Science.gov

Sample records for active matrix array

  1. Flexible transistor active matrix array with all screen-printed electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Boyu; Lin, Jiawei; Chan, Paddy K. L.

    2013-09-01

    Flexible transistor active matrix array is fabricated on PEN substrate using all screen-printed gate, source and drain electrodes. Parylene-C and DNTT act as gate dielectric layer and semiconductor, respectively. The transistor possesses high mobility (0.33 cm2V-1 s-1), large on/off ratio (< 106) and low leakage current (~10 pA). Active matrix array consists of 10×10 transistors were demonstrated. Transistors exhibited average mobility of 0.29 cm2V-1s-1 and on/off ratio larger than 104 in array form. In the transistor array, we achieve 75μm channel length and a size of 2 mm × 2 mm for each element in the array which indicates the current screen-printing method has large potential in large-area circuits and display applications.

  2. Toward Active-Matrix Lab-On-A-Chip: Programmable Electrofluidic control Enaled by Arrayed Oxide Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-01

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m x n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm{sup 2} V{sup -1} s{sup -1}, low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 x 5 electrode array connected to a 2 x 5 IGZO thin film transistor array with the semiconductor channel width of 50 {mu}m and mobility of 6.3 cm{sup 2} V{sup -1} s{sup -1}. Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  3. Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors.

    PubMed

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-21

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m×n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm(2) V(-1) s(-1), low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 × 5 electrode array connected to a 2 × 5 IGZO thin film transistor array with the semiconductor channel width of 50 μm and mobility of 6.3 cm(2) V(-1) s(-1). Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  4. Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N. M.; de Rosny, J.; Brenguier, F.; Landès, M.

    2016-03-01

    Modern seismic networks are recording the ground motion continuously at the Earth's surface, providing dense spatial samples of the seismic wavefield. The aim of our study is to analyse these records with statistical array-based approaches to identify coherent time-series as a function of time and frequency. Using ideas mainly brought from the random matrix theory, we analyse the spatial coherence of the seismic wavefield from the width of the covariance matrix eigenvalue distribution. We propose a robust detection method that could be used for the analysis of weak and emergent signals embedded in background noise, such as the volcanic or tectonic tremors and local microseismicity, without any prior knowledge about the studied wavefields. We apply our algorithm to the records of the seismic monitoring network of the Piton de la Fournaise volcano located at La Réunion Island and composed of 21 receivers with an aperture of ˜15 km. This array recorded many teleseismic earthquakes as well as seismovolcanic events during the year 2010. We show that the analysis of the wavefield at frequencies smaller than ˜0.1 Hz results in detection of the majority of teleseismic events from the Global Centroid Moment Tensor database. The seismic activity related to the Piton de la Fournaise volcano is well detected at frequencies above 1 Hz.

  5. Matrix computations on mesh arrays

    SciTech Connect

    Moreno, J.H.

    1989-01-01

    This dissertation addresses the systematic derivation of mesh arrays for matrix computations, in particular realizing the algorithm-specific arrays and mapping algorithms onto class-specific arrays. A data-dependency graph-based transformational method is proposed in a design frame work consisting of two stages, namely algorithm regularization and derivation of arrays. The first stage derives the fully-parallel data-dependency graph (FPG) of an algorithm and transforms this graph into a three-dimensional one with unidirectional nearest-neighbor dependencies (a multi-mesh graph MMG). The second stage transforms the MMG into a two-dimensional G-graph, which is realized as an algorithm-specific array or mapped onto a class-specific array. This stage allows the incorporation of implementation restrictions and the evaluation of tradeoffs in properties of cells, as well as the derivation of arrays for fixed-size data and partitioned problems, while performing optimization of specific performance/cost measures. The proposed method is formalized by presenting a sufficient set of transformations and demonstrating the equivalence of graphs obtained from those transformations. Moreover, it is demonstrated that the MMG representation is always possible, due to the characteristics of the operators. The method has been applied to a collection of matrix algorithms, including matrix multiplication, convolution, matrix decompositions, transitive closure, the Faddeev algorithm, and BBA{sup {minus}1}. The examples show that, in addition to the features listed earlier, this method is easy to apply. Moreover, the method is compared with other techniques, concluding that it is advantageous because it meets evaluation criteria and produces more efficient arrays.

  6. Active aperture phased arrays

    NASA Astrophysics Data System (ADS)

    Shenoy, R. P.

    1989-04-01

    Developments towards the realization of active aperture phased arrays are reviewed. The technology and cost aspects of the power amplifier and phase shifter subsystems are discussed. Consideration is given to research concerning T/R modules, MESFETs, side lobe control, beam steering, optical control techniques, and printed circuit antennas. Methods for configuring the array are examined, focusing on the tile and brick configurations. It is found that there is no technological impediment for introducing active aperture phased arrays.

  7. Application of the T-Matrix Method to the Numerical Modeling of a Linear Active Sonar Array

    DTIC Science & Technology

    2013-06-01

    5 2.1 COMSOL Finite Element Analysis . . . . . . . . . . . . . . . . . . . 5 2.2 Piezoelectric Spherical Thin-Shell Transducer...maximize the directionality and steer optimum acoustic beams . Figure 1.1 shows two examples of volumetric sonar array applications. (a) (b) Figure 1.1...single-transducer, from such as a finite -element model (FEM). This thesis focuses on building a three- dimensional (3D) FEM of a volumetric

  8. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays

    PubMed Central

    Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Du, Hong; Wang, Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William

    2009-01-01

    Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and∕or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 μm. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 μm pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of ∼80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 μm pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or continuous

  9. General Coupling Matrix Synthesis for Decoupling MRI RF Arrays.

    PubMed

    Connell, Ian R O; Menon, Ravi S

    2016-10-01

    Multi-channel radio-frequency (RF) arrays, composed of multiple resonant coils, provide significant benefits for MRI during both signal reception (receive) and excitation (transmit). Demonstration of increased signal-to-noise ratio (SNR) and acceleration factors during parallel acquisitions has lead to the development of receive arrays. Conversely, transmit arrays have demonstrated considerable potential for mitigating excitation inhomogeneity arising at ultra-high magnetic field strengths ( ≥ 7 T) , present due to wave-like interactions inside the sample. Due to geometric constraints, the design of both receive and transmit arrays requires the resonating coils to be closely spaced. Significant overlap in the near-field distributions from each coil results in coupling. Without an adequate decoupling strategy applied between individual elements in an RF array, the MRI performance of the array can be significantly degraded. This work presents a method to design decoupling networks for arbitrarily large RF arrays based on direct synthesis of a coupling matrix. Reflection coefficients are fitted to transfer polynomials with transmission coefficients simultaneously minimized through a nonlinear optimization. The method demonstrates the design of n(th)-order distributed filters and lumped element networks that compensate for all first-order and cross-coupling terms arising in an RF array suitable for MRI. The synthesis results are computed for 4-, 8-, and 32-channel RF arrays. Monte Carlo analyses and experimental results for two RF array constructions demonstrate the robustness of this approach.

  10. Eigenvalues of the sample covariance matrix for a towed array.

    PubMed

    Gerstoft, Peter; Menon, Ravishankar; Hodgkiss, William S; Mecklenbräuker, Christoph F

    2012-10-01

    It is well known that observations of the spatial sample covariance matrix (SCM, also called the cross-spectral matrix) reveal that the ordered noise eigenvalues of the SCM decay steadily, but common models predict equal noise eigenvalues. Random matrix theory (RMT) is used to derive and discuss properties of the eigenvalue spectrum of the data SCM for linear arrays, with an application to ocean acoustic data. Noise on the array is considered either incoherent or propagating acoustic noise that is coherent across the array. Using conventional three-dimensional or two-dimensional isotropic noise models with full or snapshot-deficient observations, realizations of the SCM eigenvalues are explained using RMT. Deep-water towed-array data are analyzed and it is shown that the eigenvalues of the SCM compare well with theory. It is demonstrated how RMT can be applied to study eigenvalue spectrum estimation as dependent on array properties (element spacing to wavelength ratio) and data sampling (snapshots). Apart from explaining the observed noise eigenvalue spectrum, the improved model of the eigenvalue spectrum has important applications in array signal processing.

  11. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  12. Full-matrix capture with a customizable phased array instrument

    NASA Astrophysics Data System (ADS)

    Dao, Gavin; Braconnier, Dominique; Gruber, Matt

    2015-03-01

    In recent years, a technique known as Full-Matrix Capture (FMC) has gained some headway in the NDE community for phased array applications. It's important to understand that FMC is the method that the instrumentation acquires the ultrasonic signals, but further post-processing is required in software to create a meaningful image for a particular application. Having a flexible software interface, small form factor, excellent signal-to-noise ratio per acquisition channel on a 64/64 or 128/128 phased array module with FMC capability proves beneficial in both industrial implementation and in further investigation of post-processing techniques. This paper will provide an example of imaging with a 5MHz linear phased array transducer with 128 elements using FMC and a popular post-processing algorithm known as Total-Focus Method (TFM).

  13. MATRIX DISCRIMINANT ANALYSIS WITH APPLICATION TO COLORIMETRIC SENSOR ARRAY DATA.

    PubMed

    Zhong, Wenxuan; Suslick, Kenneth S

    2015-09-01

    With the rapid development of nano-technology, a "colorimetric sensor array" (CSA) which is referred to as an optical electronic nose has been developed for the identification of toxicants. Unlike traditional sensors which rely on a single chemical interaction, CSA can measure multiple chemical interactions by using chemo-responsive dyes. The color changes of the chemo-responsive dyes are recorded before and after exposure to toxicants and serve as a template for classification. The color changes are digitalized in the form of a matrix with rows representing dye effects and columns representing the spectrum of colors. Thus, matrix-classification methods are highly desirable. In this article, we develop a novel classification method, matrix discriminant analysis (MDA), which is a generalization of linear discriminant analysis (LDA) for the data in matrix form. By incorporating the intrinsic matrix-structure of the data in discriminant analysis, the proposed method can improve CSA's sensitivity and more importantly, specificity. A penalized MDA method, PMDA, is also introduced to further incorporate sparsity structure in discriminant function. Numerical studies suggest that the proposed MDA and PMDA methods outperform LDA and other competing discriminant methods for matrix predictors. The asymptotic consistency of MDA is also established. R code and data are available online as supplementary material.

  14. Tissue matrix arrays for high throughput screening and systems analysis of cell function

    PubMed Central

    Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.

    2015-01-01

    Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475

  15. Tissue matrix arrays for high-throughput screening and systems analysis of cell function.

    PubMed

    Beachley, Vince Z; Wolf, Matthew T; Sadtler, Kaitlyn; Manda, Srikanth S; Jacobs, Heather; Blatchley, Michael R; Bader, Joel S; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H

    2015-12-01

    Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here we spotted tissue extracellular matrix (ECM) particles as two-dimensional (2D) arrays or incorporated them with cells to generate three-dimensional (3D) cell-matrix microtissue arrays. We then investigated the responses of human stem, cancer and immune cells to tissue ECM arrays originating from 11 different tissues. We validated the 2D and 3D arrays as representative of the in vivo microenvironment by means of quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes after culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and further understanding of regeneration and disease mechanisms.

  16. Matrix phased arrays for the inspection of CFRP-components

    NASA Astrophysics Data System (ADS)

    Kreutzbruck, M.; Brackrock, D.; Brekow, G.; Montag, H.-J.; Boehm, R.; Illerhaus, B.

    2014-02-01

    Lightweight components are increasingly used in different industrial sectors such as transportation, energy generation and automotive. This growing field includes different types of CFRP-structures, hybrid materials and glued components showing - compared to their pure metallic counterparts- a significant more complicated structure in terms of internal interfaces and anisotropy of material parameters. In this work we present the use of matrix phased array to increase the amount of obtained information to enhance the inspection quality. We used different types of carbon materials such as 6 mm thick uni- and bidirectional prepreg specimens containing impact damages. The latter were introduced with different energy levels ranging from 1.3 to 7.2 J. By scanning a 2.25 MHz matrix array with 6 × 10 elements above the prepreg surface and using different angels of incidence a complete 3D-image was generated which allows the detection of defects as small as 1mm in a depth of 4 mm. A comparison with conventional approaches show that the signal-to-noise ratio can be highly increased. This enables us to visualize the region of damage within the impact zone, clearly showing the cone-like damage distribution along increasing material depth. The detection quality allows the estimation of the opening angles of the cone shaped damage, which can be used for further evaluation and quantitation of energy dependent impact damages.

  17. Matrix phased arrays for the inspection of CFRP-components

    SciTech Connect

    Kreutzbruck, M.; Brackrock, D.; Brekow, G.; Montag, H.-J.; Boehm, R.; Illerhaus, B.

    2014-02-18

    Lightweight components are increasingly used in different industrial sectors such as transportation, energy generation and automotive. This growing field includes different types of CFRP-structures, hybrid materials and glued components showing - compared to their pure metallic counterparts- a significant more complicated structure in terms of internal interfaces and anisotropy of material parameters. In this work we present the use of matrix phased array to increase the amount of obtained information to enhance the inspection quality. We used different types of carbon materials such as 6 mm thick uni- and bidirectional prepreg specimens containing impact damages. The latter were introduced with different energy levels ranging from 1.3 to 7.2 J. By scanning a 2.25 MHz matrix array with 6 × 10 elements above the prepreg surface and using different angels of incidence a complete 3D-image was generated which allows the detection of defects as small as 1mm in a depth of 4 mm. A comparison with conventional approaches show that the signal-to-noise ratio can be highly increased. This enables us to visualize the region of damage within the impact zone, clearly showing the cone-like damage distribution along increasing material depth. The detection quality allows the estimation of the opening angles of the cone shaped damage, which can be used for further evaluation and quantitation of energy dependent impact damages.

  18. Anderson attractors in active arrays

    PubMed Central

    Laptyeva, Tetyana V.; Tikhomirov, Andrey A.; Kanakov, Oleg I.; Ivanchenko, Mikhail V.

    2015-01-01

    In dissipationless linear media, spatial disorder induces Anderson localization of matter, light, and sound waves. The addition of nonlinearity causes interaction between the eigenmodes, which results in a slow wave diffusion. We go beyond the dissipationless limit of Anderson arrays and consider nonlinear disordered systems that are subjected to the dissipative losses and energy pumping. We show that the Anderson modes of the disordered Ginsburg-Landau lattice possess specific excitation thresholds with respect to the pumping strength. When pumping is increased above the threshold for the band-edge modes, the lattice dynamics yields an attractor in the form of a stable multi-peak pattern. The Anderson attractor is the result of a joint action by the pumping-induced mode excitation, nonlinearity-induced mode interactions, and dissipative stabilization. The regimes of Anderson attractors can be potentially realized with polariton condensates lattices, active waveguide or cavity-QED arrays. PMID:26304462

  19. UAVSAR Active Electronically Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.

    2011-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection

  20. The Use of Scattering Matrix to Model Multi-Modal Array Inspection with the Tfm

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.

    2009-03-01

    The scattering coefficient matrix describes the far field amplitude of scattered signals from a scatterer as a function of incident and scattering angles. In this paper an FE model is used to predict scattering matrices. By combining the predicted scattering coefficient matrix with a ray tracing model to predict the full matrix of array data, an efficient forward model of the complete array inspection process is presented. Longitudinal wave, shear waves and wave mode conversions are considered in the model. The TFM images for various wave mode combination cases from a weld sample are predicted and measured. Results show that by selecting the optimum array mode combination a good image for a given defect in the weld sample can be produced using an array. It is also shown how the model can be used to optimize the array inspection configuration.

  1. Development of matrix photoreceivers based on carbon nanotubes array

    NASA Astrophysics Data System (ADS)

    Blagov, E. V.; Gerasimenko, A. Y.; Dudin, A. A.; Ichkitidze, L. P.; Kitsyuk, E. P.; Orlov, A. P.; Pavlov, A. A.; Polokhin, A. A.; Shaman, Yu. P.

    2016-04-01

    The technology of production of matrix photoreceivers based on carbon nanotubes (CNTs) consisting of 16 sensitive elements was developed. Working wavelength range, performance and sensitivity were studied.

  2. Active Matrix OLED Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  3. Active floating micro electrode arrays (AFMA).

    PubMed

    Kim, T; Troyk, P R; Bak, M

    2006-01-01

    Neuroscientists have widely used metal microelectrodes inserted into the cortex to record neural signals from, and provide electrical stimulation to, neural tissue for many years. Recently, the demand for implanting electrode arrays within the cortex, for both stimulation and recording, has rapidly increased. We are developing Active-floating-micro-electrode-arrays (AFMA) that are intended for use as a multielectrode cortical interface while minimizing the number of wires leading from the array to extra-dural circuitry or connectors. When combined with a wireless module, these new microelectrode arrays should allow for simulation and recording within free-roaming animals. This paper mainly discusses the design, fabrication, and packing of the first generation AFMA. Our long-term vision is a wireless-transmission electrode system, for stimulation and recording in free-roaming animals, which uses a family of modular active implantable electrode arrays.

  4. SMI adaptive antenna arrays for weak interfering signals. [Sample Matrix Inversion

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.

    1986-01-01

    The performance of adaptive antenna arrays in the presence of weak interfering signals (below thermal noise) is studied. It is shown that a conventional adaptive antenna array sample matrix inversion (SMI) algorithm is unable to suppress such interfering signals. To overcome this problem, the SMI algorithm is modified. In the modified algorithm, the covariance matrix is redefined such that the effect of thermal noise on the weights of adaptive arrays is reduced. Thus, the weights are dictated by relatively weak signals. It is shown that the modified algorithm provides the desired interference protection.

  5. MATRIX DISCRIMINANT ANALYSIS WITH APPLICATION TO COLORIMETRIC SENSOR ARRAY DATA

    PubMed Central

    Suslick, Kenneth S.

    2014-01-01

    With the rapid development of nano-technology, a “colorimetric sensor array” (CSA) which is referred to as an optical electronic nose has been developed for the identification of toxicants. Unlike traditional sensors which rely on a single chemical interaction, CSA can measure multiple chemical interactions by using chemo-responsive dyes. The color changes of the chemo-responsive dyes are recorded before and after exposure to toxicants and serve as a template for classification. The color changes are digitalized in the form of a matrix with rows representing dye effects and columns representing the spectrum of colors. Thus, matrix-classification methods are highly desirable. In this article, we develop a novel classification method, matrix discriminant analysis (MDA), which is a generalization of linear discriminant analysis (LDA) for the data in matrix form. By incorporating the intrinsic matrix-structure of the data in discriminant analysis, the proposed method can improve CSA’s sensitivity and more importantly, specificity. A penalized MDA method, PMDA, is also introduced to further incorporate sparsity structure in discriminant function. Numerical studies suggest that the proposed MDA and PMDA methods outperform LDA and other competing discriminant methods for matrix predictors. The asymptotic consistency of MDA is also established. R code and data are available online as supplementary material. PMID:26783371

  6. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    DOEpatents

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  7. Matrix replacement route to vertically aligned nickel nanowire array/polydimethylsiloxane nanocomposite film

    NASA Astrophysics Data System (ADS)

    Meng, Xin; Zhou, Liang-Tian; Zhu, Ji-Xiang; Song, Jie; Wang, Xuan-Rui; Qiao, Zheng-Ping

    2008-12-01

    Vertically aligned magnetic anisotropic nickel (Ni) nanowire (NW) array/polydimethylsiloxane (PDMS) film was prepared from (Ni NW array)/anodic aluminum oxide by a simple matrix replacement route. The main challenge is to preserve the parallelly aligned Ni NW during replacement. The diameter and thickness of the as-prepared Ni NW and the Ni NW array/PDMS film are 8 mm and 60 μm, respectively. The magnetic property measurement shows that the film has remarkably enhanced coercivity and remanence ratio compared to that of bulk nickel and exhibits perpendicular magnetic anisotropy.

  8. Matrix phased array (MPA) imaging technology for resistance spot welds

    SciTech Connect

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  9. Matrix phased array (MPA) imaging technology for resistance spot welds

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  10. A 20 GHz Active Receive Slot Array

    NASA Technical Reports Server (NTRS)

    Tulintseff, A. N.; Lee, K.; Sukamto, L.; Chew, W.

    1994-01-01

    A 20 GHz active receive slot array has been developed for operation in the downlink frequency band of NASA's Advanced Communication Technology Satellite (ACTS) for the ACTS Mobile Terminal (AMT) project. The AMT is to demonstrate voice and data communication between a mobile terminal in Los Angeles, California, and a fixed terminal in Cleveland, Ohio, via the ACTS satellite.

  11. Optical matrix for clock distribution and synchronous operation in two-dimensional array devices

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Shu, C.

    1996-06-01

    A scheme to generate an optical matrix from a mode-locked Nd:YAG laser has been theoretically explored and experimentally demonstrated. The matrix consists of highly synchronized and sequentially delayed optical pulses suitable for use with two-dimensional array optoelectronic devices and clock distribution system. The output pulses have the same state of polarization and no timing jitter is produced among the elements. Encoded outputs have been generated from the matrix using a set of photomasks. This technique can be applied to high-speed optical parallel processing.

  12. Large Active Retrodirective Arrays for Space Applications

    NASA Technical Reports Server (NTRS)

    Chernoff, R. C.

    1978-01-01

    An active retrodirective array (ARA) electronically points a microwave beam back at the apparent source of an incident pilot signal. Retrodirectivity is the result of phase conjugation of the pilot signal received by each element of the array. The problem of supplying the correct phase reference to the phase conjugation circuit (PCC) associated with each element of the array is solved by central phasing. By eliminating the need for structural rigidity, central phasing confers a decisive advantage on ARA's as large spaceborne antennas. A new form of central phasing suitable for very large arrays is described. ARA's may easily be modified to serve both as transmitting and receiving arrays simultaneously. Two new kinds of exact, frequency translating PCC's are described. Such PCC's provide the ARA with input-output isolation and freedom from squint. The pointing errors caused by the radial and transverse components of the ARA's velocity, by the propagation medium, and by multipath are discussed. A two element ARA breadboard was built and tested at JPL. Its performance is limited primarily by multipath induced errors.

  13. Densely Packed 2-D Matrix-Addressable Vertical-Cavity Surface-Emitting Laser Arrays

    NASA Astrophysics Data System (ADS)

    Gadallah, Abdel-Sattar; Michalzik, Rainer

    2013-03-01

    We report on design, manufacturing, and characterization of densely packed top-emitting 16 × 16 elements wire-bonded matrix-addressable vertical-cavity surface-emitting laser (VCSEL) arrays, which may find future applications such as non-mechanical particle movement with optical multi-tweezers, confocal microscopy or free-space communications with beam steering capability. The factors that control the packing density such as layer structure, mask design, and VCSEL processing are investigated, aiming to minimize the pitch between VCSELs in the array. Both wet-etched and dry-etched arrays are presented and discussed. The single transverse mode VCSELs in the two-dimensional (2-D) matrix-addressable architecture have threshold currents which vary from 0.5 to 1.6 mA and maximum output powers between 2.4 and 4 mW. A simple analysis of the parasitic ohmic resistances is made.

  14. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    PubMed Central

    Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2015-01-01

    Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm2 and the total size of the detector head is 47.8 × 46.3 mm2. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can resolve

  15. Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method.

    PubMed

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D

    2016-09-19

    Laser ultrasonics is a technique where lasers are employed to generate and detect ultrasound. A data collection method (full matrix capture) and a post processing imaging algorithm, the total focusing method, both developed for ultrasonic arrays, are modified and used in order to enhance the capabilities of laser ultrasonics for nondestructive testing by improving defect detectability and increasing spatial resolution. In this way, a laser induced ultrasonic phased array is synthesized. A model is developed and compared with experimental results from aluminum samples with side drilled holes and slots at depths of 5 - 20 mm from the surface.

  16. Ultrasonic Phased Array Inspection of Flaws on Weld Fusion Faces Using Full Matrix Capture

    NASA Astrophysics Data System (ADS)

    Long, R.; Russell, J.; Cawley, P.; Habgood, N.

    2009-03-01

    Work is being conducted to develop phased array inspection of stainless steel welded pipes. Ideally this uses waves reflected and mode converted at the inner surface of the pipe, but most commercial phased array controllers do not currently provide for this. Our solution was to use Full Matrix Capture (FMC) and process the data ourselves. This paper explains the FMC principle, describes the signal processing algorithms along with introducing the Almost Total Focusing Method (ATFM) and illustrates how the processed data was presented. The inspections were also modeled using the CEA CIVA software and compared to experimental results.

  17. Pathway-Focused Arrays Reveal Increased Matrix Metalloproteinase-7 (Matrilysin) Transcription in Trachomatous Trichiasis

    PubMed Central

    Jeffries, David; Pattison, Michael; Korr, Gerit; Gall, Alevtina; Joof, Hassan; Manjang, Ahmed; Burton, Matthew J.; Mabey, David C. W.; Bailey, Robin L.

    2010-01-01

    Purpose. Several genes that are associated with protection from or susceptibility to trachomatous trichiasis (TT) have been identified through genetic association studies. Yet there have been few studies in which gene expression profiles were assessed in TT cases and disease-free controls. The purpose was to identify genes that are differentially expressed in the upper tarsal conjunctiva of subjects with TT. Method. Pathway-focused gene arrays were used to screen conjunctival RNA expression of 226 gene transcripts of interest. The screening was followed by validation of differentially expressed genes by qRT-PCR on an independent set of samples. Three different techniques were then used to test for quantitative differences in the recovered conjunctival protein fraction. Results. Focused arrays identified a set of 13 differentially expressed genes. Validation by qRT-PCR confirmed differential expression in four of these genes (COL1A1, COL7A1, MMP7, and TLR6). Increased expression of MMP7 was the only consistent differentially regulated gene in the conjunctival samples of trichiasis subjects. MMP7 was present in isolated conjunctival proteins and in the tissue culture supernatants of peripheral blood lymphocytes after stimulation. Conclusions. There is an imbalance in extracellular matrix turnover with minimal contribution of adaptive immune responses at this stage of trichiasis. There was little evidence of broad differential expression in genes characteristic of polar responses of adaptive T cells or macrophages. The control of the MMP7 response and its activity appears significant in the fibrotic changes observed in TT. PMID:20375326

  18. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1981-10-01

    Optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays is discussed, and the two types of cooling are compared. Passive cooling is more cost-effective for Fresnel lens arrays while the reverse is true for parabolic-trough arrays.

  19. Short-Lag Spatial Coherence Imaging on Matrix Arrays, Part I: Beamforming Methods and Simulation Studies

    PubMed Central

    Hyun, Dongwoon; Trahey, Gregg E.; Jakovljevic, Marko; Dahl, Jeremy J.

    2014-01-01

    Short-lag spatial coherence (SLSC) imaging is a beamforming technique that has demonstrated improved imaging performance compared with conventional B-mode imaging in previous studies. Thus far, the use of 1-D arrays has limited coherence measurements and SLSC imaging to a single dimension. Here, the SLSC algorithm is extended for use on 2-D matrix array transducers and applied in a simulation study examining imaging performance as a function of subaperture configuration and of incoherent channel noise. SLSC images generated with a 2-D array yielded superior contrast-to-noise ratio (CNR) and texture SNR measurements over SLSC images made on a corresponding 1-D array and over B-mode imaging. SLSC images generated with square subapertures were found to be superior to SLSC images generated with subapertures of equal surface area that spanned the whole array in one dimension. Subaperture beamforming was found to have little effect on SLSC imaging performance for subapertures up to 8 × 8 elements in size on a 64 × 64 element transducer. Additionally, the use of 8 × 8, 4 × 4, and 2 × 2 element subapertures provided 8, 4, and 2 times improvement in channel SNR along with 2640-, 328-, and 25-fold reduction in computation time, respectively. These results indicate that volumetric SLSC imaging is readily applicable to existing 2-D arrays that employ subaperture beamforming. PMID:24960700

  20. Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies.

    PubMed

    Hyun, Dongwoon; Trahey, Gregg E; Jakovljevic, Marko; Dahl, Jeremy J

    2014-07-01

    Short-lag spatial coherence (SLSC) imaging is a beamforming technique that has demonstrated improved imaging performance compared with conventional B-mode imaging in previous studies. Thus far, the use of 1-D arrays has limited coherence measurements and SLSC imaging to a single dimension. Here, the SLSC algorithm is extended for use on 2-D matrix array transducers and applied in a simulation study examining imaging performance as a function of subaperture configuration and of incoherent channel noise. SLSC images generated with a 2-D array yielded superior contrast-to-noise ratio (CNR) and texture SNR measurements over SLSC images made on a corresponding 1-D array and over B-mode imaging. SLSC images generated with square subapertures were found to be superior to SLSC images generated with subapertures of equal surface area that spanned the whole array in one dimension. Subaperture beamforming was found to have little effect on SLSC imaging performance for subapertures up to 8 x 8 elements in size on a 64 × 64 element transducer. Additionally, the use of 8 x 8, 4 x 4, and 2 x 2 element subapertures provided 8, 4, and 2 times improvement in channel SNR along with 2640-, 328-, and 25-fold reduction in computation time, respectively. These results indicate that volumetric SLSC imaging is readily applicable to existing 2-D arrays that employ subaperture beamforming.

  1. Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation

    SciTech Connect

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Dubcek, P.; Drazic, G.; Salamon, K.; Bernstorff, S.; Holy, V.

    2009-08-10

    We demonstrate the production of a well ordered three-dimensional array of Ge quantum dots in amorphous silica matrix. The ordering is achieved by ion beam irradiation and annealing of a multilayer film. Structural analysis shows that quantum dots nucleate along the direction of the ion beam used for irradiation, while the mutual distance of the quantum dots is determined by the diffusion properties of the multilayer material rather than the distances between traces of ions that are used for irradiation.

  2. Defect characterization using an ultrasonic array to measure the scattering coefficient matrix.

    PubMed

    Zhang, Jie; Drinkwater, Bruce W; Wilcox, Paul D

    2008-10-01

    Ultrasonic nondestructive evaluation is used for detection, characterization, and sizing of defects. The accurate sizing of defects that are of similar or less size than the ultrasonic wavelength is of particular importance in assessing structural integrity. In this paper, we demonstrate how measurement of the scattering coefficient matrix of a cracklike defect can be used to obtain its size, shape, and orientation. The scattering coefficient matrix describes the far field amplitude of scattered signals from a scatterer as a function of incident and scattering angles. A finite element (FE) modeling procedure is described that predicts the scattering coefficient matrix of various cracklike defects. Experimental results are presented using a commercial 64-element, 5 MHz array on 2 aluminum test samples that contain several machined slots and through thickness circular holes. To minimize the interference from the reflections of neighboring defects, a subarray approach is used to focus ultrasound on each target defect in turn and extract its scattering coefficient matrices. A circular hole and a fine slot can be clearly distinguished by their different scattering coefficient matrices over a specific range of incident angles and scattering angles. The orientation angles of slots directly below the array are deduced from the measured scattering coefficient matrix to an accuracy of a few degrees, and their lengths are determined with an error of 10%.

  3. Ultrasonic array imaging of multilayer structures using full matrix capture and extended phase shift migration

    NASA Astrophysics Data System (ADS)

    Wu, Haiteng; Chen, Jian; Yang, Keji; Hu, Xuxiao

    2016-04-01

    Multilayer structures have been widely used in industrial fields, and non-destructive evaluation of these structures is of great importance to assure their quality and performance. Recently, ultrasonic array imaging using full matrix capture, e.g. the total focusing method (TFM), has been shown to increase sensitivity to small defects and improve imaging resolution in homogeneous media. However, it cannot be applied to multilayer structures directly, due to the sound velocity variation in different layers and because refraction occurs at layer interfaces, which gives rise to difficulties in determining the propagation path and time. To overcome these problems, an extended phase shift migration (EPSM) is proposed for the full matrix imaging of multilayer structures in this paper. Based on the theory of phase shift migration for monostatic pulse-echo imaging, full matrix imaging using EPSM is derived by extrapolating the wavefields in both transmission and reception, and extended to the multilayer case. The performance of the proposed algorithm is evaluated by full matrix imaging of a two-layer structure with side-drilled holes conducted both in the simulation and the experiment. The results verify that the proposed algorithm is capable of full matrix imaging of a layered structure with a high resolution and signal-to-noise ratio. For comparison, full matrix imaging using the TFM with root-mean-squared velocity is also performed, and the results demonstrate that the proposed algorithm is superior to the TFM in improving both the image quality and resolution.

  4. General linear codes for fault-tolerant matrix operations on processor arrays

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Abraham, J. A.

    1988-01-01

    Various checksum codes have been suggested for fault-tolerant matrix computations on processor arrays. Use of these codes is limited due to potential roundoff and overflow errors. Numerical errors may also be misconstrued as errors due to physical faults in the system. In this a set of linear codes is identified which can be used for fault-tolerant matrix operations such as matrix addition, multiplication, transposition, and LU-decomposition, with minimum numerical error. Encoding schemes are given for some of the example codes which fall under the general set of codes. With the help of experiments, a rule of thumb for the selection of a particular code for a given application is derived.

  5. Tailorable chiroptical activity of metallic nanospiral arrays

    NASA Astrophysics Data System (ADS)

    Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng

    2016-02-01

    The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications.The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation

  6. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1980-01-01

    The optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays are discussed, and the two types of cooling are compared. Passive cooling is more cost effective than active for Fresnel lens arrays while the reverse is true for parabolic trough arrays. The analysis produced several other conclusions of interest which are also discussed.

  7. A surfactant-based, regularly arrayed nanostructure gel matrix for migration of small molecules.

    PubMed

    Kato, Masaru; Suwanai, Yusuke; Shimojima, Atsushi; Santa, Tomofumi

    2012-11-01

    The preparation of nanometer-scale pores, or nanopores, has become easy because of the progress in nanotechnology. Surfactants are promising materials for the preparation of nanostructures containing nanopores, because surfactants form many different phase structures, including cubic, micellar, and lamellar structures. We prepared a gel matrix with a cubic structure from a commercially available surfactant, polyoxyethylene(50) lauryl ether (C12EO50, Adekatol LA-50). This gel matrix had regularly arrayed nanopores between the packed spherical micelles. We used the gel to separate biomolecules by means of slab gel electrophoresis. The gel was applicable to migration of amino acids and peptides; however, larger molecules, such as proteins and single-walled carbon nanotubes, did not migrate through the gel. We concluded that the pore size was too small for the penetration of large molecules, and that only small molecules could penetrate the gel matrix. The migration mechanism of small molecules was similar to that observed in conventional gel electrophoresis. We concluded that the gel matrix prepared from surfactant is a promising matrix for migration and purification of small molecules. We also expect that the gel can be used as a nanoscale filter to trap large molecules, allowing only small molecules to pass.

  8. Design and development of high frequency matrix phased-array ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Spencer, Roger L.

    2012-05-01

    High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.

  9. Full matrix capture and the total focusing imaging algorithm using laser induced ultrasonic phased arrays

    NASA Astrophysics Data System (ADS)

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D.

    2017-02-01

    Laser ultrasonics is a technique where lasers are used for the generation and detection of ultrasound instead of conventional piezoelectric transducers. The technique is broadband, non-contact, and couplant free, suitable for large stand-off distances, inspection of components of complex geometries and hazardous environments. In this paper, array imaging is presented by obtaining the full matrix of all possible laser generation, laser detection combinations in the array (Full Matrix Capture), at the nondestructive, thermoelastic regime. An advanced imaging technique developed for conventional ultrasonic transducers, the Total Focusing Method (TFM), is adapted for laser ultrasonics and then applied to the captured data, focusing at each point of the reconstruction area. In this way, the beamforming and steering of the ultrasound is done during the post processing. A 1-D laser induced ultrasonic phased array is synthesized with significantly improved spatial resolution and defect detectability. In this study, shear waves are used for the imaging, since they are more efficiently produced than longitudinal waves in the nondestructive, thermoelastic regime. Experimental results are presented from nondestructive, laser ultrasonic inspection of aluminum samples with side drilled holes and slots at depths varying between 5 and 20mm from the surface.

  10. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    SciTech Connect

    Du, Junwei Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2015-02-15

    Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm{sup 2} and the total size of the detector head is 47.8 × 46.3 mm{sup 2}. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system

  11. The wavenumber algorithm for full-matrix imaging using an ultrasonic array.

    PubMed

    Hunter, Alan J; Drinkwater, Bruce W; Wilcox, Paul D

    2008-11-01

    Ultrasonic imaging using full-matrix capture, e.g., via the total focusing method (TFM), has been shown to increase angular inspection coverage and improve sensitivity to small defects in nondestructive evaluation. In this paper, we develop a Fourier-domain approach to full-matrix imaging based on the wavenumber algorithm used in synthetic aperture radar and sonar. The extension to the wavenumber algorithm for full-matrix data is described and the performance of the new algorithm compared with the TFM, which we use as a representative benchmark for the time-domain algorithms. The wavenumber algorithm provides a mathematically rigorous solution to the inverse problem for the assumed forward wave propagation model, whereas the TFM employs heuristic delay-and-sum beamforming. Consequently, the wavenumber algorithm has an improved point-spread function and provides better imagery. However, the major advantage of the wavenumber algorithm is its superior computational performance. For large arrays and images, the wavenumber algorithm is several orders of magnitude faster than the TFM. On the other hand, the key advantage of the TFM is its flexibility. The wavenumber algorithm requires a regularly sampled linear array, while the TFM can handle arbitrary imaging geometries. The TFM and the wavenumber algorithm are compared using simulated and experimental data.

  12. Fabrication and biological evaluation of uniform extracellular matrix coatings on discontinuous photolithography generated micropallet arrays

    PubMed Central

    Gunn, Nicholas M.; Bachman, Mark; Li, Guann-Pyng; Nelson, Edward L.

    2010-01-01

    ABSTRACT/SYNOPSIS The recent identification of rare cell populations within tissues that are associated with specific biological behaviors, e.g., progenitor cells, has illuminated a limitation of current technologies to study such adherent cells directly from primary tissues. The micropallet array is a recently developed technology designed to address this limitation by virtue of its capacity to isolate and recover single adherent cells on individual micropallets. The capacity to apply this technology to primary tissues and cells with restricted growth characteristics, particularly adhesion requirements, is critically dependent upon the capacity to generate functional extracellular matrix (ECM) coatings. The discontinuous nature of the micropallet array surface provides specific constraints on the processes for generating the desired ECM coatings that are necessary to achieve the full functional capacity of the micropallet array. We have developed strategies, reported herein, to generate functional coatings with various ECM protein components: fibronectin, EHS tumor basement membrane extract, collagen, and laminin-5; confirmed by evaluation for rapid cellular adherence of four dissimilar cell types: fibroblast, breast epithelial, pancreatic epithelial, and myeloma. These findings are important for the dissemination and expanded use of micropallet arrays and similar microtechnologies requiring the integrated use of ECM protein coatings to promote cellular adherence. PMID:20648537

  13. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  14. Active Vibration Damping of Solar Arrays

    NASA Astrophysics Data System (ADS)

    Reinicke, Gunar; Baier, Horst; Grillebeck, Anton; Scharfeld, Frank; Hunger, Joseph; Abou-El-Ela, A.; Lohberg, Andreas

    2012-07-01

    Current generations of large solar array panels are lightweight and flexible constructions to reduce net masses. They undergo strong vibrations during launch. The active vibration damping is one convenient option to reduce vibration responses and limit stresses in facesheets. In this study, two actuator concepts are used for vibration damping. A stack interface actuator replaces a panel hold down and is decoupled from bending moments and shear forces. Piezoelectric patch actuators are used as an alternative, where the number, position and size of actuators are mainly driven by controllability analyses. Linear Quadratic Gaussian control is used to attenuate vibrations of selected mode shapes with both actuators. Simulations as well as modal and acoustic tests show the feasibility of selected actuator concepts.

  15. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  16. Array-on-Array Strategy For Activity-Based Enzyme Profiling.

    PubMed

    Sieow, Brendan Fu-Long; Uttamchandani, Mahesh

    2017-01-01

    We describe a novel array on array strategy intended to enhance the throughput of enzymatic activity screening using microarrays. This strategy consists of spotting a first array with large droplets of enzymes with varying concentrations and subsequently spotting a second array with small droplets of fluorogenic substrate on top of the enzyme array. By varying the array on array spotting patterns of different classes of enzyme (e.g., proteases, phosphatases, kinases) and their corresponding fluorogenic substrates, we have the unprecedented ability for testing enzymes and mixed samples in a multiplexed fashion within a single microarray slide. This new approach enables rapid enzyme characterization building upon a one enzyme on one slide droplet-based screening concept previously established.

  17. Short-lag Spatial Coherence Imaging on Matrix Arrays Part II: Phantom and In Vivo Experiments

    PubMed Central

    Jakovljevic, Marko; Byram, Brett C.; Hyun, Dongwoon; Dahl, Jeremy J.; Trahey, Gregg E.

    2014-01-01

    In Part I of the paper, we demonstrated through simulation the potential of volumetric Short-lag Spatial Coherence (SLSC) imaging to improve visualization of hypoechoic targets in three dimensions. Here, we demonstrate the application of volumetric SLSC imaging in phantom and in vivo experiments using a clinical 3-D ultrasound scanner and matrix array. Using a custom single-channel acquisition tool, we collected partially beamformed channel data from the fully sampled matrix array at high speeds and created matched B-mode and SLSC volumes of a vessel phantom and in vivo liver vasculature. 2-D and 3-D images rendered from the SLSC volumes display reduced clutter and improved visibility of the vessels when compared to their B-mode counterparts. We use concurrently acquired color Doppler volumes to confirm the presence of the vessels of interest and to define the regions inside the vessels used in contrast and CNR calculations. SLSC volumes show higher CNR values than their matched B-mode volumes while the contrast values appear to be similar between the two imaging methods. PMID:24960701

  18. Graphene microelectrode arrays for neural activity detection.

    PubMed

    Du, Xiaowei; Wu, Lei; Cheng, Ji; Huang, Shanluo; Cai, Qi; Jin, Qinghui; Zhao, Jianlong

    2015-09-01

    We demonstrate a method to fabricate graphene microelectrode arrays (MEAs) using a simple and inexpensive method to solve the problem of opaque electrode positions in traditional MEAs, while keeping good biocompatibility. To study the interface differences between graphene-electrolyte and gold-electrolyte, graphene and gold electrodes with a large area were fabricated. According to the simulation results of electrochemical impedances, the gold-electrolyte interface can be described as a classical double-layer structure, while the graphene-electrolyte interface can be explained by a modified double-layer theory. Furthermore, using graphene MEAs, we detected the neural activities of neurons dissociated from Wistar rats (embryonic day 18). The signal-to-noise ratio of the detected signal was 10.31 ± 1.2, which is comparable to those of MEAs made with other materials. The long-term stability of the MEAs is demonstrated by comparing differences in Bode diagrams taken before and after cell culturing.

  19. DOA Estimation Based on Real-Valued Cross Correlation Matrix of Coprime Arrays

    PubMed Central

    Li, Jianfeng; Wang, Feng; Jiang, Defu

    2017-01-01

    A fast direction of arrival (DOA) estimation method using a real-valued cross-correlation matrix (CCM) of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the common results from the two subarrays. Compared to partial spectral search (PSS) method and estimation of signal parameter via rotational invariance (ESPRIT) based method for coprime arrays, the proposed algorithm has lower complexity but achieves better DOA estimation performance and handles more sources. Simulation results verify the effectiveness of the approach. PMID:28335536

  20. High voltage protection in active matrix flat-panel imagers

    NASA Astrophysics Data System (ADS)

    Lehnert, Joerg; Zhao, Wei

    2006-03-01

    Various direct and indirect active matrix flat-panel imagers (AMFPI) are being investigated for x-ray imaging. In both direct AMFPI and indirect AMFPI with avalanche gain, a bias potential up to several thousand volts is required to operate the photoconductor. Under the condition of a large amount of radiation exposure between subsequent readout, a potential >80 V could appear across the amorphous silicon (a-Si) thin film transistor (TFT) and cause permanent damage. The purpose of this paper is to investigate a simple pixel design for high voltage protection. The pixel electrode acts as an additional gate for the top channel of an a-Si TFT to drain excess image charge from the pixel electrode until an equilibrium is reached where the TFT channel current equals the detector signal current at a predetermined safe maximum value V Pmax for the pixel potential. This "dual-gate" TFT structure without additional protective device simplifies the TFT array design and improves yield. However special care is required to understand the characteristics of both the top and the bottom gates to ensure sufficient detector dynamic range as well as reliable high voltage protection. A physical model for dual-gate a-Si TFTs was developed and device parameters were determined by fitting the model to measured characteristics from a dual-gate TFT array. Our results showed that compared to the bottom (normal) gate, the protective gate has a shallower transfer characteristics (i.e. channel current as a function of gate voltage) due to a higher density of states in the top interface. Nevertheless it provides adequate protection of the TFT with V Pmax of ~40 V for typical radiographic exposures.

  1. Curved Ferroelectric Liquid Crystal Matrix Displays Driven by Field-Sequential-Color and Active-Matrix Techniques

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Sato, Hiroto; Murashige, Takeshi; Fujisaki, Yoshihide; Kurita, Taiichiro; Furukawa, Tadahiro; Sato, Fumio

    This paper describes a curved field-sequential-color matrix display using fast-response ferroelectric liquid crystal. Black matrix and transparent electrode patterns were formed on a thin plastic substrate by a transfer method from a glass substrate. While a composite film of liquid crystal and micro-polymers of walls and fibers was formed between the flexible substrates by printing, laminating and curing processes of a solution of monomers and liquid crystal, the mechanical stability was enhanced by use of multi-functional monomers to form large display panels. The image pixels of the matrix panel were driven by an active matrix scheme using an external switch transistor array at a frequency of 180 Hz for intermittent three-primary-color backlight illumination. The flexible A4-paper-sized color display with 24 × 16 pixels and 60 Hz field frequency was demonstrated by illuminating it with sequential three-primary-color lights from light-emitting diodes of the backlight. Our display system is useful in various information displays because of its freedom of setting and location.

  2. Flow integration transform: detecting shapes in matrix-array 3D ultrasound data

    NASA Astrophysics Data System (ADS)

    Stetten, George D.; Caines, Michael; von Ramm, Olaf T.

    1995-03-01

    Matrix-array ultrasound produces real-time 3D images of the heart, by employing a square array of transducers to steer the ultrasound beam in three dimensions electronically with no moving parts. Other 3D modalities such as MR, MUGA, and CT require the use of gated studies, which combine many cardiac cycles to produce a single average cycle. Three- dimensional ultrasound eliminates this restriction, in theory permitting the continuous measurement of cardiac ventricular volume, which we call the volumetricardiogram. Towards implementing the volumetricardiogram, we have developed the flow integration transform (FIT), which operates on a 2D slice within the volumetric ultrasound data. The 3D ultrasound machine's scan converter produces a set of such slices in real time, at any desired location and orientation, to which the FIT may then be applied. Although lacking rotational or scale invariance, the FIT is designed to operate in dedicated hardware where an entire transform could be completed within a few microseconds with present integrated circuit technology. This speed would permit the application of a large battery of test shapes, or the evolution of the test shape to converge on that of the actual target.

  3. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Erpelding, Todd N.; Jankovic, Ladislav; Guo, Zijian; Robert, Jean-Luc; David, Guillaume; Wang, Lihong V.

    2012-06-01

    We present an integrated photoacoustic and ultrasonic three-dimensional (3-D) volumetric imaging system based on a two-dimensional (2-D) matrix array ultrasound probe. A wavelength-tunable dye laser pumped by a Q-switched Nd:YAG laser serves as the light source and a modified commercial ultrasound imaging system (iU22, Philips Healthcare) with a 2-D array transducer (X7-2, Philips Healthcare) detects both the pulse-echo ultrasound and photoacoustic signals. A multichannel data acquisition system acquires the RF channel data. The imaging system enables rendering of co-registered 3-D ultrasound and photoacoustic images without mechanical scanning. The resolution along the azimuth, elevation, and axial direction are measured to be 0.69, 0.90 and 0.84 mm for photoacoustic imaging. In vivo 3-D photoacoustic mapping of the sentinel lymph node was demonstrated in a rat model using methylene blue dye. These results highlight the clinical potential of 3-D PA imaging for identification of sentinel lymph nodes for cancer staging in humans.

