode numbers can be considerably different than what is commonly assumed, namely that most ULF wave power is found in m=1 or m=2; we also find a dependence of the m-distribution of power on geomagnetic conditions and on local time, with geomagnetically active times and midnight-side magnetosphere favoring higher mode numbers. We use these results in a particle tracing simulation that includes analytic expressions for the ULF waves, and we discuss their implications for radiation belt electrons.

  13. The Physics of the Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Mauel, Michael

    2015-11-01

    During the past decade, experiments and simulations have characterized a new regime of high-beta toroidal plasma confinement using unique facilities, called laboratory magnetospheres. In a laboratory magnetosphere, a large plasma is confined by a relatively small, magnetically levitated, superconducting current ring. Nonlinear processes, including the inverse cascade of turbulent fluctuations and turbulent self-organization, are studied and controlled in near steady-state conditions. Because a dipole's magnetic field lines resemble the inner regions of planetary magnetospheres, these studies link laboratory and space plasma physics. However, unlike planetary magnetospheres, the magnetic field lines from a levitated dipole are axisymmetric and closed, imparting unique properties to the laboratory magnetosphere. A levitated dipole confines plasma without field-aligned currents, even when plasma pressure exceeds the local magnetic pressure (β > 1). Particle drifts are omnigeneous, and the dynamics of passing and trapped particles are similar. Because parallel currents can be a source for instability, many well-known low-frequency instabilities found in other toroidal configurations, like kink, tearing, ballooning, and drift modes, are not found in a dipole plasma torus. Instead, interchange and entropy modes, which resonate with bounce-averaged magnetic drifts, dominate plasma dynamics. This review emphasizes observations from the levitated dipole experiments at MIT and at the University of Tokyo, shows the application of gyrokinetic simulations and bounce-averaged fluid models with drift-kinetic closures to model the physics of the up-gradient turbulent pinch, describes the structure and chaotic dynamics of interchange and entropy mode instability, and introduces opportunities to apply the new physics of the laboratory magnetosphere to explore turbulent transport processes within a large quasi-steady magnetized plasma torus. Acknowledging contributions from Drs. D

  14. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  15. Radio emission in Mercury magnetosphere

    NASA Astrophysics Data System (ADS)

    Varela, J.; Reville, V.; Brun, A. S.; Pantellini, F.; Zarka, P.

    2016-10-01

    Context. Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a good test case to study the effect of the solar wind and interplanetary magnetic field (IMF) on radio emission driven in the planet magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets. Aims: The aim of this study is to quantify the radio emission in the Hermean magnetosphere. Methods: We use the magnetohydrodynamic code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for the Hermean magnetic field, to analyze the effect of the IMF orientation and intensity, as well as the hydrodynamic parameters of the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the formalism derived by Zarka et al. (2001, Astrophys. Space Sci., 277, 293), Zarka (2007, Planet. Space Sci., 55, 598) to infer the radio emission level from the net dissipated power. We perform a set of simulations with different hydrodynamic parameters of the solar wind, IMF orientations and intensities, that allow us to calculate the dissipated power distribution and infer the existence of radio emission hot spots on the planet day side, and to calculate the integrated radio emission of the Hermean magnetosphere. Results: The obtained radio emission distribution of dissipated power is determined by the IMF orientation (associated with the reconnection regions in the magnetosphere), although the radio emission strength is dependent on the IMF intensity and solar wind hydro parameters. The calculated total radio emission level is in agreement with the one estimated in Zarka et al. (2001, Astrophys. Space Sci., 277, 293) , between 5 × 105 and 2 × 106 W.

  16. On the acceleration of energetic ions in Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.; Eviatar, A.; Siscoe, G. L.

    1984-06-01

    Several aspects of the problem of high-energy ions in the Jovian magnetosphere are addressed. Voyager observations pertaining to the problem of high-energy ions in the magnetosphere are summarized, and the charge exchange emission of fast neutral sulfur and oxygen atoms and their subsequent recapture by electron impact, charge exchange, and photoionization is considered. Solutions are given to the diffusion equation assuming a source of ions injected with a gyroenergy corresponding to pickup in the middle and outer magnetosphere. It is concluded that no reasonable model parameters exist to produce the required steep spectra of the particle observations with only pickup and adiabatic radial diffusion included. A local acceleration mechanism based on nonadiabatic wave-particle interactions is needed. The assumptions and model predictions of stochastic acceleration by MHD turbulence for the Jovian magnetosphere are described. The model makes a specific correspondence between MHD wave spectrum properties and particle spectrum properties at energies above the Alfven energy.

  17. Evidence for global electron transportation into the jovian inner magnetosphere.

    PubMed

    Yoshioka, K; Murakami, G; Yamazaki, A; Tsuchiya, F; Kimura, T; Kagitani, M; Sakanoi, T; Uemizu, K; Kasaba, Y; Yoshikawa, I; Fujimoto, M

    2014-09-26

    Jupiter's magnetosphere is a strong particle accelerator that contains ultrarelativistic electrons in its inner part. They are thought to be accelerated by whistler-mode waves excited by anisotropic hot electrons (>10 kiloelectron volts) injected from the outer magnetosphere. However, electron transportation in the inner magnetosphere is not well understood. By analyzing the extreme ultraviolet line emission from the inner magnetosphere, we show evidence for global inward transport of flux tubes containing hot plasma. High-spectral-resolution scanning observations of the Io plasma torus in the inner magnetosphere enable us to generate radial profiles of the hot electron fraction. It gradually decreases with decreasing radial distance, despite the short collisional time scale that should thermalize them rapidly. This indicates a fast and continuous resupply of hot electrons responsible for exciting the whistler-mode waves.

  18. Dione's Magnetospheric Interaction

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Hospodarsky, G. B.; Schippers, P.; Moncuquet, M.; Lecacheux, A.; Crary, F. J.; Khurana, K. K.; Mitchell, D. G.

    2015-12-01

    Cassini has executed four close flybys of Dione during its mission at Saturn with one additional flyby planned as of this writing. The Radio and Plasma Wave Science (RPWS) instrument observed the plasma wave spectrum during each of the four encounters and plans to make additional observations during the 17 August 2015 flyby. These observations are joined by those from the Cassini Plasma Spectrometer (CAPS), Magnetospheric Imaging Instrument (MIMI), and the Magnetometer instrument (MAG), although neither CAPS nor MAG data were available for the fourth flyby. The first and fourth flybys were near polar passes while the second and third were near wake passes. The second flyby occurred during a time of hot plasma injections which are not thought to be specifically related to Dione. The Dione plasma wave environment is characterized by an intensification of the upper hybrid band and whistler mode chorus. The upper hybrid band shows frequency fluctuations with a period of order 1 minute that suggest density variations of up to 10%. These density variations are anti-correlated with the magnetic field magnitude, suggesting a mirror mode wave. Other than these periodic density fluctuations there appears to be no local plasma source which would be observed as a local enhancement in the density although variations in the electron distribution are apparent. Wake passages show a deep density depletion consistent with a plasma cavity downstream of the moon. Energetic particles show portions of the distribution apparently absorbed by the moon leading to anisotropies that likely drive both the intensification of the upper hybrid band as well as the whistler mode emissions. We investigate the role of electron anisotropies and enhanced hot electron fluxes in the intensification of the upper hybrid band and whistler mode emissions.

  19. Magnetic and plasma response of the Earth's magnetosphere to interplanetary shock

    NASA Astrophysics Data System (ADS)

    Du, A.; Cao, X.; Wang, R.; Zhang, Y.

    2013-12-01

    In this paper, we investigate the global response of magnetosphere to interplanetary shock, and focus on the magnetic and plasma variations related to aurora. The analysis utilizes data from simultaneous observations of interplanetary shocks from available spacecraft in the solar wind and the Earth's magnetosphere such as ACE, Wind and SOHO in solar wind, LANL and GOES in outer magnetosphere, TC1 in the midinight neutral plasma sheet, Geotail and Polar in dusk side of plasma sheet, and Cluster in downside LLBL. The shock front speed is ~1051 km/s in the solar wind, and ~981km/s in the Earth's magnetosphere. The shock is propagating anti-sunward (toward the Earth) in the plasma frame with a speed of ~320 km/s. After the shock bumps at the magnetopause, the dayside aurora brightens, then nightside aurora brightens and expanses to poleward. During the aurora activity period, the fast earthward and tailward flows in plasma sheet are observed by TC1 (X~7.1 Re, Y~1.2 Re). The variation of magnetic field and plasma in duskside of magnetosphere is weaker than that in dawnside. At low latitude boundary layer (LLBL), the Cluster spacecraft detected rolled-up large scale vortices generated by the Kelvin-Helmholtz instability (KHI). Toroidal oscillations of the magnetic field in the LLBL might be driven by the Kelvin-Helmholtz instability. The strong IP shock highly compresses the magnetopause and the outer magnetosphere. This process may also lead to particle precipitation and auroral brightening (Zhou and Tsurutani, 1999; Tsurutani et al., 2001 and 2003).

  20. Using Space Weather Forecast Tools for Understanding Planetary Magnetospheres: MESSENGER Experience Applied to MAVEN Studies

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Dewey, R. M.; Brain, D. A.; Jakosky, Bruce; Halekas, Jasper; Connerney, Jack; Odstrcil, Dusan; Mays, M. Leila; Luhmann, Janet

    2015-04-01

    The Wang-Sheeley-Arge (WSA)-ENLIL solar wind modeling tool has been used to calculate the values of interplanetary magnetic field (IMF) strength (B), solar wind speed (V), density (n), ram pressure (~nV2), cross-magnetosphere electric field (VxB), Alfvén Mach number (MA), and other derived quantities of relevance for space weather purposes at Earth. Such parameters as solar wind dynamic pressure can be key for estimating the magnetopause standoff distance, as just one example. The interplanetary electric field drives many magnetospheric dynamical processes and can be compared with general magnetic activity indices and with the occurrence of energetic particle bursts within the Earth’s magnetosphere. Such parameters also serve as input to the global magnetohydrodynamic and kinetic magnetosphere models that are used to forecast magnetospheric and ionospheric processes. Such modeling done for Earth space weather forecasting has helped assess near-real-time magnetospheric behavior for MESSENGER at Mercury (as well as other mission analysis and Mercury ground-based observational campaigns). This solar-wind forcing knowledge has provided a crucial continuing step toward bringing heliospheric science expertise to bear on solar-planetary interaction studies. The experience gained from MESSENGER at Mercury is now being applied to the new observations from the MAVEN (Mars Atmosphere and Volatile Evolution) mission at Mars. We compare the continuous WSA-ENLIL results derived from modeling to the MAVEN SWIA and MAG data from mid-December 2014 to the present time. This provides a broader contextual view of solar wind forcing at Mars and also allows a broader validation of the ENLIL model results throughout the inner heliosphere.

  1. Optically active biological particle distinguishing apparatus

    DOEpatents

    Salzman, Gary C.; Kupperman, Robert H.

    1989-01-01

    The disclosure is directed to organic particle sorting and identification. High frequency pulses of circularly polarized light, alternating between left and right, intersect a fast moving stream of organic particles. Circular intensity differential scattering and linear intensity differential scattering are monitored to uniquely identify a variety of organic particles.

  2. Geospace Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.; Hanson, J. E.

    1998-01-01

    The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.

  3. Simultaneous observation of Pc 3-4 pulsations in the solar wind and in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Zanetti, L. J.; Potemra, T. A.; Baumjohann, W.; Luehr, H.; Acuna, M. H.

    1987-01-01

    The equatorially orbiting Active Magnetospheric Particle Tracer Explorers CCE and IRM satellites have made numerous observations of Pc 3-4 magnetic field pulsations (10-s to 100-s period) simultaneously at locations upstream of the earth's bow shock and inside the magnetosphere. These observations show solar wind/IMF control of two categories of dayside magnetospheric pulsations. Harmonically structured, azimuthally polarized pulsations are commonly observed from L = 4 to 9 in association with upstream waves. More monochromatic compressional pulsations are clearly evident on occasion, with periods identical to those observed simultaneously in the solar wind. The observations reported here are consistent with a high-latitude (cusp) entry mechanism for wave energy related to harmonically structured pulsations.

  4. Revision of the DELFIC Particle Activity Module

    SciTech Connect

    Hooper, David A; Jodoin, Vincent J

    2010-09-01

    The Defense Land Fallout Interpretive Code (DELFIC) was originally released in 1968 as a tool for modeling fallout patterns and for predicting exposure rates. Despite the continual advancement of knowledge of fission yields, decay behavior of fission products, and biological dosimetry, the decay data and logic of DELFIC have remained mostly unchanged since inception. Additionally, previous code revisions caused a loss of conservation of radioactive nuclides. In this report, a new revision of the decay database and the Particle Activity Module is introduced and explained. The database upgrades discussed are replacement of the fission yields with ENDF/B-VII data as formatted in the Oak Ridge Isotope Generation (ORIGEN) code, revised decay constants, revised exposure rate multipliers, revised decay modes and branching ratios, and revised boiling point data. Included decay logic upgrades represent a correction of a flaw in the treatment of the fission yields, extension of the logic to include more complex decay modes, conservation of nuclides (including stable nuclides) at all times, and conversion of key variables to double precision for nuclide conservation. Finally, recommended future work is discussed with an emphasis on completion of the overall radiation physics upgrade, particularly for dosimetry, induced activity, decay of the actinides, and fractionation.

  5. Dynamics of two interacting active Janus particles

    NASA Astrophysics Data System (ADS)

    Bayati, Parvin; Najafi, Ali

    2016-04-01

    Starting from a microscopic model for a spherically symmetric active Janus particle, we study the interactions between two such active motors. The ambient fluid mediates a long range hydrodynamic interaction between two motors. This interaction has both direct and indirect hydrodynamic contributions. The direct contribution is due to the propagation of fluid flow that originated from a moving motor and affects the motion of the other motor. The indirect contribution emerges from the re-distribution of the ionic concentrations in the presence of both motors. Electric force exerted on the fluid from this ionic solution enhances the flow pattern and subsequently changes the motion of both motors. By formulating a perturbation method for very far separated motors, we derive analytic results for the translation and rotational dynamics of the motors. We show that the overall interaction at the leading order modifies the translational and rotational speeds of motors which scale as O (" separators=" [ 1 / D ] 3 ) and O (" separators=" [ 1 / D ] 4 ) with their separation, respectively. Our findings open up the way for studying the collective dynamics of synthetic micro-motors.

  6. Magnetospheric Storms at Saturn and Earth

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Mitchell, D. G.; Carbary, J.; Rymer, A.; Hill, M. E.; Paranicas, C.; Dougherty, M. K.; Young, D. T.

    2007-12-01

    The terrestrial magnetospheric storms are a well-known phenomenon in which plasma from the solar wind and the ionosphere is convected into the inner magnetosphere ("ring current") and energized by betatron acceleration and rapid changes in the magnetic field (substorms). Here we compare terrestrial storm characteristics with similar, newly found characteristics of Saturn's magnetosphere. We characterize Saturn's magnetospheric response to solar wind variability by using remote energetic neutral atom (ENA) measurements with simultaneous in-situ solar wind measurements when Cassini was outside the Saturnian magnetosphere. The Ion and Neutral Camera on board the Cassini spacecraft have obtained global energetic neutral atom (ENA) images of the hot plasma of Saturn's magnetosphere since February 2004. INCA obtains ENA images in the ~3-200 keV/nuc of protons and O+. The typical observations show hot plasma distributed roughly between 6 to 30 RS orbiting the planet with a period around the 10h45min rotation period depending on energy and species. However, some observations show how ENA intensity builds up on the nightside during intervals longer than the rotation period which indicates a gradual source of plasma. The intervals are often ended by a dramatic ENA intensification followed by a rotation of the newly injected plasma around the planet. We have selected a few of such intervals when Cassini was in the solar wind and could obtain solar wind parameters and simulataneous ENA image sequences. We use the Magnetic Field Experiment (MAG), the Cassini Charge Energy Mass Spectrometer (CHEMS), and the Cassini Plasma Spectrometer Subsystem (CAPS) to study the IMF, solar wind speed and density during these events and find that Saturn's magnetospheric activity most likely depends more on solar wind pressure than magnetic field orientation.

  7. Pulsar magnetosphere: a new view from PIC simulations

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Harding, Alice; Kazanas, Demosthenes

    2017-01-01

    Pulsar emission is produced by charged particles that are accelerated as they flow in the star's magnetosphere. The magnetosphere is populated by electrons and positrons while the physical conditions are characterized by the so called force-free regime. However, the magnetospheric plasma configuration is still unknown, besides some general features, which inhibits the understanding of the emission generation. Here we show the closest to force-free solution ever obtained with a particle-in-cell (PIC) code. The importance of obtaining a force-free solution with PIC is that we can understand how the different particle species support the corresponding magnetosphere structure. Moreover, some aspects of the emission generation are captured. These are the necessary steps to go toward a self consistent modeling of the magnetosphere, connecting the microphysics of the pair plasma to its macroscopic quantities. Understanding the pulsar magnetosphere is essential for interpreting the broad neutron star phenomenology (young pulsars, magnetars, millisecond pulsars, etc.). The study of these plasma physics processes is also crucial for putting limits on the ability of these objects to accelerate particles.

  8. Saturn's variable magnetosphere.

    PubMed

    Gombosi, Tamas I; Hansen, Kenneth C

    2005-02-25

    Since the Cassini spacecraft reached Saturn's orbit in 2004, its instruments have been sending back a wealth of data on the planet's magnetosphere (the region dominated by the magnetic field of the planet). In this Viewpoint, we discuss some of these results, which are reported in a collection of reports in this issue. The magnetosphere is shown to be highly variable and influenced by the planet's rotation, sources of plasma within the planetary system, and the solar wind. New insights are also gained into the chemical composition of the magnetosphere, with surprising results. These early results from Cassini's first orbit around Saturn bode well for the future as the spacecraft continues to orbit the planet.

  9. Magnetospheric convection during quiet or moderately disturbed times

    NASA Technical Reports Server (NTRS)

    Caudal, G.; Blanc, M.

    1988-01-01

    The processes which contribute to the large-scale plasma circulation in the earth's environment during quiet times, or during reasonable stable magnetic conditions are reviewed. The various sources of field-aligned current generation in the solar wind and the magnetosphere are presented. The generation of field-aligned currents on open field lines connected to either polar cap and the generation of closed field lines of the inner magnetosphere are examined. Consideration is given to the hypothesis of Caudal (1987) that loss processes of trapped particles are competing with adiabatic motions in the generation of field-aligned currents in the inner magnetosphere.

  10. Using Laboratory Magnetospheres to Develop and Validate Space Weather Models

    NASA Astrophysics Data System (ADS)

    Mauel, M. E.; Garnier, D.; Kesner, J.

    2012-12-01

    Reliable space weather predictions can be used to plan satellite operations, predict radio outages, and protect the electrical transmission grid. While direct observation of the solar corona and satellite measurements of the solar wind give warnings of possible subsequent geomagnetic activity, more accurate and reliable models of how solar fluxes effect the earth's space environment are needed. The recent development in laboratory magnetic dipoles have yielded well confined high-beta plasmas with intense energetic electron belts similar to magnetospheres. With plasma diagnostics spanning from global to small spatial scales and user-controlled experiments, these devices can be used to study current issues in space weather such as fast particle excitation and rapid depolarization events. In levitated dipole experiments, which remove the collisional loss along field lines that normally dominate laboratory dipole plasmas, slow radial convection processes can be observed. We describe ongoing experiments and investigations that (i) control interchange mixing through application of vorticity injection, (ii) make whole-plasma, high-speed images of turbulent plasma dynamics, (iii) simulate nonlinear gyrokinetic dynamics of bounded driven dipole plasma, and (iv) compare laboratory plasma measurements and global convection models.; Photographs of the LDX and CTX Laboratory Magnetospheres. Trapped plasma and energetic particles are created and studied with a variety of imaging diagnostics. Shown to the right are multiple probes for simultaneous measurements of plasma structures and turbulent mixing.

  11. Charged particles and cluster ions produced during cooking activities.

    PubMed

    Stabile, L; Jayaratne, E R; Buonanno, G; Morawska, L

    2014-11-01

    Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.

  12. Transport of active ellipsoidal particles in ratchet potentials

    SciTech Connect

    Ai, Bao-Quan Wu, Jian-Chun

    2014-03-07

    Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)

  13. The Magnetospheric Multiscale (MMS) Mission Science Data Center: Technologies, Methods, and Experiences in Making Available Large Volumes of In-Situ Particle and Field Data

    NASA Astrophysics Data System (ADS)

    Pankratz, Christopher; Kokkonen, Kim; Larsen, Kristopher; Panneton, Russell; Putnam, Brian; Schafer, Corey; Baker, Daniel; Burch, James

    2016-04-01

    On September 1, 2015 the Magnetospheric MultiScale (MMS) constellation of four satellites completed their six-month commissioning period and began routine science data collection. Science operations for the mission is conducted at the Science Operations Center (SOC) at the Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, Colorado, USA. The MMS Science Data Center (SDC) is a component of the SOC responsible for the data production, management, dissemination, archiving, and visualization of the data from the extensive suite of 100 instruments onboard the four spacecraft. As of March 2016, MMS science data are openly available to the entire science community via the SDC. This includes hundreds of science parameters, and 50 gigabytes of data per day distributed across thousands of data files. Products are produced using integrated software systems developed and maintained by teams at other institutions using their own institutional software management procedures and made available via a centralized public web site and web services. To accomplish the data management, data processing, and system integration challenges present on this space mission, the MMS SDC incorporates a number of evolutionary techniques and technologies. This presentation will provide an informatics-oriented view of the MMS SDC, summarizing its technical aspects, novel technologies and data management practices that are employed, experiences with its design and development, and lessons learned. Also presented is the MMS "Scientist-in-the-Loop" (SITL) system, which is used to leverage human insight and expertise to optimize the data selected for transmission to the ground. This smoothly operating system entails the seamless interoperability of multiple mission facilities and data systems that ultimately translate scientist insight into uplink commands that triggers optimal data downlink to the ground.

  14. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  15. Frequency dispersion of electrokinetically activated Janus particles

    NASA Astrophysics Data System (ADS)

    Boymelgreen, Alicia; Balli, Tov; Yossifon, Gilad; Miloh, Touvia

    2015-11-01

    We examine the influence of the applied frequency of the electric field on the induced-charge electroosmotic flow around a metallo-dielectric Janus particle. Previously, we have used three dimensional-two component micro-particle-image-velocimetry (3D-2C μ PIV) around a stagnant particle, to illustrate the presence of a number of competing effects including dielectrophoresis and electrohydrodynamic flow which distort both the strength and shape of the frequency dispersion predicted for pure induced-charge effects. Here, we extend this work by examining the frequency dispersion of mobile Janus particles of different sizes (3 - 15 μm in diameter) at different electrolyte concentrations. In all cases, towards the DC limit, and in the frequency domain where previously EHD flow was shown to dominate, the velocity of a mobile particle decays to zero. At the same time significant variations in the frequency dispersion, including its shape and the value for maximum velocity are recorded as a function of both electrolyte concentration and particle size. This work is of both fundamental and practical importance and may be used to further refine non-linear electrokinetic theory and optimize the application of Janus particles as carriers in lab-on-a-chip analysis systems.

  16. The pulsating magnetosphere and flux transfer events

    SciTech Connect

    Potemra, T.A.; Zanetti, L.J. ); Elphinstone, R.; Murphree, J.S. ); Klumpar, D.M. )

    1992-08-03

    A unique positioning of the GOES 5, GOES 6, AMPTE/CCE, and Viking satellites on the dayside of the magnetosphere has provided the opportunity to study the relationship of periodic variations in magnetic fields, energetic particle fluxes, and images of UV auroral forms. On March 25, 1986, at about 1725 UT, two cycles of 10-min-period magnetic field oscillations were observed by all four satellites and by the Huancayo magnetic ground station. The UV images acquired by Viking showed intense emissions in a wide area near noon at 1730 UT, but near dawn 11 min. later. The authors interpret these observations as being associated with anti-sunward-moving periodic compressions of the magnetopause, which precipitated low-energy electrons that produced the enhanced UV emissions. In the midst of the longer-period variations, the magnetic field intensity measured by CCE near the magnetopause decreased sharply for a 105-sec period. This may be interpreted as being due to a flux transfer event that occurred during the longer (10-min) periodic compressions of the magnetosphere. These observations support the view that the magnetosphere often varies in a periodic way because of its own resonant processes and processes driven by the solar wind. A wide range of phenomena is associated with these variations including dayside auroral emissions, magnetic field variations throughout the magnetosphere and on the Earth's surface, and flux transfer events.

  17. Magnetospheric Substorms and Tail Dynamics

    NASA Technical Reports Server (NTRS)

    Hughes, W. Jeffrey

    1998-01-01

    This grant funded several studies of magnetospheric substorms and their effect on the dynamics of the earth's geomagnetic tail. We completed an extensive study of plasmoids, plasma/magnetic field structures that travel rapidly down the tail, using data from the ISEE 3 and IMP 8 spacecraft. This study formed the PhD thesis of Mark Moldwin. We found that magnetically plasmoids are better described as flux-ropes (twisted magnetic flux tubes) rather than plasma bubbles, as had been generally regarded up to that point (Moldwin and Hughes, 1990; 1991). We published several examples of plasmoids observed first in the near tail by IMP 8 and later in the distant tail by ISEE 3, confirming their velocities down tail. We showed how the passage of plasmoids distorts the plasma sheet. We completed the first extensive statistical survey of plasmoids that showed how plasmoids evolve as they move down tail from their formation around 30 RE to ISEE 3 apogee at 240 RE. We established a one-to-one correspondence between the observation of plasmoids in the distant tail and substorm onsets at earth or in the near tail. And we showed that there is a class of plasmoid-like structures that move slowly earthward, especially following weak substorms during northward IMF. Collectively this work constituted the most extensive study of plasmoids prior to the work that has now been done with the GEOTAIL spacecraft. Following our work on plasmoids, we turned our attention to signatures of substorm onset observed in the inner magnetosphere near geosynchronous orbit, especially signatures observed by the CRRES satellite. Using data from the magnetometer, electric field probe, plasma wave instrument, and low energy plasma instrument on CRRES we were able to better document substorm onsets in the inner magnetosphere than had been possible previously. Detailed calculation of the Poynting flux showed energy exchange between the magnetosphere and ionosphere, and a short burst of tailward convective

  18. Pioneer 10: Observations of energetic electrons in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Randall, B. A.

