Use of Pressure Activation in Food Quality Improvement.
Shigematsu, Toru
2015-01-01
Beside intensive studies on inactivation microorganisms by high hydrostatic pressure (HP) for food storage, pressure effects on property of food materials have also been studied based on knowledge in pressure effect on biomolecules. Pressure effects on biological membranes and mass transfer in cellular biological materials and on enzyme activity would give an idea that HP treatment can introduce two types of activations into food materials: improved mass transfer and enzyme activity. Studies focusing on these pressure activations on food materials were then reviewed. Rice flour with an exclusively fine mean particle size and small starch damage was obtained due to improved water absorption properties and/or enzyme activity by HP. HP treatment increased of free amino acids and γ-aminobutyric acid (GABA) in rice and soybeans due to improved proteolysis and amino acid metabolism. Improvement of antioxidant activity and alteration of polyphenolic-compounds composition in food materials were also demonstrated by HP treatment. The HP-induced activations on food materials could contribute towards processing technologies for food quality improvement.
Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN
2011-05-31
A method of detecting an activator, the method including impinging a receptor material that is not predominately water and lacks a photoluminescent material with an activator and generating Cherenkov effect light due to the activator impinging the receptor material. The method further including identifying a characteristic of the activator based on the light.
Infra-red signature neutron detector
Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN
2009-10-13
A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.
Allemand, Pierre M.; Grimes, Randall F.; Ingle, Andrew R.; Cronin, John P.; Kennedy, Steve R.; Agrawal, Anoop; Boulton, Jonathan M.
2001-01-01
An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.
Activity measurement and effective dose modelling of natural radionuclides in building material.
Maringer, F J; Baumgartner, A; Rechberger, F; Seidel, C; Stietka, M
2013-11-01
In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagpal, Swati; Aurora, Aradhna
1999-11-01
In DOW type of phase change optical memories the focus has been mainly on gestate based systems due to their good overwriting capability and very high order cyclability. To avoid the material deterioration problems such as material flow, high melting point, high viscosity or high-density components such as CrTe, (which have the same refractive index) can be added to the active layer. This has led to an improved performance of overwrite cycles from 105 to 106. Material flow occurs due to void formation. Voids and sinks are formed due to porosity of the active layer because the active layer has a density lower than that of the bulk material. One of the reasons for the formation and coalescence of voids is the way in which the film is deposited viz. Sputtering which makes Ar atoms accumulate in the films during deposition. Also the mechanical strength of the protective layer effects the repeatability of the active layer. All the above mentioned processes occur during melting and re- solidification of the nano-sized spots which are laser irradiated. Since the structure of the protective layers is very important in controlling the void formation, it is very important to study the thermal modeling of the full layer structure.
NASA Astrophysics Data System (ADS)
Fratzl, Peter
Biological tissues are naturally interactive and adaptive. In general, these features are due to the action of cells that provide sensing, actuation as well as tissue remodelling. There are also examples of materials synthesized by living organisms, such as plant seeds, which fulfil an active function without living cells working as mechanosensors and actuators. Thus the activity of these materials is based on physical principles alone, which provides inspiration for new concepts for artificial active materials. We will describe structural principles leading to movement in seed capsules triggered by ambient humidity and discuss the influence of internal architecture on the overall mechanical behaviour of materials, including actuation and motility. Several conceptual systems for actuating planar structures will be discussed.
Hybrid energy storage systems utilizing redox active organic compounds
Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo
2015-09-08
Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wen; Banerjee, Debasis; Liu, Jian
A redox-active metal-organic composite material shows improved and selective O-2 adsorption over N-2 with respect to individual components (MIL-101 and ferrocene). The O-2 sensitivity of the composite material arises due to the formation of maghemite nanoparticles with the pore of the metal-organic framework material.
A review of catalyst-enhanced magnesium hydride as a hydrogen storage material
NASA Astrophysics Data System (ADS)
Webb, C. J.
2015-09-01
Magnesium hydride remains an attractive hydrogen storage material due to the high hydrogen capacity and low cost of production. A high activation energy and poor kinetics at practical temperatures for the pure material have driven research into different additives to improve the sorption properties. This review details the development of catalytic additives and their effect on the activation energy, kinetics and thermodynamic properties of magnesium hydride.
Monothioanthraquinone as an organic active material for greener lithium batteries
NASA Astrophysics Data System (ADS)
Iordache, Adriana; Maurel, Vincent; Mouesca, Jean-Marie; Pécaut, Jacques; Dubois, Lionel; Gutel, Thibaut
2014-12-01
In order to reduce the environmental impact of human activities especially transportation and portable electronics, a more sustainable way is required to produce and store electrical energy. Actually lithium battery is one of the most promising solutions for energy storage. Unfortunately this technology is based on the use of transition metal-based active materials for electrodes which are rare, expensive, extracted by mining, can be toxic and hard to recycle. Organic materials are an interesting alternative to replace inorganic counterparts due to their high electrochemical performances and the possibility to produce them from renewable resources. A quinone derivative is synthetized and investigated as novel active material for rechargeable lithium ion batteries which shows higher performances.
A Compton Suppressed Gamma Ray Counter For Radio Assay of Materials
NASA Astrophysics Data System (ADS)
Godfrey, Benjamin
2016-03-01
Rare event searches, such as direct dark matter experiments, require materials with ultra-low levels of natural radioactivity. We present a neutron activation analysis (NAA) technique for assaying metals, specifically titanium used for cryostat construction. Earlier attempts at NAA encountered limitations due to bulk activation via (n, p) reactions, which contributed to large continuum backgrounds due to Compton tails. Our method involves a heavy water shielded exposure to minimize (n,p) reactions and a sodium iodide shielded high purity germanium counter for the gamma ray assay. Preliminary results on assays for U/Th/K contamination in titaniumwill be presented.
Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab
NASA Astrophysics Data System (ADS)
Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.
2014-06-01
In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.
Activated alumina preparation and characterization: The review on recent advancement
NASA Astrophysics Data System (ADS)
Rabia, A. R.; Ibrahim, A. H.; Zulkepli, N. N.
2018-03-01
Aluminum and aluminum based material are significant industrial materials synthesis because of their abandonment, low weight and high-quality corrosion resistance. The most advances in aluminum processing are the ability to synthesize it's under suitable chemical composition and conditions, a porous structure can be formed on the surface. Activated alumina particles (AAP) synthesized by the electrochemically process from aluminum have gained serious attention, inexpensive material that can be employed for water filtration due to its active surface. Thus, the paper present a review study based on recent progress and advances in synthesizing activated alumina, various techniques currently being used in preparing activated alumina and its characteristics are studied and summarized
Measuring "g" by Using Trajectory Projectile Motion: 5E Learning Cycle and Low-Cost Materials
ERIC Educational Resources Information Center
Ornek, Funda; Zziwa, Byansi Jude
2011-01-01
In some countries physics lessons are limited in many cases due to different constraints to lecturing and rote learning with in short supply use of teaching materials and other practical activities. These limitations can make physics abstract and difficult for students to understand. This paper presents one of activities, which can be done by…
Developments in the Material Fabrication and Performance of LiMn2O4 dCld Cathode Material
2016-06-13
Lithium manganese spinel; Lithium rechargeable batteries , Lithium - ion battery ...requirements. Lithium and lithium - ion battery systems are highly sought after for rechargeable applications due to their high energy density (Wh/L...further optimization, the robust LixMn2O4-dCld spinel materials will be promising active materials for future integration into lithium - ion batteries
Theoretical backgrounds of non-tempered materials production based on new raw materials
NASA Astrophysics Data System (ADS)
Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.
2018-03-01
One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.
Study of device for precompaction and uniform supply of materials to working bodies of aggregate
NASA Astrophysics Data System (ADS)
Romanovich, A. A.; Kolesnikov, R. S.; Romanovich, M. A.
2018-03-01
The article considers perspective ways of increase of reliability and durability of the press roller grinder due to the uniform supply of crushed materials across the width of the rolls. The mechanism of distribution and pre- compaction of materials in a roller arrangement has been analytically studied, an equation has been derived for calculating the effort expended. The materials of the article are devoted to increasing the reliability of the press roller grinder due to the uniform supply of grindable materials along the width of the rolls and may be of interest to Russian and foreign organizations that carry out their activities in the field of exploitation, designing and manufacturing of crushing and grinding equipment.
Process for preparing multilayer enzyme coating on a fiber
Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA
2009-11-03
A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.
Physical and chemical analysis of a Ni/H2 cell
NASA Technical Reports Server (NTRS)
Vaidyanathan, H.; Earl, M. W.; Kirkendall, T. D.
1991-01-01
A cycled aerospace nickel hydrogen (Ni/H2) cell was subjected to destructive physical analysis to determine the reason for a capacity loss after 5,967 cycles at 60 percent depth of discharge. The positive plates in the cell were analyzed in terms of chemical composition, active material utilization, charge efficiency, and thickness increase. The microstructure of a cross section of the positive plate was determined by backscattered electron image analysis. The results suggest that the capacity loss in the cell is caused by low charge acceptance and low active material utilization at the positive plate. The oxidized nickel species content of the positive plate increased due to corrosion of the nickel sintered skeleton. This appears to circumvent the orderly reaction of the active material. Microstructural analysis has indicated that a new phase of active material is formed with cycling.
Waste management for different fusion reactor designs
NASA Astrophysics Data System (ADS)
Rocco, Paolo; Zucchetti, Massimo
2000-12-01
Safety and Environmental Assessment of Fusion Power (SEAFP) waste management studies performed up to 1998 concerned three power tokamak designs. In-vessel structural materials consist of V-alloys or low activation martensitic (LAM) steel; tritium-producing materials are Li 2O, Pb-17Li, Li 4SiO 4 with a Be-multiplier; coolants are helium or water. The strategy chosen reduces permanent radwaste by recycling the in-vessel materials and by clearance of the other structures. Limits of the contact dose rate and specific activity of the waste allowing such options are defined accordingly. SEAFP activities for 1999 enlarge the analysis to three additional reactors with in-vessel structures made with SiC/SiC composites. These materials cannot be recycled due to their form and, according to national regulations of E.C. countries, long-lived activation products hinder near-surface burial (NSB).
Morphing Compression Garments for Space Medicine and Extravehicular Activity Using Active Materials.
Holschuh, Bradley T; Newman, Dava J
2016-02-01
Compression garments tend to be difficult to don/doff, due to their intentional function of squeezing the wearer. This is especially true for compression garments used for space medicine and for extravehicular activity (EVA). We present an innovative solution to this problem by integrating shape changing materials-NiTi shape memory alloy (SMA) coil actuators formed into modular, 3D-printed cartridges-into compression garments to produce garments capable of constricting on command. A parameterized, 2-spring analytic counterpressure model based on 12 garment and material inputs was developed to inform garment design. A methodology was developed for producing novel SMA cartridge systems to enable active compression garment construction. Five active compression sleeve prototypes were manufactured and tested: each sleeve was placed on a rigid cylindrical object and counterpressure was measured as a function of spatial location and time before, during, and after the application of a step voltage input. Controllable active counterpressures were measured up to 34.3 kPa, exceeding the requirement for EVA life support (29.6 kPa). Prototypes which incorporated fabrics with linear properties closely matched analytic model predictions (4.1%/-10.5% error in passive/active pressure predictions); prototypes using nonlinear fabrics did not match model predictions (errors >100%). Pressure non-uniformities were observed due to friction and the rigid SMA cartridge structure. To our knowledge this is the first demonstration of controllable compression technology incorporating active materials, a novel contribution to the field of compression garment design. This technology could lead to easy-to-don compression garments with widespread space and terrestrial applications.
NASA Astrophysics Data System (ADS)
Annamdas, Venu Gopal Madhav; Annamdas, Kiran Kumar
2009-03-01
Smart materials when interact with engineering structures, should have the capability to sense, measure, process, and detect any change in the selected variables (stress, damage) at critical locations. These smart materials can be classified into active and passive depending on the type of the structure, variables to be monitored, and interaction mechanism due to surface bonding or embedment. Some of the prominent smart materials are piezoelectric materials, micro fiber composite, polymers, shape memory alloys, electrostrictive and magnetostrictive materials, electrorheological and magnetorheological fluids and fiber optics. In addition, host structures do have the properties to support or repel the usage of smart materials inside or on it. This paper presents some of the most widely used smart materials and their interaction mechanism for structural health monitoring of engineering structures.
NASA Astrophysics Data System (ADS)
Babaevsky, A. N.; Romanovich, A. A.; Glagolev, E. S.
2018-03-01
The article describes the energy-saving technology and equipment for production of composite binding material with up to a 50% reduction in energy consumption of the process due to a synergistic effect in mechanical activation of the raw mix where a clinker component is substituted with an active mineral supplement. The impact of the gap between the rollers on the final performance of the press roller mill was studied.
Patched bimetallic surfaces are active catalysts for ammonia decomposition.
Guo, Wei; Vlachos, Dionisios G
2015-10-07
Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.
Patched bimetallic surfaces are active catalysts for ammonia decomposition
NASA Astrophysics Data System (ADS)
Guo, Wei; Vlachos, Dionisios G.
2015-10-01
Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.
Weisemann, Jasmin; Krez, Nadja; Fiebig, Uwe; Worbs, Sylvia; Skiba, Martin; Endermann, Tanja; Dorner, Martin B; Bergström, Tomas; Muñoz, Amalia; Zegers, Ingrid; Müller, Christian; Jenkinson, Stephen P; Avondet, Marc-Andre; Delbrassinne, Laurence; Denayer, Sarah; Zeleny, Reinhard; Schimmel, Heinz; Åstot, Crister; Dorner, Brigitte G; Rummel, Andreas
2015-11-26
The detection and identification of botulinum neurotoxins (BoNT) is complex due to the existence of seven serotypes, derived mosaic toxins and more than 40 subtypes. Expert laboratories currently use different technical approaches to detect, identify and quantify BoNT, but due to the lack of (certified) reference materials, analytical results can hardly be compared. In this study, the six BoNT/A1-F1 prototypes were successfully produced by recombinant techniques, facilitating handling, as well as improving purity, yield, reproducibility and biosafety. All six BoNTs were quantitatively nicked into active di-chain toxins linked by a disulfide bridge. The materials were thoroughly characterized with respect to purity, identity, protein concentration, catalytic and biological activities. For BoNT/A₁, B₁ and E₁, serotypes pathogenic to humans, the catalytic activity and the precise protein concentration were determined by Endopep-mass spectrometry and validated amino acid analysis, respectively. In addition, BoNT/A₁, B₁, E₁ and F₁ were successfully detected by immunological assays, unambiguously identified by mass spectrometric-based methods, and their specific activities were assigned by the mouse LD50 bioassay. The potencies of all six BoNT/A1-F1 were quantified by the ex vivo mouse phrenic nerve hemidiaphragm assay, allowing a direct comparison. In conclusion, highly pure recombinant BoNT reference materials were produced, thoroughly characterized and employed as spiking material in a worldwide BoNT proficiency test organized by the EQuATox consortium.
DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.
1996-01-01
Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption
Alkaline and non-aqueous proton-conducting pouch-cell batteries
Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun
2018-01-02
Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.
Cosmogenic activation of materials
NASA Astrophysics Data System (ADS)
Cebrián, Susana
2017-10-01
Experiments looking for rare events like the direct detection of dark matter particles, neutrino interactions or the nuclear double beta decay are operated deep underground to suppress the effect of cosmic rays. But, the production of radioactive isotopes in materials due to previous exposure to cosmic rays is a hazard when ultra-low background conditions are required. In this context, the generation of long-lived products by cosmic nucleons has been studied for many detector media and for other materials commonly used. Here, the main results obtained on the quantification of activation yields on the Earth’s surface will be summarized, considering both measurements and calculations following different approaches. The isotope production cross-sections and the cosmic ray spectrum are the two main ingredients when calculating this cosmogenic activation; the different alternatives for implementing them will be discussed. Activation that can take place deep underground mainly due to cosmic muons will be briefly commented too. Presently, the experimental results for the cosmogenic production of radioisotopes are scarce and discrepancies between different calculations are important in many cases, but the increasing interest on this background source which is becoming more and more relevant can help to change this situation.
Li, Bo; Ma, Jian-Gong; Cheng, Peng
2018-06-04
The integration of metal/metal oxide nanoparticles (NPs) into metal-organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection-sacrifice (TPS) method to encapsulate metastable NPs such as Cu 2 O into MOFs. SiO 2 was used as both a protective shell for Cu 2 O nanocubes and a sacrificial template for forming a yolk-shell structure. The obtained Cu 2 O@ZIF-8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4-nitrophenol with high activity. This is the first report of a Cu 2 O@MOF-type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Processing of Building Binder Materials to Increase their Activation
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Garmashov, I. S.; Kuzmin, D. E.; Stoyushko, N. Yu; Gladkova, N. A.
2018-01-01
The paper deals modern physical methods of activation of building powder materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of Portland cement. Activated concrete has a number of features that are used as design characteristics of structures and are due to the structure of the activated binder and its contacts with concrete aggregates. These features also have a significant impact on the nature of the destruction of concrete under load, changing the boundaries of its microcracks and durability.
Sensing surface mechanical deformation using active probes driven by motor proteins
Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira
2016-01-01
Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937
Rattling Nucleons: New Developments in Active Interrogation of Special Nuclear Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert C. Runkle; David L. Chichester; Scott J. Thompson
2012-01-01
Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important formore » nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.« less
Rattling nucleons: New developments in active interrogation of special nuclear material
NASA Astrophysics Data System (ADS)
Runkle, Robert C.; Chichester, David L.; Thompson, Scott J.
2012-01-01
Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding—special nuclear material itself, incidental materials, or intentional shielding—and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.
Li, Zhanyong; Peters, Aaron W.; Bernales, Varinia; ...
2016-11-30
Here, Zr-based metal–organic frameworks (MOFs) have been shown to be excellent catalyst supports in heterogeneous catalysis due to their exceptional stability. Additionally, their crystalline nature affords the opportunity for molecular level characterization of both the support and the catalytically active site, facilitating mechanistic investigations of the catalytic process. We describe herein the installation of Co(II) ions to the Zr 6 nodes of the mesoporous MOF, NU-1000, via two distinct routes, namely, solvothermal deposition in a MOF (SIM) and atomic layer deposition in a MOF (AIM), denoted as Co-SIM+NU-1000 and Co-AIM+NU-1000, respectively. The location of the deposited Co species in themore » two materials is determined via difference envelope density (DED) analysis. Upon activation in a flow of O 2 at 230 °C, both materials catalyze the oxidative dehydrogenation (ODH) of propane to propene under mild conditions. Catalytic activity as well as propene selectivity of these two catalysts, however, is different under the same experimental conditions due to differences in the Co species generated in these two materials upon activation as observed by in situ X-ray absorption spectroscopy. A potential reaction mechanism for the propane ODH process catalyzed by Co-SIM+NU-1000 is proposed, yielding a low activation energy barrier which is in accord with the observed catalytic activity at low temperature.« less
NASA Astrophysics Data System (ADS)
Kuo, Yenting; Klabunde, Kenneth J.
2012-07-01
Nanostructured strontium titanate visible-light-driven photocatalysts containing rhodium and ruthenium were synthesized by a modified aerogel synthesis using ruthenium chloride and rhodium nitrate as dopant precursors, and titanium isopropoxide and strontium metal as the metal sources. The well-defined crystalline SrTiO3 structure was confirmed by means of x-ray diffraction. After calcination at 500 °C, diffuse reflectance spectroscopy shows an increase in light absorption at 370 nm due to the presence of Rh3 + ; however an increase of the calcination temperature to 600 °C led to a decrease in intensity, probably due to a loss of surface area. An increase in the rhodium doping level also led to an increase in absorption at 370 nm however, the higher amounts of dopant lowered the photocatalytic activity. The modified aerogel synthesis allows greatly enhanced H2 production performance from an aqueous methanol solution under visible light irradiation compared with lower surface area conventional materials. We believe that this enhanced activity is due to the higher surface areas while high quality nanocrystalline materials are still obtained. Furthermore, the surface properties of these nanocrystalline aerogel materials are different, as exhibited by the higher activities in alkaline solutions, while conventional materials (obtained via high temperature solid-state synthesis methods) only exhibit reasonable hydrogen production in acidic solutions. Moreover, an aerogel synthesis approach gives the possibility of thin-film formation and ease of incorporation into practical solar devices.
Optically-controlled long-term storage and release of thermal energy in phase-change materials.
Han, Grace G D; Li, Huashan; Grossman, Jeffrey C
2017-11-13
Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid-solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive goal. Herein, we report a combination of photo-switching dopants and organic phase-change materials as a way to introduce an activation energy barrier for phase-change materials solidification and to conserve thermal energy in the materials, allowing them to be triggered optically to release their stored latent heat. This approach enables the retention of thermal energy (about 200 J g -1 ) in the materials for at least 10 h at temperatures lower than the original crystallization point, unlocking opportunities for portable thermal energy storage systems.
Peng, Shiyong; Liu, Suna; Zhang, Sai; Cao, Shengyu; Sun, Jiangtao
2015-10-16
Polyheteroaromatic compounds are potential optoelectronic conjugated materials due to their electro- and photochemical properties. Transition-metal-catalyzed multiple C-H activation and sequential oxidative annulation allows rapidly assembling of those compounds from readily available starting materials. A rhodium-catalyzed cascade oxidative annulation of β-enamino esters or 4-aminocoumarins with internal alkynes is described to access those compounds, featuring multiple C-H/N-H bond cleavages and sequential C-C/C-N bond formations in one pot.
Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls
Özcan, Mutlu; Hämmerle, Christoph
2012-01-01
Commercial pure titanium (cpTi) has been the material of choice in several disciplines of dentistry due to its biocompatibility, resistance to corrosion and mechanical properties. Despite a number of favorable characteristics, cpTi as a reconstruction and oral implant material has several shortcomings. This paper highlights current knowledge on material properties, passive oxidation film formation, corrosion, surface activation, cell interactions, biofilm development, allergy, casting and machining properties of cpTi for better understanding and potential improvement of this material for its clinical applications.
Weisemann, Jasmin; Krez, Nadja; Fiebig, Uwe; Worbs, Sylvia; Skiba, Martin; Endermann, Tanja; Dorner, Martin B.; Bergström, Tomas; Muñoz, Amalia; Zegers, Ingrid; Müller, Christian; Jenkinson, Stephen P.; Avondet, Marc-Andre; Delbrassinne, Laurence; Denayer, Sarah; Zeleny, Reinhard; Schimmel, Heinz; Åstot, Crister; Dorner, Brigitte G.; Rummel, Andreas
2015-01-01
The detection and identification of botulinum neurotoxins (BoNT) is complex due to the existence of seven serotypes, derived mosaic toxins and more than 40 subtypes. Expert laboratories currently use different technical approaches to detect, identify and quantify BoNT, but due to the lack of (certified) reference materials, analytical results can hardly be compared. In this study, the six BoNT/A1–F1 prototypes were successfully produced by recombinant techniques, facilitating handling, as well as improving purity, yield, reproducibility and biosafety. All six BoNTs were quantitatively nicked into active di-chain toxins linked by a disulfide bridge. The materials were thoroughly characterized with respect to purity, identity, protein concentration, catalytic and biological activities. For BoNT/A1, B1 and E1, serotypes pathogenic to humans, the catalytic activity and the precise protein concentration were determined by Endopep-mass spectrometry and validated amino acid analysis, respectively. In addition, BoNT/A1, B1, E1 and F1 were successfully detected by immunological assays, unambiguously identified by mass spectrometric-based methods, and their specific activities were assigned by the mouse LD50 bioassay. The potencies of all six BoNT/A1–F1 were quantified by the ex vivo mouse phrenic nerve hemidiaphragm assay, allowing a direct comparison. In conclusion, highly pure recombinant BoNT reference materials were produced, thoroughly characterized and employed as spiking material in a worldwide BoNT proficiency test organized by the EQuATox consortium. PMID:26703728
NASA Astrophysics Data System (ADS)
Guzman Blas, Rolando Pedro
This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the carbon-platinum-cerium has better catalytic activity than platinum-carbon. Due to the hybridization behavior of C and Ce could arise charge transfer, both carbon and cerium to the Platinum. Ce-C→Pt charge transfer could occur at the Ce-C/Pt interface. Thus, results in an increase in the catalytic activity of platinum-cerium-carbon when compared with carbon-platinum.
Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A
2014-04-01
We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.
ASTM and VAMAS activities in titanium matrix composites test methods development
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Harmon, D. M.; Bartolotta, P. A.; Russ, S. M.
1994-01-01
Titanium matrix composites (TMC's) are being considered for a number of aerospace applications ranging from high performance engine components to airframe structures in areas that require high stiffness to weight ratios at temperatures up to 400 C. TMC's exhibit unique mechanical behavior due to fiber-matrix interface failures, matrix cracks bridged by fibers, thermo-viscoplastic behavior of the matrix at elevated temperatures, and the development of significant thermal residual stresses in the composite due to fabrication. Standard testing methodology must be developed to reflect the uniqueness of this type of material systems. The purpose of this paper is to review the current activities in ASTM and Versailles Project on Advanced Materials and Standards (VAMAS) that are directed toward the development of standard test methodology for titanium matrix composites.
77 FR 3556 - Proposed Agency Information Collection Activities; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-24
... trespass. With such knowledge, specific educational programs, materials, and messages regarding the hazards and consequences of trespassing on railroad property can be developed and effectively distributed. Due...
Turhan, S; Baykan, U N; Sen, K
2008-03-01
A total of 183 samples of 20 different commonly used structural and covering building materials were collected from housing and other building construction sites and from suppliers in Ankara to measure the natural radioactivity due to the presence of (226)Ra, (232)Th and (40)K. The measurements were carried out using gamma-ray spectrometry with two HPGe detectors. The specific activities of the different building materials studied varied from 0.5 +/- 0.1 to 144.9 +/- 4.9 Bq kg(-1), 0.6 +/- 0.2 to 169.9 +/- 6.6 Bq kg(-1) and 2.0 +/- 0.1 to 1792.3 +/- 60.8 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The results show that the lowest mean values of the specific activity of (226)Ra, (232)Th and (40)K are 0.8 +/- 0.5, 0.9 +/- 0.4 and 4.1 +/- 1.4 Bq kg(-1), respectively, measured in travertine tile while the highest mean values of the specific activity of the same radionuclides are 78.5 +/- 18.1 (ceramic wall tile), 77.4 +/- 53.0 (granite tile) and 923.4 +/- 161.0 (white brick), respectively. The radium equivalent activity (Ra(eq)), the gamma-index, the indoor absorbed dose rate and the corresponding annual effective dose were evaluated to assess the potential radiological hazard associated with these building materials. The mean values of the gamma-index and the estimated annual effective dose due to external gamma radiation inside the room for structural building materials ranged from 0.15 to 0.89 and 0.2 to 1.1 mSv, respectively. Applying criteria recently recommended for building materials in the literature, four materials meet the exemption annual dose criterion of 0.3 mSv, five materials meet the annual dose limit of 1 mSv and only one material slightly exceeds this limit. The mean values of the gamma-index for all building materials were lower than the upper limit of 1.
The genotoxic contribution of wood smoke to indoor respirable suspended particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, P.M.; Rossman, T.G.; Daisey, J.M.
1989-01-01
The effect of wood burning stoves on the genotoxicity of indoor respirable organic matter was investigated for four homes during the winter and spring of 1986. Paired samples, one collected when the stove was not used and one when wood was burned, were extracted with dichloromethane and acetone. Aliquots of the dichloromethane extracts were analyzed with and without metabolic activation using the Microscreen bioassay. The Microscreen is a rapid, sensitive bioassay which measures a broad genotoxic endpoint, {lambda}-prophage induction. Per nanogram of organic material, wood smoke proved to be a major source of indirect (observed with metabolic activation) but notmore » direct genotoxins in homes. The increase in indirect genotoxicity for extracts from aerosol containing wood smoke is probably due to higher concentrations of polycyclic aromatic hydrocarbons in the wood smoke aerosol as well as other unidentified classes. The direct genotoxicity observed for extracts of aerosol not containing wood smoke decreased with metabolic activation. This direct genotoxicity may be related to cooking activities in the homes. The trends in genotoxicity observed per nanogram of organic material are more pronounced when expressed per m{sup 3} of air due to the higher percentage of extractable material in aerosol containing wood smoke.« less
Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis
Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Bee Abd Hamid, Sharifah
2014-01-01
The lack of stability is a challenge for most heterogeneous catalysts. During operations, the agglomeration of particles may block the active sites of the catalyst, which is believed to contribute to its instability. Recently, titanium oxide (TiO2) was introduced as an alternative support material for heterogeneous catalyst due to the effect of its high surface area stabilizing the catalysts in its mesoporous structure. TiO2 supported metal catalysts have attracted interest due to TiO2 nanoparticles high activity for various reduction and oxidation reactions at low pressures and temperatures. Furthermore, TiO2 was found to be a good metal oxide catalyst support due to the strong metal support interaction, chemical stability, and acid-base property. The aforementioned properties make heterogeneous TiO2 supported catalysts show a high potential in photocatalyst-related applications, electrodes for wet solar cells, synthesis of fine chemicals, and others. This review focuses on TiO2 as a support material for heterogeneous catalysts and its potential applications. PMID:25383380
Activation of a Ca-bentonite as buffer material
NASA Astrophysics Data System (ADS)
Huang, Wei-Hsing; Chen, Wen-Chuan
2016-04-01
Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid-shaped time-swell curves of typical bentonites. That is, a greater part of swelling strain develops after the completion of primary swelling strain. At an optimal amount of 1% Na2CO3 in weight, the maximum swelling strain was found to be 3 times as much as that of untreated Zhisin clay. Furthermore, the Na2CO3-activated Zhisin clay exhibited improved resistance to thermal environments and behaved similar to Na-type bentonites under various hydrothermal temperatures.
Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram
2016-03-01
In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. Copyright © 2015 Elsevier Ltd. All rights reserved.
A novel direct contact method for the assessment of the antimicrobial activity of dental cements.
Costa, E M; Silva, S; Madureira, A R; Cardelle-Cobas, A; Tavaria, F K; Pintado, M M
2013-06-01
Dental cements are a crucial part of the odontological treatment, however, due to the hazardous nature and reduced biological efficiency of some of the used materials, newer and safer alternatives are needed, particularly so those possessing higher antimicrobial activity than their traditional counterparts. The evaluation of the antimicrobial properties of solid and semi-solid antimicrobials, such as dental cements and gels, is challenging, particularly due to the low sensitivity of the current methods. Thus, the main aim of this study was the evaluation of the antimicrobial activity of a novel chitosan containing dental cement while simultaneous assessing/validating a new, more efficient, method for the evaluation of the antimicrobial activity of solid and gel like materials. The results obtained showed that the proposed method exhibited a higher sensitivity than the standard 96 well microtiter assay and allowed the determination of bactericidal activity. Additionally, it is interesting to note that the chitosan containing cement, which presented higher antimicrobial activity than the traditional zinc oxide/eugenol mix, was capable of inducing a viable count reduction above 5 log of CFU for all of the studied microorganisms. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
H, L. SWAMI; C, DANANI; A, K. SHAW
2018-06-01
Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.
Recent Progress in Some Amorphous Materials for Supercapacitors.
Li, Qing; Xu, Yuxia; Zheng, Shasha; Guo, Xiaotian; Xue, Huaiguo; Pang, Huan
2018-05-14
A breakthrough in technologies having "green" and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high-performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon-based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kurimoto, Naoya; Omoda, Ryo; Mizumo, Tomonobu; Ito, Seitaro; Aihara, Yuichi; Itoh, Takahito
2018-02-01
Quinoid compounds are important candidates of organic active materials for lithium-ion batteries. However, its high solubility to organic electrolyte solutions and low redox potential are known as their major drawbacks. To circumvent these issues, we have designed and synthesized a tandem-tetracyanoquinonedimethane type cathode-active material, 11,11,12,12,13,13,14,14-octacyano-1,4,5,8-anthradiquinotetramethane (OCNAQ), that has four redox sites per molecule, high redox potential and suppressed solubility to electrolyte solution. Synthesized OCNAQ has been found to have two-step redox reactions by cyclic voltammetry, and each step consists of two-electron reactions. During charge-discharge tests using selected organic cathode-active materials with a lithium metal anode, the cell voltages obtained from OCNAQ are higher than those for 11,11-dicyanoanthraquinone methide (AQM) as expected, due to the strong electron-withdrawing effect of the cyano groups. Unfortunately, even with the use of the organic active material, the issue of dissolution to the electrolyte solution cannot be suppressed completely; however, appropriate choice of the electrolyte solutions, glyme-based electrolyte solutions in this study, give considerable improvement of the cycle retention (98% and 56% at 10 and 100 cycles at 0.5C, respectively). The specific capacity and energy density obtained in this study are 206 mAh g-1 and 554 mWh g-1 with respect to the cathode active material.
Synthesis of nanosize MCM-41 loaded with TiO 2 and study of its photocatalytic activity
NASA Astrophysics Data System (ADS)
Sadjadi, M. S.; Farhadyar, N.; Zare, K.
2009-07-01
In recent years, nanosized mesoporous materials have received significant attention due to their impact in different processes. Several diverse applications of these materials, e.g. high density magnetic recording, magnetic fluids, magnetic refrigeration as well as in photocatalysis, solar cells, photosensors, have triggered considerable research activities in the area of nanotechnology. In this work, nanosize MCM-41 was synthesized and loaded then with TiO 2 using tetra butoxy titanium (TBT). As prepared TiO 2 loaded materials was investigated by using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR). The photocatalytic activity of the prepared TiO 2 loaded MCM-41 was finally evaluated by the degradation of methyl orange under irradiation of UV light. The result showed that TiO 2 loaded on nanosize MCM-41 has higher photocatalytic activity than that of TiO 2.
Factors involved in the cytotoxicity of kaolinite towards macrophages in vitro.
Davies, R
1983-01-01
The cytotoxicity of a high purity Cornish kaolinite toward mouse peritoneal macrophages in vitro was examined. The material was cytotoxic towards these cells, the activity could be decreased substantially by pretreating the dust with poly(2-vinylpyridine N-oxide). Pretreatment of the dusts with poly(acrylic acid) had a small effect on cytotoxicity, but combinations of the polymer treatments virtually abolished the material's biological activity towards macrophages. These studies indicated that the cytotoxicity of kaolinite is not due to its flakelike morphology. Images FIGURE 1. PMID:6641658
Active printed materials for complex self-evolving deformations.
Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar
2014-12-18
We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.
Active Printed Materials for Complex Self-Evolving Deformations
Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar
2014-01-01
We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053
Chen, Hao; Zhou, Shuxue; Wu, Limin
2014-06-11
This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials. In addition, the Ni(OH)2-MnO2-RGO hybrid spheres-based asymmetric supercapacitor also showed satisfying energy density and electrochemical cycling stability.
Natural Origin Materials for Osteochondral Tissue Engineering.
Bonani, Walter; Singhatanadgige, Weerasak; Pornanong, Aramwit; Motta, Antonella
2018-01-01
Materials selection is a critical aspect for the production of scaffolds for osteochondral tissue engineering. Synthetic materials are the result of man-made operations and have been investigated for a variety of tissue engineering applications. Instead, the products of physiological processes and the metabolic activity of living organisms are identified as natural materials. Over the recent decades, a number of natural materials, namely, biopolymers and bioceramics, have been proposed as the main constituent of osteochondral scaffolds, but also as cell carriers and signaling molecules. Overall, natural materials have been investigated both in the bone and in the cartilage compartment, sometimes alone, but often in combination with other biopolymers or synthetic materials. Biopolymers and bioceramics possess unique advantages over their synthetic counterparts due similarity with natural extracellular matrix, the presence of cell recognition sites and tunable chemistry. However, the characteristics of natural origin materials can vary considerably depending on the specific source and extraction process. A deeper understanding of the relationship between material variability and biological activity and the definition of standardized manufacturing procedures will be crucial for the future of natural materials in tissue engineering.
NASA Astrophysics Data System (ADS)
Ródenas, José
2017-11-01
All materials exposed to some neutron flux can be activated independently of the kind of the neutron source. In this study, a nuclear reactor has been considered as neutron source. In particular, the activation of control rods in a BWR is studied to obtain the doses produced around the storage pool for irradiated fuel of the plant when control rods are withdrawn from the reactor and installed into this pool. It is very important to calculate these doses because they can affect to plant workers in the area. The MCNP code based on the Monte Carlo method has been applied to simulate activation reactions produced in the control rods inserted into the reactor. Obtained activities are introduced as input into another MC model to estimate doses produced by them. The comparison of simulation results with experimental measurements allows the validation of developed models. The developed MC models have been also applied to simulate the activation of other materials, such as components of a stainless steel sample introduced into a training reactors. These models, once validated, can be applied to other situations and materials where a neutron flux can be found, not only nuclear reactors. For instance, activation analysis with an Am-Be source, neutrography techniques in both medical applications and non-destructive analysis of materials, civil engineering applications using a Troxler, analysis of materials in decommissioning of nuclear power plants, etc.
Krutpijit, Chadaporn; Jongsomjit, Bunjerd
2017-01-01
Montmorillonite clay (MMT) is one of materials that can be "green material" due to its environmental safety. In this work, acid-activated MMT catalysts were prepared for the dehydration reaction of ethanol. To be the green process, the reaction with bioethanol was also studied. Ethanol concentrations in feed were varied in the range of 10-99.95 wt%. Moreover, the concentrations of hydrochloric acid activated MMT were investigated in range of 0.05-4 M. From the experiment, it reveals that different acid concentrations to activate MMT affect the catalytic activity of catalysts. The 0.3 M of HCl activated MMT exhibits the highest activity (under the best condition of 30 ml HCl aging for 1 h) with the Si/Al ratio of 7.4. It can reach the ethanol conversion and ethylene selectivity up to 95% and 98% at reaction temperature of 400°C, respectively. For the several ethanol feed concentrations, it does not remarkably affect in ethanol conversion. However, it has some different effect on ethylene selectivity between lower and higher reaction temperatures. It was found that at lower temperature reaction, ethylene selectivity is high due to the behavior of water in feed. In addition, the 0.3 M-MMT can be carried out under the hydrothermal effect.
Propagation of nuclear data uncertainties for fusion power measurements
NASA Astrophysics Data System (ADS)
Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri
2017-09-01
Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.
Dutta, J; Tripathi, S; Dutta, P K
2012-02-01
In recent years, active biomolecules such as chitosan and its derivatives are undergoing a significant and very fast development in food application area. Due to recent outbreaks of contaminations associated with food products, there have been growing concerns regarding the negative environmental impact of packaging materials of antimicrobial biofilms, which have been studied. Chitosan has a great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, nontoxicity and versatile chemical and physical properties. It can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of foods. Chitosan has high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms, including fungi, and Gram-positive and Gram-negative bacteria. A tremendous effort has been made over the past decade to develop and test films with antimicrobial properties to improve food safety and shelf-life. This review highlights the preparation, mechanism, antimicrobial activity, optimization of biocide properties of chitosan films and applications including biocatalysts for the improvement of quality and shelf-life of foods.
Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali
2013-01-01
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817
Carbon-based nanomaterials: multifunctional materials for biomedical engineering.
Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali
2013-04-23
Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.
Vanadium based materials as electrode materials for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo
2016-10-01
As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.
Occupational exposure due to naturally occurring radionuclide material in granite quarry industry.
Ademola, J A
2012-02-01
The potential occupational exposure in granite quarry industry due to the presence of naturally occurring radioactive material (NORM) has been investigated. The activity concentrations of (40)K, (226)Ra and (232)Th were determined using gamma-ray spectroscopy method. The annual effective dose of workers through different exposure pathways was determined by model calculations. The total annual effective dose varied from 21.48 to 33.69 μSv y(-1). Inhalation dose contributes the highest to the total effective dose. The results obtained were much lower than the intervention exemption levels (1.0 mSv y(-1)) given in the International Commission on Radiological Protection Publication 82.
Cost-driven materials selection criteria for redox flow battery electrolytes
NASA Astrophysics Data System (ADS)
Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.
2016-10-01
Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.
ERIC Educational Resources Information Center
Keen-Rocha, Linda
2005-01-01
Science instructors sometimes avoid inquiry-based activities due to limited classroom time. Inquiry takes time, as students choose problems, design experiments, obtain materials, conduct investigations, gather data, communicate results, and discuss their experiments. While there are no quick solutions to time concerns, the 5E learning cycle seeks…
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Directorate for Education and Human Resources.
This report describes the efforts of the National Science Foundation (NSF) and its Division of Undergraduate Education (DUE) to provide educational support to two-year colleges to strengthen science, technology, engineering, and mathematics programs through grants, collaborative efforts, and support for curriculum materials and teacher activities.…
Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations
NASA Astrophysics Data System (ADS)
Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Noskov, Roman E.; Ginzburg, Pavel; Gun'Ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.
2015-10-01
For centuries mankind has been modifying the optical properties of materials: first, by elaborating the geometry and composition of structures made of materials found in nature, later by structuring the existing materials at a scale smaller than the operating wavelength. Here we suggest an original approach to introduce optical activity in nanostructured materials, by theoretically demonstrating that conventional achiral semiconducting nanocrystals become optically active in the presence of screw dislocations, which can naturally develop during the nanocrystal growth. We show the new properties to emerge due to the dislocation-induced distortion of the crystal lattice and the associated alteration of the nanocrystal’s electronic subsystem, which essentially modifies its interaction with external optical fields. The g-factors of intraband transitions in our nanocrystals are found comparable with dissymmetry factors of chiral plasmonic complexes, and exceeding the typical g-factors of chiral molecules by a factor of 1000. Optically active semiconducting nanocrystals—with chiral properties controllable by the nanocrystal dimensions, morphology, composition and blending ratio—will greatly benefit chemistry, biology and medicine by advancing enantiomeric recognition, sensing and resolution of chiral molecules.
Silicon-graphene photonic devices
NASA Astrophysics Data System (ADS)
Yin, Yanlong; Li, Jiang; Xu, Yang; Tsang, Hon Ki; Dai, Daoxin
2018-06-01
Silicon photonics has attracted much attention because of the advantages of CMOS (complementary-metal-oxide-semiconductor) compatibility, ultra-high integrated density, etc. Great progress has been achieved in the past decades. However, it is still not easy to realize active silicon photonic devices and circuits by utilizing the material system of pure silicon due to the limitation of the intrinsic properties of silicon. Graphene has been regarded as a promising material for optoelectronics due to its unique properties and thus provides a potential option for realizing active photonic integrated devices on silicon. In this paper, we present a review on recent progress of some silicon-graphene photonic devices for photodetection, all-optical modulation, as well as thermal-tuning. Project supported by the National Major Research and Development Program (No. 2016YFB0402502), the National Natural Science Foundation of China (Nos. 11374263, 61422510, 61431166001, 61474099, 61674127), and the National Key Research and Development Program (No. 2016YFA0200200).
NASA Astrophysics Data System (ADS)
Laksmono, J. A.; Pratiwi, I. M.; Sudibandriyo, M.; Haryono, A.; Saputra, A. H.
2017-11-01
Bioethanol is considered as the most promising alternative fuel in the future due to its abundant renewable sources. However, the result of bioethanol production process using fermentation contains 70% v/v, and it still needs simultaneous purification process. One of the most energy-efficient purification methods is adsorption. Specifically, the rate of adsorption is an important factor for evaluating adsorption performance. In this work, we have conducted an adsorption using polyvinyl alcohol (PVA), zeolite and activated carbon as promising adsorbents in the bioethanol dehydration. This research aims to prove that PVA, zeolite, activated carbon is suitable to be used as adsorbent in bioethanol dehydration process through kinetics study and water adsorption selectivity performance. According to the results, PVA, zeolite and activated carbon are the potential materials as adsorbents in the bioethanol dehydration process. The kinetics study shows that 30°C temperature gave the optimum adsorption kinetics rate for PVA, zeolite, and activated carbon adsorbents which were 0.4911 min-1; 0.5 min-1; and 1.1272 min-1 respectively. In addition, it also shows that the activated carbon performed as a more potential adsorbent due to its higher pore volume and specific surface area properties. Based on the Arrhenius equation, the PVA works in the chemisorption mechanism, meanwhile zeolite and activated carbon work in the physisorption system as shown in the value of the activation energy which are 51.43 kJ/mole; 8.16 kJ/mole; and 20.30 kJ/mole. Whereas the water to ethanol selectivity study, we discover that zeolite is an impressive adsorbent compared to the others due to the molecular sieving characteristic of the material.
NASA Astrophysics Data System (ADS)
Zhou, Yangen; Zhang, Yongfan; Lin, Mousheng; Long, Jinlin; Zhang, Zizhong; Lin, Huaxiang; Wu, Jeffrey C.-S.; Wang, Xuxu
2015-09-01
Two-dimensional-layered heterojunctions have attracted extensive interest recently due to their exciting behaviours in electronic/optoelectronic devices as well as solar energy conversion systems. However, layered heterojunction materials, especially those made by stacking different monolayers together by strong chemical bonds rather than by weak van der Waal interactions, are still challenging to fabricate. Here the monolayer Bi2WO6 with a sandwich substructure of [BiO]+-[WO4]2--[BiO]+ is reported. This material may be characterized as a layered heterojunction with different monolayer oxides held together by chemical bonds. Coordinatively unsaturated Bi atoms are present as active sites on the surface. On irradiation, holes are generated directly on the active surface layer and electrons in the middle layer, which leads to the outstanding performances of the monolayer material in solar energy conversion. Our work provides a general bottom-up route for designing and preparing novel monolayer materials with ultrafast charge separation and active surface.
Zhou, Yangen; Zhang, Yongfan; Lin, Mousheng; Long, Jinlin; Zhang, Zizhong; Lin, Huaxiang; Wu, Jeffrey C.-S.; Wang, Xuxu
2015-01-01
Two-dimensional-layered heterojunctions have attracted extensive interest recently due to their exciting behaviours in electronic/optoelectronic devices as well as solar energy conversion systems. However, layered heterojunction materials, especially those made by stacking different monolayers together by strong chemical bonds rather than by weak van der Waal interactions, are still challenging to fabricate. Here the monolayer Bi2WO6 with a sandwich substructure of [BiO]+–[WO4]2−–[BiO]+ is reported. This material may be characterized as a layered heterojunction with different monolayer oxides held together by chemical bonds. Coordinatively unsaturated Bi atoms are present as active sites on the surface. On irradiation, holes are generated directly on the active surface layer and electrons in the middle layer, which leads to the outstanding performances of the monolayer material in solar energy conversion. Our work provides a general bottom-up route for designing and preparing novel monolayer materials with ultrafast charge separation and active surface. PMID:26359212
APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigmon, R.; Berry, T.; Narayan, R.
2010-11-29
Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examinedmore » the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.« less
Arrieta, Marina Patricia; Castro-López, María del Mar; Rayón, Emilio; Barral-Losada, Luis Fernando; López-Vilariño, José Manuel; López, Juan; González-Rodríguez, María Victoria
2014-10-15
Active biobased packaging materials based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends were prepared by melt blending and fully characterized. Catechin incorporation, as antioxidant compound, enhanced the thermal stability, whereas its release was improved by the addition of acetyl(tributyl citrate) (ATBC) as plasticizer. Whereas the incorporation of ATBC resulted in a reduction of elastic modulus and hardness, catechin addition produced more rigid materials due to hydrogen-bonding interactions between catechin hydroxyl groups and carbonyl groups of PLA and PHB. The quantification of catechin released into a fatty food simulant and the antioxidant effectiveness after the release process were demonstrated. The effect of the materials' exposure to a food simulant was also investigated. PHB-added materials maintained their structural and mechanical properties after 10 days in a test medium that represents the worst foreseeable conditions of the intended use. Thus, plasticized PLA-PHB blends with catechin show their potential as biobased active packaging for fatty food.
Outstanding catalytic activity of ultra-pure platinum nanoparticles.