  4. Light focusing and two-dimensional imaging through scattering media using the photoacoustic transmission matrix with an ultrasound array.

    PubMed

    Chaigne, Thomas; Gateau, Jérôme; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain

    2014-05-01

    We implement the photoacoustic transmission matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.

  5. Numerical methods for matrix computations using arrays of processors. Final report, 15 August 1983-15 October 1986

    SciTech Connect

    Golub, G.H.

    1987-04-30

    The basic objective of this project was to consider a large class of matrix computations with particular emphasis on algorithms that can be implemented on arrays of processors. In particular, methods useful for sparse matrix computations were investigated. These computations arise in a variety of applications such as the solution of partial differential equations by multigrid methods and in the fitting of geodetic data. Some of the methods developed have already found their use on some of the newly developed architectures.

  6. Active alignment scheme for the MPTS array

    SciTech Connect

    Iwasaki, R.

    1980-01-01

    In order to maximize the efficiency of the microwave power transmission system (MPTS), the surface of the array antenna must be extremely flat, which is difficult to achieve using passive techniques over the 1 km dimensions of the array. In order to achieve and maintain this required flatness, a rotating laser beam used for leveling applications on earth has been utilized as a reference system. A photoconductive sensor with a reflective collecting surface is used to determine the displacement and polarity of any misalignment and automatically engage a stepping motor to drive a variable-length mechanism to make the necessary corrections. A three-point subarray alignment arrangement is described which independently adjusts, in the three orthogonal directions, the height and tilt of subarrays within the MPTS array and readily adapts to any physical distortions of the secondary structure (such as that resulting from severe temperature extremes caused by an eclipse of the sun.

  7. Limiting spectral distribution of the sample covariance matrix of the windowed array data

    NASA Astrophysics Data System (ADS)

    Yazdian, Ehsan; Gazor, Saeed; Bastani, Mohammad Hasan

    2013-12-01

    In this article, we investigate the limiting spectral distribution of the sample covariance matrix (SCM) of weighted/windowed complex data. We use recent advances in random matrix theory and describe the distribution of eigenvalues of the doubly correlated Wishart matrices. We obtain an approximation for the spectral distribution of the SCM obtained from windowed data. We also determine a condition on the coefficients of the window, under which the fragmentation of the support of noise eigenvalues can be avoided, in the noise-only data case. For the commonly used exponential window, we derive an explicit expression for the l.s.d of the noise-only data. In addition, we present a method to identify the support of eigenvalues in the general case of signal-plus-noise. Simulations are performed to support our theoretical claims. The results of this article can be directly employed in many applications working with windowed array data such as source enumeration and subspace tracking algorithms.

  8. Post-Processing of the Full Matrix of Ultrasonic Transmit-Receive Array Data for Guided Wave Pipe Inspection

    NASA Astrophysics Data System (ADS)

    Velichko, A.; Wilcox, P. D.

    2009-03-01

    The paper describes a method for processing data from a guided wave transducer array on a pipe. The raw data set from such an array contains the full matrix of time-domain signals from each transmitter-receiver combination. It is shown that for certain configurations of an array the total focusing method can be applied which allows the array to be focused at every point on a pipe surface in both transmission and reception. The effect of array configuration parameters on the sensitivity of the proposed method to the random and coherent noise is discussed. Experimental results are presented using electromagnetic acoustic transducers (EMAT) for exciting and detecting the S0 Lamb wave mode in a 12 inch steel pipe at 200 kHz excitation frequency. The results show that using the imaging algorithm a 2-mm-diameter (0.08 wavelength) half-thickness hole can be detected.

  9. Detail of array panels, Face B, with active and terminated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of array panels, Face B, with active and terminated dipole elements - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  10. Usefulness of three-dimensionally guided assessment of mitral stenosis using matrix-array ultrasound.

    PubMed

    Sebag, Igal A; Morgan, John G; Handschumacher, Mark D; Marshall, Jane E; Nesta, Francesca; Hung, Judy; Picard, Michael H; Levine, Robert A

    2005-10-15

    Two-dimensional (2-D) planimetry is limited by the technical demands, time, and observer variability required to locate the minimal orifice area, limiting the confident clinical reporting of mitral valve area (MVA). In 27 consecutive patients, MVA was determined independently by 2 observers using the conventional 2-D method and a new 3-D-guided method. Using a matrix-array probe, the valve was visualized in a long-axis view and a cursor steered to intersect the leaflet tips and provide a perpendicular short-axis plane viewed side-by-side. Two-dimensional and 3-D-guided methods allowed planimetry in 24 patients. Consistent with better orifice localization, 3-D guidance eliminated the overestimation of internal orifice diameters in the planimetered short-axis view relative to the limiting diameter defined by the long-axis view (for 3-D guidance, 0.73 +/- 0.20 vs 0.73 +/- 0.21 cm, p = 0.98, vs 0.90 +/- 0.27 cm in the 2-D short-axis view, p <0.01). Accordingly, mean values for the smallest orifice area by 3-D guidance were less than by 2-D imaging (1.4 +/- 0.5 vs 1.5 +/- 0.5 cm(2), p <0.01), changing the clinical severity classification in 11 of 24 patients (46%). The 2-D method also overestimated MVA relative to 3-D guidance compared with Doppler pressure halftime and (n = 6) Gorlin areas. Phantom studies verified no differences in resolution for the 2 acquisition modes. Three-dimensional guidance reduced intraobserver variability from 9.8% to 3.8% (SEE 0.14 to 0.06 cm(2), p <0.01) and interobserver variability from 10.6% to 6.1% (SEE 0.15 to 0.09 cm(2), p <0.02). In conclusion, matrix-array technology provides a feasible and highly reproducible direct 3-D-guided method for measuring the limiting mitral orifice area.

  11. Activated chemoreceptor arrays remain intact and hexagonally packed

    PubMed Central

    Briegel, Ariane; Beeby, Morgan; Thanbichler, Martin; Jensen, Grant J.

    2013-01-01

    Summary Bacterial chemoreceptors cluster into exquisitively sensitive, tunable, highly ordered, polar arrays. While these arrays serve as paradigms of cell signalling in general, it remains unclear what conformational changes transduce signals from the periplasmic tips, where attractants and repellents bind, to the cytoplasmic signalling domains. Conflicting reports support and contest the hypothesis that activation causes large changes in the packing arrangement of the arrays, up to and including their complete disassembly. Using electron cryotomography, here we show that in Caulobacter crescentus, chemoreceptor arrays in cells grown in different media and immediately after exposure to the attractant galactose all exhibit the same 12 nm hexagonal packing arrangement, array size and other structural parameters. ΔcheB and ΔcheR mutants mimicking attractant- or repellent-bound states prior to adaptation also show the same lattice structure. We conclude that signal transduction and amplification must be accomplished through only small, nanoscale conformational changes. PMID:21992450

  12. High performance organic transistor active-matrix driver developed on paper substrate

    NASA Astrophysics Data System (ADS)

    Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.

    2014-09-01

    The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V-1s-1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up.

  13. High performance organic transistor active-matrix driver developed on paper substrate

    PubMed Central

    Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.

    2014-01-01

    The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V−1s−1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up. PMID:25234244

  14. Active pixel sensor array with multiresolution readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.

  15. Membrane type-1 matrix metalloprotease-independent activation of pro-matrix metalloprotease-2 by proprotein convertases.

    PubMed

    Koo, Bon-Hun; Kim, Hee-Hyun; Park, Michael Y; Jeon, Ok-Hee; Kim, Doo-Sik

    2009-11-01

    Matrix metalloprotease-2 is implicated in many biological processes and degrades extracellular and non-extracellular matrix molecules. Matrix metalloprotease-2 maintains a latent state through a cysteine-zinc ion pairing which, when disrupted, results in full enzyme activation. This pairing can be disrupted by a conformational change or cleavage within the propeptide. The best known activation mechanism for pro-matrix metalloprotease-2 occurs via cleavage of the propeptide by membrane type-1 matrix metalloprotease. However, significant residual activation of pro-matrix metalloprotease-2 is seen in membrane type-1 matrix metalloprotease knockout mice and in fibroblasts treated with metalloprotease inhibitors. These findings indicate the presence of a membrane type-1 matrix metalloprotease-independent activation mechanism for pro-matrix metalloprotease-2 in vivo, which prompted us to explore an alternative activation mechanism for pro-matrix metalloprotese-2. In this study, we demonstrate membrane type-1 matrix metalloprotease-independent propeptide processing of matrix metalloprotease-2 in HEK293F and various tumor cell lines, and show that proprotein convertases can mediate the processing intracellularly as well as extracellularly. Furthermore, processed matrix metalloprotease-2 exhibits enzymatic activity that is enhanced by intermolecular autolytic cleavage. Thus, our experimental data, taken together with the broad expression of proprotein convertases, suggest that the proprotein convertase-mediated processing may be a general activation mechanism for pro-matrix metalloprotease-2 in vivo.

  16. Sensitivity- and effort-gain analysis: multilead ECG electrode array selection for activation time imaging.

    PubMed

    Hintermüller, Christoph; Seger, Michael; Pfeifer, Bernhard; Fischer, Gerald; Modre, Robert; Tilg, Bernhard

    2006-10-01

    Methods for noninvasive imaging of electric function of the heart might become clinical standard procedure the next years. Thus, the overall procedure has to meet clinical requirements as an easy and fast application. In this paper, we propose a new electrode array which improves the resolution of methods for activation time imaging considering clinical constraints such as easy to apply and compatibility with routine leads. For identifying the body-surface regions where the body surface potential (BSP) is most sensitive to changes in transmembrane potential (TMP), a virtual array method was used to compute local linear dependency (LLD) maps. The virtual array method computes a measure for the LLD in every point on the body surface. The most suitable number and position of the electrodes within the sensitive body surface regions was selected by constructing effort gain (EG) plots. Such a plot depicts the relative attainable rank of the leadfield matrix in relation to the increase in number of electrodes required to build the electrode array. The attainable rank itself was computed by a detector criterion. Such a criterion estimates the maximum number of source space eigenvectors not covered by noise when being mapped to the electrode space by the leadfield matrix and recorded by a detector. From the sensitivity maps, we found that the BSP is most sensitive to changes in TMP on the upper left frontal and dorsal body surface. These sensitive regions are covered best by an electrode array consisting of two L-shaped parts of approximately 30 cm x 30 cm and approximately 20 cm x 20 cm. The EG analysis revealed that the array meeting clinical requirements best and improving the resolution of activation time imaging consists of 125 electrodes with a regular horizontal and vertical spacing of 2-3 cm.

  17. In vivo liver tracking with a high volume rate 4D ultrasound scanner and a 2D matrix array probe

    NASA Astrophysics Data System (ADS)

    Lediju Bell, Muyinatu A.; Byram, Brett C.; Harris, Emma J.; Evans, Philip M.; Bamber, Jeffrey C.

    2012-03-01

    The effectiveness of intensity-modulated radiation therapy (IMRT) is compromised by involuntary motion (e.g. respiration, cardiac activity). The feasibility of processing ultrasound echo data to automatically estimate 3D liver motion for real-time IMRT guidance was previously demonstrated, but performance was limited by an acquisition speed of 2 volumes per second due to hardware restrictions of a mechanical linear array probe. Utilizing a 2D matrix array probe with parallel receive beamforming offered increased acquisition speeds and an opportunity to investigate the benefits of higher volume rates. In vivo livers of three volunteers were scanned with and without respiratory motion at volume rates of 24 and 48 Hz, respectively. Respiration was suspended via voluntary breath hold. Correlation-based, phase-sensitive 3D speckle tracking was applied to consecutively acquired volumes of echo data. Volumes were omitted at fixed intervals and 3D speckle tracking was re-applied to study the effect of lower scan rates. Results revealed periodic motion that corresponded with the heart rate or breathing cycle in the absence or presence of respiration, respectively. For cardiac-induced motion, volume rates for adequate tracking ranged from 8 to 12 Hz and was limited by frequency discrepancies between tracking estimates from higher and lower frequency scan rates. Thus, the scan rate of volume data acquired without respiration was limited by the need to sample the frequency induced by the beating heart. In respiratory-dominated motion, volume rate limits ranged from 4 to 12 Hz, interpretable from the root-mean-squared deviation (RMSD) from tracking estimates at 24 Hz. While higher volume rates yielded RMSD values less than 1 mm in most cases, lower volume rates yielded RMSD values of 2-6 mm.

  18. In vivo liver tracking with a high volume rate 4D ultrasound scanner and a 2D matrix array probe.

    PubMed

    Bell, Muyinatu A Lediju; Byram, Brett C; Harris, Emma J; Evans, Philip M; Bamber, Jeffrey C

    2012-03-07

    The effectiveness of intensity-modulated radiation therapy (IMRT) is compromised by involuntary motion (e.g. respiration, cardiac activity). The feasibility of processing ultrasound echo data to automatically estimate 3D liver motion for real-time IMRT guidance was previously demonstrated, but performance was limited by an acquisition speed of 2 volumes per second due to hardware restrictions of a mechanical linear array probe. Utilizing a 2D matrix array probe with parallel receive beamforming offered increased acquisition speeds and an opportunity to investigate the benefits of higher volume rates. In vivo livers of three volunteers were scanned with and without respiratory motion at volume rates of 24 and 48 Hz, respectively. Respiration was suspended via voluntary breath hold. Correlation-based, phase-sensitive 3D speckle tracking was applied to consecutively acquired volumes of echo data. Volumes were omitted at fixed intervals and 3D speckle tracking was re-applied to study the effect of lower scan rates. Results revealed periodic motion that corresponded with the heart rate or breathing cycle in the absence or presence of respiration, respectively. For cardiac-induced motion, volume rates for adequate tracking ranged from 8 to 12 Hz and was limited by frequency discrepancies between tracking estimates from higher and lower frequency scan rates. Thus, the scan rate of volume data acquired without respiration was limited by the need to sample the frequency induced by the beating heart. In respiratory-dominated motion, volume rate limits ranged from 4 to 12 Hz, interpretable from the root-mean-squared deviation (RMSD) from tracking estimates at 24 Hz. While higher volume rates yielded RMSD values less than 1 mm in most cases, lower volume rates yielded RMSD values of 2-6 mm.

  19. Development and final design of FAME active array

    NASA Astrophysics Data System (ADS)

    Farkas, Szigfrid; Agócs, Tibor; Aitink-Kroes, Gabby; Bettonvil, Felix; Black, Martin; Hugot, Emmanuel; Jaskó, Attila; Miller, Chris; Schnetler, Hermine; van Duffelen, Farian; Venema, Lars

    2016-07-01

    FAME (Freeform Active Mirror Experiment - part of the FP7 OPTICON/FP7 development programme) intends to demonstrate the huge potential of active mirrors and freeform optical surfaces. Freeform active surfaces can help to address the new challenges of next generation astronomical instruments, which are bigger, more complex and have tighter specifications than their predecessors. The FAME design consists of a pre-formed, deformable thin mirror sheet with an active support system. The thin face sheet provides a close to final surface shape with very high surface quality. The active array provides the support, and through actuation, the control to achieve final surface shape accuracy. In this paper the development path, trade-offs and demonstrator design of the FAME active array is presented. The key step in the development process of the active array is the design of the mechanical structure and especially the optimization of the actuation node positions, where the actuator force is transmitted to the thin mirror sheet. This is crucial for the final performance of the mirror where the aim is to achieve an accurate surface shape, with low residual (high order) errors using the minimum number of actuators. These activities are based on the coupling of optical and mechanical engineering, using analytical and numerical methods, which results in an active array with optimized node positions and surface shape.

  20. Low-volume multiplexed proteolytic activity assay and inhibitor analysis through a pico-injector array.

    PubMed

    Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Lauffenburger, Doug A; Chen, Chia-Hung

    2015-02-21

    Secreted active proteases, from families of enzymes such as matrix metalloproteinases (MMPs) and ADAMs (a disintegrin and metalloproteinases), participate in diverse pathological processes. To simultaneously measure multiple specific protease activities, a series of parallel enzyme reactions combined with a series of inhibitor analyses for proteolytic activity matrix analysis (PrAMA) are essential but limited due to the sample quantity requirements and the complexity of performing multiple reactions. To address these issues, we developed a pico-injector array to generate 72 different reactions in picoliter-volume droplets by controlling the sequence of combinational injections, which allowed simultaneous recording of a wide range of multiple enzyme reactions and measurement of inhibitor effects using small sample volumes (~10 μL). Multiple MMP activities were simultaneously determined by 9 different substrates and 2 inhibitors using injections from a pico-injector array. Due to the advantages of inhibitor analysis, the MMP/ADAM activities of MDA-MB-231, a breast cancer cell line, were characterized with high MMP-2, MMP-3 and ADAM-10 activity. This platform could be customized for a wide range of applications that also require multiple reactions with inhibitor analysis to enhance the sensitivity by encapsulating different chemical sensors.

  1. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays.

    PubMed

    Lin, Shu-Ping; Kyriakides, Themis R; Chen, Jia-Jin J

    2009-06-01

    Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in situ on the self-assembled monolayer modified MEAs. FTIR spectrum analysis revealed a peak at 2100 cm(-1) due to the degradation of the structure of the 3D matrix. After 2 wks, microscopic examination revealed that the non-degraded area was around 1500 microm(2) and provided enough space for cell growth. Fluorescence microscopy revealed that the degraded 3D matrix was non-cytotoxic allowing the growth of NIH3T3 fibroblasts and cortical neurons in vitro. Time-course changes of total impedance including resistance and reactance were recorded for 8 days to evaluate the cell growth in the 3D matrix on the MEA. A consistent trend reflecting changes of reactance and total impedance was observed. These in-vitro assays demonstrate that our 3D matrix can construct a biomimetic system for cell growth and analysis of cell surface interactions.

  2. Relative dosimetry using active matrix flat-panel imager (AMFPI) technology.

    PubMed

    El-Mohri, Y; Antonuk, L E; Yorkston, J; Jee, K W; Maolinbay, M; Lam, K L; Siewerdsen, J H

    1999-08-01

    The first examination of the use of active matrix flat-panel arrays for dosimetry in radiotherapy is reported. Such arrays are under widespread development for diagnostic and radiotherapy imaging. In the current study, an array consisting of 512 x 512 pixels with a pixel pitch of 508 microm giving an area of 26 x 26 cm2 has been used. Each pixel consists of a light sensitive amorphous silicon (a-Si:H) photodiode coupled to an a-Si:H thin-film transistor. Data was obtained from the array using a dedicated electronics system allowing real-time data acquisition. In order to examine the potential of such arrays as quality assurance devices for radiotherapy beams, field profile data at photon energies of 6 and 15 MV were obtained as a function of field size and thickness of overlying absorbing material (solid water). Two detection configurations using the array were considered: a configuration (similar to the imaging configuration) in which an overlying phosphor screen is used to convert incident radiation to visible light photons which are detected by the photodiodes; and a configuration without the screen where radiation is directly sensed by the photodiodes. Compared to relative dosimetry data obtained with an ion chamber, data taken using the former configuration exhibited significant differences whereas data obtained using the latter configuration was generally found to be in close agreement. Basic signal properties, which are pertinent to dosimetry, have been investigated through measurements of individual pixel response for fluoroscopic and radiographic array operation. For signal levels acquired within the first 25% of pixel charge capacity, the degree of linear response with dose was found to be better than 99%. The independence of signal on dose rate was demonstrated by means of stability of pixel response over the range of dose rates allowed by the radiation source (80-400 MU/min). Finally, excellent long-term stability in pixel response, extending over a 2

  3. Catechol-based matrix metalloproteinase inhibitors with additional antioxidative activity.

    PubMed

    Tauro, Marilena; Laghezza, Antonio; Loiodice, Fulvio; Piemontese, Luca; Caradonna, Alessia; Capelli, Davide; Montanari, Roberta; Pochetti, Giorgio; Di Pizio, Antonella; Agamennone, Mariangela; Campestre, Cristina; Tortorella, Paolo

    2016-01-01

    New catechol-containing chemical entities have been investigated as matrix metalloproteinase inhibitors as well as antioxidant molecules. The combination of the two properties could represent a useful feature due to the potential application in all the pathological processes characterized by increased proteolytic activity and radical oxygen species (ROS) production, such as inflammation and photoaging. A series of catechol-based molecules were synthesized and tested for both proteolytic and oxidative inhibitory activity, and the detailed binding mode was assessed by crystal structure determination of the complex between a catechol derivative and the matrix metalloproteinase-8. Surprisingly, X-ray structure reveals that the catechol oxygens do not coordinates the zinc atom.

  4. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  5. Active pixel sensor array with electronic shuttering

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  6. Effect of matrix on the electrochemical characteristics of TiO₂ nanotube array-based PbO₂ electrode for pollutant degradation.

    PubMed

    Hu, Zhongxin; Zhou, Minghua; Zhou, Lei; Li, Yunlin; Zhang, Chao

    2014-01-01

    A series of lead dioxide electrodes developed on titania nanotube arrays with different matrix were fabricated by electrodeposition. Before the deposition of PbO₂, the matrix of this anode was electrochemically reduced in (NH₄)₂SO₄ solution and/or pre-deposited with certain amounts of copper. To gain insight into these pretreatments, the PbO₂ electrodes were characterized by SEM, LSV, and XRD, and their electrocatalytic activities for pollutant degradation were compared using p-nitrophenol (p-NP) as a model. It was confirmed that the electrochemical reduction with (NH4)₂SO₄ resulted in the partial conversion of TiO₂ into Ti₄O₇ and Ti₅O₉, which increased the conductivity of PbO₂ anode, but decreased its electrochemical activity, while the Ti/TNTs*-Cu/PbO₂ electrode with both pretreatments possessed the highest oxygen evolution overpotential of 2.5 V (vs. SCE) and low substrate resistance. After a 180-min treatment on this electrode, the removal efficiency of p-NP reached 82.5% and the COD removal achieved 42.5% with the energy consumption of 9.45 kWh m(-3), demonstrating the best performance among these electrodes with different matrices. Therefore, this titania nanotube array-based PbO₂ electrode has a promising application in the industrial wastewater treatment.

  7. General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2007-01-01

    A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).

  8. BICEP2/Keck Array. VII. Matrix Based E/B Separation Applied to Bicep2 and the Keck Array

    NASA Astrophysics Data System (ADS)

    BICEP2 Collaboration; Keck Array Collaboration; Ade, P. A. R.; Ahmed, Z.; Aikin, R. W.; Alexander, K. D.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Bowens-Rubin, R.; Brevik, J. A.; Buder, I.; Bullock, E.; Buza, V.; Connors, J.; Crill, B. P.; Duband, L.; Dvorkin, C.; Filippini, J. P.; Fliescher, S.; Grayson, J.; Halpern, M.; Harrison, S.; Hildebrandt, S. R.; Hilton, G. C.; Hui, H.; Irwin, K. D.; Kang, J.; Karkare, K. S.; Karpel, E.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Megerian, K. G.; Namikawa, T.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W., IV; Orlando, A.; Pryke, C.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Steinbach, B.; Sudiwala, R. V.; Teply, G. P.; Thompson, K. L.; Tolan, J. E.; Tucker, C.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wiebe, D. V.; Willmert, J.; Wong, C. L.; Wu, W. L. K.; Yoon, K. W.

    2016-07-01

    A linear polarization field on the sphere can be uniquely decomposed into an E-mode and a B-mode component. These two components are analytically defined in terms of spin-2 spherical harmonics. Maps that contain filtered modes on a partial sky can also be decomposed into E-mode and B-mode components. However, the lack of full sky information prevents orthogonally separating these components using spherical harmonics. In this paper, we present a technique for decomposing an incomplete map into E and B-mode components using E and B eigenmodes of the pixel covariance in the observed map. This method is found to orthogonally define E and B in the presence of both partial sky coverage and spatial filtering. This method has been applied to the Bicep2 and the Keck Array maps and results in reducing E to B leakage from ΛCDM E-modes to a level corresponding to a tensor-to-scalar ratio of r\\lt 1× {10}-4.

  9. Self-organized arrays of graphene and few-layer graphene quantum dots in fluorographene matrix: Charge transient spectroscopy

    SciTech Connect

    Antonova, Irina V.; Nebogatikova, Nadezhda A.; Prinz, Victor Ya.

    2014-05-12

    Arrays of graphene or few-layer graphene quantum dots (QDs) embedded in a partially fluorinated graphene matrix were created by chemical functionalization of layers. Charge transient spectroscopy employed for investigation of obtained QD systems (size 20–70 nm) has allowed us to examine the QD energy spectra and the time of carrier emission (or charge relaxation) from QDs as a function of film thickness. It was found that the characteristic time of carrier emission from QDs decreased markedly (by about four orders of magnitude) on increasing the QD thickness from one graphene monolayer to 3 nm. Daylight-assisted measurements also demonstrate a strong decrease of the carrier emission time.

  10. Stochastic propagation of an array of parallel cracks: Exploratory work on matrix fatigue damage in composite laminates

    SciTech Connect

    Williford, R.E.

    1989-09-01

    Transverse cracking of polymeric matrix materials is an important fatigue damage mechanism in continuous-fiber composite laminates. The propagation of an array of these cracks is a stochastic problem usually treated by Monte Carlo methods. However, this exploratory work proposes an alternative approach wherein the Monte Carlo method is replaced by a more closed-form recursion relation based on fractional Brownian motion.'' A fractal scaling equation is also proposed as a substitute for the more empirical Paris equation describing individual crack growth in this approach. Preliminary calculations indicate that the new recursion relation is capable of reproducing the primary features of transverse matrix fatigue cracking behavior. Although not yet fully tested or verified, this cursion relation may eventually be useful for real-time applications such as monitoring damage in aircraft structures.

  11. Electrokinetic microactuator arrays for active sublayer control of turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Diez-Garias, Francisco J.

    2002-09-01

    The present study has been the first to examine the electrokinetic principle as the basis for a new class of microscale actuator arrays for active sublayer control on full scale aeronautical and hydronautical vehicles under realistic operating conditions. The Helmholtz-Smoluchowski scalings that govern such electrokinetic actuator arrays show significant performance advantages from their miniaturization to the microscale. The electrokinetic microactuator arrays that are the subject of this study seek to interrupt the bursting process associated with naturally-occurring streamwise sublayer vortices in the turbulent boundary layer. Specific performance requirements for microactuator spacing, flow rate, and frequency response for active sublayer control have been determined from fundamental scaling laws for the streamwise vortical structures in the sublayer of turbulent boundary layers. In view of the inherently local nature of the sublayer dynamics, a general system architecture for microactuator arrays appropriate for active sublayer control has been developed based on the concept of relatively small and independent "unit cells", each with their own sensing, processing, and actuation capability, that greatly simplifies the sensing and processing requirements needed to achieve practical sublayer control. A fundamental three-layer design has been developed for such electrokinetic microactuator arrays, in which electrokinetic flow is induced by an impulsively applied electric field across a center layer, with a bottom layer containing an electrolyte reservoir and a common electrode, and a top layer that containing individual electrodes and lead-outs for each microactuator in the unit cell. Microfabrication techniques have been developed that permit mass production of large numbers of individual electrokinetic microactuators in unit cells on comparatively large-area tiles. Several generations of such electrokinetic microactuator arrays have been built leading to the

  12. Spherical loudspeaker array for local active control of sound.

    PubMed

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  13. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  14. Full-matrix capture and USB3.0 for open platform phased array instruments

    NASA Astrophysics Data System (ADS)

    Dao, Gavin; Lallement, Rémi; Carcreff, Ewen; Braconnier, Dominique

    2016-02-01

    Nondestructive evaluation (NDE) using ultrasonic waves is an efficient technique to assess industrial component integrity. The use of array probes enables inspection flexibility and advanced imaging techniques such as the total focusing method (TFM). In particular, the TFM imaging approach tremendously increases the quantity of data compared to conventional ultrasonic testing. Data transfer rates from the ultrasonic equipment to the computer are therefore continuously increasing due to large quantities of data and high speed inspections. In this work, we propose to use a USB 3.0 communication protocol for high speed throughput in a phased array device. To our knowledge, such protocol has not be proposed before for such an equipment. In this paper, we show that this protocol offers high transfer rates and is suitably adapted to ultrasonic inspection with array probes.

  15. Ionospheric effects in active retrodirective array and mitigating system design

    NASA Technical Reports Server (NTRS)

    Nandi, A. K.; Tomita, C. Y.

    1980-01-01

    The operation of an active retrodirective array (ARA) in an ionospheric environment (that is either stationary or slowly-varying) was examined. The restrictions imposed on the pilot signal structure as a result of such operation were analyzed. A 3 tone pilot beam system was defined which first estimates the total electron content along paths of interest and then utilizes this information to aid the phase conjugator so that correct beam pointing can be achieved.

  16. General Matrix Inversion for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    NASA Technical Reports Server (NTRS)

    Mach, D. M.; Koshak, W. J.

    2006-01-01

    We have developed a matrix calibration procedure that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. Our calibration method is being used with all of our aircraft/electric field sensing combinations and can be generalized to any reasonable combination of electric field measurements and aircraft. We determine a calibration matrix that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or de-emphasized (for example, due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate our calibration technique, we present data from several of our aircraft programs (ER-2, DC-8, Altus, Citation).

  17. Jet-Printed Active-Matrix Backplanes and Electrophoretic Displays

    NASA Astrophysics Data System (ADS)

    Daniel, Jurgen; Arias, Ana Claudia; Wong, William; Lujan, Rene; Ready, Steve; Krusor, Brent; Street, Robert

    2007-03-01

    The fabrication of large-area electronics, such as active-matrix pixel circuits in flat-panel displays, is becoming increasingly challenging. Particularly for applications such as electronic paper, flexibility of the display and fabrication at extremely low cost is important. Therefore, novel fabrication methods have to be explored. We have developed jet-printing technology to fabricate active-matrix backplanes for paper-like electrophoretic displays. In three approaches we implement several stages of evolution of the printing technology. First, the photolithographic patterning of photoresist used in conventional fabrication is replaced by digital printing of a wax etch mask. Second, the amorphous silicon semiconductor for the thin-film-transistors is replaced with a printed organic semiconductor. Third, the active-matrix pixel circuit is fabricated in an all-additive printing process. In order to test our backplanes we are developing electrophoretic display media. The media is based on microfabricated cell-structures which contain the electrophoretic ink. Particularly for flexible displays, the cells have to be individually sealed and several methods are being explored.

  18. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.

    PubMed

    Watson, Steve P

    2009-01-01

    The prevention of excessive blood loss to avoid fatal haemorrhage is a pivotal process for all organisms possessing a circulatory system. Increased circulating blood volume and pressure, as required in larger animals, make this process all the more important and challenging. It is essential to have a powerful and rapid system to detect damage and generate an effective seal, and which is also exquisitely regulated to prevent unwanted, excessive or systemic activation so as to avoid blockage of vessels. Thus, a highly specialised and efficient haemostatic system has evolved that consists of cellular (platelets) and protein (coagulation factors) components. Importantly, this is able to support haemostasis in both the low shear environment of the venous system and the high shear environment of the arterial system. Endothelial cells, lining the entire circulation system, play a crucial role in the delicate balance between activation and inhibition of the haemostatic system. An intact and healthy endothelium supports blood flow by preventing attachment of cells and proteins which is required for initiation of coagulation and platelet activation. Endothelial cells produce and release the two powerful soluble inhibitors of platelet activation, nitric oxide and prostacyclin, and express high levels of CD39 which rapidly metabolises the major platelet feedback agonist, ADP. This antithrombotic environment however can rapidly change following activation or removal of endothelial cells through injury or rupture of atherosclerotic plaques. Loss of endothelial cells exposes the subendothelial extracellular matrix which creates strong signals for activation of the haemostatic system including powerful platelet adhesion and activation. Quantitative and qualitative changes in the composition of the subendothelial extracellular matrix influence these prothrombotic characteristics with life threatening thrombotic and bleeding complications, as illustrated by formation of

  19. Aperiodic arrays of active nanopillars for radiation engineering

    NASA Astrophysics Data System (ADS)

    Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca

    2012-06-01

    We engineer aperiodic nanostructures for enhanced omnidirectional light extraction and coupling of 1.55 μm radiation to distinctive optical resonances carrying of orbital angular momentum (OAM) using light emitting Si-based materials. By systematically studying nanopillar arrays with varying pillar separations and increasing degree of rotational symmetry in Fourier space, we show that omnidirectional extraction is achieved with circularly symmetric Fourier space, leading to best light emission enhancement from planar devices such as LEDs or lasers. To demonstrate the potential of active aperiodic structures with azimuthally isotropic k-space, we fabricate nanopillar arrays of erbium doped silicon-rich nitride using electron beam lithography and reactive ion etching. Experimental results obtained using leaky-mode photoluminescence spectroscopy prove over 10 times extraction enhancement at 1.55 μm from aperiodic golden angle spirals (GA spirals), in good agreement with design based on analytical Bragg scattering and finite difference time domain calculations. In addition, by imaging Er radiation in direct and reciprocal space, we demonstrate that GA spiral arrays support angularly isotropic emission patterns and distinctive optical resonances with a well-defined azimuthal structure carrying OAM. These findings offer unique opportunities for the engineering of novel active structures that leverage isotropic emission patterns and structured light for secure optical communication, sensing, imaging, and light sources on a Si platform.

  20. Active Antenna Development for the Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Stewart, K. P.; Hicks, B. C.; Crane, P. C.; Ray, P. S.; Gross, C.; Polisensky, E. J.; Erickson, W. C.

    2005-12-01

    We are developing and testing active baluns and electrically short dipoles for possible use as the primary wideband receiving elements in the Long Wavelength Array (LWA) for HF-VHF radio astronomy. Several dipoles of various designs and dimensions have been built and tested. Their useful range occurs when the dipole arms are approximately 1/8 to one wavelength long and the feedpoint is less than 1/2 wavelength above ground. An eight-element NRL LWA Test Array (NLTA) interferometer has been built and fringes have been observed from the brightest celestial sources in the frequency range from 10 MHz to 50 MHz. The antenna temperatures vary from about 10% to 100% of the average brightness temperature of the galactic background. With these parameters it is easy to make the amplifier noise levels low enough that final system temperature is dominated by the galactic background.

  1. Frequency translating phase conjugation circuit for active retrodirective antenna array

    NASA Astrophysics Data System (ADS)

    Chernoff, R.

    1980-11-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  2. In-gel expression and in situ immobilization of proteins for generation of three dimensional protein arrays in a hydrogel matrix.

    PubMed

    Byun, Ju-Young; Lee, Kyung-Ho; Lee, Ka-Young; Kim, Min-Gon; Kim, Dong-Myung

    2013-03-07

    A method has been developed for the direct conversion of DNA arrays into three dimensional protein arrays on a hydrogel matrix. An agarose gel embedded with bacterial protein synthesis machinery was used as the DNA-programmable expression gel matrix for the in situ translation of genes on a DNA array. Upon incubation of the expression gel matrix cast on a DNA array, protein synthesis took place at the interface of the two surfaces and the cell-free synthesized proteins were deposited on the gel matrix surrounding the corresponding DNA spots. Diffusional dilution of the expressed proteins was minimized by modifying the agarose with Ni-NTA moieties. This procedure resulted in the generation of localized protein spots with confined radii. The developed approach not only simplifies the procedures typically used for the preparation of protein arrays but it also provides conditions for the loading of higher amounts of proteins on the array while retaining their structural integrity and functionality over extended time periods.

  3. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    NASA Astrophysics Data System (ADS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank

    2016-12-01

    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a "solid" solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  4. Electrochemical Proteolytic Beacon for Detection of Matrix Metalloproteinase Activities

    SciTech Connect

    Liu, Guodong; Wang, Jun; Wunschel, David S.; Lin, Yuehe

    2006-09-27

    This communication describes a novel method for detecting of matrix metalloproteinase-7 activity using a peptide substrate labeled with a ferrocene reporter. The substrate serves as a selective ‘electrochemical proteolytic beacon’ (EPB) for this metalloproteinase. The EPB is immobilized on a gold electrode surface to enable ‘on-off’ electrochemical signaling capability for uncleaved and cleaved events. The EPB is efficiently and selectively cleaved by MMP-7 as measured by the rate of decrease in redox current of ferrocene. Direct transduction of a signal corresponding to peptide cleavage events into an electronic signal thus provides a simple, sensitive route for detecting the MMP activity. The new method allows for identification of the activity of MMP-7 in concentrations as low as 3.4 pM. The concept can be extended to design multiple peptide substrate labeled with different electroactive reporters for assaying multiple MMPs activities.

  5. Real-number codes for fault-tolerant matrix operations on processor arrays

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Abraham, Jacob A.

    1990-01-01

    A generalization of existing real number codes is proposed. It is proven that linearity is a necessary and sufficient condition for codes used for fault-tolerant matrix operations such as matrix addition, multiplication, transposition, and LU decomposition. It is also proven that for every linear code defined over a finite field, there exists a corresponding linear real-number code with similar error detecting capabilities. Encoding schemes are given for some of the example codes which fall under the general set of real-number codes. With the help of experiments, a rule is derived for the selection of a particular code for a given application. The performance overhead of fault tolerance schemes using the generalized encoding schemes is shown to be very low, and this is substantiated through simulation experiments.

  6. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  7. Spatial frequency multiplier with active linearly tapered slot antenna array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1994-01-01

    A frequency multiplier with active linearly tapered slot antennas (LTSA's) has been demonstrated at the second harmonic frequency. In each antenna element, a GaAs monolithic microwave integrated circuit (MMIC) distributed amplifier is integrated with two LTSA's. The multiplier has a very wide bandwidth and large dynamic range. The fundamental-to-second harmonic conversion efficiency is 8.1 percent. The spatially combined second harmonic signal is 50 dB above the noise level. The design is suitable for constructing a large array using monolithic integration techniques.

  8. Multi-carrier mobile TDMA system with active array antenna

    NASA Technical Reports Server (NTRS)

    Suzuki, Ryutaro; Matsumoto, Yasushi; Hamamoto, Naokazu

    1990-01-01

    A multi-carrier time division multiple access (TDMA) is proposed for the future mobile satellite communications systems that include a multi-satellite system. This TDMA system employs the active array antenna in which the digital beam forming technique is adopted to control the antenna beam direction. The antenna beam forming is carried out at the base band frequency by using the digital signal processing technique. The time division duplex technique is applied for the TDM/TDMA burst format, in order not to overlap transmit and receive timing.

  9. Quantum quenches in two spatial dimensions using chain array matrix product states

    DOE PAGES

    A. J. A. James; Konik, R.

    2015-10-15

    We describe a method for simulating the real time evolution of extended quantum systems in two dimensions (2D). The method combines the benefits of integrability and matrix product states in one dimension to avoid several issues that hinder other applications of tensor based methods in 2D. In particular, it can be extended to infinitely long cylinders. As an example application we present results for quantum quenches in the 2D quantum [(2+1)-dimensional] Ising model. As a result, in quenches that cross a phase boundary we find that the return probability shows nonanalyticities in time.

  10. Characteristics of Monolithically Integrated InGaAs Active Pixel Image Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    1999-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate.

  11. Modeling mechanophore activation within a crosslinked glassy matrix

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Min, Kyoungmin; Cremar, Lee D.; Degen, Cassandra M.; Martinez, Todd J.; Aluru, Narayana R.; White, Scott R.; Sottos, Nancy R.

    2013-07-01

    Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.

  12. Active noise control using a steerable parametric array loudspeaker.

    PubMed

    Tanaka, Nobuo; Tanaka, Motoki

    2010-06-01

    Arguably active noise control enables the sound suppression at the designated control points, while the sound pressure except the targeted locations is likely to augment. The reason is clear; a control source normally radiates the sound omnidirectionally. To cope with this problem, this paper introduces a parametric array loudspeaker (PAL) which produces a spatially focused sound beam due to the attribute of ultrasound used for carrier waves, thereby allowing one to suppress the sound pressure at the designated point without causing spillover in the whole sound field. First the fundamental characteristics of PAL are overviewed. The scattered pressure in the near field contributed by source strength of PAL is then described, which is needed for the design of an active noise control system. Furthermore, the optimal control law for minimizing the sound pressure at control points is derived, the control effect being investigated analytically and experimentally. With a view to tracking a moving target point, a steerable PAL based upon a phased array scheme is presented, with the result that the generation of a moving zone of quiet becomes possible without mechanically rotating the PAL. An experiment is finally conducted, demonstrating the validity of the proposed method.

  13. Tribotronic Transistor Array as an Active Tactile Sensing System.

    PubMed

    Yang, Zhi Wei; Pang, Yaokun; Zhang, Limin; Lu, Cunxin; Chen, Jian; Zhou, Tao; Zhang, Chi; Wang, Zhong Lin

    2016-12-27

    Large-scale tactile sensor arrays are of great importance in flexible electronics, human-robot interaction, and medical monitoring. In this paper, a flexible 10 × 10 tribotronic transistor array (TTA) is developed as an active tactile sensing system by incorporating field-effect transistor units and triboelectric nanogenerators into a polyimide substrate. The drain-source current of each tribotronic transistor can be individually modulated by the corresponding external contact, which has induced a local electrostatic potential to act as the conventional gate voltage. By scaling down the pixel size from 5 × 5 to 0.5 × 0.5 mm(2), the sensitivities of single pixels are systematically investigated. The pixels of the TTA show excellent durability, independence, and synchronicity, which are suitable for applications in real-time tactile sensing, motion monitoring, and spatial mapping. The integrated tribotronics provides an unconventional route to realize an active tactile sensing system, with prospective applications in wearable electronics, human-machine interfaces, fingerprint identification, and so on.

  14. Active Control of Noise Using Actuator/Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Winder, Patrice; Kirby, George

    1996-01-01

    Current research in smart structures is directed toward the integration of many actuators and sensors into a material. In this paper we investigate the possibility of using this instrumentation for active noise control from a vibrating structures. Current technology for reducing radiated sound is limited by the instrumentation for the control system. These control systems employ relatively small numbers of sensors and actuators. Hence, these control systems must rely on a model of the structure to estimate and control the global vibrations that contribute to the far field pressure. For complex, realistic structures the development of such a model is a formidable task. The model is a limiting factor in the continuing development of structural acoustics. In this paper we propose to increase the number of actuators and sensors of a smart material to offset the complexity of the model used for control design. The sensor arrays will be used to directly sense the shape of the structure rather than using a model of the structures to indirectly sense the shape of the structure. The actuator array is used to apply distributed forces to the structure, rather than using the structure itself as a load path. A control system for the active cancellation of sound is derived from standard control system methodologies.

  15. Real-time 3-d intracranial ultrasound with an endoscopic matrix array transducer.

    PubMed

    Light, Edward D; Mukundan, Srinivasan; Wolf, Patrick D; Smith, Stephen W

    2007-08-01

    A transducer originally designed for transesophageal echocardiography (TEE) was adapted for real-time volumetric endoscopic imaging of the brain. The transducer consists of a 36 x 36 array with an interelement spacing of 0.18 mm. There are 504 transmitting and 252 receive channels placed in a regular pattern in the array. The operating frequency is 4.5 MHz with a -6 dB bandwidth of 30%. The transducer is fabricated on a 10-layer flexible circuit from Microconnex (Snoqualmie, WA, USA). The purpose of this study is to evaluate the clinical feasibility of real-time 3-D intracranial ultrasound with this device. The Volumetrics Medical Imaging (Durham, NC, USA) 3-D scanner was used to obtain images in a canine model. A transcalvarial acoustic window was created under general anesthesia in the animal laboratory by placing a 10-mm burr hole in the high parietal calvarium of a 50-kg canine subject. The burr-hole was placed in a left parasagittal location to avoid the sagittal sinus, and the transducer was placed against the intact dura mater for ultrasound imaging. Images of the lateral ventricles were produced, including real-time 3-D guidance of a needle puncture of one ventricle. In a second canine subject, contrast-enhanced 3-D Doppler color flow images were made of the cerebral vessels including the complete Circle of Willis. Clinical applications may include real-time 3-D guidance of cerebrospinal fluid extraction from the lateral ventricles and bedside evaluation of critically ill patients where computed tomography and magnetic resonance imaging techniques are unavailable.

  16. Terasonic Excitations in 2D Gold Nanoparticle Arrays in a Water Matrix as Revealed by Atomistic Simulations

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; ...

    2016-08-19

    Here in this work we report on terahertz phononic excitations in 2D gold nanoparticle arrays in a water matrix through a series of large-scale molecular dynamics simulations. For the first time, we observe acoustic Dirac-like crossings in H (H2O) atomic (molecular) networks which emerge due to an intraband phononic scattering. These crossings are the phononic fingerprints of ice-like arrangements of H (H2O) atomic (molecular) networks at nanometer scale. We reveal how phononic excitations in metallic nanoparticles and the water matrix reciprocally impact on one another providing the mechanism for the THz phononics manipulation via structural engineering. In addition, we showmore » that by tuning the arrangement of 2D gold nanoparticle assemblies the Au phononic polarizations experience sub-terahertz hybridization (Kohn anomaly) due to surface electron-phonon relaxation processes. This opens the way for the sound control and manipulation in soft matter metamaterials at nanoscale.« less

  17. Terasonic Excitations in 2D Gold Nanoparticle Arrays in a Water Matrix as Revealed by Atomistic Simulations

    SciTech Connect

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; Cai, Yong Q.; Cunsolo, Alessandro

    2016-08-19

    Here in this work we report on terahertz phononic excitations in 2D gold nanoparticle arrays in a water matrix through a series of large-scale molecular dynamics simulations. For the first time, we observe acoustic Dirac-like crossings in H (H2O) atomic (molecular) networks which emerge due to an intraband phononic scattering. These crossings are the phononic fingerprints of ice-like arrangements of H (H2O) atomic (molecular) networks at nanometer scale. We reveal how phononic excitations in metallic nanoparticles and the water matrix reciprocally impact on one another providing the mechanism for the THz phononics manipulation via structural engineering. In addition, we show that by tuning the arrangement of 2D gold nanoparticle assemblies the Au phononic polarizations experience sub-terahertz hybridization (Kohn anomaly) due to surface electron-phonon relaxation processes. This opens the way for the sound control and manipulation in soft matter metamaterials at nanoscale.

  18. A novel approach for the fabrication of all-inorganic nanocrystal solids: Semiconductor matrix encapsulated nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Moroz, Pavel

    Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or

  19. MONOLITHIC ACTIVE PIXEL MATRIX WITH BINARY COUNTERS IN AN SOI PROCESS.

    SciTech Connect

    DUPTUCH,G.; YAREMA, R.

    2007-06-07

    The design of a Prototype monolithic active pixel matrix, designed in a 0.15 {micro}m CMOS SOI Process, is presented. The process allowed connection between the electronics and the silicon volume under the layer of buried oxide (BOX). The small size vias traversing through the BOX and implantation of small p-type islands in the n-type bulk result in a monolithic imager. During the acquisition time, all pixels register individual radiation events incrementing the counters. The counting rate is up to 1 MHz per pixel. The contents of counters are shifted out during the readout phase. The designed prototype is an array of 64 x 64 pixels and the pixel size is 26 x 26 {micro}m{sup 2}.

  20. Human Islets Exhibit Electrical Activity on Microelectrode Arrays (MEA).

    PubMed

    Schönecker, S; Kraushaar, U; Guenther, E; Gerst, F; Ullrich, S; Häring, H-U; Königsrainer, A; Barthlen, W; Drews, G; Krippeit-Drews, P

    2015-05-01

    This study demonstrates for the first time that the microelectrode array (MEA) technique allows analysis of electrical activity of islets isolated from human biopsies. We have shown before that this method, i.e., measuring beta cell electrical activity with extracellular electrodes, is a powerful tool to assess glucose responsiveness of isolated murine islets. In the present study, human islets were shown to exhibit glucose-dependent oscillatory electrical activity. The glucose responsiveness could be furthermore demonstrated by an increase of insulin secretion in response to glucose. Electrical activity was increased by tolbutamide and inhibited by diazoxide. In human islets bursts of electrical activity were markedly blunted by the Na(+) channel inhibitor tetrodotoxin which does not affect electrical activity in mouse islets. Thus, the MEA technique emerges as a powerful tool to decipher online the unique features of human islets.Additionally, this technique will enable research with human islets even if only a few islets are available and it will allow a fast and easy test of metabolic integrity of islets destined for transplantation.