    1974-01-01

    Results are given of a study of the intensities, energy spectra, and angular distribution of energetic particles in the magnetosphere of Jupiter; the heliocentric radial gradient of the intensity of galactic cosmic rays; and the occurrence, intensity, and angular distribution of solar flare particles and their propagation through the interplanetary medium at large heliocentric distances.

  19. Multi-Scale Modeling of Magnetospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Toth, G.

    2012-01-01

    Magnetic reconnection is a key element in many phenomena in space plasma, e.g. Coronal mass Ejections, Magnetosphere substorms. One of the major challenges in modeling the dynamics of large-scale systems involving magnetic reconnection is to quantifY the interaction between global evolution of the magnetosphere and microphysical kinetic processes in diffusion regions near reconnection sites. Recent advances in small-scale kinetic modeling of magnetic reconnection significantly improved our understanding of physical mechanisms controlling the dissipation in the vicinity of the reconnection site in collisionless plasma. However the progress in studies of small-scale geometries was not very helpful for large scale simulations. Global magnetosphere simulations usually include non-ideal processes in terms of numerical dissipation and/or ad hoc anomalous resistivity. Comparative studies of magnetic reconnection in small scale geometries demonstrated that MHD simulations that included non-ideal processes in terms of a resistive term 11 J did not produce fast reconnection rates observed in kinetic simulations. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is nongyrotropic pressure effects with spatial scales comparable with the particle Larmor radius. We utilize the global MHD code BATSRUS and replace ad hoc parameters such as "critical current density" and "anomalous resistivity" with a physically motivated model of dissipation. The primary mechanism controlling the dissipation in the vicinity of the reconnection site in incorporated into MHD description in terms of non-gyrotropic corrections to the induction equation. We will demonstrate that kinetic nongyrotropic effects can significantly alter the global magnetosphere evolution. Our approach allowed for the first time to model loading/unloading cycle in response to steady southward IMF driving. The role of solar wind parameters and

  20. Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    2007-01-01

    Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.

  1. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    Titan's interaction with Saturn's magnetosphere will result in the energetic ejection of atomic nitrogen atoms into Saturn's magnetosphere due to dissociation of N2 by electrons, ions, and UV photons. The ejection of N atoms into Saturn's magnetosphere will form a nitrogen torus around Saturn with mean density of about 4 atoms/cm3 with source strength of 4.5x1025 atoms/sec. These nitrogen atoms are ionized by photoionization, electron impact ionization and charge exchange reactions producing an N+ torus of 1-4 keV suprathermal ions centered on Titan's orbital position. We will show Voyager plasma observations that demonstrate presence of a suprathermal ion component within Saturn's outer magnetosphere. The Voyager LECP data also reported the presence of inward diffusing energetic ions from the outer magnetosphere of Saturn, which could have an N+ contribution. If so, when one conserves the first and second adiabatic invariant the N+ ions will have energies in excess of 100 keV at Dione's L shell and greater than 400 keV at Enceladus' L shell. Energetic charged particle radial diffusion coefficients are also used to constrain the model results. But, one must also consider the solar wind as another important source of keV ions, in the form of protons and alpha particles, for Saturn's outer magnetosphere. Initial estimates indicate that a solar wind source could dominate in the outer magnetosphere, but various required parameters for this estimate are highly uncertain and will have to await Cassini results for confirmation. We show that satellite sweeping and charged particle precipitation within the middle and outer magnetosphere will tend to enrich N+ ions relative to protons within Saturn's inner magnetosphere as they diffuse radially inward for radial diffusion coefficients that do not violate observations. Charge exchange reactions within the inner magnetosphere can be an important loss mechanism for O+ ions, but to a lesser degree for N+ ions. Initial LECP

  2. Mercury's Dynamic Magnetosphere: What Have We Learned from MESSENGER?

    NASA Astrophysics Data System (ADS)

    Slavin, James A.

    2016-04-01

    does Mercury's magnetosphere accelerate energetic charged particles?

  3. Dynamics of Mars' magnetosphere

    SciTech Connect

    Kennel, C.F.; Coroniti, F.V. ); Zelenyi, L.M. ); Moses, S.L.

    1989-08-01

    If Mars has a small intrinsic magnetic moment, Mars' magnetosphere could vary on time scales of a few minutes due to reconnection with the solar wind magnetic field. The day-side magnetopause will be one or two reflected-ion Larmor radii from the bow shock. Substorms will have scale-times of about six minutes. Mars' high ionospheric conductance will virtually stop polar cap convection, and create a magnetic topological crisis unless convecting magnetic flux finds a dissipative way to return to the day-side. The strong magnetic hear induced by magnetospheric convection above the ionosphere could be tearing unstable. The magnetic field might diffusively percolate through the tearing layer. This shearing also draws field aligned currents from the ionosphere which could inject few KeV heavy ionospheric ions into the magnetotail.

  4. Five Years of Stereo Magnetospheric Imaging by TWINS

    NASA Astrophysics Data System (ADS)

    Goldstein, J.; McComas, D. J.

    2013-12-01

    Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is the first stereoscopic magnetospheric imager. TWINS is a NASA Explorer Mission of Opportunity performing simultaneous energetic neutral atom (ENA) imaging from two widely-separated Molniya orbits on two different spacecraft, and providing nearly continuous coverage of magnetospheric ENA emissions. The ENA imagers observe energetic neutrals produced from global ion populations, over a broad energy range (1-100 keV/u) with high angular (4∘×4∘) and time (about 1-minute) resolution. TWINS distinguishes hydrogen ENAs from oxygen ENAs. Each TWINS spacecraft also carries a Lyman- α geocoronal imager to monitor the cold exospheric hydrogen atoms that produce ENAs from ions via charge exchange. Complementing the imagers are detectors that measure the local charged particle environment around the spacecraft. During its first five years of science operations, TWINS has discovered new global properties of geospace plasmas and neutrals, fostered understanding of causal relationships, confirmed theories and predictions based on in situ data, and yielded key insights needed to improve geospace models. Analysis and modeling of TWINS data have: (1) obtained continuous (main phase through recovery) global ion spectra, (2) revealed a previously unknown local-time dependence of global pitch angle, (3) developed quantitative determination of ion fluxes from low altitude ENAs (4) determined dynamic connections between local pitch angle and global ion precipitation, (5) confirmed local-time dependence of precipitating ion temperature, (6) imaged global dynamic heating of the magnetosphere, (7) explained why the oxygen ring current survives longer into recovery than hydrogen, and (8) revealed new global exospheric density features and their influence upon ring current decay rates. Over the next several years of the solar cycle, TWINS observations of three-dimensional (3D) global ion dynamics, composition, origins and

  5. Entropic Ratchet transport of interacting active Brownian particles

    SciTech Connect

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  6. Currents in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.

    1983-01-01

    A model of Saturn's magnetospheric magnetic field is obtained from the Voyager 1 and 2 observations. A representation consisting of the Z sub 3 zonal harmonic model of Saturn's planetary magnetic field together with an explicit model of Saturn's planetary magnetic field and a model of the equatorial ring current fits the observations well within r 20 R sub S, with the exception of data obtained during the Voyager 2 inbound pass.

  7. Plasmas in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Burek, B. G.; Ackerson, K. L.; Wolfe, J. H.; Mihalov, J. D.

    1980-01-01

    The solar wind plasma analyzer on board Pioneer 2 provides first observations of low-energy positive ions in the magnetosphere of Saturn. Measurable intensities of ions within the energy-per-unit charge (E/Q) range 100 eV to 8 keV are present over the planetocentric radial distance range about 4 to 16 R sub S in the dayside magnetosphere. The plasmas are found to be rigidly corotating with the planet out to distances of at least 10 R sub S. At radial distances beyond 10 R sub S, the bulk flows appear to be in the corotation direction but with lesser speeds than those expected from rigid corotation. At radial distances beyond the orbit of Rhea at 8.8 R sub S, the dominant ions are most likely protons and the corresponding typical densities and temperatures are 0.5/cu cm and 1,000,000 K, respectively, with substantial fluctuations. It is concluded that the most likely source of these plasmas in the photodissociation of water frost on the surface of the ring material with subsequent ionization of the products and radially outward diffusion. The presence of this plasma torus is expected to have a large influence on the dynamics of Saturn's magnetosphere since the pressure ratio beta of these plasmas approaches unity at radial distances as close to the planet as 6.5 R sub S. On the basis of these observational evidences it is anticipated that quasi-periodic outward flows of plasma, accompanied with a reconfiguration of the magnetosphere beyond about 6.5 R sub S, will occur in the local night sector in order to relieve the plasma pressure from accretion of plasma from the rings.

  8. ERG A small-satellite mission to investigate the dynamics of the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Inner Magnetosphere Subgroup in Society Of Geomagnetism; Earth, Planetary; Space Sciences; Seki, K.; Miyoshi, Y.; Ieda, A.; Ono, T.; Iizima, M.; Nagatsuma, T.; Obara, T.; Takashima, T.; Asamura, K.; Kasaba, Y.; Matsuoka, A.; Saito, Y.; Saito, H.; Hirahara, M.; Tonegawa, Y.; Toyama, F.; Tanaka, M.; Nose, M.; Kasahara, Y.; Yumoto, K.; Kawano, H.; Yoshikawa, A.; Ebihara, Y.; Yukimatsu, A.; Sato, N.; Watanabe, S.

    2006-01-01

    The Earth’s inner magnetosphere (inside 10 Re) is a region where particle energy increases to the relativistic energy range. This region is very important as a laboratory where high-energy particle acceleration can be directly measured in a dipolar field configuration, as well as for human activities in space including space weather prediction. Despite abundant in situ satellite measurements, this region has been “missing” because of several difficulties arising from the measurements, such as high-energy particle contamination of low-energy particle measurement, protection against the possible incidence of radiation belt particles on the satellite, and the difficulties of measuring three-dimensional particles over a broad energy range, from a few electron volts to more than 10 MeV. In this paper, we address important scientific topics and propose a possible configuration of small satellites termed Energization and Radiation in Geospace (ERG), which would provide new insights into the dynamics of the inner magnetosphere and strongly contribute to the International Living With a Star project.

  9. Mercury's magnetosphere: another look

    NASA Astrophysics Data System (ADS)

    Engle, Irene M.

    1997-01-01

    The measurements made of Mercury's magnetic field during the Mercury I flyby and the Mereury III flyby have been incorporated into models of the Hermean magnetosphere-magnetotail system. When the magnetic field data for the first half of the Mereury I flyby and all of the Mercury III flyby were incorporated into a single fit of a scaled version of the Beard ( J. Geophys. Res.84, 2118-2122, 1979) Earth magnetosphere-magnetotail system, a r.m.s. deviation of 9.3 nT for the magnetic field vector was obtained (Bergan and Engle, J. Geophys. Res.86, 1617-1620, 1981). This paper presents results of a study that employs an adaptation of that Beard model but also adopts the assumption that the incident solar wind pressure was different at the times of the two Mercury magnetosphere encounters. Resulting different stand-off distances and scaling factors for the data of the two respective flybys result directly from that single assumption. The study yields a comparable fit of reduced r.m.s. deviation of 7.1 nT and a strength of the Mercury planetary dipole moment D (before any displacement effects are incorporated) between 154 nT RM3 (Merc 1) and 182 nT RM3 (Merc 3). The corresponding standoff distances are 1.31 RM for the Merc 3 encounter and 1.08 RM for the Merc 1 encounter.

  10. Towards a Realistic Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Kalapotharakos, Constantinos; Kazanas, Demosthenes; Harding, Alice; Contopoulos, Ioannis

    2012-01-01

    We present the magnetic and electric field structures as well as the currents ami charge densities of pulsar magnetospberes which do not obey the ideal condition, E(raised dot) B = O. Since the acceleration of particles and the production of radiation requires the presence of an electric field component parallel to the magnetic field, E(sub ll) the structure of non-Ideal pulsar magnetospheres is intimately related to the production of pulsar radiation. Therefore, knowledge of the structure of non-Ideal pulsar maglletospheres is important because their comparison (including models for t he production of radiation) with observations will delineate the physics and the parameters underlying the pulsar radiation problem. We implement a variety of prescriptions that support nonzero values for E(sub ll) and explore their effects on the structure of the resulting magnetospheres. We produce families of solutions that span the entire range between the vacuum and the (ideal) Force-Free Electrodynamic solutions. We also compute the amount of dissipation as a fraction of the Poynting flux for pulsars of different angles between the rotation and magnetic axes and conclude that tltis is at most 20-40% (depending on t he non-ideal prescription) in the aligned rotator and 10% in the perpendicular one. We present also the limiting solutions with the property J = pc and discuss their possible implicatioll on the determination of the "on/ off" states of the intermittent pulsars. Finally, we find that solutions with values of J greater than those needed to null E(sub ll) locally produce oscillations, potentially observable in the data.

  11. Decrease of keV electron and ion fluxes in the dayside magnetosphere during the early phase of magnetospheric disturbances

    NASA Technical Reports Server (NTRS)

    Hultqvist, B.; Aparicio, B.; Borg, H.; Arnoldy, R.; Moore, T. E.

    1981-01-01

    It is shown that a decrease of the keV particle fluxes in the dayside magnetosphere near the geosynchronous orbit is characteristic of the first several hours of magnetospheric disturbances. After some hours newly injected plasma from the nightside reaches the 'evacuated' regions of the dayside magnetosphere and strong flux increases are observed. The 'evacuation' of the dayside magnetosphere is interpreted in terms of a change in the convection pattern associated with an increase of the large scale electric field at the onset of the disturbance. The model presented is capable of accommodating all characteristics of the observational data, such as the temporal and spatial distributions, energy and pitch angle characteristics, and differences between electrons and protons.

  12. On transpolar arc formation correlated with solar wind entry at high latitude magnetosphere

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Shi, Q.; Maggiolo, R.; Zong, Q.; Fu, S.; Zhang, Y.; Yao, Z.; Sun, W.

    2014-12-01

    Recently, Cluster observations revealed the existence of new regions of solar wind plasma entry at the high latitudes of the Earth's magnetosphere, at the lobes tailward of the cusp region, mostly during periods of northward IMF. Such periods of northward IMF are associated with the presence of transpolar arcs. Observations from Global Ultraviolet Imager (GUVI) instrument onboard TIMED spacecraft are used to investigate a possible link between solar wind entry in the high latitude magnetosphere and the formation of transpolar arcs. Data from IMAGE and DMSP spacecraft are also used to investigate the time evolution and particle characteristics of the transpolar arc.We present a case study of a theta aurora correlated with the solar wind entry. The observations show a simultaneous occurrence of aurora activity at the magnetotail and high latitudes, suggesting two-part structure of the apparent continuous band of the transpolar arc.

  13. Hysteretic dynamics of active particles in a periodic orienting field

    PubMed Central

    Romensky, Maksym; Scholz, Dimitri; Lobaskin, Vladimir

    2015-01-01

    Active motion of living organisms and artificial self-propelling particles has been an area of intense research at the interface of biology, chemistry and physics. Significant progress in understanding these phenomena has been related to the observation that dynamic self-organization in active systems has much in common with ordering in equilibrium condensed matter such as spontaneous magnetization in ferromagnets. The velocities of active particles may behave similar to magnetic dipoles and develop global alignment, although interactions between the individuals might be completely different. In this work, we show that the dynamics of active particles in external fields can also be described in a way that resembles equilibrium condensed matter. It follows simple general laws, which are independent of the microscopic details of the system. The dynamics is revealed through hysteresis of the mean velocity of active particles subjected to a periodic orienting field. The hysteresis is measured in computer simulations and experiments on unicellular organisms. We find that the ability of the particles to follow the field scales with the ratio of the field variation period to the particles' orientational relaxation time, which, in turn, is related to the particle self-propulsion power and the energy dissipation rate. The collective behaviour of the particles due to aligning interactions manifests itself at low frequencies via increased persistence of the swarm motion when compared with motion of an individual. By contrast, at high field frequencies, the active group fails to develop the alignment and tends to behave like a set of independent individuals even in the presence of interactions. We also report on asymptotic laws for the hysteretic dynamics of active particles, which resemble those in magnetic systems. The generality of the assumptions in the underlying model suggests that the observed laws might apply to a variety of dynamic phenomena from the motion of

  14. Active Brownian particles escaping a channel in single file.

    PubMed

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  15. The International Particle Physics Outreach Group (ippog):. Aims and Activities

    NASA Astrophysics Data System (ADS)

    Barney, David

    2012-08-01

    The International Particle Physics Outreach Group, IPPOG, is a network of particle physics communication and education experts. IPPOG's principle aim is to maximize the impact of education and outreach efforts related to particle physics through information exchange and the sharing of expertise. IPPOG has initiated several major European and Worldwide activities, such as the "International Particle Physics Masterclasses" where each year thousands of high school students in more than 20 countries come to one of about 120 nearby universities or research centres for a day in order to unravel the mysteries of particle physics. IPPOG has also initiated a global database of education and outreach materials, aimed at supporting other particle physicists and education professionals. The aims and activities of IPPOG will be described, as well as plans to include more countries & laboratories in the network.

  16. Convective self-propulsion of chemically active particles

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Shum, Henry; Balazs, Anna

    2016-11-01

    A mechanism of particle self-propulsion activated by transduction of chemical energy into convective motion of fluid that drags microscale particles is proposed. The convection is generated by an active spherical particle located on the bottom of a microchannel and coated with a catalyst that decomposes reagent dissolved in the solution into less dense products and gives rise to a buoyancy force. The symmetry of the flow generated around the active particle can be broken if a passive spherical particle, which does not produce the flow, is present in the vicinity of the first one. The generated flow drags the passive particle toward the active one along the bottom wall until they form a dimer. The resulting asymmetric fluid flow, which is generated by only one of the particles, imposes a different drag on the different sides on the dimer. The net force causes the dimer to translate along the bottom wall. By varying numbers of active and passive particles, as well as their positions within a group, one can control the structure of the generated convective flow and, therefore, design clusters with different mobile properties. The proposed mechanism can be harnessed to transport cargo in microchannels.

  17. Saturn's Magnetosphere, Rings, and Inner Satellites.

    PubMed

    VAN Allen, J A; Thomsen, M F; Randall, B A; Rairden, R L; Grosskreutz, C L

    1980-01-25

    Our 31 August to 5 September 1979 observations together with those of the other Pioneer 11 investigators provide the first credible discovery of the magnetosphere of Saturn and many detailed characteristics thereof. In physical dimensions and energetic charged particle population, Saturn's magnetosphere is intermediate between those of Earth and Jupiter. In terms of planetary radii, the scale of Saturn's magnetosphere more nearly resembles that of Earth and there is much less inflation by entrapped plasma than in the case at Jupiter. The orbit of Titan lies in the outer fringes of the magnetosphere. Particle angular distributions on the inbound leg of the trajectory (sunward side) have a complex pattern but are everywhere consistent with a dipolar magnetic field approximately perpendicular to the planet's equator. On the outbound leg (dawnside) there are marked departures from this situation outside of 7 Saturn radii (Rs), suggesting an equatorial current sheet having both longitudinal and radial components. The particulate rings and inner satellites have a profound effect on the distribution of energetic particles. We find (i) clear absorption signatures of Dione and Mimas; (ii) a broad absorption region encompassing the orbital radii of Tethys and Enceladus but probably attributable, at least in part, to plasma physical effects; (iii) no evidence for Janus (1966 S 1) (S 10) at or near 2.66 Rs; (iv) a satellite of diameter greater, similar 170 kilometers at 2.534 R(s) (1979 S 2), probably the same object as that detected optically by Pioneer 11 (1979 S 1) and previously by groundbased telescopes (1966 S 2) (S 11); (v) a satellite of comparable diameter at 2.343 Rs (1979 S 5); (vi) confirmation of the F ring between 2.336 and 2.371 Rs; (vii) confirmation of the Pioneer division between 2.292 and 2.336 Rs; (viii) a suspected satellite at 2.82 Rs (1979 S 3); (ix) no clear evidence for the E ring though its influence may be obscured by stronger effects; and (x) the

  18. Overview - Electric fields. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.

    1979-01-01

    The electric fields session is designed to review progress in observation, theory, and modeling of magnetospheric electric fields, and to expose important new results. The present report comments on the state and prospects of electric field research, with particular emphasis on relevance to quantitative modeling of the magnetospheric processes. Attention is given to underlying theories and models. Modeling philosophy is discussed relative to explanatory models and representative models. Modeling of magnetospheric electric fields, while in its infancy, is developing rapidly on many fronts employing a variety of approaches. The general topic of magnetospheric electric fields is becoming of prime importance in understanding space plasmas.

  19. Saturn: atmosphere, ionosphere, and magnetosphere.

    PubMed

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?

  20. Some characteristics of the magnetospheric source of dayside subaroural proton precipitations during magnetospheric compression

    NASA Astrophysics Data System (ADS)

    Yahnin, A. G.; Popova, T. A.; Yahnina, T. A.

    2015-01-01

    Some peculiarities of the source region of proton precipitations and electromagnetic ion-cyclotron waves on the dayside during magnetospheric compression are considered. Flashes of proton emission observed by the IMAGE satellite in the dayside sector equatorwards from the proton aurora oval are used to localize this region. The data from the LANL geostationary satellites, the projections of which during magnetospheric compression were within the proton emission flash, made it possible to find that the source region of the proton precipitations is usually located outside the plasmasphere. In periods of increased geomagnetic activity, this region is located closer to the Earth. Using NOAA satellite data, it is shown that in the dayside outer magnetosphere, precipitations of energetic protons with relatively low intensity are observed prior to magnetospheric compression. This fact shows that the conditions for the development of ion-cyclotron instability are fulfilled there. Magnetospheric compression leads to a sharp increase in the instability increment and, as a consequence, to a sharp growth in the fluxes of precipitating protons, exceeding the level needed for the registration of proton auroras on board the IMAGE satellite.

  1. Voyager 1: energetic ions and electrons in the jovian magnetosphere.

    PubMed

    Vogt, R E; Cook, W R; Cummings, A C; Garrard, T L; Gehrels, N; Stone, E C; Trainor, J H; Schardt, A W; Conlon, T; Lal, N; McDonald, F B

    1979-06-01

    The observations of the cosmic-ray subsystem have added significantly to our knowledge of Jupiter's magnetosphere. The most surprising result is the existence of energetic sulfur, sodium, and oxygen nuclei with energies above 7 megaelectron volts per nucleon which were found inside of Io's orbit. Also, significant fluxes of similarly energetic ions reflecting solar cosmic-ray composition were observed throughout the magnetosphere beyond 11 times the radius of Jupiter. It was also found that energetic protons are enhanced by 30 to 70 percent in the active hemisphere. Finally, the first observations were made of the magnetospheric tail in the dawn direction out to 160 Jupiter radii.

  2. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles

    NASA Astrophysics Data System (ADS)

    Chakraborti, Subhadip; Mishra, Shradha; Pradhan, Punyabrata

    2016-05-01

    Using an additivity property, we study particle-number fluctuations in a system of interacting self-propelled particles, called active Brownian particles (ABPs), which consists of repulsive disks with random self-propulsion velocities. From a fluctuation-response relation, a direct consequence of additivity, we formulate a thermodynamic theory which captures the previously observed features of nonequilibrium phase transition in the ABPs from a homogeneous fluid phase to an inhomogeneous phase of coexisting gas and liquid. We substantiate the predictions of additivity by analytically calculating the subsystem particle-number distributions in the homogeneous fluid phase away from criticality where analytically obtained distributions are compatible with simulations in the ABPs.

  3. Interplanetary Studies: Propagation of Disturbances Between the Sun and the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Dryer, Murray

    1994-09-01

    This review is concerned with the interplanetary ‘transmission line’ between the Sun and the Earth's magnetosphere. It starts with comments about coronal mass ejections (CMEs) that are associated with various forms of solar activities. It then continues with some of the current views about their continuation through the heliosphere to Earth and elsewhere. The evolution of energy, mass, and momentum transfer is of prime interest since the temporal/spatial/magnitude behavior of the interplanetary electric field and transient solar wind dynamic pressure is relevant to the magnetospheric response (the presence or absence of geomagnetic storms and substorms) at Earth. Energetec particle flux predictions are discussed in the context of solar activity (flares, prominence eruptions) at various positions on the solar disk relative to Earth's central meridian. A number of multi-dimensional magnetohydrodynamic (MHD) models, applied to the solar, near-Sun, and interplanetary portions of the ‘transmission line’, are discussed. These model simulations, necessary to advancing our understanding beyond the phenomenological or morphological stages, are directed to deceptively simple questions such as the following: can one-to-one associations be made between specific forms of solar activity and magnetosphere response?