Januszewska, Aneta; Dercz, Grzegorz; Piwowar, Justyna; Jurczakowski, Rafal; Lewera, Adam
2013-12-09
Small (4 nm) nanoparticles with a narrow size distribution, exceptional surface purity, and increased surface order, which exhibits itself as an increased presence of basal crystallographic planes, can be obtained without the use of any surfactant. These nanoparticles can be used in many applications in an as-received state and are threefold more active towards a model catalytic reaction (oxidation of ethylene glycol). Furthermore, the superior properties of this material are interesting not only due to the increase in their intrinsic catalytic activity, but also due to the exceptional surface purity itself. The nanoparticles can be used directly (i.e., as-received, without any cleaning steps) in biomedical applications (i.e., as more efficient drug carriers due to an increased number of adsorption sites) and in energy-harvesting/data-storage devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waite, Christopher; Mann, Rusty; Diaz, Anthony L., E-mail: DiazA@cwu.edu
2013-02-15
We have conducted a systematic study of the excitation and reflectance spectra of nano-crystalline Y{sub 2}O{sub 3}:Eu prepared by combustion synthesis. Excitation through the host lattice becomes relatively more efficient as the firing temperature of the precursor is increased, while reflectance properties remain essentially unchanged. Using these data, host-to-activator transfer efficiencies were calculated for excitation at the band edge of Y{sub 2}O{sub 3}, and evaluated using a competition kinetics model. From this analysis we conclude that the relatively low luminous efficiency of these materials is due more to poor bulk crystallinity than to surface loss effects. - Graphical abstract: Themore » low luminous efficiency of nano-crystalline Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis is due to poor bulk crystallinity rather than surface loss effects. Highlights: Black-Right-Pointing-Pointer We report on the optical properties of Y{sub 2}O{sub 3}:Eu{sup 3+} prepared by combustion synthesis. Black-Right-Pointing-Pointer Host-to-activator transfer efficiencies under VUV excitation were calculated. Black-Right-Pointing-Pointer The low luminous efficiency of these materials is due to poor bulk crystallinity.« less
Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R
2012-01-01
Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. Copyright © 2011 Elsevier Ltd. All rights reserved.
Antimicrobial graphene family materials: Progress, advances, hopes and fears.
Lukowiak, Anna; Kedziora, Anna; Strek, Wieslaw
2016-10-01
Graphene-based materials have become very popular bionanotechnological instruments in the last few years. Since 2010, the graphene family materials have been recognized as worthy of attention due to its antimicrobial properties. Functionalization of graphene (or rather graphene oxide) surface creates the possibilities to obtain efficient antimicrobial agents. In this review, progress and advances in this field in the last few years are described and discussed. Special attention is devoted to materials based on graphene oxide in which specifically selected components significantly modify biological activity of this carbon structure. Short introduction concerns the physicochemical properties of the graphene family materials. In the section on antimicrobial properties, proposed mechanisms of activity against microorganisms are given showing enhanced action of nanocomposites also under light irradiation (photoinduced activity). Another important feature, i.e. toxicity against eukaryotic cells, is presented with up-to-date data. Taking into account all the information on the properties of the described materials and usefulness of the graphene family as antimicrobial agents, hopes and fears concerning their application are discussed. Finally, some examples of promising usage in medicine and other fields, e.g. in phytobiology and water remediation, are shown. Copyright © 2016 Elsevier B.V. All rights reserved.
Use of Organic Substrates as a Best Management Practice for Active Ranges
2011-11-30
is much more limited in high organic carbon soils due to a combination of enhanced sorption and degradation . Organic materials can enhance explosive... degradation by stimulating anaerobic biodegradation of the target contaminants and reducing naturally occurring Fe(III) to Fe(II), providing a reservoir...of reducing power to maintain anoxic conditions in the soil and enhance abiotic degradation . Humic materials slowly biodegrade, consuming oxygen
Active Flow Control with Thermoacoustic Actuators
2014-01-31
AC power has been shown to produce large-amplitude acoustic waves [6]. The input AC current sinusoidally heats this device due to joule heating and...conventional metals, the heat capacity value for carbon-based material (carbon nanotubes/graphene) in consideration here is at least 2 orders of...magnitude smaller. Since the output acoustic power delivered to the surrounding flow field is related inversely to the material heat capacity C (i.e., Poutput
NASA Astrophysics Data System (ADS)
Knapp, Marius; Hoffmann, René; Lebedev, Vadim; Cimalla, Volker; Ambacher, Oliver
2018-03-01
Mechanical and electrical losses induced by an electrode material greatly influence the performance of bulk acoustic wave (BAW) resonators. Graphene as a conducting and virtually massless 2D material is a suitable candidate as an alternative electrode material for BAW resonators which reduces electrode induced mechanical losses. In this publication we show that graphene acts as an active top electrode for solidly mounted BAW resonators (BAW-SMR) at 2.1 GHz resonance frequency. Due to a strong decrease of mass loading and its remarkable electronic properties, graphene demonstrates its ability as an ultrathin conductive layer. In our experiments we used an optimized graphene wet transfer on aluminum nitride-based solidly mounted resonator devices. We achieved more than a triplication of the resonator’s quality factor Q and a resonance frequency close to an ‘unloaded’ resonator without metallization. Our results reveal the direct influence of both, the graphene quality and the graphene contacting via metal structures, on the performance characteristic of a BAW resonator. These findings clearly show the potential of graphene in minimizing mechanical losses due to its virtually massless character. Moreover, they highlight the advantages of graphene and other 2D conductive materials for alternative electrodes in electroacoustic resonators for radio frequency applications.
Ebaid, Y Y; Bakr, W F
2012-09-01
The aim of this study was to comprehensively study the radiological hazards of granite and marble used as a building material in Egypt. The activity concentrations of (226)Ra, (232)Th and (40)K were determined using high-resolution hyper-pure germanium detectors in 25 samples of different types of commercially available granite and marble. The measured activity concentrations for these natural radionuclides were compared with the reported data for Egypt and other countries. In order to assess the radiological impact, the radiation hazard parameters such as radium equivalent activity (Ra(eq)) and hazard level index (I(γ)) were calculated. The internal and external dose rates due to natural radionuclides in granite and marble were also calculated. The data obtained were considered as helpful in regulating the use of building materials in Egypt.
Qin, Yaxin; Li, Guiying; Gao, Yanpeng; Zhang, Lizhi; Ok, Yong Sik; An, Taicheng
2018-06-15
With the increased concentrations and kinds of refractory organic contaminants (ROCs) in aquatic environments, many previous reviews systematically summarized the applications of carbon-based materials in the adsorption and catalytic degradation of ROCs for their economically viable and environmentally friendly behavior. Interestingly, recent studies indicated that carbon-based materials in natural environment can also mediate the transformation of ROCs directly or indirectly due to their abundant persistent free radicals (PFRs). Understanding the formation mechanisms of PFRs in carbo-based materials and their interactions with ROCs is essential to develop their further applications in environment remediation. However, there is no comprehensive review so far about the direct and indirect removal of ROCs mediated by PFRs in amorphous, porous and crystalline carbon-based materials. The review aims to evaluate the formation mechanisms of PFRs in carbon-based materials synthesized through pyrolysis and hydrothermal carbonization processes. The influence of synthesis conditions (temperature and time) and carbon sources on the types as well as the concentrations of PFRs in carbon-based materials are also discussed. In particular, the effects of metals on the concentrations and types of PFRs in carbon-based materials are highlighted because they are considered as the catalysts for the formation of PFRs. The formation mechanisms of reactive species and the further transformation mechanisms of ROCs are briefly summarized, and the surface properties of carbon-based materials including surface area, types and number of functional groups, etc. are found to be the key parameters controlling their activities. However, due to diversity and complexity of carbon-based materials, the exact relationships between the activities of carbon-based materials and PFRs are still uncertain. Finally, the existing problems and current challenges for the ROCs transformation with carbon-based materials are also pointed out. Copyright © 2018 Elsevier Ltd. All rights reserved.
High performance supercapacitor from activated carbon derived from waste orange skin
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Hussain, S.; Ahmed, Ahsan; Rafat, M.
2018-05-01
Activated carbon due to its inherent properties such as large surface area and low cost is most frequently used electrode material for supercapacitor. Activated carbon has been previously derived from various biomass such as coconut shell, coffee bean etc. Herein, we report the synthesis of activated carbon from waste orange skin. The material was synthesized employing chemical activation method and the success of synthesis was confirmed by its physical and electrochemical properties. The physical properties of the as-prepared sample were studied using the techniques of XRD, SEM, Raman spectroscopy and N2 adsorption/desorption analysis while its electrochemical properties were studied in two-electrode assembly using liquid electrolyte (consisting of 1 M solution of LiTFSI dispersed in ionic liquid EMITFSI) and employing the techniques of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge- discharge. The synthesized sample of activated carbon exhibits high specific capacitance of 115 F g-1 at 10 mV s-1. Also, the activated carbon electrode shows the retention of ˜75% in initial capacitance value for more than 2000 initial cycles, indicating the as-prepared activated carbon can be profitably used as electrode material for energy storage devices.
NASA Astrophysics Data System (ADS)
Zhang, S.; Zhang, L. M.
2017-01-01
The 2008 Wenchuan earthquake triggered the largest number of landslides among the recent strong earthquake events around the world. The loose landslide materials were retained on steep terrains and deep gullies. In the period from 2008 to 2015, numerous debris flows occurred during rainstorms along the Provincial Road 303 (PR303) near the epicentre of the earthquake, causing serious damage to the reconstructed highway. Approximately 5.24 × 106 m3 of debris-flow sediment was deposited shortly after the earthquake. This paper evaluates the evolution of the debris flows that occurred after the Wenchuan earthquake, which helps understand long-term landscape evolution and cascading effects in regions impacted by mega earthquakes. With the aid of a GIS platform combined with field investigations, we continuously tracked movements of the loose deposit materials in all the debris flow gullies along an 18 km reach of PR303 and the characteristics of the regional debris flows during several storms in the past seven years. This paper presents five important aspects of the evolution of debris flows: (1) supply of debris flow materials; (2) triggering rainfall; (3) initiation mechanisms and types of debris flows; (4) runout characteristics; and (5) elevated riverbed due to the deposited materials from the debris flows. The hillslope soil deposits gradually evolved into channel deposits and the solid materials in the channels moved towards the ravine mouth. Accordingly, channelized debris flows became dominant gradually. Due to the decreasing source material volume and changes in debris flow characteristics, the triggering rainfall tends to increase from 30 mm h- 1 in 2008 to 64 mm h- 1 in 2013, and the runout distance tends to decrease over time. The runout materials blocked the river and elevated the riverbed by at least 30 m in parts of the study area. The changes in the post-seismic debris flow activity can be categorized into three stages, i.e., active, unstable, and recession.
Qualification Status of Non-Asbestos Internal Insulation in the Reusable Solid Rocket Motor Program
NASA Technical Reports Server (NTRS)
Clayton, Louie
2011-01-01
This paper provides a status of the qualification efforts associated with NASA's RSRMV non-asbestos internal insulation program. For many years, NASA has been actively engaged in removal of asbestos from the shuttle RSRM motors due to occupation health concerns where technicians are working with an EPA banned material. Careful laboratory and subscale testing has lead to the downselect of a organic fiber known as Polybenzimidazol to replace the asbestos fiber filler in the existing synthetic rubber copolymer Nitrile Butadiene - now named PBI/NBR. Manufacturing, processing, and layup of the new material has been a challenge due to the differences in the baseline shuttle RSRM internal insulator properties and PBI/NBR material properties. For this study, data gathering and reduction procedures for thermal and chemical property characterization for the new candidate material are discussed. Difficulties with test procedures, implementation of properties into the Charring Material Ablator (CMA) codes, and results correlation with static motor fire data are provided. After two successful five segment motor firings using the PBI/NBR insulator, performance results for the new material look good and the material should eventually be qualified for man rated use in large solid rocket motor applications.
Influence of physical activity on tibial bone material properties in laying hens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.
Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less
Influence of physical activity on tibial bone material properties in laying hens
Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.; ...
2017-11-03
Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less
Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.
Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2015-09-01
Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5) mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES). Maximum iron chelation was reached in solutions up to viscosity ∼10(2) mPa·s. In more viscous solutions (up to ∼10(4) mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while maintaining food quality. © 2015 Institute of Food Technologists®
Almela, Luis; Sánchez-Muñoz, Blas; Fernández-López, José A; Roca, María J; Rabe, Virginia
2006-07-07
The antioxidant activity of rosemary (Rosmarinus officinalis) extract from different raw materials has been studied. Extracts were prepared from wild or drip-irrigated plants, as well as from the by-product resulting from the distillation of the aromatic essential oil. The radical scavenging activity of rosemary extracts was compared with that of antioxidants widely used in food, such as BHT and delta-tocopherol, using an optimization of the method based on the reduction of the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). The results pointed the excellent antioxidant activity of the crude fresh rosemary extracts, which was almost identical to that of pure delta-tocopherol, and higher than that of BHT; extracts prepared from distilled rosemary showed the lowest activity, although they are also of interest due to the low cost of the raw material. High performance liquid chromatography (HPLC) combined with diode array (DAD) and electrospray (ESI)-ion trap-MS detection was used to separate and identify the compounds present in the rosemary extracts. Rosmarinic acid, carnosic acid and seven of their terpene-type metabolites, and seven flavones were identified. The drying and/or distillation treatments used with the plant material strongly affected the content of the two compounds of higher antioxidant activity: rosmarinic acid and carnosic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, Leonard W.
We examined the relative risk and impact of a dirty bomb employing Co-60 and Cs-137, the two most common high activity source materials. We found that the risk of an area denial dirty bomb attack is greater for Cs-137 due to the form and chemistry of CsCl, the soft, powdery salt form currently in use for high activity Cs-137 sources, found in blood and research irradiators.
Jiang, Fangming; Peng, Peng
2016-01-01
Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870
Chu, Guang; Wang, Xuesi; Chen, Tianrui; Gao, Jianxiong; Gai, Fangyuan; Wang, Yu; Xu, Yan
2015-06-10
Plasmonic materials with large chiroptical activity at visible wavelength have attracted considerable attention due to their potential applications in metamaterials. Here we demonstrate a novel guest-host chiral nematic liquid crystal film composed of bulk self-co-assembly of the dispersed plasmonic silver nanowires (AgNWs) and cellulose nanocrystals (CNCs). The AgNWs-CNCs composite films show strong plasmonic optical activities, that are dependent on the chiral photonic properties of the CNCs host medium and orientation of the guest AgNWs. Tunable chiral distribution of the aligned anisotropic AgNWs with long-range order is obtained through the CNCs liquid crystal mediated realignment. The chiral plasmonic optical activity of the AgNWs-CNCs composite films can be tuned by changing the interparticle electrostatic repulsion between the CNCs nanorods and AgNWs. We also observe an electromagnetic energy transfer phenomena among the plasmonic bands of AgNWs, due to the modulation of the photonic band gap of the CNCs host matrix. This facile approach for fabricating chiral macrostructured plasmonic materials with optically tunable property is of interest for a variety of advanced optics applications.
Hybrid metamaterials for electrically triggered multifunctional control
Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.
2016-01-01
Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems. PMID:27807342
Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors
Yu, Xiuxiu; Wang, Ying; Li, Li; Li, Hongbian; Shang, Yuanyuan
2017-01-01
Biomass materials are promising precursors for the production of carbonaceous materials due to their abundance, low cost and renewability. Here, a freestanding wrinkled carbon membrane (WCM) electrode material for flexible supercapacitors (SCs) was obtained from flower petal. The carbon membrane was fabricated by a simple thermal pyrolysis process and further activated by heating the sample in air. As a binder and current collector-free electrode, the activated wrinkled carbon membrane (AWCM) exhibited a high specific capacitance of 332.7 F/g and excellent cycling performance with 92.3% capacitance retention over 10000 cycles. Moreover, a flexible all-solid supercapacitor with AWCM electrode was fabricated and showed a maximum specific capacitance of 154 F/g and great bending stability. The development of this flower petal based carbon membrane provides a promising cost-effective and environmental benign electrode material for flexible energy storage. PMID:28361914
Ravisankar, R; Vanasundari, K; Chandrasekaran, A; Rajalakshmi, A; Suganya, M; Vijayagopal, P; Meenakshisundaram, V
2012-04-01
The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of (226)Ra, (232)Th and (40)K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards. Copyright © 2011 Elsevier Ltd. All rights reserved.
Natural radioactivity measurements of building materials in Baotou, China.
Zhao, Caifeng; Lu, Xinwei; Li, Nan; Yang, Guang
2012-12-01
Natural radioactivity due to (226)Ra, (232)Th and (40)K in the common building materials collected from Baotou city of Inner Mongolia, China was measured using gamma-ray spectrometry. The radiation hazard of the studied building materials was estimated by the radium equivalent activity (Ra(eq)), internal hazard index (H(in)) and annual effective dose (AED). The concentrations of the natural radionuclides and Ra(eq) in the studied samples were compared with the corresponding results of other countries. The Ra(eq) values of the building materials are below the internationally accepted values (370 Bq kg(-1)). The values of H(in) in all studied building materials are less than unity. The AEDs of all measured building materials are at an acceptable level.
NASA Astrophysics Data System (ADS)
Manocha, Satish M.; Patel, Hemang; Manocha, L. M.
2013-02-01
Biomorphic SiC materials with tailor-made microstructure and properties similar to ceramic materials manufactured by conventional method are a new class of materials derived from natural biopolymeric cellulose templates (wood). Porous silicon carbide (SiC) ceramics with wood-like microstructure have been prepared by carbothermal reduction of charcoal/silica composites at 1300-1600 °C in inert Ar atmosphere. The C/SiO2 composites were fabricated by infiltrating silica sol into porous activated biocarbon template. Silica in the charcoal/silica composite, preferentially in the cellular pores, was found to get transformed in forms of fibers and rods due to shrinkage during drying. The changes in the morphology of resulting porous SiC ceramics after heat treatment to 1600 °C, as well as the conversion mechanism of wood to activated carbon and then to porous SiC ceramic have been investigated using scanning electron microscope, x-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. Activation of carbon prior to silica infiltration has been found to enhance conversion of charcoal to SiC. The pore structure is found to be uniform in these materials than in those made from as-such charcoal/silica composites. This provides a low-cost and eco-friendly route to advanced ceramic materials, with near-net shape potential.
NASA Astrophysics Data System (ADS)
Di, Yi; Xiao, Zhanhai; Yan, Xiaoshuang; Ru, Geying; Chen, Bing; Feng, Jiwen
2018-05-01
The photovoltaic performance of dye-sensitized solar cell (DSSC) is strongly influenced by the electrocatalytic ability of its counter electrode (CE) materials. To obtain the affordable and high-performance electrocatalysts, the N/S dual-doped chitin-derived carbon materials SCCh were manufactured via in-situ S-doped method in the annealing process, where richer active sites are created compared to the pristine chitin-derived carbon matrix CCh, thus enhancing the intrinsic catalytic activity of carbon materials. When SCCh is incorporated with graphene, the yielded composites hold a further boosted catalytic activity due to facilitating the electronic fast transfer. The DSSC assembled with the optimizing rGO-SCCh-3 composite CE shows a favourable power conversion efficiency of 6.36%, which is comparable with that of the Pt-sputtering electrode (6.30%), indicate of the outstanding I3- reduction ability of the composite material. The electrochemical characterizations demonstrate that the low charge transfer resistance and excellent electrocatalytic activity all contribute to the superior photovoltaic performance. More importantly, the composite CE exhibits good electrochemical stability in the practical operation. In consideration of the low cost and the simple preparation procedure, the present metal-free carbonaceous composites could be used as a promising counter electrode material in future large scale production of DSSCs.
Cui, Xiaoju; Xiao, Jianping; Wu, Yihui; Du, Peipei; Si, Rui; Yang, Huaixin; Tian, Huanfang; Li, Jianqi; Zhang, Wen-Hua; Deng, Dehui; Bao, Xinhe
2016-06-01
The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4 /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anomalous Faraday effect of a system with extraordinary optical transmittance.
Khanikaev, Alexander B; Baryshev, Alexander V; Fedyanin, Andrey A; Granovsky, Alexander B; Inoue, Mitsuteru
2007-05-28
It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.
Monolithic Silicon Microbolometer Materials for Uncooled Infrared Detectors
2015-05-21
covered by an active sensing material, and G is the thermal conductance of the supporting legs. Another important figure of merit is the noise...have a low thermal conductance to maximize thermal isolation from the environment. The legs also have a thin film of metal which serve as...fabricated array, glass substrates (≈ 2 mm thick) were used due to their low thermal conductivity and therefore a lower ability to transport heat away
Ternary solution-processed organic solar cells incorporating 2D materials
NASA Astrophysics Data System (ADS)
Stylianakis, Minas M.; Konios, Dimitrios; Petridis, Constantinos; Kakavelakis, George; Stratakis, Emmanuel; Kymakis, Emmanuel
2017-12-01
Recently, the study of ternary organic solar cells (OSCs) has attracted the efforts of the scientific community, leading to significantly higher performance due to the enhanced harvesting of incoming irradiation. Here, for the first time, and in order to promote this OSC architecture, we review the progress implemented by the application of two-dimensional (2D) materials in the field of blend bulk heterojunction ternary OSCs. Power conversion efficiency (PCE) improvements of the order of 40% compared to the reference binary devices, and PCEs in excess of 8% have been reported by incorporating graphene-based or other 2D materials as a third element inside the active layer. These OSCs combine the synergetic advantages of ternary devices and the superb properties of the 2D material family. In conclusion, the incorporation of the unique properties of graphene and other 2D materials inside the active layer opens up a very promising pathway in the design and construction of high-performance, simply fabricated and low- cost photovoltaic devices.
Natural biopolymer-based nanocomposite films for packaging applications.
Rhim, Jong-Whan; Ng, Perry K W
2007-01-01
Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as the consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance can be recovered by applying a nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased modulus and strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have a huge potential for application in the active food packaging industry. In this review, recent advances in the preparation of natural biopolymer-based films and their nanocomposites, and their potential use in packaging applications are addressed.
Novel biomaterials: plasma-enabled nanostructures and functions
NASA Astrophysics Data System (ADS)
Levchenko, Igor; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua; (Ken Ostrikov, Kostya
2016-07-01
Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials.
NASA Astrophysics Data System (ADS)
Huang, Hai-Bo; Wang, Yu; Cai, Feng-Ying; Jiao, Wen-Bin; Zhang, Ning; Liu, Cheng; Cao, Hai-Lei; Lü, Jian
2017-12-01
A family of new CdS@SAC composite materials was successfully prepared through the deposition of as-synthesized CdS nanomaterials on various lotus-seedpod-derived activated carbon (SAC) materials. The SAC supports derived at different activation temperatures exhibited considerably large surface areas and various microstructures that were responsible for the enhanced photocatalytic performance of CdS@SAC composite materials towards the photodegradation of rhodamine B (RhB) under visible irradiation. The best-performing CdS@SAC-800 showed excellent photocatalytic activity with a rate constant of ca. 2.40×10–2 min–1, which was approximately 13 times higher than that of the CdS precursor. Moreover, the estimated band gap energy of CdS@SAC-800 (1.99 eV) was significantly lower than that of the CdS precursor (2.22 eV), which suggested considerable strength of interface contact between the CdS and carbon support, as well as efficient light harvesting capacity of the composite material. Further photocatalytic study indicated that the SAC supports enhanced synergistically the accessibility of organic substrates, the efficiency of solar energy harvesting, as well as the separation of photogenerated electrons and holes in this system. Improved photocatalytic activity of the composite materials was largely due to the increased generation of active species such as h+, OH•, O2•‑ etc. This work provides a facile and low-cost pathway to fabricate composite photocatalysts for viable degradation of organic pollutants.
Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop
2012-07-01
A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-01-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-05-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.
Graphene oxide: surface activity and two-dimensional assembly.
Kim, Franklin; Cote, Laura J; Huang, Jiaxing
2010-05-04
Graphene oxide (GO) is a promising precursor for preparing graphene-based composites and electronics applications. Like graphene, GO is essentially one-atom thick but can be as wide as tens of micrometers, resulting in a unique type of material building block, characterized by two very different length scales. Due to this highly anisotropic structure, the collective material properties are highly dependent on how these sheets are assembled. Therefore, understanding and controlling the assembly behavior of GO has become an important subject of research. In this Research News article the surface activity of GO and how it can be employed to create two-dimensional assemblies over large areas is discussed.
Electrochemical and kinetic studies of ultrafast laser structured LiFePO4 electrodes
NASA Astrophysics Data System (ADS)
Mangang, M.; Gotcu-Freis, P.; Seifert, H. J.; Pfleging, W.
2015-03-01
Due to a growing demand of cost-efficient lithium-ion batteries with an increased energy and power density as well as an increased life-time, the focus is set on intercalation cathode materials like LiFePO4. It has a high practical capacity, is environmentally friendly and has low material costs. However, its low electrical conductivity and low ionic diffusivity are major drawbacks for its use in electrochemical storage devices or electric vehicles. By adding conductive agents, the electrical conductivity can be enhanced. By increasing the surface of the cathode material which is in direct contact with the liquid electrolyte the lithium-ion diffusion kinetics can be improved. A new approach to increase the surface of the active material without changing the active particle packing density or the weight proportion of carbon black is the laser-assisted generation of 3D surface structures in electrode materials. In this work, ultrafast laser radiation was used to create a defined surface structure in LiFePO4 electrodes. It was shown that by using ultrashort laser pulses instead of nanosecond laser pulses, the ablation efficiency could be significantly increased. Furthermore, melting and debris formation were reduced. To investigate the diffusion kinetics, electrochemical methods such as cyclic voltammetry and galvanostatic intermittent titration technique were applied. It could be shown that due to a laser generated 3D structure, the lithium-ion diffusion kinetic, the capacity retention and cell life-time can be significantly improved.
Determination of Time Required for Materials Exposed to Oxygen to Return to Reduced Flammability
NASA Technical Reports Server (NTRS)
Harper, Susana; Hirsch, David; Smith, Sarah
2009-01-01
Increased material flammability due to exposure to high oxygen concentrations is a concern from both a safety and operational perspective. Localized, high oxygen concentrations can occur when exiting a higher oxygen concentration environment due to material saturation, as well as oxygen entrapment between barrier materials. Understanding of oxygen diffusion and permeation and its correlation to flammability risks can reduce the likelihood of fires while improving procedures as NASA moves to longer missions with increased extravehicular activities in both spacecraft and off-Earth habitats. This paper examines the time required for common spacecraft materials exposed to oxygen to return to reduced flammability after removal from the increased oxygen concentration environment. Specifically, NASA-STD-6001A maximum oxygen concentration testing and ASTM F-1927 permeability testing were performed on Nomex 4 HT90-40, Tiburon 5 Surgical Drape, Cotton, Extravehicular Mobility Unit (EMU) Liquid-Cooled Ventilation Garment, EMU Thermal Comfort Undergarment, EMU Mosite Foam with Spandex Covering, Advanced Crew Escape Suit (ACES) Outer Cross-section, ACES Liquid Cooled Garment (LCG), ACES O2 Hose Material, Minicel 6 Polyethylene Foam, Minicel Polyethylene Foam with Nomex Covering, Pyrell Polyurethane Foam, and Zotek 7 F-30 Foam.
The study about the use of the natural fibres in composite materials
NASA Astrophysics Data System (ADS)
Hristian, L.; Ostafe, M. M.; Manea, L. R.; Leon, A. L.
2016-08-01
The current technological development, the crises of raw materials and energy, the increased aggression towards the environment have led to the development of the new materials and unconventional technologies. The composite materials have both many important advantages compared to the traditional materials and provide many functional advantages: low weight, mechanical resistance, low maintenance costs. The main advantage of the composites lies in their ability to combine the physical properties of components to achieve new structural functionalities, so the modulation of the properties and finally, to obtain a wide variety of materials which may be used in all areas of activities. Some biodegradable fibers, flax, hemp, may provide the specific mechanical properties compared to those of the glass fiber, due to their high strength and low density of their volume. To make the right choice, even if the natural fibers have very low power consumption compared with the synthetic fibers, such as glass or carbon, it should be considered a careful assessment of the environmental impact. The present study shows that the validity of the replacement of the synthetic fibers with natural fibers, depends on the reinforcement type and the complexity of the problems due to the processing of natural fibers.
Improvements in soft gelatin capsule sample preparation for USP-based simethicone FTIR analysis.
Hargis, Amy D; Whittall, Linda B
2013-02-23
Due to the absence of a significant chromophore, Simethicone raw material and finished product analysis is achieved using a FTIR-based method that quantifies the polydimethylsiloxane (PDMS) component of the active ingredient. The method can be found in the USP monographs for several dosage forms of Simethicone-containing pharmaceutical products. For soft gelatin capsules, the PDMS assay values determined using the procedure described in the USP method were variable (%RSDs from 2 to 9%) and often lower than expected based on raw material values. After investigation, it was determined that the extraction procedure used for sample preparation was causing loss of material to the container walls due to the hydrophobic nature of PDMS. Evaluation revealed that a simple dissolution of the gelatin capsule fill in toluene provided improved assay results (%RSDs≤0.5%) as well as a simplified and rapid sample preparation. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanaka, Ken-ichi; Ueno, Jun
2017-09-01
Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.
Khan, Nazmul Abedin; Haque, Enamul; Jhung, Sung Hwa
2010-03-20
A typical MOF material, Cu-BTC has been synthesized with microwave and conventional electric heating in various conditions to elucidate, for the first time, the quantitative acceleration in the synthesis of a MOF by microwaves. The acceleration by microwaves is mainly due to rapid nucleation rather than rapid crystal growth, even though both stages are accelerated. The acceleration in the nucleation stage by microwaves is due to the very large pre-exponential factor (about 1.4 x 10(10) times that of conventional synthesis) in the Arrhenius plot. However, the activation energy for the nucleation in the case of microwave synthesis is higher than the activation energy of conventional synthesis. The large acceleration in the nucleation, compared with that in the crystal growth, is observed once again by the syntheses in two-steps (changing heating methods from microwave into conventional heating or from conventional heating into microwave heating just after the nucleation is completed). The crystal size of Cu-BTC obtained by microwave-nucleation is generally smaller than the Cu-BTC made by conventional-nucleation, probably due to rapid nucleation and the small size of nuclei with microwave-nucleation.
Induced activation study of LDEF
NASA Technical Reports Server (NTRS)
Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.
1993-01-01
Analysis of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is continuing with extraction of specific activities for various spacecraft materials. Data and results of activation measurements from eight facilities are being collected for interpretation at Eastern Kentucky University and NASA/Marshall Space Flight Center. The major activation mechanism in LDEF components is the proton flux in the South Atlantic Anomaly (SAA). This flux is highly anisotropic, and could be sampled by taking advantage of the gravity-gradient stabilization of the LDEF. The directionally-dependent activation due to these protons was clearly observed in the data from aluminum experiment tray clamps (reaction product Na-22), steel trunnions (reaction product Mn-54 and others) and is also indicated by the presence of a variety of nuclides in other materials. A secondary production mechanism, thermal neutron capture, was observed in cobalt, indium, and tantalum, which are known to have large capture cross sections. Experiments containing samples of these metals and significant amounts of thermalizing low atomic number (Z) material showed clear evidence of enhanced activation of Co-60, In-114m, and Ta-182. Other mechanisms which activate spacecraft material that are not as easily separable from SAA proton activation, such as galactic proton bombardment and secondary production by fast neutrons, are being investigated by comparison to radiation environmental calculations. Deviations from one-dimensional radiation models indicate that these mechanisms are more important at greater shielding depths. The current status of the induced radioactivity measurements as of mid-year 1992 are reviewed. Specific activities for a number of materials which show SAA effects and thermal neutron capture are presented. The results for consistency by combining data from the participating institutions is also examined.
Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.
Bhaumik, A; Inagaki, S
2001-01-31
Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.
Simple Graphene Synthesis via Chemical Vapor Deposition
ERIC Educational Resources Information Center
Jacobberger, Robert M.; Machhi, Rushad; Wroblewski, Jennifer; Taylor, Ben; Gillian-Daniel, Anne Lynn; Arnold, Michael S.
2015-01-01
Graphene's unique combination of exceptional mechanical, electronic, and thermal properties makes this material a promising candidate to enable next-generation technologies in a wide range of fields, including electronics, energy, and medicine. However, educational activities involving graphene have been limited due to the high expense and…
Report: Fiscal Years 2016 and 2015 Financial Statements for the Pesticide Registration Fund
Report #17-F-0365, August 14, 2017. Due to the material weakness in internal controls noted, the agency cannot provide reasonable assurance that financial data provided for the PRIA Fund accurately reflect the agency’s financial activities and balances.
Report: Fiscal Years 2015 and 2014 Financial Statements for the Pesticide Registration Fund
Report #17-F-0315, July 10, 2017. Due to the material weakness in internal controls noted, the agency cannot provide reasonable assurance that financial data provided for the PRIA Fund accurately reflect the agency’s financial activities and balances.
(Bio)hybrid materials based on optically active particles
NASA Astrophysics Data System (ADS)
Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg
2014-03-01
In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.
NASA Astrophysics Data System (ADS)
Wu, Gaoming; Bao, Han; Xia, Zheng; Yang, Bin; Lei, Lecheng; Li, Zhongjian; Liu, Chunxian
2018-04-01
Anode materials, as the core component of microbial fuel cells (MFCs), have huge impacts on power generation performance and overall cost. Stainless-steel sponge (SS) can be a promising material for MFC anodes, due to its open continuous three-dimensional structure, high conductivity and low cost. However, poor biocompatibility limits its application. In this paper, a polypyrrole/sargassum activated carbon modified SS anode (Ppy/SAC/SS) is developed by electrochemical polymerization of pyrrole on the SS with the SAC as a dopant. The maximum power density achieved with the Ppy/SAC/SS anode is 45.2 W/m3, which is increased by 2 orders of magnitude and 2.9 times compared with an unmodified SS anode and a solely Ppy modified SS anode (Ppy/SS), respectively. In addition, the Ppy/SAC layer effectively eliminates electrochemical corrosion of the SS substrate. Electrochemical impedance spectroscopy reveals that Ppy/SAC modification decreases electron transfer resistance between the bacteria and the electrode. Furthermore, in vivo fluorescence imaging indicates that a more uniform biofilm is formed on the Ppy/SAC/SS compared to the unmodified SS and Ppy/SS. Due to the low cost of the materials, easy fabrication process and relatively high performance, our developed Ppy/SAC/SS can be a cost efficient anode material for MFCs in practical applications.
Peculiar behavior of MWW materials in aldol condensation of furfural and acetone.
Kikhtyanin, Oleg; Chlubná, Pavla; Jindrová, Tereza; Kubička, David
2014-07-21
MWW family of different structural types (MCM-22, MCM-49, MCM-56 and MCM-36) was used as catalysts for aldol condensation of furfural and acetone studied in a batch reactor at 100 °C, autogenous pressure and a reaction time of 0-4 h. To establish a relation between physico-chemical and catalytic properties of microporous materials, the samples were characterized by XRD, SEM, N2 adsorption, FTIR and TGA. It was found that the acidic solids possessed appreciable activity in the reaction and resulted in the formation of products of aldehyde-ketone interaction. Surprisingly, MCM-22 and MCM-49, i.e. three-dimensional materials containing internal supercages, exhibited higher activity than two MCM-36 catalysts with two-dimensional character having larger accessible external surface area due to expansion of the interlayer space by swelling and pillaring treatments. Moreover, all MWW family catalysts gave higher conversion than the large-pore zeolite BEA. Nevertheless, furfural conversion decreased rapidly for all the studied materials due to coke formation. Unexpectedly, the deactivation was found to be more severe for MCM-36 catalysts than for MCM-22 and MCM-49, which was attributed to the reaction taking place also in supercages that are protected by 10-ring channels from severe coking. In contrast the cups located on the external surface were coked rapidly.
Patched bimetallic surfaces are active catalysts for ammonia decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei; Vlachos, Dionisios G.
In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less
Patched bimetallic surfaces are active catalysts for ammonia decomposition
Guo, Wei; Vlachos, Dionisios G.
2015-10-07
In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less
The effect of high-pressure torsion on the microstructure and properties of magnesium
NASA Astrophysics Data System (ADS)
Figueiredo, Roberto B.; Sabbaghianrad, Shima; Langdon, Terence G.
2017-05-01
High-pressure torsion provides the opportunity to introduce significant plastic strain at room temperature in magnesium and its alloys. It is now established that this processing operation produces ultrafine-grained structures and changes the properties of these materials. The present paper shows that the mechanism of grain refinement differs from f.c.c. and b.c.c. materials. It is shown that fine grains are formed at the grain boundaries of coarse grains and gradually consume the whole structure. Also, the processed material exhibits unusual mechanical properties due to the activation of grain boundary sliding at room temperature.
Gonzalez, Franklin N.; Neugroschel, Arnost
1984-02-14
A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.
Emerging chitin and chitosan nanofibrous materials for biomedical applications
NASA Astrophysics Data System (ADS)
Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun
2014-07-01
Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.
NASA Astrophysics Data System (ADS)
Han, Qiaofeng; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong
2017-05-01
It is very significant to develop CH3COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.
Slope activity in Gale crater, Mars
Dundas, Colin M.; McEwen, Alfred S.
2015-01-01
High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.
Antioxidant Activities of Cinnamaldehyde Derivatives
NASA Astrophysics Data System (ADS)
Suryanti, V.; Wibowo, F. R.; Khotijah, S.; Andalucki, N.
2018-03-01
The modification structures of cinnamaldehyde, which was isolated from cinnamon oil, has been carried out. The synthesized compounds were tested their antioxidant activity by using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay and the IC50 was done by spectrophotometric assay method compared with standard vitamin E. The cinnamaldehyde derivatives, e.g. cinnamic acid 2, methyl cinnamate 3 and cinnamyl alcohol 5 had significantly higher antioxidant activity than that of their starting materials, cinnamaldehyde. However, although cinnamic amine 5 had a hydroxyl group, it gave no antioxidant activity possibly due to its bulky structure.
Review on the EFDA programme on tungsten materials technology and science
NASA Astrophysics Data System (ADS)
Rieth, M.; Boutard, J. L.; Dudarev, S. L.; Ahlgren, T.; Antusch, S.; Baluc, N.; Barthe, M.-F.; Becquart, C. S.; Ciupinski, L.; Correia, J. B.; Domain, C.; Fikar, J.; Fortuna, E.; Fu, C.-C.; Gaganidze, E.; Galán, T. L.; García-Rosales, C.; Gludovatz, B.; Greuner, H.; Heinola, K.; Holstein, N.; Juslin, N.; Koch, F.; Krauss, W.; Kurzydlowski, K. J.; Linke, J.; Linsmeier, Ch.; Luzginova, N.; Maier, H.; Martínez, M. S.; Missiaen, J. M.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Norajitra, P.; Opschoor, J.; Pintsuk, G.; Pippan, R.; Ritz, G.; Romaner, L.; Rupp, D.; Schäublin, R.; Schlosser, J.; Uytdenhouwen, I.; van der Laan, J. G.; Veleva, L.; Ventelon, L.; Wahlberg, S.; Willaime, F.; Wurster, S.; Yar, M. A.
2011-10-01
All the recent DEMO design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due to their high temperature strength, good thermal conductivity, low erosion, and comparably low activation under neutron irradiation. The long-term objective of the EFDA fusion materials programme is to develop structural as well as armor materials in combination with the necessary production and fabrication technologies for future divertor concepts. The programmatic roadmap is structured into four engineering research lines which comprise fabrication process development, structural material development, armor material optimization, and irradiation performance testing, which are complemented by a fundamental research programme on "Materials Science and Modeling". This paper presents the current research status of the EFDA experimental and testing investigations, and gives a detailed overview of the latest results on fabrication, joining, high heat flux testing, plasticity, modeling, and validation experiments.
Platelet Surface-Associated Activation and Secretion-Mediated Inhibition of Coagulation Factor XII
Zakharova, Natalia V.; Artemenko, Elena O.; Podoplelova, Nadezhda A.; Sveshnikova, Anastasia N.; Demina, Irina A.; Ataullakhanov, Fazly I.; Panteleev, Mikhail A.
2015-01-01
Coagulation factor XII (fXII) is important for arterial thrombosis, but its physiological activation mechanisms are unclear. In this study, we elucidated the role of platelets and platelet-derived material in fXII activation. FXII activation was only observed upon potent platelet stimulation (with thrombin, collagen-related peptide, or calcium ionophore, but not ADP) accompanied by phosphatidylserine exposure and was localised to the platelet surface. Platelets from three patients with grey platelet syndrome did not activate fXII, which suggests that platelet-associated fXII-activating material might be released from α-granules. FXII was preferentially bound by phosphotidylserine-positive platelets and annexin V abrogated platelet-dependent fXII activation; however, artificial phosphotidylserine/phosphatidylcholine microvesicles did not support fXII activation under the conditions herein. Confocal microscopy using DAPI as a poly-phosphate marker did not reveal poly-phosphates associated with an activated platelet surface. Experimental data for fXII activation indicates an auto-inhibition mechanism (k i/k a = 180 molecules/platelet). Unlike surface-associated fXII activation, platelet secretion inhibited activated fXII (fXIIa), particularly due to a released C1-inhibitor. Platelet surface-associated fXIIa formation triggered contact pathway-dependent clotting in recalcified plasma. Computer modelling suggests that fXIIa inactivation was greatly decreased in thrombi under high blood flow due to inhibitor washout. Combined, the surface-associated fXII activation and its inhibition in solution herein may be regarded as a flow-sensitive regulator that can shift the balance between surface-associated clotting and plasma-dependent inhibition, which may explain the role of fXII at high shear and why fXII is important for thrombosis but negligible in haemostasis. PMID:25688860
Investigating permeability and carbonation behavior of sustainable cements
NASA Astrophysics Data System (ADS)
White, C.; Blyth, A.; Scherer, G. W.; Morandeau, A. E.
2015-12-01
The durability of new sustainable cementitious materials is intimately linked with the ability for these materials to prevent the ingress of aggressive ions through their percolated pore networks. However, it is also important to be able to control and limit the detrimental chemical degradation mechanisms that occur to the cement binder once the ions have diffused through the pore network. Here, alkali-activated materials will be discussed, and recent research on measuring the permeability of this class of cements using the beam-bending method will be presented. It will be shown that the permeability can be controlled by tailoring the activator chemistry, and that the addition of free silica in the activator has a strong (favorable) influence on the resulting percolated pore network. Carbonation is one type of chemical degradation process that is known to severely shorten the service life of concrete, especially in environments containing elevated CO2 levels. However, the exact atomic structural changes that occur to the main binder phase (calcium-silicate-hydrate gel) during carbonation remain largely unknown. Here, X-ray pair distribution function analysis is used to elucidate the local atomic structural changes that occur during carbonation of calcium-silicate-hydrate gel and calcium-aluminosilicate-hydrate gel (alkali-activated slag binder), where distinct differences in the extent of gel decalcification are measured according to the chemistry of the starting precursor material. The results will be discussed in the context of limiting the extent of carbonation in cementitious materials, with potential applications of alkali-activated materials in geological storage of CO2 due to their increased resistance to carbonation.
MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives.
Zhang, Hong; Liu, Ximeng; Wu, Yue; Guan, Cao; Cheetham, Anthony K; Wang, John
2018-03-27
More than 20 000 MOFs have been reported to date, with different combinations of metal ions/centers and organic linkers, and they can be grown into various 3D, 2D, 1D and 0D morphologies. The flexibility in control over varying length scales from atomic scale up to bulk structure allows access to an almost endless variety of MOF-based and MOF-derived materials. Indeed, MOFs themselves have been studied as a class of useful functional materials. More remarkably, extensive research conducted in recent years has shown that MOFs are exceptionally good precursors for a large variety of nanohybrids as active materials in both electrocatalysis and energy storage. As they already contain both carbon and well-dispersed metal atoms, MOFs can be converted to conductive carbons decorated with active metal species and doping elements through appropriate pyrolysis. Due to the great diversity accessible in the composition, structure, and morphology of MOFs, several types of MOF-derived nanohybrids are now among the best performing materials both for electrocatalysts and electrodes in various energy conversion and storage devices. In addition to mesoporous nano-carbons, both doped and undoped, carbon-metal nanohybrids, and carbon-compound nanohybrids, there are several types of core@shell, encapsulated nanostructures, embedded nanosystems and heterostructures that have been developed from MOFs recently. They can be made in either free-standing forms, nano- or micro-powders, grown on appropriate conducting substrates, or assembled together with other active materials. During the MOF to active material conversion, other active species or precursors can be inserted into the MOF-derived nanostructures or assembled on surfaces, leading to uniquely new porous nanostructures. These MOF-derived active materials for electrocatalysis and energy storage are nanohybrids consisting of more than functional components that are purposely integrated together at desired length scales for much-improved performance. This article reviews the current status of these nanohybrids and concludes with a brief perspective on the future of MOF-derived functional materials.
Depth-Dependent Defect Studies Using Coherent Acoustic Phonons
2014-09-29
using CAP waves as an active moving interface to induce local changes in electric, acoustic , and optical properties. This is able to generate ultrafast...the elastic strain component [6]. b) Modification of the crystal lattice due to transient strain caused by the coherent acoustic phonon wave . The...opto-electronic properties of materials. We are also using CAP waves as an active moving interface to induce local changes in electric, acoustic , and
Composite TiO2/clays materials for photocatalytic NOx oxidation
NASA Astrophysics Data System (ADS)
Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.
2014-11-01
TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.
NASA Astrophysics Data System (ADS)
He, Shuijian; Chen, Linlin; Xie, Chencheng; Hu, Huan; Chen, Shuiliang; Hanif, Muddasir; Hou, Haoqing
2013-12-01
Due to their cycling stability and high power density, the supercapacitors bridge the power/energy gap between traditional dielectric capacitors and batteries/fuel cells. Electrode materials are key components for making high performance supercapacitors. An activated carbon nanowhiskers (ACNWs) wrapped-on graphitized electrospun nanofiber (GENF) network (ACNWs/GENFN) with 3D porous structure is prepared as a new type of binder-free electrode material for supercapacitors. The supercapacitor based on the ACNWs/GENFN composite material displays an excellent performance with a specific capacitance of 176.5 F g-1 at current density of 0.5 A g-1, an ultrahigh power density of 252.8 kW kg-1 at current density of 800 A g-1 and an outstanding cycling stability of no capacitance loss after 10,000 charge/discharge cycles.
Czarnecki, Sebastian; Bertin, Annabelle
2018-03-07
Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Galvanostatic interruption of lithium insertion into magnetite: Evidence of surface layer formation
Nicholas W. Brady; Takeuchi, Esther S.; Knehr, K. W.; ...
2016-04-24
Magnetite is a known lithium intercalation material, and the loss of active, nanocrystalline magnetite can be inferred from the open-circuit potential relaxation. Specifically, for current interruption after relatively small amounts of lithium insertion, the potential first increases and then decreases, and the decrease is hypothesized to be due to a formation of a surface layer, which increases the solid-state lithium concentration in the remaining active material. Comparisons of simulation to experiment suggest that the reactions with the electrolyte result in the formation of a thin layer of electrochemically inactive material, which is best described by a nucleation and growth mechanism.more » Simulations are consistent with experimental results observed for 6, 8 and 32-nm crystals. As a result, simulations capture the experimental differences in lithiation behavior between the first and second cycles.« less
Muggles, Meteoritic Armor, and Menelmacar: Using Fantasy Series in Astronomy Education and Outreach
NASA Astrophysics Data System (ADS)
Larsen, K.; Bednarski, M.