  1. Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas.

    PubMed

    Efsen, Eva; Saermark, Torben; Hansen, Alastair; Bruun, Eywin; Brynskov, Jørn

    2011-09-01

    Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue and examined the effect of inhibitors, including clinically available drugs that beside their main action also suppress MMPs. Fistula specimens were obtained by surgical excision from 22 patients with Crohn's disease and from 10 patients with fistulas resulting from other causes. Colonic endoscopic biopsies from six controls were also included. Total functional MMP activity was measured by a high-pressure liquid chromatography (HPLC)-based, fluorogenic MMP-substrate cleavage assay, and the specific activity of MMP-2, -3 and -9 by the MMP Biotrak Activity Assay. The MMP inhibitors comprised ethylene-diamine-tetraacetic acid (EDTA), the synthetic broad-spectrum inhibitor, GM6001, the angiotensin-converting enzyme (ACE) inhibitor, ramiprilate, and the tetracycline, doxycycline. In Crohn's disease fistulas, about 50% of the total protease activity was attributable to MMP activity. The average total MMP activity was significantly higher (about 3.5-times) in Crohn's fistulas (471 FU/μg protein, range 49-2661) compared with non-Crohn's fistulas [134 FU/μg protein, range 0-495, (p < 0.05)] and normal colon [153 FU/μg protein, range 77-243, (p < 0.01)]. MMP-3 activity was increased in Crohn's fistulas (1.4 ng/ml, range 0-9.83) compared with non-Crohn's fistulas, [0.32 ng/ml, range 0-2.66, (p < 0.02)]. The same applied to MMP-9 activity [0.64 ng/ml, range 0-5.66 and 0.17 ng/ml, range 0-1.1, respectively (p < 0.04)]. Ramiprilate significantly decreased the average total MMP activity level by 42% and suppressed the specific MMP-3 activity by 72%, which is comparable to the effect of GM6001 (87%). Moreover, MMP-9 activity was completely blunted by ramiprilate. Doxycycline had no

  2. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  3. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography.

    PubMed

    Zhao, Xiaoyu; Wen, Jiahong; Zhang, Mengning; Wang, Dunhui; Wang, Yaxin; Chen, Lei; Zhang, Yongjun; Yang, Jinghai; Du, Youwei

    2017-03-01

    An easy-handling and low-cost method is utilized to controllably fabricate nanopattern arrays as the surface-enhanced Raman scattering (SERS) active substrates with high density of SERS-active areas (hot spots). A hybrid silver array of nanocaps and nanotriangles are prepared by combining magnetron sputtering and plasma etching. By adjusting the etching time of polystyrene (PS) colloid spheres array in silver nanobowls, the morphology of the arrays can be easily manipulated to control the formation and distribution of hot spots. The experimental results show that the hybrid nanostructural arrays have large enhancement factor, which is estimated to be seven times larger than that in the array of nanocaps and three times larger than that in the array of nanorings and nanoparticles. According to the results of finite-difference time-domain simulation, the excellent SERS performance of this array is ascribed to the high density of hot spots and enhanced electromagnetic field.

  4. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  5. A Transmission Line Matrix model for sound propagation in arrays of cylinders normal to an impedance plane

    NASA Astrophysics Data System (ADS)

    Chobeau, Pierre; Guillaume, Gwenaël; Picaut, Judicaël; Ecotière, David; Dutilleux, Guillaume

    2017-02-01

    The present paper focuses on two of the acoustic phenomena involved in sound propagation through forested areas, namely multiple scattering caused by tree trunks at mid-frequencies and ground effect at low frequencies. The use of time domain methods can be of interest for the simulation of transient phenomena such as scattering. The study aims at evaluating the ability of an alternative time-domain approach, the Transmission Line Matrix (TLM) method, to model sound scattering by cylindrical scatterers. The TLM method is applied to the study of both single and multiple scattering coupled to ground effects, in two- and three-dimensional domains. Keeping in mind the initial purpose of this study, the size and the location of the scatterers (tree trunks), as well as the noise frequency range, are related to outdoor noise propagation in realistic forests. In order to validate the TLM method, numerical simulations are compared to analytical solutions as well as measurements on 1:10 scale-models. The most complete cases of cylinders arrays placed normal to impedance floors are in agreement with the measurement results.

  6. An active, flexible carbon nanotube microelectrode array for recording electrocorticograms

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Chan; Hsu, Hui-Lin; Lee, Yu-Tao; Su, Huan-Chieh; Yen, Shiang-Jie; Chen, Chang-Hsiao; Hsu, Wei-Lun; Yew, Tri-Rung; Yeh, Shih-Rung; Yao, Da-Jeng; Chang, Yen-Chung; Chen, Hsin

    2011-06-01

    A variety of microelectrode arrays (MEAs) has been developed for monitoring intra-cortical neural activity at a high spatio-temporal resolution, opening a promising future for brain research and neural prostheses. However, most MEAs are based on metal electrodes on rigid substrates, and the intra-cortical implantation normally causes neural damage and immune responses that impede long-term recordings. This communication presents a flexible, carbon-nanotube MEA (CMEA) with integrated circuitry. The flexibility allows the electrodes to fit on the irregular surface of the brain to record electrocorticograms in a less invasive way. Carbon nanotubes (CNTs) further improve both the electrode impedance and the charge-transfer capacity by more than six times. Moreover, the CNTs are grown on the polyimide substrate directly to improve the adhesion to the substrate. With the integrated recording circuitry, the flexible CMEA is proved capable of recording the neural activity of crayfish in vitro, as well as the electrocorticogram of a rat cortex in vivo, with an improved signal-to-noise ratio. Therefore, the proposed CMEA can be employed as a less-invasive, biocompatible and reliable neuro-electronic interface for long-term usage.

  7. Readability evaluation of an active matrix electrophoric ink display

    NASA Astrophysics Data System (ADS)

    Meyer, Frederick M.; Trissell, Terry L.; Aleva, Denise L.; Longo, Sam J.; Hopper, Darrel G.

    2006-05-01

    A low-power, yet sunlight readable, display is needed for dismounted applications where the user must carry the power source. Such a display could potentially replace paper checklists and maps with electronic counterparts. A reflective active matrix electrophoretic ink display (AMEPID) was evaluated as a candidate technology for such applications. This display technology uses ambient illumination, rather than competing with it, and requires power only when rewriting the display. The device was tested for viewability under a variety of lighting conditions. Readability of displayed text, as compared to standard print on white paper, was evaluated in an indoor office environment and in outdoor lighting conditions. Viewability of the display with night vision goggles (NVGs) was evaluated under simulated full moon, starlight, and overcast illumination conditions. Objective measurements of luminance, contrast ratio and reflectance were conducted under corresponding irradiance conditions and viewing angles using state-of-the-art photometric and radiometric measurement equipment. In addition to visible spectrum measurements, infrared (IR) reflectance and contrast were measured for the extended spectrum of 720-1700 nm. Results are discussed in terms of performance criteria for military displays, which are often much more demanding than for civil applications.

  8. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus

    PubMed Central

    Dabo, Abdoulaye J.; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2015-01-01

    Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR. PMID:26284919

  9. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    SciTech Connect

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  10. Monolithic active pixel matrix with binary counters (MAMBO III) ASIC

    SciTech Connect

    Khalid, Farah; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond; /Fermilab

    2010-01-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  11. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active... Array Sensor System Low Frequency Active (SURTASS LFA) sonar systems with certain...

  12. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    PubMed

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  13. Azimuth calculation for buried pipelines using a synthetic array of emitters, a single survey line and scattering matrix formalism

    NASA Astrophysics Data System (ADS)

    Bullo, Darío; Villela, Almendra; Bonomo, Néstor

    2016-11-01

    We evaluate the simultaneous application of a synthetic-emitter array (SEA) methodology and formulation derived from the analysis of the rotation transformations of the scattering matrix (RTSM) to calculate the orientation of buried pipes from GPR data acquired along a single survey line. The main objective of this study is to analyze if the SEA-RTSM combination can improve the azimuth calculation obtained from the usual single-offset-RTSM (SO-RTSM) procedure. This possibility is based on the SEA ability of increasing the continuity and amplitude of the primary reflections with respect to the background clutter and noise, which is expected to reduce the fluctuations involved in the RTSM calculation of the azimuth, so that its accuracy and precision are improved. A SEA methodology designed to be used in conjunction with the RTSM methodology is described. A procedure that optimizes the results of the SEA methodology is explained. A statistical RTSM calculation is adopted in order to obtain the final azimuth. Different relevant parameters of the soil and the array of emitters are varied in order to evaluate the SEA-RTSM methodology and its results. Numerically simulated and experimental data are used in this evaluation. The SEA-RTSM and the SO-RTSM results are compared between them. These results are also compared with an equivalent common-midpoint-RTSM (CMP-RTSM) calculation. Improved precision and accuracy are obtained from the SEA-RTSM methodology in the great majority of the examples. The height/width of the resulting azimuth distribution increases 102% in average when using this procedure instead of the usual SO-RTSM procedure, the average standard deviation diminishes 12%, and the average differences between the calculated and true azimuths reduce 34%. Minor improvements with respect to SO are obtained with the CMP-RTSM methodology. The proposed SEA-RTSM methodology and its results are especially relevant in civil engineering applications in which it is

  14. Formation of three-dimensional arrays of magnetic clusters NiO, Co3O4, and NiCo2O4 by the matrix method

    NASA Astrophysics Data System (ADS)

    Kurdyukov, D. A.; Pevtsov, A. B.; Smirnov, A. N.; Yagovkina, M. A.; Grigorev, V. Yu.; Romanov, V. V.; Bagraev, N. T.; Golubev, V. G.

    2016-06-01

    A method has been proposed for the formation of three-dimensional arrays of isolated magnetic clusters NiO, Co3O4, and NiCo2O4 in the sublattice of pores in the matrix of bulk synthetic opals through a single impregnation of the pores with melts of nickel and cobalt nitrate crystal hydrates and their thermal degradation. The method makes it possible to controllably vary the degree of filling of pores in the matrix with oxides within 10-70 vol %. The composition and structure of the synthesized materials, as well as the dependences of their static magnetic susceptibility on the magnetic field strength, have been investigated.

  15. Adaptive nulling at HF using a compact array of active parasitic antennas

    NASA Astrophysics Data System (ADS)

    Jones, T. E.; Zeger, A. E.

    1985-03-01

    This parasitic array is a promising method of building an adaptive array in a tiny aperture. This is particularly attractive for HF. Both theory and experimental results are presented. The theory is established with respect to two models of a compact array, an impedance model and a transmission line model. The relationship between the models are derived. The models are then used to explore the null forming and adaptive control, with an emphasis on active terminations. Zeger-Abrams designed an electronically variable active termination. Experimental results were obtained from an array of both passive and active terminations. Empirical results with active complex-valued terminations demonstrated the feasibility of simultaneously nulling multiple HF jammers with an adaptively controlled compact array having parasitic auxilliary elements and an unweighted main antenna. Finally, an algorithm to adaptively control the active terminations is derived.

  16. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    NASA Astrophysics Data System (ADS)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  17. Three-dimensional Ultrasound Molecular Imaging of Angiogenesis in Colon Cancer using a Clinical Matrix Array Ultrasound Transducer

    PubMed Central

    Wang, Huaijun; Kaneko, Osamu F.; Tian, Lu; Hristov, Dimitre; Willmann, Jürgen K.

    2015-01-01

    Objectives We sought to assess the feasibility and reproducibility of three-dimensional (3D) ultrasound molecular imaging (USMI) of vascular endothelial growth factor receptor 2 (VEGFR2) expression in tumor angiogenesis using a clinical matrix array transducer and a clinical grade VEGFR2-targeted contrast agent in a murine model of human colon cancer. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice with human colon cancer xenografts (n=33) were imaged with a clinical ultrasound system and transducer (Philips iU22; X6-1) following intravenous injection of either clinical grade VEGFR2-targeted microbubbles (MBVEGFR2) or non-targeted control microbubbles (MBControl). Nineteen mice were scanned twice to assess imaging reproducibility. Fourteen mice were scanned both before and 24h after treatment with either bevacizumab (n=7) or saline only (n=7). 3D USMI datasets were retrospectively reconstructed into multiple consecutive 1-mm thick USMI data sets to simulate 2D imaging. Vascular VEGFR2 expression was assessed ex vivo using immunofluorescence. Results 3D USMI was highly reproducible using both MBVEGFR2 and MBControl (ICC=0.83). VEGFR2-targeted USMI signal significantly (P=0.02) decreased by 57% following anti-angiogenic treatment compared to the control group, which correlated well with ex vivo VEGFR2 expression on immunofluorescence (rho=0.93, P=0.003). If only central 1-mm tumor planes were analyzed to assess anti-angiogenic treatment response, the USMI signal change was significantly (P=0.006) overestimated by an average of 27% (range, 2–73%) compared to 3D USMI. Conclusions 3D USMI is feasible and highly reproducible and allows accurate assessment and monitoring of VEGFR2 expression in tumor angiogenesis in a murine model of human colon cancer. PMID:25575176

  18. Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array

    DOEpatents

    Gruen, Dieter M.

    2000-01-01

    A 213 nm laser beam is capable of single photon ablative photodecomposition for the removal of a polymer or biological material substrate. Breaking the molecular bonds and displacing the molecules away from the substrate in a very short time period results in most of the laser photon energy being carried away by the displaced molecules, thus minimizing thermal damage to the substrate. The incident laser beam may be unfocussed and is preferably produced by quintupling the 1064 nm radiation from a Nd:YAG solid state laser, i.e., at 213 nm. In one application, the 213 nm laser beam is expanded in cross section and directed through a plurality of small beta barium borate (BBO) crystals for increasing the energy per photon of the laser radiation directed onto the substrate. The BBO crystals are arranged in a crystal matrix array to provide a large laser beam transmission area capable of accommodating high energy laser radiation without damaging the BBO crystals. The BBO crystal matrix array may also be used with 266 nm laser radiation for carrying out single or multi photon ablative photodecomposition. The BBO crystal matrix array may also be used in an optical parametric oscillator mode to generate high power tunable laser radiation in the range of 210-400 nm.

  19. Multiple Seismic Array Observations for Tracing Deep Tremor Activity in Western Shikoku, Japan

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Matsuzawa, T.; Shiomi, K.; Obara, K.

    2011-12-01

    Deep non-volcanic tremors become very active during episodic slow-slip events in western Japan and Cascadia. The episodic tremor and slow-slip events in western Shikoku, Japan, occur at a typical interval of 6 months. Recently, it has been reported that tremor migration activity is complex and shows different migrating directions depending on time scales (Ghosh et al., 2010). Such characteristics of tremor are important to understand the mechanism of tremor and the relationship between tremor and SSEs. However it is difficult to determine the location of tremors with high accuracy because tremors show faint signals and make the identification of P/S-wave arrivals difficult. Seismic array analysis is useful to evaluate tremor activity, especially to estimate the arrival direction of seismic energy (e.g. Ueno et al., 2010, Ghosh et al., 2010), as it can distinguish multiple tremor sources occurring simultaneously. Here, we have conducted seismic array observation and analyzed seismic data during tremor activity by applying the MUSIC method to trace tremor location and its migration in western Shikoku. We have installed five seismic arrays in western Shikoku since January 2011. One of the arrays contains 30 stations with 3-component seismometers with a natural frequency of 2 Hz (Type-L array). The array aperture size is 2 km and the mean interval between stations is approximately 200 m. Each of the other arrays (Type-S array) contains 9 seismic stations with the same type of seismometers of the Type-L array, and is deployed surrounding the Type-L array. The small array aperture size is 800 m and its mean station interval is approximately 150 m. All array stations have recorded continuous waveform data at a sampling of 200Hz. In May 2011, an episodic tremor and a short-term slip event occurred for the first time during the observation period. We could retrieve the array seismic data during the whole tremor episode. The analysis of data from the type-L array confirms

  20. Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays

    NASA Astrophysics Data System (ADS)

    Almanza-Workman, A. Marcia; Jeans, Albert; Braymen, Steve; Elder, Richard E.; Garcia, Robert A.; de la Fuente Vornbrock, Alejandro; Hauschildt, Jason; Holland, Edward; Jackson, Warren; Jam, Mehrban; Jeffrey, Frank; Junge, Kelly; Kim, Han-Jun; Kwon, Ohseung; Larson, Don; Luo, Hao; Maltabes, John; Mei, Ping; Perlov, Craig; Smith, Mark; Stieler, Dan; Taussig, Carl P.; Trovinger, Steve; Zhao, Lihua

    2012-03-01

    Good surface quality of plastic substrates is essential to reduce pixel defects during roll-to-roll fabrication of flexible display active matrix backplanes. Standard polyimide substrates have a high density of "bumps" from fillers and belt marks and other defects from dust and surface scratching. Some of these defects could be the source of shunts in dielectrics. The gate dielectric must prevent shorts between the source/drain and the gate in the transistors, resist shorts in the hold capacitor and stop shorts in the data/gate line crossovers in active matrix backplanes fabricated by self-aligned imprint lithography (SAIL) roll-to-roll processes. Otherwise data and gate lines will become shorted creating line or pixel defects. In this paper, we discuss the development of a proprietary UV curable planarization material that can be coated by roll-to-roll processes. This material was engineered to have low shrinkage, excellent adhesion to polyimide, high dry etch resistance, and great chemical and thermal stability. Results from PECVD deposition of an amorphous silicon stack on the planarized polyimide and compatibility with roll-to-roll processes to fabricate active matrix backplanes are also discussed. The effect of the planarization on defects in the stack, shunts in the dielectric and curvature of finished arrays will also be described.

  1. Digital radiology using active matrix readout of amorphous selenium: radiation hardness of cadmium selenide thin film transistors.

    PubMed

    Zhao, W; Waechter, D; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector using active matrix readout of amorphous selenium (a-Se) is being investigated for digital radiography and fluoroscopy. The active matrix consists of a two-dimensional array of thin film transistors (TFTs). Radiation penetrating through the a-Se layer will interact with the TFTs and it is important to ensure that radiation induced changes will not affect the operation of the x-ray imaging detector. The methodology of the present work is to investigate the effects of radiation on the characteristic curves of the TFTs using individual TFT samples made with cadmium selenide (CdSe) semiconductor. Four characteristic parameters, i.e., threshold voltage, subthreshold swing, field effect mobility, and leakage current, were examined. This choice of parameters was based on the well established radiation damage mechanisms for crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), which have a similar principle of operation as CdSe TFTs. It was found that radiation had no measurable effect on the leakage current and the field effect mobility. However, radiation shifted the threshold voltage and increased the subthreshold swing. But even the estimated lifetime dose (50 Gy) of a diagnostic radiation detector will not affect the normal operation of an active matrix x-ray detector made with CdSe TFTs. The mechanisms of the effects of radiation will be discussed and compared with those for MOSFETs and hydrogenated amorphous silicon (a-Si:H) TFTs.

  2. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  3. ActiveSeismoPick3D - automatic first arrival determination for large active seismic arrays

    NASA Astrophysics Data System (ADS)

    Paffrath, Marcel; Küperkoch, Ludger; Wehling-Benatelli, Sebastian; Friederich, Wolfgang

    2016-04-01

    We developed a tool for automatic determination of first arrivals in active seismic data based on an approach, that utilises higher order statistics (HOS) and the Akaike information criterion (AIC), commonly used in seismology, but not in active seismics. Automatic picking is highly desirable in active seismics as the number of data provided by large seismic arrays rapidly exceeds of what an analyst can evaluate in a reasonable amount of time. To bring the functionality of automatic phase picking into the context of active data, the software package ActiveSeismoPick3D was developed in Python. It uses a modified algorithm for the determination of first arrivals which searches for the HOS maximum in unfiltered data. Additionally, it offers tools for manual quality control and postprocessing, e.g. various visualisation and repicking functionalities. For flexibility, the tool also includes methods for the preparation of geometry information of large seismic arrays and improved interfaces to the Fast Marching Tomography Package (FMTOMO), which can be used for the prediction of travel times and inversion for subsurface properties. Output files are generated in the VTK format, allowing the 3D visualization of e.g. the inversion results. As a test case, a data set consisting of 9216 traces from 64 shots was gathered, recorded at 144 receivers deployed in a regular 2D array of a size of 100 x 100 m. ActiveSeismoPick3D automatically checks the determined first arrivals by a dynamic signal to noise ratio threshold. From the data a 3D model of the subsurface was generated using the export functionality of the package and FMTOMO.

  4. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  5. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging.

    PubMed

    Lin, Long; Xie, Yannan; Wang, Sihong; Wu, Wenzhuo; Niu, Simiao; Wen, Xiaonan; Wang, Zhong Lin

    2013-09-24

    We report an innovative, large-area, and self-powered pressure mapping approach based on the triboelectric effect, which converts the mechanical stimuli into electrical output signals. The working mechanism of the triboelectric active sensor (TEAS) was theoretically studied by both analytical method and numerical calculation to gain an intuitive understanding of the relationship between the applied pressure and the responsive signals. Relying on the unique pressure response characteristics of the open-circuit voltage and short-circuit current, we realize both static and dynamic pressure sensing on a single device for the first time. A series of comprehensive investigations were carried out to characterize the performance of the TEAS, and high sensitivity (0.31 kPa(-1)), ultrafast response time (<5 ms), long-term stability (30,000 cycles), as well as low detection limit (2.1 Pa) were achieved. The pressure measurement range of the TEAS was adjustable, which means both gentle pressure detection and large-scale pressure sensing were enabled. Through integrating multiple TEAS units into a sensor array, the as-fabricated TEAS matrix was capable of monitoring and mapping the local pressure distribution applied on the device with distinguishable spatial profiles. This work presents a technique for tactile imaging and progress toward practical applications of nanogenerators, providing potential solutions for accomplishment of artificial skin, human-electronic interfacing, and self-powered systems.

  6. An active alignment scheme for the MPTS array

    NASA Technical Reports Server (NTRS)

    Iwasaki, R.

    1980-01-01

    In order to maximize the efficiency of the microwave power transmission system (MPTS), the surface of the array antenna must be extremely flat, which is difficult to achieve using passive techniques over the 1 km dimensions of the array. In order to achieve and maintain this required flatness, a rotating laser beam used for leveling applications on Earth was utilized as a reference system. A photoconductive sensor with a reflective collecting surface was used to determine the displacement and polarity of any misalignment and automatically engage a stepping motor to drive a variable-length mechanism to make the necessary corrections. Once aligned, little power is dissipated since a nulling bridge circuit that centers on the beam is used, an important alignment feature since even laser beams broaden considerably at 1 km distances.

  7. An Active K-Band Receive Slot Array for Mobile Satellite Communications

    NASA Technical Reports Server (NTRS)

    Tulintseff, A. N.; Lee, K. A.; Sukamto, L. M.; Chew, W.

    1994-01-01

    An active receive slot array has been developed for operation in the downlink frequency band, 19.914-20.064 GHz, of NASA's Advanced Communication Technology Satellite (ACTS) for the ACTS Mobile Terminal (AMT) project.

  8. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.

    2016-09-01

    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics.

  9. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling

    PubMed Central

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.

    2016-01-01

    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics. PMID:27671239

  10. An active alignment scheme for the MPTS array

    NASA Astrophysics Data System (ADS)

    Iwasaki, R.

    1980-12-01

    In order to achieve and maintain required flatness of the antenna array, a rotating laser beam used for leveling applications on earth was utilized as a reference system. A photoconductive sensor with a reflective collecting surface determines the displacement and polarity of any misalignment and automatically engages a stepping motor to drive a variable-length mechanism to make the necessary corrections. Once aligned, little power is dissipated since a nulling bridge circuit that centers on the beam is used. A three-point subarray alignment arrangement is described which independently adjusts, in the three orthogonal directions, the height and tilt of subarrays within the MPTS array and readily adapts to any physical distortions of the secondary structure (such as that resulting from severe temperature extremes caused by an eclipse of the Sun). It is shown that only one rotating laser system is required since optical blockage is minimal on the array surface and that it is possible to incorporate a number of redundant laser systems for reliability without affecting the overall performance.

  11. An active alignment scheme for the MPTS array. [contour sensors

    NASA Technical Reports Server (NTRS)

    Iwasaki, R.

    1980-01-01

    In order to achieve and maintain required flatness of the antenna array, a rotating laser beam used for leveling applications on earth was utilized as a reference system. A photoconductive sensor with a reflective collecting surface determines the displacement and polarity of any misalignment and automatically engages a stepping motor to drive a variable-length mechanism to make the necessary corrections. Once aligned, little power is dissipated since a nulling bridge circuit that centers on the beam is used. A three-point subarray alignment arrangement is described which independently adjusts, in the three orthogonal directions, the height and tilt of subarrays within the MPTS array and readily adapts to any physical distortions of the secondary structure (such as that resulting from severe temperature extremes caused by an eclipse of the Sun). It is shown that only one rotating laser system is required since optical blockage is minimal on the array surface and that it is possible to incorporate a number of redundant laser systems for reliability without affecting the overall performance.

  12. Modulation error in active-aperture phased-array radar systems

    NASA Astrophysics Data System (ADS)

    Belcher, M. L.; Howard, R. L.; Mitchell, M. A.

    Range sidelobe (RSL) suppression is presently treated in the context of active arrays that are defined by a phased-array antenna, which is driven by either distributed solid-state element-level modules or tube-driven subarray-level transmitters and receivers. An account is given of the basic methodology for achievement of low-RSL performance in active arrays, using modulation-error compensation. Attention is given to the performance limits imposed by modulation-error decorrelation and noise-limited error characterization.

  13. Active Vector Separation Using Induced Charge Electro-osmosis with Polarizable Obstacle Arrays

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-09-01

    Vector separation using obstacle post arrays is promising for various microfluidic applications. Here, we propose a novel active sieve using induced charge electro-osmosis (ICEO). By the multi-physics simulation technique based on the boundary element method combined with a thin electric double-layer approximation, we find that the active sieve having a polarizable post array shows excellent vector separation with dynamic size selectivity owing to the hydrodynamic interactions between the polarizable post array and the target particle. We consider that our separation device is useful for realizing innovative high-throughput biomedical systems with a simple structure.

  14. Follow-up: Prospective compound design using the 'SAR Matrix' method and matrix-derived conditional probabilities of activity.

    PubMed

    Gupta-Ostermann, Disha; Hirose, Yoichiro; Odagami, Takenao; Kouji, Hiroyuki; Bajorath, Jürgen

    2015-01-01

    In a previous Method Article, we have presented the 'Structure-Activity Relationship (SAR) Matrix' (SARM) approach. The SARM methodology is designed to systematically extract structurally related compound series from screening or chemical optimization data and organize these series and associated SAR information in matrices reminiscent of R-group tables. SARM calculations also yield many virtual candidate compounds that form a "chemical space envelope" around related series. To further extend the SARM approach, different methods are developed to predict the activity of virtual compounds. In this follow-up contribution, we describe an activity prediction method that derives conditional probabilities of activity from SARMs and report representative results of first prospective applications of this approach.

  15. Protease induced plasticity: matrix metalloproteinase-1 promotes neurostructural changes through activation of protease activated receptor 1

    PubMed Central

    Allen, Megan; Ghosh, Suhasini; Ahern, Gerard P.; Villapol, Sonia; Maguire-Zeiss, Kathleen A.; Conant, Katherine

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of secreted endopeptidases expressed by neurons and glia. Regulated MMP activity contributes to physiological synaptic plasticity, while dysregulated activity can stimulate injury. Disentangling the role individual MMPs play in synaptic plasticity is difficult due to overlapping structure and function as well as cell-type specific expression. Here, we develop a novel system to investigate the selective overexpression of a single MMP driven by GFAP expressing cells in vivo. We show that MMP-1 induces cellular and behavioral phenotypes consistent with enhanced signaling through the G-protein coupled protease activated receptor 1 (PAR1). Application of exogenous MMP-1, in vitro, stimulates PAR1 dependent increases in intracellular Ca2+ concentration and dendritic arborization. Overexpression of MMP-1, in vivo, increases dendritic complexity and induces biochemical and behavioral endpoints consistent with increased GPCR signaling. These data are exciting because we demonstrate that an astrocyte-derived protease can influence neuronal plasticity through an extracellular matrix independent mechanism. PMID:27762280

  16. Analytical Model of Water Flow in Coal with Active Matrix

    NASA Astrophysics Data System (ADS)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  17. Matrix formulation of the surface-enhanced Raman optical activity theory

    NASA Astrophysics Data System (ADS)

    Bouř, Petr

    2007-04-01

    The surface-enhanced Raman optical activity theory [J. Chem. Phys.125, 124704 (2006)] is formulated in a matrix form, which makes the formalism simpler and allows to extend it for more complicated colloid and molecular systems.

  18. "Click" synthesis of small molecule probes for activity-based fingerprinting of matrix metalloproteases.

    PubMed

    Wang, Jun; Uttamchandani, Mahesh; Li, Junqi; Hu, Mingyu; Yao, Shao Q

    2006-09-28

    By using "Click Chemistry", we achieved the facile synthesis of various affinity-based hydroxamate probes that enable generation of activity-based fingerprints of a variety of metalloproteases, including matrix metalloproteases (MMPs), in proteomics experiments.

  19. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge.

  20. Gene editing activity on extrachromosomal arrays in C. elegans transgenics.

    PubMed

    Falgowski, Kerry A; Kmiec, Eric B

    2011-04-15

    Gene editing by modified single-stranded oligonucleotides is a strategy aimed at inducing single base changes into the genome, generating a permanent genetic change. The work presented here explores gene editing capabilities in the model organism Caenorhabditis elegans. Current approaches to gene mutagenesis in C. elegans have been plagued by non-specificity and thus the ability to induce precise, directed alterations within the genome of C. elegans would offer a platform upon which structure/function analyses can be carried out. As such, several in vivo assay systems were developed to evaluate gene editing capabilities in C. elegans. Fluorescence was chosen as the selectable endpoint as fluorescence can be easily detected through the transparent worm body even from minimal expression. Two tissue specific fluorescent expression vectors containing either a GFP or mCherry transgene were mutagenized to create a single nonsense mutation within the open reading frame of each respective fluorescent gene. These served as the target site to evaluate the frequency of gene editing on extrachromosomal array transgenic lines. Extrachromosomal arrays can carry hundreds of copies of the transgene, therefore low frequency events (like those in the gene editing reaction) may be detected. Delivery of the oligonucleotide was accomplished by microinjection into the gonads of young adult worms in an effort to induce repair of the mutated fluorescent gene in the F1 progeny. Despite many microinjections on the transgenic strains with varying concentrations of ODNs, no gene editing events were detected. This result is consistent with the previous research, demonstrating the difficulties encountered in targeting embryonic stem cells and the pronuclei of single-celled embryos.

  1. Design of a Synthetic Aperture Array to Support Experiments in Active Control of Scattering

    DTIC Science & Technology

    1990-06-01

    IIC FILE COPY DESIGN OF A SYNTHETIC APERTURE ARRAY TO SUPPORT EXPERIMENTS IN ACTIVE CONTROL OF SCATTERING by JAMES P. DULLEA B.N.E. GEORGIA...Ain Sonin Clmairnnn, Mechancal Engineering Departmenlal Graduate Committee 90 09 24 053 DESIGN OF A SYNTHETIC APERTURE ARRAY TO SUPPORT EXPERIMENTS IN...partial fulfillment of the requirements for the Degrees of Naval Engineer and Master of Science in Mechanical Engineering Abstract A synthetic aperture

  2. Separating DDTs in edible animal fats using matrix solid-phase dispersion extraction with activated carbon filter, Toyobo-KF.

    PubMed

    Furusawa, Naoto

    2006-09-01

    A technique is presented for the economical, routine, and quantitative analysis of contamination by dichloro-diphenyl-trichloroethanes (DDTs) [pp'-DDT, pp'-dichlorodiphenyl dichloroethylene, and pp'-dichlorodiphenyl dichloreothane in beef tallow and chicken fat samples, based on their separation using matrix solid-phase dispersion (MSPD) extraction with Toyobo-KF, an activated carbon fiber. Toyobo-KF is a newly applied MSPD sorbent, and it is followed by reversed-phase high-performance liquid chromatography (HPLC) with a photodiode array detector. The resulting analytical performance parameters [recoveries of spiked DDTs (0.1, 0.2, and 0.4 microg/g) > or = 81%, with relative standard deviations of < or = 8% (n = 5), and quantitation limits < or = 0.03 microg/g], with minimal handling and cost-efficiency, indicate that the present MSPD-HPLC method may be a useful tool for routine monitoring of DDT contamination in meat.

  3. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    NASA Technical Reports Server (NTRS)

    Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  4. Preparation of electrochemically active silicon nanotubes in highly ordered arrays.

    PubMed

    Grünzel, Tobias; Lee, Young Joo; Kuepper, Karsten; Bachmann, Julien

    2013-01-01

    Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability) of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry.

  5. Templated electrodeposition and photocatalytic activity of cuprous oxide nanorod arrays.

    PubMed

    Haynes, Keith M; Perry, Collin M; Rivas, Marlene; Golden, Teresa D; Bazan, Antony; Quintana, Maria; Nesterov, Vladimir N; Berhe, Seare A; Rodríguez, Juan; Estrada, Walter; Youngblood, W Justin

    2015-01-14

    Cuprous oxide (Cu2O) nanorod arrays have been prepared via a novel templated electrodeposition process and were characterized for their photocatalytic behavior in nonaqueous photoelectrochemical cells. Zinc oxide (ZnO) nanorod films serve as sacrificial templates for the in situ formation of polymer nanopore membranes on transparent conductive oxide substrates. Nitrocellulose and poly(lactic acid) are effective membrane-forming polymers that exhibit different modes of template formation, with nitrocellulose forming conformal coatings on the ZnO surface while poly(lactic acid) acts as an amorphous pore-filling material. Robust template formation is sensitive to the seeding method used to prepare the precursor ZnO nanorod films. Photoelectrochemical cells prepared from electrodeposited Cu2O films using methyl viologen as a redox shuttle in acetonitrile electrolyte exhibit significant charge recombination that can be partially suppressed by a combination of surface passivation methods. Surface-passivated nanostructured Cu2O films show enhanced photocurrent relative to planar electrodeposited Cu2O films of similar thickness. We have obtained the highest photocurrent ever reported for electrodeposited Cu2O in a nonaqueous photoelectrochemical cell.

  6. Mechanophore activation in a crosslinked polymer matrix via instrumented indentation

    NASA Astrophysics Data System (ADS)

    Davis, Chelsea; Forster, Aaron; Woodcock, Jeremiah; Wang, Muzhou; Gilman, Jeffrey; Material Measurement Laboratory Team

    Recent advances in mechanically-activated fluorophores will enable a host of unique scientific challenges and opportunities to be addressed. Several mechanophores (MPs) in polymers have been reported, yet the specific deformation required to activate these molecules in a bulk polymer network has not been sufficiently specified. In an effort to develop the mechano-activation/deformation relationship of a spirolactam-based MP, scratches were applied to a MP-functionalized glassy crosslinked material at varying normal loads and lateral displacement rates. This experimental design allowed strain and strain rate effects to be decoupled. The fluorescence activation was then observed with a laser scanning confocal microscope. Areas of elastic and plastic deformation as well as brittle fracture were observed within each scratch as the normal loading of the indenter increased. The fluorescence intensity increased with increasing strain. Contact mechanics models are employed to demonstrate that relatively high degrees of strain are required to initiate the ring-opening activation transition within the spirolactam-based MP. These self-reporting damage sensors can be incorporated within polymeric coatings to allow real time structural health monitoring for a myriad of applications.

  7. Plasma matrix metalloproteinase-9 activity in cats with lymphoma.

    PubMed

    Tamamoto, T; Ohno, K; Takahashi, M; Fukushima, K; Kanemoto, H; Fujino, Y; Tsujimoto, H

    2017-03-01

    In this study, plasma MMP-9 activity was evaluated in cats with lymphoma. Plasma samples were obtained from 26 cats with lymphoma before treatment. From 13 of the included 26 cats, plasma samples were obtained 4 weeks after the initiation of treatment. Plasma samples were also obtained from 10 healthy cats as a control. Plasma MMP-9 activity was examined by gelatin zymography and semi-quantitative value (arbitrary unit; a.u.) for each sample was calculated. Relatively high levels of MMP-9 were observed in cats with lymphoma compared with those in healthy control cats. MMP-9 quantification through zymography showed significantly higher activity in cats with lymphoma (median, 0.63 a.u.; range, 0.23-3.24 a.u.) than in healthy controls (0.22 a.u.; 0.12-0.46 a.u.; P < 0.01). MMP-9 activities were significantly different before (0.73 a.u.; 0.30-3.24 a.u.) and after treatment (0.50 a.u.; 0.14-1.32 a.u.; P = 0.017). Measuring plasma MMP-9 activity in cats with lymphoma may become an appropriate monitoring tool for feline lymphoma.

  8. Fabrication and photocatalytic activities of ZnO arrays with different nanostructures

    NASA Astrophysics Data System (ADS)

    Sun, Fazhe; Qiao, Xueliang; Tan, Fatang; Wang, Wei; Qiu, Xiaolin

    2012-12-01

    Large-scale ZnO arrays with a series of morphologies, including nest-like, tower-like, and flower-like samples, have been successfully synthesized by a simple hydrothermal method. The morphologies of the obtained ZnO arrays can be conveniently tailored by changing seeding conditions. The samples were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. Their PL spectra depend on their morphologies and defects density. The morphology-dependent photocatalytic performances were studied by analyzing the degradation of methylene blue (MB) in aqueous solution. The nest-like ZnO arrays exhibited higher photocatalytic activity than tower-like and flower-like ZnO arrays.

  9. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyu; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin

    2016-05-01

    Well-ordered, one-dimensional silver-doped anatase TiO2 nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO2 nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  10. Bovine dentine organic matrix down-regulates osteoclast activity.

    PubMed

    Sriarj, Wantida; Aoki, Kazuhiro; Ohya, Keiichi; Takagi, Yuzo; Shimokawa, Hitoyata

    2009-01-01

    Physiological root resorption is a phenomenon that normally takes place in deciduous teeth; root resorption of permanent teeth occurs only under pathological conditions. The molecular mechanisms underlying these processes are still unclear. Our previous study showed that osteoclasts cultured on deciduous dentine exhibited a higher degree of resorption and higher levels of cathepsin K and MMP-9 mRNA than osteoclasts cultured on permanent dentine. These results could be because of different susceptibilities to acid and the different organic matrices between deciduous and permanent dentine. Thus, the purpose of this study was to investigate the effect of dentine extracts from bovine deciduous and permanent dentine on osteoclast activity. Osteoclasts, obtained from mouse bone marrow cells co-cultured with an osteoblast-rich fraction in the presence of 1,25-(OH)(2)-vitamin D3 and PGE2, were incubated with or without 0.6 M HCl extracts from bovine deciduous or permanent dentine for 48 h. TRAP positive cell number, TRAP activity, the areas of resorption pits, and mRNA levels of TRAP, v-ATPase, calcitonin receptor, cathepsin K, and MMP-9 were examined. The results illustrated that TRAP activity, the resorbed area, and the mRNA levels of osteoclast marker genes seemed to be suppressed by both deciduous and permanent dentine extracts. These findings indicate that some factors that suppress osteoclast activity are contained in both deciduous and permanent dentine extracts. Although there was no significant difference in osteoclast activity between deciduous and permanent dentine extracts, osteoclasts incubated with permanent dentine extracts tend to exhibit less resorption activity than those incubated with deciduous dentine extracts. However, we could not clearly explain the causes of this.

  11. Immobilization of cesium in alkaline activated fly ash matrix

    NASA Astrophysics Data System (ADS)

    Fernandez-Jimenez, A.; Macphee, D. E.; Lachowski, E. E.; Palomo, A.

    2005-11-01

    The immobilization potential of alkaline activated fly ash (AAFA) matrices for cesium has been investigated. The presence of Cs in the AAFA pastes, prepared using 8M NaOH solution as activator, showed no significant adverse effects on mechanical strength or microstructure, nor were significant quantities of Cs leached following application of the Toxic Characteristic Leaching Procedure (TCLP) and American Nuclear Society (ANS) 16.1 leaching protocols. Microstructural analysis shows Cs associated with the main reaction product in the AAFA suggesting that cesium is chemically bound rather than physically encapsulated. It is proposed that cesium is incorporated into the alkaline aluminosilicate gel, a precursor for zeolite formation.

  12. A High Aspect Ratio Microelectrode Array for Mapping Neural Activity in-vitro

    PubMed Central

    Kibler, Andrew B.; Jamieson, Brian G.; Durand, Dominique M.

    2011-01-01

    A novel high-aspect-ratio penetrating microelectrode array was designed and fabricated for the purpose of recording neural activity. The array allows two dimensional recording of 64 sites in vitro with high aspect ratio penetrating electrodes. Traditional surface electrode arrays, although easy to fabricate, do not penetrate to the viable tissue such as central hippocampus slices and thus have a lower signal/noise ratio and lower selectivity than a penetrating array. In the unfolded hippocampus preparation, the CA1–CA3 pyramidal cell layer in the whole unfolded rodent hippocampus preparation is encased by the alveus on one side and the Schaffer tract on the other and requires penetrating electrodes for high signal to noise ratio recording. An array of 64 electrode spikes, each with a target height of 200 μm and diameter of 20μm, was fabricated in silicon on a transparent glass substrate. The impedance of the individual electrodes was measured to be approximately 1.5MΩ± 497kΩ. The signal to noise ratio was measured and found to be 19.4 ± 3 dB compared to 3.9 ± 0.8 dB S/N for signals obtained with voltage sensitive dye RH414. A mouse unfolded hippocampus preparation was bathed in solution containing 50 micro-molar 4-Amino Pyridine and a complex two dimensional wave of activity was recorded using the array. These results indicate that this novel penetrating electrode array is able to obtain data superior to that of voltage sensitive dye techniques for broad field two-dimensional neuronal activity recording. When used with the unfolded hippocampus preparation, the combination forms a uniquely capable tool for imaging hippocampal network activity in the entire hippocampus. PMID:22179041

  13. Differential metabolic activity in the striosome and matrix compartments of the rat striatum during natural behaviors.

    PubMed

    Brown, Lucy L; Feldman, Samuel M; Smith, Diane M; Cavanaugh, James R; Ackermann, Robert F; Graybiel, Ann M

    2002-01-01

    The striosome and matrix compartments of the striatum are clearly identified by their neurochemical expression patterns and anatomical connections. To determine whether these compartments are distinguishable functionally, we used [14C]deoxyglucose metabolic mapping in the rat and tested whether neutral behavioral states (free movement, gentle restraint, and focal tactile stimulation under gentle restraint) were associated with regions of high metabolic activity in the matrix, in striosomes, or in both. We identified metabolic peaks in the striatum by means of image analysis, striosome-matrix boundaries by [3H]naloxone binding, and primary somatosensory corticostriatal input clusters by injections of anterograde tracer into electrophysiologically identified sites in SI. Peak metabolic activity was primarily confined to the matrix compartment under each behavioral condition. These findings show that during relatively neutral behavioral conditions the balance of activity between the two compartments favors the matrix and suggest that this balance is present in the striatum as part of normal behavior and processing of afferent activity.

  14. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ.

    PubMed

    Jones, Eleanor R; Jones, Gavin C; Legerlotz, Kirsten; Riley, Graham P

    2013-12-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1Hz for 48h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy.

  15. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein.

    PubMed

    Barbolina, Maria V; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D; Penzes, Peter; Ravosa, Matthew J; Stack, M Sharon

    2013-01-04

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling.

  16. Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein*

    PubMed Central

    Barbolina, Maria V.; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A.; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D.; Penzes, Peter; Ravosa, Matthew J.; Stack, M. Sharon

    2013-01-01

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling. PMID:23152495

  17. Complex Source and Radiation Behaviors of Small Elements of Linear and Matrix Flexible Ultrasonic Phased-Array Transducers

    NASA Astrophysics Data System (ADS)

    Amory, V.; Lhémery, A.

    2008-02-01

    Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.

  18. A new sieving matrix for DNA sequencing, genotyping and mutation detection and high-throughput genotyping with a 96-capillary array system

    SciTech Connect

    Gao, David

    1999-11-08

    Capillary electrophoresis has been widely accepted as a fast separation technique in DNA analysis. In this dissertation, a new sieving matrix is described for DNA analysis, especially DNA sequencing, genetic typing and mutation detection. A high-throughput 96 capillary array electrophoresis system was also demonstrated for simultaneous multiple genotyping. The authors first evaluated the influence of different capillary coatings on the performance of DNA sequencing. A bare capillary was compared with a DB-wax, an FC-coated and a polyvinylpyrrolidone dynamically coated capillary with PEO as sieving matrix. It was found that covalently-coated capillaries had no better performance than bare capillaries while PVP coating provided excellent and reproducible results. The authors also developed a new sieving Matrix for DNA separation based on commercially available poly(vinylpyrrolidone) (PVP). This sieving matrix has a very low viscosity and an excellent self-coating effect. Successful separations were achieved in uncoated capillaries. Sequencing of M13mp18 showed good resolution up to 500 bases in treated PVP solution. Temperature gradient capillary electrophoresis and PVP solution was applied to mutation detection. A heteroduplex sample and a homoduplex reference were injected during a pair of continuous runs. A temperature gradient of 10 C with a ramp of 0.7 C/min was swept throughout the capillary. Detection was accomplished by laser induced fluorescence detection. Mutation detection was performed by comparing the pattern changes between the homoduplex and the heteroduplex samples. High throughput, high detection rate and easy operation were achieved in this system. They further demonstrated fast and reliable genotyping based on CTTv STR system by multiple-capillary array electrophoresis. The PCR products from individuals were mixed with pooled allelic ladder as an absolute standard and coinjected with a 96-vial tray. Simultaneous one-color laser-induced fluorescence

  19. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation.

    PubMed

    Kasimir, Marie-Theres; Weigel, Guenter; Sharma, Jyotindra; Rieder, Erwin; Seebacher, Gernot; Wolner, Ernst; Simon, Paul

    2005-09-01

    An approach in tissue engineering of heart valves is the use of decellularized xenogeneic matrices to avoid immune response after implantation. The decellularization process must preserve the structural components of the extracellular matrix to provide a biomechanically stable scaffold. However, it is known that in vascular lesions platelet adhesion to extracellular matrix components occurs and platelet activation is induced. In the present study we examined the effects of a decellularized porcine heart valve matrix on thrombocyte activation and the influence of re-endothelialisation in vitro. Porcine pulmonary conduits were decellularized using Triton X-100, Na-deoxycholate and Igepal CA-630 followed by a ribonuclease digestion. Cryostat sections of decellularized heart valves with and without seeding with human umbilical vein endothelial cells (HUVEC) were incubated with platelet rich plasma. Samples were either stained with fluorescent antibodies for CD41 and PAC-I (recognizing the activated fibrinogen receptor) or fixed with glutaraldehyde. Thereafter, the samples were processed for laser scanning microscopy (LSM) or scanning electron microscopy (SEM). Examination by LSM showed numerous platelets with co-localized staining for CD41 and PAC-1 on the nonseeded decellularized heart valve matrix whereas after seeding with endothelial cells no platelet activation was detected. SEM revealed platelet adhesion and aggregate formation only on the surface of the non-seeded or partially denuded matrix specimens. We show in this study that the decellularized porcine matrix acts as a platelet-activating surface. Seeding with endothelial cells effectively abolishes the platelet adhesion and activation and therefore is necessary to eliminate thrombogenicity in tissue engineered heart valves.