  4. Magnetospheric state of sawtooth events

    NASA Astrophysics Data System (ADS)

    Fung, Shing F.; Tepper, Julia A.; Cai, Xia

    2016-08-01

    Magnetospheric sawtooth events, first identified in the early 1990s, are named for their characteristic appearance of multiple quasiperiodic intervals of slow decrease followed by sharp increase of proton differential energy fluxes in the geosynchronous region. The successive proton flux oscillations have been interpreted as recurrences of stretching and dipolarization of the nightside geomagnetic field. Due to their often extended intervals with 2-10 cycles, sawteeth occurrences are sometimes referred to as a magnetospheric mode. While studies of sawtooth events over the past two decades have yielded a wealth of information about such events, the magnetospheric state conditions for the occurrence of sawtooth events and how sawtooth oscillations may depend on the magnetospheric state conditions remain unclear. In this study, we investigate the characteristic magnetospheric state conditions (specified by Psw interplanetary magnetic field (IMF) Btot, IMF Bz Vsw, AE, Kp and Dst, all time shifted with respect to one another) associated with the intervals before, during, and after sawteeth occurrences. Applying a previously developed statistical technique, we have determined the most probable magnetospheric states propitious for the development and occurrence of sawtooth events, respectively. The statistically determined sawtooth magnetospheric state has also been validated by using out-of-sample events, confirming the notion that sawtooth intervals might represent a particular global state of the magnetosphere. We propose that the "sawtooth state" of the magnetosphere may be a state of marginal stability in which a slight enhancement in the loading rate of an otherwise continuous loading process can send the magnetosphere into the marginally unstable regime, causing it to shed limited amount of energy quickly and return to the marginally stable regime with the loading process continuing. Sawtooth oscillations result as the magnetosphere switches between the marginally

  5. Magnetospheric State of Sawtooth Events

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Tepper, Julia A.; Cai, Xia

    2016-01-01

    Magnetospheric sawtooth events, first identified in the early 1990s, are named for their characteristic appearance of multiple quasiperiodic intervals of slow decrease followed by sharp increase of proton differential energy fluxes in the geosynchronous region. The successive proton flux oscillations have been interpreted as recurrences of stretching and dipolarization of the nightside geomagnetic field. Due to their often extended intervals with 210 cycles, sawteeth occurrences are sometimes referred to as a magnetospheric mode. While studies of sawtooth events over the past two decades have yielded a wealth of information about such events, the magnetospheric state conditions for the occurrence of sawtooth events and how sawtooth oscillations may depend on the magnetospheric state conditions remain unclear. In this study, we investigate the characteristic magnetospheric state conditions (specified by Psw interplanetary magnetic field (IMF) Btot, IMF Bz Vsw, AE, Kp and Dst, all time shifted with respect to one another) associated with the intervals before, during, and after sawteeth occurrences. Applying a previously developed statistical technique, we have determined the most probable magnetospheric states propitious for the development and occurrence of sawtooth events, respectively. The statistically determined sawtooth magnetospheric state has also been validated by using out-of-sample events, confirming the notion that sawtooth intervals might represent a particular global state of the magnetosphere. We propose that the sawtooth state of the magnetosphere may be a state of marginal stability in which a slight enhancement in the loading rate of an otherwise continuous loading process can send the magnetosphere into the marginally unstable regime, causing it to shed limited amount of energy quickly and return to the marginally stable regime with the loading process continuing. Sawtooth oscillations result as the magnetosphere switches between the marginally

  6. Nitrogen In Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D. J.; Reisenfeld, D.; Shappirio, M. D.; Baragiola, R.; Michael, M.; Shematovich, V. I.; Crary, F.; Young, D. T.

    2004-12-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions in the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to our models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and CAPS Cassini instrument team programs.

  7. Using Laboratory Magnetospheres to Develop and Validate Space Weather Models

    NASA Astrophysics Data System (ADS)

    Garnier, D. T.; Davis, M. S.; Mauel, M. E.; Kesner, J.

    2012-10-01

    Reliable space weather predictions can be used to plan satellite operations, predict radio outages, and protect the electrical transmission grid. While direct observation of the solar corona and satellite measurements of the solar wind give warnings of possible subsequent geomagnetic activity, more accurate and reliable models of how solar fluxes affect the earth's space environment are needed. Recent development in laboratory magnetic dipoles have yielded well confined high-beta plasmas with intense energetic electron belts similar to magnetospheres. With plasma diagnostics spanning from global to small spatial scales and user-controlled experiments, these devices can be used to study current issues in space weather such as fast particle excitation and rapid depolarization events. In levitated dipole experiments, which remove the collisional loss along field lines that normally dominate laboratory dipole plasmas, slow radial convection processes can be observed. Thus, comparisons between laboratory plasmas and global convection models can be made.

  8. Characterization of Magnetospheric Spacecraft Charging Environments Using the LANL Magnetospheric Plasma Analyzer Data Set

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Davis, V. A.; Mandell, M. J.; Thomsen, M. F.

    2003-01-01

    An improved specification of the plasma environment has been developed for use in modeling spacecraft charging. It was developed by statistically analyzing a large part of the LANL Magnetospheric Plasma Analyzer (MPA) data set for ion and electron spectral signature correlation with spacecraft charging, including anisotropies. The objective is to identify a relatively simple characterization of the full particle distributions that yield an accurate predication of the observed charging under a wide variety of conditions.

  9. Plasma in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Eviatar, A.

    1984-01-01

    The spatial and compositional distribution of the thermal plasma in the magnetosphere of Saturn is described in the light of the Voyager encounters. Theoretical considerations are applied to the elucidation of the structure, including two external and two internal boundaries. The outer boundary is a magnetohydrodynamic entity, while the inner boundary of locally created thermal plasma is a result of the dissociative recombination of corotating molecular ions. The internal boundaries, which separate plasmas of different composition, are explained as a charge exchange quasi-resonance phenomenon.

  10. Current Understanding of Mercury's Magnetosphere before MESSENGER

    NASA Astrophysics Data System (ADS)

    Krimigis, S. M.

    The MESSENGER spacecraft is scheduled to be launched mid-May, 2004 on a trajectory that includes two flybys (October 07, July 08) and eventual orbit insertion in July 2009 around the planet Mercury. Embedded in its payload are instruments to examine the basic properties of the planet's magnetosphere, including magnetometer, plasma, and energetic particle measurements (Gold et al, 2001). Our present knowledge of Mercury's magnetosphere is derived from two nightside Mariner 10 flybys in 1974, 1975 that established the presence of an intrinsic magnetic field and some energetic particles. Unfortunately not even the magnetic dipole term was well-resolved, and the fluxes and identity of energetic particles have been a subject of extensive discussion and varying interpretations (e.g. Armstrong et al, 1975, Christon, 1989). There has been evidence of field-aligned currents (e.g. Slavin et al, 1997), but alternative interpretations of magnetic signatures suggest that the magnetosphere may be driven by changing external boundary conditions (Luhman et al, 1998). These uncertainties, coupled with the observed presence of volatiles (H, He, O, Na, K, Ca) raise obvious questions on current closure, hot plasma injection and acceleration, the frequency with which the planetary surface is exposed to the solar wind, and potential sputtering of material due to particle impingement on the regolith. The talk will review our current knowledge and describe the measurements expected from MESSENGER that will address some of the key science questions. Armstrong et al, JGR, 80, 4015, 1975 Gold et al, Planet and Space Sci, 49, 1467, 2001 Christon, S.P., JGR, 94, 6481, 1989 Slavin et al, Planet and Space Sci, 45, 133, 1997 Luhman et al, JGR, 103, 9113, 1998

  11. Characterizing the Magnetospheric State for Sawtooth Events

    NASA Astrophysics Data System (ADS)

    Fung, S. F.; Tepper, J. A.; Cai, X.

    2015-12-01

    Magnetospheric sawtooth events, first identified in the early 1990's, are named for their characteristic appearance of multiple quasi-periodic intervals of slow decrease followed by sharp increase of proton energy fluxes in the geosynchronous region. The successive proton flux decrease-and-increase intervals have been interpreted as recurrences of stretching and dipolarization, respectively, of the nightside geomagnetic field [Reeves et al., 2003]. Due to their often-extended intervals with 2- 10 cycles, sawteeth occurrences are sometimes referred to as a magnetospheric mode [Henderson et al., 2006]. Studies over the past two decades of sawtooth events (both event and statistical) have yielded a wealth of information on the conditions for the onset and occurrence of sawtooth events, but the occurrences of sawtooth events during both storm and non-storm periods suggest that we still do not fully understand the true nature of sawtooth events [Cai et al., 2011]. In this study, we investigate the characteristic magnetospheric state conditions [Fung and Shao, 2008] associated with the beginning, during, and ending intervals of sawtooth events. Unlike previous studies of individual sawtooth event conditions, magnetospheric state conditions consider the combinations of both magnetospheric drivers (solar wind) and multiple geomagnetic responses. Our presentation will discuss the most probable conditions for a "sawtooth state" of the magnetosphere. ReferencesCai, X., J.-C. Zhang, C. R. Clauer, and M. W. Liemohn (2011), Relationship between sawtooth events and magnetic storms, J. Geophys. Res., 116, A07208, doi:10.1029/2010JA016310. Fung, S. F. and X. Shao, Specification of multiple geomagnetic responses to variable solar wind and IMF input, Ann. Geophys., 26, 639-652, 2008. Henderson, M. G., et al. (2006), Magnetospheric and auroral activity during the 18 April 2002 sawtooth event, J. Geophys. Res., 111, A01S90, doi:10.1029/2005JA011111. Reeves, G. D., et al. (2004), IMAGE

  12. Multiple-satellite studies of magnetospheric substorms: Plasma sheet recovery and the poleward leap of auroral-zone activity

    NASA Technical Reports Server (NTRS)

    Pytte, T.; Mcpherron, R. L.; Kivelson, M. G.; West, H. I., Jr.; Hones, E. W., Jr.

    1977-01-01

    Particle observations from pairs of satellites (Ogo 5, Vela 4A and 5B, Imp 3) during the recovery of plasma sheet thickness late in substorms were examined. Six of the nine events occurred within about 5 min in locations near the estimated position of the neutral sheet, but over wide ranges of east-west and radial separations. The time of occurrence and spatial extent of the recovery were related to the onset (defined by ground Pi 2 pulsations) and approximate location (estimated from ground mid-latitude magnetic signatures) of substorm expansions. It was found that the plasma sheet recovery occurred 10 - 30 min after the last in a series of Pi bursts, which were interpreted to indicate that the recovery was not due directly to a late, high latitude substorm expansion. The recovery was also observed to occur after the substorm current wedge had moved into the evening sector and to extend far to the east of the center of the last preceding substorm expansion.

  13. Analysis of energetic proton and electron data in Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.

    1994-01-01

    This grant was for the analysis and interpretation of data obtained by the cosmic ray system (CRS) on Voyager 2 in the magnetosphere of Neptune. The research goals included the following: characterize the distribution and intensity of trapped electrons and protons; relate them to theoretical models of particle transport; study the particle absorption signatures of Neptune's moons and rings; develop planetary magnetic field models based on the particle data; and study Neptune's cosmic ray cutoff.

  14. Multi-Scale Modeling of Magnetospheric Reconnection

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Toth, G.; Dezeeuw, D.; Gomobosi, T.

    2007-01-01

    One of the major challenges in modeling the magnetospheric magnetic reconnection is to quantify the interaction between large-scale global magnetospheric dynamics and microphysical processes in diffusion regions near reconnection sites. There is still considerable debate as to what degree microphysical processes on kinetic scales affect the global evolution and how important it is to substitute numerical dissipation and/or ad hoc anomalous resistivity by a physically motivated model of dissipation. Comparative studies of magnetic reconnection in small scale geometries demonstrated that MHD simulations that included non-ideal processes in terms of a resistive term $\\eta J$ did not produce the fast reconnection rates observed in kinetic simulations. For a broad range of physical parameters in collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. We utilize the global MHD code BATSRUS and incorporate nongyrotropic effects in diffusion regions in terms of corrections to the induction equation. We developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated selfconsistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites is updated during the simulations. To clarify the role of nongyrotropic effects in diffusion region on the global magnetospheric dynamic we perform simulations with steady southward IMF driving of the magnetosphere. Ideal MHD simulations with magnetic reconnection supported by numerical resistivity produce steady configuration with almost stationary near-earth neutral

  15. Observing the magnetosphere through auroral imaging.

    NASA Astrophysics Data System (ADS)

    Mende, S. B.

    2015-12-01

    Although the terrestrial aurora is often regarded as 2 dimensional projection of the 3 dimensional magnetosphere there are fundamental limitations in observing magnetospheric processes through their auroral footprints. It has been shown that most electron auroras are produced in the auroral acceleration region at lower altitudes (<2Re) in the last steps of processing the auroral particles. From FAST, IMAGE , Cluster and THEMIS data we can distinguish between four fundamentally different types of auroral acceleration regions. A primary task is to distinguish (1) the upward current, (2) downward current, (3) diffuse aurora and (4) Alfven wave accelerated types of auroral acceleration regions. Type (1) contains the "inverted V" type electron precipitation distinguishable by several keV mono-energetic electron spectra, and low number flux consistent with the source population in the plasma sheet. Our understanding of how these auroras relate to magnetospheric processes is still vague, probably associated with convection sheer. Alfven wave electron auroras (4) are of low average energy (<2 keV) high electron flux consistent with ionospheric electron source predominantly occurring during substorms, and they are generated by wave energy carried from the magnetosphere into the ionosphere, where it is converted into electron energy. These are most promising candidates for observing the footprints of source regions associated with reconnection sites or magnetospheric dB/dt events. Optical measuring techniques of electron energy use the atmosphere as a spectrometer, obtaining the penetration altitude as a proxy for energy, that can be obtained from atmospheric composition, quenching lifetime of the emitters, UV absorption pass-length of O2 to the source or the local atmospheric temperature. Precipitating protons are usually an order of magnitude more energetic and less affected by fields in the low altitude auroral acceleration region. Energetic proton precipitation is a more

  16. A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. II. Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Tao, Xin; Wang, Shui

    2016-02-01

    In this paper, we perform one-dimensional particle-in-cell simulations to investigate the properties of perpendicular magnetosonic waves in a plasma system consisting of three components: cool electrons, cool protons, and tenuous ring distribution protons, where the waves are excited by the tenuous proton ring distribution. Consistent with the linear theory, the spectra of excited magnetosonic waves can change from discrete to continuous due to the overlapping of adjacent unstable wave modes. The increase of the proton to electron mass ratio, the ratio of the light speed to the Alfven speed, or the concentration of protons with a ring distribution tends to result in a continuous spectrum of magnetosonic waves, while the increase of the ring velocity of the tenuous proton ring distribution leads to a broader one, but with a discrete structure. Moreover, the energization of both cool electrons and protons and the scattering of ring distribution protons due to the excited magnetosonic waves are also observed in our simulations, which cannot be predicted by the linear theory. Besides, a thermalized proton ring distribution may lead to the further excitation of several lower discrete harmonics with their frequencies about several proton gyrofrequencies.

  17. Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP

    SciTech Connect

    Baker, D.N.; Pulkkinen, T.I.; Li, X.; Kanekal, S.G.; Blake, J.B.; Selesnick, R.S.; Henderson, M.G.; Reeves, G.D.; Spence, H.E.

    1998-08-01

    The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth{close_quote}s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related {open_quotes}magnetic clouds{close_quotes} at 1 AU. As these CME/cloud systems interact with the Earth{close_quote}s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27{endash}29, 1996, and January 10{endash}11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields ({partial_derivative}B/{partial_derivative}t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event. {copyright} 1998 American Geophysical Union

  18. Black hole magnetospheres

    SciTech Connect

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  19. Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but

  20. Activation volumes of enzymes adsorbed on silica particles.

    PubMed

    Schuabb, Vitor; Czeslik, Claus

    2014-12-30

    The immobilization of enzymes on carrier particles is useful in many biotechnological processes. In this way, enzymes can be separated from the reaction solution by filtering and can be reused in several cycles. On the other hand, there is a series of examples of free enzymes in solution that can be activated by the application of pressure. Thus, a potential loss of enzymatic activity upon immobilization on carrier particles might be compensated by pressure. In this study, we have determined the activation volumes of two enzymes, α-chymotrypsin (α-CT) and horseradish peroxidase (HRP), when they are adsorbed on silica particles and free in solution. The experiments have been carried out using fluorescence assays under pressures up to 2000 bar. In all cases, activation volumes were found to depend on the applied pressure, suggesting different compressions of the enzyme-substrate complex and the transition state. The volume profiles of free and adsorbed HRP are similar. For α-CT, larger activation volumes are found in the adsorbed state. However, up to about 500 bar, the enzymatic reaction of α-CT, which is adsorbed on silica particles, is characterized by a negative activation volume. This observation suggests that application of pressure might indeed be useful to enhance the activity of enzymes on carrier particles.

  1. Saturn Magnetospheric Impact on Surface Molecular Chemistry and Astrobiological Potential of Enceladus

    NASA Technical Reports Server (NTRS)

    Cooper, Paul D.; Cooper, John F.; Sittler, Edward C.; Burger, Matthew H.; Sturner, Steven J.; Rymer, Abigail M.

    2008-01-01

    The active south polar surface of Enceladus is exposed to strong chemical processing by direct interaction with charged plasma and energetic particles in the local magnetospheric environment of this icy moon. Chemical oxidation activity is suggested by detection of H202 at the surface in this region and less directly by substantial presence of C02, CO, and N2 in the plume gases. Molecular composition of the uppermost surface, including ejecta from plume activity, is radiolytically transformed mostly by penetrating energetic electrons with lesser effects from more depleted populations of energetic protons. The main sources of molecular plasma ions and E-ring dust grains in the magnetospheric environment are the cryovolcanic plume emissions from Enceladus. These molecular ions and the dust grains are chemically processed by magnetospheric interactions that further impact surface chemistry on return to Enceladus. For example, H20 neutrals dominating the emitted plume gas return to the surface mostly as H30+ ions after magnetospheric processing. Surface oxidant loading is further increased by return of radiolytically processed ice grains from the E-ring. Plume frost deposition and micrometeoroid gardening protect some fraction of newly produced molecular species from destruction by further irradiation. The evident horizontal and vertical mobility of surface ices in the south polar region drive mixing of these processed materials into the moon interior with potential impacts on deep ice molecular chemistry and plume gas production. Similarly as suggested previously for Europa, the externally driven source of radiolytic oxidants could affect evolution of life in any subsurface liquid water environments of Enceladus.

  2. Particle dynamics in an active medium

    SciTech Connect

    Schaechter, L.

    1997-03-01

    When a point-charge moves in an active medium it can gain energy at the expense of that stored in the medium. The maximum gradient is evaluated and its relation to the energy stored in the medium is established. The dynamics of a distribution of electrons was also examined and it is reported here. {copyright} {ital 1997 American Institute of Physics.}

  3. Possible evidence a Titan-generated Nitrogen Torus in Saturn's Magnetosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Rymer, A. M.; Johnson, R. E.; Lewis, G.; Coates, A. J.; Mitchell, D. G.; Young, D. T.

    2013-12-01

    Saturn's largest moon, Titan, possesses no intrinsic magnetic field which leaves its dense nitrogen-rich atmosphere relatively unprotected from direct interaction Saturn's magnetosphere. Therefore, it was logically assumed that nitrogen particles would escape from Titan's atmosphere and form a large toriodal gas cloud near Titan's orbit (in the outer magnetosphere) constituting the dominant species in the magnetosphere. Cassini observations detected nitrogen ions, however these particles exist in the inner magnetosphere and water-group particles (from Enceladus' plumes) actually dominate Saturn's heavy magnetospheric particle population. In fact, pick-up oxygen ions from Enceladus are much more abundant than nitrogen in Titan's orbit. These results appear inconsistent with the expectation that Titan's exposed atmosphere should provide a significant source of heavy particles to Saturn's magnetosphere. Resolving this inconsistency could provide import insight into atmospheric loss. Subsequent modeling and observations indicate that the observed nitrogen in the inner magnetosphere cannot be entirely produced by Enceladus. Considering these results combined with it being hard to imagine that nitrogen would not be escaping from Titan, we have continued to explore the possible presence of a nitrogen torus at Titan's orbit. In this talk, we using modeling results and observations to support a theory explaining 'torus erosion' which limits the ability to detect a Titan torus. Using these results, we also present the first detections of nitrogen in Titan's orbit possibly originating from a Titan torus. This work is supported by the NASA Cassini Data Analysis Program and NASA JPL contract 1243218 for Cassini MIMI and CAPS investigation.

  4. On the occurrence of ground observations of ELF/VLF magnetospheric amplification induced by the HAARP facility

    NASA Astrophysics Data System (ADS)

    Gołkowski, M.; Cohen, M. B.; Carpenter, D. L.; Inan, U. S.

    2011-04-01

    The ionospheric heating facility of the High Frequency Active Auroral Research Program (HAARP) has been used extensively in the last 3 years for injection of ELF/VLF waves into the magnetosphere via modulated heating of the overhead auroral electrojet currents. Of particular interest are waves that are observed to be nonlinearly amplified after interaction with hot plasma electrons in the Earth's radiation belts. Past results have shown HAARP to be an effective platform for controlled studies of wave particle interactions in the Earth's magnetosphere. A summary of the experimental results is provided in the context of dependencies on geomagnetic conditions and transmitter parameters. It is deduced that the primary variable that is associated with successful ground observations of HAARP-induced magnetospheric amplification is availability of magnetospheric wave guiding structures. Such structures are found to be most prevalent under quiet geomagnetic conditions following a disturbance when the plasmapause extends to the latitude of the HAARP facility or higher. Strong electrojet currents and high amplitudes of generated ELF/VLF signals observed on the ground are poor indicators of observation probability on a day to day basis although variation of these variables can be important on minute and second timescales. Frequency-time formats with continuously increasing ELF/VLF frequency show preferential amplification as predicted by nonlinear theory of electron trapping. Amplification of signals is also found to be possible for signals with noncoherent bandwidths of up to 30 Hz.

  5. Effects of Saturn's magnetospheric dynamics on Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Andrews, D. J.; Bertucci, C.; Gurnett, D. A.; Holmberg, M. K. G.; Jackman, C. M.; Kurth, W. S.; Menietti, J. D.; Opgenoorth, H. J.; Shebanits, O.; Vigren, E.; Wahlund, J.-E.

    2015-10-01

    We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn's magnetosphere influences Titan's ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan's ionosphere, in the altitude range 1600-2400 km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03 h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600 km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan's ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from ˜200 eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn's nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan's ionosphere against the dynamic pressure and energetic particle pressure in Saturn's magnetosphere.

  6. Strongly Accelerated Margination of Active Particles in Blood Flow

    PubMed Central

    Gekle, Stephan

    2016-01-01

    Synthetic nanoparticles and other stiff objects injected into a blood vessel filled with red blood cells are known to marginate toward the vessel walls. By means of hydrodynamic lattice-Boltzmann simulations, we show that active particles can strongly accelerate their margination by moving against the flow direction: particles located initially in the channel center migrate much faster to their final position near the wall than in the nonactive case. We explain our findings by an enhanced rate of collisions between the stiff particles and the deformable red blood cells. Our results imply that a significantly faster margination can be achieved either technically by the application of an external magnetic field (if the particles are magnetic) or biologically by self-propulsion (if the particles are, e.g., swimming bacteria). PMID:26789773

  7. Concepts and Results of New Method for Accurate Ground and In-Flight Calibration of the Particle Spectrometers of the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Gliese, U.; Gershman, D. J.; Dorelli, J.; Avanov, L. A.; Barrie, A. C.; Clark, G. B.; Kujawski, J. T.; Mariano, A. J.; Coffey, V. N.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M. A.; Dickson, C.; Smith, D. L.; Salo, C.; MacDonald, E.; Kreisler, S.; Jacques, A. D.; Giles, B. L.; Pollock, C. J.

    2015-12-01

    The Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers and 16 Dual Ion Spectrometers with 4 of each type on each of 4 spacecraft to enable fast (30 ms for electrons; 150 ms for ions) and spatially differentiated measurements of the full 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity, the reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions of magnetically reconnecting plasmas. We have developed a detailed model of the spectrometer detection system, its behavior and its signal, crosstalk and noise sources. Based on this, we have devised a new calibration method that enables accurate and repeatable measurement of micro-channel plate (MCP) gain, signal loss due to variation in MCP gain and crosstalk effects in one single measurement. The foundational concepts of this new calibration method, named threshold scan, are presented. It is shown how this method has been successfully applied both on ground and in-flight to achieve highly accurate and precise calibration of all 64 spectrometers. Calibration parameters that will evolve in flight are determined daily providing a robust characterization of sensor suite performance, as a basis for both in-situ hardware adjustment and data processing to scientific units, throughout mission lifetime. This is shown to be very desirable as the instruments will produce higher quality raw science data that will require smaller post-acquisition data-corrections using results from in-flight derived pitch angle distribution measurements and ground calibration measurements. The practical application

  8. Escape rate of active particles in the effective equilibrium approach

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Wittmann, R.; Brader, J. M.

    2017-01-01

    The escape rate of a Brownian particle over a potential barrier is accurately described by the Kramers theory. A quantitative theory explicitly taking the activity of Brownian particles into account has been lacking due to the inherently out-of-equilibrium nature of these particles. Using an effective equilibrium approach [Farage et al., Phys. Rev. E 91, 042310 (2015), 10.1103/PhysRevE.91.042310] we study the escape rate of active particles over a potential barrier and compare our analytical results with data from direct numerical simulation of the colored noise Langevin equation. The effective equilibrium approach generates an effective potential that, when used as input to Kramers rate theory, provides results in excellent agreement with the simulation data.

  9. Optofluidics incorporating actively controlled micro- and nano-particles

    PubMed Central

    Kayani, Aminuddin A.; Khoshmanesh, Khashayar; Ward, Stephanie A.; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2012-01-01

    The advent of optofluidic systems incorporating suspended particles has resulted in the emergence of novel applications. Such systems operate based on the fact that suspended particles can be manipulated using well-appointed active forces, and their motions, locations and local concentrations can be controlled. These forces can be exerted on both individual and clusters of particles. Having the capability to manipulate suspended particles gives users the ability for tuning the physical and, to some extent, the chemical properties of the suspension media, which addresses the needs of various advanced optofluidic systems. Additionally, the incorporation of particles results in the realization of novel optofluidic solutions used for creating optical components and sensing platforms. In this review, we present different types of active forces that are used for particle manipulations and the resulting optofluidic systems incorporating them. These systems include optical components, optofluidic detection and analysis platforms, plasmonics and Raman systems, thermal and energy related systems, and platforms specifically incorporating biological particles. We conclude the review with a discussion of future perspectives, which are expected to further advance this rapidly growing field. PMID:23864925

  10. ELECTROSTATIC CHARGE ON NANO-PARTICLES ACTIVATES CNS MACROPHAGES (MICROGLIA).

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  11. The magnetospheres of the outer planets

    SciTech Connect

    Mcnutt, R.L., Jr. )

    1991-01-01

    Research on the magnetospheres of all of the outer planets including Jupiter, Uranus, Neptune, and Pluto is reviewed for the 1987-1990 time period. Particular attention is given to magnetospheric structure, plasma transport, Jovian aurora, Io and the plasma torus, Titan and its magnetospheric interactions, rings and dusty plasmas, magnetospheric convection, and satellite interactions.