2008-11-01
Due in part to recent (and ongoing) film adaptations, the fantasy series of C.S. Lewis (The Chronicles of Narnia), J.K. Rowling (Harry Potter), Philip Pullman (His Dark Materials), and J.R.R. Tolkien (The Silmarillion, The Hobbit, and The Lord of the Rings) are being introduced to a new audience of young (and not so young) readers. Many astronomers and astronomy educators are unaware of the wide variety of astronomical references contained in each series. The first portion of this workshop will introduce participants to these references, and highlight activities which educators, planetariums, and science centers have already developed to utilize these works in their education and outreach programs. In the second segment of the workshop, participants will develop ideas for activities and materials relevant to their individual circumstances, including standards-based education materials.
In situ study of LaY2Ni9 compound as Ni MH negative-electrode material
NASA Astrophysics Data System (ADS)
Latroche, M.; Isnard, O.
2008-03-01
The behavior of a Ni-MH (metal hydride) negative composite electrode made of LaY2Ni9 active material has been studied dynamically using in situ neutron diffraction during a complete charge-discharge electrochemical cycle. From the analysis of the collected diffraction patterns, the phase identity, phase amount variations and cell volume evolutions have been determined as a function of the electrochemical state of (dis)charge. The active material shows a typical two-phase behavior with equilibrium between a hydrogen-poor α phase and a hydrogen-rich β one. The lower electrochemical reversible capacity as compared to solid-gas properties has been interpreted in terms of hydrogen gas evolving during charge and kinetic limitation due to slow β to α transformation during discharge, which hinders high discharge rates.
Laser processing of thick Li(NiMnCo)O2 electrodes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Rakebrandt, J.-H.; Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.
2017-02-01
Lithium-ion batteries became the most promising types of mobile energy storage devices due to their high gravimetric and volumetric capacity, high cycle life-time, and low self-discharge. Nowadays, the cathode material lithium nickel manganese cobalt oxide (NMC) is one of the most widely used cathode material in commercial lithium-ion batteries due to many advantages such as high energy density (>150 Wh kg-1) on cell level, high power density (650 W kg-1 @ 25 °C and 50 % Depth of Discharge) [1], high specific capacity (163 mAh g-1) [2], high rate capability and good thermal stability in the fully charged state. However, in order to meet the requirements for the increasing demand for rechargeable high energy batteries, nickel-rich NMC electrodes with specific capacities up to 210 mAh g-1 seem to be the next generation cathodes which can reach on cell level desired energy densities higher than 250 Wh kg-1 [3]. Laser-structuring now enables to combine both concepts, high power and high energy lithium-ion batteries. For this purpose, lithium nickel manganese cobalt oxide cathodes were produced via tape casting containing 85-90 wt% of active material with a film thickness of 50-260 μm. The specific capacities were measured using galvanostatic measurements for different types of NMC with varying nickel, manganese and cobalt content at different charging/discharging currents ("C-rates"). An improved lithium-ion diffusion kinetics due to an increased active surface area could be achieved by laser-assisted generating of three dimensional architectures. Cells with unstructured and structured cathodes were compared. Ultrafast laser ablation was used in order to avoid a thermal impact to the material. It was shown that laser structuring of electrode materials leads to a significant improvement in electrochemical performance, especially at high charging and discharging C-rates.
Report #16-F-0322, September 22, 2016. Due to the material weakness in internal controls noted, EPA cannot provide reasonable assurance that financial data provided for the FIFRA Fund accurately reflect the agency’s financial activities and balances.
Report: Fiscal Years 2014 and 2013 Financial Statements for the Pesticide Registration Fund
Report #16-F-0323, Sept 22, 2016. Due to the material weakness in internal controls noted, EPA cannot provide reasonable assurance that financial data provided for the PRIA Fund for FY 2014 accurately reflect the agency’s financial activities and balances.
Report #17-F-0314, July 10, 2017. Due to the material weakness in internal controls noted, the agency cannot provide reasonable assurance that financial data provided for the FIFRA Fund accurately reflect the agency’s financial activities and balances.
Report #17-F-0364, August 14, 2017. Due to the material weakness in internal controls noted, the agency cannot provide reasonable assurance that financial data provided for the FIFRA Fund accurately reflect the agency’s financial activities and balances.
ERIC Educational Resources Information Center
Gibbons, Thomas C.
2014-01-01
In this time of concern over climate change due to the atmospheric greenhouse effect, teachers often choose to extend relevant classroom work by the use of physical models to test statements. Here we describe an activity in which inexpensive backyard models made from cardboard boxes covered with various household transparent materials allow…
Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye
2017-12-01
Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Villevieille, Claire; Takeuchi, Yoji
2015-01-01
To understand inhomogeneous reactions perpendicular to the current collector in an electrode for batteries, a method combining operando synchrotron X‐ray diffraction and two‐layer electrodes with different porosities is developed. The two layers are built using two different active materials (LiNi0.80Co0.15Al0.05O2 and LiMn2O4), therefore, tracing each diffraction pattern reveals which active material is reacting during the electrochemical measurement in transmission mode. The results demonstrate that the active material close to the separator is obviously more active than that one close to the current collector in the case of low porosity electrodes. This inhomogeneity should be due to the rate‐limitation and especially to low average ionic conductivity of the electrolyte in the porous electrode because the current flows first mainly into the electrode regions close to the separator. The inhomogeneity is found to be mitigated by the adjustment of the electrode density and thus porosity. Hence, the novel operando method reveals a clear inhomogeneous reaction perpendicular to the current collector. PMID:27708998
Hong, Huixiao; Harvey, Benjamin G.; Palmese, Giuseppe R.; Stanzione, Joseph F.; Ng, Hui Wen; Sakkiah, Sugunadevi; Tong, Weida; Sadler, Joshua M.
2016-01-01
Bisphenol A (BPA) is a ubiquitous compound used in polymer manufacturing for a wide array of applications; however, increasing evidence has shown that BPA causes significant endocrine disruption and this has raised public concerns over safety and exposure limits. The use of renewable materials as polymer feedstocks provides an opportunity to develop replacement compounds for BPA that are sustainable and exhibit unique properties due to their diverse structures. As new bio-based materials are developed and tested, it is important to consider the impacts of both monomers and polymers on human health. Molecular docking simulations using the Estrogenic Activity Database in conjunction with the decision forest were performed as part of a two-tier in silico model to predict the activity of 29 bio-based platform chemicals in the estrogen receptor-α (ERα). Fifteen of the candidates were predicted as ER binders and fifteen as non-binders. Gaining insight into the estrogenic activity of the bio-based BPA replacements aids in the sustainable development of new polymeric materials. PMID:27420082
NASA Astrophysics Data System (ADS)
Liang, Jiyuan; Qu, Tingting; Kun, Xiang; Zhang, Yu; Chen, Shanyong; Cao, Yuan-Cheng; Xie, Mingjiang; Guo, Xuefeng
2018-04-01
Biomass-derived carbon (BDCs) materials are receiving extensive attention as electrode materials for energy storage because of the considerable economic value offering possibility for practical applications, but the electrochemical capacitance of BDCs are usually relatively low resulted from limited electric double layer capacitance. Herein, an oxygen-rich porous carbon (KMAC) was fabricated through a rapid and convenient microwave assisted carbonization and KOH activation of camellia oleifera shell. The obtained KMAC possesses three-dimensional porous architecture, large surface area (1229 m2/g) and rich oxygen functionalities (C/O ratio of 1.66). As the electrode materials for supercapacitor, KMAC exhibits superior supercapacitive performances as compared to the activated carbon (KAC) derived from direct carbonization/KOH activation method in 2.0 M H2SO4 (315 F/g vs. 202 F/g) and 6.0 M KOH (251 F/g vs. 214 F/g) electrolyte due to the rich oxygen-containing functional groups on the surface of porous carbon resulted from the developed microwave-assisted carbonization/activation approach.
Long life nickel electrodes for a nickel-hydrogen cell. I Initial performance
NASA Technical Reports Server (NTRS)
Lim, H. S.; Verzwyvelt, S. A.; Blaser, C.; Keener, K. M.
1983-01-01
In order to develop a long life nickel electrode for a Ni/H2 cell, an investigation was begun to study the effects of sinter structure and active material loading level on the long life performance of nickel electrodes. This paper is a report on the initial performance of these electrodes as a part of an accelerated life test program. Seven different types of nickel plaques were made which included three levels of both their mechanical strength and median pore size. These plaques were impregnated with three levels of active material loading. The resultant electrodes were tested by a 200-cycle stress test which was conducted in flooded electrolyte, and also for initial performance in a Ni/H2 boiler plate cell. An interesting and unexpected observation was that an increased initial utilization of the active material was due more to its complete discharge to the lower average oxidation state than its increased charge acceptance in the charged state.
Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin
2017-12-01
In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Induced radioactivity in LDEF components
NASA Technical Reports Server (NTRS)
Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.
1991-01-01
The systematics of induced radioactivity on the Long Duration Exposure Facility (LDEF) were studied in a wide range of materials using low level background facilities for detection of gamma rays. Approx. 400 samples of materials processed from structural parts of the spacecraft, as well as materials from onboard experiments, were analyzed at national facilities. These measurements show the variety of radioisotopes that are produced with half-lives greater than 2 wks, most of which are characteristic of proton induced reactions above 20 MeV. For the higher activity, long lived isotopes, it was possible to map the depth and directional dependences of the activity. Due to the stabilized configuration of the LDEF, the induced radioactivity data clearly show contributions from the anisotropic trapped proton flux in the South Atlantic Anomaly. This effect is discussed, along with evidence for activation by galactic protons and thermal neutrons. The discovery of Be-7 was made on leading side parts of the spacecraft, although this was though not to be related to the in situ production of radioisotopes from external particle fluxes.
Huang, Yajun; Ding, Xiaokang; Qi, Yu; Yu, Bingran; Xu, Fu-Jian
2016-11-01
There is an increasing demand in developing of multifunctional materials with good antibacterial activity, biocompatibility and drug/gene delivery capability for next-generation biomedical applications. To achieve this purpose, in this work series of hydroxyl-rich hyperbranched polyaminoglycosides of gentamicin, tobramycin, and neomycin (HP and SS-HP with redox-responsive disulfide bonds) were readily synthesized via ring-opening reactions in a one-pot manner. Both HP and SS-HP exhibit high antibacterial activity toward Escherichia coli and Staphylococcus aureus. Meanwhile, the hemolysis assay of the above materials shows good biocompatibility. Moreover, SS-HPs show excellent gene transfection efficiency in vitro due to the breakdown of reduction-responsive disulfide bonds. For an in vivo anti-tumor assay, the SS-HP/p53 complexes exhibit potent inhibition capability to the growth of tumors. This study provides a promising approach for the design of next-generation multifunctional biomedical materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Activated coconut shell charcoal carbon using chemical-physical activation
NASA Astrophysics Data System (ADS)
Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina
2016-02-01
The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.
Carpenter, Michael A [Scotia, NY; Sirinakis, George [Bronx, NY
2011-01-04
A method for detecting a gas phase constituent such as carbon monoxide, nitrogen dioxide, hydrogen, or hydrocarbons in a gas comprising oxygen such as air, includes providing a sensing material or film having a metal embedded in a catalytically active matrix such as gold embedded in a yttria stabilized zirconia (YSZ) matrix. The method may include annealing the sensing material at about 900.degree. C., exposing the sensing material and gas to a temperature above 400.degree. C., projecting light onto the sensing material, and detecting a change in the absorption spectrum of the sensing material due to the exposure of the sensing material to the gas in air at the temperature which causes a chemical reaction in the sensing material compared to the absorption spectrum of the sensing material in the absence of the gas. Systems employing such a method are also disclosed.
NASA Astrophysics Data System (ADS)
Chye, Matthew B.
2011-12-01
Batteries and asymmetric electrochemical capacitors using nickel-based positive electrodes can provide high currents due to their defect structure and low internal resistance. Nickel-based positive electrodes, therefore, are ideal for high current applications such as power tools and electric vehicles (EVs). The positive electrodes prepared in this research are monolithic graphitic foams electrochemically impregnated with nickel oxyhydroxide active mass and select additives that enhance electrode performance. Carbon foam is a good current collector due to its light-weight, porous, and graphitic nature, which give its good electrical properties and the ability to be used as a current collector. Replacing sintered nickel current collectors in nickel-based batteries with a low cost, readily available material, carbon foam, can reduce the mass of a rechargeable battery. The goal of this research has been to contribute to fundamental science through better understanding of optimizing the deposition and formation processes of the active mass onto carbon foams as well as investigating the active mass behavior under deposition, formation, and cycling conditions. Flooded cells and a PFA sealed asymmetric capacitor have been used. The effects of carbon foam surface pretreatments and how they affect the active material/carbon foam performance are demonstrated. Also the feasibility of this positive electrode as a component in nickel-based batteries, a Ni-Zn cells and an asymmetric capacitor pouch cell, is demonstrated.
Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; ...
2015-12-09
The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO 3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO 3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO 3 composite catalyst material.« less
NASA Astrophysics Data System (ADS)
Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.
2018-06-01
The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.
Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew
2017-09-01
An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.
Assessment of the radiological impact of oil refining industry.
Bakr, W F
2010-03-01
The field of radiation protection and corresponding national and international regulations has evolved to ensure safety in the use of radioactive materials. Oil and gas production processing operations have been known to cause naturally occurring radioactive materials (NORMs) to accumulate at elevated concentrations as by-product waste streams. A comprehensive radiological study on the oil refining industry in Egypt was carried out to assess the radiological impact of this industry on the workers. Scales, sludge, water and crude oil samples were collected at each stage of the refining process. The activity concentration of (226)Ra, (232)Th and (40)K were determined using high-resolution gamma spectrometry. The average activity concentrations of the determined isotopes are lower than the IAEA exempt activity levels for NORM isotopes. Different exposure scenarios were studied. The average annual effective dose for workers due to direct exposure to gamma radiation and dust inhalation found to be 0.6 microSv and 3.2 mSv, respectively. Based on the ALARA principle, the results indicate that special care must be taken during cleaning operations in order to reduce the personnel's exposure due to maintenance as well as to avoid contamination of the environment. 2009 Elsevier Ltd. All rights reserved.
López de Dicastillo, Carol; Rodríguez, Francisco; Guarda, Abel; Galotto, Maria José
2016-01-20
Development of antioxidant and antimicrobial active food packaging materials based on biodegradable polymer and natural plant extracts has numerous advantages as reduction of synthetic additives into the food, reduction of plastic waste, and food protection against microorganisms and oxidation reactions. In this way, active films based on methylcellulose (MC) and maqui (Aristotelia chilensis) berry fruit extract, as a source of antioxidants agents, were studied. On the other hand, due to the high water affinity of MC, this polymer was firstly cross-linked with glutaraldehyde (GA) at different concentrations. The results showed that the addition of GA decreased water solubility, swelling, water vapor permeability of MC films, and the release of antioxidant substances from the active materials increased with the concentration of GA. Natural extract and active cross-linked films were characterized in order to obtain the optimal formulation with the highest antioxidant activity and the best physical properties for latter active food packaging application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multiwavelength Study of Powerful New Jet Activity in the Symbiotic System R AQR
NASA Astrophysics Data System (ADS)
Karovska, Margarita
2016-10-01
We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and multiwavelength (UV-Optical) HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of the multi-scale components of the powerful jet; from the vicinity of the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond, and especially of the recently discovered new component of the inner jet (likely due to recent ejection of material). Our main goal is to gain new insight on early jet formation and propagation, including jet kinematics and precession.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Junbong; Cao, Shuang; Waite, William
Gas production efficiency from natural hydrate-bearing sediments depends in part on geotechnical properties of fine-grained materials, which are ubiquitous even in sandy hydrate-bearing sediments. The responses of fine-grained material to pore fluid chemistry changes due to freshening during hydrate dissociation could alter critical sediment characteristics during gas production activities. We investigate the electrical sensitivity of fine grains to pore fluid freshening and the implications of freshening on sediment compression and recompression parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wen; Banerjee, Debasis; Liu, Jian
Incorporating, a redox active organometallic molIncorporating, a redox active organometallic molecule within a porous matrix is a useful strategy to form redox active composite materials for emerging applications such as energy storage, electro-catalysis and electro-magnetic separation. Herein we report a new class of stable, redox active metal organic composites for oxygen/air separation with exceptional efficiency. In particular, Ferrocene impregnated in a thermally stable hierarchical porous framework showed a saturation uptake capacity of >51 mg/g for oxygen at a very low relative saturation pressure (P/Po) of 0.06. The material shows excellent O2 selectivity from air as evident from experimental and simulatedmore » breakthrough experiments. In detail structural analysis using 57Fe-Mössbauer, X-ray photoelectron spectroscopy (XPS) and pair distribution function (PDF) analysis show that of O2 adsorption affinity and selectivity originates by the formation Fe3+-O oxide due to the highly reactive nature of the organometallics imbedded in the porous matrix.« less
Fluid dynamics in biological active nematics
NASA Astrophysics Data System (ADS)
Tan, Amanda; Hirst, Linda
We use biological materials to form a self-mixing active system that consists of microtubules driven by kinesin clusters. Microtubules are rigid biopolymers that are a part of the cytoskeleton. Kinesin motors are molecular motors that walk along microtubules to transport cellular cargo. In this system, microtubules are bundled together, and as the kinesin clusters walk along the filaments, the microtubule bundles move relative to each other. As microtubules shear against each other, they extend, bend, buckle and fracture. When confined in a 2D water-oil interface, the system becomes an active nematic that self-mixes due to the buckling and fracturing. To quantify this self-mixing, we attached beads to the microtubules, and tracked their motion. We quantify the quality of mixing using the bead trajectories. This new active material has potential applications as a self-mixing solvent. CCBM NSF-CREST, UC Merced Health Science Research Institute.
Klapiszewski, Łukasz; Szalaty, Tadeusz J.; Kurc, Beata; Stanisz, Małgorzata; Skrzypczak, Andrzej; Jesionowski, Teofil
2017-01-01
Kraft lignin (KL) was activated using selected ionic liquids (ILs). The activated form of the biopolymer, due to the presence of carbonyl groups, can be used in electrochemical tests. To increase the application potential of the system in electrochemistry, activated lignin forms were combined with manganese dioxide, and the most important physicochemical and morphological-microstructural properties of the novel, functional hybrid systems were determined using Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), scanning electron microscopy (SEM), zeta potential analysis, thermal stability (TGA/DTG) and porous structure analysis. An investigation was also made of the practical application of the hybrid materials in the production of lithium ion batteries. The capacity of the anode (MnO2/activated lignin), working at a low current regime of 50 mA·g−1, was ca. 610 mAh·g−1, while a current of 1000 mA·g−1 resulted in a capacity of 570 mAh·g−1. Superior cyclic stability and rate capability indicate that this may be a promising electrode material for use in high-performance lithium ion batteries. PMID:28704933
Effects of byproducts amended lead contaminated urban soils on collard yield
USDA-ARS?s Scientific Manuscript database
Lead (Pb) has been used to produce materials and manufactured products for many years. In urban areas and industrial centers atmospheric lead deposition could be very high. Urban environments in general received high deposition of lead due to leaded gasoline use, industrial activity and abandoned ...
Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes.
Fong, Kara D; Wang, Tiesheng; Kim, Hyun-Kyung; Kumar, R Vasant; Smoukov, Stoyan K
2017-09-08
Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.
Ribeiro, Marília C M; Amorim, Camila C; Moreira, Regina F P M; Oliveira, Luiz C A; Henriques, Andréia B; Leão, Mônica M D
2018-04-27
Semiconductors based on Fe/Nb oxides can present both solar sensitivity and high catalytic activity. However, there is still a lack regarding the comparison between different routes to produce Fe/Nb-based solar photocatalysts and the evaluation of the impact of the synthesis operating conditions on the material properties. In this work, Fe/Nb 2 O 5 ratio, type of precipitating agent, presence/absence of washing stage, and temperature of calcination were verified to be the most relevant parameters in the synthesis by the co-precipitation method. These factors led to remarkable differences in the properties and performance of the photocatalysts produced by each distinct synthesis route. Composition, iron species present in the materials, crystallinity characteristics, and pH of the catalysts were affected, leading to different photocatalytic activities under UV-Vis light. Due to their characteristics, the synthesized materials are potential photocatalysts for application in solar processes. Graphical abstract ᅟ.
Current perspectives of nanoparticles in medical and dental biomaterials
Mohamed Hamouda, Ibrahim
2012-01-01
Nanotechnology is gaining tremendous impetus due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Nanoparticles have been introduced as materials with good potential to be extensively used in biological and medical applications. Nanoparticles are clusters of atoms in the size range of 1-100 nm. Inorganic nanoparticles and their nano-composites are applied as good antibacterial agents. Due to the outbreak of infectious diseases caused by different pathogenic bacteria and the development of antibiotic resistance, pharmaceutical companies and researchers are searching for new antibacterial agents. The metallic nanoparticles are the most promising as they show good antibacterial properties due to their large surface area to volume ratios, which draw growing interest from researchers due to increasing microbial resistance against metal ions, antibiotics and the development of resistant strains. Metallic nanoparticles can be used as effective growth inhibitors in various microorganisms and thereby are applicable to diverse medical devices. Nanotechnology discloses the use of elemental nanoparticles as active antibacterial ingredient for dental materials. In dentistry, both restorative materials and oral bacteria are believed to be responsible for restoration failure. Secondary caries is found to be the main reason to restoration failure. Secondary caries is primarily caused by invasion of plaque bacteria (acid-producing bacteria) such as Streptococcus mutans and lactobacilli in the presence of fermentable carbohydrates. To make long-lasting restorations, antibacterial materials should be made. The potential of nanoparticles to control the formation of biofilms within the oral cavity is also coming under increasing scrutiny. Possible uses of nanoparticles as topically applied agents within dental materials and the application of nanoparticles in the control of oral infections are also reviewed. PMID:23554743
Choudhary, Eric; Velmurugan, Jeyavel; Marr, James M; Liddle, James A; Szalai, Veronika
2016-01-01
Heterogeneous catalytic materials and electrodes are used for (electro)chemical transformations, including those important for energy storage and utilization. 1, 2 Due to the heterogeneous nature of these materials, activity measurements with sufficient spatial resolution are needed to obtain structure/activity correlations across the different surface features (exposed facets, step edges, lattice defects, grain boundaries, etc.). These measurements will help lead to an understanding of the underlying reaction mechanisms and enable engineering of more active materials. Because (electro)catalytic surfaces restructure with changing environments, 1 it is important to perform measurements in operando . Sub-diffraction fluorescence microscopy is well suited for these requirements because it can operate in solution with resolution down to a few nm. We have applied sub-diffraction fluorescence microscopy to a thin cell containing an electrocatalyst and a solution containing the redox sensitive dye p-aminophenyl fluorescein to characterize reaction at the solid-liquid interface. Our chosen dye switches between a nonfluorescent reduced state and a one-electron oxidized bright state, a process that occurs at the electrode surface. This scheme is used to investigate the activity differences on the surface of polycrystalline Pt, in particular to differentiate reactivity at grain faces and grain boundaries. Ultimately, this method will be extended to study other dye systems and electrode materials.
Liu, Jiancong; Wang, Ning; Yu, Yue; Yan, Yan; Zhang, Hongyue; Li, Jiyang; Yu, Jihong
2017-01-01
Thermally activated delayed fluorescence (TADF) materials are inspiring intensive research in optoelectronic applications. To date, most of the TADF materials are limited to metal-organic complexes and organic molecules with lifetimes of several microseconds/milliseconds that are sensitive to oxygen. We report a facial and general “dots-in-zeolites” strategy to in situ confine carbon dots (CDs) in zeolitic matrices during hydrothermal/solvothermal crystallization to generate high-efficient TADF materials with ultralong lifetimes. The resultant CDs@zeolite composites exhibit high quantum yields up to 52.14% and ultralong lifetimes up to 350 ms at ambient temperature and atmosphere. This intriguing TADF phenomenon is due to the fact that nanoconfined space of zeolites can efficiently stabilize the triplet states of CDs, thus enabling the reverse intersystem crossing process for TADF. Meanwhile, zeolite frameworks can also hinder oxygen quenching to present TADF behavior at air atmosphere. This design concept introduces a new perspective to develop materials with unique TADF performance and various novel delayed fluorescence–based applications. PMID:28560347
NASA Technical Reports Server (NTRS)
Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Burton, A. S.; Messenger, S.; Clemett, S. J.
2016-01-01
Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble unstructured kerogen-like component as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding on spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Furthermore, they can provide broader perspective on how extraterrestrial organic ma-terials potentially contributed to the synthesis of life's essential compounds such as amino acids, sugar acids, activated phosphates and nucleobases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, T.D.; Mathis, D.B.; Brannon, J.M.
This study was part of an investigation to determine the environmental effects of offshore dredged material disposal at Galveston, Texas. The biological portion of the study was conducted in two phases: a pilot survey of the dredged material disposal site (DMDS) to determine the areal distribution of the biota and sediments; and an experimental study to assess the effect of dredged material disposal on the biota at selected sites in the DMDS. Three experimental sites were investigated: a sandy bottom that received sand, shell, and silt-clay dredged material; a muddy bottom that received sand and shell dredged material; and amore » muddy bottom that received silt-clay dredged material. The magnitude of the effect on the benthic populations could not be accurately assessed because adequate predisposal data on natural sediment and benthic population changes were not available. Dredged material deposits had no apparent effect on feeding habits of fish or on the distribution of nekton, although some nektonic species may have congregated in the turbid water following dredged material disposal. Zooplankton and phytoplankton studies detected no population changes during disposal that could not have been due to sampling error. It is probable that sudden abiotic changes and commercial fishing activities cause more destruction of biota than dredging-related activities.« less
Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat
2015-05-13
Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.
Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors.
Jiang, Ying; Liu, Zhiyuan; Matsuhisa, Naoji; Qi, Dianpeng; Leow, Wan Ru; Yang, Hui; Yu, Jiancan; Chen, Geng; Liu, Yaqing; Wan, Changjin; Liu, Zhuangjian; Chen, Xiaodong
2018-03-01
Stretchable strain sensors play a pivotal role in wearable devices, soft robotics, and Internet-of-Things, yet these viable applications, which require subtle strain detection under various strain, are often limited by low sensitivity. This inadequate sensitivity stems from the Poisson effect in conventional strain sensors, where stretched elastomer substrates expand in the longitudinal direction but compress transversely. In stretchable strain sensors, expansion separates the active materials and contributes to the sensitivity, while Poisson compression squeezes active materials together, and thus intrinsically limits the sensitivity. Alternatively, auxetic mechanical metamaterials undergo 2D expansion in both directions, due to their negative structural Poisson's ratio. Herein, it is demonstrated that such auxetic metamaterials can be incorporated into stretchable strain sensors to significantly enhance the sensitivity. Compared to conventional sensors, the sensitivity is greatly elevated with a 24-fold improvement. This sensitivity enhancement is due to the synergistic effect of reduced structural Poisson's ratio and strain concentration. Furthermore, microcracks are elongated as an underlying mechanism, verified by both experiments and numerical simulations. This strategy of employing auxetic metamaterials can be further applied to other stretchable strain sensors with different constituent materials. Moreover, it paves the way for utilizing mechanical metamaterials into a broader library of stretchable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silver coated aluminium microrods as highly colloidal stable SERS platforms.
Pazos-Perez, Nicolas; Borke, Tina; Andreeva, Daria V; Alvarez-Puebla, Ramon A
2011-08-01
We report on the fabrication of a novel material with the ability to remain in solution even under the very demanding conditions required for structural and dynamic characterization of biomacromolecule assays. This stability is provided by the increase in surface area of a low density material (aluminium) natively coated with a very hydrophilic surface composed of aluminium oxide (Al(2)O(3)) and metallic silver nanoparticles. Additionally, due to the dense collection of active hot spots on their surface, this material offers higher levels of SERS intensity as compared with the same free and aggregated silver nanoparticles. This journal is © The Royal Society of Chemistry 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doris, Sean E.; Ward, Ashleigh L.; Baskin, Artem
Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. In this paper, we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the ratemore » of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2 day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. Finally, this strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries.« less
Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water.
Nieto-Delgado, Cesar; Rangel-Mendez, Jose Rene
2012-06-01
The adsorption of arsenic (V) by granular iron hydro(oxides) has been proven to be a reliable technique. However, due to the low mechanical properties of this material, it is difficult to apply it in full scale water treatment. Hence, the aim of this research is to develop a methodology to anchor iron hydro(oxide) nanoparticles onto activated carbon, in which the iron hydro(oxide) nanoparticles will give the activated carbon an elevated active surface area for arsenic adsorption and also help avoid the blockage of the activated carbon pores. Three activated carbons were modified by employing the thermal hydrolysis of iron as the anchorage procedure. The effects of hydrolysis temperature (60-120 °C), hydrolysis time (4-16 h), and FeCl(3) concentration (0.4-3 mol Fe/L) were studied by the surface response methodology. The iron content of the modified samples ranged from 0.73 to 5.27%, with the higher end of the range pertaining to the carbons with high oxygen content. The materials containing smaller iron hydro(oxide) particles exhibited an enhanced arsenic adsorption capacity. The best adsorbent material reported an arsenic adsorption capacity of 4.56 mg As/g at 1.5 ppm As at equilibrium and pH 7. Copyright © 2012 Elsevier Ltd. All rights reserved.
Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A
2017-02-01
Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2 day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lipid mobilising factors specifically associated with cancer cachexia.
Beck, S. A.; Tisdale, M. J.
1991-01-01
Both urine and plasma from mice and humans with cancer cachexia have been shown to contain higher levels of lipid mobilising activity than normal controls, even after acute starvation. There was no significant increase in the urinary lipid mobilising activity of either mice or humans after acute starvation, suggesting that the material in the cachectic situation was probably not due to an elevation of hormones normally associated with the catabolic state in starvation. Further characterisation of the lipid mobilising activity in the urine of cachectic mice using Sephadex G50 exclusion chromatography showed four distinct peaks of activity of apparent molecular weights of greater than 20, 3, 1.5 and less than 0.7 kDa. No comparable peaks of activity were found in the urine of a non tumour-bearing mouse. The high molecular weight activity was probably formed by aggregation of low molecular weight material, since treatment with 0.5 M NaCl caused dissociation to material with a broad spectrum of molecular weights between 3 and 0.7 kDa. Lipolytic species of similar molecular weights were also found in the urine of cachectic cancer patients, but not in normal urine even after 24 h starvation. The lipid mobilising species may be responsible for catabolism of host adipose tissue in the cachectic state. PMID:2069843
Doris, Sean E.; Ward, Ashleigh L.; Baskin, Artem; ...
2017-01-10
Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. In this paper, we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the ratemore » of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2 day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. Finally, this strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries.« less
Study of Horseradish Peroxidase Fixed on Mesoporous Materials as a Chemical Reaction Catalyst
NASA Astrophysics Data System (ADS)
Gao, Mengdan; Dai, Rongji
2017-12-01
Nanostructured mesoporous materials is a new type of porous materials, which has been widely used. It has excellent capability in enzymes immobilization, but modification on the chemical bonds of the enzyme reduce the enzymatic activity and rarely used in chemical reactions. The horseradish peroxidase was immobilized on the mesoporous materials with appropriate aperture and its activity and stability was evaluated when catalyzing the nitration reaction of amines and oxidation reaction of thiourea. The optimum mesoporous material to fix the horseradish peroxidase can be obtained by mixing polyoxyethylene - polyoxypropylene-pol, yoxyethylene(P123), 1,3,5-trimethylbenzene(TMB), and tetramethoxysilane (TMOS) at a ratio of 10:1:1, whose surface area and pore volume and pore diameter calculated by BET and BJH model were 402.903m2/g, 1.084cm2/g, 1.084cm2/g respectively. The horseradish peroxidase, immobilized on the mesoporous materials, was applied for catalyzing the nitration reaction of anilines and oxidation reaction of thiourea, produced a high product yield and can be recycled. Thus, it is a strong candidate as a catalysts for oxidation reactions, to be produced at industral scale, due to its high efficiency and low cost.
Zu, Lei; Cui, Xiuguo; Jiang, Yanhua; Hu, Zhongkai; Lian, Huiqin; Liu, Yang; Jin, Yushun; Li, Yan; Wang, Xiaodong
2015-01-01
Mesoporous polyaniline-silica nanocomposites with a full interpenetrating structure for pseudocapacitors were synthesized via the vapor phase approach. The morphology and structure of the nanocomposites were deeply investigated by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis and nitrogen adsorption-desorption tests. The results present that the mesoporous nanocomposites possess a uniform particle morphology and full interpenetrating structure, leading to a continuous conductive polyaniline network with a large specific surface area. The electrochemical performances of the nanocomposites were tested in a mixed solution of sulfuric acid and potassium iodide. With the merits of a large specific surface area and suitable pore size distribution, the nanocomposite showed a large specific capacitance (1702.68 farad (F)/g) due to its higher utilization of the active material. This amazing value is almost three-times larger than that of bulk polyaniline when the same mass of active material was used. PMID:28788006
Muggles, Meteoritic Armor, and Menelmacar: Using Fantasy Series in Astronomy Education and Outreach
NASA Astrophysics Data System (ADS)
Larsen, Kristine; Bednarski, M.
2008-05-01
Due in part to recent (and ongoing) film adaptations, the fantasy series of C.S. Lewis (The Chronicles of Narnia), J.K. Rowling (Harry Potter), Philip Pullman (His Dark Materials), and J.R.R. Tolkien (The Lord of the Rings) are being introduced to a new audience of young (and not so young) readers. Many astronomers and astronomy educators are unaware of the wide variety of astronomical references contained in each series. The first portion of this workshop will introduce participants to these references, and highlight activities which educators, planetariums, and science centers have already developed to utilize these works in their education and outreach programs. In the second segment of the workshop, participants will develop ideas for activities and materials relevant to their individual circumstances, including standards-based education materials (in concert with an on-hand specialist in curriculum development).
Zou, Xiaoxin; Huang, Xiaoxi; Goswami, Anandarup; Silva, Rafael; Sathe, Bhaskar R; Mikmeková, Eliška; Asefa, Tewodros
2014-04-22
Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt-embedded nitrogen-rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen-evolving catalysts-which also play crucial roles in the overall water-splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co(2+) -embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2 ). The materials' efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank
2016-05-01
Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most sensitive method. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the pure biological particles. We verified this by modeling the freezing behavior of the mixed particles with the Soccerball model (SBM). It can be concluded that a single INM located on a mineral dust particle determines the freezing behavior of that particle with the result that freezing occurs at temperatures at which pure mineral dust particles are not yet ice active.
Romanian Experience for Enhancing Safety and Security in Transport of Radioactive Material - 12223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieru, Gheorghe
2012-07-01
The transport of Dangerous Goods-Class no.7 Radioactive Material (RAM), is an important part of the Romanian Radioactive Material Management. The overall aim of this activity is for enhancing operational safety and security measures during the transport of the radioactive materials, in order to ensure the protection of the people and the environment. The paper will present an overall of the safety and security measures recommended and implemented during transportation of RAM in Romania. Some aspects on the potential threat environment will be also approached with special referring to the low level radioactive material (waste) and NORM transportation either by roadmore » or by rail. A special attention is given to the assessment and evaluation of the possible radiological consequences due to RAM transportation. The paper is a part of the IAEA's Vienna Scientific Research Contract on the State Management of Nuclear Security Regime (Framework) concluded with the Institute for Nuclear Research, Romania, where the author is the CSI (Chief Scientific Investigator). The transport of RAM in Romania is a very sensible and complex problem taking into consideration the importance and the need of the security and safety for such activities. The Romanian Nuclear Regulatory Body set up strictly regulation and procedures according to the Recommendation of the IAEA Vienna and other international organizations. There were implemented the adequate regulation and procedures in order to keep the environmental impacts and the radiological consequences at the lower possible level and to assure the effectiveness of state nuclear security regime due to possible malicious acts in carrying out these activities including transport and the disposal site at the acceptable international levels. The levels of the estimated doses and risk expectation values for transport and disposal are within the acceptable limits provided by national and international regulations and recommendations but can increase, significantly during potential malicious acts. (authors)« less
Ion processing element with composite media
Mann, Nick R.; Tranter, Troy J.; Todd, Terry A.; Sebesta, Ferdinand
2003-02-04
An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
Ion processing element with composite media
Mann, Nick R [Blackfoot, ID; Tranter, Troy J [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Sebesta, Ferdinand [Prague, CZ
2009-03-24
An ion processing element employing composite media disposed in a porous substrate, for facilitating removal of selected chemical species from a fluid stream. The ion processing element includes a porous fibrous glass substrate impregnated by composite media having one or more active components supported by a matrix material of polyacrylonitrile. The active components are effective in removing, by various mechanisms, one or more constituents from a fluid stream passing through the ion processing element. Due to the porosity and large surface area of both the composite medium and the substrate in which it is disposed, a high degree of contact is achieved between the active component and the fluid stream being processed. Further, the porosity of the matrix material and the substrate facilitates use of the ion processing element in high volume applications where it is desired to effectively process a high volume flows.
Electrochemical activity of Fe-MIL-100 as a positive electrode for Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sava Gallis, Dorina F.; Pratt III, Harry D.; Anderson, Travis M.
2016-01-01
Here we investigate the electrochemical activity of metal-organic frameworks (MOFs) as positive electrodes for Na-ion batteries in coin cell configurations. The performance of Fe-MIL-100 material is highly dependent on the choice of sodium salt source, and electrolyte system. The overall capacity fades over many cycles, however the high Coulombic efficiency is maintained. This can be correlated with inaccessibility of active sites for Na intercalation, due to the increase of extra carbonaceous material inside the pores. High resolution synchrotron powder X-ray and pair distribution function analyses of the as-made and cycled electrodes reveal the structure maintains the long-range order with progressivemore » cycling. This finding suggests that careful consideration of all variables in battery components, and especially electrolyte selection can lead to greatly improved performances.« less
NASA Astrophysics Data System (ADS)
Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.
2017-07-01
In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.
NASA Astrophysics Data System (ADS)
Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.
2016-03-01
Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on porous silicon, dissolution tests for 0.1 M and 0.01 M NaOH trigger solutions, EIS analysis for VOx coated devices, and EDS compositional analysis of VOx. (ii) Video showing transient behavior of integrated VOx/porous silicon scaffolds. See DOI: 10.1039/c5nr09095d
Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials
NASA Astrophysics Data System (ADS)
Gray, Tomoko O.
Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular glasses. The side-chain dendronized polymers are, due to the structural complexity, self-constrained systems. Our thermomechanical investigations identified that a local relaxation mode associated to the NLO side-chain is the critical design parameter in yielding high mobility to the active element. Relaxation processes of the self-assembling molecular glasses are discussed from a thermodynamic perspective involving both enthalpic and entropic contributions, considering the very special nature of interactions for the NLO molecular glasses, i.e., the formation and dissociation of phenyl/perfluorophenyl quadrupol pairs.
Triggering the Activation of Main-belt Comets: The Effect of Porosity
NASA Astrophysics Data System (ADS)
Haghighipour, N.; Maindl, T. I.; Schäfer, C. M.; Wandel, O. J.
2018-03-01
It has been suggested that the comet-like activity of Main-belt comets (MBCs) is due to the sublimation of sub-surface water-ice that is exposed when these objects are impacted by meter-sized bodies. We recently examined this scenario and showed that such impacts can, in fact, excavate ice and present a plausible mechanism for triggering the activation of MBCs. However, because the purpose of that study was to prove the concept and identify the most viable ice-longevity model, the porosity of the object and the loss of ice due to the heat of impact were ignored. In this paper, we extend our impact simulations to porous materials and account for the loss of ice due to an impact. We show that for a porous MBC, impact craters are deeper, reaching to ∼15 m, implying that if the activation of MBCs is due to the sublimation of sub-surface ice, this ice has to be within the top 15 m of the object. Results also indicate that the loss of ice due to the heat of impact is negligible, and the re-accretion of ejected ice is small. The latter suggests that the activities of current MBCs are most probably from multiple impact sites. Our study also indicates that for sublimation from multiple sites to account for the observed activity of the currently known MBCs, the water content of MBCs (and their parent asteroids) needs to be larger than the values traditionally considered in models of terrestrial planet formation.
Design and fabrication of segmented-in-series solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lai, Tammy S.
Segmented-in-series solid oxide fuel cells (SS-SOFC) consist of several thick film cells deposited onto a porous, flattened tubular substrate. SS-SOFCs have a reduced need for gas-tight seals relative to planar SOFCs and can have a short current path compared to tubular SOFCs, limiting electrode ohmic resistance. Like tubular SOFCs, SS-SOFCs are suitable for stationary power generation. Their potentially small cell size makes them candidates for portable applications as well. The goals of this thesis project were to develop SS-SOFCs with 1-2 mm cell lengths and to analyze the effects of cell geometry and support current shunting on performance. Standard SOFC materials were chosen for the active components: yttria stabilized zirconia (YSZ) electrolyte; Ni-YSZ cermet anode; and (La,Sr)MnO 3-based cathode. A Pt-YSZ cermet was used as the interconnect material. Screen printing was the deposition method for all layers due to its low cost and patterning ability. A power density of >900 mW/cm2 was achieved with a cathode sheet resistance of ≈3 O/□ (≈90 mum LSM thickness). A D-optimal study was conducted to find processing conditions yielding substrates with ≥30 vol% porosity and high strength. Uniaxially pressed partially stabilized zirconia (PSZ) with 15 wt% starch pore former met the requirements, though 20 wt% graphite pore former was later found to give a smoother surface that improved screen printed layer quality. Calculations presented in this thesis take into account losses due to cell resistances, electrode ohmic resistances, interconnect resistance, and shunting by a weakly-conductive support material. Power density was maximized at an optimal cell length---it decreased at larger cell lengths due to electrode lateral resistance loss and at smaller cell lengths due to a decreasing fraction of cell active area. Assuming dimensions expected for screen printing and typical area specific resistances (RAS), optimal cell lengths typically ranged from 1 to 3 mm. The calculated and experimental values for the array RAS (active and inactive areas) showed similar dependences on cathode sheet resistance. The impact of shunting current increased with decreasing cell lengths. Shunting current was predicted to decrease array current by ˜10% for a 1.5 mm active cell length, though experimental measurements suggest that the calculation may overestimate the shunting effect.
Ghosh, P; Mandal, S; Pal, S; Bandyopadhyaya, G; Chattopadhyay, B D
2006-04-01
In the biosphere, bacteria can function as geo-chemical agents, promoting the dispersion, fractionation and/or concentration of materials. Microbial mineral precipitation is resulted from metabolic activities of microorganisms. Based on this biomineralogy concept, an attempt has been made to develop bioconcrete material incorporating of an enrichment culture of thermophilic and anaerobic bacteria within cement-sand mortar/concrete. The results showed a significant increase in compressive strength of both cement-sand mortar and concrete due to the development of filler material within the pores of cement sand matrix. Maximum strength was observed at concentration 10(5)cell/ml of water used in mortar/concrete. Addition of Escherichia coil or media composition on mortar showed no such improvement in strength.
NASA Astrophysics Data System (ADS)
Aleshin, V. I.; Raevskiĭ, I. P.; Sitalo, E. I.
2008-11-01
A complete set of dielectric, piezoelectric, and elastic parameters for the textured ceramic material 0.67PMN-0.33PT is calculated by the self-consistency method with due regard for the anisotropy and piezoelectric activity of the medium. It is shown that the best piezoelectric properties corresponding to those of a single crystal are observed for the ceramic material with a texture in which all crystallites are oriented parallel to the [001] direction of the parent perovskite cubic cell. The simplest models of the polarization of an untextured ceramic material with a random initial orientation of crystallites are considered. The results obtained are compared with experimental data.
NASA Astrophysics Data System (ADS)
Petersen, John; Spinks, Michael; Borges, Pablo; Scolfaro, Luisa
2012-03-01
Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric (TE) properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity, with a possible application being in engine exhaust. Here, we examine the effects of altering the lattice parameter on total ground state energy and the band gap using first principles calculations performed within Density Functional Theory and the Projector Augmented Wave approach and the Vienna Ab-initio Simulation Package (VASP-PAW) code. Both PbTe and PbSe, in NaCl, orthorhombic, and CsCl structures are considered. It is found that altering the lattice parameter, which is analogous to applying external pressure on the material experimentally, has notable effects on both ground state energy and the band gap. The implications of this behavior in the TE properties of these materials are analyzed.
Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System
Shrivastav, Anupama; Kim, Hae-Yeong; Kim, Young-Rok
2013-01-01
Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system. PMID:23984383
Advanced Na-NiCl2 Battery Using Nickel-Coated Graphite with Core-Shell Microarchitecture.
Chang, Hee-Jung; Canfield, Nathan L; Jung, Keeyoung; Sprenkle, Vincent L; Li, Guosheng
2017-04-05
Stationary electric energy storage devices (rechargeable batteries) have gained increasing prominence due to great market needs, such as smoothing the fluctuation of renewable energy resources and supporting the reliability of the electric grid. With regard to raw materials availability, sodium-based batteries are better positioned than lithium batteries due to the abundant resource of sodium in Earth's crust. However, the sodium-nickel chloride (Na-NiCl 2 ) battery, one of the most attractive stationary battery technologies, is hindered from further market penetration by its high material cost (Ni cost) and fast material degradation at its high operating temperature. Here, we demonstrate the design of a core-shell microarchitecture, nickel-coated graphite, with a graphite core to maintain electrochemically active surface area and structural integrity of the electron percolation pathway while using 40% less Ni than conventional Na-NiCl 2 batteries. An initial energy density of 133 Wh/kg (at ∼C/4) and energy efficiency of 94% are achieved at an intermediate temperature of 190 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Young, David; Lee, Benjamin
2016-11-21
The key attributes for achieving high efficiency crystalline silicon solar cells include class leading developments in the ability to approach the theoretical limits of silicon solar technology (29.4% efficiency). The push for high efficiency devices is further compounded with the clear need for passivation to reduce recombination at the metal contacts. At the same time there is stringent requirement to retain the same material device quality, surface passivation, and performance characteristics following subsequent processing. The development of passivated silicon cell structures that retain active front and rear surface passivation and overall material cell quality is therefore a relevant and activemore » area of development. To address the potential outcomes of metallization on passivated silicon stack, we report on some common microstructural features of degradation due to metallization for a series of silicon device stacks. A fundamental materials understanding of the metallization process on retaining high-efficiency passivated Si devices is therefore gained over these series of results.« less
NASA Astrophysics Data System (ADS)
Sunarno, Sunarno; Muflichatun Mardiati, Siti; Rahadian, Rully
2018-05-01
Physiological aging and aging due to oxidative stress are a major factor cause accelerated brain aging. Aging is characterized by a decrease of brain function of the hippocampus which is linked to the decline in the capability of learning-memory and motoric activity. The objective of this research is to obtain the important information about the mechanisms of brain antiaging associated with the improvement of hippocampus function, which includes aspects of learning-memory capability and motoric activity as well as mitochondrial ultrastructure profile of hippocampus cornu ammonis cells after treated by fish snakehead fish extract. Snakehead fish in Rawa Pening Semarang District allegedly holds the potential of endemic, which contains bioactive antiaging material that can prevent aging or improve the function of the hippocampus. This research has been conducted using a completely randomized design consisting of four treatments with five replications. The treatments were including rats with physiological aging or aging due to oxidative stress which was treated and without treated with meat extract of snakehead fish. The research was divided into two stages, i.e., determining of learning-memory capability, and determining motoric activity. The measured-parameters are time response to find feed, distance travel, time stereotypes, ambulatory time, and resting time. The result showed that the snakehead fish meat extract might improve function hippocampus, both in physiological aging or aging due to oxidative stress. The capability of learning and memory showed that the rats in both conditions of aging after getting treatment of meat extract of snakehead fish could get a feed in the fourth arm maze faster than rats untreated snakehead fish meat extract. Similarly, the measurement of the distance traveled, time stereotypes, ambulatory time, and resting time showed that rats which received treatment of meat extract of snakehead fish were better than the untreated rats. To conclude, the meat extract of snakehead fish can be used as antiaging material to improve the function of the hippocampus, to improve the capability of learning and memory, to improve motoric activity, and to prevent aging. These findings are expected to provide comprehensive information for the development of antiaging research as an effort to improve public health and to improve learning-memory capability and motoric activity.
Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor
2017-04-01
In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.
García-Hernández, Alejandra; Galván-Tejada, Carlos E; Galván-Tejada, Jorge I; Celaya-Padilla, José M; Gamboa-Rosales, Hamurabi; Velasco-Elizondo, Perla; Cárdenas-Vargas, Rogelio
2017-11-21
Human Activity Recognition (HAR) is one of the main subjects of study in the areas of computer vision and machine learning due to the great benefits that can be achieved. Examples of the study areas are: health prevention, security and surveillance, automotive research, and many others. The proposed approaches are carried out using machine learning techniques and present good results. However, it is difficult to observe how the descriptors of human activities are grouped. In order to obtain a better understanding of the the behavior of descriptors, it is important to improve the abilities to recognize the human activities. This paper proposes a novel approach for the HAR based on acoustic data and similarity networks. In this approach, we were able to characterize the sound of the activities and identify those activities looking for similarity in the sound pattern. We evaluated the similarity of the sounds considering mainly two features: the sound location and the materials that were used. As a result, the materials are a good reference classifying the human activities compared with the location.
García-Hernández, Alejandra; Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Velasco-Elizondo, Perla; Cárdenas-Vargas, Rogelio
2017-01-01
Human Activity Recognition (HAR) is one of the main subjects of study in the areas of computer vision and machine learning due to the great benefits that can be achieved. Examples of the study areas are: health prevention, security and surveillance, automotive research, and many others. The proposed approaches are carried out using machine learning techniques and present good results. However, it is difficult to observe how the descriptors of human activities are grouped. In order to obtain a better understanding of the the behavior of descriptors, it is important to improve the abilities to recognize the human activities. This paper proposes a novel approach for the HAR based on acoustic data and similarity networks. In this approach, we were able to characterize the sound of the activities and identify those activities looking for similarity in the sound pattern. We evaluated the similarity of the sounds considering mainly two features: the sound location and the materials that were used. As a result, the materials are a good reference classifying the human activities compared with the location. PMID:29160799
Active mechanics in living oocytes reveal molecular-scale force kinetics
NASA Astrophysics Data System (ADS)
Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo
Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.
Friesem, David E.; Lavi, Noa; Madella, Marco; Ajithprasad, P.; French, Charles
2016-01-01
Hunter-gatherer societies have distinct social perceptions and practices which are expressed in unique use of space and material deposition patterns. However, the identification of archaeological evidence associated with hunter-gatherer activity is often challenging, especially in tropical environments such as rainforests. We present an integrated study combining ethnoarchaeology and geoarchaeology in order to study archaeological site formation processes related to hunter-gatherers’ ways of living in tropical forests. Ethnographic data was collected from an habitation site of contemporary hunter-gatherers in the forests of South India, aimed at studying how everyday activities and way of living dictate patterns of material deposition. Ethnoarchaeological excavations of abandoned open-air sites and a rock-shelter of the same group located deep in the forests, involved field observations and sampling of sediments from the abandoned sites and the contemporary site. Laboratory analyses included geochemical analysis (i.e., FTIR, ICP-AES), phytolith concentration analysis and soil micromorphology. The results present a dynamic spatial deposition pattern of macroscopic, microscopic and chemical materials, which stem from the distinctive ways of living and use of space by hunter-gatherers. This study shows that post-depositional processes in tropical forests result in poor preservation of archaeological materials due to acidic conditions and intensive biological activity within the sediments. Yet, the multiple laboratory-based analyses were able to trace evidence for activity surfaces and their maintenance practices as well as localized concentrations of activity remains such as the use of plants, metals, hearths and construction materials. PMID:27783683
As low-cost and versatile materials, Cu and its oxides have attracted great interest due to their excellent performance in the field of catalysis, superconductivity, photovoltaics, magnetic storage, electrochemistry, and biosensing. It is well known that morphology has an import...
ERIC Educational Resources Information Center
Chen, Nian-Shing; Teng, Daniel Chia-En; Lee, Cheng-Han; Kinshuk
2011-01-01
Comprehension is the goal of reading. However, students often encounter reading difficulties due to the lack of background knowledge and proper reading strategy. Unfortunately, print text provides very limited assistance to one's reading comprehension through its static knowledge representations such as symbols, charts, and graphs. Integrating…
Active Learning with Interactive Videos: Creating Student-Guided Learning Materials
ERIC Educational Resources Information Center
Baker, Ariana
2016-01-01
Distance learning programs across the country continue to grow and evolve. In order to support these programs, librarians are often expected to convert face-to-face classes and reference sessions to the online environment. Due to the necessity of explaining information literacy concepts and demonstrating the access and use of library resources,…
Urban soils within the Omaha Lead Superfund Site have been contaminated with lead (Pb) from atmospheric deposition of particulate materials from lead smelting and recycling activities. In May of 2009 the Final Record of Decision stated that any residential soil exceeding the pre...
Early hazard identification of new chemicals is often difficult due to lack of data on the novel material for toxicity endpoints, including neurotoxicity. At present, there are no structure searchable neurotoxicity databases. A working group was formed to construct a database to...
Activated sludge is a potential source for production of biodegradable plastics from wastewater.
Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T
2005-05-01
Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.
Electrochemical Ultracapacitors Using Graphitic Nanostacks
NASA Technical Reports Server (NTRS)
Marotta, Christopher
2012-01-01
Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS surface will be added that can exhibit pseudocapacitance. This pseudocapacitance exhibits faradaic (charge transfer) properties that can further increase the overall relative and volumetric capacitance of the material. A process is also proposed to use GNF as a precursor material to fabricate GNS that will be used as EC electrodes. This results in much better electrical conductivity than activated carbon. This is advantageous for high-pulsed-power applications to reduce parasitic heating. Larger average pore size allows more complete electrolyte wetting (faster charge transfer kinetics). These properties contribute to a lowered equivalent series resistance (ESR), increased specific power, shorter charging times, and decreased parasitic heating. The high density of basal plane edges provides nucleation sites for activation (addition of hydrophilic functional groups) that facilitate electrolyte wetting, and will contribute to pseudocapacitance.
Nunes, Cláudia; Maricato, Élia; Cunha, Ângela; Nunes, Alexandra; da Silva, José A Lopes; Coimbra, Manuel A
2013-01-02
The use of chitosan films has been limited due to their high degradability in aqueous acidic media. In order to produce chitosan films with high antioxidant activity and insoluble in acid solutions caffeic acid was grafted to chitosan by a radical mechanism using ammonium cerium (IV) nitrate (60 mM). Genipin was used as cross-linker. This methodology originated films with 80% higher antioxidant activity than the pristine film. Also, these films only lost 11% of their mass upon seven days immersion into an aqueous solution at pH 3.5 under stirring. The films surface wettability (contact angle 105°), mechanical properties (68 MPa of tensile strength and 4% of elongation at break), and thermal stability for temperatures lower than 300 °C were not significantly influenced by the covalent linkage of caffeic acid and genipin to chitosan. Due to their characteristics, mainly higher antioxidant activity and lower solubility, these are promising materials to be used as active films. Copyright © 2012 Elsevier Ltd. All rights reserved.
Qiu, Xu; Wang, Lixi; Zhu, Hongli; Guan, Yongkang; Zhang, Qitu
2017-06-08
Lightweight microwave absorbing materials have drawn tremendous attention. Herein, nano-porous biomass carbon materials have been prepared by carbonization with a subsequent potassium hydroxide activation of walnut shells and the microwave absorption properties have also been investigated. The obtained samples have large specific surface areas with numerous micropores and nanopores. The sample activated at 600 °C with a specific surface area of 736.2 m 2 g -1 exhibits the most enhanced microwave absorption performance. It has the maximum reflection loss of -42.4 dB at 8.88 GHz and the effective absorption bandwidth (reflection loss below -10 dB) is 1.76 GHz (from 8.08 GHz to 9.84 GHz), corresponding to a thickness of 2 mm. Additionally, the effective absorption bandwidth can reach 2.24 GHz (from 10.48 GHz to 12.72 GHz) when the absorber thickness is 1.5 mm. Three-dimensional porous architecture, interfacial polarization relaxation loss, and the dipolar relaxation loss make a great contribution to the excellent microwave absorption performance. In contrast, the non-activated sample with lower specific surface area (435.3 m 2 g -1 ) has poor microwave absorption performance due to a poor dielectric loss capacity. This comparison highlights the role of micropores and nanopores in improving the dielectric loss property of porous carbon materials. To sum up, porous biomass carbon has great potential to become lightweight microwave absorbers. Moreover, KOH is an efficient activation agent in the fabrication of carbonaceous materials.
Trace element analysis of soil type collected from the Manjung and central Perak
NASA Astrophysics Data System (ADS)
Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che
2015-04-01
Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; McLain, J. E.; Harman, C. J.; Sivapalan, M.; Troch, P. A.
2010-12-01
Microbially-mediated soil carbon cycling is closely linked to soil moisture and temperature. Climate change is predicted to increase intra-annual precipitation variability (i.e. less frequent yet more intense precipitation events) and alter biogeochemical processes due to shifts in soil moisture dynamics and inputs of carbon. However, the responses of soil biology and chemistry to predicted climate change, and their concomitant feedbacks on ecosystem productivity and biogeochemical processes are poorly understood. We collected soils at three different elevations in the Santa Catalina Mountains, AZ and quantified carbon utilization during pre-monsoon precipitation conditions. Contrasting parent materials (schist and granite) were paired at each elevation. We expected climate to determine the overall activity of soil fungal and bacterial communities and diversity of soil C utilization, and differences in parent material to modify these responses through controls on soil physical properties. We used EcoPlateTM C utilization assays to determine the relative abundance of soil bacterial and fungal populations and rate and diversity of carbon utilization. Additional plates were incubated with inhibitors selective to fungal or bacterial activity to assess relative contribution of these microbial groups to overall C utilization. We analyzed soils for soil organic matter, total C and N, particle size analysis and soil moisture content via both gravimetric and volumetric methods to assess the influences of soil physical and chemical properties on the measured biological responses. Consistent with our expectations, overall microbial activity was highest at the uppermost conifer elevation sites compared to the middle and lower elevation sites. In contrast to our expectations, however, overall activity was lower at the mid elevation oak woodland sites compared to the low elevation desert sites. Also consistent with our expectations was the observation that overall activities were consistently higher in schist parent material compared to granite. Though differences between canopy and intercanopy carbon utilization were subtle, the diversity of carbon utilization differed, suggesting a potential role of root exudates in governing C utilization in these semiarid soils. Findings from this study suggest that soil physical properties due to parent material have primary impacts in constraining microbial growth and carbon utilization under changing climate conditions.
Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper
Wu, Jingda; Lin, Lih Y.
2017-01-01
Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications. PMID:28266651
Metrology conditions for thin layer activation in wear and corrosion studies
NASA Astrophysics Data System (ADS)
Lacroix, O.; Sauvage, T.; Blondiaux, G.; Racolta, P. M.; Popa-Simil, L.; Alexandreanu, B.
1996-02-01
Thin Layer Activation (TLA) is an ion beam technique. This method consists of an accelerated ion bombardment of the surface of interest of a machine part subjected to wear. Radioactive tracers are created by nuclear reactions in a well defined volume of material. Loss of material owing to wear, corrosion or abrasion phenomena is characterized by monitoring the resulting changes in radioactivity. For the industrial application of this method, special attention has been paid during irradiation to the range of activated thickness, yields and activation homogeneity and to on-line radioactivity measurements. There are two basic methods for measuring the material loss by TLA technique. One of them is based on remanant radioactivity measurements using a previously obtained calibration curve. The second is based on measuring the increasing radioactivity in the lubricant due to suspended wear particles. In this paper, we have chosen to present some calibration curves for both proton and deuteron irradiation of Fe, Cr, Cu, Ti and Ni samples. Thickness ranges are indicated and intrinsic error checking and calculational procedures are also presented. The article ends with a review of some typical experiments involving running-in programme optimization and lubricants certifying procedures.
International Space Station External Contamination Status
NASA Technical Reports Server (NTRS)
Mikatarian, Ron; Soares, Carlos
2000-01-01
PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.
Influence of lithium vacancies on the polaronic transport in olivine phosphate structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugavel, Sevi, E-mail: murug@physics.du.ac.in; Sharma, Monika; Shahid, Raza
2016-01-28
Intercalation and deintercalation of lithium ions in cathode materials are of principal to the operation of current rechargeable lithium ion batteries. The performance of lithium ion batteries highly relies on the active cathode material which includes cell potential, power/energy density, capacity, etc. An important issue in this class of material is to resolve the factors governing the electron and ion transport in olivine phosphate structure. In this class of material, there is still an open debate on the mechanism of charge transport including both polarons and lithium ions. On the one hand, this is due to the large disparity betweenmore » the experimental results and the theoretical model predictions. On the other hand, this is also due to the lack of precise experimental measurement without any parasitic phases in a given cathode material. Here, we present the polaronic conduction in lithiated triphylite LiFePO{sub 4} (LFP) and delithiated heterosite FePO{sub 4} (FP) by means of broadband ac impedance spectroscopy over wide range temperatures and frequency. It is found that the LFP phase possess two orders of higher polaronic conductivity than FP phase despite having similar mobility of polarons in both phases. We show that the differences in the polaronic conductivity of two phases are due to the significant differences in concentration of polarons. It is found that the formation energy of polarons in individual phases is mainly determined by the corresponding defect state associated with it. The temperature dependent dc conductivity has been analyzed within the framework of Mott model of polaronic conduction and explored the origin of polaronic conduction mechanism in this class of material.« less
Photonuclear activation of pure isotopic mediums.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohman, Mark A.; Lukosi, Eric Daniel
2010-06-01
This work simulated the response of idealized isotopic U-235, U-238, Th-232, and Pu-239 mediums to photonuclear activation with various photon energies. These simulations were conducted using MCNPX version 2.6.0. It was found that photon energies between 14-16 MeV produce the highest response with respect to neutron production rates from all photonuclear reactions. In all cases, Pu-239 responds the highest, followed by U-238. Th-232 produces more overall neutrons at lower photon energies then U-235 when material thickness is above 3.943 centimeters. The time it takes each isotopic material to reach stable neutron production rates in time is directly proportional to themore » material thickness and stopping power of the medium, where thicker mediums take longer to reach stable neutron production rates and thinner media display a neutron production plateau effect, due to the lack of significant attenuation of the activating photons in the isotopic mediums. At this time, no neutron sensor system has time resolutions capable of verifying these simulations, but various indirect methods are possible and should be explored for verification of these results.« less
Influence of fillers on the alkali activated chamotte
NASA Astrophysics Data System (ADS)
Dembovska, L.; Bumanis, G.; Vitola, L.; Bajare, D.
2017-10-01
Alkali-activated materials (AAM) exhibit remarkable high-temperature resistance which makes them perspective materials for high-temperature applications, for instance as fire protecting and insulating materials in industrial furnaces. Series of experiments were carried out to develop optimum mix proportions of AAM based on chamotte with quartz sand (Q), olivine sand (OL) and firebrick sawing residues (K26) as fillers. Aluminium scrap recycling waste was considered as a pore forming agent and 6M NaOH alkali activation solution has been used. Lightweight porous AAM have been obtained with density in range from 600 to 880 kg/m3 and compressive strength from 0.8 to 2.7 MPa. The XRD and high temperature optical microscopy was used to characterize the performance of AAM. The mechanical, physical and structural properties of the AAM were determined after the exposure to elevated temperatures at 800 and 1000°C. The results indicate that most promising results for AAM were with K26 filler where strength increase was observed while Q and OL filler reduced mechanical properties due to structure deterioration caused by expansive nature of selected filler.
Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro
NASA Astrophysics Data System (ADS)
Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica
2013-04-01
Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.
Yang, Yanwei; Huang, Li; Dong, Yan; Zhang, Hongchen; Zhou, Wei; Ban, Jinghao; Wei, Jingjing; Liu, Yan; Gao, Jing; Chen, Jihua
2014-01-01
Vital pulp preservation in the treatment of deep caries is challenging due to bacterial infection. The objectives of this study were to synthesize a novel, light-cured composite material containing bioactive calcium-silicate (Portland cement, PC) and the antimicrobial quaternary ammonium salt monomer 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB) and to evaluate its effects on Streptococcus mutans growth in vitro. The experimental material was prepared from a 2 : 1 ratio of PC mixed with a resin of 2-hydroxyethylmethacrylate, bisphenol glycerolate dimethacrylate, and triethylene glycol dimethacrylate (4 : 3 : 1) containing 5 wt% MAE-DB. Cured resin containing 5% MAE-DB without PC served as the positive control material, and resin without MAE-DB or PC served as the negative control material. Mineral trioxide aggregate (MTA) and calcium hydroxide (Dycal) served as commercial controls. S. mutans biofilm formation on material surfaces and growth in the culture medium were tested according to colony-forming units (CFUs) and metabolic activity after 24 h incubation over freshly prepared samples or samples aged in water for 6 months. Biofilm formation was also assessed by Live/Dead staining and scanning electron microscopy. S. mutans biofilm formation on the experimental material was significantly inhibited, with CFU counts, metabolic activity, viability staining, and morphology similar to those of biofilms on the positive control material. None of the materials affected bacterial growth in solution. Contact-inhibition of biofilm formation was retained by the aged experimental material. Significant biofilm formation was observed on MTA and Dycal. The synthesized material containing HEMA-BisGMA-TEGDMA resin with MAE-DB as the antimicrobial agent and PC to support mineralized tissue formation inhibited S. mutans biofilm formation even after aging in water for 6 months, but had no inhibitory effect on bacteria in solution. Therefore, this material shows promise as a pulp capping material for vital pulp preservation in the treatment of deep caries.
Characterizing dark mantle deposits in the lunar crater Alphonsus
NASA Astrophysics Data System (ADS)
Shkuratov, Y. G.; Ivanov, M. A.; Korokhin, V. V.; Kaydash, V. G.; Basilevsky, A. T.; Videen, G.; Hradyska, L. V.; Velikodsky, Y. I.; Marchenko, G. P.
2018-04-01
We analyze available remote-sensing data of the crater Alphonsus, focusing on the analysis of the crater's dark mantle deposits (DMDs), which includes images from NASA Clementine and Lunar Reconnaissance Orbiter (LRO), Japanese Selene (Kaguya), and Indian Chandrayaan-1 missions. The Alphonsus DMDs are gentle-sloped flat hills with typical heights of several meters, which are presented with pyroclastic materials. Our determination of the absolute ages of the Alphonsus DMDs by the technique of crater size-frequency distributions shows that they are ∼200-400 m.y. old. However, being geologically young, the Alphonsus DMDs are not seen in OMAT maps. The DMDs have noticeably lower content of TiO2 (2-3%) than the mare regions to the west (>4%). The assessment of total pyroxene shows it has a higher abundance in the DMDs, although LRO Diviner measurements of the Chirstiansen feature suggest, rather, a high abundance of olivine. The DMDs pyroclastic material has no signs of OH/H2O compounds. We may suggest that this characteristic of the DMDs either relates to their impact reworking and loss of the OH/H2O compounds or to the non-water volatiles as the driving agent of the pyroclastic activity. The compositional assessments of the DMDs may be flawed from contamination with the surrounding material due to horizontal and vertical transportation due to impacts. This effect probably can be observed in LROC NAC images of high resolution. A very dark material outcropping on the slopes of the vent depression is seen due to renovation of the regolith on the steep walls of the depression. Thus, at smaller phase angles, the pyroclastic material is dark and at larger phase angles it appears almost like the surrounding material. This means that the phase dependence of the outcropping dark material is shallow; i.e. the dark surface is smoother than its surroundings. This may suggest venting of gases resulting in fluidization of the granular pyroclastic material of the deposit.
Biological responses to M13 bacteriophage modified titanium surfaces in vitro.
Sun, Yuhua; Li, Yiting; Wu, Baohua; Wang, Jianxin; Lu, Xiong; Qu, Shuxin; Weng, Jie; Feng, Bo
2017-08-01
Phage-based materials have showed great potential in tissue engineering application. However, it is unknown what inflammation response will happen to this kind of materials. This work is to explore the biological responses to M13 bacteriophage (phage) modified titanium surfaces in vitro from the aspects of their interaction with macrophages, osteoblasts and mineralization behavior. Pretreated Ti surface, Ti surfaces with noncrosslinked phage film (APP) and crosslinked phage film (APPG) were compared. Phage films could limit the macrophage adhesion and activity due to inducing adherent-cell apoptosis. The initial inflammatory activity (24h) caused by phage films was relatively high with more production of TNF-α, but in the later stage (7-10days) inflammatory response was reduced with lower TNF-α, IL-6 and higher IL-10. In addition, phage films improved osteoblast adhesion, differentiation, and hydroapatite (HA)-forming via a combination of topographical and biochemcial cues. The noncrosslinked phage film displayed the best immunomodulatory property, osteogenic activity and HA mineralization ability. This work provides better understanding of inflammatory and osteogenetic activity of phage-based materials and contributes to their future application in tissue engineering. In vivo, the bone and immune cells share a common microenvironment, and are being affected by similar cytokines, signaling molecules, transcription factors and membrane receptors. Ideal implants should cause positive biological response, including adequate and appropriate inflammatory reaction, well-balanced bone formation and absorption. Phage-based materials have showed great potential in tissue engineering application. However, at present it is unknown what inflammation response will happen to this kind of materials. A good understanding of the immune response possibly induced by phage-based materials is needed. This work studied the osteoimmunomodulation property of phage films on titanium surface, involving inflammatory response, osteogenic activity and biomineralization ability. It provides more understanding of the phage-based materials and contributes to their future application in tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Modeling Strain Rate Effect of Heterogeneous Materials Using SPH Method
NASA Astrophysics Data System (ADS)
Ma, G. W.; Wang, X. J.; Li, Q. M.
2010-11-01
The strain rate effect on the dynamic compressive failure of heterogeneous material based on the smoothed particle hydrodynamics (SPH) method is studied. The SPH method employs a rate-insensitive elasto-plastic damage model incorporated with a Weibull distribution law to reflect the mechanical behavior of heterogeneous rock-like materials. A series of simulations are performed for heterogeneous specimens by applying axial velocity conditions, which induce different strain-rate loadings to the specimen. A detailed failure process of the specimens in terms of microscopic crack-activities and the macro-mechanical response are discussed. Failure mechanisms between the low and high strain rate cases are compared. The result shows that the strain-rate effects on the rock strength are mainly caused by the changing internal pressure due to the inertial effects as well as the material heterogeneity. It also demonstrates that the inertial effect becomes significant only when the induced strain rate exceeds a threshold, below which, the dynamic strength enhancement can be explained due to the heterogeneities in the material. It also shows that the dynamic strength is affected more significantly for a relatively more heterogeneous specimen, which coincides with the experimental results showing that the poor quality specimen had a relatively larger increase in the dynamic strength.
Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2
NASA Astrophysics Data System (ADS)
Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.
2013-10-01
Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.
NASA Astrophysics Data System (ADS)
Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.
2018-03-01
Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.
Yan, Xuzhou; Wang, Haoze; Hauke, Cory E; Cook, Timothy R; Wang, Ming; Saha, Manik Lal; Zhou, Zhixuan; Zhang, Mingming; Li, Xiaopeng; Huang, Feihe; Stang, Peter J
2015-12-09
Materials that organize multiple functionally active sites, especially those with aggregation-induced emission (AIE) properties, are of growing interest due to their widespread applications. Despite promising early architectures, the fabrication and preparation of multiple AIEgens, such as multiple tetraphenylethylene (multi-TPE) units, in a single entity remain a big challenge due to the tedious covalent synthetic procedures often accompanying such preparations. Coordination-driven self-assembly is an alternative synthetic methodology with the potential to deliver multi-TPE architectures with light-emitting characteristics. Herein, we report the preparation of a new family of discrete multi-TPE metallacycles in which two pendant phenyl rings of the TPE units remain unused as a structural element, representing novel AIE-active metal-organic materials based on supramolecular coordination complex platforms. These metallacycles possess relatively high molar absorption coefficients but weak fluorescent emission under dilute conditions because of the ability of the untethered phenyl rings to undergo torsional motion as a non-radiative decay pathway. Upon molecular aggregation, the multi-TPE metallacycles show AIE-activity with markedly enhanced quantum yields. Moreover, on account of their AIE characteristics in the condensed state and ability to interact with electron-deficient substrates, the photophysics of these metallacycles is sensitive to the presence of nitroaromatics, motivating their use as sensors. This work represents a unification of themes including molecular self-assembly, AIE, and fluorescence sensing and establishes structure-property-application relationships of multi-TPE scaffolds. The fundamental knowledge obtained from the current research facilitates progress in the field of metal-organic materials, metal-coordination-induced emission, and fluorescent sensing.
Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance
NASA Astrophysics Data System (ADS)
Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.
2017-10-01
Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.
Engineering New Catalysts for In-Process Elimination of Tars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felix, Larry G.
2012-09-30
The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposedmore » surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported and integrated (bulk) catalysts via a glass-ceramic processing route which were shown to exhibit excellent catalytic activity and superior resistance to attrition deactivation. With the discovery of these active, robust, glass-based catalysts, and with the permission of the project officer, the investigation of waste-based materials as originally proposed for Task 3 and pilot-scale testing proposed in Task 5 were deferred indefinitely in favor of further investigation of the glass-ceramic based catalyst materials. This choice was justified in part because during FY 2006 and through FY 2007, funding restrictions imposed by congressional budget choices significantly reduced funding for DOE biomass-related projects. Funding for this project was limited to what had been authorized which slowed the pace of project work at GTI so that our project partners could continue in their work. Thereafter, project work was allowed to resume and with restored funding, the project continued and concentrated on the development and testing of glass-ceramic catalysts in bulk or supported formats. Work concluded with a final development devoted to increasing the surface area of glass-ceramic catalysts in the form of microspheres. Following that development, project reporting was completed and the project was concluded.« less
Dynamics of flare sprays. [in sun
NASA Technical Reports Server (NTRS)
Tandberg-Hanssen, E.; Martin, S. F.; Hansen, R. T.
1980-01-01
During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable passband filters, multislit spectroscopy and extended angular field coronagraphs). From combined analysis of 13 well-observed sprays which occurred between 1969-1974 it is concluded that (1) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (2) the spray material is confined within a steadily expanding, loop-shaped (presumable magnetically controlled) envelope with part of the materials draining back down along one or both legs of the loop.
Motorizing fibres with geometric zero-energy modes
NASA Astrophysics Data System (ADS)
Baumann, Arthur; Sánchez-Ferrer, Antoni; Jacomine, Leandro; Martinoty, Philippe; Le Houerou, Vincent; Ziebert, Falko; Kulić, Igor M.
2018-06-01
Responsive materials1-3 have been used to generate structures with built-in complex geometries4-6, linear actuators7-9 and microswimmers10-12. These results suggest that complex, fully functional machines composed solely from shape-changing materials might be possible13. Nonetheless, to accomplish rotary motion in these materials still relies on the classical wheel and axle motifs. Here we explore geometric zero-energy modes to elicit rotary motion in elastic materials in the absence of a rigid wheel travelling around an axle. We show that prestrained polymer fibres closed into rings exhibit self-actuation and continuous motion when placed between two heat baths due to elastic deformations that arise from rotational-symmetry breaking around the rod's axis. Our findings illustrate a simple but robust model to create active motion in mechanically prestrained objects.
Design of electro-active polymer gels as actuator materials
NASA Astrophysics Data System (ADS)
Popovic, Suzana
Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as an actuator material, Nafion 117, was simulated. It was suggested that dominant phenomenon causing the material deformation is non-uniform water distribution within a material, that causes it to expand on one side and shrink on the other, macroscopically inducing bending of membrane. Uneven distribution of water is believed to be under the influence of two processes, electroosmosis and self-diffusion of free water.
An industry perspective on commercial radioactive waste disposal conditions and trends.
Romano, Stephen A
2006-11-01
The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.
Liu, Chunyi; Wang, Xusheng; Deng, Wenjun; Li, Chang; Chen, Jitao; Xue, Mianqi; Li, Rui; Pan, Feng
2018-03-14
The rechargeable aqueous metal-ion battery (RAMB) has attracted considerable attention due to its safety, low costs, and environmental friendliness. Yet the poor-performance electrode materials lead to a low feasibility of practical application. A hybrid aqueous battery (HAB) built from electrode materials with selective cation channels could increase the electrode applicability and thus enlarge the application of RAMB. Herein, we construct a high-voltage K-Na HAB based on K 2 FeFe(CN) 6 cathode and carbon-coated NaTi 2 (PO 4 ) 3 (NTP/C) anode. Due to the unique cation selectivity of both materials and ultrafast ion conduction of NTP/C, the hybrid battery delivers a high capacity of 160 mAh g -1 at a 0.5 C rate. Considerable capacity retention of 94.3 % is also obtained after 1000 cycles at even 60 C rate. Meanwhile, high energy density of 69.6 Wh kg -1 based on the total mass of active electrode materials is obtained, which is comparable and even superior to that of the lead acid, Ni/Cd, and Ni/MH batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volume of Impact Melt Generated by the Formation of the South Pole-Aitken Basin
NASA Technical Reports Server (NTRS)
Petro, Noah E.
2011-01-01
The South Pole-Aitken Basin (SPA) is the largest, deepest, and oldest identified basin on the Moon and as such contains surfaces that are unique due to their age, composition, and depth of origin in the lunar crust [1-5] (Figure 1). SPA has been a target of intense interest as an area for robotic sample return in order to determine the age of the basin and the composition and origin of its interior [6-8]. In response to this interest there have been several efforts to estimate the likely provenance of regolith material within central SPA [9-12]. These model estimates suggest that, despite the formation of basins and craters following SPA, the regolith within SPA is dominated by locally derived material. An assumption of these models has been that the locally derived material is primarily SPA impact-melt as opposed to local basement material (e.g. unmelted lower crust). However, the definitive identification of SPA derived impact melt on the basin floor, either by remote sensing [5, 13] or via photogeology [2, 14] is extremely difficult due to the number of subsequent impacts and volcanic activity [4].
Work Loop and Ashby Charts of Active Materials
2013-10-17
constructed to show performance metrics (e.g., actuation stress, actuation strain, self - healing ) of iron-loaded compositions compared to other active...24,000 cycles at 80 Hz without change in strain characteristics. Self - healing of Magpol prepared using ferrite nanoparticles of different Curie...silicone) was selected as the polymer matrix due to its good flexibility and reasonable environmental stability. Self healing Magpol was synthesized by
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammigan, K.; Hurh, P.
The Radiation Damage In Accelerator Target Environments (RaDIATE) collaboration was founded in 2012 and currently consists of over 50 participants and 11 institutions globally. Due to the increasing power of future proton accelerator sources in target facilities, there is a critical need to further understand the physical and thermo-mechanical radiation response of target facility materials. Thus, the primary objective of the RaDIATE collaboration is to draw on existing expertise in the nuclear materials and accelerator targets fields to generate new and useful materials data for application within the accelerator and fission/fusion communities. Current research activities of the collaboration include postmore » irradiation examination (PIE) of decommissioned components from existing beamlines such as the NuMI beryllium beam window and graphite NT-02 target material. PIE of these components includes advanced microstructural analyses (SEM/TEM, EBSD, EDS) and micro-mechanics technique such as nano-indentation, to help characterize any microstructural radiation damage incurred during operation. New irradiation campaigns of various candidate materials at both low and high energy beam facilities are also being pursued. Beryllium helium implantation studies at the University of Surrey as well as high energy proton irradiation of various materials at Brookhaven National Laboratory’s BLIP facility have been initiated. The program also extends to beam-induced thermal shock experiments using high intensity beam pulses at CERN’s HiRadMat facility, followed by advanced PIE activities to evaluate thermal shock resistance of the materials. Preliminary results from ongoing research activities, as well as the future plans of the RaDIATE collaboration R&D program will be discussed.« less
Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co3O4 network
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Zhang, Tong; Zhang, Rui; Lou, Zheng; Deng, Jianan; Wang, Lili
2017-12-01
Development of high performance room temperature sensors remains a grand challenge for high demand of practical application. Metal oxide semiconductors (MOSs) have many advantages over others due to their easy functionalization, high surface area, and low cost. However, they typically need a high work temperature during sensing process. Here, p-type sensing layer is reported, consisting of pore-rich dumbbell-like Co3O4 particles (DP-Co3O4) with intrinsic high catalytic activity. The gas sensor (GS) based DP-Co3O4 catalyst exhibits ultrahigh NH3 sensing activity along with excellent stability over other structure based NH3 GSs in room temperature work environment. In addition, the unique structure of DP-Co3O4 with pore-rich and high catalytic activity endows fast gas diffusion rate and high sensitivity at room temperature. Taken together, the findings in this work highlight the merit of integrating highly active materials in p-type materials, offering a framework to develop high-sensitivity room temperature sensing platforms.
Preparation of capacitor's electrode from sunflower seed shell.
Li, Xiao; Xing, Wei; Zhuo, Shuping; Zhou, Jin; Li, Feng; Qiao, Shi-Zhang; Lu, Gao-Qing
2011-01-01
Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS. Copyright © 2010 Elsevier Ltd. All rights reserved.
Silver nanowires as infrared-active materials for surface-enhanced Raman scattering.
Becucci, Maurizio; Bracciali, Monica; Ghini, Giacomo; Lofrumento, Cristiana; Pietraperzia, Giangaetano; Ricci, Marilena; Tognaccini, Lorenzo; Trigari, Silvana; Gellini, Cristina; Feis, Alessandro
2018-05-17
Surface-enhanced Raman scattering (SERS) is increasing in significance as a bioanalytical tool. Novel nanostructured metal substrates are required to improve performances and versatility of SERS spectroscopy. In particular, as biological tissues are relatively transparent in the infrared wavelength range, SERS-active materials suitable for infrared laser excitation are needed. Nanowires appear interesting in this respect as they show a very broad localized surface plasmon resonance band, ranging from near UV to near infrared wavelengths. The SERS activity of silver nanowires has been tested at three wavelengths and a fair enhancement at 1064 and 514 nm has been observed, whereas a very weak enhancement was present when exciting close to the nanowire extinction maximum. These experimentally measured optical properties have been contrasted with finite element method simulations. Furthermore, laser-induced optoacoustic spectroscopy measurements have shown that the extinction at 1064 nm is completely due to scattering. This result has an important implication that no heating occurs when silver nanowires are utilized as SERS-active substrates, thereby preventing possible thermal damage.
Materials discovery through crystal growth
NASA Astrophysics Data System (ADS)
zur Loye, Hans-Conrad
2016-04-01
The discovery of new materials and associated desirable properties has been a driving force behind chemical innovation for centuries. When we look at some of the many recent technological advances, and how widespread and significant their impact has been, we appreciate how much they have relied on new materials. The increase in hard drive storage capacity due to new giant magneto-resistive materials, the ever-shrinking cell phone due to improved microwave dielectric materials, the enhancement in lithium battery storage capacity due to new intercalation materials, or the improved capacitor due to new ferroelectric materials are all excellent examples. How were these materials discovered? While there is no single answer, in all cases there was a First-Material, the archetype in which the phenomenon was first observed, the one that led to further investigations and the subsequent preparation of improved 2nd or 3rd generation materials. It is this First-Material, the archetype, that was discovered - often via crystal growth.
Tsekova, Petya B; Spasova, Mariya G; Manolova, Nevena E; Markova, Nadya D; Rashkov, Iliya B
2017-04-01
Novel fibrous materials from cellulose acetate (CA) and polyvinylpyrrolidone (PVP) containing curcumin (Curc) with original design were prepared by one-pot electrospinning or dual spinneret electrospinning. The electrospun materials were characterized by scanning electron microscopy (SEM), fluorescence microscopy, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), water contact angle measurements, and microbiological tests. It was found that the incorporation of Curc into the CA and PVP solutions resulted in an increase of the solution viscosity and obtaining fibers with larger diameters (ca. 1.5μm) compared to the neat CA (ca. 800nm) and PVP fibers (ca. 500nm). The incorporation of PVP resulted in increased hydrophilicity of the fibers and in faster Curc release. Curc was found in the amorphous state in the Curc-containing fibers and these mats exhibited antibacterial activity against Staphylococcus aureus (S. aureus). The results suggest that, due to their complex architecture, the obtained new antibacterial materials are suitable for wound dressing applications, which necessitate diverse release behaviors of the bioactive compound. Copyright © 2016 Elsevier B.V. All rights reserved.
Defects Engineered Monolayer MoS 2 for Improved Hydrogen Evolution Reaction
Ye, Gonglan; Gong, Yongji; Lin, Junhao; ...
2016-01-13
MoS 2 is a promising, low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. Our work represents an easy method to increase the hydrogen production in electrochemical reaction of MoS 2 via defect engineering, and helps to understand the catalytic properties of MoS 2.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-01
... the PRC due to a material change at SMIC. This amendment is not the result of prohibited activities by... are welcome on a continuing basis. ADDRESSES: You may submit comments, identified by RIN 0694-AF02 by... the three methods outlined above. FOR FURTHER INFORMATION CONTACT: Karen Nies-Vogel, Chairman, End...
Interactive Print: The Design of Cognitive Tasks in Blended Augmented Reality and Print Documents
ERIC Educational Resources Information Center
Nadolny, Larysa
2017-01-01
The combination of print materials and augmented reality in education is increasingly accessible due to advances in mobile technologies. Using familiar paper-based activities overlaid with digital items, also known as interactive print, educators can create a custom learning experience for students. There is very little guidance on the design of…
Preparation and characterization of new biologically active polyurethane foams.
Savelyev, Yuri; Veselov, Vitali; Markovskaya, Ludmila; Savelyeva, Olga; Akhranovich, Elena; Galatenko, Natalya; Robota, Ludmila; Travinskaya, Tamara
2014-12-01
Biologically active polyurethane foams are the fast-developed alternative to many applications of biomedical materials. Due to the polyurethane structure features and foam technology it is possible to incorporate into their structure the biologically active compounds of target purpose via structural-chemical modification of macromolecule. A series of new biologically active polyurethane foams (PUFs) was synthesized with polyethers (MM 2500-5000), polyesters MM (500-2200), 2,4(2,6) toluene diisocyanate, water as a foaming agent, catalysts, foam stabilizers and functional compounds. Different functional compounds: 1,4-di-N-oxy-2,3-bis-(oxymethyl)-quinoxaline (DOMQ), partial sodium salt of poly(acrylic acid) and 2,6-dimethyl-N,N-diethyl aminoacetatanilide hydrochloride were incorporated into the polymer structure/composition due to the chemical and/or physical bonding. Structural peculiarities of PUFs were studied by FTIR spectroscopy and X-ray scattering. Self-adhesion properties of PUFs were estimated by measuring of tensile strength at break of adhesive junction. The optical microscopy method was performed for the PUF morphology studies. Toxicological estimation of the PUFs was carried out in vitro and in vivo. The antibacterial action towards the Gram-positive and Gram-negative bacteria (Escherichia coli ATC 25922, E. coli ATC 2150, Klebsiella pneumoniae 6447, Staphylococcus aureus 180, Pseudomonas aeruginosa 8180, Proteus mirabilis F 403, P. mirabilis 6054, and Proteus vulgaris 8718) was studied by the disc method on the solid nutrient. Physic-chemical properties of the PUFs (density, tensile strength and elongation at break, water absorption and vapor permeability) showed that all studied PUFs are within the operational requirements for such materials and represent fine-cellular foams. Spectral studies confirmed the incorporation of DOMQ into the PUF's macrochain. PUFs are characterized by microheterogeneous structure. They are antibacterially active, non-toxic materials with high affinity to the tissue body, self-adhesive properties and local anesthetic effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Investigation on the activation of coal gangue by a new compound method.
Li, Chao; Wan, Jianhua; Sun, Henghu; Li, Longtu
2010-07-15
In order to comprehensively utilize coal gangue as the main raw material in cementitious materials, improving its cementitious activity is a question of fundamental importance. In this paper, we present a new compound mechanical-hydro-thermal activation (CMHTA) technology to investigate the activation effect of coal gangue, and the traditional mechanical-thermal activation (TMTA) technology was used as reference. The purpose of this study is to give a detailed comparison between these two methods with regard to the mineral composition, crystal structure and microstructure, by XRD, IR, MAS NMR, XPS and mechanical property analysis. The prepared coal gangue based blended cement, containing 52% of activated coal gangue C (by CMHTA technology), has a better mechanical property than activated coal gangue T (by TMTA technology) and raw coal gangue. The results show that both of the TMTA and CMHTA technologies can improve the cementitious activity of raw gangue greatly. Moreover, compared with TMTA, the mineral phases such as feldspar and muscovite in raw coal gangue were partially decomposed, and the crystallinity of quartz decreased, due to the effect of adding CaO and hydro-thermal process of CMHTA technology. 2010 Elsevier B.V. All rights reserved.
Hall, Brad; Jones, Lyndon; Forrest, James A
2015-05-01
To determine the effect of competitive adsorption between lysozyme and lactoferrin on silicone hydrogel contact lenses and the effect on lysozyme activity. Three commercially available silicone hydrogel contact lens materials (senofilcon A, lotrafilcon B and balafilcon A) were examined, for time points ranging from 10 s to 2 h. Total protein deposition was determined by I(125) radiolabeling of lysozyme and lactoferrin, while the activity of lysozyme was determined by a micrococcal activity assay. Senofilcon A and balafilcon A did not show any relevant competitive adsorption between lysozyme and lactoferrin. Lotrafilcon B showed reduced protein deposition due to competitive adsorption for lactoferrin at all time points and lysozyme after 7.5 min. Co-adsorption of lactoferrin and lysozyme decreased the activity of lysozyme in solution for senofilcon A and lotrafilcon B, but co-adsorption had no effect on the surface activity of lysozyme for all lens types investigated. Competition between lysozyme and lactoferrin is material specific. Co-adsorption of lysozyme and lactoferrin does not affect the activity of surface-bound lysozyme but can reduce the activity of subsequently desorbed lysozyme.
RUBBER BEARINGS FOR DOWN-HOLE PUMPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bob Sullivan Mammoth Pacific, L.P.
2005-09-07
Synopsis of project activity: 1998--Awarded cost share grant from DOE. 1st Qtr 1999--Developed fail safe lubricating system. 2nd Qtr 1999--Performed first large scale test with nitrile based bearings. It failed due to material swelling. Failure was blamed on improper tolerance. 3rd Qtr 1999--Material tests were performed with autoclaves and exposure tests to Casa Diablo fluids. Testing of Viton materials began. Alternate bearing designs were developed to limit risk of improper tolerances. 4th Qtr 1999--Site testing indicated a chemical attack on the bearing material caused the test failure and not improper bearing tolerance. 1st Qtr 2000--The assistance of Brookhaven National Laboratorymore » was obtained in evaluating the chemical attack. The National Laboratory also began more elaborate laboratory testing on bearing materials. 2nd Qtr 2000--Testing indicated Viton was an inappropriate material due to degradation in Casa Diablo fluid. Testing of EPDM began. 3rd Qtr 2001--EPDM bearings were installed for another large scale test. Bearings failed again due to swelling. Further testing indicated that larger then expected oil concentrations existed in lubricating water geothermal fluid causing bearing failure. 2002-2003--Searched for and tested several materials that would survive in hot salt and oil solutions. Kalrez{reg_sign}, Viton{reg_sign}ETP 500 and Viton{reg_sign}GF were identified as possible candidates. 2003-2005--Kalrez{reg_sign}has shown superior resistance to downhole conditions at Casa Diablo from among the various materials tested. Viton ETP-500 indicated a life expectancy of 13 years and because it is significantly less expensive then Kalrez{reg_sign}, it was selected as the bearing material for future testing. Unfortunately during the laboratory testing period Dupont Chemical chose to stop manufacturing this specific formulation and replaced it with Viton ETP 600S. The material is available with six different fillers; three based on zinc oxide and three based on silicon oxide. Samples of all six materials have been obtained and are being tested at the National Laboratory in Brookhaven, New York. This new material's properties as a bearing material and its ability to adhere to a bearings shell must be reviewed, but cost information deemed the material to be too expensive to be economical.« less
Vo, Duc-Thang; Sabrina, Sabrina; Lee, Cheng-Kang
2017-04-01
Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan due to the increased cationic -NH 3 + groups resulted from the intra- and intermolecular interactions between the carboxyl and amino groups. CMCS was grafted onto the surface of silica coated magnetic nanoparticles (MNPs) to obtain magnetically retrievable and deliverable antimicrobial nanoparticles (MNPs@CMCS). The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs). The deposition of AgNPs on the surface of MNPs@CMCS could significantly increase its antimicrobial activity against planktonic cells due to the dual action of CMCS and AgNPs. Due to its high magnetism, the as-prepared MNPs@CMCS-Ag could be efficiently delivered into an existing biofilm under the guidance of an applied magnetic field. Without direct contact, the Ag ions and/or radical oxygen species (ROS) released from the deposited Ag nanoparticles could effectively kill the bacteria embedded in the extracellular polymeric substances (EPS) matrix of biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bulei, C.; Todor, M. P.; Heput, T.; Kiss, I.
2018-01-01
The management of waste from used tires is one of the major principles of recycling and reuse, which involves encouraging a high level of material recovery components, preferably by recycling. Given the current pressure on natural resources on a global scale we must fully take into account the waste in a broader framework defined by the flow of raw materials and their sustainable use. Thus, the opportunity to use various waste from used tires as raw material in order to support economic activities becomes a priority. The recycling of raw materials from waste products and their use in new production processes for their material capitalization is becoming a sustainable approach. Used tire recycling, is the process of recycling waste tires that are no longer suitable for use on vehicles due to wear or irreparable damage. These tires are a problematic source of waste, due to the large volume produced, the durability of the tires, and the components in the tire that are ecologically problematic. Although tires are usually burnt, not recycled, efforts are continuing to find value. Tires can be recycled into, among other things, typically as crumb rubber modifier in recycled pavement. The paper presents aspects of the product resulting from crushing of used tires (powder), which can be used properly valued in the street furniture field or building materials containing rubber.
NASA Astrophysics Data System (ADS)
Londero, Pablo
The characterization of artistic practice throughout history often requires measurements of material composition with microscopic resolution, either due to the fine detail of the material composition or to the amount of sample available. This problem is exacerbated for the detection of organic colorants, which are often embedded in a complex matrix (e.g. oil, natural fibers) and in low concentration due to their high tinting strength. Surface-Enhanced Raman Spectroscopy (SERS) is increasingly used in detection of organic colorants in cultural heritage due to its high sensitivity and inherent preferential sensitivity to small organic molecules. This talk will discuss recent results from a new SERS measurement technique, in which laser ablation is used as a micro-sampling method onto a SERS-active film to characterize art samples with microscopic precision and sensitivity comparable to many mass spectrometry measurements. Furthermore, the nature of the sampling method provides built-in benefits to other SERS-based techniques, such as more quantitative characterization of mixtures, improved sensitivity to some analytes, and reduced background interference. Examples will be shown for measurements of reference materials and art objects, including a restored 16th-century dish and a Renaissance fresco, The Incredulity of San Thomas, by Luca Signorelli. Supported by the National Science Foundation (NSF-CHE-1402750).
Yuan, Jun; Sera, Koichiro; Takatsuji, Toshihiro
2015-01-01
To investigate human health effects of radiation exposure due to possible future nuclear accidents in distant places and other various findings of analysis of the radioactive materials contaminating the atmosphere of Nagasaki due to the Fukushima Daiichi Nuclear Power Plant accident. The concentrations of radioactive materials in aerosols in the atmosphere of Nagasaki were measured using a germanium semiconductor detector from March 2011 to March 2013. Internal exposure dose was calculated in accordance with ICRP Publ. 72. Air trajectories were analyzed using NOAA and METEX web-based systems. (134)Cs and (137)Cs were repeatedly detected. The air trajectory analysis showed that (134)Cs and (137)Cs flew directly from the Fukushima Daiichi Nuclear Power Plant from March to April 2011. However, the direct air trajectories were rarely detected after this period even when (134)Cs and (137)Cs were detected after this period. The activity ratios ((134)Cs/(137)Cs) of almost all the samples converted to those in March 2011 were about unity. This strongly suggests that the (134)Cs and (137)Cs detected mainly originated from the Fukushima Daiichi Nuclear Power Plant accident in March 2011. Although the (134)Cs and (137)Cs concentrations per air volume were very low and the human health effects of internal exposure via inhalation is expected to be negligible, the specific activities (concentrations per aerosol mass) were relatively high. It was found that possible future nuclear accidents may cause severe radioactive contaminations, which may require radiation exposure control of farm goods to more than 1000 km from places of nuclear accidents.
Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.; ...
2017-02-21
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu 2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalentmore » Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu 2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less
NASA Astrophysics Data System (ADS)
Boatner, L. A.; Comer, E. P.; Wright, G. W.; Ramey, J. O.; Riedel, R. A.; Jellison, G. E.; Kolopus, J. A.
2017-05-01
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalent Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above 0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu2+ at concentrations up to and in excess of 3 wt%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. The resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.
Application of nanomaterials in two-terminal resistive-switching memory devices
Ouyang, Jianyong
2010-01-01
Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs), nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. PMID:22110862
Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.
Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang
2018-05-01
Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twu, Nancy; Metzger, Michael; Balasubramanian, Mahalingam
Here, the lithium-excess Li xNi 2-4x/3Sb x/3O 2 (LNSO) materials were previously shown to demonstrate higher capacities and improved cyclability with increasing lithium content. While the performance trend is promising, observed capacities are much lower than theoretical capacities, pointing to a need for further understanding of active redox processes in these materials. In this work, we study the electrochemical behavior of the LNSO materials as a function of lithium content and at slow and fast rates. Surprisingly, Li 1.15Ni 0.47Sb 0.38O 2 (LNSO-15) exhibits higher discharge capacities at faster rates and traverses distinct voltage curves at slow and fast rates.more » To understand these two peculiarities, we characterize the redox activity of nickel, antimony, and oxygen at different rates. While experiments confirm some nickel redox activity and oxygen loss, these two mechanisms cannot account for all observed capacity. We propose that the balance of the observed capacity may be due reversible oxygen redox and that the rate-dependent voltage curve features may derive from irreversible nickel migration occurring on slow charge. As future high energy density cathodes are likely to contain both lithium excess and high nickel content, both of these findings have important implications for the development of novel high capacity cathode materials.« less
Use of Ultrasound in Reconditioning by Welding of Tools Used in the Process of Regenerating Rubber.
Dobrotă, Dan; Petrescu, Valentin
2018-02-10
Addressing the problem of reconditioning large parts is of particular importance, due to their value and to the fact that the technologies for their reconditioning are very complex. The tools used to refine regenerated rubber which measure 660 mm in diameter and 2130 mm in length suffer from a rather fast dimensional wear. Within this research, the authors looked for a welding reconditioning procedure that would allow a very good adhesion between the deposited material layer and the base material. In this regard, the MAG (Metal Active Gas) welding process was used, but the ultrasonic activation of the welding process was also considered. Thus, the wire used for welding was activated considering a variation of the frequency of ultrasounds in the range f = 18-22 kHz respectively of the oscillation amplitude A = 30-60 μm. Under these conditions it was found that the presence of ultrasonic waves during the welding cladding process results in uniform deposition of hard carbons at the grain boundary and in the elimination of any existing oxides on the deposition surface, but at the same time increases the adhesion between the base material and the additional material, all of which positively influence the wear and corrosion resistance of the tools used to refine the regenerated rubber.
NASA Astrophysics Data System (ADS)
Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup
2017-09-01
In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.
Thermostable photocatalytically active TiO2 anatase nanoparticles
NASA Astrophysics Data System (ADS)
Qi, Fei; Moiseev, Anna; Deubener, Joachim; Weber, Alfred
2011-03-01
Anatase is the low-temperature (300-550 °C) crystalline polymorph of TiO2 and it transforms to rutile upon heating. For applications utilizing the photocatalytic properties of nanoscale anatase at elevated temperatures (over 600 °C) the issue of phase stabilisation is of major interest. In this study, binary TiO2/SiO2 particles were synthesized by a flame aerosol process with TiCl4 and SiCl4 as precursors. The theoretical Si/Ti ratio was varied in the range of 0.7-1.3 mol/mol. The synthesized TiO2/SiO2 samples were heat treated at 900 and 1,000 °C for 3 h to determine the thermostability of anatase. Pyrogenic TiO2 P25 (from Evonik/Degussa, Germany) widely applied as photocatalyst was used as non-thermostabilized reference material for comparison of photocatalytic activity of powders. Both the non-calcinated and calcinated powders were characterized by means of XRD, TEM and BET. Photocatalytic activity was examined with dichloroacetic acid (DCA) chosen as a model compound. It was found that SiO2 stabilized the material retarding the collapse of catalyst surface area during calcination. The weighted anatase content of 85% remains completely unchanged even after calcination at 1,000 °C. The presence of SiO2 layer/bridge as spacer between TiO2 particles freezes the grain growth: the average crystallite size increased negligibly from 17 to 18 nm even during the calcination at 1,000 °C. Due to the stabilizing effect of SiO2 the titania nanoparticles calcinated at 900 and 1,000 °C show significant photocatalytic activity. Furthermore, the increase in photocatalytic activity with calcination temperature indicates that the titania surface becomes more accessible either due to intensified cracking of the SiO2 layer or due to enhanced transport of SiO2 into the necks thus releasing additional titania surface.
Mixed ionic-electronic conductors for electrodes of barium cerate-based SOFCS
NASA Astrophysics Data System (ADS)
Wu, Zhonglin
Gadolinium doped barium cerates (BCGs) have been identified as promising electrolyte materials for intermediate-temperature solid oxide fuel cells (SOFCs). It is crucial to develop compatible electrode materials for such electrolytes. Mixed ionic-electronic conductor (MIEC) electrode materials developed for SOFCs based on yttrium-stabilized zirconia (YSZ) may be used as electrode materials for BCG-based SOFCs; but a careful re-evaluation is required due to the intrinsic differences between BCG and YSZ. The performance of these electrode materials depends critically the transport of ionic and electronic species as well as gas. Accordingly, a profound understanding of transport in MIEC electrodes is imperative to effective design of high performance SOFCs. In this thesis, ambipolar transport in composite MIEC electrodes has been modeled using percolation theory to predict the effect of volume fractions of constituent phases and porosity on ambipolar conductivity. Transport and electrode kinetics of homogeneous MIEC electrodes have also been formulated under a steady-state condition to predict the distributions of ionic defects and current carried by each defect in such electrodes. Effects of catalytic properties, transport properties, and microstructure of porous electrodes and interfaces on the electrode performance are investigated. Under the guidelines of the theoretical modeling, several MIEC electrode materials are developed. Lasb{1-x}Srsb{x}Cosb{1-x}Fesb{y}Osb{3-delta} homogeneous materials are studied as cathode materials. However, the interfacial resistance seems too high due to the lack of catalytic activity at intermediate temperatures. Results indicate that Ag-Bisb{1.5}Ysb{0.5}Osb3 composite MIECs are good cathode materials when the volume fractions of constituent phases and porosity are carefully controlled. Such electrodes have low interfacial resistance, better binding strength, and smaller thermal mismatch with the BCG electrolyte, compared to other metal electrodes (such as Pt and Ag). Ni-BCG composite MIECs are studied as anode materials. It is found that electrodes prepared from NiO and reduced to Ni in situ is not catalytically active because of diffusion of NiO into BCG, which forms a resistive layer. Electrodes prepared from Ni metal and fired in an inert or reducing atmosphere exhibit low interfacial resistance and good compatibility with BCG electrolyte. Stability of these developed electrode materials is investigated under conditions pertinent to SOFCs.
M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori.
Kwun, Young Chel; Munir, Mobeen; Nazeer, Waqas; Rafique, Shazia; Min Kang, Shin
2017-08-18
V-Phenylenic nanotubes and nanotori are most comprehensively studied nanostructures due to widespread applications in the production of catalytic, gas-sensing and corrosion-resistant materials. Representing chemical compounds with M-polynomial is a recent idea and it produces nice formulas of degree-based topological indices which correlate chemical properties of the material under investigation. These indices are used in the development of quantitative structure-activity relationships (QSARs) in which the biological activity and other properties of molecules like boiling point, stability, strain energy etc. are correlated with their structures. In this paper, we determine general closed formulae for M-polynomials of V-Phylenic nanotubes and nanotori. We recover important topological degree-based indices. We also give different graphs of topological indices and their relations with the parameters of structures.
Destructive physical analysis results of Ni/H2 cells cycled in LEO regime
NASA Technical Reports Server (NTRS)
Lim, Hong S.; Zelter, Gabriela R.; Smithrick, John J.; Hall, Stephen W.
1991-01-01
Six 48-Ah individual pressure vessel (IPV) Ni/H2 cells containing 26 and 31 percent KOH electrolyte were life cycle tested in low Earth orbit. All three cells containing 31 percent KOH failed (3729, 4165, and 11,355 cycles), while those with 26 percent KOH were cycled over 14,000 times in the continuing test. Destructive physical analysis (DPA) of the failed cells included visual inspections, measurements of electrode thickness, scanning electron microscopy, chemical analysis, and measurements of nickel electrode capacity in an electrolyte flooded cell. The cycling failure was due to a decrease of nickel electrode capacity. As possible causes of the capacity decrease, researchers observed electrode expansion, rupture, and corrosion of the nickel electrode substrate, active material redistribution, and accumulation of electrochemically undischargeable active material with cycling.
Benedetti, Alessandro; Cirisano, Francesca; Delucchi, Marina; Faimali, Marco; Ferrari, Michele
2016-01-01
Superhydrophobic coating technology is regarded as an attractive possibility for the protection of materials in a sea environment. DC techniques are a useful tool to characterize metals' behavior in seawater in the presence/absence of coatings and/or corrosion inhibitors. In this work, investigations concerning Al-5%Mg alloy with and without a sprayed superhydrophobic coating were carried out with potentiodynamic scans in photobiologically active and not active seawater (3 weeks of immersion). In not photobiologically active seawater, the presence of the superhydrophobic coating did not prevent pitting corrosion. With time, the coating underwent local exfoliations, but intact areas still preserved superhydrophobicity. In photobiologically active seawater, on samples without the superhydrophobic coating (controls) pitting was inhibited, probably due to the adsorption of organic compounds produced by the photobiological activity. After 3 weeks of immersion, the surface of the coating became hydrophilic due to diatom coverage. As suggested by intermediate observations, the surface below the diatom layer is suspected of having lost its superhydrophobicity due to early stages of biofouling processes (organic molecule adsorption and diatom attachment/gliding). Polarization curves also revealed that the metal below the coating underwent corrosion inhibiting phenomena as observed in controls, likely due to the permeation of organic molecules through the coating. Hence, the initial biofouling stages (days) occurring in photobiologically active seawater can both accelerate the loss of superhydrophobicity of coatings and promote corrosion inhibition on the underlying metal. Finally, time durability of superhydrophobic surfaces in real seawater still remains the main challenge for applications, where the early stages of immersion are demonstrated to be of crucial importance. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsang, Alpha C. H.; Kwok, Holly Y. H.; Leung, Dennis Y. C.
2017-05-01
This manuscript presents the methodology of the production of 2D and 3D graphene based material, and their applications in fuel cell, supercapacitor, and photovoltic in recent years. Due to the uniqueness and attractive properties of graphene nanosheets, a large number of techniques have been developed for raw graphene preparation, from a chemical method to a physical deposition of carbon vapor under extreme conditions. A variety of graphene based materials were also prepared from raw graphene or graphene oxide, including the metal loaded, metal oxides loaded, to the foreign elements doped graphene. Both two-dimensional (2D) to three-dimensional (3D) structured graphene were covered. These materials included the bulk or template hybrid composite, containing graphene hydrogel, graphene aerogel, or graphene foam and its derived products. They were widely used in green energy device research, which exhibited strong activity, and developed some special usage in recent research.
Molten Salt Electrolytically Produced Carbon/Tin Nanomaterial as the Anode in a Lithium Ion Battery
NASA Astrophysics Data System (ADS)
Das Gupta, Rajshekar; Schwandt, Carsten; Fray, Derek J.
2017-03-01
A carbon/tin nanomaterial, consisting of predominantly Sn-filled carbon nanotubes and nanoparticles, is prepared by molten salt electrochemistry, using electrodes of graphite and an electrolyte of LiCl salt containing a small admixture of SnCl2. The C/Sn hybrid material generated is incorporated into the active anode material of a lithium ion battery and tested with regard to storage capacity and cycling behavior. The results demonstrate that the C/Sn material has favorable properties, in terms of energy density and in particular long-term stability, that exceed those of the individual components alone. The initial irreversible capacity of the material is somewhat larger than that of conventional battery graphite which is due to its unique nanostructure. Overall the results would indicate the suitability of this material for use in the anodes of lithium ion batteries with high rate capability.
Biofunctionalization of carbon nanostructures through enzyme immobilization in colloidal silica
NASA Astrophysics Data System (ADS)
Goulet, Evan M.
Multi-walled carbon nanotubes (MWNT) and carbon nanopipettes (CNP) provide interesting high aspect ratio scaffolds on which to base functionally gradient materials. In this dissertation, we present a general method for the production of an enzymatically active composite material based on MWNTs. Polyethyleneimine (PEI) was applied to purified MWNTs, generating a positive electrostatic potential on the MWNTs. This positive potential was used to apply negatively charged colloidal silica particle in the presence of a high concentration of enzyme. The silica coating continued to grow via localized condensation of silica particles driven by the buffered saline conditions, immobilizing the enzyme within the coating. The mesoporous nanostructure was characterized via transmission electron microscopy. Optical spectroscopy experiments on the material employed as an active suspension showed that the immobilized enzymes horseradish peroxidase (HRP) and tyrosinase (TV) retained their activity upon incorporation into the material. Using HRP as a model enzyme, it was determined that the MWNT-HRP-Silica material showed similar pH and temperature dependencies in activity to those of free HRP in solution. An examination of the Michaelis-Menten kinetics showed that the material had a slightly higher value of KM than did free HRP. The MWNT-HRP-Silica material was also employed as an active filter membrane, which allowed us to explore the reusable nature of the material. We were able to show the denaturation of the filter due to the loss of Ca2+ cations at low pH and then restore the activity by soaking the filter membrane in 1 mM CaCl2. The MWNT-HRP-Silica material was used to modify a carbon microelectrode and produce a functioning electrochemical sensor for H2O2 . Utilizing cyclic voltammetry, the sensor was shown to have a linear response in limiting current versus concentration of H2O2 of 4.26 pA/microM. We also determined a lower detection limit of 0.67 microM H2O2. CNPs were investigated as functional microelectrodes. Colloidal silica was applied to the CNP with HRP, but it was difficult to prove functionality. One irregularly coated CNP showed a clear response to H2O2, but we were not able to reproduce the response in other samples. This work indicated the CNPs have promise as functional microelectrodes.
Conducting polymer scaffolds for electrical control of cellular functions (Conference Presentation)
NASA Astrophysics Data System (ADS)
Inal, Sahika; Wan, Alwin M.; Williams, Tiffany V.; Giannelis, Emmanuel P.; Fischbach-Teschl, Claudia; Gourdon, Delphine; Owens, Róisín. M.; Malliaras, George G.
2016-09-01
Considering the limited physiological relevance of 2D cell culture experiments, significant effort was devoted to the development of materials that could more accurately recreate the in vivo cellular microenvironment, and support 3D cell cultures in vitro. (1) One such class of materials is conducting polymers, which are promising due to their compliant mechanical properties, compatibility with biological systems, mixed electrical and ionic conductivity, and ability to form porous structures. (2) In this work, we report the fabrication of a single component, macroporous scaffold made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. (3) PEDOT:PSS scaffolds offer tunable pore size, morphology and shape through facile changes in preparation conditions, and are capable of supporting 3D cell cultures due to their biocompatibility and tissue-like elasticity. Moreover, these materials are functional: they exhibit excellent electrochemical switching behavior and significantly lower impedance compared to films. Their electrochemical activity enables their use in the active channel of a state of the art diagnostic tool in the field of bioelectronics, i.e., the organic electrochemical transistor (OECT). The inclusion of cells within the porous architecture affects the impedance of the electrically-conducting polymer network and, thus, may be used as a method to quantify cell growth. The adhesion and pro-angiogenic secretions of mouse fibroblasts cultured within the scaffolds can be controlled by switching the electrochemical state of the polymer prior to cell-seeding. In summary, these smart materials hold promise not only as extracellular matrix-mimicking structures for cell culture, but also as high-performance bioelectronic tools for diagnostic and signaling applications. References [1] M. Holzwarth, P. X. Ma, Journal of Materials Chemistry, 21, 10243-10251 (2011). [2] L. H. Jimison, J. Rivnay, R. M. Owens, in Organic Electronics, Wiley-VCH Verlag GmbH and Co. KGaA, 27-6 (2013). [3] A. M.-D. Wan, S. Inal, T. Williams et al. Journal of Materials Chemistry B, DOI: 10.1039/C5TB00390C (2015).
Zainal, Zulkarnain; Yusof, Nor Azah
2018-01-01
Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures. PMID:29438327
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong-Tae; Lopes, Pietro Papa; Park, Shin-Ae
The selection of oxide materials for catalyzing the Oxygen Evolution Reaction in acid-based electrolyzers must be guided by the proper balance between activity, stability and conductivity – a challenging mission of great importance for delivering affordable and environmentally friendly hydrogen. Here we report that the highly conductive nanoporous architecture of an iridium oxide shell on a metallic iridium core, formed through the fast dealloying of osmium from an Ir25Os75 alloy, exhibits an exceptional balance between oxygen evolution activity and stability as quantified by the Activity-Stability FactorASF. Based on this metric, the nanoporous Ir/IrO2 morphology of dealloyed Ir25Os75 shows a factormore » of ~30 improvement ASFrelative to conventional Ir-based oxide materials and a ~8 times improvement over dealloyed Ir25Os75 nanoparticles due to optimized stability and conductivity, respectively. We propose that the Activity-Stability FactorASF is the key “metric” for determining the technological relevance of oxide-based anodic water electrolyzer catalysts.« less
McCoy, Kimberly; Uchida, Masaki; Lee, Byeongdu; Douglas, Trevor
2018-04-24
Bottom-up construction of mesoscale materials using biologically derived nanoscale building blocks enables engineering of desired physical properties using green production methods. Virus-like particles (VLPs) are exceptional building blocks due to their monodispersed sizes, geometric shapes, production ease, proteinaceous composition, and our ability to independently functionalize the interior and exterior interfaces. Here a VLP, derived from bacteriophage P22, is used as a building block for the fabrication of a protein macromolecular framework (PMF), a tightly linked 3D network of functional protein cages that exhibit long-range order and catalytic activity. Assembly of PMFs was electrostatically templated, using amine-terminated dendrimers, then locked into place with a ditopic cementing protein that binds to P22. Long-range order is preserved on removal of the dendrimer, leaving a framework material composed completely of protein. Encapsulation of β-glucosidase enzymes inside of P22 VLPs results in formation of stable, condensed-phase materials with high local concentration of enzymes generating catalytically active PMFs.
Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces
Sardella, Eloisa; Palumbo, Fabio; Camporeale, Giuseppe; Favia, Pietro
2016-01-01
Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides) or organic (drugs and biomolecules) compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors. PMID:28773637
Trace element analysis of soil type collected from the Manjung and central Perak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul
2015-04-29
Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. Themore » enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.« less
Design, Synthesis, and Antifouling Activity of Glucosamine-Based Isocyanides.
Umezawa, Taiki; Hasegawa, Yuki; Novita, Ira S; Suzuki, Junya; Morozumi, Tatsuya; Nogata, Yasuyuki; Yoshimura, Erina; Matsuda, Fuyuhiko
2017-06-29
Biofouling, an undesirable accumulation of organisms on sea-immersed structures such as ship hulls and fishing nets, is a serious economic issue whose effects include oil wastage and clogged nets. Organotin compounds were utilized since the 1960s as an antifouling material; however, the use of such compounds was later banned by the International Maritime Organization (IMO) due to their high toxicity toward marine organisms, resulting in masculinization and imposex. Since the ban, there have been extensive efforts to develop environmentally benign antifoulants. Natural antifouling products obtained from marine creatures have been the subject of considerable attention due to their potent antifouling activity and low toxicity. These antifouling compounds often contain isocyano groups, which are well known to have natural antifouling properties. On the basis of our previous total synthesis of natural isocyanoterpenoids, we envisaged the installation of an isocyano functional group onto glucosamine to produce an environmentally friendly antifouling material. This paper describes an effective synthetic method for various glucosamine-based isocyanides and evaluation of their antifouling activity and toxicity against cypris larvae of the barnacle Amphibalanus amphitrite . Glucosamine isocyanides with an ether functionality at the anomeric position exhibited potent antifouling activity, with EC 50 values below 1 μg/mL, without detectable toxicity even at a high concentration of 10 μg/mL. Two isocyanides had EC 50 values of 0.23 and 0.25 μg/mL, comparable to that of CuSO₄, which is used as a fouling inhibitor (EC 50 = 0.27 μg/mL).
Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires
Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.
1997-01-01
Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.
Characterization of sapphire: For its material properties at high temperatures
NASA Astrophysics Data System (ADS)
Bal, Harman Singh
There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.
Meteorite as raw material for Direct Metal Printing: A proof of concept study
NASA Astrophysics Data System (ADS)
Lietaert, Karel; Thijs, Lore; Neirinck, Bram; Lapauw, Thomas; Morrison, Brian; Lewicki, Chris; Van Vaerenbergh, Jonas
2018-02-01
Asteroid mining as such is not a new concept, as it has been described in science fiction for more than a century and some of its aspects have been studied by academia for more than 30 years. Recently, there is a renewed interest in this subject due the more and more concrete plans for long-duration space missions and the need for resources to support industrial activity in space. The use of locally available resources would greatly improve the economics and sustainability of such missions. Due to its economy in material, use of additive manufacturing (AM) provides an interesting route to valorize these resources for the production of spare parts, tools and large-scale structures optimized for their local microgravity environment. Proof of concept has already been provided for AM of moon regolith. In this paper the concept of In-Situ Resource Utilization is extended towards the production of metallic objects using powdered iron meteorite as raw material. The meteorite-based powder was used to produce a structural part but further research is needed to obtain a high density part without microcracks.
NASA Astrophysics Data System (ADS)
Gracia, Ismael; Ben Youcef, Hicham; Judez, Xabier; Oteo, Uxue; Zhang, Heng; Li, Chunmei; Rodriguez-Martinez, Lide M.; Armand, Michel
2018-06-01
Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g-1) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman
The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less
Cunningham, W. Streit; Gentile, Jonathan M.; El-Atwani, Osman; ...
2018-02-13
The unique ability of grain boundaries to act as effective sinks for radiation damage plays a significant role in nanocrystalline materials due to their large interfacial area per unit volume. Leveraging this mechanism in the design of tungsten as a plasma-facing material provides a potential pathway for enhancing its radiation tolerance under fusion-relevant conditions. In this study, we explore the impact of defect microstructures on the mechanical behavior of helium ion implanted nanocrystalline tungsten through nanoindentation. Softening was apparent across all implantation temperatures and attributed to bubble/cavity loaded grain boundaries suppressing the activation barrier for the onset of plasticity viamore » grain boundary mediated dislocation nucleation. An increase in fluence placed cavity induced grain boundary softening in competition with hardening from intragranular defect loop damage, thus signaling a new transition in the mechanical behavior of helium implanted nanocrystalline tungsten.« less
A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore.
Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong
2017-04-14
The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electrochemical performance with a maximum energy density of 86 W·h·kg -1 at 150 W·kg -1 , and 48 W·h·kg -1 at a high-power density of 7.4 kW·kg -1 . This high-performance LIC based on PVG and GPC is believed to be promising for practical applications, due to its low-cost raw materials and industrially feasible production.
A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore
Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong
2017-01-01
The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electrochemical performance with a maximum energy density of 86 W·h·kg−1 at 150 W·kg−1, and 48 W·h·kg−1 at a high-power density of 7.4 kW·kg−1. This high-performance LIC based on PVG and GPC is believed to be promising for practical applications, due to its low-cost raw materials and industrially feasible production. PMID:28772773
Nanocellulose-based composites and bioactive agents for food packaging.
Khan, Avik; Huq, Tanzina; Khan, Ruhul A; Riedl, Bernard; Lacroix, Monique
2014-01-01
Global environmental concern, regarding the use of petroleum-based packaging materials, is encouraging researchers and industries in the search for packaging materials from natural biopolymers. Bioactive packaging is gaining more and more interest not only due to its environment friendly nature but also due to its potential to improve food quality and safety during packaging. Some of the shortcomings of biopolymers, such as weak mechanical and barrier properties can be significantly enhanced by the use of nanomaterials such as nanocellulose (NC). The use of NC can extend the food shelf life and can also improve the food quality as they can serve as carriers of some active substances, such as antioxidants and antimicrobials. The NC fiber-based composites have great potential in the preparation of cheap, lightweight, and very strong nanocomposites for food packaging. This review highlights the potential use and application of NC fiber-based nanocomposites and also the incorporation of bioactive agents in food packaging.
Silicon solar cell process development, fabrication, and analysis
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Iles, P. A.; Leung, D. C.
1981-01-01
Work has progressed in fabrication and characterization of solar cells from ubiquitous crystallization process (UCP) wafers and LASS ribbons. Gettering tests applied to UCP wafers made little change on their performance compared with corresponding baseline data. Advanced processes such as shallow junction (SJ), back surface field (BSF), and multilayer antireflection (MLAR) were also applied. While BSF by Al paste had shunting problems, cells with SJ and BSF by evaporated Al, and MLAR did achieve 14.1% AMI on UCP silicon. The study of LASS material was very preliminary. Only a few cells with SJ, BSR, (no BSF) and MLAR were completed due to mechanical yield problems after lapping the material. Average efficiency was 10.7% AMI with 13.4% AMI for CZ controls. Relatively high minority carrier diffusion lengths were obtained. The lower than expected Jsc could be partially explained by low active area due to irregular sizes.
Mechanisms of deterioration of nutrients. [freeze drying methods for space flight food
NASA Technical Reports Server (NTRS)
Karel, M.; Flink, J. M.
1974-01-01
Methods are reported by which freeze dried foods of improved quality will be produced. The applicability of theories of flavor retention has been demonstrated for a number of food polymers, both proteins and polysacchardies. Studies on the formation of structures during freeze drying have been continued for emulsified systems. Deterioration of organoleptic quality of freeze dried foods due to high temperature heating has been evaluated and improved procedures developed. The influence of water activity and high temperature on retention of model flavor materials and browning deterioration has been evaluated for model systems and food materials.
NASA Astrophysics Data System (ADS)
Tripathy, Divya Bajpai; Mishra, Anuradha
Gemini surfactants are presently gaining attention due to their unusual self-assembling characteristics and incomparable interfacial activity. Current research work involves the cost-effective microwave (MW) synthesis of waste soybean oil-based gemini imidazolinium surfactants (GIS) having a carbonate linkage in its spacer moiety. Structural characterizations of the materials have been done using FT-IR, 1H-NMR and 13C-NMR. Using indigenous and natural material as base and MW as energy source for synthesizing the GIS with easily degradable chemical moiety make them to be labeled as green surfactants.
Surveyor V: Discussion of chemical analysis
Gault, D.E.; Adams, J.B.; Collins, R.J.; Green, J.; Kuiper, G.P.; Mazursky, H.; O'Keefe, J. A.; Phinney, R.A.; Shoemaker, E.M.
1967-01-01
Material of basaltic composition at the Surveyor V landing site implies that differentiation has occurred in the moon, probably due to internal sources of heat. The results are consistent with the hypothesis that extensive volcanic flows have been responsible for flooding and filling the mare basins. The processes and products of lunar magmatic activity are apparently similar to those of the earth.
Surveyor v: discussion of chemical analysis.
Gault, D E; Adams, J B; Collins, R J; Green, J; Kuiper, G P; Mazursky, H; O'keefe, J A; Phinney, R A; Shoemaker, E M
1967-11-03
Material of basaltic composition at the Surveyor V landing site implies that differentiation has occurred in the moon, probably due to internal sources of heat. The results are consistent with the hypothesis that extensive volcanic flows have been responsible for flooding and filling the mare basins. The processes and products of lunar magmatic activity are apparently similar to those of the earth.
Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei
2018-05-15
Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.
Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei
2018-01-01
Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528
A NEW APPROACH TO THE STUDY OF MUCOADHESIVENESS OF POLYMERIC MEMBRANES USING SILICONE DISCS.
Nowak, Karolina Maria; Szterk, Arkadiusz; Fiedor, Piotr; Bodek, Kazimiera Henryka
2016-01-01
The introduction of new test methods and the modification of existing ones are crucial for obtaining reliable results, which contributes to the development of innovative materials that may have clinical applications. Today, silicone is commonly used in medicine and the diversity of its applications are continually growing. The aim of this study is to evaluate the mucoadhesiveness of polymeric membranes by a method that modifies the existing test methods through the introduction of silicone discs. The matrices were designed for clinical application in the management of diseases within the oral cavity. The use of silicone discs allows reliable and reproducible results to be obtained, which allows us to make various tensometric measurements. In this study, different types of polymeric matrices were examined, as well as their crosslinking and the presence for the active pharmaceutical ingredient were compared to the pure dosage form. The lidocaine hydrochloride (Lid(HCl)) was used as a model active substance, due to its use in dentistry and clinical safety. The results were characterized by a high repeatability (RSD < 10.6%). The advantage of silicone material due to its mechanical strength, chemical and physical resistance, allowed a new test method using a texture analyzer to be proposed.
Detecting fission from special nuclear material sources
Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA
2012-06-05
A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boatner, Lynn A.; Comer, Eleanor P.; Wright, Gomez W.
Monovalent alkali halides such as NaI, CsI, and LiI are widely used as inorganic scintillators for radiation detection due to their light yield, the capability for the growth of large single crystals, relatively low cost, and other favorable characteristics. These materials are frequently activated through the addition of small amounts (e.g., a few hundred ppm) of elements such as thallium - or sodium in the case of CsI. The monovalent alkali halide scintillators can also be activated with low concentrations of Eu 2+, however Eu activation has previously not been widely employed due to the non-uniform segregation of the divalentmore » Eu dopant that leads to the formation of unwanted phases during Bridgman or other solidification crystal-growth methods. Specifically, for Eu concentrations near and above ~0.5%, Suzuki Phase precipitates form in the course of the melt-growth process, and these Suzuki Phase particles scatter the scintillation light. This adversely affects the scintillator performance via reduction in the optical transmission of the material, and depending on the crystal thickness and precipitated-particle concentration, this reduction can occur up to the point of opacity. Here we describe a post-growth process for the removal of Suzuki Phase precipitates from single crystals of the neutron scintillator LiI activated with Eu 2+ at concentrations up to and in excess of 3 wt.%, and we correlate the resulting neutron-detection performance with the thermal processing methods used to remove the Suzuki Phase particles. Furthermore, the resulting improved scintillator properties using increased Eu activator levels are applicable to neutron imaging and active interrogation systems, and pulse-height gamma-ray spectroscopy rather than pulse-shape discrimination can be used to discriminate between gamma ray and neutron interaction events.« less
NASA Technical Reports Server (NTRS)
Petro, N. E.
2012-01-01
The South Pole-Aitken Basin (SPA) is the largest, deepest, and oldest identified basin on the Moon and contains surfaces that are unique due to their age, composition, and depth of origin in the lunar crust [1-3] (Figure 1). SPA has been a target of interest as an area for robotic sample return in order to determine the age of the basin and the composition and origin of its interior [3-6]. As part of the investigation into the origin of SPA materials there have been several efforts to estimate the likely provenance of regolith material in central SPA [5, 6]. These model estimates suggest that, despite the formation of basins and craters following SPA, the regolith within SPA is dominated by locally derived material. An assumption inherent in these models has been that the locally derived material is primarily SPA impact-melt as opposed to local basement material (e.g. unmelted lower crust). However, the definitive identification of SPA derived impact melt on the basin floor, either by remote sensing [2, 7] or via photogeology [8] is extremely difficult due to the number of subsequent impacts and volcanic activity [3, 4]. In order to identify where SPA produced impact melt may be located, it is important to constrain both how much melt would have been produced in a basin forming impact and the likely source of such melted material. Models of crater and basin formation [9, 10] present clear rationale for estimating the possible volumes and sources of impact melt produced during SPA formation. However, if SPA formed as the result of an oblique impact [11, 12], the volume and depth of origin of melted material could be distinct from similar material in a vertical impact [13].
Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale
NASA Astrophysics Data System (ADS)
Cui, Yinan; Po, Giacomo; Ghoniem, Nasr
2018-05-01
Three-dimensional discrete dislocation dynamics (3D-DDD) simulations reveal that, with reduction of sample size in the submicron regime, the mechanism of plastic flow localization in irradiated materials transitions from irradiation-controlled to an intrinsic dislocation source controlled. Furthermore, the spatial correlation of plastic deformation decreases due to weaker dislocation interactions and less frequent cross slip as the system size decreases, thus manifesting itself in thinner dislocation channels. A simple model of discrete dislocation source activation coupled with cross slip channel widening is developed to reproduce and physically explain this transition. In order to quantify the phenomenon of plastic flow localization, we introduce a "deformation localization index," with implications to the design of radiation-resistant materials.
[Types of microbial contaminants in pharmaceutical raw materials].
Martínez-Bermúdez, A; Rodríguez-de Lecea, J; Soto-Esteras, T; Vázquez-Estévez, C; Chena-Cañete, C
1991-01-01
In order to analyze the significance of the microbial content of pharmaceutical raw materials contributed to the finished pharmaceutical products, we have carried out a study of contamination taking into account aerobic bacteria, anaerobic bacteria and fungi. None or only low numbers of pathogenic microorganisms was found in most analyzed products but in some materials, specially those of natural origin, we have detected high bacterial and fungal contamination. Microorganisms of the genus Bacillus have been the aerobic bacteria most frequently isolated; Bifidobacterium and Clostridium were the most common anaerobic bacteria and with respect to the fungi, Penicillium and Aspergillus have been found with the highest frequency. These microorganisms can produce problems in pharmaceutical finished products, due to their enzymatic or toxigenic activities.
Telalović, Selvedin; Ramanathan, Anand; Ng, Jeck Fei; Maheswari, Rajamanickam; Kwakernaak, Cees; Soulimani, Fouad; Brouwer, Hans C; Chuah, Gaik Khuan; Weckhuysen, Bert M; Hanefeld, Ulf
2011-01-01
Bimetallic three-dimensional amorphous mesoporous materials, Al-Zr-TUD-1 materials, were synthesised by using a surfactant-free, one-pot procedure employing triethanolamine (TEA) as a complexing reagent. The amount of aluminium and zirconium was varied in order to study the effect of these metals on the Brønsted and Lewis acidity, as well as on the resulting catalytic activity of the material. The materials were characterised by various techniques, including elemental analysis, X-ray diffraction, high-resolution TEM, N2 physisorption, temperature-programmed desorption (TPD) of NH3, and 27Al MAS NMR, XPS and FT-IR spectroscopy using pyridine and CO as probe molecules. Al-Zr-TUD-1 materials are mesoporous with surface areas ranging from 700–900 m2 g−1, an average pore size of around 4 nm and a pore volume of around 0.70 cm3 g−1. The synthesised Al-Zr-TUD-1 materials were tested as catalyst materials in the Lewis acid catalysed Meerwein–Ponndorf–Verley reduction of 4-tert-butylcyclohexanone, the intermolecular Prins synthesis of nopol and in the intramolecular Prins cyclisation of citronellal. Although Al-Zr-TUD-1 catalysts possess a lower amount of acid sites than their monometallic counterparts, according to TPD of NH3, these materials outperformed those of the monometallic Al-TUD-1 as well as Zr-TUD-1 in the Prins cyclisation of citronellal. This proves the existence of synergistic properties of Al-Zr-TUD-1. Due to the intramolecular nature of the Prins cyclisation of citronellal, the hydrophilic surface of the catalyst as well as the presence of both Brønsted and Lewis acid sites synergy could be obtained with bimetallic Al-Zr-TUD-1. Besides spectroscopic investigation of the active sites of the catalyst material a thorough testing of the catalyst in different types of reactions is crucial in identifying its specific active sites. PMID:21259348
Analysis of singular interface stresses in dissimilar material joints for plasma facing components
NASA Astrophysics Data System (ADS)
You, J. H.; Bolt, H.
2001-10-01
Duplex joint structures are typical material combinations for the actively cooled plasma facing components of fusion devices. The structural integrity under the incident heat loads from the plasma is one of the most crucial issues in the technology of these components. The most critical domain in a duplex joint component is the free surface edge of the bond interface between heterogeneous materials. This is due to the fact that the thermal stress usually shows a singular intensification in this region. If the plasma facing armour tile consists of a brittle material, the existence of the stress singularity can be a direct cause of failure. The present work introduces a comprehensive analytical tool to estimate the impact of the stress singularity for duplex PFC design and quantifies the relative stress intensification in various materials joints by use of a model formulated by Munz and Yang. Several candidate material combinations of plasma facing armour and metallic heat sink are analysed and the results are compared with each other.
Kim, Ju-Young; Shim, Sun-Bo; Shim, Jin-Kie
2003-03-17
Micelle-like amphiphilic nano-sized polyurethane (APU) nanoparticles were synthesized via chemical cross-linking reaction of nano-aggregates of urethane acrylate nonionomer (UAN) chain and were tested for extraction efficiency of sorbed phenanthrene from aquifer material. Even though the solubilizing performance and interfacial activity of APU nanoparticles were inferior to that of Triton X-100, in the low concentration region, APU nanoparticles could effectively reduce phenanthrene sorption on the aquifer material and extracted sorbed phenanthrene from the aquifer material, whereas Triton X-100 could not extract sorbed phenanthrene and rather increased phenanthrene sorption onto the aquifer materials. At higher concentrations, APU nanoparticles and Triton X-100 had almost the same soil washing effectiveness. This interesting result is mainly due to a lower degree of sorption of APU nanoparticles onto the aquifer material. The sorption of APU nanoparticles onto aquifer sand is largely hindered by their chemically cross-linked nature, resulting in better soil-washing performance of APU nanoparticles than Triton X-100. Copyright 2003 Elsevier Science B.V.
A closed loop process for recycling spent lithium ion batteries
NASA Astrophysics Data System (ADS)
Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan
2014-09-01
As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.
Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.
Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng
2015-09-23
Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure Effects of 2D Materials on α-Nickel Hydroxide for Oxygen Evolution Reaction.
Luan, Chenglong; Liu, Guangli; Liu, Yujie; Yu, Lei; Wang, Yao; Xiao, Yun; Qiao, Hongyan; Dai, Xiaoping; Zhang, Xin
2018-04-24
To engineer low-cost, high-efficiency, and stable oxygen evolution reaction (OER) catalysts, structure effects should be primarily understood. Focusing on this, we systematically investigated the relationship between structures of materials and their OER performances by taking four 2D α-Ni(OH) 2 as model materials, including layer-stacked bud-like Ni(OH) 2 -NB, flower-like Ni(OH) 2 -NF, and petal-like Ni(OH) 2 -NP as well as the ultralarge sheet-like Ni(OH) 2 -NS. For the first three (layer-stacking) catalysts, with the decrease of stacked layers, their accessible surface areas, abilities to adsorb OH - , diffusion properties, and the intrinsic activities of active sites increase, which accounts for their steadily enhanced activity. As expected, Ni(OH) 2 -NP shows the lowest overpotential (260 mV at 10 mA cm -2 ) and Tafel slope (78.6 mV dec -1 ) with a robust stability over 10 h among the samples, which also outperforms the benchmark IrO 2 (360 mV and 115.8 mV dec -1 ) catalyst. Interestingly, Ni(OH) 2 -NS relative to Ni(OH) 2 -NP exhibits even faster substance diffusion due to the sheet-like structure, but shows inferior OER activity, which is mainly because the Ni(OH) 2 -NP with a smaller size possesses more active boundary sites (higher reactivity of active sites) than Ni(OH) 2 -NS, considering the adsorption properties and accessible surface areas of the two samples are quite similar. By comparing the different structures and their OER behaviors of four α-Ni(OH) 2 samples, our work may shed some light on the structure effect of 2D materials and accelerate the development of efficient OER catalysts.
Neurotrophic factor - Characterization and partial purification
NASA Technical Reports Server (NTRS)
Popiela, H.; Ellis, S.
1981-01-01
Recent evidence suggests that neurotrophic activity is required for the normal proliferation and development of muscle cells. The present paper reports a study of the purification and characterization of a neurotrophic factor (NTF) from adult chicken ischiatic-peroneal nerves using two independent quantitative in vitro assay systems. The assays were performed by the measurement of the incorporation of tritiated thymidine or the sizes of single-cell clones by chick muscle cells grown in culture. The greatest amount of neutrotrophic activity is found to be extracted at a pH of 8; aqueous suspensions of the activity are stable to long-term storage at room temperature. The specific activity of the substance is doubled upon precipitation with ammonium sulfate or after gel filtration, and increase 4 to 5 fold after salt gradient elution from DEAE cellulose columns. The active fraction obtained after gel filtration and rechromatography on DEAE cellulose exhibits a 7 to 10-fold increase in specific activity. Electrophoresis of the most highly purified material yields a greatly concentrated band at around 80,000 daltons. Although NTF is purified almost 10-fold as indicated by the increase in specific activity, the maximum activity of the partially purified material is greatly reduced, possibly due to a requirement for a cofactor for the expression of maximum activity.
Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping
2016-01-01
Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfidemore » shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).« less
Synthesis, properties and applications of 2D non-graphene materials.
Wang, Feng; Wang, Zhenxing; Wang, Qisheng; Wang, Fengmei; Yin, Lei; Xu, Kai; Huang, Yun; He, Jun
2015-07-24
As an emerging class of new materials, two-dimensional (2D) non-graphene materials, including layered and non-layered, and their heterostructures are currently attracting increasing interest due to their promising applications in electronics, optoelectronics and clean energy. In contrast to traditional semiconductors, such as Si, Ge and III-V group materials, 2D materials show significant merits of ultrathin thickness, very high surface-to-volume ratio, and high compatibility with flexible devices. Owing to these unique properties, while scaling down to ultrathin thickness, devices based on these materials as well as artificially synthetic heterostructures exhibit novel and surprising functions and performances. In this review, we aim to provide a summary on the state-of-the-art research activities on 2D non-graphene materials. The scope of the review will cover the preparation of layered and non-layered 2D materials, construction of 2D vertical van der Waals and lateral ultrathin heterostructures, and especially focus on the applications in electronics, optoelectronics and clean energy. Moreover, the review is concluded with some perspectives on the future developments in this field.
Material Supply and Magnetic Configuration of an Active Region Filament
NASA Astrophysics Data System (ADS)
Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q.; Cao, Wenda
2016-11-01
It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s-1. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s-1 in the Hα red-wing filtergrams and 9-25 km s-1 in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.
Energy Release from Impacting Prominence Material Following the 2011 June 7 Eruption
NASA Technical Reports Server (NTRS)
Gilbert, H. R.; Inglis, A. R.; Mays, M. L.; Ofman, L.; Thompson, B. J.; Young, C. A.
2013-01-01
Solar filaments exhibit a range of eruptive-like dynamic activity, ranging from the full or partial eruption of the filament mass and surrounding magnetic structure as a coronal mass ejection to a fully confined or failed eruption. On 2011 June 7, a dramatic partial eruption of a filament was observed by multiple instruments on board the Solar Dynamics Observatory (SDO) and Solar-Terrestrial Relations Observatory. One of the interesting aspects of this event is the response of the solar atmosphere as non-escaping material falls inward under the influence of gravity. The impact sites show clear evidence of brightening in the observed extreme ultraviolet wavelengths due to energy release. Two plausible physical mechanisms for explaining the brightening are considered: heating of the plasma due to the kinetic energy of impacting material compressing the plasma, or reconnection between the magnetic field of low-lying loops and the field carried by the impacting material. By analyzing the emission of the brightenings in several SDO/Atmospheric Imaging Assembly wavelengths, and comparing the kinetic energy of the impacting material (7.6 × 10(exp 26) - 5.8 × 10(exp 27) erg) to the radiative energy (approx. 1.9 × 10(exp 25) - 2.5 × 10(exp 26) erg), we find the dominant mechanism of energy release involved in the observed brightening is plasma compression.
Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2003-01-01
Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.
Mesoporous activated carbon from corn stalk core for lithium ion batteries
NASA Astrophysics Data System (ADS)
Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce
2018-04-01
A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.
Modeling and control of active twist aircraft
NASA Astrophysics Data System (ADS)
Cramer, Nicholas Bryan
The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.
Xiao, Xuan; Xu, Lijia; Hu, Huagang; Yang, Yinjun; Zhang, Xinyao; Peng, Yong; Xiao, Peigen
2017-10-13
Hawk tea ( Litsea coreana Lévl. var. Lanuginosa (Migo) Yen C. Yang & P.H. Huang), a very popular herbal tea material, has attracted more and more attention due to its high antioxidant properties and possible therapeutic effect on type II diabetes mellitus. The raw materials of Hawk tea are usually divided into three kinds: bud tea (BT), primary leaf tea (PLT) and mature leaf tea (MLT). In this study, the DPPH radical scavenging activity and the antimicrobial properties of these three kinds of Hawk tea from different regions were comparatively investigated, and a ultra-high performance liquid chromatographic coupled with a photodiode array detector (UPLC-DAD) method was employed for comparison of the three major flavonoid constituents, including hyperoside, isoquercitrin and astragalin, in different samples of Hawk tea. At the same time, the effect of methanol extract (ME) of PLT on the mouse postprandial blood glucose and the effect of ME and its different fractions (petroleum ether fraction (PE), ethyl acetate fraction (EA), n -butanol fraction ( n -BuOH), and water fraction (WF)) on the activity of α-glucosidase were studied. The results showed that Hawk BT and Hawk PLT possessed the higher radicals scavenging activity than Hawk MLT, while the antibacterial activity against P. vulgaris of PLT and MLT was higher than Hawk BT. The contents of the three major flavonoid constituents in samples of Hawk PLT are higher than Hawk BT and Hawk MLT. The mouse postprandial blood glucose levels of the middle dose (0.5 g/kg) group and the high dose (1 g/kg) group with oral administration of the ME of PLT were significantly lower than the control group. What's more, the inhibitory effect of ME of PLT and its EA and n -BuOH fractions on α-glucosidase was significantly higher than that of acarbose. Rapid ultra-high performance liquid chromatography/quadrupole time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS) was used to identify the flavonoids in Hawk PLT, and a total of 20 flavonoids were identified or tentatively identified by comparing their retention times and accurate mass measurements with reference compounds or literature data. The bioactive flavonoid composition and DPPH radical scavenging activities present in different Hawk tea raw materials are quite different due to the different ontogenesis of these raw materials. Further studies on PLT showed that the substances in PLT ME could reduce the level of mouse postprandial blood glucose through inhibiting the activity of α-glucosidase.