  20. Electrodeposition of gold nanoparticle arrays on ITO glass as electrode with high electrocatalytic activity

    SciTech Connect

    Zhang, Kui; Wei, Juan; Zhu, Houjuan; Ma, Fang; Wang, Suhua

    2013-03-15

    Highlights: ► Electrodeposition of gold nanoparticle arrays on ITO glass as catalytic-electrodes. ► The sizes and densities of the gold nanoparticles can be easily controlled. ► Such arrays on ITO glass shows high electrocatalytic activity and good stability. - Abstract: Herein, we reported a templateless, surfactantless, and simple electrochemical method to directly fabricate gold nanoparticle (AuNP) arrays on indium tin oxide (ITO) glass substrates as effective electrocatalytic electrodes. The as-prepared AuNP arrays have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), etc. AuNPs with small sizes (<20 nm) were uniformly deposited on the ITO glass under constant current densities, and particle densities can be adjusted by varying the applied charges. The resultant AuNP array electrode showed higher catalytic activity and good stability toward electro-oxidation of ascorbic acid compared with other electrodes, such as bare ITO electrode, bare glassy carbon electrode and bulk gold film electrode.

  1. Responsibility modulates pain-matrix activation elicited by the expressions of others in pain.

    PubMed

    Cui, Fang; Abdelgabar, Abdel-Rahman; Keysers, Christian; Gazzola, Valeria

    2015-07-01

    Here we examine whether brain responses to dynamic facial expressions of pain are influenced by our responsibility for the observed pain. Participants played a flanker task with a confederate. Whenever either erred, the confederate was seen to receive a noxious shock. Using functional magnetic resonance imaging, we found that regions of the functionally localized pain-matrix of the participants (the anterior insula in particular) were activated most strongly when seeing the confederate receive a noxious shock when only the participant had erred (and hence had full responsibility). When both or only the confederate had erred (i.e. participant's shared or no responsibility), significantly weaker vicarious pain-matrix activations were measured.

  2. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-11-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity.

  3. Simultaneous multi-patch-clamp and extracellular-array recordings: Single neuron reflects network activity

    PubMed Central

    Vardi, Roni; Goldental, Amir; Sardi, Shira; Sheinin, Anton; Kanter, Ido

    2016-01-01

    The increasing number of recording electrodes enhances the capability of capturing the network’s cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network. This surprising observation also sheds light on the cooperative origin of neuronal burst in cultured networks. Our findings present an alternative flexible approach to the technique based on a massive tiling of networks by large-scale arrays of electrodes to monitor their activity. PMID:27824075

  4. Effects of Organophosphorus Flame Retardants on Spontaneous Activity in Neuronal Networks Grown on Microelectrode Arrays

    EPA Science Inventory

    EFFECTS OF ORGANOPHOSPHORUS FLAME RETARDANTS ON SPONTANEOUS ACTIVITY IN NEURONAL NETWORKS GROWN ON MICROELECTRODE ARRAYS TJ Shafer1, K Wallace1, WR Mundy1, M Behl2,. 1Integrated Systems Toxicology Division, NHEERL, USEPA, RTP, NC, USA, 2National Toxicology Program, NIEHS, RTP, NC...

  5. PCR arrays indicate that the expression of extracellular matrix and cell adhesion genes in human adipocytes is regulated by IL-1β (interleukin-1β).

    PubMed

    Kępczyńska, Malgorzata A; Zaibi, Mohamed S; Alomar, Suliman Y; Trayhurn, Paul

    2017-02-01

    The role of IL-1β in regulating the expression of extracellular matrix (ECM) and cell adhesion genes in human adipocytes has been examined. Adipocytes differentiated in culture were incubated with IL-1β for 4 or 24 h and RNA probed with PCR arrays for 84 ECM and cell adhesion genes. Treatment with IL-1β resulted in changes in the expression at one or both time points of ∼50% of the genes probed by the arrays, the majority being down-regulated. Genes whose expression was down-regulated by IL-1β included those encoding several collagen chains and integrin subunits. In contrast, IL-1β induced substantial increases (>10-fold) in the expression of ICAM1, VCAM1, MMP1 and MMP3; the secretion of the encoded proteins was also markedly stimulated. IL-1β has a pervasive effect on the expression of ECM and cell adhesion genes in human adipocytes, consistent with the derangement of tissue structure during inflammation in white fat.

  6. A Large-N Mixed Sensor Active + Passive Seismic Array near Sweetwater, TX

    NASA Astrophysics Data System (ADS)

    Barklage, M.; Hollis, D.; Gridley, J. M.; Woodward, R.; Spriggs, N.

    2014-12-01

    A collaborative high-density seismic survey using broadband and short period seismic sensors was conducted March 7 - April 30, 2014 near Sweetwater, TX. The objective of the survey was to use a combination of controlled source shot slices and passive seismic recordings recorded by multiple types of sensors with different bandwidths and sensitivities to image the subsurface. The broadband component of the survey consisted of 25 continuously recording seismic stations comprised of 20 Trillium Compact Posthole sensors from Nanometrics and 5 Polar Trillium 120PHQs from the IRIS/PASSCAL Instrument Center (PIC). The broadband stations also utilized 25 Centaur digitizers from Nanometrics as well as 25 polar quick deploy enclosures from the PIC. The broadband array was designed to maximize horizontal traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. The short period component of the survey consisted of 2639 receiver locations using Zland nodes from NodalSeismic. The nodes are further divided into 3 sub-arrays: 1) outlier array 2) active source array 3) backbone array. The outlier array consisted of 25 continuously recording nodes distributed around the edge of the survey at a distance of ~5 km from the survey boundary, and provided valuable constraints to passive data analysis techniques at the edge of the survey boundary. The active source patch consisted of densely spaced nodes that were designed to record signals from a Vibroseis source truck for active source reflection processing and imaging. The backbone array consisted of 292 nodes that covered the entirety of the survey area to maximize the value of the passive data analysis. By utilizing continuous recording and smartly designed arrays for measuring local and regional earthquakes we can incorporate velocity information derived from passive data analysis into the active source processing workflow to produce a superior subsurface

  7. Estimation of the coordinates of several signal sources from the algebraic properties of the matrix of cross correlation moments of signals at the outputs of the receiving elements of an antenna array

    NASA Astrophysics Data System (ADS)

    Domanov, Iu. A.; Korobko, O. V.; Tauroginskii, B. I.

    1985-07-01

    The paper examines the question of the existence of the weight vector of an antenna array in the case of which the array amplitude pattern can be represented by a polynomial whose degree is equal to the number of signal sources, while the roots of the polynomial uniquely correspond to the angular coordinates of the sources. It is shown that this weight vector is a linear combination of eigenvectors corresponding to the minimum eigenvalue of the matrix of the cross correlation moments of signals at the outputs of the receiving elements of the array.

  8. Molybdenum metallization, and step-induced defects in active-matrix liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Quli, Farhat Abbas

    The objective of this work was to identify the causes of the step-induced preferential etching which occurs during the patterning of molybdenum (Mo) interconnects for the source/drain line metallization of the thin-film transistor array of active matrix liquid crystal displays. The morphology of Mo films deposited on steps under various conditions using sputtering and electron beam physical vapor deposition (EB-PVD) was studied to identify the causes of preferential etching, and determine processing conditions leading to defect-free interconnects. It was found that columnar growth domains grown from the steps were misaligned with the columnar growth from the substrate, causing the creation of high-angle grain boundaries where the columns impinged upon one another. This boundary region is believed to be responsible for the preferential etching in the Mo films. Columnar growth of silicon dioxide, an amorphous film, did not result in preferential etching due to the lack of grain boundaries. Neon (Ne) sputtering of Mo did not lead to amorphous films due to higher film bombardment during Ne sputtering, as reported by other researchers. Instead, the low rate of deposition during Ne sputtering was found to cause the incorporation of high amounts of impurities that lead to amorphization of the growing film. At extremely low rates and high impurity concentrations, it was found that the film grew in a fcc rather than bcc structure. Mo deposited under high levels of argon ion bombardment was found to have an isotropic rather than columnar morphology which led to interconnects that were free from preferential etching. The maximum ratio of depositing atoms to bombarding ions necessary to modify the microstructure was found to be 1.5 for Mo deposited by EB-PVD at 400°C substrate temperature and --600 volts substrate bias. The processing window for bias sputtering conditions leading to an isotropic morphology was also identified. Thermally induced grain growth in metal films was

  9. Air-cathode microbial fuel cell array: a device for identifying and characterizing electrochemically active microbes.

    PubMed

    Hou, Huijie; Li, Lei; de Figueiredo, Paul; Han, Arum

    2011-01-15

    Microbial fuel cells (MFCs) have generated excitement in environmental and bioenergy communities due to their potential for coupling wastewater treatment with energy generation and powering diverse devices. The pursuit of strategies such as improving microbial cultivation practices and optimizing MFC devices has increased power generating capacities of MFCs. However, surprisingly few microbial species with electrochemical activity in MFCs have been identified because current devices do not support parallel analyses or high throughput screening. We have recently demonstrated the feasibility of using advanced microfabrication methods to fabricate an MFC microarray. Here, we extend these studies by demonstrating a microfabricated air-cathode MFC array system. The system contains 24 individual air-cathode MFCs integrated onto a single chip. The device enables the direct and parallel comparison of different microbes loaded onto the array. Environmental samples were used to validate the utility of the air-cathode MFC array system and two previously identified isolates, 7Ca (Shewanella sp.) and 3C (Arthrobacter sp.), were shown to display enhanced electrochemical activities of 2.69 mW/m(2) and 1.86 mW/m(2), respectively. Experiments using a large scale conventional air-cathode MFC validated these findings. The parallel air-cathode MFC array system demonstrated here is expected to promote and accelerate the discovery and characterization of electrochemically active microbes.

  10. Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    2000-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.

  11. Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager.

    PubMed

    El-Mohri, Y; Jee, K W; Antonuk, L E; Maolinbay, M; Zhao, Q

    2001-12-01

    After years of aggressive development, active matrix flat-panel imagers (AMFPIs) have recently become commercially available for radiotherapy imaging. In this paper we report on a comprehensive evaluation of the signal and noise performance of a large-area prototype AMFPI specifically developed for this application. The imager is based on an array of 512 x 512 pixels incorporating amorphous silicon photodiodes and thin-film transistors offering a 26 x 26 cm2 active area at a pixel pitch of 508 microm. This indirect detection array was coupled to various x-ray converters consisting of a commercial phosphor screen (Lanex Fast B, Lanex Regular, or Lanex Fine) and a 1 mm thick copper plate. Performance of the imager in terms of measured sensitivity, modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) is reported at beam energies of 6 and 15 MV and at doses of 1 and 2 monitor units (MU). In addition, calculations of system performance (NPS, DQE) based on cascaded-system formalism were reported and compared to empirical results. In these calculations, the Swank factor and spatial energy distributions of secondary electrons within the converter were modeled by means of EGS4 Monte Carlo simulations. Measured MTFs of the system show a weak dependence on screen type (i.e., thickness), which is partially due to the spreading of secondary radiation. Measured DQE was found to be independent of dose for the Fast B screen, implying that the imager is input-quantum-limited at 1 MU, even at an extended source-to-detector distance of 200 cm. The maximum DQE obtained is around 1%--a limit imposed by the low detection efficiency of the converter. For thinner phosphor screens, the DQE is lower due to their lower detection efficiencies. Finally, for the Fast B screen, good agreement between calculated and measured DQE was observed.

  12. 3-D matrix template-assisted growth of oriented oxide nanowire arrays using glancing angle pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wright, N.; Mateo-Feliciano, D.; Ostoski, A.; Mukherjee, P.; Witanachchi, S.

    Nanosphere lithography is a combination of different methods to nanofabrication. In this work nanosphere lithography is used to study the growth of Zinc Oxide Nano-columns (ZnO NCs) on different diameter Silica Nanosphere (SNS) self-assembled templates. ZnO NCs are promising building blocks for many existing and emerging optical, electrical, and piezoelectric devices, specifically, the seeded growth of other oxide materials. Recently, reports have shown a ferroelectric phase of zinc stannate (ZnSnO3) and while lead zirconium titanate oxide (PZT) has been the main material of interest in ferroelectric and piezoelectric applications, the toxicity of lead has been of great concern. The possibility of developing lead free piezoelectric materials is of great interest in the ferroelectric community. Langmuir-Blodgett method was used to construct a self-assembled monolayer of SNSs on silicon substrates. Oriented ZnO NCs were grown on top of the spheres using the glancing angle pulsed laser deposition technique. Columns were formed in a spatially ordered closed-packed hexagonal configuration. Growth of ZnO NCs was studied as function of ambient Oxygen pressure with SNS size ranging from 250-1000 nm. Cross-sectional Scanning Electron Microscopy and X-ray diffraction (XRD) were used to study the template structure. Relative aspect ratios were studied and showed tunability of column dimensions with sphere size. XRD revealed ZnO NC arrays were c-axis oriented with hexagonal wurtzite structure.

  13. Progress in the development and demonstration of a 2D-matrix phased array ultrasonic probe for under-sodium viewing

    NASA Astrophysics Data System (ADS)

    Larche, M. R.; Baldwin, D. L.; Edwards, M. K.; Mathews, R. A.; Prowant, M. S.; Diaz, A. A.

    2016-02-01

    Optically opaque liquid sodium used in liquid metal fast reactors poses a unique set of challenges for nondestructive evaluation. The opaque nature of the sodium prevents visual examinations of components within this medium, but ultrasonic waves are able to propagate through sodium so an ultrasonic testing (UT) technique can be applied for imaging objects in sodium. A UT sensor used in liquid sodium during a refueling outage must be capable of withstanding the 260°C corrosive environment and must also be able to wet (couple the ultrasonic waves) so that sound can propagate into the sodium. A multi-year iterative design effort, based on earlier work in the 1970s, has set out to improve the design and fabrication processes needed for a UT sensor technology capable of overcoming the temperature and wetting issues associated with this environment. Robust materials and improved fabrication processes have resulted in single-element sensors and two different linear-array sensors that have functioned in liquid sodium. More recent efforts have been focused on improving signal-to-noise ratio and image resolution in the highly attenuating liquid sodium. In order to accomplish this, modeling and simulation tools were used to design a 60-element 2D phased-array sensor operating at 2 MHz that features a separate transmitter and receiver. This design consists of 30 transmit elements and another 30 receive elements, each arranged in a rectangular matrix pattern that is 10 rows tall and 3 wide. The fabrication of this 2D array is currently underway and will be followed by a series of performance tests in water, hot oil, and finally in liquid sodium at 260°C. The performance testing cycle will evaluate multiple characteristics of the sensor that are crucial to performance including: transmit-uniformity, element sensitivity variations, element-to-element energy leakage, sound field dimensions, and spatial resolution. This paper will present a summary of results from the previous UT

  14. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity.

    PubMed

    Sun, Lan; Li, Jing; Wang, Chenglin; Li, Sifang; Lai, Yuekun; Chen, Hongbo; Lin, Changjian

    2009-11-15

    This work presents a novel approach for preparing TiO(2) nanotube array photocatalyst loaded with highly dispersed Ag nanoparticles through an ultrasound aided photochemical route. The Ag content loaded on the array was controlled by changing the concentration of AgNO(3) solution. The Ag-TiO(2) nanotube arrays were characterized by SEM, XRD, XPS and UV-vis absorption. The effects of Ag content on the photoelectrochemical (PEC) property and photocatalytic activity of TiO(2) nanotube array electrode were studied. The results showed that Ag loading significantly enhanced the photocurrent and photocatalytic degradation rate of TiO(2) nanotube array under UV-light irradiation. The photocurrent and photocatalytic degradation rate of Ag-TiO(2) nanotube array prepared in 0.006 M AgNO(3) solution were about 1.2 and 3.7 times as that of pure TiO(2) nanotube array, respectively.

  15. Silicate-matrix active media for tunable solid-state lasers

    SciTech Connect

    Kuznetsova, Rimma T; Mayer, G V; Manekina, Yu A; Tel'minov, E N; Arabei, S M; Pavich, T A; Solovyov, Konstantin N

    2007-08-31

    The lasing characteristics of solid active media based on laser dyes (rhodamines, coumarin 2, paraterphenyl) doped into silicate bulk matrices and thin films of different compositions are studied upon optical excitation. The lasing efficiency, photostability, and spectral parameters of laser media are investigated as functions of the excitation wavelength and intensity. Variations in these parameters due to the interaction of organic luminophores with a silicate matrix and radiation are discussed. (active media. lasers)

  16. Bacterial lipopolysaccharides induce in vitro degradation of cartilage matrix through chondrocyte activation.

    PubMed Central

    Jasin, H E

    1983-01-01

    The present studies demonstrate that bacterial lipopolysaccharides (LPS) induce cartilage matrix degradation in live explants in organ culture. Quintuplicate bovine nasal fibrocartilage explants cultured for 8 d with three different purified LPS preparations derived from Escherichia coli and Salmonella typhosa at concentrations ranging from 1.0 to 25.0 micrograms/ml resulted in matrix proteoglycan depletion of 33.3 +/- 5.8 to 92.5 +/- 2.0% (medium control depletion 17.7 +/- 0.7 to 32.4 +/- 1.4%). Matrix degradation depended on the presence of live chondrocytes because frozen-thawed explants incubated with LPS failed to show any proteoglycan release. Moreover, the addition of Polymyxin B (25 micrograms/ml) to live explants incubated with LPS abolished matrix release, whereas Polymyxin B had no effect on the matrix-degrading activity provided by blood mononuclear cell factors. A highly purified Lipid A preparation induced matrix degradation at a concentration of 0.01 micrograms/ml. Cartilage matrix collagen and proteoglycan depletion also occurred with porcine articular cartilage explants (collagen release: 18.3 +/- 3.5%, medium control: 2.1 +/- 0.5%; proteoglycan release: 79.0 +/- 5.9%, medium control: 28.8 +/- 4.8%). Histochemical analysis of the cultured explants confirmed the results described above. Gel chromatography of the proteoglycans released in culture indicated that LPS induced significant degradation of the high molecular weight chondroitin sulfate-containing aggregates. These findings suggest that bacterial products may induce cartilage damage by direct stimulation of chondrocytes. This pathogenic mechanism may play a role in joint damage in septic arthritis and in arthropathies resulting from the presence of bacterial products derived from the gastrointestinal tract. Images PMID:6358260

  17. A new generation active arrays for optical flexibility in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Kroes, G.; Jaskó, A.; Pragt, J. H.; Venema, L.; De Haan, M.

    2012-09-01

    Throughout the history of telescopes and astronomical instrumentation, new ways were found to open up unexplored possibilities in fundamental astronomical research by increasing the telescope size and instrumentation complexity. The ever demanding requirements on instrument performance pushes instrument complexity to the edge. In order to take the next leap forward in instrument development the optical design freedom needs to be increased drastically. The use of more complex and more accurate optics allows for shorter optical trains with smaller sizes, smaller number of components and reduced fabrication and alignment verification time and costs. Current optics fabrication is limited in surface form complexity and/or accuracy. Traditional active and adaptive optics lack the needed intrinsic long term stability and simplicity in design, manufacturing, verification and control. This paper explains how and why active arrays literally provide a flexible but stable basis for the next generation optical instruments. Combing active arrays with optically high quality face sheets more complex and accurate optical surface forms can be provided including extreme a-spherical (freeform) surfaces and thus allow for optical train optimization and even instrument reconfiguration. A zero based design strategy is adopted for the development of the active arrays addressing fundamental issues in opto-mechanical engineering. The various choices are investigated by prototypes and Finite Element Analysis. Finally an engineering concept will be presented following a highly stable adjustment strategy allowing simple verification and control. The Optimization metrology is described in an additional paper for this conference by T. Agócs et al.

  18. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders.

    PubMed

    Murakami, Kohei; Maeda, Shingo; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-07-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes.

  19. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Gardine, L.; Dorr, P. M.; Tape, C.; McQuillan, P.; Taber, J.; West, M. E.; Busby, R. W.

    2014-12-01

    The EarthScopeTransportable Array is working to locate over 260 stations in Alaska and western Canada. In this region, new tactics and partnerships are needed to increase outreach exposure. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of University of Alaska Geophysical Institute, to spread awareness of Alaska earthquakes and the benefits of the Transportable Array for Alaskans. Nearly all parts of Alaska are tectonically active. The tectonic and seismic variability of Alaska requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaska villages and towns often makes frequent visits difficult. For this reason, Alaska outreach most often occurs at community events. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Region-specific publications have been developed to tie in a sense of place for residents of Alaska. The Alaska content for IRIS's Active Earth Monitor will emphasize the widespread tectonic and seismic features and offer not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan understanding of the seismic hazard and tectonics of the region. Efforts to publicize the presence of the Transportable Array in Alaska, western Canada, and the Lower 48 also continue. There have been recent articles published in university, local and regional newspapers; stories appearing in national and international print and broadcast media; and documentaries produced by some of the world

  20. Active Travel-Time Tomography using a Distributed Acoustic Sensing Array

    NASA Astrophysics Data System (ADS)

    Lancelle, C.; Fratta, D.; Lord, N. E.; Wang, H. F.; Chalari, A.

    2015-12-01

    Distributed acoustic sensing (DAS) is a sensor array used for monitoring ground motion by utilizing the interaction of light pulses with sections of a fiber-optic cable. In September 2013 a field test was conducted at the NEES@UCSB Garner Valley field site in Southern California incorporating DAS technology. A 762-meter-long fiber-optic cable was trenched to a depth of about 0.3 m in a rectangular design with two interior diagonal segments. The fiber was excited by a number of sources, including a 45 kN shear shaker and a smaller 450 N portable mass shaker, both of which were available through NEES@UCLA. In addition to these sources, signals were recorded from a minivib source and hammer blows on a steel plate, as well as 8 hours of overnight ambient noise recording. One goal of the field test was to evaluate the use of DAS for tomographic studies. The large number of measurement points inherent to DAS lends itself well to this type of study. Tomograms were constructed using two of the active-sources at multiple locations. There were 8 minivib locations within the array and 13 hammer locations along the boundary of the array. Travel-time data were collected with the DAS array. Two-dimensional velocity tomograms were constructed for different resolutions from the two active sources and compared. In all the images, the lowest velocities lie near the center of the array with higher velocities surrounding this area. The impact results, however, may contain an artifact due to multiple propagation modes. This research is part of the DOE's PoroTomo project.

  1. A nuclear matrix attachment site in the 4q35 locus has an enhancer-blocking activity in vivo: implications for the facio-scapulo-humeral dystrophy.

    PubMed

    Petrov, Andrei; Allinne, Jeanne; Pirozhkova, Iryna; Laoudj, Dalila; Lipinski, Marc; Vassetzky, Yegor S

    2008-01-01

    Facio-scapulo-humeral dystrophy (FSHD), a muscular hereditary disease with a prevalence of 1 in 20,000, is caused by a partial deletion of a subtelomeric repeat array on chromosome 4q. Earlier, we demonstrated the existence in the vicinity of the D4Z4 repeat of a nuclear matrix attachment site, FR-MAR, efficient in normal human myoblasts and nonmuscular human cells but much weaker in muscle cells from FSHD patients. We now report that the D4Z4 repeat contains an exceptionally strong transcriptional enhancer at its 5'-end. This enhancer up-regulates transcription from the promoter of the neighboring FRG1 gene. However, an enhancer blocking activity was found present in FR-MAR that in vitro could protect transcription from the enhancer activity of the D4Z4 array. In vivo, transcription from the FRG1 and FRG2 genes could be down- or up-regulated depending on whether or not FR-MAR is associated with the nuclear matrix. We propose a model for an etiological role of the delocalization of FR-MAR in the genesis of FSHD.

  2. Drosophila SAF-B Links the Nuclear Matrix, Chromosomes, and Transcriptional Activity

    PubMed Central

    Alfonso-Parra, Catalina; Maggert, Keith A.

    2010-01-01

    Induction of gene expression is correlated with alterations in nuclear organization, including proximity to other active genes, to the nuclear cortex, and to cytologically distinct domains of the nucleus. Chromosomes are tethered to the insoluble nuclear scaffold/matrix through interaction with Scaffold/Matrix Attachment Region (SAR/MAR) binding proteins. Identification and characterization of proteins involved in establishing or maintaining chromosome-scaffold interactions is necessary to understand how the nucleus is organized and how dynamic changes in attachment are correlated with alterations in gene expression. We identified and characterized one such scaffold attachment factor, a Drosophila homolog of mammalian SAF-B. The large nuclei and chromosomes of Drosophila have allowed us to show that SAF-B inhabits distinct subnuclear compartments, forms weblike continua in nuclei of salivary glands, and interacts with discrete chromosomal loci in interphase nuclei. These interactions appear mediated either by DNA-protein interactions, or through RNA-protein interactions that can be altered during changes in gene expression programs. Extraction of soluble nuclear proteins and DNA leaves SAF-B intact, showing that this scaffold/matrix-attachment protein is a durable component of the nuclear matrix. Together, we have shown that SAF-B links the nuclear scaffold, chromosomes, and transcriptional activity. PMID:20422039

  3. First performance tests of a digital photon counter (DPC) array coupled to a CsI(Tl) crystal matrix for potential use in SPECT.

    PubMed

    Georgiou, Maria; Borghi, Giacomo; Spirou, Spiridon V; Loudos, George; Schaart, Dennis R

    2014-05-21

    The digital photon counter (DPC) is a recently developed type of digital silicon photomultiplier that combines low dark count rates, low readout noise, and fully digital, integrated readout circuitry with neighbor logic capability, system scalability, and MR compatibility. These are desirable properties for application in scintillation detectors for single photon emission computed tomography (SPECT). In this work, the feasibility of using a DPC array in combination with a CsI(Tl) crystal matrix as a potential detector for SPECT is investigated for the first time. Given the relatively long decay time of CsI(Tl), an important consideration is the influence on the detector performance of the DPC dark count rate as a function of temperature. We present a preliminary characterization of a detector assembled with an array of 2 × 2 × 3 mm(3) CsI(Tl) crystals. Preparatory measurements were acquired with a (57)Co source in order to optimize the light-guide thickness and the sensor settings. The spatial resolution of the detector was tested by acquiring flood maps with (57)Co as well as (99m)Tc sources. Three crystal identification algorithms were compared for the reconstruction of the flood maps. All crystal elements could be visualized clearly and high values of peak-to-valley ratios were achieved. Energy resolutions of ∼18.5% FWHM and ∼15% FWHM were measured at 122 keV and 140 keV, respectively. Temperature-dependent measurements indicate that the detector can work satisfactorily up to about 15 °C.

  4. Toll-like receptor 2 activation and serum amyloid A regulate smooth muscle cell extracellular matrix

    PubMed Central

    Bishop, Christopher A.; Best, Michael; Rich, Celeste B.; Stone, Phillip J.

    2017-01-01

    Smooth muscle cells contribute to extracellular matrix remodeling during atherogenesis. De-differentiated, synthetic smooth muscle cells are involved in processes of migration, proliferation and changes in expression of extracellular matrix components, all of which contribute to loss of homeostasis accompanying atherogenesis. Elevated levels of acute phase proteins, including serum amyloid A (SAA), are associated with an increased risk for atherosclerosis. Although infection with periodontal and respiratory pathogens via activation of inflammatory cell Toll-like receptor (TLR)2 has been linked to vascular disease, little is known about smooth muscle cell TLR2 in atherosclerosis. This study addresses the role of SAA and TLR2 activation on smooth muscle cell matrix gene expression and insoluble elastin accumulation. Cultured rat aortic smooth muscle cells were treated with SAA or TLR2 agonists and the effect on expression of matrix metallopeptidase 9 (MMP9) and tropoelastin studied. SAA up-regulated MMP9 expression. Tropoelastin is an MMP9 substrate and decreased tropoelastin levels in SAA-treated cells supported the concept of extracellular matrix remodeling. Interestingly, SAA-induced down-regulation of tropoelastin was not only evident at the protein level but at the level of gene transcription as well. Contributions of proteasomes, nuclear factor κ B and CCAAT/enhancer binding protein β on regulation of MMP9 vs. tropoleastin expression were revealed. Effects on Mmp9 and Eln mRNA expression persisted with long-term SAA treatment, resulting in decreased insoluble elastin accumulation. Interestingly, the SAA effects were TLR2-dependent and TLR2 activation by bacterial ligands also induced MMP9 expression and decreased tropoelastin expression. These data reveal a novel mechanism whereby SAA and/or infection induce changes in vascular elastin consistent with atherosclerosis. PMID:28257481

  5. An active K/Ka-band antenna array for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.

    1993-01-01

    An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.

  6. An active K/Ka-band antenna array for the NASA ACTS mobile terminal

    NASA Astrophysics Data System (ADS)

    Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.

    An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.

  7. Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes

    NASA Astrophysics Data System (ADS)

    Anttu, N.; Xu, H. Q.

    2011-04-01

    We present the formulation of a scattering matrix method for the study of light-scattering properties of metal films. The method is employed for the study of the optical excitation of surface plasmons in a gold film of 15-230 nm thickness, patterned periodically with subwavelength nanoholes. The gold film is placed on a thick SiO2 wafer, and the nanoholes as well as the top side of the gold film are filled with H2O. Light is incident on the gold film from either the SiO2 or the H2O side. The extinction and reflectance spectra of the system, as well as the electromagnetic field distributions at certain characteristic wavelengths, are calculated. The extinction spectra show, depending on system parameters, one or several peaks in the visible wavelength range. The extinction peaks are found to be caused by surface plasmons. A simple model based on the dispersion relation for surface plasmons in an unperforated gold film is shown to predict the peak positions of the extinction for thick perforated films very well. Even for thin films, this simple model, which includes coupling of surface plasmons on both surfaces of the film, predicts peak positions of the extinction well if the hole diameter is small enough. As the hole diameter increases, the extinction peaks of thin films show redshifts. Extinction peaks caused by surface plasmons at the SiO2/Au interface in thick films exhibit strong redshifts when the film thickness is decreased. However, the extinction peaks caused by surface plasmons at the H2O/Au interface in thick films show a completely different behavior. In this case, the extinction peaks do not move noticeably when the film thickness is decreased. Instead, they are weakened and finally disappear. It is also found that each extinction peak is accompanied by an extinction dip and that a reflectance dip is located in the wavelength between the extinction peak and the dip. This arrangement of an extinction peak, a reflectance dip, and an extinction dip is a

  8. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    NASA Astrophysics Data System (ADS)

    Syed, Wasif; Hammer, David; Lipson, Michal

    2007-11-01

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (terbium borate glass) placed adjacent to, or within, the wire array in experiments on the COBRA pulsed power generator [1]. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as ˜2 T inside a wire-array for ˜40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. We will also present our progress on field measurements using an optical fiber sensor and a very small ``thin film waveguide'' coupled to a fiber optic system. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor for a greater fraction of the current pulse than magnetic probes, with which we compare our results. This research was sponsored by NNSA under SSAA program via DOE Coop Agreement DE-F03-02NA00057. [1] W. Syed, D. A. Hammer, & M. Lipson, 34^th ICOPS & 16^th PPPS, Albuquerque, NM, June 2007.

  9. Magnetic Field Measurements in Wire-Array Z-Pinches using Magneto-Optically Active Waveguides

    SciTech Connect

    Syed, Wasif; Blesener, Isaac; Hammer, David A.; Lipson, Michal

    2009-01-21

    Understanding the magnetic field topology in wire-array Z-pinches as a function of time is of great significance to understanding these high-energy density plasmas especially for their ultimate application to stockpile stewardship and inertial confinement fusion. We are developing techniques to measure magnetic fields as a function of space and time using Faraday rotation of a single longitudinal mode (SLM) laser through a magneto-optically active bulk waveguide (multicomponent terbium borate glass) placed adjacent to, or within, the wire array in 1 MA experiments. We have measured fields >10 T with 100 ns rise times outside of a wire-array for the entire duration of the current pulse and as much as {approx}2 T inside a wire-array for {approx}40 ns from the start of current. This is the first time that such rapidly varying and large fields have been measured using these materials. In a dense Z-pinch, these sensing devices may not survive for long but may provide the magnetic field at the position of the sensor that can be used to corroborate magnetic probes, with which we compare our results.

  10. Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors.

    PubMed

    Cao, Xuan; Lau, Christian; Liu, Yihang; Wu, Fanqi; Gui, Hui; Liu, Qingzhou; Ma, Yuqiang; Wan, Haochuan; Amer, Moh R; Zhou, Chongwu

    2016-11-22

    Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon nanotube active-matrix backplanes are still difficult to realize for future displays and sensing applications. Here, we report fully screen-printed active-matrix electrochromic displays employing carbon nanotube thin-film transistors. Our fully printed backplane shows high electrical performance with mobility of 3.92 ± 1.08 cm(2) V(-1) s(-1), on-off current ratio Ion/Ioff ∼ 10(4), and good uniformity. The printed backplane was then monolithically integrated with an array of printed electrochromic pixels, resulting in an entirely screen-printed active-matrix electrochromic display (AMECD) with good switching characteristics, facile manufacturing, and long-term stability. Overall, our fully screen-printed AMECD is promising for the mass production of large-area and low-cost flexible displays for applications such as disposable tags, medical electronics, and smart home appliances.

  11. Activated matrix metalloproteinase and disrupted myocardial collagen matrix in increased sympathetic activity following stimulation of dorsal medulla in the vagotomized feline model.

    PubMed

    Cheng, Ching-Chang; Tung, Kwong-Chung; Fu, Yun-Ching; Gong, Chi-Li; Chen, Ying-Tsung; Lin, Nai-Nu; Lin, James A; Chiu, Yung-Tsung

    2008-02-29

    Sympathetic hyperactivation in many kinds of neurocardiogenic injury can result in obvious heart failure. We generated a vagotomized feline model in which sympathetic hyperactivation was induced by electrical stimulation of dorsal medulla (ESDM) of brain stem to investigate the relationship between disruption of extracellular collagen matrix (ECM) and activation of matrix metalloproteinases (MMPs) in myocardium in the sympathetic hyperactivity. Mean blood pressure, heart rate and plasma norepinephrine were all significantly increased from baseline to a peak at 5 min after ESDM. Echocardiographic study showed significant left ventricular dilatation and hypokinesia (ejection fraction: from 87.7 +/- 6.3% to 39.4 +/- 7.8%) from baseline to 180 mm after ESDM. Histopathological finding revealed significant overstretching or spring-like disappearance and disruption of ECM. MMP-2 expression was significantly increased in left ventricular myocardium as compared to sham. These results suggest that ESDM-induced sympathetic hyperactivity causes the expression of MMP-2 that disrupts myocardial ECM, contributing to the development of cardiac dysfunction.

  12. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  13. Matrix metalloproteinase expression and activity in human airway smooth muscle cells

    PubMed Central

    Elshaw, Shona R; Henderson, Neil; Knox, Alan J; Watson, Susan A; Buttle, David J; Johnson, Simon R

    2004-01-01

    Airway remodelling is a feature of chronic asthma comprising smooth muscle hypertrophy and deposition of extracellular matrix (ECM) proteins. Matrix metalloproteinases (MMPs) breakdown ECM, are involved in tissue remodelling and have been implicated in airway remodelling. Although mesenchymal cells are an important source of MMPs, little data are available on airway smooth muscle (ASM) derived MMPs. We therefore investigated MMP and tissue inhibitor of metalloproteinase (TIMP) production and activity in human ASM cells.MMPs and TIMPs were examined using quantitative real-time RT–PCR, Western blotting, zymography and a quench fluorescence (QF) assay of total MMP activity.The most abundant MMPs were pro-MMP-2, pro- MMP-3, active MMP-3 and MT1-MMP. TIMP-1 and TIMP-2 expression was low in cell lysates but high in conditioned medium. High TIMP secretion was confirmed by the ability of ASM-conditioned medium to inhibit recombinant MMP-2 in a QF assay. Thrombin increased MMP activity by activation of pro-MMP-2 independent of the conventional smooth muscle thrombin receptors PAR 1 and 4.In conclusion, ASM cells express pro-MMP-2, pro and active MMP-3, MMP-9 and MT1-MMP. Unstimulated cells secrete excess TIMP 1 and 2, preventing proteolytic activity. MMP-2 can be activated by thrombin which may contribute to airway remodelling. PMID:15265805

  14. Activation of matrix metalloproteinase-2 from hepatic stellate cells requires interactions with hepatocytes.

    PubMed Central

    Théret, N.; Musso, O.; L'Helgoualc'h, A.; Clément, B.

    1997-01-01

    Activation of matrix metalloproteinase (MMP)-2, the 72-kd collagenase IV/gelatinase A, is involved in extracellular matrix remodeling. It has been suggested that a membrane-type MMP (MT-MMP-1) and the tissue inhibitor of metalloproteinase (TIMP)-2 are involved in MMP-2 processing, but the exact mechanism(s) of its activation remains unclear. We have investigated the role of cell-cell cooperation in the activation of pro-MMP-2 in the liver, using pure cultures and co-cultures of hepatocytes and hepatic stellate cells (HSCs). Northern blot analysis and in situ hybridization showed that, in both pure and co-cultures, HSCs, but not hepatocytes, expressed MMP-2, TIMP-2, and MT-MMP-1 mRNA. Zymography analyses revealed the latent form of MMP-2 in medium from 2-day-old pure HSC cultures with higher amounts in medium from hepatocyte/HSC co-cultures. When hepatocytes were added to 10-day-old HSC cultures, the activated form of MMP-2 was detected, concomitantly with the deposition of an abundant extracellular matrix. Incubation of plasma membrane-enriched fractions from hepatocytes with conditioned medium from pure HSC cultures generated the activated species of MMP-2 (62 and 59 kd). Activation of pro-MMP-2 by hepatocyte membranes was inhibited by EDTA, heat, and trypsin but not by serine proteinase inhibitors. These data show that the co-expression of TIMP-2, MMP-2, and MT-MMP-1 by HSCs does not lead to secretion of the activated form of MMP-2. Hepatocytes, which do not express MMP-2, TIMP-2, or MT-MMP-1, induce MMP-2 activation through a plasma membrane-dependent mechanism(s), thus suggesting that cell-cell interactions are involved in this process in vivo. Images Figure 1 Figure 2 Figure 3 PMID:9006321

  15. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix

    PubMed Central

    Ueno, Morio; Matsumura, Michiru; Watanabe, Kiichi; Nakamura, Takahiro; Osakada, Fumitaka; Takahashi, Masayo; Kawasaki, Hiroshi; Kinoshita, Shigeru; Sasai, Yoshiki

    2006-01-01

    Here we report a human-derived material with potent inductive activity that selectively converts ES cells into neural tissues. Both mouse and human ES cells efficiently differentiate into neural precursors when cultured on the matrix components of the human amniotic membrane in serum-free medium [amniotic membrane matrix-based ES cell differentiation (AMED)]. AMED-induced neural tissues have regional characteristics (brainstem) similar to those induced by coculture with mouse PA6 stromal cells [a common method called stromal cell-derived inducing activity (SDIA) culture]. Like the SDIA culture, the AMED system is applicable to the in vitro generation of various CNS tissues, including dopaminergic neurons, motor neurons, and retinal pigment epithelium. In contrast to the SDIA method, which uses animal cells, the AMED culture uses a noncellular inductive material derived from an easily available human tissue; therefore, AMED should provide a more suitable and versatile system for generating a variety of neural tissues for clinical applications. PMID:16766664

  16. Enhancing absorption in coated semiconductor nanowire/nanorod core-shell arrays using active host matrices

    NASA Astrophysics Data System (ADS)

    Jule, Leta; Dejene, Francis; Roro, Kittessa

    2016-12-01

    In the present work, we investigated theoretically and experimentally the interaction of radiation field phenomena interacting with arrays of nanowire/nanorod core-shell embedded in active host matrices. The optical properties of composites are explored including the case when the absorption of propagating wave by dissipative component is completely compensated by amplification in active (lasing) medium. On the basis of more elaborated modeling approach and extended effective medium theory, the effective polarizability and the refractive index of electromagnetic mode dispersion of the core-shell nanowire arrays are derived. ZnS(shell)-coated by sulphidation process on ZnO(shell) nanorod arrays grown on (100) silicon substrate by chemical bath deposition (CBD) has been used for theoretical comparison. Compared with the bare ZnO nanorods, ZnS-coated core/shell nanorods exhibit a strongly reduced ultraviolet (UV) emission and a dramatically enhanced deep level (DL) emission. Obviously, the UV and DL emission peaks are attributed to the emissions of ZnO nanorods within ZnO/ZnS core/shell nanorods. The reduction of UV emission after ZnS coating seems to agree with the charge separation mechanism of type-II band alignment that holes transfer from the core to shell, which would quench the UV emission to a certain extent. Our theoretical calculations and numerical simulation demonstrate that the use of active host (amplifying) medium to compensate absorption at metallic inclusions. Moreover the core-shell nanorod/nanowire arrays create the opportunity for broad band absorption and light harvesting applications.

  17. EarthScope Transportable Array Siting Outreach Activities in Alaska and Western Canada

    NASA Astrophysics Data System (ADS)

    Dorr, P. M.; Gardine, L.; Tape, C.; McQuillan, P.; Cubley, J. F.; Samolczyk, M. A.; Taber, J.; West, M. E.; Busby, R.

    2015-12-01

    The EarthScope Transportable Array is deploying about 260 stations in Alaska and western Canada. IRIS and EarthScope are partnering with the Alaska Earthquake Center, part of the University of Alaska's Geophysical Institute, and Yukon College to spread awareness of earthquakes in Alaska and western Canada and the benefits of the Transportable Array for people living in these regions. We provide an update of ongoing education and outreach activities in Alaska and Canada as well as continued efforts to publicize the Transportable Array in the Lower 48. Nearly all parts of Alaska and portions of western Canada are tectonically active. The tectonic and seismic variability of Alaska, in particular, requires focused attention at the regional level, and the remoteness and inaccessibility of most Alaskan and western Canadian villages and towns often makes frequent visits difficult. When a community is accessible, every opportunity to engage the residents is made. Booths at state fairs and large cultural gatherings, such as the annual convention of the Alaska Federation of Natives, are excellent venues to distribute earthquake information and to demonstrate a wide variety of educational products and web-based applications related to seismology and the Transportable Array that residents can use in their own communities. Meetings and interviews with Alaska Native Elders and tribal councils discussing past earthquakes has led to a better understanding of how Alaskans view and understand earthquakes. Region-specific publications have been developed to tie in a sense of place for residents of Alaska and the Yukon. The Alaska content for IRIS's Active Earth Monitor emphasizes the widespread tectonic and seismic features and offers not just Alaska residents, but anyone interested in Alaska, a glimpse into what is going on beneath their feet. The concerted efforts of the outreach team will have lasting effects on Alaskan and Canadian understanding of the seismic hazard and

  18. Notch modulates VEGF action in endothelial cells by inducing Matrix Metalloprotease activity

    PubMed Central

    2011-01-01

    Background In the vasculature, Notch signaling functions as a downstream effecter of Vascular Endothelial Growth Factor (VEGF) signaling. VEGF regulates sprouting angiogenesis in part by inducing and activating matrix metalloproteases (MMPs). This study sought to determine if VEGF regulation of MMPs was mediated via Notch signaling and to determine how Notch regulation of MMPs influenced endothelial cell morphogenesis. Methods and Results We assessed the relationship between VEGF and Notch signaling in cultured human umbilical vein endothelial cells. Overexpression of VEGF-induced Notch4 and the Notch ligand, Dll4, activated Notch signaling, and altered endothelial cell morphology in a fashion similar to that induced by Notch activation. Expression of a secreted Notch antagonist (Notch1 decoy) suppressed VEGF-mediated activation of endothelial Notch signaling and endothelial morphogenesis. We demonstrate that Notch mediates VEGF-induced matrix metalloprotease activity via induction of MMP9 and MT1-MMP expression and activation of MMP2. Introduction of a MMP inhibitor blocked Notch-mediated endothelial morphogenesis. In mice, analysis of VEGF-induced dermal angiogenesis demonstrated that the Notch1 decoy reduced perivascular MMP9 expression. Conclusions Taken together, our data demonstrate that Notch signaling can act downstream of VEGF signaling to regulate endothelial cell morphogenesis via induction and activation of specific MMPs. In a murine model of VEGF-induced dermal angiogenesis, Notch inhibition led to reduced MMP9 expression. PMID:21349159

  19. Fisher Matrix-based Predictions for Measuring the z = 3.35 Binned 21-cm Power Spectrum using the Ooty Wide Field Array (OWFA)

    NASA Astrophysics Data System (ADS)

    Sarkar, Anjan Kumar; Bharadwaj, Somnath; Ali, Sk. Saiyad

    2017-03-01

    We use the Fisher matrix formalism to predict the prospects of measuring the redshifted 21-cm power spectrum in different k-bins using observations with the upcoming Ooty Wide Field Array (OWFA) which will operate at 326.5 MHz. This corresponds to neutral hydrogen (HI) at z = 3.35, and a measurement of the 21-cm power spectrum provides a unique method to probe the large-scale structures at this redshift. Our analysis indicates that a 5 σ detection of the binned power spectrum is possible in the k range 0.05 ≤ k ≤ 0.3 Mpc-1 with 1000 hours of observation. We find that the signal- to-noise ratio (SNR) peaks in the k range 0.1-0.2 Mpc-1 where a 10 σ detection is possible with 2000 hours of observations. Our analysis also indicates that it is not very advantageous to observe beyond 1000 h in a single field-of-view as the SNR increases rather slowly beyond this in many of the small k-bins. The entire analysis reported here assumes that the foregrounds have been completely removed.

  20. Implementation of advanced matrix corrections for active interrogation of waste drums using the CTEN instrument

    SciTech Connect

    Melton, S.; Estep, R.; Hollas, C.

    1998-12-31

    The combined thermal/epithermal neutron instrument (CTEN) was designed at Los Alamos to improve measurement accuracy and mitigate self shielding effects inherent in the differential dieaway technique (DDT). A major goal in this research effort has been the development of a calibration technique that incorporates recently developed matrix and self-shielding corrections using data generated from additional detectors and new acquisition techniques. A comprehensive data set containing both active and passive measurements was generated using 26 different matrices and comprising a total of 1,400 measurements. In all, 31 flux-and-matrix-dependent parameters, 24 positional parameters, two dieaway times, and a correlated ratio were determined from each of the over 1,400 measurements. A reduced list of matrix indicators, prioritized using the alternating conditional expectation (ACE) algorithm, was used to train a neural network using a generalized regression technique (GRNN) to determine matrix- and position-corrected calibration factors. This paper describes the experimental, analytical, and empirical techniques used to determine the corrected calibration factor for an unknown waste drum. Results from a range of cases are compared with those obtained using a mobile DDT instrument and traditional DDT algorithms.

  1. Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.

    PubMed

    Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain

    2016-05-01

    The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.

  2. S-band antenna phased array communications system

    NASA Technical Reports Server (NTRS)

    Delzer, D. R.; Chapman, J. E.; Griffin, R. A.

    1975-01-01

    The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.

  3. Optimal activation of carboxyl-superparamagnetic iron oxide nanoparticles bioconjugated with antibody using orthogonal array design.

    PubMed

    Liu, Lin; Zhang, Xiaoqang; Zhang, Yu; Pu, Yuepu; Yin, Lihong; Tang, Meng; Liu, Hui

    2013-12-01

    This study aims to bioconjugate anti-EMMPRIN monoclonal antibody on the surface of carboxyl-SPIO nanoparticles and to optimize the activated conditions of bioconjugation. Anti-EMMPRIN monoclonal antibody bioconjugated carboxyl-SPIO nanoparticles were performed through a coupling strategy of EDC and sulfo-NHS. The procedure was comprised of two steps by activation of carboxyl-SPIO nanoparticles and conjugation with monoclonal antibody. The optimal activated parameters of bioconjugation were evaluated by single factor design and orthogonal array design. SDS-PAGE analysis and Bradford assay was used for testing and verifying the efficiency of activated conditions obtained from orthogonal array. The results show that pH value, temperature and reaction time were important factors that influence bioconjugated efficiency. The activated parameters with pH value 6.2, temperature 25 degrees C and reaction time 30 min were obviously optimal for activation of carboxyl-SPIO nanoparticles and conjugation with monoclonal EMMPEIN antibody. This coupling strategy for anti-EMMPRIN mAb bioconjugated on SPIO nanoparticles was efficient, and may be further applied in the fields of medical or biological practices.