  12. A study of atmosphere-ionosphere-magnetosphere coupling

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Paris, J. L.

    1982-01-01

    The properties of low energy plasma in the magnetosphere were predicted. The effects of wave particle interactions involving the concept of plasmons are studied, and quantum mechanical formulations are used for the processes occurring and bulk energization of the low energy plasma are investigated through the concept of the energy momentum tensor for the plasma and its electromagnetic environment.

  13. Latitudinal profiles of solar protons in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Lazutin, L.

    2016-02-01

    Dynamics of the latitudinal profiles penetrating into magnetosphere solar protons is studied using particle spectrometers data on board of the low latitude satellite CORONAS-F with orbit inclination ∼83o. Formations of several different types of the profiles during magnetic storms are considered.

  14. Diffusion of passive particles in active suspensions

    NASA Astrophysics Data System (ADS)

    Mussler, Matthias; Rafai, Salima; John, Thomas; Peyla, Philippe; Wagner, Christian

    2013-11-01

    We study how an active suspension consisting of a definite volume fraction of the microswimmer Chlamydomonas Reinhardtii modifies the Brownian movement of small to medium size microspheres. We present measurements and simulations of trajectories of microspheres with a diameter of 20 μm in suspensions of Chlamydomonas Reinhardtii, a so called ``puller,'' and show that the mean squared displacement of such trajectories consist of parabolic and a linear part. The linear part is due to the hydrodynamic noise of the microswimmers while the parabolic part is a consequence of directed motion events that occur randomly, when a microsphere is transported by a microswimmer on a timescale that is in higher order of magnitude than the Brownian like hydrodynamic interaction. In addition, we theoretically describe this effect with a dimensional analysis that takes the force dipole model used to describe ``puller'' like Chlamydomonas Reinhardtii into account.

  15. Global ENA Imaging of the Jovian Magnetosphere: A Tool for Global Exploration of the Giant Accelerator of Energetic Particles and Their Interaction with the Torus Region and Moons (Invited)

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Mitchell, D. G.; Mauk, B. H.; Paranicas, C.; Krupp, N.

    2010-12-01

    The Europa-Jupiter System Mision (EJSM) has required a synergistic approach within the JGO-JEO constellation to unravel fundamental and universal magnetospheric processes, by using powerful combinations of in-situ and global imaging measurement. The Japanese Space Agency is also considering a possible Jupiter Magnetospheric Orbiter (JMO), enabling triple point measurements and multi-point imaging to ensure simultaneous and continuous observations - a key requirement for revealing how the magnetosphere couples to the ionosphere as well as to the plasma sources. Energetic Neutral Atom (ENA) imaging is so far the only technique capable of obtaining global images of the magnetospheric energetic ion population in the ~3-300 keV range, which otherwise would have remained invisible. ENA cameras on Cassini and the terrestrial IMAGE mission have revealed global, explosive acceleration processes and their connection to the ionosphere, aurorae and radio emissions. Therefore, the technique is considered to be game-changing and one of the required measurement techniques in the payload definition for both JGO and JMO. In this presentation we discuss how ENA imaging can make use of the synergistic approach of EJSM to explore global acceleration, MI-coupling, relation to aurorae and radio emissions, transport, solar wind control, constrain torus neutral gas evolution and provide global context for moon-magnetosphere interactions in the Jovian magnetosphere. We use past measurements and a data-derived model to simulate ENA images through a realistic camera response function along the JGO orbit and explore the scientific value added by in-situ and imaging measurements from JMO. The presentation is concluded by summarizing the critical technical requirements of ENA cameras, such as energy and mass range, geometrical factor and background/foreground rejection that must be met in order to operate in the harsh Jovian environment while achieving the highest priority science objectives.

  16. The Magnetospheric Multiscale Constellation

    NASA Astrophysics Data System (ADS)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2016-03-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  17. The Extended Pulsar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Constantinos, Kalapotharakos; Demosthenes, Kazanas; Ioannis, Contopoulos

    2012-01-01

    We present the structure of the 3D ideal MHD pulsar magnetosphere to a radius ten times that of the light cylinder, a distance about an order of magnitude larger than any previous such numerical treatment. Its overall structure exhibits a stable, smooth, well-defined undulating current sheet which approaches the kinematic split monopole solution of Bogovalov 1999 only after a careful introduction of diffusivity even in the highest resolution simulations. It also exhibits an intriguing spiral region at the crossing of two zero charge surfaces on the current sheet, which shows a destabilizing behavior more prominent in higher resolution simulations. We discuss the possibility that this region is physically (and not numerically) unstable. Finally, we present the spiral pulsar antenna radiation pattern.

  18. On plasma convection in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Livi, Roberto

    We use CAPS plasma data to derive particle characteristics within Saturn's inner magnetosphere. Our approach is to first develop a forward-modeling program to derive 1-dimensional (1D) isotropic plasma characteristics in Saturn's inner, equatorial magnetosphere using a novel correction for the spacecraft potential and penetrating background radiation. The advantage of this fitting routine is the simultaneous modeling of plasma data and systematic errors when operating on large data sets, which greatly reduces the computation time and accurately quantifies instrument noise. The data set consists of particle measurements from the Electron Spectrometer (ELS) and the Ion Mass Spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite onboard the Cassini spacecraft. The data is limited to peak ion flux measurements within +/-10° magnetic latitude and 3-15 geocentric equatorial radial distance (RS). Systematic errors such as spacecraft charging and penetrating background radiation are parametrized individually in the modeling and are automatically addressed during the fitting procedure. The resulting values are in turn used as cross-calibration between IMS and ELS, where we show a significant improvement in magnetospheric electron densities and minor changes in the ion characteristics due to the error adjustments. Preliminary results show ion and electron densities in close agreement, consistent with charge neutrality throughout Saturn's inner magnetosphere and confirming the spacecraft potential to be a common influence on IMS and ELS. Comparison of derived plasma parameters with results from previous studies using CAPS data and the Radio And Plasma Wave Science (RPWS) investigation yields good agreement. Using the derived plasma characteristics we focus on the radial transport of hot electrons. We present evidence of loss-free adiabatic transport of equatorially mirroring electrons (100 eV - 10 keV) in Saturn's magnetosphere between

  19. Joule Heating as a Signature of Magnetosphere-Ionosphere-Thermosphere Coupling

    NASA Astrophysics Data System (ADS)

    Ceren Kalafatoglu Eyiguler, Emine; Kaymaz, Zerefsan

    2016-07-01

    Since its first proposal by Birkeland in the early 1900s, the link between magnetosphere and ionosphere (M-I) has been immensely studied but there are still great variety of unsolved problems ranging from how to correctly balance the field aligned current (FAC) closure in the ionosphere to the resulting interactions between ions and neutrals in the ionosphere, and how the ionospheric conductivity and neutral wind control the M-I feedback to the mapping of the ionospheric regions to the magnetotail. It is now well known that during magnetically disturbed periods, the energy deposited to the magnetosphere by the solar wind is partitioned mainly between three domains: the ring current, ionosphere (via auroral particle precipitation and Joule heating) and the plasmoid release in the magnetotail. It is previously found that large part of this transferred energy is in the form of Joule heating which is the increase in ion-neutral collisions due to the increased energy input. However, Joule heating is also affected by the enhanced neutral wind motion during geomagnetic storms and substorms. Thus, it is one of the key manifestations of the M-I-T coupling. In this talk, we first give a through review of the present studies and recent advancements in the M-I-T research area then show the link between the magnetosphere and ionosphere by investigating the activity-time Joule heating variations as well as paying special attention to the neutral wind effects on Joule heating.

  20. Discontinuous fluidization transition in dense suspensions of actively deforming particles

    NASA Astrophysics Data System (ADS)

    Tjhung, Elsen; Berthier, Ludovic

    Collective dynamics of self-propelled particles at high density have been shown to display a glass-like transition with a critical slowing down of 2 to 4 orders of magnitude. In this talk, we propose a new mechanism of injecting energy or activity via volume fluctuations. We show that the behaviour of actively deforming particles is strikingly different from that of self-propelled particles. In particular, we find a discontinuous non-equilibrium phase transition from a flowing state to an arrested state. Our minimal model might also explain the collective dynamics in epithelial tissues. In particular, without needing self-propulsion or cell-cell adhesion, volume fluctuations of individual cells alone might be sufficient to give rise to an active fluidization and collective dynamics in densely packed tissues.

  1. Global Magnetospheric Modeling of 3D Reconnection

    NASA Technical Reports Server (NTRS)

    Spicer, Daniel S.

    1999-01-01

    A review of approaches to the global modeling of the terrestrial magnetosphere, how these approaches are utilized to interpret satellite data, and how these approaches have been successful at predicting magnetospheric phenomena will be presented. In addition, the importance of the ionospheric boundary and its effect on the globally topology of the magnetospheric magnetic field will be reviewed. In particular, numerical results that are rapidly changing our view of magnetospheric reconnection within the magnetospheric magnetic field will be discussed.

  2. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O

    2007-02-01

    Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances magnetospheres may have crucial consequences for atmospheric erosion processes.

  3. AXISYMMETRIC, NONSTATIONARY BLACK HOLE MAGNETOSPHERES: REVISITED

    SciTech Connect

    Song, Yoo Geun; Park, Seok Jae E-mail: sjpark@kasi.re.kr

    2015-10-10

    An axisymmetric, stationary, general-relativistic, electrodynamic engine model of an active galactic nucleus was formulated by Macdonald and Thorne that consisted of a supermassive black hole surrounded by a plasma magnetosphere and a magnetized accretion disk. Based on this initial formulation, a nonstationary, force-free version of their model was constructed by Park and Vishniac (PV), with the simplifying assumption that the poloidal component of the magnetic field line velocity be confined along the radial direction in cylindrical polar coordinates. In this paper, we derive the new, nonstationary “Transfield Equation,” which was not specified in PV. If we can solve this “Transfield Equation” numerically, then we will understand the axisymmetric, nonstationary black hole magnetosphere in more rigorous ways.

  4. Mercury's magnetosphere after MESSENGER's first flyby.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Gloeckler, George; Gold, Robert E; Ho, George C; Killen, Rosemary M; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel; Zurbuchen, Thomas H

    2008-07-04

    Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.

  5. Low-energy plasma observations in the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Mcnutt, Ralph L., Jr.; Selesnick, Richard S.; Richardson, John D.

    1987-01-01

    The large, low density plasma-containing magnetosphere detected at Uranus by Voyager 2 appears to be primarily composed of protons and electrons. On a long time scale, the protons are apparently transported from the planet's nightside to the dayside by a convective electric field that is generated by the solar wind. The time for the particles to convect through the Uranian magnetosphere is estimated to be about 1 week. The proton distribution functions are characterized by a warm, subsonic core and a non-Maxwellian tail that varies significantly along the spacecraft trajectory.

  6. Modeling the Inner-Magnetosphere Ionosphere with the CIMI Model

    NASA Astrophysics Data System (ADS)

    Fok, M. C. H.; Buzulukova, N.; Chen, S. H.; Glocer, A.; Nagai, T.; Valek, P. W.; Perez, J. D.

    2014-12-01

    We have combined two well developed models, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model to form a Comprehensive Inner-Magnetosphere Ionosphere (CIMI) model. CIMI predicts ion and electron fluxes in the radiation belts and ring current, particle density in the plasmasphere, Region 2 current, subauroal electric field and particle precipitation in the ionosphere, and their responses to solar wind condition. CIMI considers important cross-energy interactions in the inner magnetosphere and is able to identify the physical processes that are responsible for ring current, radiation belt enhancements and losses, such as, particle injection, adiabatic acceleration, wave-particle interactions and magnetopause shadowing. We demonstrate the capability of CIMI by simulating a magnetic storm on 5-9 April 2010 and a MHD substorm. We also illustrate that CIMI is an excellent tool for analyzing and interpreting global energetic neutral atom data from TWINS and the in-situ measurements from the Van Allen Probes mission.

  7. Representation of planetary magnetospheric environment with the paraboloid model

    NASA Astrophysics Data System (ADS)

    Kalegaev, V. V.; Alexeev, I. I.; Belenkaya, E. S.; Mukhametdinova, L. R.; Khodachenko, M. L.; Génot, V.; Kallio, E. J.; Al-Ubaidi, T.; Modolo, R.

    2013-09-01

    Paraboloid model of the Earth's magnetosphere has been developed at Moscow State University to represent correctly the electrodynamics processes in the near-Earth's space [1]. This model is intended to calculate the magnetic field generated by a variety of current systems located on the boundaries and within the boundaries of the Earth's magnetosphere under a wide range of environmental conditions, quiet and disturbed, affected by Solar-Terrestrial interactions simulated by Solar activity such as Solar Flares and related phenomena which induce terrestrial magnetic disturbances such as Magnetic Storms. The model depends on a small set of physical input parameters, which characterize the intensity of large-scale magnetospheric current systems and their location. Among these parameters are a geomagnetic dipole tilt angle, distance to the subsolar point of the magnetosphere, etc. The input parameters depend on real- or quasi-real- time Empirical Data that include solar wind and IMF data as well as geomagnetic indices. A generalized paraboloid model was implemented to represent the magnetospheres of some magnetized planets, e.g. Saturn [2], Jupiter [3], Mercury [4]. Interactive models of the Earth's, Kronian and Mercury's magnetospheres, which take into account specific features of the modeled objects have been realized at Space Monitoring Data Center of SINP MSU [5]. The real-time model of the Earth's magnetosphere is currently working at SINP MSU Space Weather Web-site [6]. Data from different sources (satellite measurements, simulation data bases and online services) are accumulated inside a digital framework developed within the FP7 project IMPEx. Paraboloid model of the magnetospheres (PMM) is part of this infrastructure. A set of Webservices to provide the access to PMM calculations and to enable the modeling data post-processing under SOAP protocol have been created. These will be implemented for easy data exchange within IMPEx infrastructure.

  8. Investigating dynamical complexity in the magnetosphere using various entropy measures

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Kalimeri, Maria; Anastasiadis, Anastasios; Eftaxias, Konstantinos

    2009-09-01

    The complex system of the Earth's magnetosphere corresponds to an open spatially extended nonequilibrium (input-output) dynamical system. The nonextensive Tsallis entropy has been recently introduced as an appropriate information measure to investigate dynamical complexity in the magnetosphere. The method has been employed for analyzing Dst time series and gave promising results, detecting the complexity dissimilarity among different physiological and pathological magnetospheric states (i.e., prestorm activity and intense magnetic storms, respectively). This paper explores the applicability and effectiveness of a variety of computable entropy measures (e.g., block entropy, Kolmogorov entropy, T complexity, and approximate entropy) to the investigation of dynamical complexity in the magnetosphere. We show that as the magnetic storm approaches there is clear evidence of significant lower complexity in the magnetosphere. The observed higher degree of organization of the system agrees with that inferred previously, from an independent linear fractal spectral analysis based on wavelet transforms. This convergence between nonlinear and linear analyses provides a more reliable detection of the transition from the quiet time to the storm time magnetosphere, thus showing evidence that the occurrence of an intense magnetic storm is imminent. More precisely, we claim that our results suggest an important principle: significant complexity decrease and accession of persistency in Dst time series can be confirmed as the magnetic storm approaches, which can be used as diagnostic tools for the magnetospheric injury (global instability). Overall, approximate entropy and Tsallis entropy yield superior results for detecting dynamical complexity changes in the magnetosphere in comparison to the other entropy measures presented herein. Ultimately, the analysis tools developed in the course of this study for the treatment of Dst index can provide convenience for space weather

  9. A quiescent magnetosphere for Neptune

    NASA Astrophysics Data System (ADS)

    Dessler, A. J.; Sandel, B. R.

    1989-08-01

    It is argued that, if Neptune has a large magnetic moment, a weak supply of plasma for its magnetosphere, and a magnetic moment that is in near alignment with the planetary spin axis, the Neptunian magnetosphere is almost completely quiescent except for a region near the magnetopause. There are two magnetic power sources: the flowing, magnetized solar wind, and the kinetic energy of planetery spin. It is predicted that Neptune has a magnetic moment of at least 1 G-RN to the 3rd, the sum of ionospheric and Triton injections of plasma into Neptune's magnetosphere is less than 1 kg/sec, and Neptune's dipole is aligned with the spin axis and located close to the center of the planet. The criterion for Neptune to be a quiescent magnetosphere is defined by the expenditure of less than 10 to the 9th Watts from all power sources.

  10. A quiescent magnetosphere for Neptune

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.; Sandel, B. R.

    1989-01-01

    It is argued that, if Neptune has a large magnetic moment, a weak supply of plasma for its magnetosphere, and a magnetic moment that is in near alignment with the planetary spin axis, the Neptunian magnetosphere is almost completely quiescent except for a region near the magnetopause. There are two magnetic power sources: the flowing, magnetized solar wind, and the kinetic energy of planetery spin. It is predicted that Neptune has a magnetic moment of at least 1 G-RN to the 3rd, the sum of ionospheric and Triton injections of plasma into Neptune's magnetosphere is less than 1 kg/sec, and Neptune's dipole is aligned with the spin axis and located close to the center of the planet. The criterion for Neptune to be a quiescent magnetosphere is defined by the expenditure of less than 10 to the 9th Watts from all power sources.

  11. Kinetics of small particle activation in supersaturated vapors

    SciTech Connect

    McGraw, R.; Wang, J.

    2010-08-29

    We examine the nucleated (with barrier) activation of perfectly wetting (zero contact angle) particles ranging from bulk size down to one nanometer. Thermodynamic properties of the particles, coated with liquid layers of varying thickness and surrounded by vapor, are analyzed. Nano-size particles are predicted to activate at relative humidity below the Kelvin curve on crossing a nucleation barrier, located at a critical liquid layer thickness such that the total particle size (core + liquid layer) equals the Kelvin radius (Fig. 1). This barrier vanishes precisely as the critical layer thickness approaches the thin layer limit and the Kelvin radius equals the radius of the particle itself. These considerations are similar to those included in Fletcher's theory (Fletcher, 1958) however the present analysis differs in several important respects. Firstly, where Fletcher used the classical prefactor-exponent form for the nucleation rate, requiring separate estimation of the kinetic prefactor, we solve a diffusion-drift equation that is equivalent to including the full Becker-Doering (BD) multi-state kinetics of condensation/evaporation along the growth coordinate. We also determine the mean first passage time (MFPT) for barrier crossing (Wedekind et al., 2007), which is shown to provide a generalization of BD nucleation kinetics especially useful for barrier heights that are considerably lower than those typically encountered in homogeneous vapor-liquid nucleation, and make explicit comparisons between the MFPT and BD kinetic models. Barrier heights for heterogeneous nucleation are computed by a thermo-dynamic area construction introduced recently to model deliquescence and efflorescence of small particles (McGraw and Lewis, 2009). In addition to providing a graphical representation of the activation process that offers new insights, the area construction provides a molecular approach that avoids explicit use of the interfacial tension. Typical barrier profiles for

  12. Brownian aggregation rate of colloid particles with several active sites

    SciTech Connect

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V.; Polshchitsin, Alexey A.; Yakovleva, Galina E.; Maltsev, Valeri P.

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shown to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.

  13. The Response of the Magnetosphere and Ionosphere to Solar Wind Variability for 2002-2010

    NASA Astrophysics Data System (ADS)

    Hackett, A. M.; Lu, G.

    2012-12-01

    Understanding the Sun's processes and how they affect the Earth allows us to better understand climate change, main sequence stars, and aids in the understanding and prediction of space weather, which is becoming increasingly more important as our dependence on satellite communication and electric power grids grows. This work examines magnetospheric and ionospheric response to solar wind drivers during various phases of solar cycles 23 and 24 (years 2002 - 2010). To date, no studies on Sun-Earth coupling during this period have considered both ionospheric and magnetospheric response to various solar drivers. In this study, several satellite data sets were used to examine solar parameters, relativistic and energetic electrons, nitric oxide (NO) infrared radiation and Auroral power (Ap). Yearly time series, correlations, and trends in periodicities were examined for the entire period, and active years (2002 and 2003) and inactive years (2008 and 2009) were contrasted in attempts to develop an understanding of the underlying physical processes and relationships among solar, magnetospheric, and ionospheric parameters. Relativistic and energetic particles had the highest correlation with solar wind speed in general, especially during the extended solar minimum when high speed streams were present (2008). Periodicity analysis showed the dominance of the 27-day solar rotational period for the declining phase of cycle 23, and more prominent 7, 9 and 12.5-day periodicities for the solar minimum. These findings support previous work, and combine two areas of research to reveal a more complete view of Sun-Earth dynamics during this time period.; Correlation coefficients for magnetospheric and ionospheric parameter pairs (Auroral Power (Ap), NO Power, energetic electrons (POES), and relativistic electrons (GOES)), and solar parameters Vsw, VBz, IEF, and two coupling functions -dφ/dt, and ɛ were calculated. Shown here are the highest correlations among these parameters for

  14. Overview of Results from the Cassini Magnetospheric Imaging Instrument (MIMI) During the First Year of Operations

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Mitchell, D. G.; Hamilton, D. C.; Krupp, N.; Livi, S.; Roelof, E. C.; Dandouras, J.; Mauk, B. H.; Brandt, J. P.; Paranicas, C.

    2005-01-01

    The MIMI investigation comprises three sensors covering the indicated energy ranges: the Ion and Neutral Camera (INCA) -- 7 keV/nuc Magnetospheric Measurement System (LEMMS) 0.02 3 Mev) and protons (1.6 < E < 160 Mev) from the back end of the dual field-of-view telescope. The Saturn observation sequences began in January, 2004 and culminated in Saturn Orbit Insertion on July 1, 2004. The MIMI sensors observed substantial activity in interplanetary space for several months prior to SOI, including several interplanetary shocks associated with corotating interaction regions, numerous increases most likely originating from particle streams in the vicinity of the Saturnian bow shock and energetic neutral atoms (ENA) emanating from Saturn s magnetosphere. Results following SOI revealed: a dynamical magnetosphere with a day-night asymmetry and an 11-hour periodicity; several water-product ions (O+, OH+, H2O+), but little N+; inferred quantities of neutral gas sufficient to cause major losses in the trapped ions and electrons in the middle and inner magnetosphere; a Titan exosphere that is a copious source of ENA; INCA imaging through ENA has also revealed a previously unknown radiation belt residing inward of the D-ring that is most likely the result of double charge-exchange between the main radiation belt and the upper layers of Saturn s exosphere. Finally, there is ample evidence for the presence of substorm-like injections of plasma that subsequently corotates for a number of days before dissipating on the night-side magnetotail. The observations will be presented and discussed in the context of current theoretical models.

  15. Energetic neutral atoms: Imaging the magnetospheric ring current

    NASA Technical Reports Server (NTRS)

    Roelof, Edmond C.

    1990-01-01

    Magnetospheric imaging is a new discipline whose goal is to make pictures of the energetic particle populations trapped in the magnetic field of Earth (or any other planet). This project demonstrated the technical feasibility and scientific validity of magnetospheric imaging using energetic neutral atoms (ENA) with the publication and quantitative analysis of the first ENA images ever obtained from space. ENA's are produced when singly-charged energetic (approximately 100 keV) trapped ions make an atomic collision with the neutral hydrogen atoms which boil of the top of the Earth's atmosphere. These hydrogen atoms suffuse the entire trapping volume of the magnetosphere. The energetic ion steals the electron from the atmospheric hydrogen, so the energetic ion is transformed into an energetic neutral atom with a velocity of several thousands of kilometers/second. Moreover, the new-born ENA preserves the velocity that the trapped ion had at the time of the collision. Consequently, any population of energetic ions emits ENA's.

  16. Sources of high-energy protons in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Simpson, J. A.

    1980-01-01

    The passage of Pioneer 11 through Saturn's magnetosphere revealed an especially intense region of high-energy particle fluxes that places unique constraints on models for sources of high-energy protons in the innermost radiation zones. Of special interest is the flux of protons with energies above 35 MeV which was measured with a fission cell in the innermost magnetosphere between the A ring and the orbit of Mimas. The negative phase space density gradients derived from the proton and electron observations in this region imply that steady-state inward diffusion from the outer magnetosphere is not an adequate source for these high-energy protons. In the present paper, the nature of the Crand source at Saturn is examined, and its significance for injection of high-energy protons into the region inside L = 4 is estimated.

  17. Submicrometre particle filtration with a dc activated plasma textile

    NASA Astrophysics Data System (ADS)

    Rasipuram, S. C.; Wu, M.; Kuznetsov, I. A.; Kuznetsov, A. V.; Levine, J. F.; Jasper, W. J.; Saveliev, A. V.

    2014-01-01

    Plasma textiles are novel fabrics incorporating the advantages of cold plasma and low-cost non-woven or woven textile fabrics. In plasma textiles, electrodes are integrated into the fabric, and a corona discharge is activated within and on the surface of the fabric by applying high voltages above 10 kV between the electrodes. When the plasma textile is activated, submicrometre particles approaching the textile are charged by the deposition of ions and electrons produced by the corona, and then collected by the textile material. A stable plasma discharge was experimentally verified on the surface of the textile that was locally smooth but not rigid. A filtration efficiency close to 100% was observed in experiments conducted on salt particles with diameters ranging from 50 to 300 nm. Unlike conventional fibrous filters, the plasma textile provided uniform filtration in this range, without exhibiting a maximum particle penetration size.