Stefano, G B; Digenis, A; Spector, S; Leung, M K; Bilfinger, T V; Makman, M H; Scharrer, B; Abumrad, N N
1993-01-01
The presence of morphine-like and codeine-like substances was demonstrated in the pedal ganglia, hemolymph, and mantle tissues of the mollusc Mytilus edulis. The pharmacological activities of the endogenous morphine-like material resemble those of authentic morphine. Both substances were found to counteract, in a dose-dependent manner, the stimulatory effect of tumor necrosis factor alpha or interleukin 1 alpha on human monocytes and Mytilus immunocytes, when added simultaneously to the incubation medium. The immunosuppressive effect of this opiate material expresses itself in a lowering of chemotactic activity, cellular velocity, and adherence. Codeine mimics the activity of authentic morphine, but only at much higher concentrations. Specific high-affinity receptor sites (mu 3) for morphine have been identified on human monocytes and Mytilus immunocytes. In Mytilus recovering from experimentally induced stress, the return of "altered" immunocytes to a more inactive state appears to be due to a significant rise in the content of morphine-like material in the pedal ganglia and hemolymph at this time. Thus, morphine may have a role in calming or terminating the state of immune alertness. PMID:8248214
Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue
NASA Astrophysics Data System (ADS)
Trujillo, Blaine; Zagrai, Andrei
2016-04-01
Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.
Cao, Lan; Chang, Mark; Lee, Chi-Ying; Castner, David G; Sukavaneshvar, Sivaprasad; Ratner, Buddy D; Horbett, Thomas A
2007-06-15
The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions. (c) 2007 Wiley Periodicals, Inc.
Rice Husk Silica-Derived Nanomaterials for Battery Applications: A Literature Review.
Shen, Yafei
2017-02-08
Silica-rich rice husk (RH) is an abundant and sustainable agricultural waste. The recovery of value-added products from RH or its ash to explore an economic way for the valorization of agricultural wastes has attracted wide attention. For instance, RH can be converted to biofuels and biochars simultaneously via thermochemical processes. In general, the applications of RH biochars include soil remediation, pollutant removal, silicon battery materials, and so forth. This review concludes recent progress in the synthesis of RH-derived silicon materials for lithium-ion battery (LIB) applications. Silica nanomaterials produced from RH are initially discussed. RH amorphous silica can also be fabricated to crystal silicon used for battery materials via widely used magnesiothermic reduction. However, the RH-derived Si nanoparticles suffer from a low Coulombic efficiency in the initial charge/discharge and limited cycle life as anode materials due to high surface reactions and low thermodynamic stability. The synthesis of Si materials with nano/microhierarchical structure would be an ideal way to improve their electrochemical performances. Embedding nano-Si into 3D conductive matrix is an effective way to improve the structural stability. Among the Si/carbon composite materials, carbon nanotubdes (CNTs) are a promising matrix due to the wired morphology, high electronic conductivity, and robust structure. Additionally, CNTs can easily form 3D cross-linked conducting networks, ensuring effective electron transportation among active particles. Si nanomaterials with microhierarchical structures in which CNTs are tightly intertwined between the RH-derived Si nanoparticles have been proven to be ideal LIB anode materials.
Antioxidant and antimicrobial activities of cinnamic acid derivatives.
Sova, M
2012-07-01
Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed.
In vivo bioresponses to silk proteins.
Thurber, Amy E; Omenetto, Fiorenzo G; Kaplan, David L
2015-12-01
Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body in vivo. This review summarizes our current understanding of the in vivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of in vivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials including proteins, synthetic polymers, and ceramics to enhance its characteristics for a particular function. Overall, the diverse array of silk materials shows excellent bioresponses in vivo with low immunogenicity and the ability to be remodeled and replaced by native tissue making it suitable for numerous clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Crack detection and leakage monitoring on reinforced concrete pipe
NASA Astrophysics Data System (ADS)
Feng, Qian; Kong, Qingzhao; Huo, Linsheng; Song, Gangbing
2015-11-01
Reinforced concrete underground pipelines are some of the most widely used types of structures in water transportation systems. Cracks and leakage are the leading causes of pipeline structural failures which directly results in economic losses and environmental hazards. In this paper, the authors propose a piezoceramic based active sensing approach to detect the cracks and the further leakage of concrete pipelines. Due to the piezoelectric properties, piezoceramic material can be utilized as both the actuator and the sensor in the active sensing approach. The piezoceramic patch, which is sandwiched between protective materials called ‘smart aggregates,’ can be safely embedded into concrete structures. Circumferential and axial cracks were investigated. A wavelet packet-based energy analysis was developed to distinguish the type of crack and determine the further leakage based on different stress wave energy attenuation propagated through the cracks.
Brunson, Laura R; Sabatini, David A
2014-08-01
The fluoride removal capacities of three materials, bone char (BC), aluminum oxide coated bone char (ACBC) and aluminum oxide impregnated wood char (AIWC), along with activated alumina (AA) as a baseline material, were investigated in batch and column studies, including comparison between synthetic and natural groundwater. Results suggest that in all cases the laboratory column results exhibited higher fluoride removal efficiency than the field studies conducted in the Ethiopian Rift Valley. Further studies indicate that the reduced effectiveness in the field was likely due to a combination of the high pH of groundwater (8.2) and the presence of competing ions (sulfate). Batch studies testing potential competition from natural organic material (NOM) showed no statistical evidence of NOM competition with BC and minor evidence of competition with ACBC and AIWC. To provide evidence for using Rapid Scale Small Column Test (RSSCT) principles for BC two different column volume and particle sizes were used. The results indicate that RSSCT scaling equations, developed for activated carbon, are applicable for BC removal of fluoride. These results thus provide valuable insights for translating laboratory results of novel sorbents for mitigating fluoride tainted groundwater in the field. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.
2018-03-01
The present report deals with the synthesis, characterization and testing of an ethyl cellulose-calcium(II) hydrogen phosphate (EC-CaHPO4) composite, where a sol-gel synthesis method was applied for the preparation of the composite so as to test its efficacy towards the electrochemical, biological, and adsorption related applications. The physical properties of the composite were characterized by using scanning electron microscopy (SEM), ultraviolet- visible (UV-Vis) spectroscopy, and fourier transform-infrared (FTIR) spectroscopy. On testing, the mechanical properties indicated that the composite is highly stable due to the cross-linked rigid framework and the enhanced interactions offered by the EC polymer supported for its binding very effectively. In addition, the conductivity of EC-CaHPO4 is completely governed by the transport mechanism where the electrolyte concentration has preference towards the adsorption of ions and the variations in the conductivity significantly affected the material's performance. We observed an increasing order of KCl > NaCl for the conductivity when 1:1 electrolytes were applied. Further, the material was tested for its usefulness towards the purification of industrial waste waters by removing harmful metal ions from the samples collected near the Aligarh city, India where the data indicates that the material has highest affinity towards Pb2+, Cu2+, Ni2+ and Fe3+ metal ions. Finally, the biological efficiency of the material was confirmed by means of testing the antibacterial activity against two gram positive (staphylococcus aureus and Bacillus thuringiensis) and two gram negative bacteriums (Pseudomonas aeruginosa and Patoea dispersa). Thus, from the cumulative study of outcomes, it indicates that the EC-CaHPO4 composite found to serve as a potential smart biomaterial due to its efficiency in many different applications that includes the electrical conductivity, adsorption capability, and antimicrobial activity.
Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy
NASA Astrophysics Data System (ADS)
Yuan, Han; Chapelle, Frédéric; Fauroux, Jean-Christophe; Balandraud, Xavier
2018-05-01
In line with the recent development of soft actuators involving shape-memory alloys (SMAs) embedded in compliant structures, this paper proposes a concept for a rotary actuator driven by a SMA wire placed inside a 3D-printed helical structure. The concept consists of using the one-way memory effect of the SMA (activated by Joule heating) to create the rotation of a material point of the structure, while the inverse rotation is obtained during the return to ambient temperature thanks to the structure’s elasticity. The study was performed in three steps. First, a prototype was designed from a chain of design rules, and tested to validate the feasibility of the concept. Thermal and geometrical measurements were performed using infrared and visible-range stereo cameras. A clockwise rotation (250°) followed by an anti-clockwise rotation (‑200°) were obtained, enabling us to validate the concept despite the partial reversibility of the movement. Second, finite element simulations were performed to improve rotation reversibility. The high compliance of the mechanical system required a framework of large displacements for the calculations (in the strength of materials sense), due to the high structural flexibility. Finally, a second prototype was constructed and tested. Attention was paid to the rotation (fully reversible rotation of 150° reached) as well as to parasitic movements due to overall structural deformation. This study opens new prospects for the design and analysis of 3D-printed soft actuators activated by smart materials.
Tu, Zhiming; Yang, Gongzheng; Song, Huawei; Wang, Chengxin
2017-01-11
Due to its high theoretical capacity (978 mA h g -1 ), natural abundance, environmental friendliness, and low cost, zinc oxide is regarded as one of the most promising anode materials for lithium-ion batteries (LIBs). A lot of research has been done in the past few years on this topic. However, hardly any research on amorphous ZnO for LIB anodes has been reported despite the fact that the amorphous type could have superior electrochemical performance due to its isotropic nature, abundant active sites, better buffer effect, and different electrochemical reaction details. In this work, we develop a simple route to prepare an amorphous ZnO quantum dot (QDs)/mesoporous carbon bubble composite. The composite consists of two parts: mesoporous carbon bubbles as a flexible skeleton and monodisperse amorphous zinc oxide QDs (smaller than 3 nm) encapsulated in an amorphous carbon matrix as a continuous coating tightly anchored on the surface of mesoporous carbon bubbles. With the benefits of abundant active sites, amorphous nature, high specific surface area, buffer effect, hierarchical pores, stable interconnected conductive network, and multidimensional electron transport pathways, the amorphous ZnO QD/mesoporous carbon bubble composite delivers a high reversible capacity of nearly 930 mA h g -1 (at current density of 100 mA g -1 ) with almost 90% retention for 85 cycles and possesses a good rate performance. This work opens the possibility to fabricate high-performance electrode materials for LIBs, especially for amorphous metal oxide-based materials.
Potency of Fish Collagen as a Scaffold for Regenerative Medicine
Yamamoto, Kohei; Yanagiguchi, Kajiro
2014-01-01
Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD) motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine. PMID:24982861
Wang, Yaqun; Ding, Yu; Pan, Lijia; Shi, Ye; Yue, Zhuanghao; Shi, Yi; Yu, Guihua
2016-05-11
Organic electroactive materials represent a new generation of sustainable energy storage technology due to their unique features including environmental benignity, material sustainability, and highly tailorable properties. Here a carbonyl-based organic salt Na2C6O6, sodium rhodizonate (SR) dibasic, is systematically investigated for high-performance sodium-ion batteries. A combination of structural control, electrochemical analysis, and computational simulation show that rational morphological control can lead to significantly improved sodium storage performance. A facile antisolvent method was developed to synthesize microbulk, microrod, and nanorod structured SRs, which exhibit strong size-dependent sodium ion storage properties. The SR nanorod exhibited the best performance to deliver a reversible capacity of ∼190 mA h g(-1) at 0.1 C with over 90% retention after 100 cycles. At a high rate of 10 C, 50% of the capacity can be obtained due to enhanced reaction kinetics, and such high electrochemical activity maintains even at 80 °C. These results demonstrate a generic design route toward high-performance organic-based electrode materials for beyond Li-ion batteries. Using such a biomass-derived organic electrode material enables access to sustainable energy storage devices with low cost, high electrochemical performance and thermal stability.
Analysis of the Effect of Module Thickness Reduction on Thermoelectric Generator Output
NASA Astrophysics Data System (ADS)
Brito, F. P.; Figueiredo, L.; Rocha, L. A.; Cruz, A. P.; Goncalves, L. M.; Martins, J.; Hall, M. J.
2016-03-01
Conventional thermoelectric generators (TEGs) used in applications such as exhaust heat recovery are typically limited in terms of power density due to their low efficiency. Additionally, they are generally costly due to the bulk use of rare-earth elements such as tellurium. If less material could be used for the same output, then the power density and the overall cost per kilowatt (kW) of electricity produced could drop significantly, making TEGs a more attractive solution for energy harvesting of waste heat. The present work assesses the effect of reducing the amount of thermoelectric (TE) material used (namely by reducing the module thickness) on the electrical output of conventional bismuth telluride TEGs. Commercial simulation packages (ANSYS CFX and thermal-electric) and bespoke models were used to simulate the TEGs at various degrees of detail. Effects such as variation of the thermal and electrical contact resistance and the component thickness and the effect of using an element supporting matrix (e.g., eggcrate) instead of having air conduction in void areas have been assessed. It was found that indeed it is possible to reduce the use of bulk TE material while retaining power output levels equivalent to thicker modules. However, effects such as thermal contact resistance were found to become increasingly important as the active TE material thickness was decreased.
Novel sorbent materials for environmental remediation via Pyrolysis of biomass
NASA Astrophysics Data System (ADS)
Zabaniotou, Anastasia
2013-04-01
One of the major challenges facing society at this moment is the transition from a non-sustainable, fossil resources-based economy to a sustainable bio-based economy. By producing multiple products, a biorefinery can take advantage of the differences in biomass components and intermediates and maximize the value derived from the biomass feedstock. The high-value products enhance profitability, the high-volume fuel helps meet national energy needs, and the power production reduces costs and avoids greenhouse-gas emissions From pyrolysis, besides gas and liquid products a solid product - char, is derived as well. This char contains the non converted carbon and can be used for activated carbon production and/or as additive in composite material production. Commercially available activated carbons are still considered expensive due to the use of non-renewable and relatively expensive starting material such as coal. The present study describes pyrolysis as a method to produce high added value carbon materials such as activated carbons (AC) from agricultural residues pyrolysis. Olive kernel has been investigated as the precursor of the above materials. The produced activated carbon was characterized by proximate and ultimate analyses, BET method and porosity estimation. Furthermore, its adsorption of pesticide compound in aqueous solution by was studied. Pyrolysis of olive kernel was conducted at 800 oC for 45min in a fixed reactor. For the production of the activated carbon the pyrolytic char was physically activated under steam in the presence of CO2 at 970oC for 3 h in a bench scale reactor. The active carbons obtained from both scales were characterized by N2 adsorption at 77 K, methyl-blue adsorption (MB adsorption) at room temperature and SEM analysis. Surface area and MB adsorption were found to increase with the degree of burn-off. The surface area of the activated carbons was found to increase up to 1500 m2/g at a burn-off level of 60-65wt.%, while SEM analysis showed the appearance of micropores to mesopores in the produced tire active carbons. Activated carbon prepared from olive kernel is a super active carbon and used as an adsorbent for the removal of pesticide from aqueous solutions (Bromopropylate). The higher removal achieved was 100% in 60 min. The produced activated carbon from agricultural residue was proved to be very effective for gas and water stream purification. Biomass can give a wide spectrum of fuels and materials in the integrated concept of biorefinery
Organic mixed conductors for bioelectronic applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Rivnay, Jonathan
2016-09-01
Direct measurement and stimulation of electrophysiological activity is a staple of neural and cardiac health monitoring, diagnosis and/or therapy. The ability to sensitively detect these signals can be enhanced by organic electronic materials that show mixed conduction properties (both electronic and ionic transport) in order to bridge the inherent mismatch that is prevalent between biological systems and traditional microelectronic materials/devices. Organic electrochemical transistors (OECTs) are one class of devices that utilize organic mixed conductors as the transistor channel, and have shown considerable promise as amplifying transducers due to their stability in aqueous conditions and high transconductance. These devices are fabricated in flexible, conformable form factors for in vivo recordings of epileptic activity, and for cutaneous EEG and ECG recordings in human subjects. The majority of high performance devices are based on conducting polymers such as poly(3,4-ethylenedioxythiophene) :poly(styrenesulfonate), PEDOT:PSS. By investigating PEDOT-based materials and devices, we are able to construct design rules for new formulations/materials. Introducing glycolated side chains to carefully selected semiconducting polymer backbones has enabled a new class high performance bioelectronic materials that feature high volumetric capacitance, transconductance >10mS (device dimensions ca. 10um), and steep subthreshold switching characteristics. A sub-set of these materials outperform PEDOT:PSS and shows significant promise for low power in vitro and in vivo biosensing applications.
Parnell, Charlette M; Chhetri, Bijay; Brandt, Andrew; Watanabe, Fumiya; Nima, Zeid A; Mudalige, Thilak K; Biris, Alexandru S; Ghosh, Anindya
2016-08-16
Platinum electrodes are commonly used electrocatalysts for oxygen reduction reactions (ORR) in fuel cells. However, this material is not economical due to its high cost and scarcity. We prepared an Mn(III) catalyst supported on graphene and further coated with polydopamine, resulting in superior ORR activity compared to the uncoated PDA structures. During ORR, a peak potential at 0.433 V was recorded, which is a significant shift compared to the uncoated material's -0.303 V (both versus SHE). All the materials reduced oxygen in a wide pH range via a four-electron pathway. Rotating disk electrode and rotating ring disk electrode studies of the polydopamine-coated material revealed ORR occurring via 4.14 and 4.00 electrons, respectively. A rate constant of 6.33 × 10(6) mol(-1)s(-1) was observed for the polydopamine-coated material-over 4.5 times greater than the uncoated nanocomposite and superior to those reported for similar carbon-supported metal catalysts. Simply integrating an inexpensive bioinspired polymer coating onto the Mn-graphene nanocomposite increased ORR performance significantly, with a peak potential shift of over +730 mV. This indicates that the material can reduce oxygen at a higher rate but with lower energy usage, revealing its excellent potential as an ORR electrocatalyst in fuel cells.
Yuan, Bo; Yin, Xiao-Qian; Liu, Xiao-Qin; Li, Xing-Yang; Sun, Lin-Bing
2016-06-29
Much attention has been paid to metal-organic frameworks (MOFs) due to their large surface areas, tunable functionality, and diverse structure. Nevertheless, most reported MOFs show poor hydrothermal stability, which seriously hinders their applications. Here a strategy is adopted to tailor the properties of MOFs by means of incorporating carboxyl-functionalized natural clay attapulgite (ATP) into HKUST-1, a well-known MOF. A new type of hybrid material was thus fabricated from the hybridization of HKUST-1 and ATP. Our results indicated that the hydrothermal stability of the MOFs as well as the catalytic performance was apparently improved. The frameworks of HKUST-1 were severely destroyed after hydrothermal treatment (hot water vapor, 60 °C), while that of the hybrid materials was maintained. For the hybrid materials containing 8.4 wt % of ATP, the surface area reached 1302 m(2)·g(-1) and was even higher than that of pristine HKUST-1 (1245 m(2)·g(-1)). In the ring-opening of styrene oxide, the conversion reached 98.9% at only 20 min under catalysis from the hybrid material, which was obviously higher than that over pristine HKUST-1 (80.9%). Moreover, the hybrid materials showed excellent reusability and the catalytic activity was recoverable without loss after six cycles. Our materials provide promising candidates for heterogeneous catalysis owing to the good catalytic activity and reusability.
Cellulose Electro-Active Paper: From Discovery to Technology Applications
NASA Astrophysics Data System (ADS)
Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan; Kim, Joo-Hyung
2014-09-01
Cellulose electro-active paper (EAPap) is an attractive material of electro-active polymers (EAPs) family due to its smart characteristics. EAPap is thin cellulose film coated with metal electrodes on both sides. Its large displacement output, low actuation voltage and low power consumption can be used for biomimetic sensors/actuators and electromechanical system. Because cellulose EAPap is ultra-lightweight, easy to manufacture, inexpensive, biocompatible, and biodegradable, it has been employed for many applications such as bending actuator, vibration sensor, artificial muscle, flexible speaker, and can be advantageous in areas such as micro-insect robots, micro-flying objects, microelectromechanical systems, biosensors, and flexible displays.
Use of Ultrasound in Reconditioning by Welding of Tools Used in the Process of Regenerating Rubber
Dobrotă, Dan; Petrescu, Valentin
2018-01-01
Addressing the problem of reconditioning large parts is of particular importance, due to their value and to the fact that the technologies for their reconditioning are very complex. The tools used to refine regenerated rubber which measure 660 mm in diameter and 2130 mm in length suffer from a rather fast dimensional wear. Within this research, the authors looked for a welding reconditioning procedure that would allow a very good adhesion between the deposited material layer and the base material. In this regard, the MAG (Metal Active Gas) welding process was used, but the ultrasonic activation of the welding process was also considered. Thus, the wire used for welding was activated considering a variation of the frequency of ultrasounds in the range f = 18–22 kHz respectively of the oscillation amplitude A = 30–60 μm. Under these conditions it was found that the presence of ultrasonic waves during the welding cladding process results in uniform deposition of hard carbons at the grain boundary and in the elimination of any existing oxides on the deposition surface, but at the same time increases the adhesion between the base material and the additional material, all of which positively influence the wear and corrosion resistance of the tools used to refine the regenerated rubber. PMID:29439400
Compact, high power, energy efficient transmit systems for UUVs using single crystal transducers
NASA Astrophysics Data System (ADS)
Robinson, Harold
2004-05-01
UUVs are currently being designed to perform a multiplitude of tasks in ocean exploration and Naval warfighting. Many of these tasks require the use of active acoustic projectors, and many may require the UUV to operate independently for hours, days, or even weeks. In order for a UUV to be as versatile as possible, its active transmit system must be versatile as well, implying that broad acoustic bandwidths are a must. However, due to size and battery life limitations, this broadband system must also be compact and energy efficient. By virtue of their extraordinary material properties, ferroelectric single crystals are the ideal transduction material for developing such broadband systems. The effect of their high coupling factor on transmit systems shall be illustrated by showing the dramatic impact on amplifier size, power factor, and acoustic response that is possible using these materials. In particular, a transducer built with these materials can be well matched to the power amplifier, i.e., 80% or more of the amplifier power reaches the transducer, over decades of frequency. Measured results from several prototype single crystal transducers shall be presented to demonstrate that the theoretical gains are actually realizable in practical devices. [Work sponsored by DARPA.
NASA Astrophysics Data System (ADS)
Cao, Ensi; Yang, Yuqing; Cui, Tingting; Zhang, Yongjia; Hao, Wentao; Sun, Li; Peng, Hua; Deng, Xiao
2017-01-01
LaFeO3-δ nanoparticles were prepared by citric sol-gel method with different raw material choosing and calcination process. The choosing of polyethylene glycol instead of ethylene glycol as raw material and additional pre-calcination at 400 °C rather than direct calcination at 600 °C could result in the decrease of resistance due to the reduction of activation energy Ea. Meanwhile, the choosing of ethylene glycol as raw material and additional pre-calcination leads to the enhancement of sensitivity to ethanol. Comprehensive analysis on the sensitivity and XRD, SEM, TEM, XPS results indicates that the sensing performance of LaFeO3-δ should be mainly determined by the adsorbed oxygen species on Fe ions, with certain contribution from native active oxygen. The best sensitivity of 46.1-200 ppm ethanol at prime working temperature of 112 °C is obtained by the sample using ethylene glycol as raw material with additional pre-calcination, which originates from its uniformly-sized and well-dispersed particles as well as high atomic ratio of Fe/La at surface region.
High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.
Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A
2006-09-07
Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.
Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2
Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.
2013-01-01
Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability. PMID:24108361
Borkowski, Andrzej; Cłapa, Tomasz; Szala, Mateusz; Gąsiński, Arkadiusz; Selwet, Marek
2016-01-01
We describe the synthesis of nanocomposites, based on nanofibers of silicon carbide, silver nanoparticles, and cellulose. Silver nanoparticle synthesis was achieved with chemical reduction using hydrazine by adding two different surfactants to obtain a nanocomposite with silver nanoparticles of different diameters. Determination of antibacterial activity was based on respiration tests. Enzymatic analysis indicates oxidative stress, and viability testing was conducted using an epifluorescence microscope. Strong bactericidal activity of nanocomposites was found against bacteria Escherichia coli and Bacillus cereus, which were used in the study as typical Gram-negative and Gram-positive bacteria, respectively. It is assumed that reactive oxygen species generation was responsible for the observed antibacterial effect of the investigated materials. Due to the properties of silicon carbide nanofiber, the obtained nanocomposite may have potential use in technology related to water and air purification. Cellulose addition prevented silver nanoparticle release and probably enhanced bacterial adsorption onto aggregates of the nanocomposite material. PMID:28335299
Increased Preclass Preparation Underlies Student Outcome Improvement in the Flipped Classroom
Gross, David; Pietri, Evava S.; Anderson, Gordon; Moyano-Camihort, Karin; Graham, Mark J.
2015-01-01
Active-learning environments such as those found in a flipped classroom are known to increase student performance, although how these gains are realized over the course of a semester is less well understood. In an upper-level lecture course designed primarily for biochemistry majors, we examine how students attain improved learning outcomes, as measured by exam scores, when the course is converted to a more active flipped format. The context is a physical chemistry course catering to life science majors in which approximately half of the lecture material is placed online and in-class problem-solving activities are increased, while total class time is reduced. We find that exam performance significantly improves by nearly 12% in the flipped-format course, due in part to students interacting with course material in a more timely and accurate manner. We also find that the positive effects of the flipped class are most pronounced for students with lower grade point averages and for female students. PMID:26396151
Construction of a Solid State Research Facility, Building 3150. Environmental Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration ofmore » the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems.« less
Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin
2018-01-01
Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Su, Xiao-Li; Chen, Jing-Ran; Zheng, Guang-Ping; Yang, Jing-He; Guan, Xin-Xin; Liu, Pu; Zheng, Xiu-Cheng
2018-04-01
Biomass carbon source is generally cheap, environmentally friendly and readily available in high quality and quantity. In this work, a series of loofah sponge-derived activated carbon (SAC-x) with hierarchical porous structures are prepared by KOH chemical activation and used as electrode materials for supercapacitors. The pore size can be easily controllable by changing the dosage of KOH. The optimized material (SAC-4) exhibits a high specific capacitance of 309.6 F g-1 at 1 A g-1 in the three-electrode system using 6 M KOH electrolyte. More importantly, the as-assembled symmetric supercapacitor based on SAC-4 exhibits a high energy density of 16.1 Wh kg-1 at a power density of 160.0 W kg-1 using 1 M Na2SO4 electrolyte. These remarkable results demonstrate the exciting commercial potential of SAC-x for high-performance supercapacitor applications due to their high specific surface area, appropriately porous structure, and the trace heteroatom (O and N) functionalities.
Li, Tongtong; Li, Yahang; Wang, Chunyu; Gao, Zhi-Da; Song, Yan-Yan
2015-11-01
Nitrogen-doped carbon materials have attracted tremendous attention because of their high activity in electrocatalysis. In the present work, cocoon silk -- a biomass material is used to prepare porous carbon fibers due to its abundant nitrogen content. The as-prepared carbon microfibers have been activated and disintegrated into carbon nanospheres (CNS) with a diameter of 20--60 nm by a simple nitric acid refluxing process. Considering their excellent electrocatalytic activity towards the reduction of oxygen, the CNS modified electrodes are further applied in the construction of glucose amperometric biosensor using glucose oxidase as a model. The proposed biosensor exhibits fast response, high sensitivity, good stability and selectivity for glucose detection with a wide linear range from 79.7 to 2038.9 μM, and a detection limit of 39.1 μM. The performance is comparable to leading literature results indicating a great potential for electrochemical sensing application. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Puentes-Camacho, Daniel; Velázquez, Enrique F.; Rodríguez-Félix, Dora E.; Castillo-Ortega, Mónica; Sotelo-Mundo, Rogerio R.; del Castillo-Castro, Teresa
2017-12-01
Proteins suffer changes in their tertiary structure when they are immobilized, and enzymatic activity is affected due to the low biocompatibility of some supporting materials. In this work immobilization of lysozyme on carbon nanotubes previously functionalized by microwave irradiation was studied. The effectiveness of the microwave-assisted acid treatment of carbon nanotubes was evaluated by XPS, TEM, Raman and FTIR spectroscopy. The carboxylic modification of nanotube surfaces by this fast, simple and feasible method allowed the physical adsorption and covalent linking of active lysozyme onto the carbonaceous material. Thermal inactivation kinetics, thermodynamic parameters and storage stability were studied for adsorbed and covalent enzyme complexes. A major stability was found for lysozyme immobilized by the covalent method, the activation energy for inactivation of the enzyme was higher for the covalent method and it was stable after 50 d of storage at 4 °C. The current study highlights the effect of protein immobilization method on the biotechnological potential of nanostructured biocatalysts.
NASA Astrophysics Data System (ADS)
Teoh, Joanne Ee Mei; Zhao, Yue; An, Jia; Chua, Chee Kai; Liu, Yong
2017-12-01
Shape memory polymers (SMPs) have gained a presence in additive manufacturing due to their role in 4D printing. They can be printed either in multi-materials for multi-stage shape recovery or in a single material for single-stage shape recovery. When printed in multi-materials, material or material-based design is used as a controlling factor for multi-stage shape recovery. However, when printed in a single material, it is difficult to design multi-stage shape recovery due to the lack of a controlling factor. In this research, we explore the use of geometric thickness as a controlling factor to design smart structures possessing multi-stage shape recovery using a single SMP. L-shaped hinges with a thickness ranging from 0.3-2 mm were designed and printed in four different SMPs. The effect of thickness on SMP’s response time was examined via both experiment and finite element analysis using Ansys transient thermal simulation. A method was developed to accurately measure the response time in millisecond resolution. Temperature distribution and heat transfer in specimens during thermal activation were also simulated and discussed. Finally, a spiral square and an artificial flower consisting of a single SMP were designed and printed with appropriate thickness variation for the demonstration of a controlled multi-stage shape recovery. Experimental results indicated that smart structures printed using single material with controlled thickness parameters are able to achieve controlled shape recovery characteristics similar to those printed with multiple materials and uniform geometric thickness. Hence, the geometric parameter can be used to increase the degree of freedom in designing future smart structures possessing complex shape recovery characteristics.
Toro, Reina M; Aragón, Diana M; Ospina, Luis F; Ramos, Freddy A; Castellanos, Leonardo
2014-11-01
Physalis peruviana calyces are used extensively in folk medicine. The crude ethanolic extract and some fractions of calyces were evaluated in order to explore antioxidant and anti-inflammatory activities. The anti-inflammatory activity was evaluated by the TPA-induced ear edema model. The antioxidant in vitro activity was measured by means of the superoxide and nitric oxide scavenging activity of the extracts and fractions. The butanolic fraction was found to be promising due to its anti-inflammatory and antioxidant activities. Therefore, a bio-assay guided approach was employed to isolate and identify rutin (1) and nicotoflorin (2) from their NMR spectroscopic and MS data. The identification of rutin in calyces of P. peruviana supports the possible use of this waste material for phytotherapeutic, nutraceutical and cosmetic preparations.
ERIC Educational Resources Information Center
bin Mohamad, Rossafri; Muninday, Balakrishnan; Govindasamy, Malliga
2010-01-01
This article presents a study on the use of multimedia technology for the teaching of Form (Grade) One history, which is a form of narrative subject in nature. Specifically, it is to study the viability of multimedia materials in supporting active learning for subjects which are in narrative form. Due to the scarcity of interactive multimedia…
NASA Astrophysics Data System (ADS)
Rudek, F.; Baselt, T.; Lempe, B.; Taudt, C.; Hartmann, P.
2015-03-01
The importance of fluorescence lifetime measurement as an optical analysis tool is growing. Many applications already exist in order to determine the fluorescence lifetime, but the majority of these require the addition of fluorescence-active substances to enable measurements. Every usage of such foreign materials has an associated risk. This paper investigates the use of auto-fluorescing substances in Saccharomyces cerevisiae (Baker's yeast) as a risk free alternative to fluorescence-active substance enabled measurements. The experimental setup uses a nitrogen laser with a pulse length of 350 ps and a wavelength of 337 nm. The excited sample emits light due to fluorescence of NADH/NADPH and collagen. A fast photodiode collects the light at the output of an appropriate high-pass edge-filter at 400 nm. Fluorescence lifetimes can be determined from the decay of the measurement signals, which in turn characterizes the individual materials and their surrounding environment. Information about the quantity of the fluorescence active substances can also be measured based on the received signal intensity. The correlation between the fluorescence lifetime and the metabolic state of Saccharomyces cerevisiae was investigated and is presented here.
Feng, Liang-Liang; Yu, Guangtao; Wu, Yuanyuan; Li, Guo-Dong; Li, Hui; Sun, Yuanhui; Asefa, Tewodros; Chen, Wei; Zou, Xiaoxin
2015-11-11
Elaborate design of highly active and stable catalysts from Earth-abundant elements has great potential to produce materials that can replace the noble-metal-based catalysts commonly used in a range of useful (electro)chemical processes. Here we report, for the first time, a synthetic method that leads to in situ growth of {2̅10} high-index faceted Ni3S2 nanosheet arrays on nickel foam (NF). We show that the resulting material, denoted Ni3S2/NF, can serve as a highly active, binder-free, bifunctional electrocatalyst for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Ni3S2/NF is found to give ∼100% Faradaic yield toward both HER and OER and to show remarkable catalytic stability (for >200 h). Experimental results and theoretical calculations indicate that Ni3S2/NF's excellent catalytic activity is mainly due to the synergistic catalytic effects produced in it by its nanosheet arrays and exposed {2̅10} high-index facets.
Characterizing active cytoskeletal dynamics with magnetic microposts
NASA Astrophysics Data System (ADS)
Shi, Yu; Henry, Steven; Crocker, John; Reich, Daniel
Characterization of an active matter system such as the cellular cytoskeleton requires knowledge of three frequency dependent quantities: the dynamic shear modulus, G*(ω) describing its viscoelasticity, the Fourier power spectrum of forces in the material due to internal force generators f (ω) , and the spectrum of the material's active strain fluctuations x(ω) . Via use of PDMS micropost arrays with magnetic nanowires embedded in selected posts, we measure the local complex modulus of cells through mechanical actuation of the magnetic microposts. The micrometer scale microposts are also used as passive probes to measure simultaneously the frequency dependent strain fluctuations. We present data on 3T3 fibroblasts, where we find power law behavior for both the frequency dependence of cells' modulus | G (ω) | ω 0 . 27 and the power spectrum of strain fluctuations |x(ω) | ω-2 . Results for the power spectrum of active cytoskeletal stresses determined from these two measurements, and implications of this mesoscale characterization of cytoskeletal dynamics for cellular biophysics will also be discussed. Supported in part by NIH Grant 1R01HL127087.
NASA Astrophysics Data System (ADS)
Childress, L. B.; Blair, N. E.; Orpin, A. R.
2015-12-01
Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin. Based on tephra beds identified within the sediments, this material was likely transported by a series of turbidite events, delivered to the Hikurangi Trough through Poverty Canyon.
Redox Species of Redox Flow Batteries: A Review.
Pan, Feng; Wang, Qing
2015-11-18
Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energy density. The redox active species is the most important component in redox flow batteries, and the redox potential and solubility of redox species dictate the system energy density. This review is focused on the recent development of redox species. Different categories of redox species, including simple inorganic ions, metal complexes, metal-free organic compounds, polysulfide/sulfur and lithium storage active materials, are reviewed. The future development of redox species towards higher energy density is also suggested.
Advances in research on 2D and 3D graphene-based supercapacitors
NASA Astrophysics Data System (ADS)
Mensing, Johannes Ph.; Poochai, Chatwarin; Kerdpocha, Sadanan; Sriprachuabwong, Chakrit; Wisitsoraat, Anurat; Tuantranont, Adisorn
2017-09-01
Graphene-based materials in two-dimensional (2D) and three-dimensional (3D) configurations are promising as electrode materials for supercapacitors due to their large surface area, excellent electrical conductivity, high electrochemical activity and high stability. In this article recent advances in research on 2D and 3D graphene-based materials for supercapacitor electrodes are reviewed extensively in aspects of fabrication methods and electrochemical performances. From the survey, the performance of 2D and 3D graphene-based materials could be significantly enhanced by employing nanostructures of metal oxides, metals and polymers as well as doping graphene with hetero atoms such as nitrogen and boron. In addition, the charge storage performances were found to depend greatly on materials, preparation method and structural configuration. With similar material components, 3D graphene-based networks tended to exhibit superior supercapacitive performances. Therefore, future research should be focusing on further development of 3D graphene-based materials for supercapacitor applications. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.
Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan
2015-04-28
Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.
Packaging biological cargoes in mesoporous materials: opportunities for drug delivery.
Siefker, Justin; Karande, Pankaj; Coppens, Marc-Olivier
2014-11-01
Confinement of biomolecules in structured nanoporous materials offers several desirable features ranging from chemical and thermal stability, to resistance to degradation from the external environment. A new generation of mesoporous materials presents exciting new possibilities for the formulation and controlled release of biological agents. Such materials address niche applications in enteral and parenteral delivery of biologics, such as peptides, polypeptides, enzymes and proteins for use as therapeutics, imaging agents, biosensors, and adjuvants. Mesoporous silica Santa Barbara Amorphous-15 (SBA-15), with its unique, tunable pore diameter, and easily functionalized surface, provides a representative example of this new generation of materials. Here, we review recent advances in the design and synthesis of nanostructured mesoporous materials, focusing on SBA-15, and highlight opportunities for the delivery of biological agents to various organ and tissue compartments. The SBA-15 platform provides a delivery carrier that is inherently separated from the active biologic due to distinct intra and extra-particle environments. This permits the SBA-15 platform to not require direct modification of the active biological therapeutic. Additionally, this makes the platform universal and allows for its application independent of the desired methods of discovery and development. The SBA-15 platform also directly addresses issues of targeted delivery and controlled release, although future challenges in the implementation of this platform reside in particle design, biocompatibility, and the tunability of the internal and external material properties. Examples illustrating the flexibility in the application of the SBA-15 platform are also discussed.
Willis, Joshua J.; Gallo, Alessandro; Sokaras, Dimosthenis; ...
2017-10-09
To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH 4 to CO 2 and H 2O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of threemore » important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO 2), acidic (Al 2O 3), and redox-active (Ce 0.8Zr 0.2O 2) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. Furthermore, this study clarifies contrasting reports in the literature about the active phase and stability of Pd-based materials for methane combustion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, Joshua J.; Gallo, Alessandro; Sokaras, Dimosthenis
To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH 4 to CO 2 and H 2O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of threemore » important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO 2), acidic (Al 2O 3), and redox-active (Ce 0.8Zr 0.2O 2) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. Furthermore, this study clarifies contrasting reports in the literature about the active phase and stability of Pd-based materials for methane combustion.« less
NASA Astrophysics Data System (ADS)
Calia, A.; Sileo, M.; Leucci, G.
2012-04-01
Ultrasonic tests are performing tools for the quality assessment and selection of stone as building materials, as well as for the detection of faults within architectural and structural elements. The use of the non destructive and non invasive diagnostic techniques has always advantages in the activities on pre-existing buildings, in terms of sustainability; moreover, it is a need with respect to the conservation constraints when we act on the historical-architectural heritage. Ultrasonic technique is widely and successfully performed in the diagnosis and control of the restoration works on concrete and compact stone artefacts. Specific problems arise from its use with reference to highly porous and soft stones, in particular bi-component materials with grains-cement binder structure, such as calcarenites. Low ultrasonic propagation velocity, typically associated to the soft and porous materials can be easily affected by disturbing factors, in primis water (in vapour or liquid state), that can easily and frequently penetrates inside them and in significant amounts, due to their high open porosity. The analysis and interpretation of the data acquired by in situ investigations have to take into account this additional contribution. In the same way, on site structures and materials can be easily interested by salt presence and deposition within the pores, that can furtherly interfere on the data significance, as well as it is important to know the variability of data due to the different state of conservation of the stones. The influence of all these factors on the response to the ultrasonic tests needs to be investigated by laboratory controlled conditions, preliminarily to the in situ application. The present work refers to the experimental activity devoted to investigate the critical aspects that have been mentioned above and the results obtained. It is a part of a larger activity with the final aim to set up non invasive diagnostic procedures for the analysis and qualification of ancient masonries, realised with traditional soft stones, used as building materials in the Southern Italy. This activity is carried out within the AITECH network (Applied Innovation Technologies for Diagnosis and Conservation of Built Heritage), a regional research laboratory infrastructure (Apulian region, Southern Italy) funded within the FSE and FESR programs and realised by the contribution of the Italian CNR and Salento University. In particular, ultrasonic velocity propagation have been measured on different petrographic kinds of calcarenitic materials. The influence of the sample size -the scale effect- has also been investigated. Velocity data have been recorded on the samples in the following conditions: a) dry, wet and different rates of the humidity content b) salt saturation c) after ageing by salt crystallisation cycles. Finally, ultrasonic tests have been performed on some samples treated by inorganic silica consolidant. This experimental laboratory investigation is the preliminary activity to assess the performance potential of the ultrasonic tests as effective tool for the qualification and diagnosis before and after treatments, with reference to the specific critical aspects related to highly porous and soft stone materials, traditionally used in the built heritage of the past.
Effect of Different Structural Materials on Neutronic Performance of a Hybrid Reactor
NASA Astrophysics Data System (ADS)
Übeyli, Mustafa; Tel, Eyyüp
2003-06-01
Selection of structural material for a fusion-fission (hybrid) reactor is very important by taking into account of neutronic performance of the blanket. Refractory metals and alloys have much higher operating temperatures and neutron wall load (NWL) capabilities than low activation materials (ferritic/martensitic steels, vanadium alloys and SiC/SiC composites) and austenitic stainless steels. In this study, effect of primary candidate refractory alloys, namely, W-5Re, T111, TZM and Nb-1Zr on neutronic performance of the hybrid reactor was investigated. Neutron transport calculations were conducted with the help of SCALE 4.3 System by solving the Boltzmann transport equation with code XSDRNPM. Among the investigated structural materials, tantalum had the worst performance due to the fact that it has higher neutron absorption cross section than others. And W-5Re and TZM having similar results showed the best performance.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.
1992-01-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.
Nasreen, Shaik Anwar Ahamed Nabeela; Sundarrajan, Subramanian; Nizar, Syed Abdulrahim Syed; Balamurugan, Ramalingam; Ramakrishna, Seeram
2013-01-01
Water, among the most valuable natural resources available on earth, is under serious threat as a result of undesirable human activities: for example, marine dumping, atmospheric deposition, domestic, industrial and agricultural practices. Optimizing current methodologies and developing new and effective techniques to remove contaminants from water is the current focus of interest, in order to renew the available water resources. Materials like nanoparticles, polymers, and simple organic compounds, inorganic clay materials in the form of thin film, membrane or powder have been employed for water treatment. Among these materials, membrane technology plays a vital role in removal of contaminants due to its easy handling and high efficiency. Though many materials are under investigation, nanofibers driven membrane are more valuable and reliable. Synthetic methodologies applied over the modification of membrane and its applications in water treatment have been reviewed in this article. PMID:24957057
Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.
Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang
2016-09-07
Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity.
Towards AlN optical cladding layers for thermal management in hybrid lasers
NASA Astrophysics Data System (ADS)
Mathews, Ian; Lei, Shenghui; Nolan, Kevin; Levaufre, Guillaume; Shen, Alexandre; Duan, Guang-Hua; Corbett, Brian; Enright, Ryan
2015-06-01
Aluminium Nitride (AlN) is proposed as a dual function optical cladding and thermal spreading layer for hybrid ridge lasers, replacing current benzocyclobutene (BCB) encapsulation. A high thermal conductivity material placed in intimate contact with the Multi-Quantum Well active region of the laser allows rapid heat removal at source but places a number of constraints on material selection. AlN is considered the most suitable due to its high thermal conductivity when deposited at low deposition temperatures, similar co-efficient of thermal expansion to InP, its suitable refractive index and its dielectric nature. We have previously simulated the possible reduction in the thermal resistance of a hybrid ridge laser by replacing the BCB cladding material with a material of higher thermal conductivity of up to 319 W/mK. Towards this goal, we demonstrate AlN thin-films deposited by reactive DC magnetron sputtering on InP.
Recent Development of Thermoelectric Polymers and Composites.
Yao, Hongyan; Fan, Zeng; Cheng, Hanlin; Guan, Xin; Wang, Chen; Sun, Kuan; Ouyang, Jianyong
2018-03-01
Thermoelectric materials can be used as the active materials in thermoelectric generators and as Peltier coolers for direct energy conversion between heat and electricity. Apart from inorganic thermoelectric materials, thermoelectric polymers have been receiving great attention due to their unique advantages including low cost, high mechanical flexibility, light weight, low or no toxicity, and intrinsically low thermal conductivity. The power factor of thermoelectric polymers has been continuously rising, and the highest ZT value is more than 0.25 at room temperature. The power factor can be further improved by forming composites with nanomaterials. This article provides a review of recent developments on thermoelectric polymers and polymer composites. It focuses on the relationship between thermoelectric properties and the materials structure, including chemical structure, microstructure, dopants, and doping levels. Their thermoelectric properties can be further improved to be comparable to inorganic counterparts in the near future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes
NASA Astrophysics Data System (ADS)
Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.
2016-09-01
Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.
Bio-inspired Murray materials for mass transfer and activity
NASA Astrophysics Data System (ADS)
Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian
2017-04-01
Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.
Corrosion-resistant catalyst supports for phosphoric acid fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosek, J.A.; Cropley, C.C.; LaConti, A.B.
High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-areamore » alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.« less
The immersion freezing behavior of mineral dust particles mixed with biological substances
NASA Astrophysics Data System (ADS)
Augustin-Bauditz, S.; Wex, H.; Denjean, C.; Hartmann, S.; Schneider, J.; Schmidt, S.; Ebert, M.; Stratmann, F.
2015-10-01
Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INM). It has been suggested that these INM maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INM in e.g., soils, resulting in an internal mixture of mineral dust and INM. If particles from such soils which contain biological INM are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C. To explore this hypothesis, we performed a measurement campaign within the research unit INUIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). To characterize the mixing state of the generated aerosol we used different methods which will also be discussed. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the purely biological particles, i.e. freezing occurs at temperatures at which mineral dusts themselves are not yet ice active. It can be concluded that INM located on a mineral dust particle determine the freezing behavior of that particle.
Actively convected liquid metal divertor
NASA Astrophysics Data System (ADS)
Shimada, Michiya; Hirooka, Yoshi
2014-12-01
The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.
Design, Synthesis, and Antifouling Activity of Glucosamine-Based Isocyanides
Hasegawa, Yuki; Novita, Ira S.; Suzuki, Junya; Morozumi, Tatsuya; Nogata, Yasuyuki; Yoshimura, Erina; Matsuda, Fuyuhiko
2017-01-01
Biofouling, an undesirable accumulation of organisms on sea-immersed structures such as ship hulls and fishing nets, is a serious economic issue whose effects include oil wastage and clogged nets. Organotin compounds were utilized since the 1960s as an antifouling material; however, the use of such compounds was later banned by the International Maritime Organization (IMO) due to their high toxicity toward marine organisms, resulting in masculinization and imposex. Since the ban, there have been extensive efforts to develop environmentally benign antifoulants. Natural antifouling products obtained from marine creatures have been the subject of considerable attention due to their potent antifouling activity and low toxicity. These antifouling compounds often contain isocyano groups, which are well known to have natural antifouling properties. On the basis of our previous total synthesis of natural isocyanoterpenoids, we envisaged the installation of an isocyano functional group onto glucosamine to produce an environmentally friendly antifouling material. This paper describes an effective synthetic method for various glucosamine-based isocyanides and evaluation of their antifouling activity and toxicity against cypris larvae of the barnacle Amphibalanus amphitrite. Glucosamine isocyanides with an ether functionality at the anomeric position exhibited potent antifouling activity, with EC50 values below 1 μg/mL, without detectable toxicity even at a high concentration of 10 μg/mL. Two isocyanides had EC50 values of 0.23 and 0.25 μg/mL, comparable to that of CuSO4, which is used as a fouling inhibitor (EC50 = 0.27 μg/mL). PMID:28661419
NASA Astrophysics Data System (ADS)
Dutta, Shibsankar; De, Sukanta
2016-05-01
It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.
NEUTRON MEASURING METHOD AND APPARATUS
Seaborg, G.T.; Friedlander, G.; Gofman, J.W.
1958-07-29
A fast neutron fission detecting apparatus is described consisting of a source of fast neutrons, an ion chamber containing air, two electrodes within the ion chamber in confronting spaced relationship, a high voltage potential placed across the electrodes, a shield placed about the source, and a suitable pulse annplifier and recording system in the electrode circuit to record the impulse due to fissions in a sannple material. The sample material is coated onto the active surface of the disc electrode and shielding means of a material having high neutron capture capabilities for thermal neutrons are provided in the vicinity of the electrodes and about the ion chamber so as to absorb slow neutrons of thermal energy to effectively prevent their diffusing back to the sample and causing an error in the measurement of fast neutron fissions.