  4. Matrix Solid-Phase Dispersion Coupled with High-Performance Liquid Chromatography Diode Array Detection for Simultaneous Determination of Four Lipophilic Constituents from Salvia miltiorrhiza Bunge.

    PubMed

    Wang, Zhibing; Ma, Siyu; Zhang, Qian; He, Shuang; Li, Qing; Hu, Jianxue; Zhang, Hanqi

    2016-11-29

    A simple, rapid and efficient method based on matrix solid-phase dispersion coupled with high-performance liquid chromatography was developed for determination of lipophilic constituents, including dihydrotanshinone, tanshinone I, cryptotanshinone and tanshinone II A in Salvia miltiorrhiza Bunge Box-Behnken design was employed for optimization of the extraction conditions of matrix solid-phase dispersion, including mass ratio of dispersant to sample, volume of elution solvent, and amount of cleanup reagent. The optimal experimental results were obtained using 0.27 g of acid alumina as dispersant, 13 mL of acetonitrile as elution solvent and 0.36 g of acid alumina as cleanup reagent. The target analytes was determined by high-performance liquid chromatography. The recoveries of tanshinones obtained by analyzing the spiked samples were from 83.81% to 93.74% and relative standard deviations from 2.87% to 6.83%. Matrix solid-phase dispersion integrated the extraction and cleanup into a single step, which provides the advantages of being simple, fast and convenient. Compared with other conventional methods, the present method consumed less time and less organic solvent. The results demonstrate that this method has potential for the determination of active constituents and the quality control of traditional Chinese medicine.

  5. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays

    NASA Astrophysics Data System (ADS)

    Chu, Hong-Son; How Gan, Choon

    2013-06-01

    An active plasmonic switch based on single- and few-layer doped graphene ribbon array operating in the mid-infrared spectrum is investigated with theoretical and numerical calculations. It is shown that significant resonance wavelength shifts and modulation depths can be achieved with a slight variation of the doping concentration of the graphene ribbon. The few-layer graphene ribbon array device outperforms the single-layer one in terms of the achievable modulation depth. Our simulations reveal that, by modulating the Fermi-energy level between 0.2 eV and 0.25 eV, a four-layer graphene ribbon array device can achieve a modulation depth and resonance wavelength shift of ˜13 dB and 0.94 μm, respectively, compared to ˜2.8 dB and 1.85 μm for a single-layer device. Additionally, simple fitting models to predict the modulation depth and the resonance wavelength shift are proposed. These prospects pave the way towards ultrafast active graphene-based plasmonic devices for infrared and THz applications.

  6. Frequency translating phase conjugation circuit for active retrodirective antenna array. [microwave transmission

    NASA Technical Reports Server (NTRS)

    Chernoff, R. (Inventor)

    1980-01-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  7. Investigation of spherical loudspeaker arrays for local active control of sound.

    PubMed

    Peleg, Tomer; Rafaely, Boaz

    2011-10-01

    Active control of sound can be employed globally to reduce noise levels in an entire enclosure, or locally around a listener's head. Recently, spherical loudspeaker arrays have been studied as multiple-channel sources for local active control of sound, presenting the fundamental theory and several active control configurations. In this paper, important aspects of using a spherical loudspeaker array for local active control of sound are further investigated. First, the feasibility of creating sphere-shaped quiet zones away from the source is studied both theoretically and numerically, showing that these quiet zones are associated with sound amplification and poor system robustness. To mitigate the latter, the design of shell-shaped quiet zones around the source is investigated. A combination of two spherical sources is then studied with the aim of enlarging the quiet zone. The two sources are employed to generate quiet zones that surround a rigid sphere, investigating the application of active control around a listener's head. A significant improvement in performance is demonstrated in this case over a conventional headrest-type system that uses two monopole secondary sources. Finally, several simulations are presented to support the theoretical work and to demonstrate the performance and limitations of the system.

  8. Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.

    PubMed

    Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P

    1995-11-02

    In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.

  9. Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests.

    PubMed

    Fattakhova Rohlfing, Dina; Rathouský, Jirí; Rohlfing, Yven; Bartels, Oliver; Wark, Michael

    2005-11-22

    Mesoporous silica thin films were shown to be an appropriate matrix for immobilization of discrete electroactive moieties, yielding uniform transparent thin film electrodes with defined texture and enhanced electrochemical activity. The mesoporous silica films prepared on conducting FTO-coated glass substrate were postsynthetically functionalized. Alkoxysilanes were used as precursors for subsequent grafting via ionic or covalent bonds of representative electroactive species, such as polyoxometalate PMo12O(40)3-, hexacyanoferrate(III), and ferrocene. The electrochemically active concentration within the silica-based composite electrodes achieves 90, 260, and 60 micromol cm(-3) for polyoxometalate, hexacyanoferrate(III), and ferrocene, respectively. The amount of molecules involved in the charge-transfer sequence is proportional to the film thickness and comparable to the total amount of embedded guests. Thus, eventually the whole bulk volume of the modified silica films is electrochemically accessible. Immobilization in the chemically modified silica matrix alters the redox potential of the electroactive molecules. Electron exchange between the adjacent redox centers (electron hopping) is proposed as a possible charge propagation pathway through the insulating silica matrix, which is supported by the fact that the high charge uptake is observed also for the hybrid electrodes with the covalently anchored redox guests.

  10. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    EPA Science Inventory

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  11. Near Infrared Optical Proteolytic Beacons for In Vivo Imaging of Matrix Metalloproteinase Activity

    PubMed Central

    McIntyre, J. Oliver; Scherer, Randy L.; Matrisian, Lynn M.

    2010-01-01

    The exuberant expression of proteinases by tumor cells has long been associated with the breakdown of the extracellular matrix, tumor invasion, and metastasis to distant organs. There is both epidemiological and experimental data that support a causative role for proteinases of the matrix metalloproteinase (MMP) family in tumor progression. Optical imaging techniques provide an extraordinary opportunity for non-invasive “molecular imaging” of tumor-associated proteolytic activity. The application of optical proteolytic beacons for the detection of specific proteinase activities associated with tumors has several potential purposes: 1) Detection of small, early-stage tumors with increased sensitivity due to the catalytic nature of proteolytic activity, 2) Diagnosis and Prognosis to distinguished tumors that require particularly aggressive therapy or those that will not benefit from therapy, 3) Identification of tumors appropriate for specific anti-proteinase therapeutics and optimization of drug and dose based on determination of target modulation, and 4) as an indicator of efficacy of proteolytically-activated pro-drugs. This chapter describes the synthesis, characterization, and application of reagents that use visible and near infrared fluorescence resonance energy transfer (FRET) fluorophore pairs to detect and measure MMP-referable proteolytic activity in tumors in mouse models of cancer. PMID:20135290

  12. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells.

    PubMed

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-03-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.

  13. The inhibition of matrix metalloproteinase activity in chronic wounds by a polyacrylate superabsorber.

    PubMed

    Eming, Sabine; Smola, Hans; Hartmann, Berenike; Malchau, Gebhart; Wegner, Ronny; Krieg, Thomas; Smola-Hess, Sigrun

    2008-07-01

    Excessive matrix metalloproteinase (MMP) levels have been observed in wound fluid of impaired healing wounds. This is thought to interfere with granulation tissue formation as newly formed extracellular matrix and cytokines are degraded and the wound becomes deadlocked, unable to progress to the next healing stages. In the cleansing phase, associated with high MMP activity levels, hydroactive wound dressings containing polyacrylate superabsorber particles are particularly effective. We tested whether these particles can block MMP activity in wound fluid obtained from chronic venous leg ulcers. Polyacrylate superabsorber particles inhibited MMP activity by more than 87% in a fluorogenic peptide substrate assay. Further analysis revealed two underlying molecular mechanisms. First, experiments showed direct binding of MMPs to the particles. Secondly, polyacrylate superabsorber particles can bind Ca2+ and Zn2+ ions competing with MMPs for divalent ions required for enzymatic activity. Furthermore, we provide the first evidence in vivo that MMPs bind effectively to polyacrylate superabsorber particles within the hostile environment of chronic wounds. We conclude that polyacrylate superabsorber particles can rescue the highly proteolytic microenvironment of non-healing wounds from MMP activity so that more conductive conditions allow healing to proceed.

  14. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells

    PubMed Central

    Dayal, Shubham; Zhou, Jun; Manivannan, Praveen; Siddiqui, Mohammad Adnan; Ahmad, Omaima Farid; Clark, Matthew; Awadia, Sahezeel; Garcia-Mata, Rafael; Shemshedini, Lirim; Malathi, Krishnamurthy

    2017-01-01

    The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin β1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene. PMID:28257035

  15. New matrix polymers for photo-activated resin composites using di-alpha-fluoroacrylic acid derivatives.

    PubMed

    Kurata, Shigeaki; Yamazaki, Noboru

    2008-07-01

    A novel matrix resin for photo-activated resin composites was developed using alpha-fluoroacrylic acid derivatives. To render resin composites with improved mechanical properties, silica fillers were also used. It was found that the newly developed fluorine-substituted monomer was polymerized quite easily not only by free radical chemical initiators, but also by photoirradiation using free radical photoinitiator system. In particular, the photopolymerization rate of the novel monomer was more than two times faster than that of corresponding methacrylate-based monomer. Composite based on the newly developed matrix resin had higher micro-Vickers hardness and compressive strength values than the methacrylate-based composite, and that it contained only trace residual monomers compared with the methacrylate-based material. The high polymerization conversion of the fluorine-substituted monomer could be attributed to the polar effect or the small steric hindrance of fluorine at the alpha-position.

  16. Neural Activity Propagation in an Unfolded Hippocampal Preparation with a Penetrating Micro-electrode Array

    PubMed Central

    Gonzales-Reyes, Luis E.; Durand, Dominique M.

    2015-01-01

    This protocol describes a method for preparing a new in vitro flat hippocampus preparation combined with a micro-machined array to map neural activity in the hippocampus. The transverse hippocampal slice preparation is the most common tissue preparation to study hippocampus electrophysiology. A longitudinal hippocampal slice was also developed in order to investigate longitudinal connections in the hippocampus. The intact mouse hippocampus can also be maintained in vitro because its thickness allows adequate oxygen diffusion. However, these three preparations do not provide direct access to neural propagation since some of the tissue is either missing or folded. The unfolded intact hippocampus provides both transverse and longitudinal connections in a flat configuration for direct access to the tissue to analyze the full extent of signal propagation in the hippocampus in vitro. In order to effectively monitor the neural activity from the cell layer, a custom made penetrating micro-electrode array (PMEA) was fabricated and applied to the unfolded hippocampus. The PMEA with 64 electrodes of 200 µm in height could record neural activity deep inside the mouse hippocampus. The unique combination of an unfolded hippocampal preparation and the PMEA provides a new in-vitro tool to study the speed and direction of propagation of neural activity in the two-dimensional CA1-CA3 regions of the hippocampus with a high signal to noise ratio. PMID:25868081

  17. Active millimeter-wave video rate imaging with a staring 120-element microbolometer array

    NASA Astrophysics Data System (ADS)

    Luukanen, Arttu; Miller, Aaron J.; Grossman, Erich N.

    2004-08-01

    Passive indoors imaging of weapons concealed under clothing poses a formidable challenge for millimeter-wave imagers due to the sub-picowatt signal levels present in the scene. Moreover, video-rate imaging requires a large number of pixels, which leads to a very complex and expensive front end for the imager. To meet the concealed weapons detection challenge, our approach uses a low cost pulsed-noise source as an illuminator and an array of room-temperature antenna-coupled microbolometers as the detectors. The reflected millimeter-wave power is detected by the bolometers, gated, integrated and amplified by audio-frequency amplifiers, and after digitization, displayed in real time on a PC display. We present recently acquired videos obtained with the 120-element array, and comprehensively describe the performance characteristics of the array in terms of sensitivity, optical efficiency, uniformity and spatial resolution. Our results show that active imaging with antenna-coupled microbolometers can yield imagery comparable to that obtained with systems using MMIC amplifiers but with a cost per pixel that is orders of magnitude lower.

  18. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array

    PubMed Central

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K. M.; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-01-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface. PMID:28345045

  19. Synthesis of hydroxypyrone- and hydroxythiopyrone-based matrix metalloproteinase inhibitors: Developing a structure–activity relationship

    PubMed Central

    Yan, Yi-Long; Miller, Melissa T.; Cao, Yuchen; Cohen, Seth M.

    2010-01-01

    The zinc(II)-dependent matrix metalloproteinases (MMPs) are associated with a variety of diseases. Development of inhibitors to modulate MMP activity has been an active area of investigation for therapeutic development. Hydroxypyrones and hydroxythiopyrones are alternative zinc-binding groups (ZBGs) that, when combined with peptidomimetic backbones, comprise a novel class of MMP inhibitors (MMPi). In this report, a series of hydroxypyrone- and hydroxythiopyrone-based MMPi with aryl backbones at the 2-, 5-, and 6-positions of the hydroxypyrone ring have been synthesized. Synthetic routes for developing inhibitors with substituents at two of these positions (so-called double-handed inhibitors) are also explored. The MMP inhibition profiles and structure–activity relationship of synthesized hydroxypyrones and hydroxythiopyrones have been analyzed. The results here show that the ZBG, the position of the backbone on the ZBG, and the nature of the linker between the ZBG and backbone are critical for MMPi activities. PMID:19261472

  20. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion

    PubMed Central

    Cunniff, Brian; McKenzie, Andrew J.; Heintz, Nicholas H.; Howe, Alan K.

    2016-01-01

    Cell migration is a complex behavior involving many energy-expensive biochemical events that iteratively alter cell shape and location. Mitochondria, the principal producers of cellular ATP, are dynamic organelles that fuse, divide, and relocate to respond to cellular metabolic demands. Using ovarian cancer cells as a model, we show that mitochondria actively infiltrate leading edge lamellipodia, thereby increasing local mitochondrial mass and relative ATP concentration and supporting a localized reversal of the Warburg shift toward aerobic glycolysis. This correlates with increased pseudopodial activity of the AMP-activated protein kinase (AMPK), a critically important cellular energy sensor and metabolic regulator. Furthermore, localized pharmacological activation of AMPK increases leading edge mitochondrial flux, ATP content, and cytoskeletal dynamics, whereas optogenetic inhibition of AMPK halts mitochondrial trafficking during both migration and the invasion of three-dimensional extracellular matrix. These observations indicate that AMPK couples local energy demands to subcellular targeting of mitochondria during cell migration and invasion. PMID:27385336

  1. Heart failure alters matrix metalloproteinase gene expression and activity in rat skeletal muscle.

    PubMed

    Carvalho, Robson Francisco; Dariolli, Rafael; Justulin Junior, Luis Antonio; Sugizaki, Mário Mateus; Politi Okoshi, Marina; Cicogna, Antonio Carlos; Felisbino, Sérgio Luis; Dal Pai-Silva, Maeli

    2006-12-01

    Heart failure is associated with a skeletal muscle myopathy with cellular and extracellular alterations. The hypothesis of this investigation is that extracellular changes may be associated with enhanced mRNA expression and activity of matrix metalloproteinases (MMP). We examined MMP mRNA expression and MMP activity in Soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) muscles of young Wistar rat with monocrotaline-induced heart failure. Rats injected with saline served as age-matched controls. MMP2 and MMP9 mRNA contents were determined by RT-PCR and MMP activity by electrophoresis in gelatin-containing polyacrylamide gels in the presence of SDS under non-reducing conditions. Heart failure increased MMP9 mRNA expression and activity in SOL, EDL and DIA and MMP2 mRNA expression in DIA. These results suggest that MMP changes may contribute to the skeletal muscle myopathy during heart failure.

  2. HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS

    SciTech Connect

    Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L.

    2010-02-22

    This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).

  3. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity

    PubMed Central

    Zavadzkas, Juozas A.; Rivers, William T.; McLean, Julie E.; Chang, Eileen I.; Bouges, Shenikqua; Matthews, Robert G.; Koval, Christine N.; Stroud, Robert E.; Spinale, Francis G.

    2010-01-01

    Increased matrix metalloproteinase (MMP) abundance occurs with adverse left ventricular (LV) remodeling in a number of cardiac disease states, including those induced by long-standing arrhythmias. However, whether regionally contained aberrant electrical activation of the LV, with consequent dyskinesia, alters interstitial MMP activation remained unknown. Electrical activation of the LV of pigs (n = 10, 30–35 kg) was achieved by pacing (150 beats/min) at left atrial and LV sites such that normal atrioventricular activation (60 min) was followed by regional early LV activation for 60 min within 1.5 cm of the paced site and restoration of normal atrioventricular pacing for 120 min. Regional shortening (piezoelectric crystals) and interstitial MMP activity (microdialysis with MMP fluorogenic substrate) at the LV pacing site and a remote LV site were monitored at 30-min intervals. During aberrant electrical stimulation, interstitial MMP activity at the paced site was increased (122 ± 4%) compared with the remote region (100%, P < 0.05). Restoration of atrioventricular pacing after the 60-min period of aberrant electrical activation normalized segmental shortening (8.5 ± 0.4%), but MMP activity remained elevated (121 ± 6%, P < 0.05). This study demonstrates that despite the restoration of mechanical function, disturbances in electrical conduction, in and of itself, can cause acute increases in regional in vivo MMP activation and, therefore, contribute to myocardial remodeling. PMID:20472759

  4. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity.

    PubMed

    Mukherjee, Rupak; Zavadzkas, Juozas A; Rivers, William T; McLean, Julie E; Chang, Eileen I; Bouges, Shenikqua; Matthews, Robert G; Koval, Christine N; Stroud, Robert E; Spinale, Francis G

    2010-07-01

    Increased matrix metalloproteinase (MMP) abundance occurs with adverse left ventricular (LV) remodeling in a number of cardiac disease states, including those induced by long-standing arrhythmias. However, whether regionally contained aberrant electrical activation of the LV, with consequent dyskinesia, alters interstitial MMP activation remained unknown. Electrical activation of the LV of pigs (n = 10, 30-35 kg) was achieved by pacing (150 beats/min) at left atrial and LV sites such that normal atrioventricular activation (60 min) was followed by regional early LV activation for 60 min within 1.5 cm of the paced site and restoration of normal atrioventricular pacing for 120 min. Regional shortening (piezoelectric crystals) and interstitial MMP activity (microdialysis with MMP fluorogenic substrate) at the LV pacing site and a remote LV site were monitored at 30-min intervals. During aberrant electrical stimulation, interstitial MMP activity at the paced site was increased (122 +/- 4%) compared with the remote region (100%, P < 0.05). Restoration of atrioventricular pacing after the 60-min period of aberrant electrical activation normalized segmental shortening (8.5 +/- 0.4%), but MMP activity remained elevated (121 +/- 6%, P < 0.05). This study demonstrates that despite the restoration of mechanical function, disturbances in electrical conduction, in and of itself, can cause acute increases in regional in vivo MMP activation and, therefore, contribute to myocardial remodeling.

  5. The parasite Entamoeba histolytica exploits the activities of human matrix metalloproteinases to invade colonic tissue.

    PubMed

    Thibeaux, Roman; Avé, Patrick; Bernier, Michèle; Morcelet, Marie; Frileux, Pascal; Guillén, Nancy; Labruyère, Elisabeth

    2014-10-07

    Intestinal invasion by the protozoan parasite Entamoeba histolytica is characterized by remodelling of the extracellular matrix (ECM). The parasite cysteine proteinase A5 (CP-A5) is thought to cooperate with human matrix metalloproteinases (MMPs) involved in ECM degradation. Here, we investigate the role CP-A5 plays in the regulation of MMPs upon mucosal invasion. We use human colon explants to determine whether CP-A5 activates human MMPs. Inhibition of the MMPs' proteolytic activities abolishes remodelling of the fibrillar collagen structure and prevents trophozoite invasion of the mucosa. In the presence of trophozoites, MMPs-1 and -3 are overexpressed and are associated with fibrillar collagen remodelling. In vitro, CP-A5 performs the catalytic cleavage needed to activate pro-MMP-3, which in turn activates pro-MMP-1. Ex vivo, incubation with recombinant CP-A5 was enough to rescue CP-A5-defective trophozoites. Our results suggest that MMP-3 and/or CP-A5 inhibitors may be of value in further studies aiming to treat intestinal amoebiasis.

  6. A novel high throughput method based on the DPPH dry reagent array for determination of antioxidant activity.

    PubMed

    Musa, Khalid Hamid; Abdullah, Aminah; Kuswandi, Bambang; Hidayat, M Amrun

    2013-12-15

    A stable chromogenic radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) is commonly used for the determination of antioxidant activity. In this paper, DPPH was dried into 96 well microplate to produce DPPH dry reagent array plate, based on which the highly sensitive and high throughput determination of antioxidant activities was achieved. The spectrophotometric characterization of the microplate containing dried or fresh DPPH free radicals was reported. The response of the DPPH dry reagent array towards different standard antioxidants was studied. The reaction for DPPH in fresh or dry reagent array with Trolox was reported and compared. The DPPH dry reagent array was used to study the antioxidant activity of banana, green tea, pink guava, and honeydew and the results were compared to the samples reacted with freshly prepared DPPH. The proposed method is comparable to the classical DPPH method, more convenient, simple to operate with minimal solvent required and excellent sensitivity.

  7. Intelligent peak deconvolution through in-depth study of the data matrix from liquid chromatography coupled with a photo-diode array detector applied to pharmaceutical analysis.

    PubMed

    Arase, Shuntaro; Horie, Kanta; Kato, Takashi; Noda, Akira; Mito, Yasuhiro; Takahashi, Masatoshi; Yanagisawa, Toshinobu

    2016-10-21

    Multivariate curve resolution-alternating least squares (MCR-ALS) method was investigated for its potential to accelerate pharmaceutical research and development. The fast and efficient separation of complex mixtures consisting of multiple components, including impurities as well as major drug substances, remains a challenging application for liquid chromatography in the field of pharmaceutical analysis. In this paper we suggest an integrated analysis algorithm functioning on a matrix of data generated from HPLC coupled with photo-diode array detector (HPLC-PDA) and consisting of the mathematical program for the developed multivariate curve resolution method using an expectation maximization (EM) algorithm with a bidirectional exponentially modified Gaussian (BEMG) model function as a constraint for chromatograms and numerous PDA spectra aligned with time axis. The algorithm provided less than ±1.0% error between true and separated peak area values at resolution (Rs) of 0.6 using simulation data for a three-component mixture with an elution order of a/b/c with similarity (a/b)=0.8410, (b/c)=0.9123 and (a/c)=0.9809 of spectra at peak apex. This software concept provides fast and robust separation analysis even when method development efforts fail to achieve complete separation of the target peaks. Additionally, this approach is potentially applicable to peak deconvolution, allowing quantitative analysis of co-eluted compounds having exactly the same molecular weight. This is complementary to the use of LC-MS to perform quantitative analysis on co-eluted compounds using selected ions to differentiate the proportion of response attributable to each compound.

  8. Investigating the antifungal activity of TiO2 nanoparticles deposited on branched carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Darbari, S.; Abdi, Y.; Haghighi, F.; Mohajerzadeh, S.; Haghighi, N.

    2011-06-01

    Branched carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Ni was used as the catalyst and played an important role in the realization of branches in vertically aligned nanotubes. TiO2 nanoparticles on the branched CNTs were produced by atmospheric pressure chemical vapour deposition followed by a 500 °C annealing step. Transmission and scanning electron microscopic techniques were used to study the morphology of the TiO2/branched CNT structures while x-ray diffraction and Raman spectroscopy were used to verify the characteristics of the prepared nanostructures. Their antifungal effect on Candida albicans biofilms under visible light was investigated and compared with the activity of TiO2/CNT arrays and thin films of TiO2. The TiO2/branched CNTs showed a highly improved photocatalytic antifungal activity in comparison with the TiO2/CNTs and TiO2 film. The excellent visible light-induced photocatalytic antifungal activity of the TiO2/branched CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate, in addition to the high surface area provided for the interaction between the cells and the nanostructures. Scanning electron microscopy was used to observe the resulting morphological changes in the cell body of the biofilms existing on the antifungal samples.

  9. Active metal-matrix composites with embedded smart materials by ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Hahnlen, Ryan; Dapino, Marcelo J.

    2010-04-01

    This paper presents the development of active aluminum-matrix composites manufactured by Ultrasonic Additive Manufacturing (UAM), an emerging rapid prototyping process based on ultrasonic metal welding. Composites created through this process experience temperatures as low as 25 °C during fabrication, in contrast to current metal-matrix fabrication processes which require temperatures of 500 °C and above. UAM thus provides unprecedented opportunities to develop adaptive structures with seamlessly embedded smart materials and electronic components without degrading the properties that make these materials and components attractive. This research focuses on developing UAM composites with aluminum matrices and embedded shape memory NiTi, magnetostrictive Galfenol, and electroactive PVDF phases. The research on these composites will focus on: (i) electrical insulation between NiTi and Al phases for strain sensors, investigation and modeling of NiTi-Al composites as tunable stiffness materials and thermally invariant structures based on the shape memory effect; (ii) process development and composite testing for Galfenol-Al composites; and (iii) development of PVDF-Al composites for embedded sensing applications. We demonstrate a method to electrically insulate embedded materials from the UAM matrix, the ability create composites containing up to 22.3% NiTi, and their resulting dimensional stability and thermal actuation characteristics. Also demonstrated is Galfenol-Al composite magnetic actuation of up to 54 μ(see manuscript), and creation of a PVDF-Al composite sensor.

  10. Catalase-like and peroxidase-like catalytic activities of silicon nanowire arrays.

    PubMed

    Wang, Hongwei; Jiang, Wenwen; Wang, Yanwei; Liu, Xiaoli; Yao, Jianlin; Yuan, Lin; Wu, Zhaoqiang; Li, Dan; Song, Bo; Chen, Hong

    2013-01-08

    Silicon nanowire arrays (SiNWAs) were found to have catalytic activities similar to those of biological enzymes catalase and peroxidase. Thus not only can these materials catalyze the decomposition reaction of H(2)O(2) into water and oxygen, but they can also catalyze the oxidation of o-phenylenediamine (OPD), a common substrate for peroxidases, by H(2)O(2). The presence of Si-H bonds and the morphology of the SiNWAs are found to be crucial to the occurrence of such catalytic activity. When the SiNWAs are reacted with H(2)O(2), the data from Raman spectroscopy suggests the formation of (Si-H)(2)···(O species) ((Si-H)(2)···Os), which is presumably responsible for the catalytic activity. These findings suggest the potential use of SiNWAs as enzyme mimics in medicine, biotechnology, and environmental chemistry.

  11. Inhibition of matrix metalloproteinase activity in human dentin via novel antibacterial monomer

    PubMed Central

    Li, Fang; Majd, Hessam; Weir, Michael D.; Arola, Dwayne D.; Xu, Hockin H.K.

    2015-01-01

    Objectives Dentin-composite bond failure is caused by factors including hybrid layer degradation, which in turn can be caused by hydrolysis and enzymatic degradation of the exposed collagen in the dentin. The objectives of this study were to investigate a new antibacterial monomer (dimethylaminododecyl methacrylate, DMADDM) as an inhibitor for matrix metalloproteinases (MMPs), and to determine the effects of DMADDM on both soluble recombinant human MMPs (rhMMPs) and dentin matrix-bound endogenous MMPs. Methods Inhibitory effects of DMADDM at six mass% (0.1% to 10%) on soluble rhMMP-8 and rhMMP-9 were measured using a colorimetic assay. Matrix-bound endogenous MMP activity was evaluated in demineralized human dentin. Dentin beams were divided into four groups (n = 10) and incubated in calcium- and zinc-containing media (control medium); or control medium + 0.2% chlorhexidine (CHX); 5% 12-methacryloyloxydodecylpyridinium bromide (MDPB); or 5% DMADDM. Dissolution of dentin collagen peptides was evaluated by mechanical testing in three-point flexure, loss of dentin mass, and a hydroxyproline assay. Results Use of 0.1% to 10% DMADDM exhibited a strong concentration-dependent anti-MMP effect, reaching 90% of inhibition on rhMMP-8 and rhMMP-9 at 5% DMADDM concentration. Dentin beams in medium with 5% DMADDM showed 34% decrease in elastic modulus (vs. 73% decrease for control), 3% loss of dry dentin mass (vs. 28% loss for control), and significantly less solubilized hydroxyproline when compared with control (p < 0.05). Significance The new antibacterial monomer DMADDM was effective in inhibiting both soluble rhMMPs and matrix-bound human dentin MMPs. These results, together with previous studies showing that adhesives containing DMADDM inhibited biofilms without compromising dentin bond strength, suggest that DMADDM is promising for use in adhesives to prevent collagen degradation in hybrid layer and protect the resin-dentin bond. PMID:25595564

  12. Non-activation ZnO array as a buffering layer to fabricate strongly adhesive metal-organic framework/PVDF hollow fiber membranes.

    PubMed

    Li, Wanbin; Meng, Qin; Li, Xiaonian; Zhang, Congyang; Fan, Zheng; Zhang, Guoliang

    2014-09-04

    A non-activation (NA) ZnO array is directly grown on a PVDF hollow fiber membrane. The defect-free MOF layers can be synthesized easily on the NA-ZnO array without any activation procedure. The array and MOF layers are strongly adhered to the hollow fiber membrane. The prepared ZIF membranes exhibit excellent gas separation performances.

  13. Investigating microbial colonization in actively forming hydrothermal deposits using thermocouple arrays

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Reysenbach, A. L.; Hirsch, M.; Steinberg, J.; Flores, G. E.

    2010-12-01

    Investigations of microbial colonization of very young hydrothermal deposits were carried out in 2009 at hydrothermal vents in the Lau Basin (SW Pacific), and in Guaymas Basin, Gulf of California, with a test deployment at the Rainbow vent field on the Mid-Atlantic Ridge in 2008. Our method entailed razing active chimneys and placing arrays of temperature probes (8 titanium-encased probes with their tips placed within a titanium cage) over the active flow. The chimneys that grew back through each array, encasing the temperature probe tips, were recovered after 2 to 15 days, along with temperature records. Molecular phylogenetic methods are being used to reveal the members of the microbial communities that developed in each chimney of known age and thermal history. A total of 15 array deployments were made at 10 vents in 6 different vent fields. Similar morphology beehives (with porous fine-grained interiors and steep temperature gradients across the outermost more-consolidated “wall”) formed at 2 of the 3 vents in Guaymas Basin (in 2 and 5 days at one vent and 3 and 15 days at a second), and at one vent each in the Kilo Moana (in 3 days), Tahi Moana (in 2.5 days), and Tui Malila (in 3 and 8 days) vent fields in the Lau Basin. In contrast, open conduit, thin walled chimneys grew within arrays at the Mariner vent field, Lau Basin, at 3 different vents (in 3 days at one vent, in 3 and 11 days at a second vent, and in 13 days at a third vent). A lower temperature (<280C) diffuser/spire with a filamentous biofilm formed in 15 days in an array at a hydrocarbon-rich vent in the Guaymas Basin. A similar biofilm formed after 6 days within an array placed earlier at this same vent, with little mineralization. Preliminary diversity data from the 6 and 15 day Guaymas deployments show an increased diversity of bacteria with time with initial colonizers being primarily sulfur-oxidizing Epsilonproteobacteria, with members of the Aquificales and Deltaproteobacteria appearing

  14. PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts.

    PubMed

    Ali, Md Moksed; Yoshizawa, Tatsuya; Ishibashi, Osamu; Matsuda, Akio; Ikegame, Mika; Shimomura, Junko; Mera, Hisashi; Nakashima, Kazuhisa; Kawashima, Hiroyuki

    2007-08-01

    We recently reported that tensile stress induces osteoblast differentiation and osteogenesis in the mouse calvarial suture in vitro. Using this experimental system, we identified PIASxbeta, a splice isoform of Pias2, as one of the genes most highly upregulated by tensile stress. Further study using cell culture revealed that this upregulation was transient and was accompanied by upregulation of other differentiation markers, including osterix, whereas expression of Runx2 was unaffected. Runx2 and osterix are the two master proteins controlling osteoblast differentiation, with Runx2 being upstream of osterix. Targeted knockdown of PIASxbeta by small interfering RNA (siRNA) markedly suppressed osteoblastic differentiation and matrix mineralization, whereas transient overexpression of PIASxbeta caused the exact opposite effects. Regardless of PIASxbeta expression level, Runx2 expression remained constant. Reporter assays demonstrated that osterix enhanced its own promoter activity, which was further stimulated by PIASxbeta but not by its sumoylation-defective mutant. NFATc1 and NFATc3 additionally increased osterix transcriptional activity when co-transfected with PIASxbeta. Because osterix has no consensus motif for sumoylation, other proteins are probably involved in the PIASxbeta-mediated activation and NFAT proteins may be among such targets. This study provides the first line of evidence that PIASxbeta is indispensable for osteoblast differentiation and matrix mineralization, and that this signaling molecule is located between Runx2 and osterix.

  15. The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling.

    PubMed

    Janicki, Joseph S; Brower, Gregory L; Gardner, Jason D; Chancey, Amanda L; Stewart, James A

    2004-01-01

    The process of cardiac remodeling in response to cardiac injury and/or persistent elevations in wall stress generally relates to the progressive changes that occur in ventricular chamber dimensions and the various components of the myocardium, in particular the cardiomyocytes and the extracellular matrix. Volume overload, pressure overload or myocardial injury produces a sustained abnormal elevation in myocardial wall stress which initiates cardiac remodeling that frequently results in ventricular decompensation and heart failure. Regardless of the inciting cause, there appear to be three distinct phases to this process. In the initial phase, fibrillar collagen is partially degraded secondary to increased matrix metalloproteinase (MMP) activity. Following this, there is a chronic compensatory phase during which MMP activity and collagen concentration return to normal while cardiomyocyte size continues to progressively increase. The final phase is attained once the compensatory hypertrophic mechanisms are exhausted and is characterized by elevated MMP activity, marked ventricular dilatation and prominent fibrosis. Details of this progressive, dynamic remodeling process and its effect on ventricular function during chronic volume overload, chronic pressure overload and following myocardial infarction will be the focus of this article.

  16. Proteolytic degradation of intestinal mucosal extracellular matrix after lamina propria T cell activation.

    PubMed Central

    Pender, S L; Lionetti, P; Murch, S H; Wathan, N; MacDonald, T T

    1996-01-01

    BACKGROUND: Proteoglycans, consisting of glycosaminoglycan (GAG) side chains covalently linked to a protein core, are a major component of the extracellular matrix of the intestinal lamina propria. AIMS: This study investigated the effects of lamina propria T cell activation on the proteoglycan component of the matrix. METHODS: The high degree of sulphation of GAGs means that they are polyanionic and thus can be visualised in tissue sections by means of colloidal-gold labelled cationic probes. RESULTS: In human fetal small intestine there is a dense meshwork of anionic residues in the lamina propria and basement membrane. When explants of human fetal small intestine are cultured ex vivo, and resident lamina propria T cells are activated with pokeweed mitogen, mucosal destruction occurs within three days. This is associated with the rapid loss of anionic sites from the lamina propria. Dermatan sulphate proteoglycan is lost from the tissue and is present at increased concentrations in the organ culture supernatants, indicating that T cell activation has led to solubilisation of lamina propria proteoglycans. Tissue destruction and loss of anionic residues are inhibited in a dose dependent fashion by dexamethasone, and by the protease inhibitor, alpha 2 macroglobulin. CONCLUSIONS: Proteolytic degradation of the lamina propria may therefore be a mechanism by which T cell hypersensitivity injures the intestinal mucosa. Images Figure 1 Figure 4 Figure 5 PMID:8977345

  17. Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications.

    PubMed

    Sosnowski, Ron; Heller, Michael J; Tu, Eugene; Forster, Anita H; Radtkey, Ray

    2002-12-01

    Microelectronic arrays have been developed for DNA hybridization analysis of point mutations, single nucleotide polymorphisms, short tandem repeats and gene expression. In addition to a variety of molecular biology and genomic research applications, such devices will also be used for infectious disease detection, genetic and cancer diagnostics, and pharmacogenomic applications. These microelectronic array devices are able to produce defined electric fields on their surfaces that allow charged molecules and other entities to be transported to or from any test site or micro-location on the planar surface of the device. These molecules and entities include DNA, RNA, proteins, enzymes, antibodies and cells. Electronic-based molecule addressing and hybridization can then be carried out, where the electric field is now used to greatly accelerate the hybridization reactions that occur on the selected test sites. When reversed, the electric field can be used to provide an additional parameter for improved hybridization. Special low-conductance buffers have been developed that provide for the rapid transport of the DNA molecules and facilitate the electronic hybridization reactions under conditions that do not support hybridization. Important to the device function is the permeation layer that overcoats the underlying microelectrodes. Generally composed of a porous hydrogel material impregnated with attachment chemistry, this permeation layer prevents the destruction of analytes at the active microelectrode surface, ameliorates the adverse effects of electrolysis products on the sensitive hybridization and affinity reactions, and serves as a support structure for attaching DNA probes and other molecules to the array. The microelectronic chip or array device is incorporated into a cartridge package (NanoChip trade mark cartridge) that provides the electronic, optical, and fluidic interfacing. A complete instrument system (NanoChip trade mark Molecular Biology Workstation

  18. Activity of matrix metalloproteinase-2 (MMP-2) in canine oronasal tumors.

    PubMed

    Nakaichi, Munekazu; Yunuki, Toshi; Okuda, Masaru; Une, Satoshi; Taura, Yasuho

    2007-04-01

    Activity of matrix metalloprotease-2 (MMP-2) and the expression of its related molecules were examined in spontaneous canine oronasal tumors. Tissue samples from melanoma and squamous cell carcinoma possessed higher MMP-2 activity, as shown in gelatin zymography, in comparison with acanthomatous epulis and nasal adenocarcinoma. Regional lymph node invasion and distant metastases were more frequently observed in the MMP-2 positive cases. There were no significant differences by RT-PCR examination in the expression of the genes encoding MMP-2, MT1-MMP and TIMP-2 among the tumor histological types. However, the MMP-2/TIMP-2 ratio showed a significantly higher level of the genes in the malignant oral melanoma and squamous cell carcinoma. The MMP-2/TIMP-2 ratio was also positively correlated with MMP-2 activity in gelatin zymography. These results indicate that the MMP-2/TIMP-2 ratio may be of value in evaluating the prognosis in canine oronasal cavity tumors.

  19. Stimulation of Periodontal Ligament Stem Cells by Dentin Matrix Protein 1 Activates Mitogen-Activated Protein Kinase and Osteoblast Differentiation

    PubMed Central

    Chandrasekaran, Sangeetha; Ramachandran, Amsaveni; Eapen, Asha; George, Anne

    2013-01-01

    Background Periodontitis can ultimately result in tooth loss. Many natural and synthetic materials have been tried to achieve periodontal regeneration, but the results remain variable and unpredictable. We hypothesized that exogenous treatment with dentin matrix protein 1 (DMP1) activates specific genes and results in phenotypic and functional changes in human periodontal ligament stem cells (hPDLSCs). Methods hPDLSCs were isolated from extracted teeth and cultured in the presence or absence of DMP1. Quantitative polymerase chain reactions were performed to analyze the expression of several genes involved in periodontal regeneration. hPDLSCs were also processed for immunocytochemical and Western blot analysis using phosphorylated extracellular signal-regulated kinase (pERK) and ERK antibodies. Alkaline phosphatase and von Kossa staining were performed to characterize the differentiation of hPDLSCs into osteoblasts. Field emission scanning electron microscopic analysis of the treated and control cell cultures were also performed. Results Treatment with DMP1 resulted in the upregulation of genes, such as matrix metalloproteinase-2, alkaline phosphatase, and transforming growth factor β1. Activation of ERK mitogen-activated protein kinase signaling pathway and translocation of pERK from the cytoplasm to the nucleus was observed. Overall, DMP1-treated cells showed increased expression of alkaline phosphatase, increased matrix, and mineralized nodule formation when compared with untreated controls. Conclusion DMP1 can orchestrate a coordinated expression of genes and phenotypic changes in hPDLSCs by activation of the ERK signaling pathway, which may provide a valuable strategy for tissue engineering approaches in periodontal regeneration. PMID:22612367

  20. Increased Serum Activity of Matrix Metalloproteinase-9 in Patients with Acute Variceal Bleeding

    PubMed Central

    Kwon, Oh Sang; Jung, Hyuk Sang; Bae, Kyung Sook; Jung, Young Kul; Kim, Yeon Suk; Choi, Duck Joo; Kim, Yun Soo

    2012-01-01

    Background/Aims Matrix metalloproteinases (MMP)-2 and -9 can degrade essential components of vascular integrity. The aim of this study was to investigate the association between those MMPs and variceal bleeding (VB). Methods Fifteen controls, 12 patients with acute ulcer bleeding (UB) group, 37 patients with varix (V group), and 35 patients with acute VB group were enrolled. Serum was obtained to measure MMP-2 and -9 activity by zymogram protease assays. Results The activity levels of these compounds were compared with the controls' median value. The median MMP-9 activity was 1.0 in controls, 1.05 in the UB group, 0.43 in the V group, and 0.96 in the VB group. The level of MMP-9 activity was higher in the VB group than in the V group (p<0.001). In the VB group, there was a signifi cant decrease in MMP-9 activity over time after bleeding (p<0.001). The median MMP-2 activity level was 1.0 in controls, 1.01 in the UB group, 1.50 in the V group, and 1.55 in the VB group. The level of MMP-2 activity was similar in the VB and V groups. Conclusions The level of MMP-9 activity increased in association with VB. The role of MMP-9 in the pathogenesis of VB should be verified. PMID:22570756

  1. 1alpha,25(OH)2D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60 activated matrix vesicle metalloproteinases.

    PubMed

    Boyan, Barbara D; Wong, Kevin L; Fang, Mimi; Schwartz, Zvi

    2007-03-01

    Growth plate chondrocytes produce proteoglycan-rich type II collagen extracellular matrix (ECM). During cell maturation and hypertrophy, ECM is reorganized via a process regulated by 1alpha,25(OH)(2)D(3) and involving matrix metalloproteinases (MMPs), including MMP-3 and MMP-2. 1alpha,25(OH)(2)D(3) regulates MMP incorporation into matrix vesicles (MVs), where they are stored until released. Like plasma membranes (PM), MVs contain the 1alpha,25(OH)(2)D(3)-binding protein ERp60, phospholipase A(2) (PLA(2)), and caveolin-1, but appear to lack nuclear Vitamin D receptors (VDRs). Chondrocytes produce 1alpha,25(OH)(2)D(3) (10(-8)M), which binds ERp60, activating PLA(2), and resulting lysophospholipids lead to MV membrane disorganization, releasing active MMPs. MV MMP-3 activates TGF-beta1 stored in the ECM as large latent TGF-beta1 complexes, consisting of latent TGF-beta1 binding protein, latency associated peptide, and latent TGF-beta1. Others have shown that MMP-2 specifically activates TGF-beta2. TGF-beta1 regulates 1alpha,25(OH)(2)D(3)-production, providing a mechanism for local control of growth factor activation. 1alpha,25(OH)(2)D(3) activates PKCalpha in the PM via ERp60-signaling through PLA(2), lysophospholipid production, and PLCbeta. It also regulates distribution of phospholipids and PKC isoforms between MVs and PMs, enriching the MVs in PKCzeta. Direct activation of MMP-3 in MVs requires ERp60. However, when MVs are treated with 1alpha,25(OH)(2)D(3), PKCzeta activity is decreased and PKCalpha is unaffected, suggesting a more complex feedback mechanism, potentially involving MV lipid signaling.

  2. Tissue inhibitors of matrix metalloproteinases 1 and 2 and matrix metalloproteinase activity in the serum and lungs of mice with lewis lung carcinoma.

    PubMed

    Kisarova, Ya A; Korolenko, T A

    2012-10-01

    We studied the content of tissue inhibitors of matrix metalloproteinases 1 and 2 (TIMP-1 and TIMP-2) and activities of matrix metalloproteinases (MMP) in the serum and lungs of mice with Lewis lung carcinoma metastasizing into the lung. Metastasizing was associated with increased serum content of TIMP-1 and TIMP-2 (only on day 20 at the terminal stage of the tumor process). These data confirm the hypothesis on pro-tumorigenic role of TIMP-1 in the serum. Locally, the development of metastases was associated with a decrease in TIPM-1 concentration (day 7), an increase in TIMP-2 concentration (days 7 and 20), and elevated activity of MMP at all terms of the study (days 7, 15, and 20). Increased concentration of TIMP-2 in the lungs (but not in the serum) can be regarded as an indicator of Lewis lung carcinoma metastasizing.

  3. Effective SERS-active substrates composed of hierarchical micro/nanostructured arrays based on reactive ion etching and colloidal masks

    NASA Astrophysics Data System (ADS)

    Zhang, Honghua; Liu, Dilong; Hang, Lifeng; Li, Xinyang; Liu, Guangqiang; Cai, Weiping; Li, Yue

    2016-09-01

    A facile route has been proposed for the fabrication of morphology-controlled periodic SiO2 hierarchical micro/nanostructured arrays by reactive ion etching (RIE) using monolayer colloidal crystals as masks. By effectively controlling the experimental conditions of RIE, the morphology of a periodic SiO2 hierarchical micro/nanostructured array could be tuned from a dome-shaped one to a circular truncated cone, and finally to a circular cone. After coating a silver thin layer, these periodic micro/nanostructured arrays were used as surface-enhanced Raman scattering (SERS)-active substrates and demonstrated obvious SERS signals of 4-Aminothiophenol (4-ATP). In addition, the circular cone arrays displayed better SERS enhancement than those of the dome-shaped and circular truncated cone arrays due to the rougher surface caused by physical bombardment. After optimization of the circular cone arrays with different periodicities, an array with the periodicity of 350 nm exhibits much stronger SERS enhancement and possesses a low detection limit of 10-10 M 4-ATP. This offers a practical platform to conveniently prepare SERS-active substrates.

  4. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  5. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity.

    PubMed

    Oxley, Thomas J; Opie, Nicholas L; John, Sam E; Rind, Gil S; Ronayne, Stephen M; Wheeler, Tracey L; Judy, Jack W; McDonald, Alan J; Dornom, Anthony; Lovell, Timothy J H; Steward, Christopher; Garrett, David J; Moffat, Bradford A; Lui, Elaine H; Yassi, Nawaf; Campbell, Bruce C V; Wong, Yan T; Fox, Kate E; Nurse, Ewan S; Bennett, Iwan E; Bauquier, Sébastien H; Liyanage, Kishan A; van der Nagel, Nicole R; Perucca, Piero; Ahnood, Arman; Gill, Katherine P; Yan, Bernard; Churilov, Leonid; French, Christopher R; Desmond, Patricia M; Horne, Malcolm K; Kiers, Lynette; Prawer, Steven; Davis, Stephen M; Burkitt, Anthony N; Mitchell, Peter J; Grayden, David B; May, Clive N; O'Brien, Terence J

    2016-03-01

    High-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions.

  6. Chromium liquid waste inertization in an inorganic alkali activated matrix: leaching and NMR multinuclear approach.

    PubMed

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-04-09

    A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈ 2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process--from the precursor dissolution to the final geopolymer matrix hardening--of different geopolymers containing a waste amount ranging from 3 to 20%wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of TOT bonds (where T is Al or Si) by (29)Si and (27)Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers containing high amounts of waste (10-20%wt). The results show the formation of a stable matrix after only 15 days independently on the waste amount introduced; the longer curing times increase the matrices stabilities and their ability to immobilize chromium cations. The maximum amount of waste that can be inertized is around 10 wt% after a curing time of 28 days.

  7. Catalytic Activity of Ultrathin Pt Films on Aligned Carbon Nanotube Arrays

    PubMed Central

    Su, Xin; Wu, Ji; Hinds, Bruce J.