  18. Enabling Global Kinetic Simulations of the Magnetosphere via Petascale Computing

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Vu, H. X.; Omelchenko, Y. A.; Tatineni, M.; Majumdar, A.; Catalyurek, U. V.; Saule, E.

    2009-11-01

    The ultimate goal in magnetospheric physics is to understand how the solar wind transfers its mass, momentum and energy to the magnetosphere. This problem has turned out to be much more complex intellectually than originally thought. MHD simulations have proven useful in predicting eminent features of substorms and other global events. Given the complexity of solar wind-magnetosphere interactions, hybrid (electron fluid, kinetic ion) simulations have recently been emerging in the studies of the global dynamics of the magnetosphere with the goal of accurately predicting the energetic particle transport and structure of plasma boundaries. We take advantage of our recent innovations in hybrid simulations and the power of massively parallel computers to make breakthrough 3D global kinetic simulations of the magnetosphere. The preliminary results reveal many major differences with global MHD simulations. For example, the hybrid simulations predict the formation of the quadruple structure associated with reconnection events, ion/ion kink instability in the tail, turbulence in the magnetosheath, and formation of the ion foreshock region.

  19. Anticipating Juno Observations of the Magnetosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Bunnell, E.; Fowler, C. M.; Bagenal, F.; Bonfond, B.

    2012-12-01

    The Juno spacecraft will arrive at Jupiter in 2016 and will go into polar orbit. Juno will make the first exploration of the polar regions of Jupiter's vast magnetosphere, combining in situ particles and fields measurements with remote sensing of auroral emissions in the UV, IR and radio. The primary science period comprises ~30 orbits with 11-day periods with a~1.06Rj perijove, allowing Juno to duck under the hazardous synchrotron radiation belts. Apojove is at ~38Rj. The oblateness of the planet causes the orbit to precess with the major axis moving progressively south at about 1 degree per orbit, eventually bringing the spacecraft into the radiation belts. This orbit allows unprecedented views of the aurora and exploration of the auroral acceleration regions. We present an overview of anticipated Juno observations based on models of the Jovian magnetosphere. On approach to Jupiter and over a capture orbit that extends to ~180Rj on the dawn flank, Juno will traverse the magnetosheath, magnetopause and boundary layer regions of the magnetosphere. Due to the high plasma pressures in the magnetospheric plasmasheet the magnetosphere of Jupiter is known to vary substantially with the changes in the solar wind dynamic pressure. We use Ulysses solar wind data obtained around 5 AU to predict the conditions that Juno will observe over the several months it will spend in these boundary regions.

  20. Is Jupiter's magnetosphere like a pulsar's or earth's

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.

    1975-01-01

    Two possible models of Jupiter's magnetosphere are compared: a pulsar-like radial-outflow model and an earth-like convection model. For the radial-outflow model, Pioneer 10 data are used to estimate the total particle and energy fluxes which must be provided by Jupiter (or its magnetosphere within the Alfven radius) to power the outflow. The convection model is considered with emphasis on field-line reconnection, convection flow time, and the location of Jupiter's magnetopause and plasmapause. The imposition of corotation on Jupiter's ionosphere, magnetosphere, and upper atmosphere is investigated in terms of an aligned rotator with either type of magnetosphere. It is concluded that: (1) Jupiter's convection flow is likely to be super-Alfvenic in its outer magnetosphere, (2) Jupiter may have earth-like magnetopauses near local dawn during substorms, (3) the angular-momentum flux that can diffuse upward through Jupiter's polar-cap atmospheres seems insufficient to impose corotation upon a radial outflow or convective return flow, and (4) neither model can be definitively accepted.

  1. Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.

    PubMed

    Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M

    1992-09-11

    Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.

  2. Magnetospheric dynamics of trapped solar proton events

    NASA Astrophysics Data System (ADS)

    Larsen, B. A.; Engel, M.; Chen, Y.; Friedel, R. H.

    2012-12-01

    Solar proton events (SEP) are sometimes trapped in the magnetosphere creating a new trapped belt or protons in the L=3 to L=4 range that can last for months. We note that there is a commonly observed and unexplained time gap between the SEP event and flux being observed in the L=3 to L=4 trapping region from the POES spacecraft. We present two hypotheses to explain the time gap and explore each. First the SEP trapping mechanism is thought to be driven by interplanetary shocks, required to drive the protons deep into the magnetosphere to regions where geomagnetic shielding does not normally grant them access where they then can become trapped. The processes that drive the protons are highly peaked at equatorial pitch angles near 90 degrees explaining the time gap as the time required for pitch angle diffusion to change the particles to pitch angles observable by POES in low-Earth orbit. The second hypothesis is that the time gap is the result of radial transport preserving the first adiabatic invariant thus energizing the protons from one energy channel to another. The time gap is then the time required for radial transport to move and energize the particles into the L=3 to L=4 region. Evidence and conclusions about each hypothesis is presented.

  3. EMIC Waves in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Usanova, M.; Mann, I. R.; Drozdov, A.; Orlova, K.; Shprits, Y.; Darrouzet, F.; Ergun, R.

    2015-12-01

    Electromagnetic ion cyclotron (EMIC) wave excitation in the inner magnetosphere has been the focus of extensive study over the past few decades, not only because of the role played by EMIC waves in ring current dynamics but also because of their potential importance for scattering radiation belt electrons into the atmosphere. Theory predicts that regions of enhanced cold dense plasma density embedded in relatively low background magnetic field (such as the outer equatorial plasmasphere or plasmaspheric plumes) should aid EMIC wave growth. Also, enhanced plasma density lowers the energy threshold for the resonant pitch angle scattering of outer radiation belt electrons such that EMIC waves can interact with electrons with energies below 1 MeV and hence could be a potentially important radiation belt loss mechanism. EMIC wave normal angle and polarization are also important properties that control the efficiency of their interaction with energetic particles. We will review recent statistical and single-event studies and focus on new understanding of EMIC wave characteristics and generation mechanisms in the inner equatorial magnetosphere - information extremely important for understanding energetic particle dynamics and in particular, for radiation belt and ring current modeling.

  4. Radial plasma transport in Saturn's magnetosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Hill, T. W.

    2010-12-01

    Radial plasma transport in the magnetosphere of Saturn, like that of Jupiter, is driven by the centrifugal force of (partial) corotation acting on internally generated plasma. A significant difference is that the internal plasma source is evidently broadly distributed throughout the inner magnetosphere of Saturn (4 < L <~12), although the neutral water vapor source is evidently tightly localized to Enceladus (L = 4). At Jupiter, by comparison, both the neutral and plasma sources are evidently largely confined to the Io plasma torus (L ~ 6-7). A possible consequence of the broadly distributed source at Saturn is the observed feature that convective outflow channels are relatively broad and slow, while the corresponding inflow channels are relatively narrow and fast. This feature is well documented by Cassini observations (primarily CAPS and MAG), and reproduced in numerical simulations (RCM) that contain a distributed plasma source, although it has not, to my knowledge, been explained by an analytical theory containing an active plasma source. Both planets exhibit strong magnetospheric modulations near the planetary spin period, probably indicating a persistent longitudinal asymmetry of the radial plasma transport process. At Jupiter such an asymmetry is readily understood as a consequence of the dramatic asymmetry of the intrinsic planetary magnetic field. This is not so at Saturn, where any such field asymmetry is known to be very modest at best. In neither case has the precise nature of the asymmetry been identified either observationally or theoretically.

  5. Magnetospheric Multiscale Overview and Science Objectives

    NASA Astrophysics Data System (ADS)

    Burch, J. L.; Moore, T. E.; Torbert, R. B.; Giles, B. L.

    2016-03-01

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft constellation mission launched on March 12, 2015, will investigate magnetic reconnection in the boundary regions of the Earth's magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. The most important goal of MMS is to conduct a definitive experiment to determine what causes magnetic field lines to reconnect in a collisionless plasma. The significance of the MMS results will extend far beyond the Earth's magnetosphere because reconnection is known to occur in interplanetary space and in the solar corona where it is responsible for solar flares and the disconnection events known as coronal mass ejections. Active research is also being conducted on reconnection in the laboratory and specifically in magnetic-confinement fusion devices in which it is a limiting factor in achieving and maintaining electron temperatures high enough to initiate fusion. Finally, reconnection is proposed as the cause of numerous phenomena throughout the universe such as comet-tail disconnection events, magnetar flares, supernova ejections, and dynamics of neutron-star accretion disks. The MMS mission design is focused on answering specific questions about reconnection at the Earth's magnetosphere. The prime focus of the mission is on determining the kinetic processes occurring in the electron diffusion region that are responsible for reconnection and that determine how it is initiated; but the mission will also place that physics into the context of the broad spectrum of physical processes associated with reconnection. Connections to other disciplines such as solar physics, astrophysics, and laboratory plasma physics are expected to be made through theory and modeling as informed by the MMS results.

  6. Functionally charged nanosize particles differentially activate BV2 microglia.

    EPA Science Inventory

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Nanosize (860-950 nm) spherical polystyrene microparticles (SPM) were coated with carboxyl (COOH-) or dimethyl amino (CH3)2-N- groups to give a net negative or p...

  7. Origins of magnetospheric physics

    SciTech Connect

    Van Allen, J.A.

    1983-01-01

    The history of the scientific investigation of the earth magnetosphere during the period 1946-1960 is reviewed, with a focus on satellite missions leading to the discovery of the inner and outer radiation belts. Chapters are devoted to ground-based studies of the earth magnetic field through the 1930s, the first U.S. rocket flights carrying scientific instruments, the rockoon flights from the polar regions (1952-1957), U.S. planning for scientific use of artificial satellites (1956), the launch of Sputnik I (1957), the discovery of the inner belt by Explorers I and III (1958), the Argus high-altitude atomic-explosion tests (1958), the confirmation of the inner belt and discovery of the outer belt by Explorer IV and Pioneers I-V, related studies by Sputniks II and III and Luniks I-III, and the observational and theoretical advances of 1959-1961. Photographs, drawings, diagrams, graphs, and copies of original notes and research proposals are provided. 227 references.

  8. Neutron Star - Magnetosphere Interactions

    NASA Astrophysics Data System (ADS)

    Ponce, Marcelo; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2012-03-01

    In this work we report results of the interaction of a neutron star magnetosphere in both collapsing and moving scenarios interacting with an ambient magnetic field. In recent works [1,2], it has been shown the important role and realism associated with studies of electromagnetic environments in some particular regimes, such as: ideal-MHD, force-free, and electro-vacuum. Motivated by this and their astrophysical implications for BBH and hybrid BH-NS mergers [3,4], we study the following cases: collapse of a magnetized NS, head-on collision of a BH-NS, and orbiting merger of a BH-NS. Based in the results from our simulations, we draw some relevant conclusions to the production of jets as described within the force-free formalism. [4pt] [1] C.Palenzuela, L.Lehner and S.Liebling, Science 329, 927 (2010).[0pt] [2] C.Palenzuela, T.Garrett, et al., Phys.Rev.D 82, 044045 (2010).[0pt] [3] L.Lehner, C.Palenzuela, et al., 2011.[0pt] [4] S.Liebling, L.Lehner, et al., Phys.Rev.D 81, 124023 (2010).

  9. The Magnetospheric Multiscale Magnetometers

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; Means, J. D.; Moldwin, M. B.; Nakamura, R.; Pierce, D.; Plaschke, F.; Rowe, K. M.; Slavin, J. A.; Strangeway, R. J.; Torbert, R.; Hagen, C.; Jernej, I.; Valavanoglou, A.; Richter, I.

    2016-03-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University's Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored on board so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  10. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    SciTech Connect

    Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips

    2012-03-13

    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.

  11. Energetic Electron Transport in the Inner Magnetosphere During Geomagnetic Storms and Substorms

    NASA Technical Reports Server (NTRS)

    McKenzie, D. L.; Anderson, P. C.

    2005-01-01

    We propose to examine the relationship of geomagnetic storms and substorms and the transport of energetic particles in the inner magnetosphere using measurements of the auroral X-ray emissions by PIXIE. PIXIE provides a global view of the auroral oval for the extended periods of time required to study stormtime phenomena. Its unique energy response and global view allow separation of stormtime particle transport driven by strong magnetospheric electric fields from substorm particle transport driven by magnetic-field dipolarization and subsequent particle injection. The relative importance of substorms in releasing stored magnetospheric energy during storms and injecting particles into the inner magnetosphere and the ring current is currently hotly debated. The distribution of particles in the inner magnetosphere is often inferred from measurements of the precipitating auroral particles. Thus, the global distributions of the characteristics of energetic precipitating particles during storms and substorms are extremely important inputs to any description or model of the geospace environment and the Sun-Earth connection. We propose to use PIXIE observations and modeling of the transport of energetic electrons to examine the relationship between storms and substorms.

  12. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  13. Dust in Jupiter's magnetosphere. I - Physical processes. II - Origin of the ring. III - Time variations. IV - Effect on magnetospheric electrons and ions

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Johnson, T. V.

    1980-01-01

    The physical processes acting on charged microscopic dust grains in the Jovian atmosphere involve electromagnetic forces which dominate dust particle dynamics and diffusion across field lines resulting from random charge fluctuations of the dust grains. A model of the Jovian ring hypothesizes that the 'visible' ring particles are produced by erosive collisions between an assumed population of kilometer-sized parent bodies and submicron-sized magnetospheric dust particles. Fluctuations in the ring topology and intensity are determined over various time scales, showing that the ring is a quasipermanent and quasistable characteristic of the Jovian system. Finally, the interaction of the Jovian energetic belt electrons and the Jovian plasma with an ambient dust population is examined; the distribution of dust ejected from Io in the inner magnetosphere and losses of magnetospheric ions and electrons due to direct collisions with charged dust particles are calculated.

  14. Guiding catalytically active particles with chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  15. Mechanisms of particle-induced activation of alveolar macrophages.

    PubMed

    Gercken, G; Berg, I; Dörger, M; Schlüter, T

    1996-11-01

    Bovine alveolar macrophages were exposed in vitro to quartz dusts, metal-containing dusts or silica particles coated with a single metal oxide. The release of reactive oxygen intermediates (ROI) was measured in short-term incubations (90 min). The secretion of both ROI was markedly enhanced by silica particles coated with vanadium oxide and lowered by copper oxide-coated particles. The particle-induced ROI release was significantly decreased by the inhibition of protein kinase C (PKC) as well as phospholipase A2, suggesting the involvement of both enzymes in the NADPH oxidase activation. Quartz dusts induced a transient increase of free cytosolic calcium ion concentration, slight intracellular acidification, and depolarization of the plasma membrane. In the presence of EGTA or verapamil the rise of [Ca2+]i was diminished, suggesting an influx of extracellular calcium ions. The PKC inhibitor GF 109203X did not inhibit the quartz-induced calcium rise, while both the cytosolic acidification and depolarization were prevented. BSA-coating of the quartz particles abolished the calcium influx as well as the decrease of pHi, and possibly hyperpolarized the plasma membrane.

  16. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  17. RESISTIVE SOLUTIONS FOR PULSAR MAGNETOSPHERES

    SciTech Connect

    Li, Jason; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2012-02-10

    The current state of the art in the modeling of pulsar magnetospheres invokes either the vacuum or force-free limits for the magnetospheric plasma. Neither of these limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. To better understand the structure of such magnetospheres, we combine accelerating fields and force-free solutions by considering models of magnetospheres filled with resistive plasma. We formulate Ohm's law in the minimal velocity fluid frame and construct a family of resistive solutions that smoothly bridges the gap between the vacuum and the force-free magnetosphere solutions. The spin-down luminosity, open field line potential drop, and the fraction of open field lines all transition between the vacuum and force-free values as the plasma conductivity varies from zero to infinity. For fixed inclination angle, we find that the spin-down luminosity depends linearly on the open field line potential drop. We consider the implications of our resistive solutions for the spin-down of intermittent pulsars and sub-pulse drift phenomena in radio pulsars.

  18. Active Brownian particles and run-and-tumble particles separate inside a maze

    NASA Astrophysics Data System (ADS)

    Khatami, Maryam; Wolff, Katrin; Pohl, Oliver; Ejtehadi, Mohammad Reza; Stark, Holger

    2016-11-01

    A diverse range of natural and artificial self-propelled particles are known and are used nowadays. Among them, active Brownian particles (ABPs) and run-and-tumble particles (RTPs) are two important classes. We numerically study non-interacting ABPs and RTPs strongly confined to different maze geometries in two dimensions. We demonstrate that by means of geometrical confinement alone, ABPs are separable from RTPs. By investigating Matryoshka-like mazes with nested shells, we show that a circular maze has the best filtration efficiency. Results on the mean first-passage time reveal that ABPs escape faster from the center of the maze, while RTPs reach the center from the rim more easily. According to our simulations and a rate theory, which we developed, ABPs in steady state accumulate in the outermost region of the Matryoshka-like mazes, while RTPs occupy all locations within the maze with nearly equal probability. These results suggest a novel technique for separating different types of self-propelled particles by designing appropriate confining geometries without using chemical or biological agents.

  19. Active Brownian particles and run-and-tumble particles separate inside a maze

    PubMed Central

    Khatami, Maryam; Wolff, Katrin; Pohl, Oliver; Ejtehadi, Mohammad Reza; Stark, Holger

    2016-01-01

    A diverse range of natural and artificial self-propelled particles are known and are used nowadays. Among them, active Brownian particles (ABPs) and run-and-tumble particles (RTPs) are two important classes. We numerically study non-interacting ABPs and RTPs strongly confined to different maze geometries in two dimensions. We demonstrate that by means of geometrical confinement alone, ABPs are separable from RTPs. By investigating Matryoshka-like mazes with nested shells, we show that a circular maze has the best filtration efficiency. Results on the mean first-passage time reveal that ABPs escape faster from the center of the maze, while RTPs reach the center from the rim more easily. According to our simulations and a rate theory, which we developed, ABPs in steady state accumulate in the outermost region of the Matryoshka-like mazes, while RTPs occupy all locations within the maze with nearly equal probability. These results suggest a novel technique for separating different types of self-propelled particles by designing appropriate confining geometries without using chemical or biological agents. PMID:27876867

  20. Magnetospheres of the outer planets. Progress report

    SciTech Connect

    Van Allen, J.A.

    1985-04-01

    The physical conditions that are necessary for the existence of a planetary magnetosphere are reviewed. These general considerations and some specific evidence are then combined to make forecasts of the probable existence and nature of magnetospheres of Uranus and Neptune.

  1. Phase Segregation of Passive Advective Particles in an Active Medium

    NASA Astrophysics Data System (ADS)

    Das, Amit; Polley, Anirban; Rao, Madan

    2016-02-01

    Localized contractile configurations or asters spontaneously appear and disappear as emergent structures in the collective stochastic dynamics of active polar actomyosin filaments. Passive particles which (un)bind to the active filaments get advected into the asters, forming transient clusters. We study the phase segregation of such passive advective scalars in a medium of dynamic asters, as a function of the aster density and the ratio of the rates of aster remodeling to particle diffusion. The dynamics of coarsening shows a violation of Porod behavior; the growing domains have diffuse interfaces and low interfacial tension. The phase-segregated steady state shows strong macroscopic fluctuations characterized by multiscaling and intermittency, signifying rapid reorganization of macroscopic structures. We expect these unique nonequilibrium features to manifest in the actin-dependent molecular clustering at the cell surface.

  2. Therapeutic activity of modified U1 core spliceosomal particles

    PubMed Central

    Rogalska, Malgorzata Ewa; Tajnik, Mojca; Licastro, Danilo; Bussani, Erica; Camparini, Luca; Mattioli, Chiara; Pagani, Franco

    2016-01-01

    Modified U1 snRNAs bound to intronic sequences downstream of the 5′ splice site correct exon skipping caused by different types of mutations. Here we evaluate the therapeutic activity and structural requirements of these exon-specific U1 snRNA (ExSpeU1) particles. In a severe spinal muscular atrophy, mouse model, ExSpeU1, introduced by germline transgenesis, increases SMN2 exon 7 inclusion, SMN protein production and extends life span. In vitro, RNA mutant analysis and silencing experiments show that while U1A protein is dispensable, the 70K and stem loop IV elements mediate most of the splicing rescue activity through improvement of exon and intron definition. Our findings indicate that precise engineering of the U1 core spliceosomal RNA particle has therapeutic potential in pathologies associated with exon-skipping mutations. PMID:27041075

  3. Materials for Active Engagement in Nuclear and Particle Physics Courses

    NASA Astrophysics Data System (ADS)

    Loats, Jeff; Schwarz, Cindy; Krane, Ken

    2013-04-01

    Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

  4. Propagating interfaces in mixtures of active and passive Brownian particles

    NASA Astrophysics Data System (ADS)

    Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard

    2016-12-01

    The emergent collective dynamics in phase-separated mixtures of isometric active and passive Brownian particles is studied numerically in two-dimensions. A novel steady-state of well-defined propagating interfaces is observed, where the interface between the dense and the dilute phase propagates and the bulk of both phases is (nearly) at rest. Two kind of interfaces, advancing and receding, are formed by spontaneous symmetry breaking, induced by an instability of a planar interface due to the formation of localized vortices. The propagation arises due to flux imbalance at the interface, resembling the growth behavior of rough surfaces far from equilibrium. Above a threshold, the interface velocity decreases linearly with increasing fraction of active particles.

  5. A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Sotirelis, T.; Liou, K.; Meng, C.-I.; Rich, F. J.

    2007-01-01

    We investigated whether one or a few coupling functions can represent best the interaction between the solar wind and the magnetosphere over a wide variety of magnetospheric activity. Ten variables which characterize the state of the magnetosphere were studied. Five indices from ground-based magnetometers were selected, namely Dst, Kp, AE, AU, and AL, and five from other sources, namely auroral power (Polar UVI), cusp latitude (sin(Λc)), b2i (both DMSP), geosynchronous magnetic inclination angle (GOES), and polar cap size (SuperDARN). These indices were correlated with more than 20 candidate solar wind coupling functions. One function, representing the rate magnetic flux is opened at the magnetopause, correlated best with 9 out of 10 indices of magnetospheric activity. This is dΦMP/dt = v4/3BT2/3sin8/3(θc/2), calculated from (rate IMF field lines approach the magnetopause, ˜v)(% of IMF lines which merge, sin8/3(θc/2))(interplanetary field magnitude, BT)(merging line length, ˜(BMP/BT)1/3). The merging line length is based on flux matching between the solar wind and a dipole field and agrees with a superposed IMF on a vacuum dipole. The IMF clock angle dependence matches the merging rate reported (albeit with limited statistics) at high altitude. The nonlinearities of the magnetospheric response to BT and v are evident when the mean values of indices are plotted, in scatterplots, and in the superior correlations from dΦMP/dt. Our results show that a wide variety of magnetospheric phenomena can be predicted with reasonable accuracy (r > 0.80 in several cases) ab initio, that is without the time history of the target index, by a single function, estimating the dayside merging rate. Across all state variables studied (including AL, which is hard to predict, and polar cap size, which is hard to measure), dΦMP/dt accounts for about 57.2% of the variance, compared to 50.9% for EKL and 48.8% for vBs. All data sets included at least thousands of points over many

  6. Io's volcanism influences Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    Volcanic emissions from Jupiter's moon Io supply plasma to the planet's magnetosphere and lead to its main auroral emissions. New observations show that the main auroral oval expanded and outer emissions brightened in spring 2007. Some studies have suggested that magnetospheric changes such as these could be caused by changes in the incoming solar wind. Bonfond et al. present several lines of evidence—including images from the Hubble Space Telescope and observations of a volcanic plume on Io from the New Horizons probe along with measurements of increased emissions from Jupiter's sodium cloud—that indicate that Io's volcanism controls changes in Jupiter's magnetosphere. (Geophysical Research Letters, doi:10.1029/2011GL050253, 2012)

  7. The magnetospheric currents - An introduction

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1984-01-01

    It is pointed out that the scientific discipline concerned with magnetospheric currents has grown out from geomagnetism and, in particular, from geomagnetic storm studies. The International Geophysical Year (IGY) introduced a new area for this discipline by making 'man-made satellites' available for the exploration of space around the earth. In this investigation, a brief description is provided of the magnetospheric currents in terms of eight component current systems. Attention is given to the Sq current, the Chapman-Ferraro current, the ring current (the symmetric component), the current systems driven by the solar wind-magnetosphere dynamo (SMD), the cross-tail current system, the average ionospheric current pattern, an example of an instantaneous current pattern, field-aligned currents, and driving mechanisms and models.

  8. Planetary Rotation Modulation of Various Measured Plasma Parameters in Saturns Magnetosphere: a Possible Mechanism

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Brandt, P. C.; Carbary, J. F.; Krimigis, S. M.; Mauk, B. E.; Paranicas, C. P.; Roelof, E. C.; Jones, G.; Krupp, N.; Lagg, A.; Gurnett, D. A.; Kurth, W. S.; Dougherty, M. K.; Southwood, D. J.; Saur, J.; Zarka, P.

    2006-05-01

    more importantly ties the high conductivity region to the middle magnetospheric disturbance. The local zonal thermospheric winds, if they are in frictional equilibrium with the conducting ionosphere, will move the high conductivity region (and the rest of the ionosphere) at whatever velocity they are traveling. With the feedback between the magnetospheric heating and the ionospheric conductivity established, the field-aligned current remains rooted in the wind-convected ionosphere, and so the active (SKR) meridian will slowly drift away from the core-rooted magnetic anomaly. The process will be self-sustaining for a certain length of time, until it fizzles out (either because the magnetospheric instability is no longer sufficiently close to triggering, or because the source particle populations are depleted, or whatever). Some time later, when the magnetosphere has stored sufficient energy to prime the instability, it will go off again, again starting at the location of the magnetic anomaly. Espinosa, S. A., D. J. Southwood, and M. K. Dougherty, How can Saturn impose its rotation period in a noncorotating magnetosphere? J. Geophys. Res., 108(A2), 1086, doi:10.1029/2001JA005084, 2003

  9. Magnetosphere, rings, and moons of Uranus

    SciTech Connect

    Cheng, A.F.