Bellare, Anuj; Bistolfi, Alessandro
2017-01-01
Ultra-high molecular weight polyethylene (UHMWPE) is the most common bearing material in total joint arthroplasty due to its unique combination of superior mechanical properties and wear resistance over other polymers. A great deal of research in recent decades has focused on further improving its performances, in order to provide durable implants in young and active patients. From “historical”, gamma-air sterilized polyethylenes, to the so-called first and second generation of highly crosslinked materials, a variety of different formulations have progressively appeared in the market. This paper reviews the structure–properties relationship of these materials, with a particular emphasis on the in vitro and in vivo wear performances, through an analysis of the existing literature. PMID:28773153
Is Chemically Synthesized Graphene ‘Really’ a Unique Substrate for SERS and Fluorescence Quenching?
NASA Astrophysics Data System (ADS)
Sil, Sanchita; Kuhar, Nikki; Acharya, Somnath; Umapathy, Siva
2013-11-01
We demonstrate observation of Raman signals of different analytes adsorbed on carbonaceous materials, such as, chemically reduced graphene, graphene oxide (GO), multi-walled carbon nanotube (MWCNT), graphite and activated carbon. The analytes selected for the study were Rhodamine 6G (R6G) (in resonant conditions), Rhodamine B (RB), Nile blue (NBA), Crystal Violet (CV) and acetaminophen (paracetamol). All the analytes except paracetamol absorb and fluoresce in the visible region. In this article we provide experimental evidence of the fact that observation of Raman signals of analytes on such carbonaceous materials are more due to resonance effect, suppression of fluorescence and efficient adsorption and that this property in not unique to graphene or nanotubes but prevalent for various type of carbon materials.
Investigating Resulting Residual Stresses during Mechanical Forming Process
NASA Astrophysics Data System (ADS)
Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.
2018-03-01
Most manufacturing processes such as machining, welding, heat treatment, laser forming, laser cladding and, laser metal deposition, etc. are subjected to a form of heat or energy to change the geometrical shape thus changing the inherent engineering and structural properties of the material. These changes often cause the development of locked up stresses referred to as residual stresses as a result of these activities. This study reports on the residual stresses developed due to the mechanical forming process to maintain a suitable structural integrity for the formed components. The result of the analysis through the X-ray diffraction confirmed that residual stresses were induced in the manufactured parts and further revealed that residual stresses were compressive in nature as found in the parent material but with values less than the parent material.
Modeling electrical power absorption and thermally-induced biological tissue damage.
Zohdi, T I
2014-01-01
This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model's behavior.
LMFBR fuel assembly design for HCDA fuel dispersal
Lacko, Robert E.; Tilbrook, Roger W.
1984-01-01
A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, Betty; Bland, Jesse John
This paper documents the history of the TRU program at Sandia, previous and current activities associated with TRU material and waste, interfaces with other TRU waste generator sites and the Waste Isolation Pilot Plan (WIPP), and paths forward for TRU material and waste. This document is a snapshot in time of the TRU program and should be updated as necessary, or when significant changes have occurred in the Sandia TRU program or in the TRU regulatory environment. This paper should serve as a roadmap to capture past TRU work so that efforts are not repeated and ground is not lostmore » due to future inactivity and personnel changes.« less
Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.
2009-01-01
We present a velocity model of the onshore and offshore regions around the southern part of the island of Hawaii, including southern Mauna Kea, southeastern Hualalai, and the active volcanoes of Mauna Loa, and Kilauea, and Loihi seamount. The velocity model was inverted from about 200,000 first-arrival traveltime picks of earthquakes and air gun shots recorded at the Hawaiian Volcano Observatory (HVO). Reconstructed volcanic structures of the island provide us with an improved understanding of the volcano-tectonic evolution of Hawaiian volcanoes and their interactions. The summits and upper rift zones of the active volcanoes are characterized by high-velocity materials, correlated with intrusive magma cumulates. These high-velocity materials often do not extend the full lengths of the rift zones, suggesting that rift zone intrusions may be spatially limited. Seismicity tends to be localized seaward of the most active intrusive bodies. Low-velocity materials beneath parts of the active rift zones of Kilauea and Mauna Loa suggest discontinuous rift zone intrusives, possibly due to the presence of a preexisting volcanic edifice, e.g., along Mauna Loa beneath Kilauea's southwest rift zone, or alternatively, removal of high-velocity materials by large-scale landsliding, e.g., along Mauna Loa's western flank. Both locations also show increased seismicity that may result from edifice interactions or reactivation of buried faults. New high-velocity regions are recognized and suggest the presence of buried, and in some cases, previously unknown rift zones, within the northwest flank of Mauna Loa, and the south flanks of Mauna Loa, Hualalai, and Mauna Kea. Copyright 2009 by the American Geophysical Union.
Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats: part 1: dosimetry.
Stepanenko, Valeriy; Rakhypbekov, Tolebay; Otani, Keiko; Endo, Satoru; Satoh, Kenichi; Kawano, Noriyuki; Shichijo, Kazuko; Nakashima, Masahiro; Takatsuji, Toshihiro; Sakaguchi, Aya; Kato, Hiroaki; Onda, Yuichi; Fujimoto, Nariaki; Toyoda, Shin; Sato, Hitoshi; Dyussupov, Altay; Chaizhunusova, Nailya; Sayakenov, Nurlan; Uzbekov, Darkhan; Saimova, Aisulu; Shabdarbaeva, Dariya; Skakov, Mazhin; Vurim, Alexandr; Gnyrya, Vyacheslav; Azimkhanov, Almas; Kolbayenkov, Alexander; Zhumadilov, Kasym; Kairikhanova, Yankar; Kaprin, Andrey; Galkin, Vsevolod; Ivanov, Sergey; Kolyzhenkov, Timofey; Petukhov, Aleksey; Yaskova, Elena; Belukha, Irina; Khailov, Artem; Skvortsov, Valeriy; Ivannikov, Alexander; Akhmedova, Umukusum; Bogacheva, Viktoria; Hoshi, Masaharu
2017-03-01
There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were 24 Na, 28 Al, 31 Si, 32 P, 38 Cl, 42 K, 45 Ca, 46 Sc, 56 Mn, 59 Fe, 60 Co, and 134 Cs. The radionuclide 56 Mn (T 1/2 = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to 56 Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated 56 Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured 56 Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of this international multicenter study show that the internal irradiation due to incorporated 56 Mn powder is highly inhomogeneous, and that the most irradiated organs of the experimental animals are: large intestine, small intestine, stomach, and lungs. Accumulated absorbed organ doses were 1.65, 1.33, 0.24, 0.10 Gy for large intestine, small intestine, stomach, and lungs, respectively. Other organs were irradiated at lower dose levels. These results will be useful for interpretation of the biological effects of internal exposure of experimental rats to powdered 56 Mn as observed by Shichijo and coworkers.
Three-Dimensional Stress Fields and Slip Systems for Single Crystal Superalloy Notched Specimens
NASA Technical Reports Server (NTRS)
Magnan, Shannon M.; Throckmorton, David (Technical Monitor)
2002-01-01
Single crystal superalloys have become increasingly popular for turbine blade and vane applications due to their high strength, and creep and fatigue resistance at elevated temperatures. The crystallographic orientation of a single crystal material greatly affects its material properties, including elastic modulus, shear modulus, and ductility. These directional properties, along with the type of loading and temperature, dictate an anisotropic response in the yield strength, creep resistance, creep rupture ductility, fatigue resistance, etc. A significant amount of research has been conducted to determine the material properties in the <001> orientation, yet the material properties deviating from the <001> orientation have not been assessed for all cases. Based on the desired application and design criteria, a crystal orientation is selected to yield the maximum properties. Currently, single crystal manufacturing is able to control the primary crystallographic orientation within 15 of the target orientation, which is an acceptable deviation to meet both performance and cost guidelines; the secondary orientation is rarely specified. A common experiment is the standard load-controlled tensile test, in which specimens with different orientations can be loaded to observe the material response. The deformation behavior of single-crystal materials under tension and compression is known to be a function of not only material orientation, but also of varying microdeformation (i.e. dislocation) mechanisms. The underlying dislocation motion causes deformation via slip, and affects the activation of specific slip systems based on load and orientation. The slip can be analyzed by observing the visible traces left on the surface of the specimen from the slip activity within the single crystal material. The goal of this thesis was to predict the slip systems activated in three-dimensional stress fields of a notched tensile specimen, as a function of crystal orientation, using finite element analysis without addressing microstructural deformation mechanisms that govern their activation. Out of three orientations tested, the specimen with a [110] load orientation and a [001] growth direction had the lowest maximum resolved shear stress; this specimen orientation appears to be the best design candidate for a tensile application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghu, Y.; Harikrishnan, N.; Ravisankar, R., E-mail: ravisankarphysics@gmail.com
The present study aimed to measure the radioactivity concentration of naturally occuring radionuclides in the locally used building materials from Kilpenthaur, Tiruvannmalai Dist, Tamilnadu, India. This study will also evaluate the radiation hazard arising due to the use of these materials in the construction of dwellings. The concentrations of natural radionuclides {sup 226}Ra, {sup 232}Th and {sup 40}K in five types of building materials have been measured by gamma spectrometry using NaI (Tl) 3” x 3”detector. The estimated radium equivalent activities (Ra{sub eq}), indoor absorbed gamma dose rate (D{sub R}), annual effective dose rate (H{sub R}) and the external hazardmore » indexes(H{sub ex}) were lower than the recommended safe limit and are comparable with results from similar studies conducted in other countries. Therefore, the use of these building material samples under investigation in the construction of dwellings is considered to be safe for inhabitants.« less
NASA Astrophysics Data System (ADS)
Dobos, P.; Tamás, P.; Illés, B.
2016-11-01
Adequate establishment and operation of warehouse logistics determines the companies’ competitiveness significantly because it effects greatly the quality and the selling price of the goods that the production companies produce. In order to implement and manage an adequate warehouse system, adequate warehouse position, stock management model, warehouse technology, motivated work force committed to process improvement and material handling strategy are necessary. In practical life, companies have paid small attantion to select the warehouse strategy properly. Although it has a major influence on the production in the case of material warehouse and on smooth costumer service in the case of finished goods warehouse because this can happen with a huge loss in material handling. Due to the dynamically changing production structure, frequent reorganization of warehouse activities is needed, on what the majority of the companies react basically with no reactions. This work presents a simulation test system frames for eligible warehouse material handling strategy selection and also the decision method for selection.
Recent Progress on Flexible and Wearable Supercapacitors.
Xue, Qi; Sun, Jinfeng; Huang, Yan; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Wang, Yukun; Li, Na; Zhang, Haiyan; Zhi, Chunyi
2017-12-01
Recently, wearable electronic devices including electrical sensors, flexible displays, and health monitors have received considerable attention and experienced rapid progress. Wearable supercapacitors attract tremendous attention mainly due to their high stability, low cost, fast charging/discharging, and high efficiency; properties that render them value for developing fully flexible devices. In this Concept, the recent achievements and advances made in flexible and wearable supercapacitors are presented, especially highlighting the promising performances of yarn/fiber-shaped and planar supercapacitors. On the basis of their working mechanism, electrode materials including carbon-based materials, metal oxide-based materials, and conductive polymers with an emphasis on the performance-optimization method are introduced. The latest representative techniques and active materials of recently developed supercapacitors with superior performance are summarized. Furthermore, the designs of 1D and 2D electrodes are discussed according to their electrically conductive supporting materials. Finally, conclusions, challenges, and perspective in optimizing and developing the electrochemical performance and function of wearable supercapacitors for their practical utility are addressed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Escriche-Tur, Luis; Corbella, Montserrat; Font-Bardia, Mercè; Castro, Isabel; Bonneviot, Laurent; Albela, Belén
2015-11-02
Two new structural and functional models of the Mn-catalase with formula [{Mn(III)(bpy)(H2O)}(μ-2-MeOC6H4CO2)2(μ-O){Mn(III)(bpy)(X)}]X, where X = NO3 (1) and ClO4 (2) and bpy = 2,2'-bipyridine, were synthesized and characterized by X-ray diffraction. In both cases, a water molecule and an X ion occupy the monodentate positions. The magnetic properties of these compounds reveal a weak antiferromagnetic behavior (2J = -2.2 cm(-1) for 1 and -0.7 cm(-1) for 2, using the spin Hamiltonian H = -2J S1·S2) and negative zero-field splitting parameter DMn (-4.6 cm(-1) and -3.0 cm(-1) for 1 and 2, respectively). This fact, together with the nearly orthogonal orientation of the Jahn-Teller axes of the Mn(III) ions explain the unusual shape of χMT versus T plot at low temperature. Compound 1 presents a better catalase activity than 2 in CH3CN-H2O media, probably due to a beneficial interaction of the NO3(-) ion with the Mn complex in solution. These compounds were successfully inserted inside two-dimensional hexagonal mesoporous silica (MCM-41 type) leading to the same hybrid material ([Mn2O]@SiO2), without the X group. The manganese complex occupies approximately half of the available pore volume, keeping the silica's hexagonal array intact. Magnetic measurements of [Mn2O]@SiO2 suggest that most of the dinuclear unit is preserved, as a non-negligible interaction between Mn ions is still observed. The X-ray photoelectron spectroscopy analysis of the Mn 3s peak confirms that Mn remains as Mn(III) inside the silica. The catalase activity study of material [Mn2O]@SiO2 reveals that the complex is more active inside the porous silica, probably due to the surface silanolate groups of the pore wall. Moreover, the new material shows catalase activity in water media, while the coordination compounds are not active.
Caprai, V; Florea, M V A; Brouwers, H J H
2018-06-15
Despite numerous studies concerning the application of by-products in the construction field, municipal solid waste incineration (MSWI) residues are not widely used as secondary building materials. In some European countries, washing treatment to the full bottom ash (BA) fraction (0-32 mm) is applied, isolating more contaminated particles, smaller than 0.063 mm. Therefore, a MWSI sludge is produced, having a high moisture content, and thus a limited presence of soluble species. In order to enhance its performance as building material, here, dry mechanical activation is applied on MSWI sludge. Thereafter, a reactivity comparison between reference BA and untreated and treated MSWI sludge is provided, evaluating their behaviour in the presence of cement and their pozzolanic activity. Moreover, the mechanical performances, as 25% substitution of Portland cement (PC) are assessed, based on the EN 450. Mechanical activation enhances MSWI sludge physically due to the improved particle morphology and packing. Chemically, the hydration degree of PC is enhanced by the MSWI sludge by ≈25%. The milling treatment proved to be beneficial to the residues performances in the presence of PC, providing 32% higher strength than untreated sample. Environmentally, the compliance with the unshaped material legislation is successfully verified, according to the Soil Quality Decree. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis of Hydroxide-TiO2 Compounds with Photocatalytic Activity for Degradation of Phenol
NASA Astrophysics Data System (ADS)
Contreras-Ruiz, J. C.; Martínez-Gallegos, S.; Ordoñez, E.; González-Juárez, J. C.; García-Rivas, J. L.
2017-03-01
Photocatalytic degradation of phenol using titanium dioxide (TiO2), either alone or in combination with other materials, has been tested. Mg/Al hydrotalcites prepared by two methods using inorganic (HC) or organic (HS) chemical reagents, along with mixed oxides produced by calcination of these products (HCC and HSC), were mixed with titanium isopropoxide to obtain hydroxide-TiO2 compounds (HCC-TiO2 and HSC-TiO2) and their photocatalytic activity tested in solutions of 10 mg/L phenol at 120 min under illumination at λ UV = 254 nm with power of 4 W or 8 W. The obtained materials were characterized by various techniques, revealing that TiO2 was incorporated into the mixed oxides of the calcined hydrotalcite to form the above-mentioned compounds. The photocatalytic test results indicate that the activity of HCC-TiO2 can be attributed to increased phenol adsorption by hydrotalcite for transfer to the active photocatalytic phase of the impregnated TiO2 particles, while the better results obtained for HSC-TiO2 are due to greater catalyst impregnation on the surface of the calcined hydrotalcite, reducing the screening phenomenon and achieving HSC-TiO2 degradation of up to 21.0% at 8 W. Reuse of both compounds indicated tight combination of HCC or HSC with TiO2, since in four successive separation cycles there was little reduction of activity, being associated primarily with material loss during recovery.
Petrini, Lorenza; Bertini, Alessandro; Berti, Francesca; Pennati, Giancarlo; Migliavacca, Francesco
2017-05-01
Nickel-titanium alloys are commonly adopted for producing cardiovascular minimally invasive devices such as self-expandable stents, aortic valves and stent-grafts. These devices are subjected to cyclic loads (due to blood pulsatility, leg or heart movements), that can induce fatigue fracture, and may also be subjected to very large deformations (due to crimping procedure, a tortuous physiological path or overloads), that can induce material yield. Recently, the authors developed a new constitutive model that considers inelastic strains due to not-completed reverse phase transformation (not all the stress-induced martensite turns back to austenite) or/and plasticity and their accumulation during cyclic loads. In this article, the model is implemented in the finite element code ABAQUS/Standard and it is used to investigate the effects of inelastic strain accumulation on endovascular nickel-titanium devices. In particular, the behavior of a transcatheter aortic valve is studied considering the following steps: (1) crimping, (2) expansion in a tube resembling a durability test chamber and (3) cyclic loads due to pressure variation applied on the inner surface of the tube. The analyses are performed twice, activating and not activating that part of the new model which describes the development of irreversible strain. From the results, it is interesting to note that plasticity has a very significant effect on the local material response, inducing stress modification from compression to tension. However, permanent deformations are concentrated in few zones of the stent frame and their presence does not affect the global behavior of the device that maintains its capability of recovering the original shape. In conclusion, this work suggests that at least for cardiovascular devices where the crimping is high (local strain may reach values of 8%-9%), taking into account inelastic effects due to plasticity and not-completed reverse phase transformation can be important, and hence using a suitable constitutive model is recommended.
Quantitative NDE of Composite Structures at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.
2015-01-01
The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.
Energy Efficient Graphene Based High Performance Capacitors.
Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo
2017-07-10
Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Catalyst design with atomic layer deposition
O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan; ...
2015-02-06
Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less
Cheng, Siyi; Shi, Tielin; Chen, Chen; Zhong, Yan; Huang, Yuanyuan; Tao, Xiangxu; Li, Junjie; Liao, Guanglan; Tang, Zirong
2017-07-27
To push the energy density limit of supercapacitors, proper pseudocapacitive materials with favorable nanostructures are urgently pursued. Ternary transition metal sulfides are promising electrode materials due to the better conductivity and higher electrochemical activity in comparison to the single element sulfides and transition metal oxides. In this work, we have successfully synthesized porous CuCo 2 S 4 nanorod array (NRAs) on carbon textile through a stepwise hydrothermal method, including the growth of the Cu-Co precursor nanowire arrays and subsequent conversion into CuCo 2 S 4 NRAs via anion exchange reaction. The CuCo 2 S 4 NRAs electrode exhibits a greatly enhanced specific capacitance and an outstanding cycling stability. Moreover, an asymmetric supercapacitor using the CuCo 2 S 4 NRAs as positive electrode and activated carbon as negative electrode delivers a high energy density of 56.96 W h kg -1 . Such superior performance demonstrate that the CuCo 2 S 4 NRAs are promising materials for future energy storage applications.
Catalyst design with atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan
Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less
Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-03-28
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.
NASA Astrophysics Data System (ADS)
Li, Jing; Zhang, Yining; Zhou, Wei; Nie, Hongjiao; Zhang, Huamin
2014-09-01
Li-O2 batteries have attracted considerable attention due to their high energy density. The critical challenges that limit the practical applications include effective utilization of electrode space for solid products deposition and acceptable cycling performance. In the present work, a nitrogen-doped micron-sized honeycomb-like carbon is developed for use as a cathode material for Li-O2 batteries. This novel material is obtained by using nano-CaCO3 particles as hard template and sucrose as the carbon source, followed by thermal annealing at 800 °C in ammonia. With one-step ammonia activation, surface nitrogenation and further pore structure optimization are realized simultaneously. The material exhibits enhanced activity for oxygen reduction reaction and oxygen transfer ability. Surprisingly, an improved cycling stability is also obtained. As a result, a superior discharge capacity up to 12,600 mAh g-1 is achieved, about 4 times that of commercial Ketjenblack carbon. The results provide a novel route to construct effective non-metal carbon-based cathodes for high performance of Li-O2 batteries.
Manual materials handling: the cause of over-exertion injury and illness in industry.
Chaffin, D B
1979-01-01
It is reported from various sources that overexertion due to lifting, pushing, pulling, and carrying objects accounts for about 27 percent of all compensable industrial injury and illness in the United States. Resulting strain/sprain injuries account for over 50 percent of workmen's compensation clams in many industries. Almont two-thirds of these involve back pain, with reported compensation and medical payments totaling well over one billion dollars annually in the U.S. An estimated 300,000 plus workers will be affected each year, 5 to 10 percent of whom will have a permanent disability and often will be unemployable. This paper attempts to describe four basic approaches used to study this occupational health problem. In so doing, a concerted effort is made to identifiy the gaps in knowledge which need to be more fully researched. The approaches utilized to understand and control the hazards of manual materials handling are: 1) epidemiological studies of job and worker attributes to identify those that individually and in combination cause musculoskeletal incidents, 2) psychophysical studies to ascertain the volitional tolerance of workers to the stress mitigated by manual materials-handling activities, 3) biomechanical studies of the musculoskeletal system during common exertions required in manual materials-handling activities, and 4) physiological studies of the strain imposed on the cardiovascular system during repeated load-handling activities. The state of knowledge from each of these approaches is summarized briefly, and a case is made that much research is still needed to substantiate the necessary controls to lessen the economic burden and human suffering associated with manual materials-handling acts in industry.
Experimental artifacts influencing polarization sensitive magneto-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Thirunavukkuarasu, K.; Lu, Z.; Su, L.; Yu, Y.; Cao, L.; Ballotin, M. V.; Christianen, P. C. M.; Zhang, Y.; Smirnov, D.
Since the discovery of graphene, there has been an explosion of research on 2D layered materials such as transition metal dichalcogenides (TMDs). Among several experimental techniques utilized for studying these materials, Raman spectroscopy has proven to be a very powerful tool due to it's sensitivity to layer numbers, interlayer coupling etc. Layered MoS2, member of TMD family, is a typical example with promising applications in nano-optoelectronics. A recent magneto-Raman investigations on MoS2 published by J. Ji etal reported an observation of giant magneto-optical effect. In this work, the intensity of Raman modes exhibited dramatic change in intensities and was attributed to field-induced broken symmetry on Raman scattering cross-section. Due to the ambiguous nature of the interpretation presented in this publication, we performed further Raman studies on MoS2 at high magnetic fields to illustrate the experimental factors overlooked by the previous study. It is highly important to consider the magnetic field-induced rotation of the polarization of the light and its effect on the Raman active phonon modes in anisotropic materials. A detailed report of our magneto-Raman experiments and their outcomes will be presented.
The impact of radioactive steel recycling on the public and professionals.
Hrncir, Tomas; Panik, Michal; Ondra, Frantisek; Necas, Vladimir
2013-06-15
The decommissioning of nuclear power plants represents a complex process resulting in the generation of large amounts of waste materials, e.g. steel scrap containing various concentrations of radionuclides. Recycling some of these materials is highly desirable due to numerous reasons. Herein presented scenarios of recycling of radioactive steel within the nuclear as well as civil engineering industry are analyzed from the radiation protection point of view. An approach based on the dose constraints principle is chosen. The aim of the study is to derive conditional clearance levels (maximal specific mass activity of material allowing its recycling/clearance) for analyzed radionuclides ensuring that the detrimental impact on human health is kept on a negligible level. Determined conditional clearance levels, as the result of performed software calculations, are valid for the reuse of radioactive steel in four selected scenarios. Calculation results indicate that the increase of the amount of recyclable radioactive steel due to its reuse in specific applications may be feasible considering the radiation impact on the public and professionals. However, issues connected with public acceptance, technical difficulties and financing of potential realization are still open and they have to be examined in more detail. Copyright © 2013 Elsevier B.V. All rights reserved.
4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts.
Bustos-Ramírez, Karina; Barrera-Díaz, Carlos Eduardo; De Icaza-Herrera, Miguel; Martínez-Hernández, Ana Laura; Natividad-Rangel, Reyna; Velasco-Santos, Carlos
2015-01-01
Graphite and graphene oxides have been studied amply in the last decade, due to their diverse properties and possible applications. Recently, their functionality as photocatalytic materials in water splitting was reported. Research in these materials is increasing due to their band gap values around 1.8-4 eV, and therefore, these are comparable with other photocatalysts currently used in heterogeneous photocatalytic processes. Thus, this research reports the photocatalytic effectiveness of graphite oxide (GO) and graphene oxide (GEO) in the degradation of 4-chlorophenol (4-CP) in water. Under the conditions defined for this research, 92 and 97% of 4-CP were degraded with GO and GEO respectively, also 97% of total organic carbon was removed. In addition, by-products of 4-CP that produce a yellow solution obtained only using photolysis are eliminated by photocatalyst process with GO and GEO. The degradation of 4-CP was monitored by UV-Vis spectroscopy, High Performance Liquid Chromatography (HPLC) and Chemical Oxygen Demand (COD). Thus, photocatalytic activity to remove 4-CP from water employing GO and GEO without doping is successfully showed, and therefore, a new gate in research for these materials is opened.
Characterization of DC Magnetron Sputtering Plasma Used for Deposition of Amorphous Carbon Nitride
NASA Astrophysics Data System (ADS)
Camps, Enrique; Escobar-Alarcón, Luis; López, J.; Zambrano, G.; Prieto, P.
2006-12-01
Amorphous carbon nitride (a-CNx) thin films are attractive due to their potential applications, in different areas. This material can be hard and used as a protective coating, or can be soft and porous and used as the active element in gas sensors, it can also be used as a radiation detector due to its thermoluminescent response. The use of this material for one or another application, will depend on the material's structure, which can be changed by changing the deposition parameters. When using the d.c. magnetron sputtering technique it means mainly the change of discharge power, type of Ar/N2 gas mixture, and the working gas pressure. The variation of these deposition parameters has an important influence on the characteristics of the plasma formed in the discharge. In this work we studied the plasma characteristics, such as the type of excited species, plasma density, and electron temperature under different deposition conditions, using Optical Emission Spectroscopy (OES), and a single Langmuir probe. These parameters were correlated with the properties of a-CNx films deposited under those characterized regimes, in order to establish the role that the plasma parameters play on the formation of the different structures of CNx films.
Narasimhan, Srinivasan; Maheshwaran, Shanmugam; Abu-Yousef, Imad A; Majdalawieh, Amin F; Rethavathi, Janarthanam; Das, Prince Edwin; Poltronieri, Palmiro
2017-02-12
The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.
Environmental geology and hydrology
NASA Astrophysics Data System (ADS)
Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran
2017-10-01
Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.
Coronal X-ray enhancements associated with H-alpha filament disappearances
NASA Technical Reports Server (NTRS)
Webb, D. F.; Krieger, A. S.; Rust, D. M.
1976-01-01
The X-ray telescope experiment aboard the Skylab/ATM mission provided high-resolution soft X-ray images of the lower corona away from active regions, revealing frequent large-scale transient X-ray enhancements which could often be associated with the disappearance of H-alpha filaments. The X-ray emitting structures featured peak brightnesses similar to those of nonflaring active region structures, durations from 3 to 40 hours, shapes that in general outlined the preexisting H-alpha filaments to as large as 400,000 km, apparent expansion velocities of the order of tens of km/sec, and observed peak temperatures of the order of a few million degrees. One such event is described and analyzed in detail. Two explanations of the events are discussed: (1) excess cool material is present in the filament cavity, contributing to the X-ray enhancement, and (2) the enhancement is due to the compression of preexisting material by a changing magnetic field.
Enhancement of Buckling Load with the Use of Active Materials
NASA Technical Reports Server (NTRS)
Yuan, F. G.
2002-01-01
In this paper, active buckling control of a beam using piezoelectric materials is investigated. Under small deformation, mathematical models are developed to describe the behavior of the beams subjected to an axial compressive load with geometric imperfections and load eccentricities under piezoelectric force. Two types of supports, simply supported and clamped, of the beam with a partially bonded piezoelectric actuator are used to illustrate the concept. For the beam with load eccentricities and initial geometric imperfections, the load- carrying capacity can be significantly enhanced by counteracting moments from the piezoelectric actuator. For the single piezoelectric actuator, using static feedback closed-loop control, the first buckling load can be eliminated. In the case of initially straight beams, analytical solutions of the enhanced first critical buckling load due to the increase of bending stiffness by piezoelectric actuators are derived based on linearized buckling analysis.
Current and future translation trends in aeronautics and astronautics
NASA Technical Reports Server (NTRS)
Rowe, Timothy
1986-01-01
The pattern of translation activity in aeronautics and astronautics is reviewed. It is argued that the international nature of the aerospace industry and the commercialization of space have increased the need for the translation of scientific literature in the aerospace field. Various factors which can affect the quality of translations are examined. The need to translate the activities of the Soviets, Germans, and French in materials science in microgravity, of the Japanese, Germans, and French in the development of industrial ceramics, and of the Chinese in launching and communications satellites is discussed. It is noted that due to increases in multilateral and bilateral relationships in the aerospace industry, the amount of translation from non-English source material into non-English text will increase and the most important languages will be French and German, with an increasing demand for Japanese, Chinese, Spanish, and Italian translations.
Schaeffer, J M; Brownstein, M J; Axelrod, J
1977-01-01
Material reacting with an antibody to thyrotropin-releasing hormone (TRH) has been found to be present in the rat retina. The compound present in the retina cochromatographed with authentic TRH and most of its activity was lost when incubated with pyroglutamate aminopeptidase (L-pyroglutamyl-peptide hydrolase, EC 3.4.11.8), an enzyme that degrades TRH. The TRH-like activity in the rat retina was low during the night and high during the day. There was a 4-hr lag period after the lights were turned on before peak TRH levels were attained. A decrease in TRH was seen after 2 hr of darkness and the level of TRH was lowest after 4 hr of darkness. Retinal TRH is elevated by environmental lighting regardless of the time of the day. These findings suggest that TRH may be involved in retinal photorecptive mechanisms. PMID:20629
Mlalila, Nichrous; Kadam, Dattatreya M; Swai, Hulda; Hilonga, Askwar
2016-09-01
In recent decades, there is a global advancement in manufacturing industry due to increased applications of nanotechnology. Food industry also has been tremendously changing from passive packaging to innovative packaging, to cope with global trends, technological advancements, and consumer preferences. Active research is taking place in food industry and other scientific fields to develop innovative packages including smart, intelligent and active food packaging for more effective and efficient packaging materials with balanced environmental issues. However, in food industry the features behind smart packaging are narrowly defined to be distinguished from intelligent packaging as in other scientific fields, where smart materials are under critical investigations. This review presents some scientific concepts and features pertaining innovative food packaging. The review opens new research window in innovative food packaging to cover the existing disparities for further precise research and development of food packaging industry.
The recoil implantation technique developed at the U-120 cyclotron in Bucharest
NASA Astrophysics Data System (ADS)
Muntele, C. I.; Simil, L. Popa; Racolta, P. M.; Voiculescu, D.
1999-06-01
At the U-120 cyclotron in Bucharest was developed 15 years ago the thin layer activation (TLA) technique for radioactive labeling of metallic components on depths ranging between 100 μm and 300 μm, for wear/corrosion studies. Aiming to extend these kinds of studies on non-metallic components and at sub-micrometric level we were led to the development of the recoil implantation technique for ultra thin layer activation (UTLA) applications. Due to the low energy of the recoils obtained in a sacrificial target from a nuclear reaction, the surface layer of material to be labeled must be as thick as a few hundred nanometers. Also, since the radiotracer is externally created, there are no restrictions for the kind of material to be labeled, except to be a solid. In this paper we present some results of our studies concerning the actual status of this application at our accelerator.
Analysis of post-earthquake landslide activity and geo-environmental effects
NASA Astrophysics Data System (ADS)
Tang, Chenxiao; van Westen, Cees; Jetten, Victor
2014-05-01
Large earthquakes can cause huge losses to human society, due to ground shaking, fault rupture and due to the high density of co-seismic landslides that can be triggered in mountainous areas. In areas that have been affected by such large earthquakes, the threat of landslides continues also after the earthquake, as the co-seismic landslides may be reactivated by high intensity rainfall events. Earthquakes create Huge amount of landslide materials remain on the slopes, leading to a high frequency of landslides and debris flows after earthquakes which threaten lives and create great difficulties in post-seismic reconstruction in the earthquake-hit regions. Without critical information such as the frequency and magnitude of landslides after a major earthquake, reconstruction planning and hazard mitigation works appear to be difficult. The area hit by Mw 7.9 Wenchuan earthquake in 2008, Sichuan province, China, shows some typical examples of bad reconstruction planning due to lack of information: huge debris flows destroyed several re-constructed settlements. This research aim to analyze the decay in post-seismic landslide activity in areas that have been hit by a major earthquake. The areas hit by the 2008 Wenchuan earthquake will be taken a study area. The study will analyze the factors that control post-earthquake landslide activity through the quantification of the landslide volume changes well as through numerical simulation of their initiation process, to obtain a better understanding of the potential threat of post-earthquake landslide as a basis for mitigation planning. The research will make use of high-resolution stereo satellite images, UAV and Terrestrial Laser Scanning(TLS) to obtain multi-temporal DEM to monitor the change of loose sediments and post-seismic landslide activities. A debris flow initiation model that incorporates the volume of source materials, vegetation re-growth, and intensity-duration of the triggering precipitation, and that evaluates different initiation mechanisms such as erosion and landslide reactivation will be developed. The developed initiation model will be integrated with run-out model to simulate the dynamic process of post-earthquake debris flows in the study area for a future period and make a prediction about the decay of landslide activity in future.
A Fundamental Study of Inorganic Clathrate and Other Open-Framework Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolas, George
Due to formidable synthetic challenges, many materials of scientific and technological interest are first obtained as microcrystalline powders. High purity, high yield processing techniques are often lacking and thus care must be taken in interpretation of the observed structural, chemical, and physical properties of powder or polycrystalline materials, which can be strongly influenced by extrinsic properties. Furthermore, the preparation of high-quality single crystals for many materials by traditional techniques can be especially challenging in cases where the elemental constituents have greatly differing melting points and/or vapor pressures, when the desired compound is thermodynamically metastable, or where growth with participation ofmore » the melt is generally not possible. New processing techniques are therefore imperative in order to investigate the intrinsic properties of these materials and elucidate their fundamental physical properties. Intermetallic clathrates constitute one such class of materials. The complex crystal structures of intermetallic clathrates are characterized by mainly group 14 host frameworks encapsulating guest-ions in polyhedral cages. The unique features of clathrate structures are intimately related to their physical properties, offering ideal systems for the study of structure-property relationships in crystalline solids. Moreover, intermetallic clathrates are being actively investigated due to their potential for application in thermoelectrics, photovoltaics and opto-electronics, superconductivity, and magnetocaloric technologies. We have developed different processing techniques in order to synthesize phase-pure high yield clathrates reproducibly, as well as grow single crystals for the first time. We also employed these techniques to synthesize new “open-framework” compounds. These advances in materials processing and crystal growth allowed for the investigation of the physical properties of a variety of different clathrate compositions for the first time.« less
R. B. Foltz; N. S. Wagenbrenner
2010-01-01
The assessment teams who make post-fire stabilization and treatment decisions are under pressure to employ more effective and economic post-fire treatments, as wild fire activity and severity has increased in recent years across the western United States. Use of forest-native wood-based materials for hillslope mulching has been on the rise due to potential...
2017-01-12
The linear depressions in this VIS image are graben. Graben are formed from tectonic activity with large blocks of material moving downward between paired faults. The crater in the bottom half of the image is oval rather than round, which could have been due to impacting into this region of tectonic deformation. Orbit Number: 66271 Latitude: -29.9918 Longitude: 211.199 Instrument: VIS Captured: 2016-11-21 15:19 http://photojournal.jpl.nasa.gov/catalog/PIA21287
Heavy metal removal capacity of individual components of permeable reactive concrete
NASA Astrophysics Data System (ADS)
Holmes, Ryan R.; Hart, Megan L.; Kevern, John T.
2017-01-01
Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Sun, Runjun; Wu, Hailiang; Mao, Ningtao
2018-07-01
A wool-TiO2 nanoparticle composite material having TiO2 nanoparticles both infiltrated in the matrix between macrofibrils inside cortical cells of wool fibers and grafted on the fiber surface is obtained in this study, and the wool-nanoparticle composite material is found to have highly photocatalytic activities with an extremely narrow band gap of 2.8 eV. The wool fibers are obtained using three successive technical steps: wool fibers are swollen by using lithium bromide, then saturated with tetrabutyl titanate ethanol solution and subsequently treated in boiling water. It was demonstrated that the chemical bonds formed between the as-synthesized TiO2 nanoparticles and the wool fibers swollen by lithium bromide include C‑Ti4+(Ti3+), N‑Ti4+(Ti3+), O‑Ti3+, and S‑Ti4+(Ti3+) bonds. The modified wool fibers have shown markedly improved photocatalytic efficiency due to their enhanced visible light absorption capability, which is much better than the (N-doped) TiO2 coated wool fibers. In contrast, TiO2 modified wool fibers swollen by using formic acid have poorer photoactivity, this might be due to the elimination of trivalent titanium between TiO2 nanoparticles and the wool fibers.
Zhang, Hui; Sun, Runjun; Wu, Hailiang; Mao, Ningtao
2018-05-01
A wool-TiO2 nanoparticle composite material having TiO2 nanoparticles both infiltrated in the matrix between macrofibrils inside cortical cells of wool fibers and grafted on the fiber surface is obtained in this study, and the wool-nanoparticle composite material is found to have highly photocatalytic activities with an extremely narrow band gap of 2.8 eV. The wool fibers are obtained using three successive technical steps: wool fibers are swollen by using lithium bromide, then saturated with tetrabutyl titanate ethanol solution and subsequently treated in boiling water. It was demonstrated that the chemical bonds formed between the as-synthesized TiO2 nanoparticles and the wool fibers swollen by lithium bromide include C-Ti4+(Ti3+), N-Ti4+(Ti3+), O-Ti3+, and S-Ti4+(Ti3+) bonds. The modified wool fibers have shown markedly improved photocatalytic efficiency due to their enhanced visible light absorption capability, which is much better than the (N-doped) TiO2 coated wool fibers. In contrast, TiO2 modified wool fibers swollen by using formic acid have poorer photoactivity, this might be due to the elimination of trivalent titanium between TiO2 nanoparticles and the wool fibers. © 2018 IOP Publishing Ltd.
Stimulation by Erwinia carotovora of the synthesis of ethylene in cauliflower tissue
Lund, Barbara M.; Mapson, L. W.
1970-01-01
The synthesis of ethylene by cauliflower floret tissue was increased when the tissue was inoculated with the soft-rot bacterium Erwinia carotovora. This effect was clearly associated with the production of pectic enzymes by the micro-organism. These enzymes, acting together with the plant enzymes, stimulated the production of ethylene from methionine. The increased synthetic activity was due to the release and increased activity of a glucose oxidase enzyme apparently attached to plant cell-wall material and liberated by the action of pectic enzymes of the bacterium. ImagesPLATE 1 PMID:5488914
NASA Astrophysics Data System (ADS)
Cottrell, G. A.; Kemp, R.; Bhadeshia, H. K. D. H.; Odette, G. R.; Yamamoto, T.
2007-08-01
We have constructed a Bayesian neural network model that predicts the change, due to neutron irradiation, of the Charpy ductile-brittle transition temperature (ΔDBTT) of low-activation martensitic steels given a set of multi-dimensional published data with doses <100 displacements per atom (dpa). Results show the high significance of irradiation temperature and (dpa) 1/2 in determining ΔDBTT. Sparse data regions were identified by the size of the modelling uncertainties, indicating areas where further experimental data are needed. The method has promise for selecting and ranking experiments on future irradiation materials test facilities.
Effect of Hydrothermal Treatment on Structural and Catalytic Properties of [CTA]-MCM-41 Silica.
Zapelini, Iago W; Silva, Laura L; Cardoso, Dilson
2018-05-21
The [CTA]-MCM-41 hybrid silica is a useful and simply prepared heterogeneous basic catalyst for the transesterification reaction. Here, the effect of hydrothermal treatment during catalyst preparation was investigated, with the aim of improving the structural stability of this catalyst during the reaction. It was observed that the hydrothermal step led to the formation of a material with a higher degree of organization and a greater wall thickness, which improved its structural stability. However, the catalyst prepared using this treatment presented lower catalytic activity, due to the presence of fewer active sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashkooli, Ali Ghorbani; Foreman, Evan; Farhad, Siamak
In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. Themore » tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.« less
Viditha, V; Srilatha, K; Himabindu, V
2016-05-01
Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.
Harnessing the metal-insulator transition for tunable metamaterials
NASA Astrophysics Data System (ADS)
Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto
2017-08-01
The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.
Tunable deformation modes shape contractility in active biopolymer networks
NASA Astrophysics Data System (ADS)
Stam, Samantha; Banerjee, Shiladitya; Weirich, Kim; Freedman, Simon; Dinner, Aaron; Gardel, Margaret
Biological polymer-based materials remodel under active, molecular motor-driven forces to perform diverse physiological roles, such as force transmission and spatial self-organization. Critical to understanding these biomaterials is elucidating the role of microscopic polymer deformations, such as stretching, bending, buckling, and relative sliding, on material remodeling. Here, we report that the shape of motor-driven deformations can be used to identify microscopic deformation modes and determine how they propagate to longer length scales. In cross-linked actin networks with sufficiently low densities of the motor protein myosin II, microscopic network deformations are predominantly uniaxial, or dominated by sliding. However, longer-wavelength modes are mostly biaxial, or dominated by bending and buckling, indicating that deformations with uniaxial shapes do not propagate across length scales significantly larger than that of individual polymers. As the density of myosin II is increased, biaxial modes dominate on all length scales we examine due to buildup of sufficient stress to produce smaller-wavelength buckling. In contrast, when we construct networks from unipolar, rigid actin bundles, we observe uniaxial, sliding-based contractions on 1 to 100 μm length scales. Our results demonstrate the biopolymer mechanics can be used to tune deformation modes which, in turn, control shape changes in active materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it; Romagnoli, Marcello; Pollastri, Simone
2015-01-15
Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for constructionmore » purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.« less
Mukherjee, Debdyuti; Gowda Y K, Guruprasada; Makri Nimbegondi Kotresh, Harish; Sampath, S
2017-06-14
Organic materials containing active carbonyl groups have attracted considerable attention as electrodes in Li-ion batteries due to their reversible redox activity, ability to retain capacity, and, in addition, their ecofriendly nature. Introduction of porosity will help accommodate as well as store small ions and molecules reversibly. In the present work, we introduce a mesoporous triptycene-related, rigid network polymer with high specific surface area as an electrode material for rechargeable Li-ion battery. The designed polymer with a three-dimensional (3D), rigid porous network allows free movement of ions/electrolyte as well as helps in interacting with the active anhydride moieties (containing two carbonyl groups). Considerable intake of Li + ions giving rise to very high specific capacity of 1100 mA h g -1 at a discharge current of 50 mA g -1 and ∼120 mA h g -1 at a high discharge current of 3 A g -1 are observed with excellent cyclability up to 1000 cycles. This remarkable rate capability, which is one of the highest among the reported organic porous polymers to date, makes the triptycene-related rigid 3D network a very good choice for Li-ion batteries and opens up a new method to design polymer-based electrode materials for metal-ion battery technology.
Interactions on External MOF Surfaces: Desorption of Water and Ethanol from CuBDC Nanosheets.
Elder, Alexander C; Aleksandrov, Alexandr B; Nair, Sankar; Orlando, Thomas M
2017-10-03
The external surfaces of metal-organic framework (MOF) materials are difficult to experimentally isolate due to the high porosities of these materials. MOF surface surrogates in the form of copper benzenedicarboxylate (CuBDC) nanosheets were synthesized using a bottom-up approach, and the surface interactions of water and ethanol were investigated by temperature-programmed desorption (TPD). A method of analysis of diffusion-influenced TPD was developed to measure the desorption properties of these porous materials. This approach also allows the extraction of diffusion coefficients from TPD data. The transmission Fourier transform infrared spectra, powder X-ray diffraction patterns, and TPD data indicate that water desorbs from CuBDC nanosheets with activation energies of 44 ± 2 kJ/mol at edge sites and 58 ± 1 kJ/mol at external surface and internal and pore sites. Ethanol desorbs with activation energies of 58 ± 1 kJ/mol at internal pore sites and 66 ± 0.4 kJ/mol at external surface sites. Co-adsorption of water and ethanol was also investigated. The presence of ethanol was found to inhibit the desorption of water, resulting in a water desorption process with an activation energy of 68 ± 0.7 kJ/mol.
Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S
2013-06-28
A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.
An active target for the accelerator-based transmutation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebyonkin, K.F.
1995-10-01
Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the protonmore » beam and, hence considerably improve economic characteristics of the electronuclear reactor.« less
Corrosion assessment and enhanced biocompatibility analysis of biodegradable magnesium-based alloys
NASA Astrophysics Data System (ADS)
Pompa, Luis Enrique
Magnesium alloys have raised immense interest to many researchers because of its evolution as a new third generation material. Due to their biocompatibility, density, and mechanical properties, magnesium alloys are frequently reported as prospective biodegradable implant materials. Moreover, magnesium based alloys experience a natural phenomena to biodegrade in aqueous solutions due to its corrosive activity, which is excellent for orthopedic and cardiovascular applications. However, major concerns with such alloys are fast and non-uniform corrosion degradation. Controlling the degradation rate in the physiological environment determines the success of an implant. In this investigation, three grades of magnesium alloys: AZ31B, AZ91E and ZK60A were studied for their corrosion resistance and biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter are used to study surface morphology, chemistry, roughness and wettability, respectively. Additionally, the cytotoxicity of the leached metal ions was evaluated by a tetrazolium based bio-assay, MTS.
NASA Astrophysics Data System (ADS)
Al Rahal Al Orabi, R.; Mecholsky, N.; Hwang, J. P.; Kim, W.; Rhyee, J. S.; Wee, D.; Fornari, M.
Pure lead-free SnTe has limited thermoelectric potentials because of the low Seebeck coeffcients and the relatively large thermal conductivity. In this study, we provide experimental evidence and theoretical understanding that alloying SnTe with Ca greatly improves the transport properties leading to ZT of 1.35 at 873 K, the highest ZT value so far reported for singly doped SnTe materials. The introduction of Ca (0-9%) in SnTe induces multiple effects: (1) Ca replaces Sn and reduces the hole concentration due to Sn vacancies, (2) the energy gap increases limiting the bipolar transport, (3) several bands with larger effective masses become active in transport, and (4) the lattice thermal conductivity is reduced of about 70% due to the contribution of concomitant scattering terms associated with the alloy disorder and the presence of nanoscale precipitates. An effciency of 10% (for ΔT = 400 K) was predicted for high temperature thermoelectric power generation using SnTe-based n- and p-type materials.