    2013-01-01

    Uniform ultrathin Pt films were electrodeposited onto an aligned array of carbon nanotubes (CNTs) for high-area chemically stable methanol fuel cell anodes. Electrochemical treatment of the graphitic CNT surfaces by diazoniumbenzoic acid allowed for uniform Pt electroplating. The mass activity of the Pt thin film can reach 400 A/g at a scan rate of 20 mV/s and in a solution of 1 M CH3OH/0.5 M H2SO4. A programmed pulse potential at 0V was also seen to nearly eliminate the effects of carbon monoxide poisoning. The mass activity of Pt for methanol oxidation can be maintained at 300 A/g for more than 3000 s, which is 19 times of that under a constant potential of 0.7 V (vs Ag/AgCl). PMID:25132685

  8. Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration.

    PubMed

    Andreasen, Eric A; Mathew, Lijoy K; Löhr, Christiane V; Hasson, Rachelle; Tanguay, Robert L

    2007-01-01

    Adult zebra fish completely regenerate their caudal (tail) fin following partial amputation. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits this regenerative process. Proper regulation of transcription, innervation, vascularization, and extracellular matrix (ECM) composition is essential for complete fin regeneration. Previous microarray studies suggest that genes involved in ECM regulation are misexpressed following activation of the aryl hydrocarbon receptor. To investigate whether TCDD blocks regeneration by impairing ECM remodeling, male zebra fish were i.p. injected with 50 ng/g TCDD or vehicle, and caudal fins were amputated. By 3 days postamputation (dpa), the vascular network in the regenerating fin of TCDD-exposed fish was disorganized compared to vehicle-exposed animals. Furthermore, immunohistochemical staining revealed that axonal outgrowth was impacted by TCDD as early as 3 dpa. Histological analysis demonstrated that TCDD exposure leads to an accumulation of collagen at the end of the fin ray just distal to the amputation site by 3 dpa. Mature lepidotrichial-forming cells (fin ray-forming cells) were not observed in the fins of TCDD-treated fish. The capacity to metabolize ECM was also altered by TCDD exposure. Quantitative real-time PCR studies revealed that the aryl hydrocarbon pathway is active and that matrix-remodeling genes are expressed in the regenerate following TCDD exposure.

  9. In situ fabrication of cleavable peptide arrays on polydimethylsiloxane and applications for kinase activity assays.

    PubMed

    Chen, Huang-Han; Hsiao, Yu-Chieh; Li, Jie-Ren; Chen, Shu-Hui

    2015-03-20

    Polydimethylsiloxane (PDMS) is widely used for microfabrication and bioanalysis; however, its surface functionalization is limited due to the lack of active functional groups and incompatibility with many solvents. We presented a novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS) viatert-butyloxycarbonyl (t-Boc)/trifluoroacetic acid (TFA) chemistry using gold nanoparticles (AuNPs) as the anchor and a disulfide/amine terminated hetero-polyethylene glycol as the cleavable linker. The method was fine tuned to use reagents compatible with the PDMS. Using 5-mer pentapeptide, Trp5, as a model, step-by-step covalent coupling during the reaction cycles was monitored by Attenuated total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), or atomic force microscopy (AFM), and further confirmed by mass spectrometry (MS) detection of the cleaved peptides. Using such a method, heptapeptides of the PKA substrate, LRRASLG (Kemptide), and its point mutated analogs were fabricated in an array format for comparative studies of cAMP-dependent protein kinase (PKA) activity. Based on on-chip detection, Kemptide sequence exhibited the highest phosphorylation activity, which was detected to a 1.5-time lesser extent for the point mutated sequence (LRRGSLG) containing the recognition motif (RRXS), and was nearly undetectable for another point mutated sequence (LRLASLG) that lacked the recognition motif. These results indicate that the reported fabrication method is able to yield highly specific peptide sequences on PDMS, leading to a highly motif-sensitive enzyme activity assay.

  10. Monitoring of low-energy seismic activity in Elbrus volcanic area with the use of underground seismic array

    NASA Astrophysics Data System (ADS)

    Kovalevsky, V.; Sobisevitch, A.

    2012-04-01

    Results of experiment with underground seismic array for studying low-energy seismic activity in the Elbrus volcanic area are presented. Linear seismic array of 2.5 km aperture is created in the tunnel of Baksan neutrino observatory. Horizontal tunnel of 4.3 km length is drilled in the mount Andyrchi at a distance of 20 km from Elbrus volcano. Array includes 6 three-component seismic sensors with 24-byte recorders installed with 500 m interval one from another along the tunnel. Underground seismic array is the new instrument of geophysical observatory organized for studies of geophysical processes in the Elbrus volcanic area. The observatory equipped with modern geophysical instruments including broadband tri-axial seismometers, quartz tilt-meters, magnetic variometers, geo-acoustic sensors, hi-precision distributed thermal sensors and gravimeters. The initial analysis of seismic signals recorded by seismic array allows us to detect low-energy seismic activity in the Elbrus volcanic area beginning from the distance of 3-5 km (the faults in a vicinity of mount Andyrchi) up to 15-25 km (area of Elbrus volcano). The regional micro-earthquakes with magnitude 1-2 at the distances 50-100 km was also recorded. 2.5 km aperture of the underground linear seismic array make it possible to determine with high accuracy hypocenters of local seismic events associated with geodynamic of volcanic magmatic structures and to realize seismo-emission tomography of the active zones of Elbrus volcano.

  11. The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

    SciTech Connect

    Zhuo, Ye

    2011-01-01

    In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this

  12. Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts.

    PubMed

    Oliveira, Flávia Amadeu de; Matos, Adriana Arruda; Matsuda, Sandra Satiko; Buzalaf, Marília Afonso Rabelo; Bagnato, Vanderley Salvador; Machado, Maria Aparecida de Andrade Moreira; Damante, Carla Andreotti; Oliveira, Rodrigo Cardoso de; Peres-Buzalaf, Camila

    2017-04-01

    Low level laser therapy (LLLT) has been shown to stimulate bone cell metabolism but their impact on the matrix metalloproteinase (MMP) expression and activity is little explored. This study evaluated the influence of LLLT at two different wavelengths, red and infrared, on MC3T3-E1 preosteoblast viability, alkaline phosphatase (ALP) and MMP-2 and -9 activities. To accomplish this, MC3T3-E1 cells were irradiated with a punctual application of either red (660nm; InGaAIP active medium) or infrared (780nm; GaAlAs active medium) lasers both at a potency of 20mW, energy dose of 0.08 or 0.16J, and energy density of 1.9J/cm(2) or 3.8J/cm(2), respectively. The control group received no irradiation. Cellular viability, ALP and MMP-2 and -9 activities were assessed by MTT assay, enzymatic activity and zymography, respectively, at 24, 48 and 72h. The treatment of cells with both red and infrared lasers significantly increased the cellular viability compared to the non-irradiated control group at 24 and 48h. The ALP activity was also up modulated in infrared groups at 24 and 72h, depending on the energy densities. In addition, the irradiation with red laser at the energy density of 1.9J/cm(2) promoted an enhancement of MMP-2 activity at 48 and 72h. However, no differences were observed for the MMP-9 activity. In conclusion, when used at these specific parameters, LLL modulates both preosteoblast viability and differentiation highlighted by the increased ALP and MMP-2 activities induced by irradiation.

  13. Prospects for treating osteoarthritis: enzyme–protein interactions regulating matrix metalloproteinase activity

    PubMed Central

    Meszaros, Evan

    2012-01-01

    Primary osteoarthritis (OA) is a musculoskeletal disorder of unknown etiology. OA is characterized by an imbalance between anabolism and catabolism in, and altered homeostasis of articular cartilage. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motif are upregulated in OA joints. Extracellular matrix (ECM) proteins are critical for resistance to compressive forces and for maintaining the tensile properties of the tissue. Tissue inhibitor of metalloproteinases (TIMPs) is the endogenous inhibitor of MMPs, but in OA, TIMPs do not effectively neutralize MMP activity. Upregulation of MMP gene expression occurs in OA in a milieu of proinflammatory cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor α. Presently, the medical therapy of OA includes mainly nonsteroidal anti-inflammatory drugs and corticosteroids which dampen pain and inflammation but appear to have little effect on restoring joint function. Experimental interventions to restore the imbalance between anabolism and catabolism include small molecule inhibitors of MMP subtypes or inhibitors of the interaction between IL-1 and its receptor. Although these agents have some positive effects on reducing MMP subtype activity they have little efficacy at the clinical level. MMP-9 is one MMP subtype implicated in the degradation of articular cartilage ECM proteins. MMP-9 was found in OA synovial fluid as a complex with neutrophil gelatinase-associated lipocalin (NGAL) which protected MMP-9 from autodegradation. Suppressing NGAL synthesis or promoting NGAL degradation may result in reducing the activity of MMP-9. We also propose initiating a search for enzyme–protein interactions to dampen other MMP subtype activity which could suppress ECM protein breakdown. PMID:23342237

  14. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies.

    PubMed

    Bi, Liyan; Dong, Jian; Xie, Wei; Lu, Wenbo; Tong, Wei; Tao, Lin; Qian, Weiping

    2013-12-17

    The silver-modified gold nanoplate arrays as bimetallic surface-enhanced Raman scattering (SERS) substrates were optimized for the surface-enhanced Raman detection of streptavidin/biotin monolayer assemblies. The bimetallic gold-silver nanoplate arrays were fabricated by coating silver nanoparticles uniformly on the gold nanoplate arrays. Depending on silver nanoparticle coating, the localized surface plasmon resonance (LSPR) peak of the bimetallic gold-silver nanoplate arrays blue-shifted and broadened significantly. The common probe molecule, Niel Blue A sulfate (NBA) was used for testing the SERS activity of the bimetallic gold-silver nanoplate arrays. The SERS intensity increased with the silver nanoparticle coating, due to a large number of hot spots and nanoparticle interfaces. The platforms were tested against a monolayer of streptavidin functionalized over the bimetallic gold-silver nanoplate arrays showing that good quality spectra could be acquired with a short acquisition time. The supramolecular interaction between streptavidin (strep) and biotin showed subsequent modification of Raman spectra that implied a change of the secondary structure of the host biomolecule. And the detection concentration for biotin by this method was as low as 1.0 nM. The enhanced SERS performance of such bimetallic gold-silver nanoplate arrays could spur further interest in the integration of highly sensitive biosensors for rapid, nondestructive, and quantitative bioanalysis, particularly in microfluidics.

  15. Determination of selected water-soluble vitamins using hydrophilic chromatography: a comparison of photodiode array, fluorescence, and coulometric detection, and validation in a breakfast cereal matrix.

    PubMed

    Langer, Swen; Lodge, John K

    2014-06-01

    Water-soluble vitamins are an important class of compounds that require quantification from food sources to monitor nutritional value. In this study we have analysed six water-soluble B vitamins ([thiamine (B1), riboflavin (B2), nicotinic acid (B3, NAc), nicotinamide (B3, NAm), pyridoxal (B6), folic acid (B9)], and ascorbic acid (vit C) with hydrophilic interaction liquid chromatography (HILIC), and compared UV, fluorescent (FLD) and coulometric detection to optimise a method to quantitate the vitamins from food sources. Employing UV/diode array (DAD) and fluorimetric detection, six B vitamins were detected in a single run using gradient elution from 100% to 60% solvent B [10mM ammonium acetate, pH 5.0, in acetonitrile and water 95:5 (v:v)] over 18 min. UV detection was performed at 268 nm for B1, 260 nm for both B3 species and 284 nm for B9. FLD was employed for B2 at excitation wavelength of 268 nm, emission of 513 nm, and 284 nm/317 nm for B6. Coulometric detection can be used to detect B6 and B9, and vit C, and was performed isocratically at 75% and 85% of solvent B, respectively. B6 was analysed at a potential of 720 mV, while B9 was analysed at 600 mV, and vit C at 30 mV. Retention times (0.96 to 11.81 min), intra-day repeatability (CV 1.6 to 3.6), inter-day variability (CV 1.8 to 11.1), and linearity (R 0.9877 to 0.9995) remained good under these conditions with limits of detection varying from 6.6 to 164.6 ng mL(-1), limits of quantification between 16.8 and 548.7 ng mL(-1). The method was successfully applied for quantification of six B vitamins from a fortified food product and is, to our knowledge, the first to simultaneously determine multiple water-soluble vitamins extracted from a food matrix using HILIC.

  16. An array of microactuated microelectrodes for monitoring single-neuronal activity in rodents.

    PubMed

    Muthuswamy, Jit; Okandan, Murat; Gilletti, Aaron; Baker, Michael S; Jain, Tilak

    2005-08-01

    Arrays of microelectrodes used for monitoring single- and multi-neuronal action potentials often fail to record from the same population of neurons over a period of time for several technical and biological reasons. We report here a novel Neural Probe chip with a 3-channel microactuated microelectrode array that will enable precise repositioning of the individual microelectrodes within the brain tissue after implantation. Thermal microactuators and associated microelectrodes in the Neural Probe chip are microfabricated using the Sandia's Ultraplanar Multi-level MEMS Technology (SUMMiTV) process, a 5-layer polysilicon micromachining technology of the Sandia National labs, Albuquerque, NM. The Neural Probe chip enables precise bi-directional positioning of the microelectrodes in the brain with a step resolution in the order of 8.8 microm. The thermal microactuators allow for a linear translation of the microelectrodes of up to 5 mm in either direction making it suitable for positioning microelectrodes in deep structures of a rodent brain. The overall translation in either direction was reduced to approximately 2 mm after insulation of the microelectrodes with epoxy for monitoring multi-unit activity. Single unit recordings were obtained from the somatosensory cortex of adult rats over a period of three days demonstrating the feasibility of this technology. Further optimization of the microelectrode insulation and chip packaging will be necessary before this technology can be validated in chronic experiments.

  17. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations

    NASA Astrophysics Data System (ADS)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti

    2016-07-01

    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  18. An Array of Microactuated Microelectrodes for Monitoring Single-Neuronal Activity in Rodents

    PubMed Central

    Okandan, Murat; Gilletti, Aaron; Baker, Michael S.; Jain, Tilak

    2006-01-01

    Arrays of microelectrodes used for monitoring single-and multi-neuronal action potentials often fail to record from the same population of neurons over a period of time for several technical and biological reasons. We report here a novel Neural Probe chip with a 3-channel microactuated microelectrode array that will enable precise repositioning of the individual microelectrodes within the brain tissue after implantation. Thermal microactuators and associated microelectrodes in the Neural Probe chip are microfabricated using the Sandia’s Ultraplanar Multi-level MEMS Technology (SUMMiTV) process, a 5-layer polysilicon microma-chining technology of the Sandia National labs, Albuquerque, NM. The Neural Probe chip enables precise bi-directional positioning of the microelectrodes in the brain with a step resolution in the order of 8.8μm. The thermal microactuators allow for a linear translation of the microelectrodes of up to 5 mm in either direction making it suitable for positioning microelectrodes in deep structures of a rodent brain. The overall translation in either direction was reduced to approximately 2 mm after insulation of the microelectrodes with epoxy for monitoring multi-unit activity. Single unit recordings were obtained from the somatosensory cortex of adult rats over a period of three days demonstrating the feasibility of this technology. Further optimization of the microelectrode insulation and chip packaging will be necessary before this technology can be validated in chronic experiments. PMID:16119243

  19. Protein-DNA array-based identification of transcription factor activities differentially regulated in obliterative bronchiolitis

    PubMed Central

    Dong, Ming; Wang, Xin; Zhao, Hong-Lin; Zhao, Yu-Xia; Jing, Ya-Qing; Yuan, Jing-Hua; Guo, Yi-Jiu; Chen, Xing-Long; Li, Ke-Qiu; Li, Guang

    2015-01-01

    Lung transplantation has already become the preferred treatment option for a variety of end-stage pulmonary failure. However the long-term results of lung transplantation are still not compelling and the major death reason is commonly due to obliterative bronchiolitis (OB) which is considered as chronic rejection presenting manifests physiologically as a progressive decline in FEV1. Transcription factors (TFs) play a key role in regulating gene expression and in providing an interconnecting regulatory between related pathway elements. Although the transcription factors are required for expression of the proinflammatory cytokines and immune proteins which are involved in obliterative bronchiolitis following lung transplantation, the alterations of the transcription factors in OB have not yet been revealed. Therefore, to investigate the alteration pattern of the transcription factors in OB, we used protein/DNA arrays. Mice orthotopic tracheal transplantation model was used in this studying. In this study, we explored the activity profiles of TFs in Protein/DNA array data of tracheal tissue in 14 and 28 day after transplanted. From a total of 345 screened TFs, we identified 42 TFs that showed associated with OB progression. Our data indicate that TFs may be potentially involved in the pathogenesis of OB, and can prevent, diagnose and treat OB after lung transplantation. In development of OB, some of the TFs may have ability to modulate the transcription of inflammatory proteins such cytokines, inflammatory enzymes and so on. PMID:26261607

  20. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  1. Differential expression and activity of matrix metalloproteinases 2 and 9 in canine early placenta.

    PubMed

    Diessler, M; Ventureira, M; Hernandez, R; Sobarzo, C; Casas, L; Barbeito, C; Cebral, E

    2017-02-01

    The zonary and endotheliochorial dog placenta is the most invasive placenta of carnivores. The importance of matrix metalloproteinases (MMP) in placenta invasiveness has been determined in several mammals including species with haemochorial, epitheliochorial and endotheliochorial placentation. Regarding the latter, the expression of MMP enzymes has been studied in the cat and the mature canine placenta. The aim of this study was to analyse the expression and activity of MMP-2 and MMP-9 in the early dog placenta. Placentae from 18 to 30 days of pregnancy were collected from four bitches. Two placentae from each bitch were analysed. Placental tissue from one uterine horn was fixed in formaldehyde for immunohistochemistry, while marginal haematoma, labyrinth, non-implantative and implantative endometrium from the contralateral horn were immediately frozen in dry ice for the analysis of MMP expression (Western blot [WB]) and activity (zymography). MMP-2 and MMP-9 were evidenced in the labyrinth, maternal glands and marginal haematoma; this finding was directly correlated with levels of MMP expression by WB, and with the activity of MMP-2, mainly in the haematoma (the area of major remodelling of tissues). Thus, although MMP-9 is well expressed in the early canine placenta, it is not active. Given the important role of MMPs for invasiveness, maternal-foetal angiogenesis and the establishment of a correct foetal nutrition, the results are consistent with the findings in other species in which the MMP-2 activation precedes the MMP-9 one in early placentation.

  2. 8-Iso-prostaglandin f(2alpha) reduces trophoblast invasion and matrix metalloproteinase activity.

    PubMed

    Staff, A C; Ranheim, T; Henriksen, T; Halvorsen, B

    2000-06-01

    Preeclampsia is a common pregnancy complication in the latter half of gestation diagnosed by hypertension and proteinuria. A key feature of preeclampsia is an altered placentation with reduced trophoblast invasion. Normal placentation requires controlled invasion of trophoblasts into the maternal uterine wall, with secretion of specific proteolytic enzymes able to degrade basement membranes and extracellular matrix, such as the matrix metalloproteinases (MMPs). 8-Iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) is a marker of oxidative stress in vivo and is biologically active. We have recently reported an elevated content of free 8-iso-PGF(2alpha) in preeclamptic gestational tissue at delivery. Assuming an elevated level of 8-iso-PGF(2alpha) during the invasion period of the pregnancy, we hypothesized that 8-iso-PGF(2alpha) could reduce invasion of JAR cells, a choriocarcinoma cell line. We investigated JAR cell invasion with 2 types of Transwell assays and demonstrated that 8-iso-PGF(2alpha) (10 micromol/L) resulted in reduced cell invasion in both the colorimetric and radioactivity Transwell assays (P<0.01). Zymograms revealed reduced MMP-2 and MMP-9 activity in conditioned media from JAR cells incubated with 8-iso-PGF(2alpha) (10 micromol/L) (P<0.02). 8-Iso-PGF(2alpha) (10 micromol/L) also reduced the collagenase type IV activity in the conditioned media of JAR cells (P=0.04). No effects on MMP-2 and MMP-9 mRNA levels were observed after incubation with 8-iso-PGF(2alpha) (10 micromol/L), whereas protein levels were significantly decreased (P<0.02), suggesting a posttranscriptional regulation. We hypothesize a potential role for 8-iso-PGF(2alpha) in the reduced trophoblast invasion in preeclampsia.

  3. Performance and modeling of active metal-matrix composites manufactured by ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Hahnlen, Ryan; Dapino, Marcelo J.

    2011-04-01

    This paper presents the development and characterization of active aluminum-matrix composites manufactured by Ultrasonic Additive Manufacturing (UAM), an emerging rapid prototyping process based on ultrasonic metal welding. The primary benefit of UAM over other metal-matrix fabrication processes is the low process temperatures, as low as 25 °C. UAM thus provides unprecedented opportunities to develop adaptive structures with seamlessly embedded smart materials and electronic components without degrading the properties that make these materials and components attractive. The objective of this research is to develop UAM composites with aluminum matrices and embedded shape memory NiTi, magnetostrictive Galfenol (FeGa), and polyvinylidene fluoride (PVDF) phases. The paper is focused on the thermally induced strain response and stiffness behavior of NiTi-Al composites, the actuation properties of FeGa-Al composites, and the embedded sensing capabilities of PVDF-Al composites. We observe up to a 10% increase over room temperature stiffness for NiTi-Al composites and a magnetomechanical response in the FeGa-Al composite up to 52.4 μɛ. The response of the PVDF-Al composite to harmonic loads is observed over a frequency range of 10 to 1000 Hz.

  4. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amniochorion increases with labor.

    PubMed Central

    Vadillo-Ortega, F.; González-Avila, G.; Furth, E. E.; Lei, H.; Muschel, R. J.; Stetler-Stevenson, W. G.; Strauss, J. F.

    1995-01-01

    To determine whether specific collagenolytic enzymes are expressed in human fetal membranes with labor, we examined gelatinase activity in extracts of amniochorion by zymography. The 92-kd gelatinase (MMP-9) was barely detectable in extracts of fetal membranes before the onset of labor but was readily demonstrable in extracts prepared from membranes isolated from laboring women or membranes collected immediately after delivery. In contrast, the 72-kd gelatinase (MMP-2) was detectable in extracts from pre- and post-labor membranes. Ethylenediaminetetracetic acid and the tissue inhibitor of metalloproteinases, TIMP-1, inhibited the gelatinase activities detected by zymography, confirming that the enzymes are metalloproteinase. Assay of amniochorion gelatinase activity using a radiolabeled denatured collagen substrate revealed a more than twofold increase in activity comparing pre-labor with post-labor fetal membrane extracts. A function-blocking anti-MMP-9 monoclonal antibody inhibited pre-labor membrane gelatinase activity by approximately 11.5%, which was only slightly greater inhibition than observed with irrelevant monoclonal antibodies. However, post-labor membrane gelatinase activity was reduced by 53% by the function-blocking antibody, indicating that MMP-9 is a major contributor to the increased gelatinase activity extractable from post-labor membranes. Western blot analyses demonstrated increased MMP-9 protein in amniochorion extracts after onset of labor. MMP-9 protein and mRNA were co-localized in amnion epithelium, underlying macrophages and chorion laeve trophoblast and decidual cells after labor. We conclude that 1) MMP-9 activity and protein in human amniochorion increases with labor and 2) MMP-9 is expressed by amnion epithelium, macrophages and chorion laeve trophoblast and decidual cells. The increased expression of MMP-9 may result in degradation of the extracellular matrix of the fetal membranes and facilitate their rupture under both

  5. Aftershock activity of the 2015 Gorkha, Nepal, earthquake determined using the Kathmandu strong motion seismographic array

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Masayoshi; Takai, Nobuo; Shigefuji, Michiko; Bijukchhen, Subeg; Sasatani, Tsutomu; Rajaure, Sudhir; Dhital, Megh Raj; Takahashi, Hiroaki

    2016-02-01

    The characteristics of aftershock activity of the 2015 Gorkha, Nepal, earthquake (Mw 7.8) were evaluated. The mainshock and aftershocks were recorded continuously by the international Kathmandu strong motion seismographic array operated by Hokkaido University and Tribhuvan University. Full waveform data without saturation for all events enabled us to clarify aftershock locations and decay characteristics. The aftershock distribution was determined using the estimated local velocity structure. The hypocenter distribution in the Kathmandu metropolitan region was well determined and indicated earthquakes located shallower than 12 km depth, suggesting that aftershocks occurred at depths shallower than the Himalayan main thrust fault. Although numerical investigation suggested less resolution for the depth component, the regional aftershock epicentral distribution of the entire focal region clearly indicated earthquakes concentrated in the eastern margin of the major slip region of the mainshock. The calculated modified Omori law's p value of 1.35 suggests rapid aftershock decay and a possible high temperature structure in the aftershock region.

  6. Automated co-alignment of coherent fiber laser arrays via active phase-locking.

    PubMed

    Goodno, Gregory D; Weiss, S Benjamin

    2012-07-02

    We demonstrate a novel closed-loop approach for high-precision co-alignment of laser beams in an actively phase-locked, coherently combined fiber laser array. The approach ensures interferometric precision by optically transducing beam-to-beam pointing errors into phase errors on a single detector, which are subsequently nulled by duplication of closed-loop phasing controls. Using this approach, beams from five coherent fiber tips were simultaneously phase-locked and position-locked with sub-micron accuracy. Spatial filtering of the sensed light is shown to extend the control range over multiple beam diameters by recovering spatial coherence despite the lack of far-field beam overlap.

  7. Influence of the activator in an acrylic bone cement on an array of cement properties.

    PubMed

    Lewis, Gladius; Xu, Jie; Deb, Sanjukta; Lasa, Blanca Vázquez; Román, Julio San

    2007-06-01

    In all but one of the acrylic bone cement brands used in cemented arthroplasties, N,N-dimethyl-4-toluidine (DMPT) serves as the activator of the polymerization reaction. However, many concerns have been raised about this activator, all related to its toxicity. Thus, various workers have assessed a number of alternative activators, with two examples being N,N-dimethylamino-4-benzyl laurate (DMAL) and N,N-dimethylamino-4-benzyl oleate (DMAO). The results of limited characterization of cements that contain DMAL or DMAO have been reported in the literature. The present work is a comprehensive comparison of cements that contain one of these three activators, in which the values of a large array of their properties were determined. These properties range from the setting time and maximum exotherm temperature of the curing cement to the variation of the loss elastic modulus of the cured cement with frequency of the applied indenting force in dynamic nanoindentation tests. The present results, taken in conjunction with those presented in previous reports by the present authors and co-workers on other properties of these cements, indicate that both DMAL and DMPT are suitable alternatives to DMPT.

  8. Gelatinolytic activity of matrix metalloproteinase in lung cancer studied using film in situ zymography stamp method.

    PubMed

    Kaji, Masahiro; Moriyama, Satoru; Sasaki, Hidefumi; Saitoh, Yushi; Kiriyama, Masanobu; Fukai, Ichiro; Yamakawa, Yosuke; Mitsui, Akira; Toyama, Tatsuya; Nemori, Ryoichi; Fujii, Yoshitaka

    2003-02-01

    In this study, we investigated activity of matrix metalloproteinase (MMP) of lung cancer by newly developed film in situ zymography (FIZ) stamp method, which allows visual localization of gelatinolytic activity within the cut surface of a tumor. We performed FIZ stamp method and conventional gelatin zymography in 39 resected specimen of lung cancer. The degree of gelatinolytic activity was scored (FIZ score) and correlated with the clinicopathological factors of the tumor. FIZ score of normal lung was very low. Lung cancer tissue had consistently higher FIZ score than the matched normal lung tissue. There were statistically significant differences in the FIZ score according to the pathological stage (P = 0.0015), nodal status (P = 0.0007) and lymphatic invasion (P = 0.0004). Direct correlation was observed between the FIZ score and MMP-2 activity (rho = 0.568, P = 0.0030) as quantitated using conventional gelatin zymography. MMP-2 may play an important role in the lymphatic invasion of lung cancer. FIZ stamp method may be a simple and useful diagnostic aid for the presence of cancer cells in the resected specimen.

  9. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    SciTech Connect

    Chen, Shuming Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  10. DP-b99 Modulates Matrix Metalloproteinase Activity and Neuronal Plasticity

    PubMed Central

    Yeghiazaryan, Marine; Rutkowska-Wlodarczyk, Izabela; Konopka, Anna; Wilczyński, Grzegorz M.; Melikyan, Armenuhi; Korkotian, Eduard; Kaczmarek, Leszek; Figiel, Izabela

    2014-01-01

    DP-b99 is a membrane-activated chelator of zinc and calcium ions, recently proposed as a therapeutic agent. Matrix metalloproteinases (MMPs) are zinc-dependent extracellularly operating proteases that might contribute to synaptic plasticity, learning and memory under physiological conditions. In excessive amounts these enzymes contribute to a number of neuronal pathologies ranging from the stroke to neurodegeneration and epileptogenesis. In the present study, we report that DP-b99 delays onset and severity of PTZ-induced seizures in mice, as well as displays neuroprotective effect on kainate excitotoxicity in hippocampal organotypic slices and furthermore blocks morphological reorganization of the dendritic spines evoked by a major neuronal MMP, MMP-9. Taken together, our findings suggest that DP-b99 may inhibit neuronal plasticity driven by MMPs, in particular MMP-9, and thus may be considered as a therapeutic agent under conditions of aberrant plasticity, such as those subserving epileptogenesis. PMID:24918931

  11. Carbon nanotube active-matrix backplanes for conformal electronics and sensors.

    PubMed

    Takahashi, Toshitake; Takei, Kuniharu; Gillies, Andrew G; Fearing, Ronald S; Javey, Ali

    2011-12-14

    In this paper, we report a promising approach for fabricating large-scale flexible and stretchable electronics using a semiconductor-enriched carbon nanotube solution. Uniform semiconducting nanotube networks with superb electrical properties (mobility of ∼20 cm2 V(-1) s(-1) and ION/IOFF of ∼10(4)) are obtained on polyimide substrates. The substrate is made stretchable by laser cutting a honeycomb mesh structure, which combined with nanotube-network transistors enables highly robust conformal electronic devices with minimal device-to-device stochastic variations. The utility of this device concept is demonstrated by fabricating an active-matrix backplane (12×8 pixels, physical size of 6×4 cm2) for pressure mapping using a pressure sensitive rubber as the sensor element.

  12. Matrix metalloproteinase 13 mediates nitric oxide activation of endothelial cell migration

    PubMed Central

    López-Rivera, Esther; Lizarbe, Tania R.; Martínez-Moreno, Mónica; López-Novoa, José Miguel; Rodríguez-Barbero, Alicia; Rodrigo, José; Fernández, Ana Patricia; Álvarez-Barrientos, Alberto; Lamas, Santiago; Zaragoza, Carlos

    2005-01-01

    To explore the mechanisms by which NO elicits endothelial cell (EC) migration we used murine and bovine aortic ECs in an in vitro wound-healing model. We found that exogenous or endogenous NO stimulated EC migration. Moreover, migration was significantly delayed in ECs derived from endothelial NO synthase-deficient mice compared with WT murine aortic EC. To assess the contribution of matrix metalloproteinase (MMP)-13 to NO-mediated EC migration, we used RNA interference to silence MMP-13 expression in ECs. Migration was delayed in cells in which MMP-13 was silenced. In untreated cells MMP-13 was localized to caveolae, forming a complex with caveolin-1. Stimulation with NO disrupted this complex and significantly increased extracellular MMP-13 abundance, leading to collagen breakdown. Our findings show that MMP-13 is an important effector of NO-activated endothelial migration. PMID:15728377

  13. DP-b99 modulates matrix metalloproteinase activity and neuronal plasticity.

    PubMed

    Yeghiazaryan, Marine; Rutkowska-Wlodarczyk, Izabela; Konopka, Anna; Wilczyński, Grzegorz M; Melikyan, Armenuhi; Korkotian, Eduard; Kaczmarek, Leszek; Figiel, Izabela

    2014-01-01

    DP-b99 is a membrane-activated chelator of zinc and calcium ions, recently proposed as a therapeutic agent. Matrix metalloproteinases (MMPs) are zinc-dependent extracellularly operating proteases that might contribute to synaptic plasticity, learning and memory under physiological conditions. In excessive amounts these enzymes contribute to a number of neuronal pathologies ranging from the stroke to neurodegeneration and epileptogenesis. In the present study, we report that DP-b99 delays onset and severity of PTZ-induced seizures in mice, as well as displays neuroprotective effect on kainate excitotoxicity in hippocampal organotypic slices and furthermore blocks morphological reorganization of the dendritic spines evoked by a major neuronal MMP, MMP-9. Taken together, our findings suggest that DP-b99 may inhibit neuronal plasticity driven by MMPs, in particular MMP-9, and thus may be considered as a therapeutic agent under conditions of aberrant plasticity, such as those subserving epileptogenesis.

  14. Expression and activity of matrix metalloproteinases in the uterus of bitches after spontaneous and induced abortion.

    PubMed

    Kanca, H; Walter, I; Miller, I; Schäfer-Somi, S; Izgur, H; Aslan, S

    2011-04-01

    Aim of this study was to determine the intrauterine activity of matrix metalloproteinases (MMP)-2 and -9 after cessation of the local effect of progesterone. For this purpose, pregnancy was terminated in 10 bitches at mid-gestation with the progesterone receptor antagonist aglepristone (10 mg/kg body weight, sc, Alizine®; Virbac, France) at two subsequent days (group IRA = induced resorption/abortion). The IRA group was divided into two subgroups (Group I, n = 5, days 25-35 of pregnancy; group II, n = 5, days 36-45). Five further bitches were introduced with beginning abortion (group SRA = spontaneous resorption/abortion). Seven healthy bitches between day 25 and 45 of gestation served as controls. After ovariohysterectomy at the end of abortion and between days 25 and 45 of gestation, respectively, the distribution and activity of collagenases were investigated by immunohistochemistry and gelatin zymography. At placental sites, MMP-2 activity in the endometrium was significantly lower in IRA groups than in the SRA group (33.7 ± 11.8% and 39.3 ± 5.4% vs 52.2 ± 10.2%, p < 0.05); however, MMP-2 expression was lowest in the control group (control: 21.4 ± 6.3%; p < 0.01) and similarly in the myometrium (controls: 13.1 ± 2.5%; p < 0.05). MMP-9 activity was also lower in the endometrium and myometrium of the control group in comparison to SRA and IRA groups (11.8 ± 3.2%; p < 0.01 and 28.4 ± 32.8%; p < 0.05). At interplacental sites, the amount of active collagenases in the myometrium was significantly lower in the control group. It is concluded that the blockade of the biological progesterone effect was associated with an increase in activity of both collagenases.

  15. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    SciTech Connect

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B; Morreale, Bryan D; Gellman, Andrew J

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  16. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays.

    PubMed

    Zong, Mingxiang; Bai, Long; Liu, Yanlian; Wang, Xin; Zhang, Xiangyu; Huang, Xiaobo; Hang, Ruiqiang; Tang, Bin

    2017-02-01

    Bacterial infection and loosening of orthopedic implants remain two disastrously postoperative complications. Angiogenesis is critical important to facilitate implant osseointegration in vivo. TiO2 nanotubes arrays (NTAs) with proper dimensions possess good osseointegration ability. Accordingly, the present work incorporated copper (Cu) into TiO2 NTAs (Cu-Ti-O NTAs) to enhance their antibacterial ability and angiogenesis activity, which was realized through anodizing magnetron-sputtered TiCu coatings with different Cu contents on pure titanium (Ti). Our results show ordered Cu-Ti-O NTAs can be produced under proper Cu content (<15.14%) in TiCu coatings. The NTAs possess excellent long-term antibacterial ability against Staphylococcus aureus (S. aureus), which may be ascribed to sustained release of Cu(2+). The cytotoxicity of Cu-Ti-O NTAs to endothelial cells (ECs) could be negligible and can even promote cell proliferation as revealed by live/dead staining and MTT. Meanwhile, Cu-Ti-O NTAs can up-regulate nitric oxide (NO) synthesis and vascular endothelial growth factors (VEGF) secretion of ECs on the sample surfaces compared with that of pure TiO2 NTAs (control). Furthermore, the angiogenic activity is also enhanced in ionic extracts of Cu-Ti-O NTAs compared with the control. The excellent long-term antibacterial ability and favorable angiogenic activity render Cu-Ti-O NTAs to be promising implant coatings.

  17. Monitoring Hippocampus Electrical Activity In Vitro on an Elastically Deformable Microelectrode Array

    PubMed Central

    Yu, Zhe; Graudejus, Oliver; Tsay, Candice; Lacour, Stéphanie P.; Wagner, Sigurd

    2009-01-01

    Abstract Interfacing electronics and recording electrophysiological activity in mechanically active biological tissues is challenging. This challenge extends to recording neural function of brain tissue in the setting of traumatic brain injury (TBI), which is caused by rapid (within hundreds of milliseconds) and large (greater than 5% strain) brain deformation. Interfacing electrodes must be biocompatible on multiple levels and should deform with the tissue to prevent additional mechanical damage. We describe an elastically stretchable microelectrode array (SMEA) that is capable of undergoing large, biaxial, 2-D stretch while remaining functional. The new SMEA consists of elastically stretchable thin metal films on a silicone membrane. It can stimulate and detect electrical activity from cultured brain tissue (hippocampal slices), before, during, and after large biaxial deformation. We have incorporated the SMEA into a well-characterized in vitro TBI research platform, which reproduces the biomechanics of TBI by stretching the SMEA and the adherent brain slice culture. Mechanical injury parameters, such as strain and strain rate, can be precisely controlled to generate specific levels of damage. The SMEA allowed for quantification of neuronal function both before and after injury, without breaking culture sterility or repositioning the electrodes for the injury event, thus enabling serial and long-term measurements. We report tests of the SMEA and an initial application to study the effect of mechanical stimuli on neuron function, which could be employed as a high-content, drug-screening platform for TBI. PMID:19594385

  18. Real-time monitoring of matrix metalloproteinase-9 collagenolytic activity with a surface plasmon resonance biosensor.

    PubMed

    Shoji, Atsushi; Kabeya, Mitsutaka; Sugawara, Masao

    2011-12-01

    We describe a simple method for real-time monitoring of matrix metalloproteinase-9 (MMP-9) collagenolytic activity for native triple helical collagen IV with a surface plasmon resonance (SPR) biosensor. The proteolytic activity of MMP-9 is measured as a decrease in the SPR signal resulting from the cleavage of collagen IV immobilized on the sensor surface. The kinetic parameters of full-length MMP-9 and its catalytic domain-catalytic constant (k(cat)), association rate constant (k(a)), and dissociation rate constant (k(d))-were estimated by the SPR method. The presence of sodium chloride and a nonionic detergent Brij-35 in a reaction solution led to the lower collagenolytic activity of MMP-9, whereas they suppressed the nonspecific interaction between MMP-9 and a cysteamine-modified chip. The comparison of kinetic parameters between MMP-9 and its catalytic domain revealed that the association constant of MMP-9 is much larger than that of the catalytic domain, suggesting that the interplay among hemopexin-like domain, fibronectin type II repeats motif, and linker region (O-glycosylated domain) plays an important role in recognizing collagen IV.

  19. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  20. Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells

    SciTech Connect

    Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara; McIntyre, J. Oliver; Matrisian, Lynn M. . E-mail: lynn.matrisian@vanderbilt.edu

    2005-02-15

    Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment as compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7{sup HIGH}-polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium.

  1. Osteoblast-released Matrix Vesicles, Regulation of Activity and Composition by Sulfated and Non-sulfated Glycosaminoglycans*

    PubMed Central

    Schmidt, Johannes R.; Kliemt, Stefanie; Preissler, Carolin; Moeller, Stephanie; von Bergen, Martin; Hempel, Ute; Kalkhof, Stefan

    2016-01-01

    Our aging population has to deal with the increasing threat of age-related diseases that impair bone healing. One promising therapeutic approach involves the coating of implants with modified glycosaminoglycans (GAGs) that mimic the native bone environment and actively facilitate skeletogenesis. In previous studies, we reported that coatings containing GAGs, such as hyaluronic acid (HA) and its synthetically sulfated derivative (sHA1) as well as the naturally low-sulfated GAG chondroitin sulfate (CS1), reduce the activity of bone-resorbing osteoclasts, but they also induce functions of the bone-forming cells, the osteoblasts. However, it remained open whether GAGs influence the osteoblasts alone or whether they also directly affect the formation, composition, activity, and distribution of osteoblast-released matrix vesicles (MV), which are supposed to be the active machinery for bone formation. Here, we studied the molecular effects of sHA1, HA, and CS1 on MV activity and on the distribution of marker proteins. Furthermore, we used comparative proteomic methods to study the relative protein compositions of isolated MVs and MV-releasing osteoblasts. The MV proteome is much more strongly regulated by GAGs than the cellular proteome. GAGs, especially sHA1, were found to severely impact vesicle-extracellular matrix interaction and matrix vesicle activity, leading to stronger extracellular matrix formation and mineralization. This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms. PMID:26598647

  2. Matrix metalloproteinase-driven endochondral fracture union proceeds independently of osteoclast activity.

    PubMed

    McDonald, Michelle M; Morse, Alyson; Mikulec, Kathy; Peacock, Lauren; Baldock, Paul A; Kostenuik, Paul J; Little, David G

    2013-07-01

    As new insights into the complexities of endochondral fracture repair emerge, the temporal role of osteoclast activity remains ambiguous. With numerous antiresorptive agents available to treat bone disease, understanding their impact on bone repair is vital. Further, in light of recent work suggesting osteoclast activity may not be necessary during early endochondral fracture union, we hypothesize instead a pivotal role of matrix metalloproteinase (MMP) secreting cells in driving this process. Although the role of MMPs in fracture healing has been examined, no directly comparative experiments exist. We examined a number of antiresorptive treatments to either block osteoclast activity, including the potent bisphosphonates zoledronic acid (ZA) and clodronate (CLOD), which work via differing mechanisms, or antagonize osteoclastogenesis with recombinant OPG (HuOPG-Fc), comparing these directly to an inhibitor of MMP activity (MMI270). Endochondral ossification to union occurred normally in all antiresorptive groups. In contrast, MMP inhibition greatly impaired endochondral union, significantly delaying cartilage callus removal. MMP inhibition also produced smaller, denser hard calluses. Hard callus remodeling was, as expected, delayed with ZA, CLOD, and OPG treatment at 4 and 6 weeks, resulting in larger, more mineralized calluses at 6 weeks. As a result of reduced hard callus turnover, bone formation was reduced with antiresorptive agents at these time points. These results confirm that the achievement of endochondral fracture union occurs independently of osteoclast activity. Alternatively, MMP secretion by invading cells is obligatory to endochondral union. This study provides new insight into cellular contributions to bone repair and may abate concerns regarding antiresorptive therapies impeding initial fracture union.

  3. Distribution and relative activity of matrix metalloproteinase-2 in human coronal dentin

    PubMed Central

    Boushell, Lee W; Kaku, Masaru; Mochida, Yoshiyuki; Yamauchi, Mitsuo

    2011-01-01

    The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L−1 EDTA/2 mol·L−1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD>ID>MD. Western blotting analysis detected ∼66 and ∼72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a ∼66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD>ID>OD. The concentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions. PMID:22010577

  4. Expression of matrix metalloproteinases during rat skin wound healing: evidence that membrane type-1 matrix metalloproteinase is a stromal activator of pro-gelatinase A.

    PubMed

    Okada, A; Tomasetto, C; Lutz, Y; Bellocq, J P; Rio, M C; Basset, P

    1997-04-07

    Skin wound healing depends on cell migration and extracellular matrix remodeling. Both processes, which are necessary for reepithelization and restoration of the underlying connective tissue, are believed to involve the action of extracellular proteinases. We screened cDNA libraries and we found that six matrix metalloproteinase genes were highly expressed during rat skin wound healing. They were namely those of stromelysin 1, stromelysin 3, collagenase 3, gelatinase A (GelA), gelatinase B, and membrane type-1 matrix metalloproteinase (MT1-MMP). The expression kinetics of these MMP genes, the tissue distribution of their transcripts, the results of cotransfection experiments in COS-1 cells, and zymographic analyses performed using microdissected rat wound tissues support the possibility that during cutaneous wound healing pro-GelA and pro-gelatinase B are activated by MT1-MMP and stromelysin 1, respectively. Since MT1-MMP has been demonstrated to be a membrane-associated protein (Sato, H., T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki. 1994. Nature (Lond.). 370: 61-65), our finding that GelA and MT1-MMP transcripts were expressed in stromal cells exhibiting a similar tissue distribution suggests that MT1-MMP activates pro-GelA at the stromal cell surface. This possibility is further supported by our observation that the processing of pro-GelA to its mature form correlated to the detection of MT1-MMP in cell membranes of rat fibroblasts expressing the MT1-MMP and GelA genes. These observations, together with the detection of high levels of the mature GelA form in the granulation tissue but not in the regenerating epidermis, suggest that MT1-MMP and GelA contribute to the restoration of connective tissue during rat skin wound healing.

  5. Development of ballistic hot electron emitter and its applications to parallel processing: active-matrix massive direct-write lithography in vacuum and thin films deposition in solutions

    NASA Astrophysics Data System (ADS)

    Koshida, N.; Kojima, A.; Ikegami, N.; Suda, R.; Yagi, M.; Shirakashi, J.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Nishino, H.; Yoshida, S.; Sugata, M.; Totsu, K.; Esashi, M.

    2015-03-01

    Making the best use of the characteristic features in nanocrystalline Si (nc-Si) ballistic hot electron source, the alternative lithographic technology is presented based on the two approaches: physical excitation in vacuum and chemical reduction in solutions. The nc-Si cold cathode is a kind of metal-insulator-semiconductor (MIS) diode, composed of a thin metal film, an nc-Si layer, an n+-Si substrate, and an ohmic back contact. Under a biased condition, energetic electrons are uniformly and directionally emitted through the thin surface electrodes. In vacuum, this emitter is available for active-matrix drive massive parallel lithography. Arrayed 100×100 emitters (each size: 10×10 μm2, pitch: 100 μm) are fabricated on silicon substrate by conventional planar process, and then every emitter is bonded with integrated complementary metal-oxide-semiconductor (CMOS) driver using through-silicon-via (TSV) interconnect technology. Electron multi-beams emitted from selected devices are focused by a micro-electro-mechanical system (MEMS) condenser lens array and introduced into an accelerating system with a demagnification factor of 100. The electron accelerating voltage is 5 kV. The designed size of each beam landing on the target is 10×10 nm2 in square. Here we discuss the fabrication process of the emitter array with TSV holes, implementation of integrated ctive-matrix driver circuit, the bonding of these components, the construction of electron optics, and the overall operation in the exposure system including the correction of possible aberrations. The experimental results of this mask-less parallel pattern transfer are shown in terms of simple 1:1 projection and parallel lithography under an active-matrix drive scheme. Another application is the use of this emitter as an active electrode supplying highly reducing electrons into solutions. A very small amount of metal-salt solutions is dripped onto the nc-Si emitter surface, and the emitter is driven without

  6. Human retinal pigment epithelial lysis of extracellular matrix: functional urokinase plasminogen activator receptor, collagenase, and elastase.