    1984-10-01

    The observation of an ultraviolet aurora on Uranus implies the existence of a magnetosphere. It is suggested that the magnetospheres of Uranus and Saturn may be very similar. Charged particle sputtering of water ice surfaces on the Uranian moons may maintain an oxygen ion plasma torus similar to the heavy ion plasma torus at Saturn. Atmospheric cosmic ray albedo neutron decay may sustain an inner radiation belt with omnidirectional proton fluxes. If the 100 keV ion fluxes near 7 RU are similar to Saturnian ion fluxes at such energies, the Uranian aurora may be maintained by ion precipitation from the radiation belts at nearly the strong diffusion rate. This mechanism predicts comparable aurorae over both magnetic poles of Uranus, in contrast with the Faraday disc dynamo mechanism, which powers an aurora only over the sunlit pole of uranus. If, however, the 100 kev ion fluxes at Uranus are comparable to those at Saturn, any exposed methane ice surfaces on the moons and rings of Uranus would be quickly transformed by ion impacts to a black, carbonaceous polymer.

  10. The Comprehensive Inner Magnetosphere-Ionosphere Model

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Buzulukova, N. Y.; Chen, S.-H.; Glocer, A.; Nagai, T.; Valek, P.; Perez, J. D.

    2014-01-01

    Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the ring current and plasmasphere on the radiation belts. We have performed a CIMI simulation for the storm on 5-9 April 2010 and then compared our results with data from the Two Wide-angle Imaging Neutral-atom Spectrometers and Akebono satellites. We identify the dominant energization and loss processes for the ring current and radiation belts. We find that the interactions with the whistler mode chorus waves are the main cause of the flux increase of MeV electrons during the recovery phase of this particular storm. When a self-consistent electric field from the CRCM is used, the enhancement of MeV electrons is higher than when an empirical convection model is applied. We also demonstrate how CIMI can be a powerful tool for analyzing and interpreting data from the new Van Allen Probes mission.

  11. Magnetosphere, Rings, and Moons of Uranus

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.

    1984-01-01

    The observation of an ultraviolet aurora on Uranus implies the existence of a magnetosphere. It is suggested that the magnetospheres of Uranus and Saturn may be very similar. Charged particle sputtering of water ice surfaces on the Uranian moons may maintain an oxygen ion plasma torus similar to the heavy ion plasma torus at Saturn. Atmospheric cosmic ray albedo neutron decay may sustain an inner radiation belt with omnidirectional proton fluxes. If the 100 keV ion fluxes near 7 RU are similar to Saturnian ion fluxes at such energies, the Uranian aurora may be maintained by ion precipitation from the radiation belts at nearly the strong diffusion rate. This mechanism predicts comparable aurorae over both magnetic poles of Uranus, in contrast with the Faraday disc dynamo mechanism, which powers an aurora only over the sunlit pole of uranus. If, however, the 100 kev ion fluxes at Uranus are comparable to those at Saturn, any exposed methane ice surfaces on the moons and rings of Uranus would be quickly transformed by ion impacts to a black, carbonaceous polymer.

  12. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time varying characteristics which are related to spacecraft position and magnetospheric processes. In the midfrequency range (100-1000 kHz) intense noise peaks rise a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. Bandwidths of the peaks range from about 100 kHz to more than 500 kHz; most often the lower cutoff is at about 100 kHz and the upper at 380 kHz for a total bandwidth of 280 kHz. This intense mid-frequency noise was detected at radial distances from 1.3 Re to 60 Re on all sides of the earth (i.e., all local times) during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place.

  13. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 1. Particle detection by active photoionization

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Strelnikova, Irina

    2009-03-01

    We present a new design of an in situ detector for the study of meteor smoke particles (MSPs) in the middle atmosphere. This detector combines a classical Faraday cup with a xenon-flashlamp for the active photoionization/photodetachment of MSPs and the subsequent detection of corresponding photoelectrons. This instrument was successfully launched in September 2006 from the Andøya Rocket Range in Northern Norway. A comparison of photocurrents measured during this rocket flight and measurements performed in the laboratory proves that observed signatures are truly due to photoelectrons. In addition, the observed altitude cut-off at 60 km (i.e., no signals were observed below this altitude) is fully understood in terms of the mean free path of the photoelectrons in the ambient atmosphere. This interpretation is also proven by a corresponding laboratory experiment. Consideration of all conceivable species which can be ionized by the photons of the xenon-flashlamp demonstrates that only MSPs can quantitatively explain the measured currents below an altitude of 90 km. Above this altitude, measured photocurrents are most likely due to photoionization of nitric oxide. In conclusion, our results demonstrate that the active photoionization and subsequent detection of photoelectrons provides a promising new tool for the study of MSPs in the middle atmosphere. Importantly, this new technique does not rely on the a priori charge of the particles, neither is the accessible particle size range severely limited by aerodynamical effects. Based on the analysis described in this study, the geophysical interpretation of our measurements is presented in the companion paper by Strelnikova, I., et al. [2008. Measurements of meteor smoke particles during the ECOMA-2006 campaign: 2. results. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.011].

  14. The Inner Magnetosphere Imager Mission

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    1994-01-01

    The Inner Magnetosphere Imager (IMI) mission will carry instruments to globally image energetic neutral atoms, far and extreme ultraviolet light, and X rays. These imagers will see the ring current inner plasmasheet, plasmasphere, aurora, and geocorona. With these observations it will be possible, for the first time, to develop an understanding of the global shape of the inner magnetosphere and the interrelationships between its parts. Seven instruments are currently envisioned on a single spinning spacecraft with a despun platform. IMI will be launched into an elliptical, polar orbit with an apogee of approximately 7 Earth radii altitude and perigee of 4800 km altitude.

  15. The Inner Magnetosphere Imager mission

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    1994-01-01

    The Inner Magnetosphere Imager (IMI) mission will carry instruments to globally image energetic neutral atoms, far and extreme ultraviolet light, and X-rays. These imagers will see the ring current, inner plasmasheet, plasmasphere, aurora, and geocorona. With these observations it will be possible, for the first time, to develop an understanding of the global shape of the inner magnetosphere and the interrelationships between its parts. Seven instruments are currently envisioned on a single spinning spacecraft with a despun platform. IMI will be launched into an elliptical, polar orbit with an apogee of approximately 7 Earth radii altitude and perigee of 4800 km altitude.

  16. Study of plasma pressure distribution in the inner magnetosphere using the low-altitude satellite data as one of important elements of the magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Stepanova, M.; Antonova, E. E.; Bosqued, J. M.

    Plasma pressure distribution in the inner magnetosphere is one of the key parameters for understanding the main magnetospheric processes including geomagnetic storms and substorms Therefore during the last decades many efforts were concentrated on the study of pressure distribution in the inner magnetosphere However the pressure profiles obtained from in-situ particle measurements by the high-altitude satellites inside the plasma sheet and other regions of the magnetosphere do not allow the tracking the pressure variations related to the magnetospheric dynamics because a time interval neaded to do this generally exceeds the characteristic times of the main magnetospheric processes On contrary fast movement of low-altitude satellites makes it possible to catch quasi-instantaneous radial or azimuthal profiles of plasma pressure along the satellite trayectory using the precipitating particle flux data in the regions of isotropic plasma pressure The low-altitude polar-orbiting Aureol-3 satellite was used for this study IGRF Tsyganenko 2001 and Tsyganenko 2004 storm time geomagnetic field models were used for the pressure mapping into the equatorial plane and also to evaluate the corresponding volume of the magnetic flux tube and the magnetic pressure Study of azumuthal plasma pressure gradients showed that these gradients can be a source of the Iijima and Potemra s field-aligned current system Study of radial plasma gradients showed that during quiet geomagnetic condition the profiles obtained coincide with the results obtained previously from the high-altitude

  17. Global MHD model of the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Wu, C. C.

    1983-01-01

    A global MHD model of the earth's magnetosphere is defined. An introduction to numerical methods for solving the MHD equations is given with emphasis on the shock-capturing technique. Finally, results concerning the shape of the magnetosphere and the plasma flows inside the magnetosphere are presented.

  18. The magnetosphere of uranus: hot plasma and radiation environment.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H

    1986-07-04

    The low-energy charged-particle (LECP) instrument on Voyager 2 measured lowenergy electrons and ions near and within the magnetosphere of Uranus. Initial analysis of the LECP measurements has revealed the following. (i) The magnetospheric particle population consists principally of protons and electrons having energies to at least 4 and 1.2 megaelectron volts, respectively, with electron intensities substantially excceding proton intensities at a given energy. (ii) The intensity profile for both particle species shows evidence that the particles were swept by planetry satellites out to at least the orbit of Titania. (iii) The ion and electron spectra may be described by a Maxwellian core at low energies (less than about 200 kiloelectron volts) and a power law at high energies (greater than about 590 kiloelectron volts; exponentmicro, 3 to 10) except inside the orbit of Miranda, where power-law spectra (micro approximately 1.1 and 3.1 for electrons and protons, respectively) are observed. (iv) At ion energies between 0.6 and 1 megaelectron volt per nucleon, the composition is dominated by protons with a minor fraction (about 10(-3)) of molecular hydrogen; the lower limit for the ratio of hydrogen to helium is greater than 10(4). (v) The proton population is sufficiently intense that fluences greater than 10(16) per square centimeter can accumulate in 10(4) to 10(') years; such fluences are sufficient to polymerize carbon monoxide and methane ice surfaces. The overall morphology of Uranus' magnetosphere resembles that of Jupiter, as evidenced by the fact that the spacecraft crossed the plasma sheet through the dawn magnetosheath twice per planetary rotation period (17.3 hours). Uranus' magnetosphere differs from that of Jupiter and of Saturn in that the plasma 1 is at most 0.1 rather than 1. Therefore, little distortion ofthe field is expected from particle loading at distances less than about 15 Uranus radii.

  19. Continuum Theory of Phase Separation Kinetics for Active Brownian Particles

    NASA Astrophysics Data System (ADS)

    Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J.; Marenduzzo, Davide; Cates, Michael E.

    2013-10-01

    Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.

  20. Magnetospheric electrostatic emissions and cold plasma densities

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1978-01-01

    A synoptic study of electric wave, magnetometer, and plasma data from IMP-6 was carried out for times when banded electrostatic waves are observed between harmonics of the electron gyrofrequency in the earth's outer magnetosphere. Four separate classes of such waves were previously identified. The spatial and temporal occurrences of waves in each class are summarized here, as are correlations of occurrence with geomagnetic activity. Most importantly, associations between the observations of waves of different classes and the relative portions of cold and hot electrons present at the position of the spacecraft are established. Finally, evidence for the signature of the loss cone is sought in the plasma data.

  1. Simulation Study of Solar Wind Interaction with Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Richer, E.; Modolo, R.; Chanteur, G. M.; Hess, S.; Mancini, M.; Leblanc, F.

    2011-12-01

    The three flybys of Mariner 10, the numerous terrestrial observations of Mercury's exosphere and the recent flybys of MESSENGER [1] have brought important information about the Hermean environment. Mercury's intrinsic magnetic field is principally dipolar and its interaction with the Solar Wind (SW) creates a small and very dynamic magnetosphere. Mercury's exosphere is a highly variable [2] and complex neutral environment made of several species : H, He, O, Na, K, Ca, and Mg have already been detected [3,4]. The small number of in situ observations and the fact that the Hermean magnetospheric activity is not observable from Earth make simulation studies of the Hermean environment a useful tool to understand the global interaction of the SW with Mercury. This study presents simulation results from a 3-dimensional parallel multi-species hybrid model of Mercury's magnetosphere interaction with the SW. The SW in this model is representative of conditions at Mercury's aphelion (0.47AU) and is composed of 95% protons and 5% alpha particles. The simulated IMF is oriented accordingly observations during the first flyby of MESSENGER on January 2008 with a cone angle of ~45°. A neutral corona of atomic hydrogen is included in this model and is partly ionized by solar photons, electron impacts and charge exchange between SW ions and neutral H. Two electron fluids with different temperature are implemented to mimic the SW and ionospheric plasma. This model is an adapted version of the 3D parallel model for the Martian environment. Planetary and SW plasmas are treated separately and the dynamic of each ion species can be investigated separately. Simulations have been performed on a grid of 190×350×350 cells with a spatial resolution of Δx~120km. Acknowledgements The authors are indebted to CNES (French space agency) for the funding of their modeling activity through its program Sun - Heliosphere - Magnetosphere and to ANR (French national agency for research) for supporting

  2. Twist-induced Magnetosphere Reconfiguration for Intermittent Pulsars

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Yu, Cong; Tong, Hao

    2016-08-01

    We propose that the magnetosphere reconfiguration induced by magnetic twists in the closed field line region can account for the mode switching of intermittent pulsars. We carefully investigate the properties of axisymmetric force-free pulsar magnetospheres with magnetic twists in closed field line regions around the polar caps. The magnetosphere with twisted closed lines leads to enhanced spin-down rates. The enhancement in spin-down rate depends on the size of the region with twisted closed lines. Typically, it is increased by a factor of ˜2, which is consistent with the intermittent pulsars’ spin-down behavior during the “off” and “on” states. We find that there is a threshold of maximal twist angle {{Δ }}{φ }{{thres}}˜ 1. The magnetosphere is stable only if the closed line twist angle is less than {{Δ }}{φ }{{thres}}. Beyond this value, the magnetosphere becomes unstable and gets untwisted. The spin-down rate would reduce to its off-state value. The quasi-periodicity in spin-down rate change can be explained by long-term activities in the star’s crust and the untwisting induced by MHD instability. The estimated duration of on-state is about 1 week, consistent with observations. Due to the MHD instability, there exists an upper limit for the spin-down ratio (f˜ 3) between the on-state and the off-state, if the Y-point remains at the light cylinder.

  3. MESSENGER Observations of Reconnection and Its Effects on Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Imber, Suzanne M.; Korth, Haje; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Nittler, Larry R.; Raines, Jim M.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Starr, Richard D.; Travnicek, Pavel; Zurbuchen, Thomas H.

    2010-01-01

    During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic fields produced very intense reconnection signatures in the dayside and nightside magnetosphere and very different systemlevel responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active with very large magnetic fields normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 s to 90 s. However, the strength and direction of the tail magnetic field was very stable. In contrast the third flyby experienced a variable IMF with it varying from north to south on timescales of minutes. Although the MESSENGER measurements were limited this time to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Rather, plasmoid release was highly correlated with the four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects will be presented. The results will be examined in light of what is known about the response of the Earth's magnetosphere to variable versus steady southward IMF.

  4. Chorus wave amplification: A free electron laser in the Earth's magnetosphere

    SciTech Connect

    Soto-Chavez, A. R.; Bhattacharjee, A.; Ng, C. S.

    2012-01-15

    A new theoretical model for whistler-mode chorus amplification in the Earth's magnetosphere is presented. We derive, based on the free-electron laser mechanism in a high-gain amplifier, a new closed set of self-consistent relativistic equations that couple the Hamiltonian equations for particles with Maxwell's equations. We demonstrate that these equations predict, through a cubic equation, whistler amplification levels in good agreement with those observed in the Earth's magnetosphere.

  5. Magnetosphere-ionosphere interactions: Near Earth manifestations of the plasma universe

    NASA Technical Reports Server (NTRS)

    Faelthammar, Carl-Gunne

    1986-01-01

    As the universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on the understanding of how matter behaves in the plasma state. In situ observations in the near Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a results of the interactions between the magnetosphere and the ionosphere. The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy an momentum between the two regions. The exchange is executed by magnetic-field-aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic field aligned (parallel) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.

  6. Does Solar Wind also Drive Convection in Jupiter's Magnetosphere?

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.

    2001-05-01

    Using a simple model of magnetic field and plasma velocity, Brice and Ioannidis [1970] showed that the corotation electric field exceeds convection electric field throughout the Jovian magnetosphere. Since that time it has been tacitly assumed that Jupiter's magnetosphere is driven from within. If Brice and Ioannidis conjecture is correct then one would not expect major asymmetries in the field and plasma parameters in the middle magnetosphere of Jupiter. Yet, new field and plasma observations from Galileo and simultaneous auroral observations from HST show that there are large dawn/dusk and day/night asymmetries in many magnetospheric parameters. For example, the magnetic observations show that a partial ring current and an associated Region-2 type field-aligned current system exist in the magnetosphere of Jupiter. In the Earth's magnetosphere it is well known that the region-2 current system is created by the asymmetries imposed by a solar wind driven convection. Thus, we are getting first hints that the solar wind driven convection is important in Jupiter's magnetosphere as well. Other in-situ observations also point to dawn-dusk asymmetries imposed by the solar wind. For example, first order anisotropies in the Energetic Particle Detector show that the plasma is close to corotational on the dawn side but lags behind corotation in the dusk sector. Magnetic field data show that the current sheet is thin and highly organized on the dawn side but thick and disturbed on the dusk side. I will discuss the reasons why Brice and Ioannidis calculation may not be valid. I will show that both the magnetic field and plasma velocity estimates used by Brice and Ioannidis were rather excessive. Using more modern estimates of the field and velocity values I show that the solar wind convection can penetrate as deep as 40 RJ on the dawnside. I will present a new model of convection that invokes in addition to a distant neutral line spanning the whole magnetotail, a near

  7. Morphology of Interchange-Driven Injections in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Paranicas, C.; Achilleos, N.; Andriopoulou, M.; Badman, S. V.; Hospodarsky, G. B.; Jia, X.; Jackman, C. M.; Khurana, K. K.; Krupp, N.; Louarn, P.; Roussos, E.; Sergis, N.; Thomsen, M. F.

    2014-12-01

    As Cassini passes close to Saturn during its regular orbits, evidence of particle injections can often be found in many different data sets (including MAG, CAPS, MIMI, and RPWS). One reason injections are easily visible in Saturn's inner magnetosphere is that the circumplanetary neutral gas distribution can reduce the intensities of some charged particles. For example, energetic ions can be lost from the system following charge exchange with neutrals and energetic electrons can lose energy in collisions with gas and dust. Injections in the inner magnetosphere are believed to be flux tube interchange events that are part of a larger circulation system in which cold dense plasma flows outward carrying magnetic flux with it. The closed magnetic flux is ultimately returned to the inner magnetosphere in the form of injections of rapidly moving hotter but lighter flux tubes from the middle magnetosphere. In this presentation, we will look at injections from the perspective of multiple Cassini data sets. Some features of these structures have already been identified in the literature from one or more data sets. For example, the tendency for injections to appear as enhancements (depressions) in magnetic field strength at low (high) magnetic latitude has been documented (Andre et al. 2007). Furthermore, that flux tube bundles seem to narrow in spatial extent in the equatorial plane in the higher magnetic field region has also been described. Here, we will look at selected structures distributed in radial distance and latitude as a step toward generalizing their characteristics at various locations. We will consider issues such as the magnetic signature in the field components, the typical wave signatures, the energy range of the injection, and the presence of isolated features versus multiple features occurring simultaneously. We will also discuss observational issues, such as when each instrument is optimally suited to detect injections, and how this relates to their

  8. Energetic Electron Populations in the Magnetosphere During Geomagnetic Storms and Substorms

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This report summarizes the scientific work performed by the Aerospace Corporation under NASA Grant NAG5-10278, 'Energetic Electron Populations in the Magnetosphere during Geomagnetic Storms and Subsisting.' The period of performance for the Grant was March 1, 2001 to February 28, 2002. The following is a summary of the Statement of Work for this Grant. Use data from the PIXIE instrument on the Polar spacecraft from September 1998 onward to derive the statistical relationship between particle precipitation patterns and various geomagnetic activity indices. We are particularly interested in the occurrence of substorms during storm main phase and the efficacy of storms and substorms in injecting ring-current particles. We will compare stormtime simulations of the diffuse aurora using the models of Chen and Schulz with stormtime PIXIE measurements.

  9. On the Magnetospheric Engine Behind Kilometric Radiation at Earth and Saturn

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus; Mitchell, Donald

    2014-05-01

    The planets of the solar system display a range of different space environments and solar interaction regimes, from non/weakly magnetized, to magnetized with convective- versus rotation-dominated magnetospheres. All magnetized planets with an appreciable magnetosphere are immersed in a dynamic energetic particle (hot plasma), as well as cold plasma, environment. These five planetary magnetospheres (Earth, Jupiter, Saturn, Uranus and Neptune) are also significant emitters of low-frequency radio waves that are consistent with a cyclotron-maser instability set up in a field-aligned current region. Radio observations in the <200 MHz range is so far the only technique that shows promise to provide constraints on the magnetospheric processes of exoplanets and their stellar-wind interaction. The thrust of this presentation is therefore to understand the relation between radio emissions and magnetospheric acceleration processes in our own solar system as a laboratory to determine what remote radio observations of exoplanets may tell us about magnetospheric processes. Terrestrial Auroral Kilometric Radiation (AKR) emissions in the ~30-800 kHz range have long been known to be associated with auroral intensifications and magnetospheric substorms. In a similar fashion, recent remote imaging using Energetic Neutral Atoms (ENAs) obtained by the Cassini mission have revealed that the periodic Saturn Kilometric Radiation (SKR) emission from Saturn's high-latitude magnetosphere is highly correlated with simultaneous large-scale injections of energetic particles in the night side magnetosphere. These observations imply that the engine behind the AKR and SKR is current system associated with the planet ward fast plasma flows during an injection and/or the resulting plasma pressure gradients of the heated plasma.

  10. Magnetospheric mapping with a quantitative geomagnetic field model

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Mead, G. D.

    1975-01-01

    Mapping the magnetosphere on a dipole geomagnetic field model by projecting field and particle observations onto the model is described. High-latitude field lines are traced between the earth's surface and their intersection with either the equatorial plane or a cross section of the geomagnetic tail, and data from low-altitude orbiting satellites are projected along field lines to the outer magnetosphere. This procedure is analyzed, and the resultant mappings are illustrated. Extension of field lines into the geomagnetic tail and low-altitude determination of the polar cap and cusp are presented. It is noted that while there is good agreement among the various data, more particle measurements are necessary to clear up statistical uncertainties and to facilitate comparison of statistical models.

  11. Two-component proton spectra in the inner Saturnian magnetosphere

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Armstrong, T. P.

    1982-01-01

    Measurements obtained by the Pioneer-11 spacecraft in Saturn's inner magnetosphere revealed the presence of a high energy proton component, primarily confined within the orbits of satellites Enceladus and Mimas. The high energy component was interpreted as due to protons from cosmic ray neutron albedo decay interactions with the Saturnian rings and, secondarily, the planetary atmosphere, but without detailed knowledge of the differential or integral spectrum. The main objective of the present investigation is to examine in some detail the ion spectra in the considered region of the magnetosphere, and to provide some of the basic input necessary in evaluating various models of energetic particle-ring interactions. The conducted measurements clearly show the presence of low energy ions and electrons inside the orbit of Mimas and provide a measure of the evolution of the hot ion spectrum observed inside the orbit of Rhea into a two-component power law spectrum inside the orbits of Enceladus and Mimas.

  12. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1993-01-01

    The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.

  13. Magnetospheric structures: Uranus and Neptune

    SciTech Connect

    Hill, T.W.

    1984-10-01

    Magnetospheric structures that might be encountered at Uranus and Neptune are described. Statistics indicate a sufficiently high probability to warrant consideration of their likely properties in advance of the Voyager encounters. Because the spin axis of Uranus lies nearly in the ecliptic and presently points approximately sunward, Voyager is likely to encounter the unique pole on configuration that has special theoretical significance. Corotation in the magnetospheres of Uranus and Neptune would probably exclude solar wind drive convection as an important driver of global magnetospheric dynamics, as it does at Jupiter and Saturn. The magnetospheres of Uranus and Neptune probably lack sufficient internal sources of plasma to produce significant levels of rotationally driven convection. The reported observation of auroral emission from Uranus has therefore motivated the development of an alternative model in which solar wind motion is coupled directly to the rotation of the ionosphere to establish a dynamo circuit which generates Birkeland currents and polar cap aurora. This model predicts the strength and configuration of the aurora as functions of the magnitude and polarity, respectively, of the planetary magnetic moment.

  14. Global magnetohydrodynamic simulations of the magnetosphere

    NASA Astrophysics Data System (ADS)

    Walker, Raymond J.; Ogino, Tatsuki

    1989-04-01

    The use of a global MHD simulation to study the magnetospheric configuration is demonstrated by reviewing some of the results obtained with the model of Ogino (1986). The steady-state configuration of the magnetosphere in the absence of an IMF is considered, and it is demonstrated that this configuration is changed when a northward or southward IMF is introduced. It is noted that the magnetosphere is very dynamic, and that, since global MHD simulations are intrinsically time-dependent, they offer the possibility of modeling the time sequence of events in the magnetosphere. Results are presented from a calculation in which a magnetospheric substrom is modeled.

  15. Global magnetohydrodynamic simulations of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ogino, Tatsuki

    1989-01-01

    The use of a global MHD simulation to study the magnetospheric configuration is demonstrated by reviewing some of the results obtained with the model of Ogino (1986). The steady-state configuration of the magnetosphere in the absence of an IMF is considered, and it is demonstrated that this configuration is changed when a northward or southward IMF is introduced. It is noted that the magnetosphere is very dynamic, and that, since global MHD simulations are intrinsically time-dependent, they offer the possibility of modeling the time sequence of events in the magnetosphere. Results are presented from a calculation in which a magnetospheric substrom is modeled.

  16. Magnetosphere imager science definition team interim report

    NASA Technical Reports Server (NTRS)

    Armstrong, T. P.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in may different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data nd help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report documents the scientific rational for such a magnetospheric imaging mission and provides a mission concept for its implementation.