Lara Oya, Ana; Medialdea Hurtado, María Eloisa; Rojo Martín, María Dolores; Aguilera Pérez, Antonia; Alastruey-Izquierdo, Ana; Miranda Casas, Consuelo; Rubio Prats, Marina; Medialdea Marcos, Santiago; Navarro Marí, José María
2016-10-01
Fungal keratitis is a severe ocular infection that primarily affects subjects engaged in outdoor activities. Risk factors include allergic conjunctivitis, previous eye surgery, previous treatment with wide-spectrum antimicrobial agents and corticosteroids and using contact lenses. Corneal infection is usually secondary to trauma involving organic material, which is often the only predisposing factor. Early diagnosis based on clinical examination and microbiological investigation (microscopy, cultures and molecular techniques) is crucial to selecting the appropriate antifungal therapy and prevent progression. We report the case of a patient with keratitis due to Beauveria bassiana, an opportunistic and entomopathogenic filamentous fungus that is used as a biological insecticide and which is a rare cause of corneal infection. We review previous cases reports of B. bassiana keratitis published and its main features to compare with our case, a female occasional agriculture worker who had not suffered any trauma involving organic material. The patient received topical and oral antifungal therapy and debridement surgery, with a satisfactory outcome.
Freestanding nano crystalline Tin@carbon anode electrodes for high capacity Li-ion batteries
NASA Astrophysics Data System (ADS)
Guler, M. O.; Guzeler, M.; Nalci, D.; Singil, M.; Alkan, E.; Dogan, M.; Guler, A.; Akbulut, H.
2018-07-01
Due to their high specific capacities tin based electrode materials are in the focus of many researchers almost for a decade. However, tin based electrodes are hampered in practical applications due to the volumetric changes during the lithiation and delithiation processes. Therefore, we designed and synthesized a novel "yolk-shell" structure in order to remove these challenges. The production of high purity nano Sn particles were synthesized through a facile chemical reduction method. As-synthesized nano particles were then embedded into conformal and self-standing carbon architectures, designed with hollow space in between the shell and the active electrode particles. As-synthesized Sn@C composite particles were decorated between the layers of graphene produced by Hummers method in order to obtained self-standing thin graphene films. A stable discharge capacity of 284.5 mA h g-1 after 250 cycles is obtained. The results have shown that Sn@C@graphene composite electrodes will be a promising novel candidate electrode material for high capacity lithium ion batteries.
Emission spectra from ZnS:Mn due to low velocity impacts
NASA Astrophysics Data System (ADS)
Hollerman, W. A.; Goedeke, S. M.; Bergeron, N. P.; Moore, R. J.; Allison, S. W.; Lewis, L. A.
2005-09-01
Triboluminescence (TL) is the emission of light due to crystal fracture and has been known for centuries. One of the most common examples of TL is the flash created from chewing wintergreen Lifesavers. Since 2003, the authors have been measuring triboluminescent properties of phosphors, of which zinc sulfide doped with manganese (ZnS:Mn) is an example. Preliminary results indicate that impact velocities greater than 0.5 m/s produce measurable TL from ZnS:Mn. To extend this research, the investigation of the emission spectrum was chosen. This differs from using filtered photodetectors in that the spectral composition of fluorescence can be ascertained. Previous research has utilized a variety of schemes that include scratching, crushing, and grinding to generate TL. In our case, the material is activated by a short duration interaction of a dropped mass and a small number of luminescence centers. This research provides a basis for the characterization and selection of materials for future spacecraft impact detection schemes.
Poultry manure as raw material for mercury adsorbents in gas applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klasson, K.T.; Lima, I.M.; Boihem, L.L.
2009-09-30
The quantity of poultry manure generated each year is large, and technologies that take advantage of the material should be explored. At the same time, increased emphasis on the reduction of mercury emissions from coal-fired electric power plants has resulted in environmental regulations that may, in the future, require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream, where they could adsorb the mercury. The sorbents (now containing mercury) would be removed via filtration or other means from the flue gas. Our preliminary work has demonstrated that activated carbon made from poultrymore » manure can adsorb mercury from air with good efficiency. In laboratory experiments, an activated carbon made from turkey cake manure removed the majority of elemental mercury from a hot air stream. Other activated carbons made from chicken and turkey litter manure were also efficient. In general, unwashed activated carbons made from poultry manure were more efficient in removing mercury than their acid-washed counterparts. The results suggest that the adsorption of mercury was mainly due to chemisorption on the surface of the carbon. Other potential uses for the activated carbons are the removal of mercury from air and natural gas.« less
In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.
Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S
2015-08-25
We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.
Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.
Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu
2011-01-01
Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.
Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents
Rao, Pasupuleti Visweswara; Nallappan, Devi; Madhavi, Kondeti; Rahman, Shafiqur; Jun Wei, Lim; Gan, Siew Hua
2016-01-01
Cancer is a leading cause of death worldwide. Several classes of drugs are available to treat different types of cancer. Currently, researchers are paying significant attention to the development of drugs at the nanoscale level to increase their target specificity and to reduce their concentrations. Nanotechnology is a promising and growing field with multiple subdisciplines, such as nanostructures, nanomaterials, and nanoparticles. These materials have gained prominence in science due to their size, shape, and potential efficacy. Nanomedicine is an important field involving the use of various types of nanoparticles to treat cancer and cancerous cells. Synthesis of nanoparticles targeting biological pathways has become tremendously prominent due to the higher efficacy and fewer side effects of nanodrugs compared to other commercial cancer drugs. In this review, different medicinal plants and their active compounds, as well as green-synthesized metallic nanoparticles from medicinal plants, are discussed in relation to their anticancer activities. PMID:27057273
Diederichs, Sylvia; Korona, Anna; Staaden, Antje; Kroutil, Wolfgang; Honda, Kohsuke; Ohtake, Hisao; Büchs, Jochen
2014-11-07
Media containing yeast extracts and other complex raw materials are widely used for the cultivation of microorganisms. However, variations in the specific nutrient composition can occur, due to differences in the complex raw material ingredients and in the production of these components. These lot-to-lot variations can affect growth rate, product yield and product quality in laboratory investigations and biopharmaceutical production processes. In the FDA's Process Analytical Technology (PAT) initiative, the control and assessment of the quality of critical raw materials is one key aspect to maintain product quality and consistency. In this study, the Respiration Activity Monitoring System (RAMOS) was used to evaluate the impact of different yeast extracts and commercial complex auto-induction medium lots on metabolic activity and product yield of four recombinant Escherichia coli variants encoding different enzymes. Under non-induced conditions, the oxygen transfer rate (OTR) of E. coli was not affected by a variation of the supplemented yeast extract lot. The comparison of E. coli cultivations under induced conditions exhibited tremendous differences in OTR profiles and volumetric activity for all investigated yeast extract lots of different suppliers as well as lots of the same supplier independent of the E. coli variant. Cultivation in the commercial auto-induction medium lots revealed the same reproducible variations. In cultivations with parallel offline analysis, the highest volumetric activity was found at different cultivation times. Only by online monitoring of the cultures, a distinct cultivation phase (e.g. glycerol depletion) could be detected and chosen for comparable and reproducible offline analysis of the yield of functional product. This work proves that cultivations conducted in complex media may be prone to significant variation in final product quality and quantity if the quality of the raw material for medium preparation is not thoroughly checked. In this study, the RAMOS technique enabled a reliable and reproducible screening and phenotyping of complex raw material lots by online measurement of the respiration activity. Consequently, complex raw material lots can efficiently be assessed if the distinct effects on culture behavior and final product quality and quantity are visualized.
Chemical Fingerprinting of Materials Developed Due To Environmental Issues
NASA Technical Reports Server (NTRS)
Smith, Doris A.; McCool, A. (Technical Monitor)
2000-01-01
This paper presents viewgraphs on chemical fingerprinting of materials developed due to environmental issues. Some of the topics include: 1) Aerospace Materials; 2) Building Blocks of Capabilities; 3) Spectroscopic Techniques; 4) Chromatographic Techniques; 5) Factors that Determine Fingerprinting Approach; and 6) Fingerprinting: Combination of instrumental analysis methods that diagnostically characterize a material.
An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications
NASA Technical Reports Server (NTRS)
Hagh, Nader; Skandan, Ganesh
2012-01-01
At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.
Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes
Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.
2015-01-01
Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061
Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.
Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F
2016-04-01
Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.
A review of blended cathode materials for use in Li-ion batteries
NASA Astrophysics Data System (ADS)
Chikkannanavar, Satishkumar B.; Bernardi, Dawn M.; Liu, Lingyun
2014-02-01
Several commercial automotive battery suppliers have developed lithium ion cells which use cathodes that consist of a mixture of two different active materials. This approach is intended to take advantage of the unique properties of each material and optimize the performance of the battery with respect to the automotive operating requirements. Certain cathode materials have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability (e.g., LiNixCo1-x-yAlyO2). Alternately, other cathode materials exhibit good thermal stability, high voltage and high rate capability, but have low capacity (e.g., LiMn2O4). By blending two cathode materials the shortcomings of the parent materials could be minimized and the resultant blend can be tailored to have a higher energy or power density coupled with enhanced stability and lower cost. In this review, we survey the developing field of blended cathode materials from a new perspective. Targeting a range of cathode materials, we survey the advances in the field in the current review. Limitations, such as capacity decay due to metal dissolution are also discussed, as well as how the appropriate balance of characteristics of the blended materials can be optimized for hybrid- and electric-vehicle applications.
Embrittlement and Flow Localization in Reactor Structural Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xianglin Wu; Xiao Pan; James Stubbins
2006-10-06
Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of neckingmore » is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.« less
NASA Astrophysics Data System (ADS)
Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia
2015-02-01
Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06849a
Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities
NASA Astrophysics Data System (ADS)
Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel
2014-05-01
Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).
Twu, Nancy; Metzger, Michael; Balasubramanian, Mahalingam; ...
2017-02-08
Here, the lithium-excess Li xNi 2-4x/3Sb x/3O 2 (LNSO) materials were previously shown to demonstrate higher capacities and improved cyclability with increasing lithium content. While the performance trend is promising, observed capacities are much lower than theoretical capacities, pointing to a need for further understanding of active redox processes in these materials. In this work, we study the electrochemical behavior of the LNSO materials as a function of lithium content and at slow and fast rates. Surprisingly, Li 1.15Ni 0.47Sb 0.38O 2 (LNSO-15) exhibits higher discharge capacities at faster rates and traverses distinct voltage curves at slow and fast rates.more » To understand these two peculiarities, we characterize the redox activity of nickel, antimony, and oxygen at different rates. While experiments confirm some nickel redox activity and oxygen loss, these two mechanisms cannot account for all observed capacity. We propose that the balance of the observed capacity may be due reversible oxygen redox and that the rate-dependent voltage curve features may derive from irreversible nickel migration occurring on slow charge. As future high energy density cathodes are likely to contain both lithium excess and high nickel content, both of these findings have important implications for the development of novel high capacity cathode materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yazhou; Yen, Clive H.; Hu, Yun Hang
2016-01-01
Three-dimensional (3D) graphene showed an advanced support for designing porous electrode materials due to its high specific surface area, large pore volume, and excellent electronic property. However, the electrochemical properties of reported porous electrode materials still need to be improved further. The current challenge is how to deposit desirable nanoparticles (NPs) with controllable structure, loading and composition in 3D graphene while maintaining the high dispersion. Herein, we demonstrate a modified supercritical fluid (SCF) technique to address this issue by controlling the SCF system. Using this superior method, a series of Pt-based/3D graphene materials with the ultrafine-sized, highly dispersive and controllablemore » composition multimetallic NPs were successfully synthesized. Specifically, the resultant Pt40Fe60/3D graphene showed a significant enhancement in electrocatalytic performance for the oxygen reduction reaction (ORR), including a factor of 14.2 enhancement in mass activity (1.70 A mgPt 1), a factor of 11.9 enhancement in specific activity (1.55 mA cm 2), and higher durability compared with that of Pt/C catalyst. After careful comparison, the Pt40Fe60/3D graphene catalyst shows the higher ORR activity than most of the reported similar 3D graphene-based catalysts. The successful synthesis of such attractive materials by this method also paves the way to develop 3D graphene in widespread applications.« less
NASA Astrophysics Data System (ADS)
Ritt, Patrick J.
The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward diffusion of oxygen with an external Al2O3 layer and effectively reduced the activity of Si in the underlying glass. Thus, the Mo-Si-B based coating is established as a viable protective coating for oxidation and corrosion protection for next-generation aerospace and aeronautical materials.
Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.
Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S
2014-01-01
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization.
Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries
2014-01-01
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization. PMID:25114651
Early differential processing of material images: Evidence from ERP classification.
Wiebel, Christiane B; Valsecchi, Matteo; Gegenfurtner, Karl R
2014-06-24
Investigating the temporal dynamics of natural image processing using event-related potentials (ERPs) has a long tradition in object recognition research. In a classical Go-NoGo task two characteristic effects have been emphasized: an early task independent category effect and a later task-dependent target effect. Here, we set out to use this well-established Go-NoGo paradigm to study the time course of material categorization. Material perception has gained more and more interest over the years as its importance in natural viewing conditions has been ignored for a long time. In addition to analyzing standard ERPs, we conducted a single trial ERP pattern analysis. To validate this procedure, we also measured ERPs in two object categories (people and animals). Our linear classification procedure was able to largely capture the overall pattern of results from the canonical analysis of the ERPs and even extend it. We replicate the known target effect (differential Go-NoGo potential at frontal sites) for the material images. Furthermore, we observe task-independent differential activity between the two material categories as early as 140 ms after stimulus onset. Using our linear classification approach, we show that material categories can be differentiated consistently based on the ERP pattern in single trials around 100 ms after stimulus onset, independent of the target-related status. This strengthens the idea of early differential visual processing of material categories independent of the task, probably due to differences in low-level image properties and suggests pattern classification of ERP topographies as a strong instrument for investigating electrophysiological brain activity. © 2014 ARVO.
Contamination and radiation exposure in central Europe after the Chernobyl accident
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayer, A.; Mueck, K.; Loosli, H.H.
1996-06-01
Ten years ago, on 26 April 1986, as a consequence of an accident in Unit 4 of the Chernobyl-NPP, a large quantity of radioactive material was released into the atmosphere for some days. This material was spread over wide areas of Europe. Due to variable weather conditions the activity concentrations in air varied considerably in different regions. Also as a consequence of large variations in precipitation intensity-particularly in the regions of Southeastern Germany, Austria and Southern Switzerland-up to 100 kBq m{sup -2} {sup 137}Cs were deposited on the soil. Due to fallout, washout, and/or rainout, a range of foodstuffs weremore » contaminated, and foodstuffs directly exposed to the fallout [vegetables and green fodder (grass)] showed the highest contamination levels. Consequently, milk also showed a significantly increased activity concentration, in particular of {sup 131}I. In the following years contamination in all kinds of foodstuffs decreased, but elevated contamination levels in special pathways like venison and mushrooms are still observed to date. This contamination resulted in additional exposure, mainly due to external radiation from ground and from consumption of contaminated food. The radiation exposure in the most contaminated areas was calculated on the basis of model assumptions and was found to be about 1 mSv during the first year after the accident. Using this model, the ingestion pathway was overestimated by at least a factor of two. This additional exposure decreased and is now less than 1 % on average; in the most contaminated areas, this is a few percent of the average natural radiation exposure.« less
ERIC Educational Resources Information Center
McKinney-Browning, Mabel C.
1981-01-01
Presents a directory of educational materials in the areas of justice and due process. Materials are listed in three categories--films, books, and project-created materials. For each entry, information is presented on title, author, publisher or developer, publication date, price, and annotation. (DB)
Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping
2010-01-01
Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508
NASA Technical Reports Server (NTRS)
1971-01-01
Methods for presterilization cleaning or decontamination of spacecraft hardware to reduce microbial load, without harming materials or spacecraft components, are investigated. Three methods were considered: (1) chemicals in liquid form, relying on physical removal as well as bacterial or bacteriostatic action; (2) chemicals used in the gaseous phase, relying on bacterial activity; and (3) mechanical cleaning relying on physical removal of organisms. These methods were evaluated in terms of their effectiveness in microbial burden reduction and compatibility with spacecraft hardware. Results show chemical methods were effective against spore microorganisms but were harmful to spacecraft materials. Mechanical methods were also effective with the degree depending upon the type of instrument employed. Mechanical methods caused problems in handling the equipment, due to vacuum pressure damaging the very thin layered materials used for shielding, and the bristles used in the process caused streaks or abrasions on some spacecraft components.
Initial Ferritic Wall Mode studies on HBT-EP
NASA Astrophysics Data System (ADS)
Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.
2013-10-01
Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Shibsankar; De, Sukanta, E-mail: sukanta.physics@presiuniv.ac.in
It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (– COOH group) and α-Vanadyl phosphates (VOPO{sub 4}2H{sub 2}O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na{sub 2}SO{sub 4} aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236more » F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.« less
Converting Corncob to Activated Porous Carbon for Supercapacitor Application.
Yang, Shaoran; Zhang, Kaili
2018-03-21
Carbon materials derived from biomass are promising electrode materials for supercapacitor application due to their specific porosity, low cost and electrochemical stability. Herein, a hierarchical porous carbon derived from corncob was developed for use as electrodes. Benefitting from its hierarchical porosity, inherited from the natural structure of corncob, high BET surface area (1471.4 m²·g -1 ) and excellent electrical conductivity, the novel carbon material exhibited a specific capacitance of 293 F·g -1 at 1 A·g -1 in 6 M KOH electrolyte and maintained at 195 F·g -1 at 5 A·g -1 . In addition, a two-electrode device was assembled and delivered an energy density of 20.15 Wh·kg -1 at a power density of 500 W·kg -1 and an outstanding stability of 99.9% capacitance retention after 4000 cycles.
Helium vs. Proton Induced Displacement Damage in Electronic Materials
NASA Technical Reports Server (NTRS)
Ringo, Sawnese; Barghouty, A. F.
2010-01-01
In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, J M; Martin, S I; Masterson, B
2000-12-07
Experiments were undertaken to evaluate extreme conditions under which candidate materials intended for use in a proposed nuclear waste repository might be susceptible to corrosion by endogenous microorganisms. Thiobucillus ferrooxidans, a sulfur-oxidizing bacterium, was grown in continuous culture using thiosulfate as an energy source; thiosulfate is oxidized to sulfate as a metabolic endproduct by this organism. Culture conditions were optimized to produce a high-density, metabolically active culture throughout a period of long term incubation in the presence of Alloy 22 (a high nickel-based alloy) and Titanium grade 7 (Tigr7) material coupons. After seven months incubation under these conditions, material couponsmore » were withdrawn and analyzed by high resolution microscopy and energy dispersive x-ray analyses. Alloy 22 coupons showed no detectable signs of corrosion. Tigr7, however, demonstrated distinct roughening of the coupon surface, and [presumably solubilized and precipitated] titanium was detected on Alloy 22 coupons incubated in the same T. ferrooxiduns culture vessel. Control coupons of these materials incubated in sterile thiosulfate medium did not demonstrate any signs of corrosion, thus showing that observed corrosive effects were due to the T. ferrooxidans metabolic activities. T. ferrooxidans intermediates of thiosulfate oxidation or sulfate may have caused the corrosive effects observed on Tigr7.« less
Laser annealed in-situ P-doped Ge for on-chip laser source applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Srinivasan, Ashwyn; Pantouvaki, Marianna; Shimura, Yosuke; Porret, Clement; Van Deun, Rik; Loo, Roger; Van Thourhout, Dries; Van Campenhout, Joris
2016-05-01
Realization of a monolithically integrated on-chip laser source remains the holy-grail of Silicon Photonics. Germanium (Ge) is a promising semiconductor for lasing applications when highly doped with Phosphorous (P) and or alloyed with Sn [1, 2]. P doping makes Ge a pseudo-direct band gap material and the emitted wavelengths are compatible with fiber-optic communication applications. However, in-situ P doping with Ge2H6 precursor allows a maximum active P concentration of 6×1019 cm-3 [3]. Even with such active P levels, n++ Ge is still an indirect band gap material and could result in very high threshold current densities. In this work, we demonstrate P-doped Ge layers with active n-type doping beyond 1020 cm-3, grown using Ge2H6 and PH3 and subsequently laser annealed, targeting power-efficient on-chip laser sources. The use of Ge2H6 precursors during the growth of P-doped Ge increases the active P concentration level to a record fully activated concentration of 1.3×1020 cm-3 when laser annealed with a fluence of 1.2 J/cm2. The material stack consisted of 200 nm thick P-doped Ge grown on an annealed 1 µm Ge buffer on Si. Ge:P epitaxy was performed with PH3 and Ge2H6 at 320oC. Low temperature growth enable Ge:P epitaxy far from thermodynamic equilibrium, resulting in an enhanced incorporation of P atoms [3]. At such high active P concentration, the n++ Ge layer is expected to be a pseudo-direct band gap material. The photoluminescence (PL) intensities for layers with highest active P concentration show an enhancement of 18× when compared to undoped Ge grown on Si as shown in Fig. 1 and Fig. 2. The layers were optically pumped with a 640 nm laser and an incident intensity of 410 mW/cm2. The PL was measured with a NIR spectrometer with a Hamamatsu R5509-72 NIR photomultiplier tube detector whose detectivity drops at 1620 nm. Due to high active P concentration, we expect band gap narrowing phenomena to push the PL peak to wavelengths beyond the detection limit (1620nm) of the setup. Therefore, the 18× enhancement is a lower limit estimation. In this contribution, an extensive study of laser annealing conditions and their impact on material properties will be discussed. A major concern in using highly doped Ge as an active medium is the increase in free-carrier absorption (FCA). However, results reported in [4] suggest that FCA is significantly dominated by holes due to larger absorption cross-section of holes compared to electrons. The FCA results in [4] and JDOS modeling were used to calculate the gain spectrum for the highest doped Ge samples, including the typical 0.25% biaxial tensile strain of epitaxial Ge on Si. A carrier lifetime of 3 ns is required as shown in Fig. 3 for a target threshold current density of sub-20 kA/cm2 which represents at least tenfold reduction when compared to active P-doping level of 6×1019 cm-3. As a result, laser annealed highly doped Ge layers grown with Ge2H6 precursors are a promising approach for realizing a power efficient on-chip Ge laser source.
Zhang, Qiao; Jing, Dai; Zhang, Yufeng; Miron, Richard J
Bone grafting materials are frequently utilized in oral surgery and periodontology to fill bone defects and augment lost or missing bone. The purpose of this study was to compare new bone formation in bone defects created in both normal and osteoporotic animals loaded with three types of bone grafts from different origins. Forty-eight female Wistar rats were equally divided into control normal and ovariectomized animals. Bilateral 2.5-mm femur defects were created and filled with an equal weight of (1) natural bone mineral (NBM, BioOss) of bovine origin, (2) demineralized freeze-dried bone allograft (DFDBA, LifeNet), or (3) biphasic calcium phosphate (BCP, Vivoss). Following 3 and 6 weeks of healing, hematoxylin and eosin and TRAP staining was performed to determine new bone formation, material degradation, and osteoclast activity. All bone substitutes demonstrated osteoconductive potential at 3 and 6 weeks with higher osteoclast numbers observed in all ovariectomized animals. NBM displayed continual new bone formation with little to no sign of particle degradation, even in osteoporotic animals. DFDBA particles showed similar levels of new bone formation but rapid particle degradation rates with lower levels of mineralized tissue. BCP bone grafts demonstrated significantly higher new bone formation when compared with both NBM and DFDBA particles; however, the material was associated with higher osteoclast activity and particle degradation. Interestingly, in osteoporotic animals, BCP displayed synergistically and markedly more rapid rates of particle degradation. Recent modifications to synthetically fabricated materials were shown to be equally or more osteopromotive than NBM and DFDBA. However, the current BCP utilized demonstrated much faster resorption properties in osteoporotic animals associated with a decrease in total bone volume when compared with the slowly/nonresorbing NBM. The results from this study point to the clinical relevance of minimizing fast-resorbing bone grafting materials in osteoporotic phenotypes due to the higher osteoclastic activity and greater material resorption.
Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst
Dutta, Indrajit; Carpenter, Michael K; Balogh, Michael P; Ziegelbauer, Joseph M; Moylan, Thomas E; Atwan, Mohammed H; Irish, Nicholas P
2013-01-01
A carbon-supported, dealloyed platinum-copper (Pt-Cu) oxygen reduction catalyst was prepared using a multi-step synthetic procedure. Material produced at each step was characterized using high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS) mapping, x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and cyclic voltammetry (CV), and its oxygen reduction reaction (ORR) activity was measured by a thin-film rotating disk electrode (TF-RDE) technique. The initial synthetic step, a co-reduction of metal salts, produced a range of poorly crystalline Pt, Cu, and Pt-Cu alloy nanoparticles that nevertheless exhibited good ORR activity. Annealing this material alloyed the metals and increased particle size and crystallinity. TEM shows the annealed catalyst to include particles of various sizes, large (>25 nm), medium (12–25 nm), and small (<12 nm). Most of the small and medium-sized particles exhibited a partial or complete coreshell (Cu-rich core and Pt shell) structure with the smaller particles typically having more complete shells. The appearance of Pt shells after annealing indicates that they are formed by a thermal diffusion mechanism. Although the specific activity of the catalyst material was more than doubled by annealing, the concomitant decrease in Pt surface area resulted in a drop in its mass activity. Subsequent dealloying of the catalyst by acid treatment to partially remove the copper increased the Pt surface area by changing the morphology of the large and some medium particles to a “Swiss cheese” type structure having many voids. The smaller particles retained their core-shell structure. The specific activity of the catalyst material was little reduced by dealloying, but its mass activity was more than doubled due to the increase in surface area. The possible origins of these results are discussed in this report. PMID:23807900
Black pepper powder microbiological quality improvement using DBD systems in atmospheric pressure
NASA Astrophysics Data System (ADS)
Grabowski, Maciej; Hołub, Marcin; Balcerak, Michał; Kalisiak, Stanisław; Dąbrowski, Waldemar
2015-07-01
Preliminary results are given regarding black pepper powder decontamination using dielectric barrier discharge (DBD) plasma in atmospheric pressure. Three different DBD reactor constructions were investigated, both packaged and unpackaged material was treated. Due to potential, industrial applications, in addition to microbiological results, water activity, loss of mass and the properties of packaging material, regarding barrier properties were investigated. Argon based treatment of packed pepper with DBD reactor configuration is proposed and satisfactory results are presented for treatment time of 5 min or less. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark
A nuclear method to measure spallation by thermal cycling of protective surface layers
NASA Astrophysics Data System (ADS)
Stroosnijder, M. F.; Macchi, G.
1995-05-01
After a general introduction on spallation by thermal cycling, the principle of Thin Layer Activation (TLA) is outlined. A practical setup to measure spallation of protective surface layers by thermal cycling using TLA is discussed. Its use is illustrated with the study of the spallation behaviour of an advanced thermal barrier coating. It is shown that among the various benefits, TLA has a direct relation to material loss and shows a significant increase in sensitivity over other test methods. Due to its intrinsic properties, TLA can contribute to a greater scientific understanding of material degradation by thermal cycling and it can provide a more reliable assessment of the service lives of technical components.
Exoelectronic emission of particles of lunar surface material
NASA Technical Reports Server (NTRS)
Mints, R. I.; Alimov, V. I.; Melekhin, V. P.; Milman, I. I.; Kryuk, V. I.; Kunin, L. L.; Tarasov, L. S.
1974-01-01
A secondary electron multiplier was used to study the thermostimulated exoelectronic emission of particles of lunar surface material returned by the Soviet Luna 16 automatic station. The natural exoemission from fragments of slag, glass, anorthosite, and a metallic particle was recorded in the isochronic and isothermal thermostimulation regimes. The temperature of emission onset depended on the type of regolith fragment. For the first three particles the isothermal drop in emission is described by first-order kinetic equations. For the anorthosite fragment, exoemission at constant temperature is characterized by a symmetric curve with a maximum. These data indicate the presence of active surface defects, whose nature can be due to the prehistory of the particles.
Polythiophene Derivative with a Side Chain Chromophore as Photovoltaic and Photorefractive Materials
1993-11-17
the desired bulk property in the polymer such as water solubility,1 8 optical activity,19 ionic conductivity 20 or liquid crystalline properties. 2 1...photoexcitation, which is similar to photoinduced polarization observed in the Langmuir - Blodgett (L-B) films of donor-acceptor molecules. 23 But due to...Maximum 200 Words) A new, solution processable, thiophene copolymer with a side chain nonlinear optical (NLO) chromophore namely Poly (3-octylthiophene
Design and Testing of an Active Core for Sandwich Panels
2008-03-01
some degrees of unimorph from the design. In the experiment, the current prototype, which is made of polycarbonate material and Nitinol spring...such as Nitinol , is chosen due to its greater shape memory strain (8.5%), practical fabrication technique, and is relatively in- expansive. 2.2... Nitinol and its volume fractions are 5%, 7.5%, and 10% of the total design domain. The artificial stiffness implemented at the top and bottom right hand
Lu, Xinwei; Li, Nan; Yang, Guang; Zhao, Caifeng
2013-03-01
The concentration of natural radionuclides in commonly used building materials collected from Yan'an, China, was determined using gamma ray spectroscopy with a NaI(Tl) detector. The activity concentration of ²²⁶Ra, ²³²Th, and ⁴⁰K in the studied building materials ranges from 9.4-73.1, 11.5-86.9, and 258.9-1,055.1 Bq kg⁻¹, respectively. The concentrations for these natural radionuclides were compared with the reported data of other countries and the world mean values for soil. The radium equivalent activity (Raeq), external hazard index (Hex), internal hazard index (Hin), indoor air absorbed dose rate, and annual effective dose rate due to natural radionuclides in samples were estimated to assess radiological hazards for people living in dwellings made of the studied building materials. The calculated Raeq values of all building materials (75.7-222.1 Bq kg⁻¹) are lower than the limit of 370 Bq kg⁻¹. The values of Hex and Hin are less than unity. The mean values of indoor air absorbed dose rates of all building materials (101.0 ± 14.1-177.0 ± 6.8 nGy h⁻¹) are higher than the world population-weighted average of 84 nGy h⁻¹, while the mean values of annual effective dose range from 0.50 ± 0.07-0.87 ± 0.03 mSv y⁻¹, which are lower than the recommended limit of 1 mSv y⁻¹. It is found that these materials may be used safely as construction materials and do not pose significant radiation hazards to inhabitants.
Bradley, Paul M.; Journey, Celeste A.; Kirshtein, Julie D.; Voytek, Mary A.; Lacombe, Pierre J.; Imbrigiotta, Thomas E.; Chapelle, Francis H.; Tiedeman, Claire; Goode, Daniel J.
2012-01-01
Significant microbial reductive dechlorination of [1,2 14C] cis-dichloroethene (DCE) was observed in anoxic microcosms prepared with unamended, fractured rock aquifer materials, which were colonized in situ at multiple depths in two boreholes at the Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. The lack of significant reductive dechlorination in corresponding water-only treatments indicated that chlororespiration activity in unamended, fractured rock treatments was primarily associated with colonized core material. In these unamended fractured rock microcosms, activity was highest in the shallow zones and generally decreased with increasing depth. Electron-donor amendment (biostimulation) enhanced chlororespiration in some but not all treatments. In contrast, combining electron-donor amendment with KB1 amendment (bioaugmentation) enhanced chlororespiration in all treatments and substantially reduced the variability in chlororespiration activity both within and between treatments. These results indicate (1) that a potential for chlororespiration-based bioremediation exists at NAWC Trenton but is limited under nonengineered conditions, (2) that the limitation on chlororespiration activity is not entirely due to electron-donor availability, and (3) that a bioaugmentation approach can substantially enhance in situ bioremediation if the requisite amendments can be adequately distributed throughout the fractured rock matrix.
Active magnetic compensation composed of shielding panels.
Kato, K; Yamazaki, K; Sato, T; Haga, A; Okitsu, T; Muramatsu, K; Ueda, T; Kobayashi, K; Yoshizawa, M
2004-11-30
Magnetically shielded rooms (MSRs) with materials of high permeability and active shield systems have been used to shield magnetic noise for biomagnetic measurements up to now. However, these techniques have various disadvantages. Therefore, we have developed a new shielding system composed of shielding panels using an active compensation technique. In this study, we evaluated the shielding performance of several unit panels attached together. Numerical and experimental approaches indicated that the shielding factor of a cubic model composed of 24 panels was 17 for uniform fields, and 7 for disturbances due to car movement. Furthermore, the compensation space is larger than that of an ordinary active system using large coils rather than panels. Moreover, the new active compensation system has the important advantage that panels of any shape can be assembled for occasional use because the unit panels are small and light.
Molla, Rostam Ali; Iqubal, Md Asif; Ghosh, Kajari; Kamaluddin; Islam, Sk Manirul
2015-04-14
A new copper-grafted mesoporous poly-melamine-formaldehyde (Cu-mPMF) has been synthesized from melamine and paraformaldehyde in DMSO medium, followed by grafting of Cu(ii) at its surface. Cu-mPMF has been characterized by elemental analysis, powder XRD, HR TEM, FE-SEM, N2 adsorption study, FT-IR, UV-vis DRS, TGA-DTA, EPR spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The Cu-grafted mesoporous material showed very good catalytic activity in methyl esterification of benzylic alcohols and amidation of nitriles. Moreover, the catalyst is easily recoverable and can be reused seven times without appreciable loss of catalytic activity in the above reactions. The highly dispersed and strongly bound Cu(ii) sites in the Cu-grafted mesoporous polymer could be responsible for the observed high activities of the Cu-mPMF catalyst. Due to strong binding with the functional groups of the polymer, no evidence of leached copper from the catalyst during the course of reaction emerged, suggesting true heterogeneity in the catalytic process.
Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak
2012-09-01
The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarswat, Prashant K.; Deka, Nipon; Jagan Mohan Rao, S.; Free, Michael L.; Kumar, Gagan
2017-08-01
The objective of this work is to understand and improve the photocatalytic activity of Cu2ZnSnS4 (CZTS) through postgrowth modification techniques to create surface textures. This objective can be achieved using a combination of solvents, etching agents, and anodization techniques. One of the most effective surface treatments for enhancing the surface properties of photovoltaic materials is formation of nanoscale flakes, although other surface modifications were also evaluated. The superior performance of textured films can be attributed to enhanced surface area of absorber material exposed to electrolyte, ZnS deficiency, and high catalytic activity due to reduced charge-transfer resistance. Fine-tuning of ion flux and electrolyte stoichiometry can be used to create a controlled growth algorithm for CZTS thin films. The resulting information can be utilized to optimize film properties. The utility of nanostructured or engineered surfaces was evaluated using photoelectrochemical measurements. Finite-difference time-domain (FDTD)-assisted simulations were conducted for selected texturing, revealing enhanced surface area of absorbing medium that ultimately resulted in greater power loss of light in the medium.
Development Radar Absorber Material using Rice Husk Carbon for Anechoic Chamber Application
NASA Astrophysics Data System (ADS)
Zulpadrianto, Z.; Yohandri, Y.; Putra, A.
2018-04-01
The developments of radar technology in Indonesia are very strategic due to the vast territory and had a high-level cloud cover more than 55% of the time. The objective of this research is to develop radar technology facility in Indonesia using local natural resources. The target of this research is to present a low cost and satisfy quality of anechoic chambers. Anechoic chamber is a space designed to avoid reflection of EM waves from outside or from within the room. The reflection coefficient of the EM wave is influenced by the medium imposed by the EM wave. In laboratory experimental research has been done the development of material radar absorber using rice husk. The rice husk is activated using HCl and KOH by stirring using a magnetic stirrer for 1 Hours. The results of rice husk activation were measured using a Vector Network Analyzer by varying the thickness of the ingredients and the concentration of the activation agent. The VNA measurement is obtained reflection coefficient of -12dB and. -6.22dB for 1M HCL and KOH at thickness 10mm, respectively.
NASA Astrophysics Data System (ADS)
Rose, P. B.; Erickson, A. S.
2015-11-01
Active interrogation of cargo containers using monoenergetic photons offers a rapid and low-dose approach to search for shielded special nuclear materials. Cherenkov detectors can be used for imaging of the cargo provided that gamma ray energies used in interrogation are well resolved, as the case in 11B(d,n-γ)12C reaction resulting in 4.4 MeV and 15.1 MeV photons. While an array of Cherenkov threshold detectors reduces low energy background from scatter while providing the ability of high contrast transmission imaging, thus confirming the presence of high-Z materials, these detectors require a special approach to energy calibration due to the lack of resolution. In this paper, we discuss the utility of Cherenkov detectors for active interrogation with monoenergetic photons as well as the results of computational and experimental studies of their energy calibration. The results of the studies with sources emitting monoenergetic photons as well as complex gamma ray spectrum sources, for example 232Th, show that calibration is possible as long as the energies of photons of interest are distinct.
Luminescence properties of europium?terbium double activated calcium tungstate phosphor*1
NASA Astrophysics Data System (ADS)
Nazarov, M. V.; Jeon, D. Y.; Kang, J. H.; Popovici, E.-J.; Muresan, L.-E.; Zamoryanskaya, M. V.; Tsukerblat, B. S.
2004-08-01
Double incorporation of Eu 3+ and Tb 3+ ions into a CaWO 4 crystalline lattice modifies the luminescence spectrum due to the formation of new emission centers. Depending on the activators concentration and nature, as well as on the interaction between the activators themselves, the luminescence color can be varied within the entire range of the visible spectrum. Variable luminescence was obtained when CaWO 4:Eu,Tb phosphors with 0-5 mol% activator ions were exposed to relatively low excitation energies as UV (365 and 254 nm). Under high energy excitation such as VUV (147 nm) radiation or electron beam, white light has been observed. This material with controlled properties seems to be promising for the applications in fluorescent lamps, colored lightning for advertisement industries, and other optoelectronic devices.
MCNP simulations of material exposure experiments (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temple, Brian A
2010-12-08
Simulations of proposed material exposure experiments were performed using MCNP6. The experiments will expose ampules containing different materials of interest with radiation to observe the chemical breakdown of the materials. Simulations were performed to map out dose in materials as a function of distance from the source, dose variation between materials, dose variation due to ampule orientation, and dose variation due to different source energy. This write up is an overview of the simulations and will provide guidance on how to use the data in the spreadsheet.
Response of soil dissolved organic matter to microplastic addition in Chinese loess soil.
Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J; Geissen, Violette
2017-10-01
Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but little information is available on the effects of plastic residues, especially microplastic, on soil DOM. We conducted a soil-incubation experiment in a climate-controlled chamber with three levels of microplastic added to loess soil collected from the Loess Plateau in China: 0% (control, CK), 7% (M1) and 28% (M2) (w/w). We analysed the soil contents of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH 4 + , NO 3 - , dissolved organic phosphorus (DOP), and PO 4 3- and the activities of fluorescein diacetate hydrolase (FDAse) and phenol oxidase. The higher level of microplastic addition significantly increased the nutrient contents of the DOM solution. The lower level of addition had no significant effect on the DOM solution during the first seven days, but the rate of DOM decomposition decreased in M1 between days 7 and 30, which increased the nutrient contents. The microplastic facilitated the accumulation of high-molecular-weight humic-like material between days 7 and 30. The DOM solutions were mainly comprised of high-molecular-weight humic-like material in CK and M1 and of high-molecular-weight humic-like material and tyrosine-like material in M2. The Microplastic stimulated the activities of both enzymes. Microplastic addition thus stimulated enzymatic activity, activated pools of organic C, N, and P, and was beneficial for the accumulation of dissolved organic C, N and P. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gascó, G.; Paz-Ferreiro, J.; Araujo, F.; Guerrero, F.; Méndez, A.
2012-04-01
In recent years, an increasing proportion of recycled fibres are used in paper industries due to their important environmental and economical benefits. A ton of pulp produced from recycled paper requires 60% less energy to manufacture than a ton of bleached virgin kraft pulp [1]. However, removing the ink, clay, coatings and contaminants from waste paper in order to produce recycled paper creates large amounts of de-inking paper sludge (DPS). Nowadays, more than 200000 t of DPS were produced in Spain. DPS can be used as amendment due to their high organic matter [2] but the high C/N ratio and the heavy metal content can limit its use. For this reason, the preparation of biochar obtained from pyrolysis process for water remediation [3] and soil contaminated by heavy metal can be an valorisation alternative. The main objective of this work is to study the influence of the biochar application prepared from de-inking sewage sludge in the soil enzyme activities of a contaminated soil by Ni+2 at two different concentrations. For this reason, an incubation experiment was performed and several enzymatic activities (dehydrogenase, b-glucosidase, phosphomoesterase and arylsulphatase) were monitored. The study was completed studying the influence of the biochar application in plant-available metals from soil. [1] Thompson C.G. 1992. Recycled Papers. The Essential Guide, MIT Press, Cambridge. [2] Barriga S., Méndez A., Cámara J., Guerrero F., Gascó G. 2010. Agricultural valorisation of de-inking paper sludge as organic amendment in different soils: Thermal study. Journal of Thermal Analysis and Calorimetry 99: 981-986 [3] Méndez A., Barriga S., Fidalgo J.M., Gascó G. 2009. Adsorbent materials from paper industry waste materials and their use in Cu(II) removal from water. Journal of Hazardous Materials 165: 736-743.
Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes
NASA Astrophysics Data System (ADS)
Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.
2013-03-01
The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.
3D-printed optical active components
NASA Astrophysics Data System (ADS)
Suresh Nair, S.; Nuding, J.; Heinrich, A.
2018-02-01
Additive Manufacturing (AM) has the potential to become a powerful tool in the realization of complex optical components. The primary advantage that meets the eye, is that fabrication of geometrically complicated optical structures is made easier in AM as compared to the conventional fabrication methods (using molds for instance). But this is not the only degree of freedom that AM has to offer. With the multitude of materials suitable for AM in the market, it is possible to introduce functionality into the components one step before fabrication: by altering the raw material. A passive example would be to use materials with varying properties together, in a single manufacturing step, constructing samples with localized refractive indices for instance. An active approach is to blend in materials with distinct properties into the photopolymer resin and manufacturing with this composite material. Our research is currently focused in this direction, with the desired optical property to be introduced being Photoluminescence. Formation of nanocomposite mixtures to produce samples is the current approach. With this endeavor, new sensor systems can be realized, which may be used to measure the absorption spectra of biological samples. Thereby the sample compartment, the optics and the spectral light source (different quantum dots) are 3D-printed in one run. This component can be individually adapted to the biological sample with respect to wavelength, optical and mechanical properties. Here we would like to present our work on the additive manufacturing of an active optical component. Based on the stereolithography method, a monolithic optical component was 3D-printed, showing light emission at different defined wavelengths due to UV excited quantum dots inside the 3D-printed optics.
NASA Astrophysics Data System (ADS)
Park, Harold
2016-04-01
Dielectric elastomers are a class of soft, active materials that have recently gained significant interest due to the fact that they can be electrostatically actuated into undergoing extremely large deformations. An ongoing challenge has been the development of robust and accurate computational models for elastomers, particularly those that can capture electromechanical instabilities that limit the performance of elastomers such as creasing, wrinkling, and snap-through. I discuss in this work a recently developed finite element model for elastomers that is dynamic, nonlinear, and fully electromechanically coupled. The model also significantly alleviates volumetric locking due that arises due to the incompressible nature of the elastomers, and incorporates viscoelasticity within a finite deformation framework. Numerical examples are shown that demonstrate the performance of the proposed method in capturing electromechanical instabilities (snap-through, creasing, cratering, wrinkling) that have been observed experimentally.
Zhu, Yun Pei; Guo, Chunxian; Zheng, Yao; Qiao, Shi-Zhang
2017-04-18
Developing cost-effective and high-performance electrocatalysts for renewable energy conversion and storage is motivated by increasing concerns regarding global energy security and creating sustainable technologies dependent on inexpensive and abundant resources. Recent achievements in the design and synthesis of efficient non-precious-metal and even non-metal electrocatalysts make the replacement of noble metal counterparts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) with earth-abundant elements, for example, C, N, Fe, Mn, and Co, a realistic possibility. It has been found that surface atomic engineering (e.g., heteroatom-doping) and interface atomic or molecular engineering (e.g., interfacial bonding) can induce novel physicochemical properties and strong synergistic effects for electrocatalysts, providing new and efficient strategies to greatly enhance the catalytic activities. In this Account, we discuss recent progress in the design and fabrication of efficient electrocatalysts based on carbon materials, graphitic carbon nitride, and transition metal oxides or hydroxides for efficient ORR, OER, and HER through surface and interfacial atomic and molecular engineering. Atomic and molecular engineering of carbon materials through heteroatom doping with one or more elements of noticeably different electronegativities can maximally tailor their electronic structures and induce a synergistic effect to increase electrochemical activity. Nonetheless, the electrocatalytic performance of chemically modified carbonaceous materials remains inferior to that of their metallic counterparts, which is mainly due to the relatively limited amount of electrocatalytic active sites induced by heteroatom doping. Accordingly, coupling carbon substrates with other active electrocatalysts to produce composite structures can impart novel physicochemical properties, thereby boosting the electroactivity even further. Although the majority of carbon-based materials remain uncompetitive with state-of-the-art metal-based catalysts for the aforementioned catalytic processes, non-metal carbon hybrids have already shown performance that typically only conventional noble metals or transition metal materials can achieve. The idea of hybridized carbon-based catalysts possessing unique active surfaces and macro- or nanostructures is addressed herein. For metal-carbon couples, the incorporation of carbon can effectively compensate for the intrinsic deficiency in conductivity of the metallic components. Chemical modification of carbon frameworks, such as nitrogen doping, not only can change the electron-donor character, but also can introduce anchoring sites for immobilizing active metallic centers to form metal-nitrogen-carbon (M-N-C) species, which are thought to facilitate the electrocatalytic process. With thoughtful material design, control over the porosity of composites, the molecular architecture of active metal moieties and macromorphologies of the whole catalysts can be achieved, leading to a better understanding structure-activity relationships. We hope that we can offer new insight into material design, particularly the role of chemical composition and structural properties in electrochemical performance and reaction mechanisms.
Dynamic pesticide removal with activated carbon fibers.
Martín-Gullón, I; Font, R
2001-02-01
Rapid small-scale minicolumn tests were carried out to simulate the atrazine adsorption in water phase with three pelletized pitch-based activated carbon fibers (ACF) and one commercial granular activated carbon (GAC). Initial atrazine solutions were prepared with pretreated ground water. Minicolumn tests showed that the performance of highly activated carbon fibers (surface area of 1700 m2/g) is around 7 times better than the commercial GAC (with surface area at around 1100 m2/g), whereas carbon fibers with medium activation degree (surface area of 1500 m2/g) had a removal efficiency worse than the commercial carbon. The high removal efficiency of the highly activated ACF is due to the wide-opened microstructure of the material, with an appreciable contribution of the low size mesopores, maintaining at these conditions a fast kinetic adsorption rate rather than a selective adsorbent for micropollutants vs. natural organic matter.
Song, Yan-Yan; Zhang, Dai; Gao, Wei; Xia, Xing-Hua
2005-03-18
A three-dimensionally ordered, macroporous, inverse-opal platinum film was synthesized electrochemically by the inverted colloidal-crystal template technique. The inverse-opal film that contains platinum nanoparticles showed improved electrocatalytic activity toward glucose oxidation with respect to the directly deposited platinum; this improvement is due to the interconnected porous structure and the greatly enhanced effective surface area. In addition, the inverse-opal Pt-film electrode responds more sensitively to glucose than to common interfering species of ascorbic acid, uric acid, and p-acetamidophenol due to their different electrochemical reaction mechanisms. Results showed that the ordered macroporous materials with enhanced selectivity and sensitivity are promising for fabrication of nonenzymatic glucose biosensors.
Aldag, Caroline; Nogueira Teixeira, Diana; Leventhal, Phillip S
2016-01-01
Skin aging is primarily due to alterations in the dermal extracellular matrix, especially a decrease in collagen I content, fragmentation of collagen fibrils, and accumulation of amorphous elastin material, also known as elastosis. Growth factors and cytokines are included in several cosmetic products intended for skin rejuvenation because of their ability to promote collagen synthesis. Matrikines and matrikine-like peptides offer the advantage of growth factor-like activities but better skin penetration due to their much smaller molecular size. In this review, we summarize the commercially available products containing growth factors, cytokines, and matrikines for which there is evidence that they promote skin rejuvenation. PMID:27877059