    PubMed Central

    Elner, Susan G

    2002-01-01

    PURPOSE: To show (1) human retinal pigment epithelial (HRPE) expression of functional urokinase plasminogen activator receptor (uPAR; CD87), (2) HRPE secretion of collagenase and elastase, (3) uPAR-dependent HRPE migration, and (4) uPAR expression in diseased human retinal tissue. METHODS: Immunohistochemistry for uPAR was performed on cultured HRPE cells and in sections of human retina. Double-immunofluorescent staining of live human RPE cells with anti-CR3 antibody (CD11b) was performed to demonstrate the physical proximity of this beta 2 integrin with uPAR and determine whether associations were dependent on RPE confluence and polarity. Extracellular proteolysis by HRPE uPAR was evaluated using fluorescent bodipy-BSA and assessed for specificity by plasminogen activator inhibitor-1 (PAI-1) inhibition. The effect of interleukin-1 beta (IL-1 beta) on uPAR expression was assessed. Collagenase and elastase secretion by unstimulated and IL-1-stimulated HRPE cells was measured by 3H-labelled collagen and elastin cleavage. HRPE-associated collagenase was also assessed by cleavage of fluorescent DQ-collagen and inhibited by phenanthroline. Using an extracellular matrix assay, the roles of uPAR and collagenase in HRPE migration were assessed. RESULTS: Immunoreactive uPAR was detected on cultured HRPE cells and increased by IL-1. On elongated, live HRPE cells, uPAR dissociated from CD11b (CR3) and translocated to anterior poles of migrating cells. Extracellular proteolysis was concentrated at sites of uPAR expression and specifically inhibited by PAI-1. Cultured HRPE cells secreted substantial, functional collagenase and elastase. IL-1 upregulated uPAR, collagenase, and elastase activities. Specific inhibition of uPAR, and to a lesser degree collagenase, reduced HRPE migration in matrix/gel assays. Immunoreactive uPAR was present along the HRPE basolateral membrane in retinal sections and in sections of diseased retinal tissue. CONCLUSIONS: HRPE cells express functional u

  7. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  8. Active Matrix Driving Organic Light-Emitting Diode Panel Using Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Ohta, Satoru; Chuman, Takashi; Miyaguchi, Satoshi; Satoh, Hideo; Tanabe, Takahisa; Okuda, Yoshiyuki; Tsuchida, Masami

    2005-06-01

    We developed an active matrix driving organic light-emitting diode (OLED) panel on a glass substrate using two organic thin-film transistors (OTFTs) per pixel, a switching OTFT and a driving OTFT. The OTFTs are bottom contact structures with the high-dielectric constant gate insulator tantalum oxide (Ta2O5, relative dielectric constant of 23) produced by anodization in ammonium adipate solution and with pentacene as the active layer. The W/L (where W and L are the OTFTs channel width and length, respectively) was 400 μm/10 μm for the switching OTFTs and 680 μm/10 μm for the driving OTFTs. The characteristics of the OTFTs were improved by treating the Ta2O5 surface with hexamethyldisilazane (HMDS), so that the field-effect mobility was 2.0× 10-1 cm2 V-1 s-1 and the current on/off ratio was 105. A green phosphorescent dopant, tris(2-phenylpyridine)iridium [Ir(ppy)3], was used for the OLED layer. The panel had 8× 8 pixels and the aperture ratio was 27%. We confirmed a 16-gray-scale representation and a luminance of 400 cd/m2.

  9. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  10. Cellular aspartyl proteases promote the unconventional secretion of biologically active HIV-1 matrix protein p17

    PubMed Central

    Caccuri, Francesca; Iaria, Maria Luisa; Campilongo, Federica; Varney, Kristen; Rossi, Alessandro; Mitola, Stefania; Schiarea, Silvia; Bugatti, Antonella; Mazzuca, Pietro; Giagulli, Cinzia; Fiorentini, Simona; Lu, Wuyuan; Salmona, Mario; Caruso, Arnaldo

    2016-01-01

    The human immune deficiency virus type 1 (HIV-1) matrix protein p17 (p17), although devoid of a signal sequence, is released by infected cells and detected in blood and in different organs and tissues even in HIV-1-infected patients undergoing successful combined antiretroviral therapy (cART). Extracellularly, p17 deregulates the function of different cells involved in AIDS pathogenesis. The mechanism of p17 secretion, particularly during HIV-1 latency, still remains to be elucidated. A recent study showed that HIV-1-infected cells can produce Gag without spreading infection in a model of viral latency. Here we show that in Gag-expressing cells, secretion of biologically active p17 takes place at the plasma membrane and occurs following its interaction with phosphatidylinositol-(4,5)-bisphosphate and its subsequent cleavage from the precursor Gag (Pr55Gag) operated by cellular aspartyl proteases. These enzymes operate a more complex Gag polypeptide proteolysis than the HIV-1 protease, thus hypothetically generating slightly truncated or elongated p17s in their C-terminus. A 17 C-terminal residues excised p17 was found to be structurally and functionally identical to the full-length p17 demonstrating that the final C-terminal region of p17 is irrelevant for the protein’s biological activity. These findings offer new opportunities to identify treatment strategies for inhibiting p17 release in the extracellular microenvironment. PMID:27905556

  11. Cell-mediated degradation of type IV collagen and gelatin films is dependent on the activation of matrix metalloproteinases.

    PubMed Central

    Atkinson, S J; Ward, R V; Reynolds, J J; Murphy, G

    1992-01-01

    The ability of normal rabbit dermal fibroblasts to degrade films of type IV collagen and gelatin when stimulated by phorbol ester was shown to be dependent on the induction, secretion and activation of 95 kDa gelatinase B and the secretion and activation of 72 kDa gelatinase A and stromelysin. Degradation was inhibited by exogenous human recombinant tissue inhibitor of metalloproteinases-1, specific antibodies to gelatinase and stromelysin and by the reactive-oxygen-metabolite inhibitor catalase. We discuss the various pathways for activation of matrix metalloproteinases in this model system and conclude that, although plasmin may play a key role in the activation of gelatinase B and stromelysin, gelatinase A is activated by a mechanism which has yet to be elucidated. The involvement of oxygen radicals in the direct activation of matrix metalloproteinases in this model is thought to be unlikely. Images Fig. 2. Fig. 3. Fig. 4. PMID:1463464

  12. Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway.

    PubMed

    Lee, Dae Hyung; Lim, In-Hye; Sung, Eon-Gi; Kim, Joo-Young; Song, In-Hwan; Park, Yoon Ki; Lee, Tae-Jin

    2013-08-01

    Withaferin A (Wit A), a steroidal lactone isolated from Withania somnifera, exhibits anti-inflammatory, immuno-modulatory and anti-angiogenic properties and antitumor activities. In the present study, we investigated the effects of Wit A on protease-mediated invasiveness of the human metastatic cancer cell lines Caski and SK-Hep1. We found that treatment with Wit A resulted in marked inhibition of the TGF‑β‑induced increase in expression and activity of matrix metalloproteinase (MMP)‑9 in Caski cell line. These effects of Wit A were dose-dependent and showed a correlation with suppression of MMP‑9 mRNA expression levels. Treatment with Wit A resulted in an ~1.6-fold induction of MMP-9 promoter activity, which was also suppressed by treatment with Wit A in Caski cells. We found that treatment with Wit A resulted in inhibition of TGF‑β‑induced phosphorylation of Akt, which was involved in the downregulation of expression of MMP-9 at the protein level. Introduction with constitutively active (CA)‑Akt resulted in a partial increase in the secretion of TGF-β-induced MMP-9 blocked by treatment with Wit A in Caski cells. According to these results, Wit A may inhibit the invasive and migratory abilities of Caski cells through a reduction in MMP-9 expression through suppression of the pAkt signaling pathway. These findings indicate that use of Wit A may be an effective strategy for control of metastasis and invasiveness of tumors.

  13. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    SciTech Connect

    O'Toole, Timothy E. Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca{sup 2+}]{sub i}), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca{sup 2+}]{sub I} with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca{sup 2+}]{sub I}, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  14. Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity.

    PubMed

    Liu, Zhuoliang; Li, Wang; Nie, Zhou; Peng, Feifei; Huang, Yan; Yao, Shouzhuo

    2014-07-04

    Randomly arrayed G-quadruplexes can serve as an efficient peroxidase-mimic DNAzyme and provide a novel and facile method to detect terminal deoxynucleotidyl transferase (TdT). Moreover, this G-rich sequence binding to the thioflavin T (ThT) dye can be applied in real-time fluorescent detection of TdT activity.

  15. Sync Matrix

    SciTech Connect

    Metz, William C.; Metz, W. Chris; Mitrani, Jacques E.; Hewett, Jr., Paul L.; Jones, Christopher A.

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  16. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  17. Modulation of CD147-induced matrix metalloproteinase activity: role of CD147 N-glycosylation.

    PubMed

    Huang, Wan; Luo, Wen-Juan; Zhu, Ping; Tang, Juan; Yu, Xiao-Ling; Cui, Hong-Yong; Wang, Bin; Zhang, Yang; Jiang, Jian-Li; Chen, Zhi-Nan

    2013-01-15

    Degradation of the basement membrane by MMPs (matrix metalloproteinases) is one of the most critical steps in tumour progression. CD147 is a tumour-associated antigen that plays a key regulatory role for MMP activities. In the present study, mass spectrum analysis demonstrated that the purified native CD147 from human lung cancer tissue was N-glycosylated and contained a series of high-mannose and complex-type N-linked glycan structures. Moreover, native glycosylated CD147 existed exclusively as oligomers in solution and directly stimulated MMP production more efficiently than non-glycosylated prokaryotic CD147. The glycosylation site mutation results indicated that, among three N-glycan attachment sites, the N152Q mutants were retained in the endoplasmic reticulum and unfolded protein response signalling was activated. This improper intracellular accumulation impaired its MMP-inducing activity. Increased β1,6-branching of N-glycans as a result of overexpression of GnT-V (N-acetylglucosaminyltransferase V) plays an important role in tumour metastasis. In the present study, we identified CD147 as a target protein of GnT-V and found that overexpression of GnT-V resulted in an elevated level of CD147 at the plasma membrane and in cell-conditioned medium, thereby increasing the induction of MMPs. The present study reveals the important role of N-glycosylation of CD147 in its biological function and implied that targeting aberrant β1,6-branching of N-glycans on CD147 would be valuable for the development of novel therapeutic modalities against carcinoma.

  18. Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors.

    PubMed

    Doukas, J; Chandler, L A; Gonzalez, A M; Gu, D; Hoganson, D K; Ma, C; Nguyen, T; Printz, M A; Nesbit, M; Herlyn, M; Crombleholme, T M; Aukerman, S L; Sosnowski, B A; Pierce, G F

    2001-05-01

    Although growth factor proteins display potent tissue repair activities, difficulty in sustaining localized therapeutic concentrations limits their therapeutic activity. We reasoned that enhanced histogenesis might be achieved by combining growth factor genes with biocompatible matrices capable of immobilizing vectors at delivery sites. When delivered to subcutaneously implanted sponges, a platelet-derived growth factor B-encoding adenovirus (AdPDGF-B) formulated in a collagen matrix enhanced granulation tissue deposition 3- to 4-fold (p < or = 0.0002), whereas vectors encoding fibroblast growth factor 2 or vascular endothelial growth factor promoted primarily angiogenic responses. By day 8 posttreatment of ischemic excisional wounds, collagen-formulated AdPDGF-B enhanced granulation tissue and epithelial areas up to 13- and 6-fold (p < 0.009), respectively, and wound closure up to 2-fold (p < 0.05). At longer times, complete healing without excessive scar formation was achieved. Collagen matrices were shown to retain both vector and transgene products within delivery sites, enabling the transduction and stimulation of infiltrating repair cells. Quantitative PCR and RT-PCR demonstrated both vector DNA and transgene mRNA within wound beds as late as 28 days posttreatment. By contrast, aqueous formulations allowed vector seepage from application sites, leading to PDGF-induced hyperplasia in surrounding tissues but not wound beds. Finally, repeated applications of PDGF-BB protein were required for neotissue induction approaching equivalence to a single application of collagen-immobilized AdPDGF-B, confirming the utility of this gene transfer approach. Overall, these studies demonstrate that immobilizing matrices enable the controlled delivery and activity of tissue promoting genes for the effective regeneration of injured tissues.

  19. Phenotypic differences in matrix metalloproteinase 2 activity between fibroblasts from 3 bovine muscles.

    PubMed

    Archile-Contreras, A C; Mandell, I B; Purslow, P P

    2010-12-01

    Different muscles in a beef carcass are known to respond differently to the same stimulus or animal growth pattern or both. This may complicate the search by the meat industry for production methods to render meat tender. One of the major differences between muscles in the same carcass is in the expression of intramuscular connective tissue. Current study investigates the existence of a phenotypic difference among fibroblasts from 3 bovine skeletal muscles as exemplified by the expression of matrix metalloproteinases (MMP) the main enzymes responsible for connective tissue turnover. The sensitivity of phenotypic differences to cell culture conditions (passage number, presence of growth factors from fetal serum) was also examined. Fibroblasts, the main cells responsible for the production and turnover of collagen were isolated from LM, semitendinosus (STN), and sternomandibularis (SMD) muscles from a bull calf and grown in DMEM, 10% fetal bovine serum, and 5% CO(2). Cell doubling times, survival time, resting expression, and activity of MMP and the effect of serum withdrawal in the culture media on MMP expression and activity were determined for each cell line during 15 passages. Fibroblasts isolated from the 3 muscles had different growth potentials. The shortest (P < 0.0001) cell doubling times for almost every passage were found in cells from STN muscle. Cells from the LM had a shorter (P < 0.0001) survival time in comparison with STN and SMD. Cells derived from the STN had greater values (P > 0.05) of MMP-2 activity in comparison with LM and SMD cells until passage 4. At passage 15, no activity was detected for any cell line. Serum withdrawal generally reduced MMP-2 activation but did not eliminate differences in activity between fibroblasts from the 3 muscles. These results suggest that fibroblasts from different locations are phenotypically different and may respond differently to the same growth or nutritional stimulus in vitro. This may be related to in vivo

  20. Vitamin D Inhibits Expression and Activity of Matrix Metalloproteinase in Human Lung Fibroblasts (HFL-1) Cells

    PubMed Central

    Kim, Seo Hwa; Baek, Moon Seong; Yoon, Dong Sik; Park, Jong Seol; Yoon, Byoung Wook; Oh, Byoung Su; Park, Jinkyeong

    2014-01-01

    Background Low levels of serum vitamin D is associated with several lung diseases. The production and activation of matrix metalloproteinases (MMPs) may play an important role in the pathogenesis of emphysema. The aim of the current study therefore is to investigate if vitamin D modulates the expression and activation of MMP-2 and MMP-9 in human lung fibroblasts (HFL-1) cells. Methods HFL-1 cells were cast into three-dimensional collagen gels and stimulated with or without interleukin-1β (IL-1β) in the presence or absence of 100 nM 25-hydroxyvitamin D (25(OH)D) or 1,25-dihydroxyvitamin D (1,25(OH)2D) for 48 hours. Trypsin was then added into the culture medium in order to activate MMPs. To investigate the activity of MMP-2 and MMP-9, gelatin zymography was performed. The expression of the tissue inhibitor of metalloproteinase (TIMP-1, TIMP-2) was measured by enzyme-linked immunosorbent assay. Expression of MMP-9 mRNA and TIMP-1, TIMP-2 mRNA was quantified by real time reverse transcription polymerase chain reaction. Results IL-1β significantly stimulated MMP-9 production and mRNA expression. Trypsin converted latent MMP-2 and MMP-9 into their active forms of MMP-2 (66 kDa) and MMP-9 (82 kDa) within 24 hours. This conversion was significantly inhibited by 25(OH)D (100 nM) and 1,25(OH)2D (100 nM). The expression of MMP-9 mRNA was also significantly inhibited by 25(OH)D and 1,25(OH)2D. Conclusion Vitamin D, 25(OH)D, and 1,25(OH)2D play a role in regulating human lung fibroblast functions in wound repair and tissue remodeling through not only inhibiting IL-1β stimulated MMP-9 production and conversion to its active form but also inhibiting IL-1β inhibition on TIMP-1 and TIMP-2 production. PMID:25237378

  1. Packaging of an optoelectronic-VLSI chip supporting a 32 X 32 array of surface-active devices

    NASA Astrophysics Data System (ADS)

    Ayliffe, Michael H.; Rolston, D. R.; Chuah, E. L.; Bernier, Eric; Michael, Feras S. J.; Kabal, D.; Kirk, Andrew G.; Plant, David V.

    2000-05-01

    Innovative approaches to the packaging of a high-performance module accommodating a 32 X 32 array of surface-active devices indium bump bonded to a 9 X 9 mm2 VLSI chip are described. The module integrates a mini-lens array, a copper heat spreader, a thermoelectric cooler and an aluminum heatsink. The mini-lens array is aligned and packaged with the chip using a novel six degrees of freedom alignment technique. The module is compact (44 X 44 X 45 mm3), easy to assemble and can be passively removed and inserted into a free-space optical system with no need for further adjustments. The chip is mounted directly on a flexible printed-circuit board using a chip-on-board approach, providing 207 bond pad connections to the chip. The junction-to-TEC thermal resistance is only 0.4 degree(s)C/W.

  2. Performance of Optimized Actuator and Sensor Arrays in an Active Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Padula, S. L.; Lyle, K. H.; Cline, J. H.; Cabell, R. H.

    1996-01-01

    Experiments have been conducted in NASA Langley's Acoustics and Dynamics Laboratory to determine the effectiveness of optimized actuator/sensor architectures and controller algorithms for active control of harmonic interior noise. Tests were conducted in a large scale fuselage model - a composite cylinder which simulates a commuter class aircraft fuselage with three sections of trim panel and a floor. Using an optimization technique based on the component transfer functions, combinations of 4 out of 8 piezoceramic actuators and 8 out of 462 microphone locations were evaluated against predicted performance. A combinatorial optimization technique called tabu search was employed to select the optimum transducer arrays. Three test frequencies represent the cases of a strong acoustic and strong structural response, a weak acoustic and strong structural response and a strong acoustic and weak structural response. Noise reduction was obtained using a Time Averaged/Gradient Descent (TAGD) controller. Results indicate that the optimization technique successfully predicted best and worst case performance. An enhancement of the TAGD control algorithm was also evaluated. The principal components of the actuator/sensor transfer functions were used in the PC-TAGD controller. The principal components are shown to be independent of each other while providing control as effective as the standard TAGD.

  3. Effects of surveillance towed array sensor system (SURTASS) low frequency active sonar on fish

    NASA Astrophysics Data System (ADS)

    Popper, Arthur N.; Halvorsen, Michele B.; Miller, Diane; Smith, Michael E.; Song, Jiakun; Wysocki, Lidia E.; Hastings, Mardi C.; Kane, Andrew S.; Stein, Peter

    2005-04-01

    We investigated the effects of exposure to Low Frequency Active (LFA) sonar on rainbow trout (a hearing non-specialist related to several endangered salmonids) and channel catfish (a hearing specialist), using an element of the standard SURTASS LFA source array. We measured hearing sensitivity using auditory brainstem response, effects on inner ear structure using scanning electron microscopy, effects on non-auditory tissues using general pathology and histopathology, and behavioral effects with video monitoring. Exposure to 193 dB re 1 microPa (rms received level) in the LFA frequency band for 324 seconds resulted in a TTS of 20 dB at 400 Hz in rainbow trout, with less TTS at 100 and 200 Hz. TTS in catfish ranged from 6 to 12 dB at frequencies from 200 to 1000 Hz. Both species recovered from hearing loss in several days. Inner ears sensory tissues appeared unaffected by acoustic exposure. Gross pathology indicated no damage to non-auditory tissues, including the swim bladder. Both species showed consistent startle responses at sound onsets and changed their position relative to the sound source during exposures. There was no fish death attributable to sound exposure even up to four days post-exposure. [Work supported by Chief of Naval Operations.

  4. Nitrogen doped TiO2 nanotube arrays with high photoelectrochemical activity for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Yuan, Bao; Wang, Yan; Bian, Haidong; Shen, Tiankuo; Wu, Yucheng; Chen, Zhong

    2013-09-01

    Nitrogen doped TiO2 nanotube arrays (N-TNAs) were prepared by immersing TNAs in 1 M NH3·H2O solution and then annealing in different temperatures. The morphology, structure and composition of the N-TNAs were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy, respectively. Effects of annealing temperatures on structure, photocatalytic properties, and the crystal structure transformation process of the N-TNAs were discussed. Photocatalytic properties of the N-TNAs were evaluated in term of the degradation of methyl orange (MO) under UV light and visible light, and the photocurrent of N-TNAs were tested by electrochemical workstation. The XPS results showed that the N-TNAs were achieved by interstitial doping and substitutional doping, and the FESEM results showed the morphology was not changed after doping process. Compared with the pure TNAs, the N-TNAs annealed at 500 ̊C for 2 h with a mixed phase of anatase and rutile exhibited higher photocatalytic degradation activity to MO. Furthermore, the photocatalytic mechanism of organic pollutants degradation (MO) was discussed based on our experiments.

  5. Finite element and micromechanical modeling for investigating effective material properties of polymer-matrix nanocomposites with microfiber, reinforced by CNT arrays

    NASA Astrophysics Data System (ADS)

    Tahouneh, Vahid; Mashhadi, Mahmoud Mosavi; Naei, Mohammad Hasan

    2016-09-01

    This paper is motivated by the lack of studies to investigate the effect of fiber reinforced CNT arrays on the material properties of nanocomposites. To make a comprehensive study, this research work is conducted in two ways. Firstly, the effect of microfiber as reinforcement on the effective material properties is investigated; secondly, the study is carried on as the microfibers reinforced by CNT arrays. In both above-mentioned approaches, the results are compared to the results of generalized mixture rule which is known as a widely used micro-mechanical model. The representative volume element (RVE) is considered as a well-known method to investigate the effect of adding CNT arrays on the skin of microfibers. The results show that Generalized Mixture Rule cannot properly predict the effects of changing the length and diameter of nanotubes on the effective properties of nanocomposites. The main objective of this research work is to determine the effects of increasing nanotubes on the elastic properties which are achieved using two aforementioned methods including FE and rule of mixture. It is also absorbed; effective properties of RVE can be improved by increasing the volume fraction, length and decreasing CNT arrays diameter.

  6. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    NASA Astrophysics Data System (ADS)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  7. Design and feasibility of active matrix flat panel detector using avalanche amorphous selenium for protein crystallography.

    PubMed

    Sultana, Afrin; Reznik, Alla; Karim, Karim S; Rowlands, J A

    2008-10-01

    Protein crystallography is the most important technique for resolving the three-dimensional atomic structure of protein by measuring the intensity of its x-ray diffraction pattern. This work proposes a large area flat panel detector for protein crystallography based on direct conversion x-ray detection technique using avalanche amorphous selenium (a-Se) as the high gain photoconductor, and active matrix readout using amorphous silicon (a-Si:H) thin film transistors. The detector employs avalanche multiplication phenomenon of a-Se to make the detector sensitive to each incident x ray. The advantages of the proposed detector over the existing imaging plate and charge coupled device detectors are large area, high dynamic range coupled to single x-ray detection capability, fast readout, high spatial resolution, and inexpensive manufacturing process. The optimal detector design parameters (such as detector size, pixel size, and thickness of a-Se layer), and operating parameters (such as electric field across the a-Se layer) are determined based on the requirements for protein crystallography application. The performance of the detector is evaluated in terms of readout time (<1 s), dynamic range (approximately 10(5)), and sensitivity (approximately 1 x-ray photon), thus validating the detector's efficacy for protein crystallography.

  8. Full-order Mueller matrix polarimeter using liquid-crystal phase retarders and active illumination

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Hoover, Brian G.; Gonglewski, John D.

    2003-03-01

    Full order Stokes polarimeters are often composed of an analyzer consisting of a rotating quarter wave plate in front of a horizontal polarizer. A number of measurements are then made with the wave-plate oriented at different angle. The four-element Stokes vector is then computed from a linear combination of these measurements. A disadvantage of this device is that only a limited range of analyzer states can be generated. As a result a large number of measurements may be required to reduce the noise gain in the Stokes vector reconstructor. In this paper we describe a polarimeter based on a linear polarizer and two variable wave plates. It can be shown that such a device can produce an arbitrary polarization state. An active polarimeter consists of a generator stage, which transmits a laser illuminator with different polarization states and a receiver with a polarization analyzer stage. In our system both generator and analyzer stages consist of a horizontal polarizer and two variable wave-plates. A sixteen element Mueller matrix of resolved images is then formed for target characterization.

  9. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    NASA Astrophysics Data System (ADS)

    Parali, Levent; Şabikoğlu, İsrafil; Kurbanov, Mirza A.

    2014-11-01

    A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO3, SiO2 to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO3 or SiO2), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT-PVDF) and the hybrid structure (PZT-PVDF-BaTiO3) composite are compared. The d33 value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d33 value and the coupling factor of the hybrid structure (PZT-HDPE-SiO2) have exhibited about 68 and 52% increase according to microstructure composite (PZT-HDPE), respectively.

  10. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.

    PubMed

    DeRose, C T; Kekatpure, R D; Trotter, D C; Starbuck, A; Wendt, J R; Yaacobi, A; Watts, M R; Chettiar, U; Engheta, N; Davids, P S

    2013-02-25

    An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm.

  11. EGF AND TGF-{alpha} motogenic activities are mediated by the EGF receptor via distinct matrix-dependent mechanisms

    SciTech Connect

    Ellis, Ian R.; Schor, Ana M.; Schor, Seth L. . E-mail: s.l.schor@dundee.ac.uk

    2007-02-15

    EGF and TGF-{alpha} induce an equipotent stimulation of fibroblast migration and proliferation. In spite of their homologous structure and ligation by the same receptor (EGFR), we report that their respective motogenic activities are mediated by different signal transduction intermediates, with p70{sup S6K} participating in EGF signalling and phospholipase C{gamma} in TGF-{alpha} signalling. We additionally demonstrate that EGF and TGF-{alpha} motogenic activities may be resolved into two stages: (a) cell 'activation' by a transient exposure to either cytokine, and (b) the subsequent 'manifestation' of an enhanced migratory phenotype in the absence of cytokine. The cell activation and manifestation stages for each cytokine are mediated by distinct matrix-dependent mechanisms: motogenetic activation by EGF requires the concomitant functionality of EGFR and the hyaluronan receptor CD44, whereas activation by TGF-{alpha} requires EGFR and integrin {alpha}v{beta}3. Manifestation of elevated migration no longer requires the continued presence of exogenous cytokine and functional EGFR but does require the above mentioned matrix receptors, as well as their respective ligands, i.e., hyaluronan in the case of EGF, and vitronectin in the case of TGF-{alpha}. In contrast, the mitogenic activities of EGF and TGF-{alpha} are independent of CD44 and {alpha}v{beta}3 functionality. These results demonstrate clear qualitative differences between EGF and TGF-{alpha} pathways and highlight the importance of the extracellular matrix in regulating cytokine bioactivity.

  12. Biosensing of matrix metalloproteinase activity with Cd-free quantum dots

    NASA Astrophysics Data System (ADS)

    Plumley, John Bryan

    Quantum dots (QDs) have become attractive in the biomedical field on account of their superior optical properties and stability, in comparison to traditional fluorophores. QDs also have properties which make them ideal for complex in vivo conditions. However, toxicity has been a chief concern in the eventual implementation of QDs for in vivo applications such as biosensing and tumor imaging. Commercially available QDs contain a notoriously noxious Cd component and therefore continuous research has gone into developing QDs without toxic heavy metals, generally Cd, that would still yield comparable performance in terms of their optical properties. Nonetheless, even in the case of Cd-free QDs, toxicity should be evaluated on a case by case basis, as other properties such as size, coating, stability, and charge can affect toxicity of nanomaterials as well, making it a very complex issue. With the high promise of QDs in the field of biomedical development as a motivation, this work strives to develop the efficient and repeatable synthesis of Cd-free QDs with high stability and luminescence, with proven low toxicity, and the ability to detect active matrix metalloproteinase (MMP) in a biosensing system, designed to identify direct biomarkers for pathological conditions, which in turn would enable early disease diagnosis and better treatment development. In this work, highly luminescent ZnSe:Mn/ZnS QDs have been synthesized, characterized, and modified with peptides with a bioconjugation procedure that utilized thiol-metal affinity. Experiments aiming at MMP detection were conducted using the peptide/QD conjugates. In addition, the ApoTox-Glo(TM) Triplex assay was utilized to evaluate cytotoxicity, and a safe concentration below 0.125 microM was identified for peptide-coated ZnSe:Mn/ZnS QDs in water. Finally, in contribution to developing an in vivo fiberoptic system for sensing MMP activity, the QDs were successfully tethered to silica and MMP detection was demonstrated

  13. Orthogonal electrode catheter array for mapping of endocardial focal site of ventricular activation

    SciTech Connect

    Desai, J.M.; Nyo, H.; Vera, Z.; Seibert, J.A.; Vogelsang, P.J. )

    1991-04-01

    Precise location of the endocardial site of origin of ventricular tachycardia may facilitate surgical and catheter ablation of this arrhythmia. The endocardial catheter mapping technique can locate the site of ventricular tachycardia within 4-8 cm2 of the earliest site recorded by the catheter. This report describes an orthogonal electrode catheter array (OECA) for mapping and radiofrequency ablation (RFA) of endocardial focal site of origin of a plunge electrode paced model of ventricular activation in dogs. The OECA is an 8 F five pole catheter with four peripheral electrodes and one central electrode (total surface area 0.8 cm{sup 2}). In eight mongrel dogs, mapping was performed by arbitrarily dividing the left ventricle (LV) into four segments. Each segment was mapped with OECA to find the earliest segment. Bipolar and unipolar electrograms were obtained. The plunge electrode (not visible on fluoroscopy) site was identified by the earliest wave front arrival times of -30 msec or earlier at two or more electrodes (unipolar electrograms) with reference to the earliest recorded surface ECG (I, AVF, and V1). Validation of the proximity of the five electrodes of the OECA to the plunge electrode was performed by digital radiography and RFA. Pathological examination was performed to document the proximity of the OECA to the plunge electrode and also for the width, depth, and microscopic changes of the ablation. To find the segment with the earliest LV activation a total of 10 {plus minus} 3 (mean {plus minus} SD) positions were mapped. Mean arrival times at the two earlier electrodes were -39 {plus minus} 4 msec and -35 {plus minus} 3 msec. Digital radiography showed the plunge electrode to be within the area covered by all five electrodes in all eight dogs. The plunge electrode was within 1 cm2 area of the region of RFA in all eight dogs.

  14. Active feed array compensation for reflector antenna surface distortions. Ph.D. Thesis - Akron Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    1988-01-01

    The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.

  15. Low Frequency Activity of Cortical Networks on Microelectrode Arrays is Differentially Altered by Bicuculline and Carbaryl

    EPA Science Inventory

    Thousands of chemicals need to be characterized for their neurotoxicity potential. Neurons grown on microelectrode arrays (MEAs) are an in vitro model used to screen chemicals for functional effects on neuronal networks. Typically, after removal of low frequency components, effec...

  16. Captopril and lisinopril only inhibit matrix metalloproteinase-2 (MMP-2) activity at millimolar concentrations.

    PubMed

    Kuntze, Luciana B; Antonio, Raquel C; Izidoro-Toledo, Tatiane C; Meschiari, Cesar A; Tanus-Santos, Jose E; Gerlach, Raquel F

    2014-03-01

    Matrix metalloproteinase-2 (MMP-2) shares structural similarities with the angiotensin-converting enzyme (ACE). ACE inhibitors have been described to inhibit MMP-2, but this inhibitory potential was not shown using a highly purified MMP-2. This study aimed to investigate the inhibitory potential of captopril and lisinopril regarding MMP-2 activity. The first objective was to test the potential of captopril to change the pH of the buffer solution. The second objective was to test the direct inhibitory effect of captopril and lisinopril on plasma MMP-2 and on recombinant human MMP-2 (rhMMP-2). The in vitro activity assays included gelatin zymography and a fluorimetric assay. Captopril solubilization significantly decreased the pH of the 50 mM Tris buffer solution at the following concentrations: 2 mM (p < 0.05), 4 mM and 8 mM (p < 0.01), while only the 8 mM lisinopril induced a drop in pH (p < 0.05). Thus, only 200 mM buffer solutions were used. Zymography results of plasma MMP-2 and rhMMP-2 showed that inhibition only happened at captopril concentrations ≥ 4 and 1 mM, respectively (p < 0.05), while only the higher concentration of lisinopril (8 mM) inhibited plasma MMP-2 (p < 0.05). In the fluorimetric assay, captopril led to significant inhibition of the rhMMP-2 activity at concentrations ≥2 mM (p < 0.01), whereas aminophenylmercuric acetate-activated rhMMP-2 was inhibited by 0.5 mM captopril (p < 0.01). The captopril and lisinopril concentrations found to inhibit MMP-2 are 3 orders of magnitude higher than those present in vivo after drug administration. We also discuss possible pitfalls for gelatinase inhibitory assays (besides the obvious pH problem already cited). In conclusion, this study's data show that captopril and lisinopril did not inhibit MMP-2 directly at the concentrations reached in vivo.

  17. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Beggs, J. M.; Dabrowski, W.; Hottowy, P.; Kenney, C. J.; Sher, A.; Litke, A. M.; Mathieson, K.

    2013-02-01

    Objective. This paper describes the design, microfabrication, electrical characterization and biological evaluation of a high-density micro-needle array. The array records from and electrically stimulates individual neurons simultaneously in acute slices of brain tissue. Approach. Acute slices, arguably the closest in-vitro model of the brain, have a damaged surface layer. Since electrophysiological recording methods rely heavily on electrode-cell proximity, this layer significantly attenuates the signal amplitude making the use of traditional planar electrodes unsuitable. To penetrate into the tissue, bypassing the tissue surface, and to record and stimulate neural activity in the healthy interior volume of the slice, an array of 61 micro-needles was fabricated. Main results. This device is shown to record extracellular action potentials from individual neurons in acute cortical slices with a signal to noise ratio of up to ˜15:1. Electrical stimulation of individual neurons is achieved with stimulation thresholds of 1.1-2.9 µA. Significance. The novelty of this system is the combination of close needle spacing (60 µm), needle heights of up to 250 µm and small (5-10 µm diameter) electrodes allowing the recording of single unit activity. The array is coupled to a custom-designed readout system forming a powerful electrophysiological tool that permits two-way electrode-cell communication with populations of neurons in acute brain slices.

  18. Matrix Vesicle Enzyme Activity and Phospholipid Content in Endosteal Bone Following Implantation of Osseointegrating and Non-Osseointegrating Implant Materials.

    DTIC Science & Technology

    1992-01-01

    vesicles are an initial locus for calcification in most calcified matrices. b. The studies to be performed include: alkaline phosphatase specific activity...Treatment and Contralateral Tibias .............................. 23 Figure 6. Alkaline Phosphatase Specific Activity of Matrix Vesicle-Enriched Membranes...endosteal tissue removed from treated tibias, as well as the contralateral control. There was an increase at six days in MVEM alkaline phosphatase and

  19. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  20. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    SciTech Connect

    Zhao Wei; Li Dan; Reznik, Alla; Lui, B.J.M.; Hunt, D.C.; Rowlands, J.A.; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  1. Indirect flat-panel detector with avalanche gain: fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager).

    PubMed

    Zhao, Wei; Li, Dan; Reznik, Alla; Lui, B J M; Hunt, D C; Rowlands, J A; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d(Se) and the applied electric field E(Se) of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E(Se) dependence of both avalanche gain and optical quantum efficiency of an 8 microm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E(Se): (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 microm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  2. A method for reconstructing tomographic images of evoked neural activity with electrical impedance tomography using intracranial planar arrays.

    PubMed

    Aristovich, Kirill Y; dos Santos, Gustavo Sato; Packham, Brett C; Holder, David S

    2014-06-01

    A method is presented for reconstructing images of fast neural evoked activity in rat cerebral cortex recorded with electrical impedance tomography (EIT) and a 6 × 5 mm(2) epicortical planar 30 electrode array. A finite element model of the rat brain and inverse solution with Tikhonov regularization were optimized in order to improve spatial resolution and accuracy. The optimized FEM mesh had 7 M tetrahedral elements, with finer resolution (0.05 mm) near the electrodes. A novel noise-based image processing technique based on t-test significance improved depth localization accuracy from 0.5 to 0.1 mm. With the improvements, a simulated perturbation 0.5 mm in diameter could be localized in a region 4 × 5 mm(2) under the centre of the array to a depth of 1.4 mm, thus covering all six layers of the cerebral cortex with an accuracy of <0.1 mm. Simulated deep brain hippocampal or thalamic activity could be localized with an accuracy of 0.5 mm with a 256 electrode array covering the brain. Parallel studies have achieved a temporal resolution of 2 ms for imaging fast neural activity by EIT during evoked activity; this encourages the view that fast neural EIT can now resolve the propagation of depolarization-related fast impedance changes in cerebral cortex and deeper in the brain with a resolution equal or greater to the dimension of a cortical column.

  3. The Role of Collagen Charge Clusters in the Modulation of Matrix Metalloproteinase Activity*

    PubMed Central

    Lauer, Janelle L.; Bhowmick, Manishabrata; Tokmina-Roszyk, Dorota; Lin, Yan; Van Doren, Steven R.; Fields, Gregg B.

    2014-01-01

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-l-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23–P23′ subsites of collagenous substrates. PMID:24297171

  4. The role of collagen charge clusters in the modulation of matrix metalloproteinase activity.

    PubMed

    Lauer, Janelle L; Bhowmick, Manishabrata; Tokmina-Roszyk, Dorota; Lin, Yan; Van Doren, Steven R; Fields, Gregg B

    2014-01-24

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-L-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23-P23' subsites of collagenous substrates.

  5. Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites

    PubMed Central

    Sun, Zhe; Martinez-Lemus, Luis A.; Hill, Michael A.; Meininger, Gerald A.

    2008-01-01

    Integrin-mediated mechanotransduction in vascular smooth muscle cells (VSMCs) plays an important role in the physiological control of tissue blood flow and vascular resistance. To test whether force applied to specific extracellular matrix (ECM)-integrin interactions could induce myogenic-like mechanical activity at focal adhesion sites, we used atomic force microscopy (AFM) to apply controlled forces to specific ECM adhesion sites on arteriolar VSMCs. The tip of AFM probes were fused with a borosilicate bead (2∼5 μm) coated with fibronectin (FN), collagen type I (CNI), laminin (LN), or vitronectin (VN). ECM-coated beads induced clustering of α5- and β3-integrins and actin filaments at sites of bead-cell contact indicative of focal adhesion formation. Step increases of an upward (z-axis) pulling force (800∼1,600 pN) applied to the bead-cell contact site for FN-specific focal adhesions induced a myogenic-like, force-generating response from the VSMC, resulting in a counteracting downward pull by the cell. This micromechanical event was blocked by cytochalasin D but was enhanced by jasplakinolide. Function-blocking antibodies to α5β1- and αvβ3-integrins also blocked the micromechanical cell event in a concentration-dependent manner. Similar pulling experiments with CNI, VN, or LN failed to induce myogenic-like micromechanical events. Collectively, these results demonstrate that mechanical force applied to integrin-FN adhesion sites induces an actin-dependent, myogenic-like, micromechanical event. Focal adhesions formed by different ECM proteins exhibit different mechanical characteristics, and FN appears of particular relevance in its ability to strongly attach to VSMCs and to induce myogenic-like, force-generating reactions from sites of focal adhesion in response to externally applied forces. PMID:18495809

  6. Performance of a direct-detection active matrix flat panel dosimeter (AMFPD) for IMRT measurements.

    PubMed

    Chen, Yu; Moran, Jean M; Roberts, Donald A; El-Mohri, Youcef; Antonuk, Larry E; Fraass, Benedick A

    2007-12-01

    The dosimetric performance of a direct-detection active matrix flat panel dosimeter (AMFPD) is reported for intensity modulated radiation therapy (IMRT) measurements. The AMFPD consists of a-Si : H photodiodes and thin-film transistors deposited on a glass substrate with no overlying scintillator screen or metal plate. The device is operated at 0.8 frames per second in a continuous acquisition or fluoroscopic mode. The effect of the applied bias voltage across the photodiodes on the response of the AMFPD was evaluated because this parameter affects dark signal, lag contributions, and pixel sensitivity. In addition, the AMPFD response was evaluated as a function of dose, dose rate, and energy, for static fields at 10 cm depth. In continuous acquisition mode, the AMFPD maintained a linear dose response (r2 > 0.99999) up to at least 1040 cGy. In order to obtain reliable integrated dose results for IMRT fields, the effects of lag on the radiation signal were minimized by operating the system at the highest frame rate and at an appropriate reverse bias voltage. Segmental MLC and dynamic MLC IMRT fields were measured with the AMFPD, and the results were compared to film, using standard methods for reliable film dosimetry. Both AMFPD and film measurements were independently converted to dose in cGy. Gamma and chi values were calculated as indices of agreement. The results from the AMFPD were in excellent agreement with those from film. When 2% of D(max) and 2 mm of distance to agreement were used as the criteria, 98% of the region of interest (defined as the region where dose is greater than 5% of D(max)) satisfied [chi] < or = 1 on average across the cases that were tested.

  7. Fabrication of Cu2O/TiO2 nanotube arrays with enhanced visible-light photoelectrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xiang, Liyun; Ya, Jing; Hu, Fengjiao; Li, Lixia; Liu, Zhifeng

    2017-03-01

    A new electrochemical deposition process was developed to uniformly deposit Cu2O nanoparticles on the matrix of TiO2 nanotube (NT) arrays. The Cu2O nanoparticles have a particle size about 20 nm grown both inside and outside of the nanotubes without blocking the pore openings as characterized using XRD, SEM, TEM, and EDS measurements. The Cu2O/TiO2NTs heterogeneous structures also effectively improve the visible-light absorption and response comparing to those of TiO2NTs material. The photodegradation efficiency was increase by about 2.3 times on the Cu2O-decorated TiO2NTs materials as tested by degradation of methylene blue under simulated visible light.

  8. RADIO-SELECTED BINARY ACTIVE GALACTIC NUCLEI FROM THE VERY LARGE ARRAY STRIPE 82 SURVEY

    SciTech Connect

    Fu, Hai; Myers, A. D.; Djorgovski, S. G.; Yan, Lin; Wrobel, J. M.; Stockton, A.

    2015-01-20

    Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei (AGNs) among galaxy mergers. However, determining the fraction requires a statistical sample of binaries. We have identified kiloparsec-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 deg{sup 2} covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5'' (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the Hα-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ∼60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion.

  9. The use of microelectrode array (MEA) to study rat peritoneal mast cell activation.

    PubMed

    Yeung, Chi-Kong; Law, Jessica Ka-Yan; Sam, Sze-Wing; Ingebrandt, Sven; Lau, Hang-Yung Alaster; Rudd, John Anthony; Chan, Mansun

    2008-06-01

    We performed this study to demonstrate the applicability of the microelectrode array (MEA) to study electrophysiological changes of rat peritoneal mast cells in the presence of compound 48/80 under normal, Ca(2+)-free, Ca(2+)-free with EDTA, and Cl(-)-free conditions. The use of high extracellular K(+) (KCl, 150 mM), charybdotoxin (ChTX, 100 nM), and Cl(-)-free containing ChTX buffers verified that the hyperpolarizing signal was due to the activation of mainly K(+) and, to a lesser extent, Cl(-) channels. Compound 48/80 concentration-dependently shortened the latent periods (the onset of response) and increased both the spatial (the K(+) and Cl(-) hyperpolarizing field potentials, HFP) and temporal measurements (the duration of response). Ca(2+)-free buffer had no effect on the latent period of compound 48/80 but increased the HFP at high concentrations. The latent period increased while the HFP diminished when cells were equilibrated in Ca(2+)-free buffer containing EDTA. Durations of the HFP were generally longer when cells were in either Ca(2+)-free or Ca(2+)-free containing EDTA buffers than when cells were in normal buffer. The EC(50) values confirmed that effects were only affected in Ca(2+)-free buffer containing EDTA but not in Ca(2+)-free or Cl(-)-free buffers, further reinforcing the hypothesis that the presence of Ca(2+) is not essential to the action of compound 48/80. The present study is the first application of MEA to study rat peritoneal mast cells, and our results indicate that it could be of value in future pharmacological research on other non-excitable cells.

  10. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.

    PubMed

    Wang, Gongming; Xiao, Xiangheng; Li, Wenqing; Lin, Zhaoyang; Zhao, Zipeng; Chen, Chi; Wang, Chen; Li, Yongjia; Huang, Xiaoqing; Miao, Ling; Jiang, Changzhong; Huang, Yu; Duan, Xiangfeng

    2015-07-08

    Titanium oxide (TiO2) represents one of most widely studied materials for photoelectrochemical (PEC) water splitting but is severely limited by its poor efficiency in the visible light range. Here, we report a significant enhancement of visible light photoactivity in nitrogen-implanted TiO2 (N-TiO2) nanowire arrays. Our systematic studies show that a post-implantation thermal annealing treatment can selectively enrich the substitutional nitrogen dopants, which is essential for activating the nitrogen implanted TiO2 to achieve greatly enhanced visible light photoactivity. An incident photon to electron conversion efficiency (IPCE) of ∼10% is achieved at 450 nm in N-TiO2 without any other cocatalyst, far exceeding that in pristine TiO2 nanowires (∼0.2%). The integration of oxygen evolution reaction (OER) cocatalyst with N-TiO2 can further increase the IPCE at 450 nm to ∼17% and deliver an unprecedented overall photocurrent density of 1.9 mA/cm(2), by integrating the IPCE spectrum with standard AM 1.5G solar spectrum. Systematic photoelectrochemical and electrochemical studies demonstrated that the enhanced PEC performance can be attributed to the significantly improved visible light absorption and more efficient charge separation. Our studies demonstrate the implantation approach can be used to reliably dope TiO2 to achieve the best performed N-TiO2 photoelectrodes to date and may be extended to fundamentally modify other semiconductor materials for PEC water splitting.

  11. Radio-selected Binary Active Galactic Nuclei from the Very Large Array Stripe 82 Survey

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Myers, A. D.; Djorgovski, S. G.; Yan, Lin; Wrobel, J. M.; Stockton, A.

    2015-01-01

    Galaxy mergers play an important role in the growth of galaxies and their supermassive black holes. Simulations suggest that tidal interactions could enhance black hole accretion, which can be tested by the fraction of binary active galactic nuclei (AGNs) among galaxy mergers. However, determining the fraction requires a statistical sample of binaries. We have identified kiloparsec-scale binary AGNs directly from high-resolution radio imaging. Inside the 92 deg2 covered by the high-resolution Very Large Array survey of the Sloan Digital Sky Survey (SDSS) Stripe 82 field, we identified 22 grade A and 30 grade B candidates of binary radio AGNs with angular separations less than 5'' (10 kpc at z = 0.1). Eight of the candidates have optical spectra for both components from the SDSS spectroscopic surveys and our Keck program. Two grade B candidates are projected pairs, but the remaining six candidates are all compelling cases of binary AGNs based on either emission line ratios or the excess in radio power compared to the Hα-traced star formation rate. Only two of the six binaries were previously discovered by an optical spectroscopic search. Based on these results, we estimate that ~60% of our binary candidates would be confirmed once we obtain complete spectroscopic information. We conclude that wide-area high-resolution radio surveys offer an efficient method to identify large samples of binary AGNs. These radio-selected binary AGNs complement binaries identified at other wavelengths and are useful for understanding the triggering mechanisms of black hole accretion. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways.

    PubMed

    Déziel, Bob A; Patel, Kunal; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert A R

    2010-10-15

    Prostate cancer is one of the most common cancers in the Western world, and it is believed that an individual's diet affects his risk of developing cancer. There has been an interest in examining phytochemicals, the secondary metabolites of plants, in order to determine their potential anti-cancer activities in vitro and in vivo. In this study we document the effects of proanthocyanidins (PACs) from the American Cranberry (Vaccinium macrocarpon) on matrix metalloproteinase (MMP) activity in DU145 human prostate cancer cells. Cranberry PACs decreased cellular viability of DU145 cells at a concentration of 25 µg/ml by 30% after 6 h of treatment. Treatment of DU145 cells with PACs resulted in an inhibition of both MMPs 2 and 9 activity. PACs increased the expression of TIMP-2, a known inhibitor of MMP activity, and decreased the expression of EMMPRIN, an inducer of MMP expression. PACs decreased the expression of PI-3 kinase and AKT proteins, and increased the phosphorylation of both p38 and ERK1/2. Cranberry PACs also decreased the translocation of the NF-κB p65 protein to the nucleus. Cranberry PACs increased c-jun and decreased c-fos protein levels. These results suggest that cranberry PACs decreases MMP activity through the induction and/or inhibition of specific temporal MMP regulators, and by affecting either the phosphorylation status and/or expression of MAP kinase, PI-3 kinase, NF-κB and AP-1 pathway proteins. This study further demonstrates that cranberry PACs are a strong candidate for further research as novel anti-cancer agents.