  17. Magnetosphere imager science definition team: Executive summary

    NASA Technical Reports Server (NTRS)

    Armstrong, T. P.; Gallagher, D. L.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report summarizes the scientific rationale for such a magnetospheric imaging mission and outlines a mission concept for its implementation.

  18. Emergent ultra-long-range interactions between active particles in hybrid active-inactive systems

    NASA Astrophysics Data System (ADS)

    Steimel, Joshua P.; Aragones, Juan L.; Hu, Helen; Qureshi, Naser

    2016-04-01

    Particle-particle interactions determine the state of a system. Control over the range of such interactions as well as their magnitude has been an active area of research for decades due to the fundamental challenges it poses in science and technology. Very recently, effective interactions between active particles have gathered much attention as they can lead to out-of-equilibrium cooperative states such as flocking. Inspired by nature, where active living cells coexist with lifeless objects and structures, here we study the effective interactions that appear in systems composed of active and passive mixtures of colloids. Our systems are 2D colloidal monolayers composed primarily of passive (inactive) colloids, and a very small fraction of active (spinning) ferromagnetic colloids. We find an emergent ultra-long-range attractive interaction induced by the activity of the spinning particles and mediated by the elasticity of the passive medium. Interestingly, the appearance of such interaction depends on the spinning protocol and has a minimum actuation timescale below which no attraction is observed. Overall, these results clearly show that, in the presence of elastic components, active particles can interact across very long distances without any chemical modification of the environment. Such a mechanism might potentially be important for some biological systems and can be harnessed for newer developments in synthetic active soft materials.

  19. Simulations of Dynamic Relativistic Magnetospheres

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle Patrick

    Neutron stars and black holes are generally surrounded by magnetospheres of highly conducting plasma in which the magnetic flux density is so high that hydrodynamic forces are irrelevant. In this vanishing-inertia—or ultra-relativistic—limit, magnetohydrodynamics becomes force-free electrodynamics, a system of equations comprising only the magnetic and electric fields, and in which the plasma response is effected by a nonlinear current density term. In this dissertation I describe a new pseudospectral simulation code, designed for studying the dynamic magnetospheres of compact objects. A detailed description of the code and several numerical test problems are given. I first apply the code to the aligned rotator problem, in which a star with a dipole magnetic field is set rotating about its magnetic axis. The solution evolves to a steady state, which is nearly ideal and dissipationless everywhere except in a current sheet, or magnetic field discontinuity, at the equator, into which electromagnetic energy flows and is dissipated. Magnetars are believed to have twisted magnetospheres, due to internal magnetic evolution which deforms the crust, dragging the footpoints of external magnetic field lines. This twisting may be able to explain both magnetars' persistent hard X-ray emission and their energetic bursts and flares. Using the new code, I simulate the evolution of relativistic magnetospheres subjected to slow twisting through large angles. The field lines expand outward, forming a strong current layer; eventually the configuration loses equilibrium and a dynamic rearrangement occurs, involving large-scale rapid magnetic reconnection and dissipation of the free energy of the twisted magnetic field. When the star is rotating, the magnetospheric twisting leads to a large increase in the stellar spin-down rate, which may take place on the long twisting timescale or in brief explosive events, depending on where the twisting is applied and the history of the system

  20. Voyager 2 plasma ion observations in the magnetosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Selesnick, Richard S.; Mcnutt, Ralph L., Jr.

    1987-01-01

    Positive ion measurements in the magnetosphere of Uranus have been made by the Voyager 2 plasma science experiment. The paper presents an overview of the entire data set and a detailed analysis of the observations from the inner magnetosphere which complements and extends results reported elsewhere. Densities and temperatures are obtained from an analysis which incorporates details of the instrumental response. These results are then used to calculate flux tube particle and energy content to support the hypothesis that the plasma transport is controlled by a solar wind-driven magnetospheric convection system. Variations in the flux tube content suggest both a local source of plasma, produced from the neutral hydrogen corona of Uranus, and a nonlocal source, convected inwared and heated by adiabatic compression. In each case a proton composition is inferred. Sharp boundaries in the high-energy (approximately 1 keV) plasma population are interpreted in terms of the spatial extent of the magnetospheric convection, with significant shielding of the convection electric field. The convection theory is also used in a simulation of the low-energy (approximately 10 eV) ion component using the neutral hydrogen source, resulting in distribution functions which qualitatively agree with the observations.

  1. Magnetospheric and Ionospheric Response to Solar Wind Variability at Mars

    NASA Astrophysics Data System (ADS)

    Opgenoorth, H. J.; Andrews, D.; Edberg, N.; Lester, M.; Williams, A.; Fraenz, M.; Witasse, O.; Duru, F.; Morgan, D.

    2012-04-01

    At planets with induced magnetospheres the coupling between the ionosphere, the small draped magnetosphere and the solar wind is very direct in comparison to Earth. On the other hand it is more complicated as the weak induced magnetosphere itself is created by and in its shape and strength dynamically depending on the prevailing Solar wind conditions. In early 2010 Mars was located behind Earth in the Solar wind. In this study we utilized coordinated data from multiple near-Earth spacecraft (Stereo, ACE) to evaluate what kind of Solar wind disturbances have passed by Earth and might hit Mars consecutively (and when). We use plasma data from the ESA Mars- Express mission (mainly from the ASPERA particle instrument and the MARSIS topside ionospheric sounder) to investigate, for a number of isolated events in March and April 2010, how the induced magnetosphere at Mars develops and decays in response to Solar wind variability in the magnetic field, density and velocity, and what kind of ionospheric dynamics are produced in association with such events.

  2. Mageis Observations in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Fennell, J. F.; Claudepierre, S. G.; O'Brien, T. P., III; Blake, J. B.; Clemmons, J. H.; Roeder, J. L.; Spence, H. E.; Reeves, G. D.

    2014-12-01

    We examine two aspects of the 10's of keV to MeV electron conditions in the inner magnetosphere. First is the observation of wave-particle interactions associated with substorm injections in the midnight to dawn region of the magnetosphere. Second is the electron content of the inner radiation zone and slot regions prior to and during storm times using background corrected MagEIS data. The wave-particle observations take advantage of the MagEIS high rate data mode in conjuction with the HOPE and EMFISIS burst mode data to show the tight relationship between the <70 keV electron fluxes and chorus waves. Both electron flux enhancements and flux depletions are observed during temporally localized chorus wave events. The ability to remove the penetrating backgrounds caused by energetic protons in the inner zone and electron generated bremsstrahlung in the slot and outer zone allows one to put limits on the electron fluxes in these regions, especially for energies greater than a few hundred keV. We find that deep in the inner zone the electrons fluxes at >800 keV are very low or non-existent while there are significant fluxes of electrons at lower energies, down to MagEIS limit of ~30 keV. The more dynamic slot region fluxes have been similarly dominated by such lower energy electron fluxes thus far during the Van Allen Probes mission. We will also show evidence that during storm times the seed population electrons, <200 keV, can penetrate deep into the slot region and, at times, even into the inner zone.

  3. Emergence of collective dynamical chirality for achiral active particles.

    PubMed

    Jiang, Huijun; Ding, Huai; Pu, Mingfeng; Hou, Zhonghuai

    2017-01-25

    Emergence of collective dynamical chirality (CDC) at mesoscopic scales plays a key role in many formation processes of chiral structures in nature, which may also provide possible routines for people to fabricate complex chiral architectures. So far, most of the reported CDCs have been found in systems of active objects with individual structure chirality or/and dynamical chirality, and whether CDC can arise from simple and achiral units is still an attractive mystery. Here, we report a spontaneous formation of CDC in a system of both dynamically and structurally achiral particles motivated by active motion of cells adhered onto a substrate. Active motion, confinement and hydrodynamic interaction are found to be the three key factors. Detailed analysis shows that the system can support abundant collective dynamical behaviors, including rotating droplets, rotating bubbles, CDC oscillations, arrays of collective rotations, and interesting transitions such as chirality transition, structure transition and state reentrance.

  4. Mucosal and systemic adjuvant activity of alphavirus replicon particles

    NASA Astrophysics Data System (ADS)

    Thompson, Joseph M.; Whitmore, Alan C.; Konopka, Jennifer L.; Collier, Martha L.; Richmond, Erin M. B.; Davis, Nancy L.; Staats, Herman F.; Johnston, Robert E.

    2006-03-01

    Vaccination represents the most effective control measure in the fight against infectious diseases. Local mucosal immune responses are critical for protection from, and resolution of, infection by numerous mucosal pathogens. Antigen processing across mucosal surfaces is the natural route by which mucosal immunity is generated, as peripheral antigen delivery typically fails to induce mucosal immune responses. However, we demonstrate in this article that mucosal immune responses are evident at multiple mucosal surfaces after parenteral delivery of Venezuelan equine encephalitis virus replicon particles (VRP). Moreover, coinoculation of null VRP (not expressing any transgene) with inactivated influenza virions, or ovalbumin, resulted in a significant increase in antigen-specific systemic IgG and fecal IgA antibodies, compared with antigen alone. Pretreatment of VRP with UV light largely abrogated this adjuvant effect. These results demonstrate that alphavirus replicon particles possess intrinsic systemic and mucosal adjuvant activity and suggest that VRP RNA replication is the trigger for this activity. We feel that these observations and the continued experimentation they stimulate will ultimately define the specific components of an alternative pathway for the induction of mucosal immunity, and if the activity is evident in humans, will enable new possibilities for safe and inexpensive subunit and inactivated vaccines. vaccine vector | Venezuelan equine encephalitis virus | viral immunology | RNA virus

  5. The magnetosphere of Uranus - Hot plasma and radiation environment

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.; Armstrong, T. P.; Axford, W. I.; Cheng, A. F.; Gloeckler, G.

    1986-01-01

    Inferences are drawn on the morphology and composition of the Uranus magnetosphere based on low-energy charged particle data collected by Voyager 2. Proton and electron energies in the magnetosphere attained energies of 4 and 1.2 MeV, respectively, although electron intensities surpassed the proton intensities at most energy levels. Protons dominated in the ion energy regime 0.6-1.0 MeV. The ion and electron spectra were Maxwellian below about 200 keV and had a power law distribution at energies over 590 keV. The power law was reduced by a factor of nearly three inside the orbit of Miranda. The proton population is dense enough to polymerize CO and CH4 ice surfaces within 10,000-100,000 yr. The data indicated that the particles are swept out at least to the orbit of Titania by the satellites. The morphology of the magnetosphere closely resembles that around Jupiter, except that plasma sheet distorsion from particle loading is negligible in regions within 15 Uranus radii.

  6. Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.; Borovsky, J. E.; Thomsen, M. F.; Moulton, J. D.; MacDonald, E. A.

    2015-05-01

    The idea of using a high-voltage electron beam with substantial current to actively probe magnetic field line connectivity in space has been discussed since the 1970s. However, its experimental realization onboard a magnetospheric spacecraft has never been accomplished because the tenuous magnetospheric plasma cannot provide the return current necessary to keep spacecraft charging under control. In this work, we perform Particle-In-Cell simulations to investigate the conditions under which a high-voltage electron beam can be emitted from a spacecraft and explore solutions that can mitigate spacecraft charging. The electron beam cannot simply be compensated for by an ion beam of equal current, because the Child-Langmuir space charge limit is violated under conditions of interest. On the other hand, releasing a high-density neutral contactor plasma prior and during beam emission is critical in aiding beam emission. We show that after an initial transient controlled by the size of the contactor cloud where the spacecraft potential rises, the spacecraft potential can settle into conditions that allow for electron beam emission. A physical explanation of this result in terms of ion emission into spherical geometry from the surface of the plasma cloud is presented, together with scaling laws of the peak spacecraft potential varying the ion mass and beam current. These results suggest that a strategy where the contactor plasma and the electron beam operate simultaneously might offer a pathway to perform beam experiments in the magnetosphere.

  7. Exploring the intriguing differences between Saturnian and Jovian magnetospheric neutral tori

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Johnson, R. E.; Richardson, J. D.

    2015-12-01

    The Jovian and Saturnian systems are similar in that they are relatively rapidly rotating gas giants with internal magnetic fields. They also possess ring systems and a large number of satellites (67 and 62, respectively) with a single moon in each system serving as the primary magnetospheric heavy particle source (Io and Enceladus, respectively) but with Jupiter's primary particle source orbiting further from the planet. Jupiter's magnetic field is over an order of magnitude stronger than the Saturnian field and is tilted by almost 10 degrees while Saturn's magnetic field has no detectable tilt from its rotational axis. Additionally, Saturn is about twice as far from the Sun as Jupiter. Even considering these differences, however, it is very interesting that Jupiter's magnetosphere is dominated by plasma while Saturn's magnetosphere contains much more neutral than charged particles. Such a difference has extremely significant impacts on magnetospheric generation and dynamics. The wealth of information provided by Cassini over the last 10 years has provided unprecedented insight in to Saturn's magnetosphere and has well positioned us to conduct studies comparing Saturn's and Jupiter's magnetospheres. A better understanding of neutral tori not only sheds valuable insight into past observations but also provides critical preparation for the upcoming ESA and NASA missions to the Jovian system. For this work, we combine all available data for these two systems as well as neutral tori modeling to quantify the differences between these two magnetospheres. From the analysis, we illustrate how various neutral tori are generated and evolve. The results provide insight into the critical factors that determine how large gas giant magnetospheres can evolve into such significantly different configurations.

  8. Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times.

    PubMed

    Shi, Q Q; Zong, Q-G; Fu, S Y; Dunlop, M W; Pu, Z Y; Parks, G K; Wei, Y; Li, W H; Zhang, H; Nowada, M; Wang, Y B; Sun, W J; Xiao, T; Reme, H; Carr, C; Fazakerley, A N; Lucek, E

    2013-01-01

    An understanding of the transport of solar wind plasma into and throughout the terrestrial magnetosphere is crucial to space science and space weather. For non-active periods, there is little agreement on where and how plasma entry into the magnetosphere might occur. Moreover, behaviour in the high-latitude region behind the magnetospheric cusps, for example, the lobes, is poorly understood, partly because of lack of coverage by previous space missions. Here, using Cluster multi-spacecraft data, we report an unexpected discovery of regions of solar wind entry into the Earth's high-latitude magnetosphere tailward of the cusps. From statistical observational facts and simulation analysis we suggest that these regions are most likely produced by magnetic reconnection at the high-latitude magnetopause, although other processes, such as impulsive penetration, may not be ruled out entirely. We find that the degree of entry can be significant for solar wind transport into the magnetosphere during such quiet times.

  9. The physics of thermal plasma in the magnetosphere; Proceedings of Symposium 9 of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    NASA Technical Reports Server (NTRS)

    Chappell, C. R. (Editor); Gringauz, K. I. (Editor)

    1986-01-01

    The conference presents papers on the shape, dynamics, and thermal structure of the plasmasphere and plasmapause; the ionosphere as a supplier of plasma to the earth's magnetosphere; the modeling and remote sensing of thermal plasma in the earth's magnetosphere; and magnetospheric cold plasmas as a medium for wave generation and propagation. Particular attention is given to whistler studies of plasmasphere shape and dynamics, plasmasphere thermal structure as measured by ISEE-1 and DE-1, low-energy ion flows into the magnetosphere, field-aligned flows of ionospheric plasma in the magnetosphere, and field-aligned plasmaspheric flows at moderate latitudes. Papers are also presented on the effects of a tailward stretching geomagnetic field on the drift motion of plasma particles in the magnetospheric equatorial plane, ion cyclotron waves observed near the plasmapause, and the response of energetic particles to nightside magnetic pulsations as seen by AMPTE/CCE.

  10. Interrelationships between cellulase activity and cellulose particle morphology

    SciTech Connect

    Olsen, Johan P.; Donohoe, Bryon S.; Borch, Kim; Resch, Michael G.

    2016-06-11

    It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate depletion, product inhibition or enzyme instability. It has been suggested that the underlying reason for the loss of enzyme activity is connected to the heterogeneous structure of cellulose, but so far attempts to establish quantitative measures of such a correlation remain speculative. Here, we have carried out an extensive microscopy study of Avicel particles during extended hydrolysis with Hypocrea jecorina cellobiohydrolase 1 (CBH1) and endoglucanase 1 and 3 (EG1 and EG3) alone and in mixtures. We have used differential interference contrast microscopy and transmission electron microscopy to observe and quantify structural features at um and nm resolution, respectively. We implemented a semi-automatic image analysis protocol, which allowed us to analyze almost 3000 individual micrographs comprising a total of more than 300,000 particles. From this analysis we estimated the temporal development of the accessible surface area throughout the reaction. We found that the number of particles and their size as well as the surface roughness contributed to surface area, and that within the investigated degree of conversion (<30 %) this measure correlated linearly with the rate of reaction. Lastly, based on this observation we argue that cellulose structure, specifically surface area and roughness, plays a major role in the ubiquitous rate loss observed for cellulases.

  11. Ice nucleation active particles are efficiently removed by precipitating clouds.

    PubMed

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-11-10

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ(18)O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ -10 °C (INPs-10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space.

  12. Ice nucleation active particles are efficiently removed by precipitating clouds

    PubMed Central

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E.; Herrmann, Erik; Bukowiecki, Nicolas; Alewell, Christine

    2015-01-01

    Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ18O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ −10 °C (INPs−10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 μm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space. PMID:26553559

  13. Directed transport of active particles over asymmetric energy barriers.

    PubMed

    Koumakis, N; Maggi, C; Di Leonardo, R

    2014-08-21

    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transition rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions.

  14. Investigation of solar wind and magnetospheric forcing effects on the outer Van Allen belt through multi-point measurements in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Katsavrias, C.; Georgiou, M.; Turner, D. L.; Sandberg, I.; Balasis, G.; Papadimitriou, K.

    2014-12-01

    We have investigated the response of the outer Van Allen belt electrons to various types of solar wind and internal magnetospheric forcing - in particular to Interplanetary Coronal Mass Ejections (ICMEs), to geospace magnetic storms of different intensities and to intense magnetospheric substorms. We have employed multi-point particle and field observations in the inner magnetosphere (both in-situ and through ground-based remote sensing), including the Cluster, THEMIS, Van Allen Probes and GOES constellations, the XMM and INTEGRAL spacecraft, and the CARISMA and IMAGE ground magnetometer arrays. The data provide a broad range of particle energies and a wide radial and azimuthal spatial coverage. This work has received support from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analysing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  15. Magnetic Field Statistics in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Guio, P.; Achilleos, N.; Santolik, O.; Masters, A.; Arridge, C.

    2012-04-01

    We present a statistical study of the fluctuations of the magnetic field for different regions of Saturn's magnetosphere as measured by the magnetometer instrument (MAG) on board the Cassini spacecraft. The magnetometer data, for a set of illustrative orbits during the prime mission, are used to construct probability distribution functions (PDFs) of magnetic fluctuations, in both the field-aligned and perpendicular directions. This technique is often used to look for intermittent plasma turbulence and non-self-similar properties in the fluctuations. Here we investigate the possibility to successfully characterise a region and/or regime of the magnetosphere in the signature of these PDFs. We construct PDFs from first principles, and we also consolidate our analysis by using an on-line data analysis tool ``Demonstrator for Multi-dimensional Spectral Analysis of Electromagnetic Fields'' developed under the Europlanet Joint Research Activity 3. We determine polarisation and propagation properties of the observed fluctuations as a function of frequency. We also comment on the applicability of these methods to identifying different characteristic frequencies and directions of boundary waves, such as Kelvin-Helmholtz disturbances.

  16. Magnetic Field Statistics in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Guio, P.; Achilleos, N. A.; Santolik, O.; Masters, A.; Arridge, C. S.

    2011-12-01

    We present a statistical study of the fluctuations of the magnetic field for different regions of Saturn's magnetosphere as measured by the magnetometer instrument (MAG) on board the Cassini spacecraft. The magnetometer data, for a set of illustrative orbits during the prime mission, are used to construct probability distribution functions (PDFs) of magnetic fluctuations, in both the field-aligned and perpendicular directions. This technique is often used to look for intermittent plasma turbulence and non-self-similar properties in the fluctuations. Here we investigate the possibility to successfully characterise a region and/or regime of the magnetosphere in the signature of these PDFs. We construct PDFs from first principles, and we also consolidate our analysis by using an on line data analysis tool "Demonstrator for Multi-dimensional Spectral Analysis of Electromagnetic Fields" developed under the Europlanet Joint Research Activity 3. We determine polarisation and propagation properties of the observed fluctuations as a function of frequency. We also comment on the applicability of these methods to identifying different characteristic frequencies and directions of boundary waves, such as Kelvin-Helmholtz disturbances.

  17. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  18. Climatology of high-β plasma measurements in Earth's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, Ross; Gerrard, Andrew J.; Lanzerotti, Louis J.; Soto-Chavez, A. R.; Kim, Hyomin; Manweiler, Jerry W.

    2017-01-01

    Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high-resolution measurements of Earth's ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high-beta (β) plasma events (defined here as β > 1) as measured by the RBSPICE instrument in the ˜45 keV to ˜600 keV proton energy range in the inner magnetosphere (L < 5.8) has been constructed. In this paper we report this climatology of such high-β plasma occurrences, durations, and their general characteristics. Specifically, we show that most high-β events in the RBSPICE energy range are associated with postdusk/premidnight sector particle injections or plasma patches and can last from minutes to hours. While most of these events have a β less than 2, there are a number of observations reaching β greater than 4. Other observations of particular note are high-β events during relatively minor geomagnetic storms and examples of very long duration high-β plasmas. We show that high-β plasmas are a relatively common occurrence in the inner magnetosphere during both quiet and active times. As such, the waves generated by these plasmas may have an underappreciated role in the inner magnetosphere, and thus the study of these plasmas and their instabilities may be more important than has been currently addressed.

  19. Forecasting keV-electrons in the inner Earth's magnetosphere responsible for surface charging

    NASA Astrophysics Data System (ADS)

    Ganushkina, N. Y.; Dubyagin, S.; Sillanpaa, I.; Pitchford, D. A.

    2015-12-01

    Low energy (up to 100-200 keV) electron fluxes are very important to specify when hazardous satellite surface charging phenomena are considered. These electrons are the seed population, being further accelerated to MeV energies by various processes in the Earth's radiation belts. Accurate modeling and forecasting of low energy electrons is very challengable, since the electron flux at the keV energies is largely determined by convective and substorm-associated electric fields and varies significantly with geomagnetic activity driven by the solar wind on the time scales on tens of minutes. We present the model for low energy (< 200 keV) electrons in the inner magnetosphere, which is the version of the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM) for electrons. This model has been operating online since March 2013 (http://fp7-spacecast.eu and imptam.fmi.fi). The model is driven by the real time solar wind and Interplanetary Magnetic Field (IMF) parameters with 1 hour time shift for propagation to the Earth's magnetopause, and by the real time Dst index. The presented model provides the low energy electron flux at all L-shells and at all satellite orbits, when necessary. We present the model performance analysis (accumulated model output compared to GOES MAGED data) and demonstrate the model's forecasting abilities on several real space weather events. We discuss the recent advances we achieved for model's inputs such as solar wind-driven boundary conditions in the plasma sheet (based on THEMIS data) and introducing the electron lifetimes due to interactions with chorus and hiss waves. We show that the IMPTAM model for electrons provides very good forecast of keV-electrons in the inner magnetosphere.

  20. Coupling between the atmosphere, the ionosphere and the magnetosphere : Project of microsatellite Taranis

    NASA Astrophysics Data System (ADS)

    Blanc, E.; Taranis Team

    2003-04-01

    Strong interactions between the middle and upper regions of the atmosphere and ionosphere are manifested by light emission in the middle and upper atmosphere, known as sprites and elves, gamma radiation of atmospheric origin, electromagnetic emissions recently observed above atmospheric storms. This direct coupling between active storm cells, the thermosphere and the ionosphere - and the considerable energies involved - gives rise to processes unsuspected until now regarding space plasmas as well as the chemistry and dynamics of the middle atmosphere. The electromagnetic and particle emissions could derive from the run away relativistic electrons initiated by the impact of cosmic rays on storm cells. These processes can have a significant effect on the Earth's magnetosphere, in particular by modifying the source terms and loss of the radiation belts. The microsatellite Taranis (Tool for the Analysis of RAdiations from lightNIngs and Sprites) proposes to study the coupling between atmosphere, ionosphere and magnetosphere during atmospheric storms. This has to be carried on a local and global scale in order to understand the physical mechanisms responsible for the impulsive transfers of energy between the neutral atmosphere and plasmas of the ionosphere and magnetosphere. The final goal is to establish the impact of these processes on the Earth's environment. The purpose of this presentation is to describe in a first part the project Taranis, his scientific objectives, the mission and the scientific payload. In a second part the first results of the experiment LSO (Lightning and Sprite Observations), on board of the International Space Station, will be presented. LSO is composed of two micro-cameras, fixed on a ISS window for observations at the horizon or at the nadir. One camera is equipped with a filter and measures the emissions from earth in a specific spectral window, the second works in the visible. The measurements allow the identification of sprites and

  1. ULF waves in the magnetosphere

    SciTech Connect

    Takahashi, Kazue )

    1991-01-01

    Research efforts in the area of magnetospheric ULF waves in the 1987-1990 period are reviewed. Attention is given to externally excited hydromagnetic waves including field line resonance, the global cavity mode, bow-shock-associated upstream waves, and Kelvin-Helmholtz waves. Consideration is given to internally excited Pc 4-5 pulsations and the role of these pulsations in the diffusion of ring-current ions based on the observed properties of the pulsations. 154 refs.

  2. Association of Energetic Neutral Atom Bursts and Magnetospheric Substorms

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Kepko, L.; Henderson, M. G.; Spence, H. E.; Reeves, G. D.; Sigwarth, J. B.; Frank, L. A.

    2000-01-01

    In this paper we present evidence that short-lived bursts of energetic neutral atoms (ENAs) observed with the Comprehensive Energetic Particle and Pitch Angle Distribution/Imaging Proton Spectrometer (CEPPAD/IPS) instrument on the Polar spacecraft are signatures of substorms. The IPS was designed primarily to measure ions in situ, with energies between 17.5 and 1500 keV. However, it has also proven to be a very capable ENA imager in the range 17.5 keV to a couple hundred keV. It was expected that some ENA signatures of the storm time ring current would be observed. Interestingly, IPS also routinely measures weaker, shorter-lived, and more spatially confined bursts of ENAs with duration from a few tens of minutes to a few hours and appearing once or twice a day. One of these bursts was quickly associated with magnetospheric and auroral substorm activity and has been reported in the literature [Henderson et al., 19971. In this paper we characterize ENA bursts observed from Polar and establish statistically their association with classic substorm signatures (global auroral onsets, electron and ion injections, AL drops, and Pi2 onsets). We conclude that -90% of the observed ENA bursts are associated with classic substorms and thus represent a new type of substorm signature.

  3. The STEIN Particle Detector

    DTIC Science & Technology

    2015-02-27

    associated with solar disturbances, magnetic storms and magnetospheric substorms. AF-STEIN has several distinct advantages over standard detectors flown on...low-earth- orbit (LEO) satellites. AF-STEIN provides the sensitivity, temporal resolution, energy resolution (~1 keV FWHM), dynamic range, and energy...essentially all important suprathermal (~4 to 200 keV) particle populations associated with solar disturbances, magnetic storms and magnetospheric substorms

  4. Small intestinal transit of spherical particles in the active rat

    SciTech Connect

    Beall, P.T.; Sutton, S.C.; LeRoy-Wayne, S.

    1986-03-05

    Reproducible measurements of small intestine transit for spherical particles of 0.5 ..mu.. to 1 mm diameter, have been accomplished in the conscious rat. A short cannula of polyethylene is surgically implanted into the duodenum and exists through the abdominal wall. After recovery, a bolus of saline containing colored or isotopically labeled particulate material and an internal standard of NaCr/sup 51/O/sub 4/ is introduced with a modified pipette tip that snugly fills the cannula to prevent back flow. The rats eat and drink during the transit period and are maintained on a reversed light cycle so that transit is measured during their physically active period. Glass microspheres of 1mm, 500 ..mu.., and 50 ..mu.. were followed at 30 min, 1 hr, and 2 hr intervals by opening the intestine and photographing 1 cm segments along its length. Polymer beads of 500 ..mu.., 125 ..mu.., and 70 ..mu.. were labeled with /sup 125/I and located by freezing the exteriorized intestine and counting 1 cm segments in a gamma counter. Movement of the fluid bolus as detected by NaCr/sup 51/O/sub 4/ was reproducible with the fluid front moving through 59%, 73%, and 81% of the length at 30 min, 1 hr, and 2 hr. One millimeter to 125 ..mu.. glass and polymer beads moved with the fluid bolus. Evidence for separation of the fluid phase and particles under approx. 100 ..mu.. is accumulating. It is hypothesized that small particles under a critical size may become lodged in the mucus lining of the intestinal wall.

  5. Magnetospheric-ionospheric Poynting flux

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1994-01-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  6. Inhibition of catalase activity in vitro by diesel exhaust particles

    SciTech Connect

    Mori, Yoki; Murakami, Sumika; Sagae, Toshiyuki

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular anti-oxidant, was investigated because H{sub 2}O{sub 2} is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl{sup {minus}}, Br{sup {minus}}, or thiocyanate. Other anions, such as CH{sub 3}COO{sup {minus}} or SO{sub 4}{sup {minus}}, and cations such as K{sup +}, Na{sup +}, Mg{sup 2+}, or Fe{sup 2+}, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H{sub 2}O{sub 2} generated from cells in addition to that of O{sub 2}{sup {minus}} generated by the chemical reaction of DEP with oxygen. 10 refs., 6 figs.

  7. Inhibition of catalase activity in vitro by diesel exhaust particles.

    PubMed

    Mori, Y; Murakami, S; Sagae, T; Hayashi, H; Sakata, M; Sagai, M; Kumagai, Y

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular antioxidant, was investigated because H2O2 is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl-,Br-, or thiocyanate. Other anions, such as CH3COO- or SO4-, and cations such as K+, Na+, Mg2+, or Fe2+, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H2O2 generated from cells in addition to that of O2- generated by the chemical reaction of DEP with oxygen.

  8. Inner Magnetospheric keV-Energy Electrons and Their Influence on the Ionosphere-Thermosphere System

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Ridley, A. J.; Perlongo, N. J.; Blears, J.; Katus, R. M.; Ganushkina, N. Y.

    2012-12-01

    A series of simulations are conducted to explore the upper atmospheric response with respect to electron wave-particle scattering rate choice in the near-Earth magnetosphere. The Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric drift physics model is used to examine the drift of keV-energy electrons through the inner magnetosphere, quantify their scattering rates by VLF chorus and hiss waves, and calculate the precipitation of these particles into the upper atmosphere. The Global Ionosphere-Thermosphere Model (GITM) is then used to assess the impact of the precipitation on the ionosphere-thermosphere system. Two mechanisms are examined: the direct energy input from the precipitating particles and the electrodynamic coupling via the internally calculated electric potential within HEIDI. For a few selected magnetic storm events, the relationship and relative influence of the precipitative and electrodynamic coupling processes are presented and discussed.

  9. Particle Environment Package (PEP) for the ESA JUICE mission

    NASA Astrophysics Data System (ADS)

    Barabash, Stas; Brandt, Pontus; Wurz, Peter; PEP Team

    2016-10-01

    PEP is a suite of six (6) sensors arranged in 4 units to measure charged and neutral particles in the Jupiter magnetospheres and at the moons to answer four overarching science questions:1. How does the corotating magnetosphere of Jupiter interact with the complex and diverse environment of Ganymede?2. How does the rapidly rotating magnetosphere of Jupiter interact with the seemingly inert Callisto?3. What are the governing mechanisms and their global impacts of release of material into the Jovian magnetosphere from seemingly inert Europa and active Io?4. How do internal and solar wind drivers cause such energetic, time variable and multi-scale phenomena in the steadily rotating giant magnetosphere of Jupiter?PEP measures positive and negative ions, electrons, exospheric neutral gas, thermal plasma and energetic neutral atoms present in all domains of the Jupiter system over nine decades of energy from < 0.001 eV to > 1 MeV with full angular coverage.PEP provides instantaneous measurements of 3D flow of the ion plasma and composition to understand the magnetosphere and magnetosphere-moon interactions. It also measures instantaneously 3D electron plasma to investigate auroral processes at the moon and Jupiter. Measurements of the angular distributions of energetic electrons at sub-second resolution probe the acceleration mechanisms and magnetic field topology and boundaries.PEP combines global imaging via remote sensing using energetic neutral atoms (ENA) with in-situ measurements and performs global imaging of Europa/Io tori and magnetosphere combined with energetic ion measurements. Using low energy ENAs originating from the particle - surface interaction PEP investigate space weathering of the icy moons by precipitation particles. PEP will first-ever directly sample of the exospheres of Europa, Ganymede, and Callisto with extremely high mass resolution (M/ΔM > 1100).The PEP sensors are (1) an ion mass analyzer, (2) an electron spectrometer, (3) a low energy ENA

  10. Empirical magnetospheric and ionospheric models: legacy and outlook

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.

    2011-12-01

    Complex geospace plasmas have, by definition, a large number of dynamical regimes where the development of empirical models from experimental data is crucial. In the magnetosphere and ionosphere, the ongoing collection of in situ measurements has led to empirical models of various types. This paper reviews a small number of recent models and presents new approaches in constructing empirical models. Starting with the outer magnetosphere and high-latitude ionosphere, the magnetic field has been modeled in terms of static and time-dependent approximations, including time-dependent interplanetary driver variables. For the surface field in particular, a number of special approximations are possible leading to separation into different activity types and current systems. In the inner magnetosphere, models of the relativistic-electron flux have been constructed, together with ULF-wave-power models. Once more, interplanetary variables, such as the plasma velocity, have been included as necessary drivers of the flux and wave-power activity especially at the geosynchronous region. In the above cases, the models provide temporal scales and spatial extent of the geospace disturbance. It is shown that the magnetospheric and ionospheric plasmas respond in one or more characteristic modes whose spatiotemporal and energy characteristics are defined. We compare these empirical modeling approaches with numerical simulations and discuss their relative advantages. As ongoing and new missions yield additional observations from different locations and energy ranges, empirical models will be used for an increasing number of applications.

  11. Surface activity of solid particles with extremely rough surfaces.

    PubMed

    Nonomura, Yoshimune; Komura, Shigeyuki

    2008-01-15

    The solid particles are adsorbed at liquid-liquid interfaces and form self-assembled structures when the particles have suitable wettability to both liquids. Here, we show theoretically how the extreme roughness on the particle surface affects their adsorption properties. In our previous work, we discussed the adsorption behavior of the solid particles with microstructured surfaces using the so-called Wenzel model [Y. Nonomura et al., J. Phys. Chem. B 110 (2006) 13124]. In the present study, the wettability and the adsorbed position of the particles with extremely rough surfaces are studied based on the Cassie-Baxter model. We predict that the adsorbed position and the interfacial energy depend on the interfacial tensions between the solid and liquid phases, the radius of the particle, and the fraction of the particle surface area that is in contact with the external liquid phase. Interestingly, the initial state of the system governs whether the particle is adsorbed at the interface or not. The shape of the particle is also an important factor which governs the adsorbed position. The disk-shaped particle and the spherical particle which is partially covered with the extremely rough surface, i.e. Janus particle, are adsorbed at the liquid-liquid interface in an oriented state. We should consider not only the interfacial tensions, but also the surface structure and the particle shape to control the adsorption behavior of the particle.

  12. Magnetohydrodynamic Modeling of the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond

    2005-01-01

    Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.

  13. Particle-Cell Contact Enhances Antibacterial Activity of Silver Nanoparticles

    PubMed Central

    Bondarenko, Olesja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Kahru, Anne

    2013-01-01

    Background It is generally accepted that antibacterial properties of Ag nanoparticles (AgNPs) are dictated by their dissolved fraction. However, dissolution-based concept alone does not fully explain the toxic potency of nanoparticulate silver compared to silver ions. Methodology/Principal Findings Herein, we demonstrated that the direct contact between bacterial cell and AgNPs' surface enhanced the toxicity of nanosilver. More specifically, cell-NP contact increased the cellular uptake of particle-associated Ag ions – the single and ultimate cause of toxicity. To prove that, we evaluated the toxicity of three different AgNPs (uncoated, PVP-coated and protein-coated) to six bacterial strains: Gram-negative Escherichia coli, Pseudomonas fluorescens, P. putida and P. aeruginosa and Gram-positive Bacillus subtilis and Staphylococcus aureus. While the toxicity of AgNO3 to these bacteria varied only slightly (the 4-h EC50 ranged from 0.3 to 1.2 mg Ag/l), the 4-h EC50 values of protein-coated AgNPs for various bacterial strains differed remarkably, from 0.35 to 46 mg Ag/l. By systematically comparing the intracellular and extracellular free Ag+ liberated from AgNPs, we demonstrated that not only extracellular dissolution in the bacterial test environment but also additional dissolution taking place at the particle-cell interface played an essential role in antibacterial action of AgNPs. The role of the NP-cell contact in dictating the antibacterial activity of Ag-NPs was additionally proven by the following observations: (i) separation of bacterial cells from AgNPs by particle-impermeable membrane (cut-off 20 kDa, ∼4 nm) significantly reduced the toxicity of AgNPs and (ii) P. aeruginosa cells which tended to attach onto AgNPs, exhibited the highest sensitivity to all forms of nanoparticulate Ag. Conclusions/Significance Our findings provide new insights into the mode of antibacterial action of nanosilver and explain some discrepancies in this field, showing that

  14. Confinement and Transport in a Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Peterson, Ethan; Clark, Michael; Cooper, Christopher; Endrizzi, Douglass; Wallace, John; Weisberg, David; Forest, Cary

    2016-10-01

    Measurements of density, temperature, diamagnetic currents, and ion flows throughout a dipole magnetosphere immersed in a homogeneous plasma are presented. A 1-D ambipolar diffusion transport model developed for multi-cusp confinement systems is adapted for a dipole magnetosphere geometry and compared to measurements. In addition, differential azimuthal flow is imposed on the magnetosphere through electrically driven flow at the boundary of the machine. Modifications to the transport and confinement due to differential rotation are presented as well.

  15. Emergent smectic order in simple active particle models

    NASA Astrophysics Data System (ADS)

    Romanczuk, Pawel; Chaté, Hugues; Chen, Leiming; Ngo, Sandrine; Toner, John

    2016-06-01

    Novel ‘smectic-P’ behavior, in which self-propelled particles form rows and move on average along them, occurs generically within the orientationally ordered phase of simple models that we simulate. Both apolar (head-tail symmetric) and polar (head-tail asymmetric) models with aligning and repulsive interactions exhibit slow algebraic decay of smectic order with system size up to some finite length scale, after which faster decay occurs. In the apolar case, this scale is that of an undulation instability of the rows. In the polar case, this instability is absent, but traveling fluctuations disrupt the rows in large systems and motion and smectic order may spontaneously globally rotate. These observations agree with a new hydrodynamic theory which we present here. Variants of our models also exhibit active smectic ‘A’ and ‘C’ order, with motion orthogonal and oblique to the layers respectively.

  16. The Fast Plasma Investigation on the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Rager, A. C.; Pollock, C. J.; Avanov, L. A.; Barrie, A. C.; Burch, J. L.; Chandler, M. O.; Clark, G. B.; Coffey, V. N.; Dickson, C.; Dorelli, J.; Ergun, R.; Fuselier, S. A.; Gliese, U.; Giles, B. L.; Holland, M. P.; Jacques, A. D.; Kreisler, S.; Lavraud, B.; MacDonald, E.; Mauk, B.; Moore, T. E.; Mukai, T.; Nakamura, R.; Rosnack, T.; Saito, Y.; Salo, C.; Sauvaud, J. A.; Smith, D. L.; Smith, S. E.; Torbert, R. B.; Yokota, S.

    2015-12-01

    Launched in March 2015, the Fast Plasma Investigation (FPI) instrument suite on the Magnetospheric Multiscale Mission (MMS) is producing the highest time and spatial resolution 3D electron and ion particle distribution function measurements to date. During FPI science operations, the four spacecraft maintain a tetrahedral formation such that 3D measurements of the plasma and field gradients are enabled. This allows the spacecraft to better investigate reconnection and to distinguish between spatial and temporal structures. In the first three months, we expect to observe magnetic phenomena such as dipolarization fronts, the plasma sheet boundary layer, magnetopause crossings, ion dispersive signatures of from remote reconnection sites, and magnetic holes. This poster is intended to supplement the invited talk on FPI results by Pollock et al. by providing further detail of the instrumentation and calibration, as well as a sampling of early magnetospheric plasma observations in the evening-side magnetotail, dusk flank, and afternoon magnetopause.

  17. New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje; Krimigis, Stamatios M.; McNutt, Ralph L., Jr.; Raines, James M.; Schriver, David; Somomon, Sean C.; Starr, Richard; Travnicek, Pavel; Zurbuchen, Thomas H.

    2008-01-01

    Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.

  18. Mercury's Atmosphere and Magnetosphere: MESSENGER Third Flyby Observations

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Johnson, Catherine L.; Gloeckler, George; Killen, Rosemary M.; Krimigis, Stamatios M.; McClintock, William; McNutt, Ralph L., Jr.; Schriver, David; Solomon, Sean C.; Sprague, Ann L.; Vevack, Ronald J., Jr.; Zurbuchen, Thomas H.

    2009-01-01

    MESSENGER's third flyby of Mercury en route to orbit insertion about the innermost planet took place on 29 September 2009. The earlier 14 January and 6 October 2008 encounters revealed that Mercury's magnetic field is highly dipolar and stable over the 35 years since its discovery by Mariner 10; that a structured, temporally variable exosphere extends to great altitudes on the dayside and forms a long tail in the anti-sunward direction; a cloud of planetary ions encompasses the magnetosphere from the dayside bow shock to the downstream magnetosheath and magnetotail; and that the magnetosphere undergoes extremely intense magnetic reconnect ion in response to variations in the interplanetary magnetic field. Here we report on new results derived from observations from MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS), Magnetometer (MAG), and Energetic Particle and Plasma Spectrometer (EPPS) taken during the third flyby.

  19. Interrelationships between cellulase activity and cellulose particle morphology

    DOE PAGES

    Olsen, Johan P.; Donohoe, Bryon S.; Borch, Kim; ...

    2016-06-11

    It is well documented that the enzymatic hydrolysis of cellulose follows a reaction pattern where an initial phase of relatively high activity is followed by a gradual slow-down over the entire course of the reaction. This phenomenon is not readily explained by conventional factors like substrate depletion, product inhibition or enzyme instability. It has been suggested that the underlying reason for the loss of enzyme activity is connected to the heterogeneous structure of cellulose, but so far attempts to establish quantitative measures of such a correlation remain speculative. Here, we have carried out an extensive microscopy study of Avicel particlesmore » during extended hydrolysis with Hypocrea jecorina cellobiohydrolase 1 (CBH1) and endoglucanase 1 and 3 (EG1 and EG3) alone and in mixtures. We have used differential interference contrast microscopy and transmission electron microscopy to observe and quantify structural features at um and nm resolution, respectively. We implemented a semi-automatic image analysis protocol, which allowed us to analyze almost 3000 individual micrographs comprising a total of more than 300,000 particles. From this analysis we estimated the temporal development of the accessible surface area throughout the reaction. We found that the number of particles and their size as well as the surface roughness contributed to surface area, and that within the investigated degree of conversion (<30 %) this measure correlated linearly with the rate of reaction. Lastly, based on this observation we argue that cellulose structure, specifically surface area and roughness, plays a major role in the ubiquitous rate loss observed for cellulases.« less

  20. Intermediate scattering function of an anisotropic active Brownian particle

    NASA Astrophysics Data System (ADS)

    Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas

    2016-10-01

    Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.

  1. DYNAMICS OF STRONGLY TWISTED RELATIVISTIC MAGNETOSPHERES

    SciTech Connect

    Parfrey, Kyle; Beloborodov, Andrei M.; Hui, Lam

    2013-09-10

    Magnetar magnetospheres are believed to be strongly twisted due to shearing of the stellar crust by internal magnetic stresses. We present time-dependent axisymmetric simulations showing in detail the evolution of relativistic force-free magnetospheres subjected to slow twisting through large angles. When the twist amplitude is small, the magnetosphere moves quasi-statically through a sequence of equilibria of increasing free energy. At some twist amplitude the magnetosphere becomes tearing-mode unstable to forming a resistive current sheet, initiating large-scale magnetic reconnection in which a significant fraction of the magnetic free energy can be dissipated. This ''critical'' twist angle is insensitive to the resistive length scale. Rapid shearing temporarily stabilizes the magnetosphere beyond the critical angle, allowing the magnetosphere of a rapidly differentially rotating star to store and dissipate more free energy. In addition to these effects, shearing the surface of a rotating star increases the spindown torque applied to the star. If shearing is much slower than rotation, the resulting spikes in spindown rate can occur on timescales anywhere from the long twisting timescale to the stellar spin period or shorter, depending both on the stellar shear distribution and the existing distribution of magnetospheric twists. A model in which energy is stored in the magnetosphere and released by a magnetospheric instability therefore predicts large changes in the measured spindown rate before soft gamma repeater giant flares.

  2. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    NASA Astrophysics Data System (ADS)

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  3. An empirical model of ion plasma in the inner magnetosphere derived from CRRES/MICS measurements

    NASA Astrophysics Data System (ADS)

    Claudepierre, S. G.; Chen, M. W.; Roeder, J. L.; Fennell, J. F.

    2016-12-01

    We describe an empirical model of energetic ion plasma (˜20-400 keV/q) that is constructed from measurements taken by the Magnetospheric Ion Composition Spectrometer (MICS) instrument that flew on the CRRES spacecraft. This is a unique data set in that it provides energetic ion composition in the near-equatorial ring current region during a very active solar maximum. The model database is binned by energy, equatorial pitch angle, L shell, and magnetic local time and provides unidirectional, differential number fluxes of the major ionic constituents of the inner magnetosphere, such as protons (H+), singly charged oxygen (O+), and singly charged helium (He+). The H+ and O+ model fluxes are examined in detail and are consistent with well-known particle transport effects (e.g., adiabatic heating). We also validate these model fluxes against a number of other ion plasma models that are available in the literature. The primary finding is the elevated levels of energetic O+ flux during the CRRES era. We attribute this to a solar cycle effect, related to the enhanced upwelling and oxygen outflow from the ionosphere that occurs during solar maximum, driven by elevated solar extreme ultraviolet radiation. We briefly discuss the implications that the enhanced O+ environment during the CRRES era may have for other results derived from CRRES observations (e.g., statistical wave distributions).

  4. Observing the magnetosphere through global auroral imaging: 1. Observables

    NASA Astrophysics Data System (ADS)

    Mende, Stephen B.

    2016-10-01

    Over the years, it has become clear that there are fundamental limitations in observing magnetospheric processes through their auroral footprints. Most electron auroras are formed in the auroral acceleration region relatively close to the Earth at altitudes (<2 RE). There are four distinct auroral types: (1) downward field-aligned current (FAC) regions where ion precipitation is dominant, (2) pitch angle diffusion aurora (or briefly "diffusion aurora") region without significant FAC, (3) upward FAC regions of precipitating electrons and monoenergetic auroral arc formations, and (4) Alfvénic auroral regions, where low-energy electrons from the ionosphere are accelerated by incoming Alfvén waves. Alfvénic auroras are the footprints of magnetospheric regions where waves are produced by dynamic events such as reconnection, substorm onset initiation, and magnetic field dipolarization. Based on the mean energy and density of the precipitating electrons, ground-based and spacecraft-based optical observations can be used to distinguish between auroras where the source is the plasma sheet (types 1, 2, and 3) and Alfvénic auroras, where the source is the ionosphere (type 4). Imaging of the Alfvénic auroral region could be used to map the dynamically active regions of the magnetosphere. The energy distribution of the most significant precipitating ions, protons, can be measured from the Doppler profile of the hydrogen emission lines. Mapping of the time dependent global energy distribution of proton precipitation would allow the observation of the associated magnetospheric boundaries.

  5. Improving Upon an Empirical Procedure for Characterizing Magnetospheric States

    NASA Astrophysics Data System (ADS)

    Fung, S. F.; Neufeld, J.; Shao, X.

    2012-12-01

    Work is being performed to improve upon an empirical procedure for describing and predicting the states of the magnetosphere [Fung and Shao, 2008]. We showed in our previous paper that the state of the magnetosphere can be described by a quantity called the magnetospheric state vector (MS vector) consisting of a concatenation of a set of driver-state and a set of response-state parameters. The response state parameters are time-shifted individually to account for their nominal response times so that time does not appear as an explicit parameter in the MS prescription. The MS vector is thus conceptually analogous to the set of vital signs for describing the state of health of a human body. In that previous study, we further demonstrated that since response states are results of driver states, then there should be a correspondence between driver and response states. Such correspondence can be used to predict the subsequent response state from any known driver state with a few hours' lead time. In this paper, we investigate a few possible ways to improve the magnetospheric state descriptions and prediction efficiency by including additional driver state parameters, such as solar activity, IMF-Bx and -By, and optimizing parameter bin sizes. Fung, S. F. and X. Shao, Specification of multiple geomagnetic responses to variable solar wind and IMF input, Ann. Geophys., 26, 639-652, 2008.

  6. Continuum Level Results from Particle Simulations of Active Suspensions

    NASA Astrophysics Data System (ADS)

    Delmotte, Blaise; Climent, Eric; Plouraboue, Franck; Keaveny, Eric

    2014-11-01

    Accurately simulating active suspensions on the lab scale is a technical challenge. It requires considering large numbers of interacting swimmers with well described hydrodynamics in order to obtain representative and reliable statistics of suspension properties. We have developed a computationally scalable model based on an extension of the Force Coupling Method (FCM) to active particles. This tool can handle the many-body hydrodynamic interactions between O (105) swimmers while also accounting for finite-size effects, steady or time-dependent strokes, or variable swimmer aspect ratio. Results from our simulations of steady-stroke microswimmer suspensions coincide with those given by continuum models, but, in certain cases, we observe collective dynamics that these models do not predict. We provide robust statistics of resulting distributions and accurately characterize the growth rates of these instabilities. In addition, we explore the effect of the time-dependent stroke on the suspension properties, comparing with those from the steady-stroke simulations. Authors acknowledge the ANR project Motimo for funding and the Calmip computing centre for technical support.

  7. EMIC Waves in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Usanova, M. E.; Mann, I. R.; Darrouzet, F.

    2016-02-01

    Electromagnetic ion cyclotron (EMIC) waves are transverse plasma waves generated in the inner magnetosphere by ring current ions with perpendicular temperature anisotropy and are typically registered on the ground in the Pc1-2 frequency range. This chapter focuses on the characteristics of EMIC waves that may be important for understanding their impacts on ring current and radiation belt dynamics. It examines wave characteristics in the source region, and considers the effect of plasma composition on the wave spectrum and propagation to the ground. The chapter also outlines the potential importance of the plasmapause for wave growth and ducting. It shows that EMIC wave activity is often observed to be generated in radially narrow regions, just inside the plasmapause. Analysis of satellite plasmapause crossings demonstrates that EMIC waves observed in the vicinity of the plasmapause have relatively low occurrence rates and are observed in lower than 10% of cases.

  8. Nitrogen In Saturn's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D.; Reisenfeld, D.; Shappirio, M.; Michael, M.; Shematovich, V. I.; Baragiola, R. A.; Crary, F.; Young, D.

    2004-11-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions to the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). Howev