  13. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  14. Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages.

    PubMed

    Rodríguez-Roque, María Janeth; de Ancos, Begoña; Sánchez-Vega, Rogelio; Sánchez-Moreno, Concepción; Cano, M Pilar; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2016-01-01

    The biological activity of carotenoids depends on their bioaccessibility and solubilization in the gastrointestinal tract. These compounds are poorly dispersed in the aqueous media of the digestive tract due to their lipophilic nature. Thus, it is important to analyze the extent to which some factors, such as the food matrix and food processing, may improve their bioaccessibility. Beverages formulated with a blend of fruit juices and water (WB), milk (MB) or soymilk (SB) were treated by high-intensity pulsed electric fields (HIPEF) (35 kV cm(-1) with 4 μs bipolar pulses at 200 Hz for 1800 μs), high-pressure processing (HPP) (400 MPa at 40 °C for 5 min) or thermal treatment (TT) (90 °C for 1 min) in order to evaluate the influence of food matrix and processing on the bioaccessibility of carotenoids and on the lipophilic antioxidant activity (LAA). The bioaccessibility of these compounds diminished after applying any treatment (HIPEF, HPP and TT), with the exception of cis-violaxanthin + neoxanthin, which increased by 79% in HIPEF and HPP beverages. The lowest carotenoid bioaccessibility was always obtained in TT beverages (losses up to 63%). MB was the best food matrix for improving the bioaccessibility of carotenoids, as well as the LAA. The results demonstrate that treatment and food matrix modulated the bioaccessibility of carotenoids as well as the lipophilic antioxidant potential of beverages. Additionally, HIPEF and HPP could be considered as promising technologies to obtain highly nutritional and functional beverages.

  15. Trimer Enhancement Mutation Effects on HIV-1 Matrix Protein Binding Activities

    PubMed Central

    Alfadhli, Ayna; Mack, Andrew; Ritchie, Christopher; Cylinder, Isabel; Harper, Logan; Tedbury, Philip R.; Freed, Eric O.

    2016-01-01

    ABSTRACT The HIV-1 matrix (MA) protein is the amino-terminal domain of the HIV-1 precursor Gag (Pr55Gag) protein. MA binds to membranes and RNAs, helps transport Pr55Gag proteins to virus assembly sites at the plasma membranes of infected cells, and facilitates the incorporation of HIV-1 envelope (Env) proteins into virions by virtue of an interaction with the Env protein cytoplasmic tails (CTs). MA has been shown to crystallize as a trimer and to organize on membranes in hexamer lattices. MA mutations that localize to residues near the ends of trimer spokes have been observed to impair Env protein assembly into virus particles, and several of these are suppressed by the 62QR mutation at the hubs of trimer interfaces. We have examined the binding activities of wild-type (WT) MA and 62QR MA variants and found that the 62QR mutation stabilized MA trimers but did not alter the way MA proteins organized on membranes. Relative to WT MA, the 62QR protein showed small effects on membrane and RNA binding. However, 62QR proteins bound significantly better to Env CTs than their WT counterparts, and CT binding efficiencies correlated with trimerization efficiencies. Our data suggest a model in which multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation. IMPORTANCE The HIV-1 Env proteins assemble as trimers, and incorporation of the proteins into virus particles requires an interaction of Env CT domains with the MA domains of the viral precursor Gag proteins. Despite this knowledge, little is known about the mechanisms by which MA facilitates the virion incorporation of Env proteins. To help elucidate this process, we examined the binding activities of an MA mutant that stabilizes MA trimers. We found that the mutant proteins organized similarly to WT proteins on membranes, and that mutant and WT proteins revealed only slight differences in their binding to RNAs or lipids. However, the mutant proteins showed

  16. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    SciTech Connect

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-07-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a {approx}10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38.

  17. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    PubMed

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility.

  18. Case study of active array feed compensation with sidelobe control for reflector surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.; Zaman, A. J. M.; Bobinsky, E. A.; Cherrette, A. R.; Lee, S. W.

    1988-01-01

    The feasibility of electromagnetically compensating for reflector surface distortions has been investigated. The performance characteristics (gain, sidelobe levels, etc.) of large communication antenna systems degrade as the reflector surface distorts mainly due to thermal effects from a varying solar flux. The techniques described in this report can be used to maintain the design performance characteristics independently of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array-fed reflector system design can be achieved. MMIC arrays provide independent control of amplitude and phase for each of many radiating elements of the feed array. It is assumed that the surface characteristics (x,y,z, its first and second derivatives) under distorted conditions are known.

  19. Gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9 in rat brain after implantation of 9L rat glioma cells.

    PubMed

    Zhao, J X; Yang, L P; Wang, Y F; Qin, L P; Liu, D Q; Bai, C X; Nan, X; Shi, S S; Pei, X J

    2007-05-01

    The matrix metalloproteinases (MMPs) have come to be highlighted by their close relation to the cell invasion of gliomas. The inhibitors of MMPs have undergone extensive development because of its effectiveness against tumor invasion and angiogenesis. Therefore, a suitable animal model is necessary for searching new MMPs inhibitors against gliomas. In this study, we established an experimental model by implanting 9L glioma cells stereotactically into Fisher344 (F344) rat's brain, and the expression and enzymatic activity of MMP-2 and MMP-9 in 9L glioma cells and in tumor tissue was determined by means of reverse transcription polymerase chain reaction (RT-PCR), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) zymography, in situ film zymography and immunostaining. The results of RT-PCR showed that the mRNA level of MMP-2 in 9L glioma cells was higher than that of MMP-9, and the mRNA expression of MMP-9 was increased along with the growth of malignant gliomas. SDS-PAGE zymography revealed that the expression of MMP-2 and MMP-9 were significantly increased in tumor tissues, and the MMP-9 wasn't detected in normal tissue. The positive stain of MMP-2 and MMP-9 was enhanced with the growth of malignant gliomas, especially for MMP-9. The expression of active gelatinase was found in tumor tissue. In conclusion, the expression of active MMP-2 and MMP-9 was increased in 9L/F344 rat brain during the growth of malignant gliomas at different time intervals, which indicate that 9L/F344 animal model may be a prospective animal model to test new MMPs inhibitors.

  20. X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.

    SciTech Connect

    CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

    2007-10-29

    An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

  1. Arrayed SU-8 polymer thermal actuators with inherent real-time feedback for actively modifying MEMS’ substrate warpage

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Xiao, Dingbang; Chen, Zhihua; Wu, Xuezhong

    2016-09-01

    This paper describes the design, fabrication and characterization of a batch-fabricated micro-thermal actuators array with inherent real-time self-feedback, which can be used to actively modify micro-electro-mechanical systems’ (MEMS’) substrate warpage. Arrayed polymer thermal actuators utilize SU-8 polymer (a thick negative photoresist) as a functional material with integrated Ti/Al film-heaters as a microscale heat source. The electro-thermo-mechanical response of a micro-fabricated actuator was measured. The resistance of the Al/Ti film resistor varies obviously with ambient temperature, which can be used as inherent feedback for observing real-time displacement of activated SU-8 bumps (0.43 μm Ω-1). Due to the high thermal expansion coefficient, SU-8 bumps tend to have relatively large deflection at low driving voltage and are very easily integrated with MEMS devices. Experimental results indicated that the proposed SU-8 polymer thermal actuators (array) are able to achieve accurate rectification of MEMS’ substrate warpage, which might find potential applications for solving stress-induced problems in MEMS.

  2. High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons.

    PubMed

    Liu, Ren; Chen, Renjie; Elthakeb, Ahmed T; Lee, Sang Heon; Hinckley, Sandy; Khraiche, Massoud L; Scott, John; Pre, Deborah; Hwang, Yoontae; Tanaka, Atsunori; Ro, Yun Goo; Matsushita, Albert K; Dai, Xing; Soci, Cesare; Biesmans, Steven; James, Anthony; Nogan, John; Jungjohann, Katherine L; Pete, Douglas V; Webb, Denise B; Zou, Yimin; Bang, Anne G; Dayeh, Shadi A

    2017-04-10

    We report a new hybrid integration scheme that offers for the first time a nanowire-on-lead approach, which enables independent electrical addressability, is scalable, and has superior spatial resolution in vertical nanowire arrays. The fabrication of these nanowire arrays is demonstrated to be scalable down to submicrometer site-to-site spacing and can be combined with standard integrated circuit fabrication technologies. We utilize these arrays to perform electrophysiological recordings from mouse and rat primary neurons and human induced pluripotent stem cell (hiPSC)-derived neurons, which revealed high signal-to-noise ratios and sensitivity to subthreshold postsynaptic potentials (PSPs). We measured electrical activity from rodent neurons from 8 days in vitro (DIV) to 14 DIV and from hiPSC-derived neurons at 6 weeks in vitro post culture with signal amplitudes up to 99 mV. Overall, our platform paves the way for longitudinal electrophysiological experiments on synaptic activity in human iPSC based disease models of neuronal networks, critical for understanding the mechanisms of neurological diseases and for developing drugs to treat them.

  3. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2

    PubMed Central

    Du, Hong; El-Mohri, Youcef; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; Wang, Yi

    2009-01-01

    Active matrix, flat-panel x-ray imagers based on a-Si:H thin film transistors offer many advantages and are widely utilized in medical imaging applications. Unfortunately, the detective quantum efficiency (DQE) of conventional flat-panel imagers incorporating scintillators or a-Se photoconductors is significantly limited by their relatively modest signal to noise ratio, particularly in applications involving low x-ray exposures or high spatial resolution. For this reason, polycrystalline HgI2 is of considerable interest by virtue of its low effective work function, high atomic number, and the possibility of large-area deposition. In this study, a detailed investigation of the properties of prototype, flat-panel arrays coated with two forms of this high-gain photoconductor are reported. Encouragingly, high x-ray sensitivity, low dark current, and spatial resolution close to the theoretical limits were observed from a number of prototypes. In addition, input-quantum-limited DQE performance was measured from one of the prototypes at relatively low exposures. However, high levels of charge trapping, lag, and polarization, as well as pixel-to-pixel variations in x-ray sensitivity are of concern. While the results of the current study are promising, further development will be required to realize prototypes exhibiting the characteristics necessary to allow practical implementation of this approach. PMID:18296765

  4. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis

    PubMed Central

    Lamb, Cheri L.; Cholico, Giovan N.; Perkins, Daniel E.; Fewkes, Michael T.; Oxford, Julia Thom; Lujan, Trevor J.; Morrill, Erica E.

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury. PMID:27672655

  5. Sensitive determination of three aconitum alkaloids and their metabolites in human plasma by matrix solid-phase dispersion with vortex-assisted dispersive liquid-liquid microextraction and HPLC with diode array detection.

    PubMed

    Wang, Xiaozhong; Li, Xuwen; Li, Lanjie; Li, Min; Liu, Ying; Wu, Qian; Li, Peng; Jin, Yongri

    2016-05-01

    A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid-phase dispersion combined with vortex-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid-phase dispersion and the eluate obtained was concentrated and further clarified by vortex-assisted dispersive liquid-liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6-2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples.

  6. Preparation and photocatalytic activity for water splitting of Pt-Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays

    SciTech Connect

    Liu, Jing; Liu, Jiawen; Li, Zhonghua

    2013-02-15

    Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays were prepared by hydrothermal method from Ta{sub 2}O{sub 5} nanotube arrays, obtained by anodization of Ta foils, in Na{sub 2}CO{sub 3} solution at 150 Degree-Sign C. The as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-vis diffuse reflectance spectra (UV-DRS) and X-ray photoelectron spectroscopy (XPS). Analysis results show that pyrochlore structure Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays have been successfully fabricated. The diameters and lengths of Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays are 50 nm and 4 {mu}m, respectively. The photocatalytic hydrogen production activities of the as-synthesized Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays are highly dependent on the hydrothermal reaction time and Na{sub 2}CO{sub 3} concentration, optimized reaction parameters are obtained. To further improve the photocatalytic activity for hydrogen evolution, Pt loaded Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays are prepared by photochemical reduction method. The Pt loaded samples exhibit much higher activity for hydrogen evolution than pure Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays. Moreover, the photocatalytic hydrogen properties are rather stable. - Graphical abstract: Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays were synthesized by hydrothermal method using Ta{sub 2}O{sub 5} nanotube arrays as a precursor. The loaded Pt enhances the photocatalytic activity for water splitting of Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays. Highlights: Black-Right-Pointing-Pointer Novel Na{sub 2}Ta{sub 2}O{sub 6} nanotube array films with pyrochlore structure were synthesized. Black-Right-Pointing-Pointer Na{sub 2}Ta{sub 2}O{sub 6} nanotube arrays are active for H{sub 2} evolution from aqueous CH{sub 3}OH solution. Black-Right-Pointing-Pointer The effect of hydrothermal conditions on photocatalytic activity was investigated. Black-Right-Pointing-Pointer Pt loading can improve the

  7. A peptide array-based serological protein kinase A activity assay and its application in cancer diagnosis.

    PubMed

    Kong, Deok-Hoon; Jung, Se-Hui; Jeon, Hye-Yoon; Kim, Woo-Jin; Kim, Young-Myeong; Ha, Kwon-Soo

    2015-10-07

    Protein kinase A (PKA) plays a crucial role in several biological processes; however, there is no assay with sufficient sensitivity and specificity to determine serological PKA (sPKA) activity. Here we present an on-chip activity assay that employs cysteine-modified kemptide arrays to determine specific sPKA activity in human sera that eliminates the potential contributions of other kinases with a protein kinase peptide inhibitor. The sensitivity of the on-chip sPKA activity assay was greatly enhanced by Triton X-100, with a 0.01 U mL(-1) detection limit. sPKA activity was determined by subtracting nonspecific sPK activity from total sPK activity. Our assay provided greater sensitivity and specificity and more accurate area under the curve values for gastric cancer compared to the total sPK activity assay. sPKA activities in human sera from patients with hepatic (n = 30), gastric (n = 30), lung (n = 30), and colorectal (n = 30) cancers were significantly higher than those in controls (n = 30, p < 10(-4)), but no significant difference in sPKA activities between normal and inflammation groups was observed. These results demonstrate that the on-chip assay accurately measures sPKA activity in human sera and that the sPKA activity may be a potential biomarker for cancer diagnosis.

  8. Relationship between activation volume and polymer matrix effects on photochromic performance: bridging molecular parameter to macroscale effect.

    PubMed

    Shima, Kentaro; Mutoh, Katsuya; Kobayashi, Yoichi; Abe, Jiro

    2015-02-19

    Photochromic compounds have attracted attention as ophthalmic lenses because of their reversible color modulation upon irradiation with light. However, the efficiency of the photochromism is strongly affected by their surrounding because of the structural changes concomitant with the photochromism, which causes the decrease in the photochromic performance in the polymer matrix. Therefore, the clarification of the degree of the structural changes is necessary to apply to the ophthalmic lenses. Bridged imidazole dimers are one of the fast photoswitch molecules possessing high photochromic quantum yield and durability. Although the enhancement of the photochromic properties of bridged imidazole dimers has been vigorously studied, the quantitative information about the structural changes has not been revealed in detail. In this study, we investigated the pressure effects on the photochromic properties of bridged imidazole dimers. The activation volume for the thermal back-reaction of the photogenerated biradical species becomes an effective measure to predict the degree of the structural change during the photochromic reaction. We revealed that the smaller activation volume is suitable for keeping the efficient photochromic reaction in the polymer matrix because the photochromic reaction is not affected by the surroundings. These fundamental insights into the molecular dynamics provide valuable information to develop fast photochromic compounds that are suitable for the use in the polymer matrix and pressure sensitive photochromic materials.

  9. Ciglitazone ameliorates homocysteine-mediated mitochondrial translocation and matrix metalloproteinase-9 activation in endothelial cells by inducing peroxisome proliferator activated receptor-gamma activity.

    PubMed

    Tyagi, N; Moshal, K S; Sen, U; Lominadze, D; Ovechkin, A V; Tyagi, S C

    2006-12-31

    The activation of peroxisome proliferator activated receptor-gamma (PPARgamma) ameliorates the homocysteine (Hcy)-induced matrix metalloproteinase (MMP) by decreasing reactive oxygen species (ROS) production. However, the mechanism by which Hcy induces ROS generation and MMP activation is unclear. We hypothesize that Hcy increases NADH oxidase (Nox-4) and decreases thioredoxin (Trx). This leads to translocation of Nox-4 into the mitochondria and decrease in Trx. In addition, activation of PPARgamma ameliorates the translocation of Nox-4 into mitochondria and MMP-9 activation. Mouse aortic vascular endothelial cells (MVEC) were cultured in the presence or absence of 100 microM Hcy. The cells were pre-treated with ciglitazone (CZ, 150 microM). Activity of PPARgamma activity was measured by electrophoretic mobility shift assay (EMSA) and antibody super shift assay. In situ generation of ROS was measured using 2,7-dichlorofluorescin (DCF) as a probe. The expression of Nox-4 and Trx were measured by quantitative real-time polymerase chain reaction (Q-RT-PCR). The translocation of Nox-4 was measured by 2-D gel analysis. To determine the levels of Nox-4 and Trx, the mitochondria and cytosol were separated and Western blot analysis was preformed. The MMP-9 activity was measured by gelatin-zymography. The results suggested that CZ activated endothelial PPARgamma in the presence of Hcy. Production of ROS was ameliorated by PPARgamma activation. Expression of Nox-4 was increased, while production of Trx was decreased by Hcy. However, the treatment with CZ normalized the levels of Nox-4 and Trx. Nox-4 was translocated into mitochondria in Hcy-treated endothelial cells. This translocation was associated with decreased production of Trx in mitochondria. The treatment with CZ blocked this translocation and increased Trx levels in mitochondria. Hcy-mediated MMP-9 activity was decreased in cells pre-treated with CZ. These results suggest that Hcy increases NADH oxidase and

  10. Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves.

    PubMed

    Kovacs, G T; Storment, C W; Halks-Miller, M; Belczynski, C R; Della Santina, C C; Lewis, E R; Maluf, N I

    1994-06-01

    A new process for the fabrication of regeneration microelectrode arrays for peripheral and cranial nerve applications is presented. This type of array is implanted between the severed ends of nerves, the axons of which regenerate through via holes in the silicon and are thereafter held fixed with respect to the microelectrodes. The process described is designed for compatibility with industry-standard CMOS or BiCMOS processes (it does not involve high-temperature process steps nor heavily-doped etch-stop layers), and provides a thin membrane for the via holes, surrounded by a thick silicon supporting rim. Many basic questions remain regarding the optimum via hole and microelectrode geometries in terms of both biological and electrical performance of the implants, and therefore passive versions were fabricated as tools for addressing these issues in on-going work. Versions of the devices were implanted in the rat peroneal nerve and in the frog auditory nerve. In both cases, regeneration was verified histologically and it was observed that the regenerated nerves had reorganized into microfascicles containing both myelinated and unmyelinated axons and corresponding to the grid pattern of the via holes. These microelectrode arrays were shown to allow the recording of action potential signals in both the peripheral and cranial nerve setting, from several microelectrodes in parallel.

  11. Wild-type amyloid beta 1-40 peptide induces vascular smooth muscle cell death independently from matrix metalloprotease activity.

    PubMed

    Blaise, Régis; Mateo, Véronique; Rouxel, Clotilde; Zaccarini, François; Glorian, Martine; Béréziat, Gilbert; Golubkov, Vladislav S; Limon, Isabelle

    2012-06-01

    Cerebral amyloid angiopathy (CAA) is an important cause of intracerebral hemorrhages in the elderly, characterized by amyloid-β (Aβ) peptide accumulating in central nervous system blood vessels. Within the vessel walls, Aβ-peptide deposits [composed mainly of wild-type (WT) Aβ(1-40) peptide in sporadic forms] induce impaired adhesion of vascular smooth muscle cells (VSMCs) to the extracellular matrix (ECM) associated with their degeneration. This process often results in a loss of blood vessel wall integrity and ultimately translates into cerebral ischemia and microhemorrhages, both clinical features of CAA. In this study, we decipher the molecular mechanism of matrix metalloprotease (MMP)-2 activation in WT-Aβ(1-40) -treated VSMC and provide evidence that MMP activity, although playing a critical role in cell detachment disrupting ECM components, is not involved in the WT-Aβ(1-40) -induced degeneration of VSMCs. Indeed, whereas this peptide clearly induced VSMC apoptosis, neither preventing MMP-2 activity nor hampering the expression of membrane type1-MMP, or preventing tissue inhibitors of MMPs-2 (TIMP-2) recruitment (two proteins evidenced here as involved in MMP-2 activation), reduced the number of dead cells. Even the use of broad-range MMP inhibitors (GM6001 and Batimastat) did not affect WT-Aβ(1-40) -induced cell apoptosis. Our results, in contrast to those obtained using the Aβ(1-40) Dutch variant suggesting a link between MMP-2 activity, VSMC mortality and degradation of specific matrix components, indicate that the ontogenesis of the Dutch familial and sporadic forms of CAAs is different. ECM degradation and VSMC degeneration would be tightly connected in the Dutch familial form while being two independent processes in sporadic forms of CAA.

  12. Platelet hyaluronidase-2: an enzyme that translocates to the surface upon activation to function in extracellular matrix degradation

    PubMed Central

    Albeiroti, Sami; Ayasoufi, Katayoun; Hill, David R.; Shen, Bo

    2015-01-01

    Following injury, platelets rapidly interact with the exposed extracellular matrix (ECM) of the vessel wall and the surrounding tissues. Hyaluronan (HA) is a major glycosaminoglycan component of the ECM and plays a significant role in regulating inflammation. We have recently reported that human platelets degrade HA from the surfaces of activated endothelial cells into fragments capable of inducing immune responses by monocytes. We also showed that human platelets contain the enzyme hyaluronidase-2 (HYAL2), one of two major hyaluronidases that digest HA in somatic tissues. The deposition of HA increases in inflamed tissues in several inflammatory diseases, including inflammatory bowel disease (IBD). We therefore wanted to define the mechanism by which platelets degrade HA in the inflamed tissues. In this study, we show that human platelets degrade the proinflammatory matrix HA through the activity of HYAL2 and that platelet activation causes the immediate translocation of HYAL2 from a distinct population of α-granules to platelet surfaces where it exerts its catalytic activity. Finally, we show that patients with IBD have lower platelet HYAL2 levels and activity than healthy controls. PMID:25411425

  13. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity

    PubMed Central

    Grass, G. Daniel; Toole, Bryan P.

    2015-01-01

    Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. PMID:26604323

  14. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity.

    PubMed

    Grass, G Daniel; Toole, Bryan P

    2015-11-24

    Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity.

  15. Platelet hyaluronidase-2: an enzyme that translocates to the surface upon activation to function in extracellular matrix degradation.

    PubMed

    Albeiroti, Sami; Ayasoufi, Katayoun; Hill, David R; Shen, Bo; de la Motte, Carol A

    2015-02-26

    Following injury, platelets rapidly interact with the exposed extracellular matrix (ECM) of the vessel wall and the surrounding tissues. Hyaluronan (HA) is a major glycosaminoglycan component of the ECM and plays a significant role in regulating inflammation. We have recently reported that human platelets degrade HA from the surfaces of activated endothelial cells into fragments capable of inducing immune responses by monocytes. We also showed that human platelets contain the enzyme hyaluronidase-2 (HYAL2), one of two major hyaluronidases that digest HA in somatic tissues. The deposition of HA increases in inflamed tissues in several inflammatory diseases, including inflammatory bowel disease (IBD). We therefore wanted to define the mechanism by which platelets degrade HA in the inflamed tissues. In this study, we show that human platelets degrade the proinflammatory matrix HA through the activity of HYAL2 and that platelet activation causes the immediate translocation of HYAL2 from a distinct population of α-granules to platelet surfaces where it exerts its catalytic activity. Finally, we show that patients with IBD have lower platelet HYAL2 levels and activity than healthy controls.

  16. Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules.

    PubMed

    Piperigkou, Zoi; Karamanou, Konstantina; Afratis, Nikolaos A; Bouris, Panagiotis; Gialeli, Chrysostomi; Belmiro, Celso L R; Pavão, Mauro S G; Vynios, Dimitrios H; Tsatsakis, Aristidis M

    2016-01-05

    The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting.

  17. Solid state active/passive night vision imager using continuous-wave laser diodes and silicon focal plane arrays

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    2013-04-01

    Passive imaging offers covertness and low power, while active imaging provides longer range target acquisition without the need for natural or external illumination. This paper describes a focal plane array (FPA) concept that has the low noise needed for state-of-the-art passive imaging and the high-speed gating needed for active imaging. The FPA is used with highly efficient but low-peak-power laser diodes to create a night vision imager that has the size, weight, and power attributes suitable for man-portable applications. Video output is provided in both the active and passive modes. In addition, the active mode is Class 1 eye safe and is not visible to the naked eye or to night vision goggles.

  18. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening

  19. Modulation of Active Site Electronic Structure by the Protein Matrix to Control [NiFe] Hydrogenase Reactivity

    SciTech Connect

    Smith, Dayle MA; Raugei, Simone; Squier, Thomas C.

    2014-09-30

    Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni–Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.

  20. Variance of matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) concentrations in activated, concentrated platelets from healthy male donors

    PubMed Central

    2014-01-01

    Background The use of autologous blood concentrates, such as activated, concentrated platelets, in orthopaedic clinical applications has had mixed results. Research on this topic has focused on growth factors and cytokines, with little directed towards matrix metalloproteinases (MMPs) which are involved in post-wound tissue remodeling. Methods In this study, the authors measured the levels of MMP-2, MMP-9 and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), in activated platelets derived from blood of healthy, male volunteers (n = 92), 19 to 60 years old. The levels of the natural inhibitors of these proteases, tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2 and TIMP-4 were also assessed. Results Notably, there was no significant change in concentration with age in four of six targets tested. However, TIMP-2 and TIMP-4 demonstrated a statistically significant increase in concentration for subjects older than 30 years of age compared to those 30 years and younger (P = 0.04 and P = 0.04, respectively). Conclusion TIMP-2 and TIMP-4 are global inhibitors of MMPs, including MMP-2 (Gelatinase A). MMP-2 targets native collagens, gelatin and elastin to remodel the extracellular matrix during wound healing. A decreased availability of pharmacologically active MMP-2 may diminish the effectiveness of the use of activated, concentrated platelets from older patients, and may also contribute to longer healing times in this population. PMID:24766991

  1. L-Band Ionosphere Scintillations Observed by A Spaced GPS Receiver Array during Recent Active Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Pelgrum, W.; van Graas, F.; Gunawardena, S.; Charney, D.; Peng, S.; Triplett, J.; Vikram, P.; Vemuru, A.

    2010-12-01

    L-Band Ionosphere Scintillations Observed by A Spaced GPS Receiver Array during Recent Active Experiments at HAARP Jade Morton*, Wouter Pelgrum**, Sanjeev Gunawardena**, Frank van Graas**, Dan Charney*, Senlin Peng***, Jeff Triplett*, Ajay Vemuru** * Department of Electrical and Computer Engineering, Miami University ** Avionics Engineering Center, Ohio University *** Department of Electrical and Computer Engineering, Virginia Tech Ionosphere irregularities can cause scintillation of satellite-based radio communication, navigation, and surveillance signals. While these scintillation effects will impact the corresponding receiver and system performance, carefully recovered signal parameters serve as a means of studying the background state and dynamics of the ionosphere. In this presentation, we will describe our recent effort in establishing a unique spaced GNSS receiver array at HAARP, Alaska to collect GPS and GLONASS satellite signals at various stages of the GNSS receiver processing. Preliminary receiver processing results as well as additional on-site diagnostic instrumentation measurements obtained from two active heating experiment campaigns will be presented to demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations.

  2. Vascular smooth muscle cells from injured rat aortas display elevated matrix production associated with transforming growth factor-beta activity.

    PubMed Central

    Rasmussen, L. M.; Wolf, Y. G.; Ruoslahti, E.

    1995-01-01

    The arterial response to injury is characterized by a short period of increased proliferation and migration of vascular smooth muscle cells, followed by an extended period of extracellular matrix accumulation in the intima. Transforming growth factor-beta (TGF-beta) has been implicated as a causative factor in the formation of extracellular matrix in this process, which leads to progressive thickening of the intima, known as intimal hyperplasia. In vitro analysis of vascular smooth muscle cells harvested from normal rat aortas and from aortas injured 14 days earlier showed that both types of cells attached equally well to culture dishes but that the initial spreading of the cells was increased in cells derived from injured vessels. Cells from the injured arteries produced more fibronectin and proteoglycans into the culture medium than the cells from normal arteries and contained more TGF-beta 1 mRNA. TGF-beta 1 increased proteoglycan synthesis by normal smooth muscle cells, and the presence of a neutralizing anti-TGF-beta 1 antibody reduced proteoglycan synthesis by the cells from injured arteries in culture. Fibronectin synthesis was not altered by these treatments. These results indicate that the accumulation of extracellular matrix components in neointimal lesions is at least partially caused by autocrine TGF-beta activity in vascular smooth muscle cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7573349

  3. Sunlight activated lanthanide complex for luminescent solar collector applications: effect of waveguide matrix

    NASA Astrophysics Data System (ADS)

    Shahi, Praveen Kumar; Singh, Priyam; Bahadur Rai, Shyam

    2017-02-01

    The performance of Eu(DBM)3Phen complex (EDP) dispersed in PMMA poly-(methyl methacrylate) polymer matrix, as simple planner luminescent solar collectors (LSCs) is demonstrated using spectroscopic and photovoltaic (PV) measurements. The organic ligands absorb ultra-violet-blue (UV-blue) radiation (220–450 nm) very efficiently and transfer its energy to the Eu3+ ion, which gives an intense red emission even in sunlight exposure. The excellent optical properties of EDP in PMMA permit its coating on the front surface of c-Si solar cell (10  ×  10 cm2) for PV measurements. The PV characterizations reveal the improvement in the short circuit current density (J sc) of PV cell and maximum improvement is found to be 4.6% for 2.5 wt% EDP concentration in PMMA matrix. The efficiency of solar cell increases from 17.22% to 18.33% for bare and 2.5% EDP in PMMA. At a higher concentration of EDP, the thin film starts losing its transparency and hence PV efficiency decreases. These results illustrate that a EDP complex combined with a PV cell could work as a prototype of a new generation solar cell.

  4. A relevant enzyme in granulomatous reaction, active matrix metalloproteinase-9, found in bovine Echinococcus granulosus hydatid cyst wall and fluid.

    PubMed

    Marco, M; Baz, A; Fernandez, C; Gonzalez, G; Hellman, U; Salinas, G; Nieto, A

    2006-12-01

    In addition to the ability of matrix metalloproteinases (MMP) to degrade components of the extracellular matrix and their involvement in pathology-related processes of tissue remodeling, they were recently reported to enhance inflammation by activation of proinflammatory cytokines, or their release from the cell surface. In the work reported here, proteolytic activity previously found for hydatid cysts was further characterized as MMP-9. Active host MMP-9 was found in walls and fluids of bovine hydatid cysts of Echinococcus granulosus in the environment of granulomatous reaction. Pooled walls and fluids of hydatid cysts obtained from infected cattle were processed. Strong proteolytic activity was detected by zymography. The proteolytic fraction was purified by anion exchange and gelatin-agarose affinity chromatography. Major proteinases of the purified fraction were subjected to mass spectrometry and their identities were further confirmed by Western blotting using commercial anti-human MMP-9 monoclonal antibodies. Two proteinases were characterized as latent and active forms of host MMP-9. Using the same antibody for immunoblot, activity was localized, in paraffin-embedded sections of the parasite and the local host environment, to epithelioid and giant multinucleated cells. It is proposed here that MMP-9 is secreted by specialized host cells of monocytic lineage (epithelioid/giant cells) as an effector, in an attempt to digest the persistent foreign body. In vivo activation of MMP-9 suggests its involvement in inflammatory reaction and in the chemotaxis of inflammatory cells to the cyst. However, E. granulosus can deal efficiently with MMP-9. Research is suggested into possible immune evasion mechanisms, including the secretion of an inhibitory molecule.

  5. TRMM Solar Array Panels

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  6. Effect of the composition of Ti alloy on the photocatalytic activities of Ti-based oxide nanotube arrays prepared by anodic oxidation

    NASA Astrophysics Data System (ADS)

    Tang, Dingding; Wang, Yixin; Zhao, Yuwei; Yang, Yijia; Zhang, Lieyu; Mao, Xuhui

    2014-11-01

    Three types of Ti-based oxide nanotube arrays are prepared by anodic oxidation of pure Ti and Ti alloys (Ti-0.2Pd and Ti-6Al-4V) in the glycol-2 wt% H2O-0.3 wt% NH4F solution. The nanotube arrays are characterized by a series of techniques, including SEM, TEM, EIS, XRD, EDS, ICP, XPS and UV-vis DRS, to elucidate the effect of alloying elements on the properties of titania nanotube arrays. The results suggest that aluminium and vanadium elements greatly slow down the growth rate and therefore decrease the yield of nanotube arrays. Al and V deteriorate the photoreactivity of the resultant nanotube arrays. The palladium inside the Ti-0.2Pd alloy-derived nanotube arrays cannot be detected by EDS or XPS, but is quantitatively determined by ICP analysis. Incorporation of Pd significantly improves the photocatalytic activity of the resultant titania nanotube arrays powder. The presence of Pd element not only enhances the light absorption, but also facilitates the separation of photogenerated charge carriers. The uniform doping of Pd into the microstructure endows nanotube arrays with resistance to sulphur poison and preferable stability for organic degradation. This study suggests that anodization of Ti alloys, rather than pure Ti metal, allows to produce micron-sized high-performance photocatalysts for environmental and energy applications.

  7. SVGA and XGA active matrix microdisplays for head-mounted applications

    NASA Astrophysics Data System (ADS)

    Alvelda, Phillip; Bolotski, Michael; Brown, Imani L.

    2000-03-01

    The MicroDisplay Corporation's liquid crystal on silicon (LCOS) display devices are based on the union of several technologies with the extreme integration capability of conventionally fabricated CMOS substrates. The fast liquid crystal operation modes and new scalable high-performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable applications. The entire suite of MicroDisplay's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASICs) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.

  8. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  9. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells.

    PubMed

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependent manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  10. Components of the Human SWI/SNF Complex Are Enriched in Active Chromatin and Are Associated with the Nuclear Matrix

    PubMed Central

    Reyes, Jose C.; Muchardt, Christian; Yaniv, Moshe

    1997-01-01

    Biochemical and genetic evidence suggest that the SWI/SNF complex is involved in the remodeling of chromatin during gene activation. We have used antibodies specific against three human subunits of this complex to study its subnuclear localization, as well as its potential association with active chromatin and the nuclear skeleton. Immunofluorescence studies revealed a punctate nuclear labeling pattern that was excluded from the nucleoli and from regions of condensed chromatin. Dual labeling failed to reveal significant colocalization of BRG1 or hBRM proteins with RNA polymerase II or with nuclear speckles involved in splicing. Chromatin fractionation experiments showed that both soluble and insoluble active chromatin are enriched in the hSWI/SNF proteins as compared with bulk chromatin. hSWI/SNF proteins were also found to be associated with the nuclear matrix or nuclear scaffold, suggesting that a fraction of the hSWI/SNF complex could be involved in the chromatin organization properties associated with matrix attachment regions. PMID:9128241

  11. Novel inhibitors of urokinase-type plasminogen activator and matrix metalloproteinase expression in metastatic cancer cell lines.

    PubMed

    Cakarovski, Kristina; Leung, Jenny Y; Restall, Christina; Carin-Carlson, Anna; Yang, Eunice; Perlmutter, Patrick; Anderson, Robin; Medcalf, Robert; Dear, Anthony E

    2004-07-01

    The plasminogen-activating (PA) and matrix metalloproteinase (MMP) enzyme systems are implicated in proteolytic turnover of the extracellular matrix (ECM) associated with biologic processes including wound healing, inflammation and angiogenesis. Aberrant expression of components of the PA and MMP enzyme systems occurs in the pathogenesis of metastatic cancer. Oxamflatin (Ox), a novel hydroxamic acid derivative, inhibits u-PA mRNA expression and proteolytic activity while simultaneously upregulating the expression of the natural inhibitor of u-PA, plasminogen activator inhibitor type 2 (PAI-2) in metastatic cancer cells. We have characterized the effects of Ox and a novel derivative, Metacept-1 (MCT-1), on PA and MMP-mediated proteolysis and invasion in several metastatic tumor lines. Both compounds are able to inhibit u-PA-, MMP-2- and MMP-9-mediated gene expression at low micromolar concentrations as well as u-PA- and MMP-mediated proteolysis as assessed by zymography, with MCT-1 being the more effective of the 2 agents in some assays. Cellular invasion assays correlate with gene expression and zymography experiments identifying both Ox and MCT-1 as able to inhibit invasion of metastatic cancer cell lines through matrigel at nanomolar concentrations, with MCT-1 more effective than Ox in 2 of the 3 cancer cell lines assessed.

  12. The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean.

    PubMed

    Liu, Y; Dammann, C; Bhattacharyya, M K

    2001-12-01

    Matrix metalloproteinases (MMPs) play an important role in host defense responses against pathogens in mammals where their activities lead to the production of antimicrobial peptides. We have identified a novel soybean (Glycine max) metalloproteinase gene, GmMMP2, that is transcriptionally up-regulated in infected tissues. The deduced amino acid sequence indicates that this gene belongs to the MMP family. It is a preproprotein containing an N-terminal signal peptide, a cysteine switch, a zinc-binding catalytic motif, and a C-terminal transmembrane domain. The GmMMP2 expressed in and purified from Escherichia coli exhibited an in vitro enzymatic activity in digesting myelin basic protein. All plant metalloproteinases reported so far have no known functions. However, they have been suggested to be involved in extracellular cell matrix degradation during development or senescence. Our investigations demonstrate that the GmMMP2 transcript levels were rapidly increased in compatible and incompatible interactions of soybean tissues with the oomycete pathogen Phytophthora sojae or the bacterial pathogen Pseudomonas syringae pv. glycinea. In agreement with the GmMMP2 activation, a metalloproteinase activity was gradually increased in suspension-cultured cells following the bacterial infection. GmMMP2 was also activated in response to wounding and dehydration. However, GmMMP2 activation did not correlate with the oxidative burst leading to the hypersensitive response cell death or the tissue senescence progress that involves programmed cell death. Our investigations suggest that GmMMP2 may be involved in a novel defense response of soybean against pathogenic infections.

  13. Targeted SPECT/CT Imaging of Matrix Metalloproteinase Activity in the Evaluation of Remodeling Tissue-Engineered Vascular Grafts Implanted in a Growing Lamb Model

    PubMed Central

    Stacy, Mitchel R.; Naito, Yuji; Maxfield, Mark W.; Kurobe, Hirotsugu; Tara, Shuhei; Chan, Chung; Rocco, Kevin A.; Shinoka, Toshiharu; Sinusas, Albert J.; Breuer, Christopher K.

    2014-01-01

    Objective(s) The clinical translation of tissue-engineered vascular grafts has been demonstrated in children. The remodeling of biodegradable, cell-seeded scaffolds to functional neovessels is partially attributed to matrix metalloproteinases. Noninvasive assessment of matrix metalloproteinase activity may indicate graft remodeling and elucidate the progression of neovessel formation. Therefore, matrix metalloproteinase activity was evaluated in grafts implanted in lambs using in vivo and ex vivo hybrid imaging. Graft growth and remodeling was quantified using in vivo X-ray computed tomography angiography. Methods Cell-seeded and unseeded scaffolds were implanted in lambs (n=5) as inferior vena cava interposition grafts. At 2 and 6 months post-implantation, in vivo angiography assessed graft morphology. In vivo and ex vivo single photon emission tomography/X-ray computed tomography imaging was performed with a radiolabeled compound targeting matrix metalloproteinase activity at 6 months. Neotissue was examined at 6 months using qualitative histologic and immunohistochemical staining and quantitative biochemical analysis. Results Seeded grafts demonstrated significant luminal and longitudinal growth from 2 to 6 months. In vivo imaging revealed subjectively higher matrix metalloproteinase activity in grafts vs. native tissue. Ex vivo imaging confirmed a quantitative increase in matrix metalloproteinase activity and demonstrated higher activity in unseeded vs. seeded grafts. Glycosaminoglycan content was increased in seeded grafts vs. unseeded grafts, without significant differences in collagen content. Conclusions Matrix metalloproteinase activity remains elevated in tissue-engineered grafts 6 months post-implantation and may indicate remodeling. Optimization of in vivo imaging to noninvasively evaluate matrix metalloproteinase activity may assist in serial assessment of vascular graft remodeling. PMID:24952823

  14. Fe(3+)-Doped TiO₂ Nanotube Arrays on Ti-Fe Alloys for Enhanced Photoelectrocatalytic Activity.

    PubMed

    Yu, Jiangdong; Wu, Zhi; Gong, Cheng; Xiao, Wang; Sun, Lan; Lin, Changjian

    2016-06-06

    Highly ordered, vertically oriented Fe(3+)-doped TiO₂ nanotube arrays (Fe-TNTs) were prepared on Ti-Fe alloy substrates with different Fe contents by the electrochemical anodization method. The as-prepared Fe-TNTs were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and related electrochemical techniques. XPS results demonstrated that Fe(3+) ions were successfully doped into TiO₂ nanotubes. The photoelectrochemical activity of Fe-TNTs was compared with that of pure TiO₂ nanotube arrays (TNTs). The results showed that Fe-TNTs grown on low concentration (0.5 wt %-1 wt % Fe) Ti-Fe alloys possessed higher photocurrent density than TNTs. The Fe-TNTs grown on Ti-Fe alloy containing 0.8 wt % Fe exhibited the highest photoelectrochemical activity and the photoelectrocatalytic degradation rate of methylene blue (MB) aqueous solution was significantly higher than that of TNTs.

  15. Fe3+-Doped TiO2 Nanotube Arrays on Ti-Fe Alloys for Enhanced Photoelectrocatalytic Activity

    PubMed Central

    Yu, Jiangdong; Wu, Zhi; Gong, Cheng; Xiao, Wang; Sun, Lan; Lin, Changjian

    2016-01-01

    Highly ordered, vertically oriented Fe3+-doped TiO2 nanotube arrays (Fe-TNTs) were prepared on Ti-Fe alloy substrates with different Fe contents by the electrochemical anodization method. The as-prepared Fe-TNTs were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and related electrochemical techniques. XPS results demonstrated that Fe3+ ions were successfully doped into TiO2 nanotubes. The photoelectrochemical activity of Fe-TNTs was compared with that of pure TiO2 nanotube arrays (TNTs). The results showed that Fe-TNTs grown on low concentration (0.5 wt %–1 wt % Fe) Ti-Fe alloys possessed higher photocurrent density than TNTs. The Fe-TNTs grown on Ti-Fe alloy containing 0.8 wt % Fe exhibited the highest photoelectrochemical activity and the photoelectrocatalytic degradation rate of methylene blue (MB) aqueous solution was significantly higher than that of TNTs. PMID:28335234

  16. Photocatalytic Activity and Photocurrent Properties of TiO2 Nanotube Arrays Influenced by Calcination Temperature and Tube Length

    NASA Astrophysics Data System (ADS)

    Hou, Jian; Zhang, Min; Yan, Guotian; Yang, Jianjun

    2012-06-01

    In this article, titanium oxide nanotube arrays (TiO2-NTAs) were fabricated by anodic oxidation in an ethylene glycol (EG) electrolyte solution containing 0.25 wt.% NH4F. By varying anodized time and annealed temperature, the obtained nanotube arrays behaved different photocatalytic (PC) activities and photocurrent properties. These samples were characterized by scanning electronic microscope (SEM), X-ray powder diffraction (XRD). It was indicated in SEM images that TiO2 nanotube manifests highly ordered structure which, however, has been completely destroyed when the temperature comes to 800°C. XRD manifested that TiO2 nanotubes with various kinds of length all possessed anatase crystallite when annealed at 500°C; meanwhile, with certain length, TiO2-NTAs annealed at series calcination temperature range of 300-600°C also presented anatase crystallite, which is gradually enhanced with the increment of temperature. At 700°C, mixed structure was observed which was made up of proportions of overwhelming anatase and toothful rutile. Methyl blue (MB) degradation and photocurrent measurement testified that TiO2-NTAs under 4 h oxidation and 3 h of 600°C calcination manifested the highest activity and photocurrent density.

  17. Mueller-matrix ellipsometry studies of optically active structures in scarab beetles

    NASA Astrophysics Data System (ADS)

    Järrendahl, K.; Landin, J.; Arwin, H.

    2010-06-01

    The complexity of multilayers, photonic crystals, metamaterials and other artificial materials has promoted the use of spectroscopic, variable angle, generalized and Mueller-matrix ellipsometry. Naturally occurring structures may show even higher complexity than artificial structures but with a more narrow range of constituent materials. Fascinating reflection properties result from intricate photonic structures in, for instance, the wing scales and cuticles of insects. Currently there is a large interest to explore such functional supramolecular architectures for exploitation in nanotechnology. In this study, Mueller-matrix spectroscopic ellipsometry is applied in the spectral range of 250 to 1000 nm to investigate optical response and structures of the cuticle of Scarab beetles of the Cetoniinae subfamily. The cuticle of Cetonia aurata (the rose chafer, la cétoine dorée) is green with a metallic appearance and reflects left-handed circular/elliptically polarized light. It has been suggested that the polarization of this metallic gloss is caused by a helical structure in the chitinous cuticle. We find that the polarization effect is limited to the narrow spectral range 470-550 nm whereas for shorter or longer wavelengths the reflection properties are similar to those from a near-dielectric material. Model calculations and parameterization of the nanostructure employing a heliocoidal structure are discussed. As a comparison the polarization effects from light reflected from two other beetles will be presented. Coptomia laevis has a similar appearance as Cetonia aurata but has very different polarization properties. The golden Plusiotis argentiola has very interesting properties showing both left and right-handed polarization depending on incidence angle and wavelength.

  18. Wnt-3a-activated human fibroblasts promote human keratinocyte proliferation and matrix destruction.

    PubMed

    Sobel, Katrin; Tham, Marius; Stark, Hans-Jürgen; Stammer, Hermann; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-06-15

    Aberrant Wnt regulation, detectable by nuclear translocation of beta-catenin, is a hallmark of many cancers including skin squamous cell carcinomas (SCCs). By analyzing primary human skin SCCs, we demonstrate that nuclear beta-catenin is not restricted to SCC cells but also detected in stromal fibroblasts, suggesting an important role for aberrant Wnt regulation also in the tumor microenvironment. When human keratinocytes and fibroblasts were treated with Wnt-3a, fibroblasts proved to be more responsive. Accordingly, Wnt-3a did not alter HaCaT cell functions in a cell-autonomous manner. However, when organotypic cultures (OTCs) were treated with Wnt-3a, HaCaT keratinocytes responded with increased proliferation. As nuclear beta-catenin was induced only in the fibroblasts, this argued for a Wnt-dependent, paracrine keratinocyte stimulation. Global gene expression analysis of Wnt-3a-stimulated fibroblasts identified genes encoding interleukin-8 (IL-8) and C-C motif chemokine 2 (CCL-2) as well as matrix metalloproteinase-1 (MMP-1) as Wnt-3a targets. In agreement, we show that IL-8 and CCL-2 were secreted in high amounts by Wnt-3a-stimulated fibroblasts also in OTCs. The functional role of IL-8 and CCL-2 as keratinocyte growth regulators was confirmed by directly stimulating HaCaT cell proliferation in conventional cultures. Most important, neutralizing antibodies against IL-8 and CCL-2 abolished the Wnt-dependent HaCaT cell hyperproliferation in OTCs. Additionally, MMP-1 was expressed in high amounts in Wnt-3a-stimulated OTCs and degraded the stromal matrix. Thus, our data show that Wnt-3a stimulates fibroblasts to secrete both keratinocyte proliferation-inducing cytokines and stroma-degrading metalloproteinases, thereby providing evidence for a novel Wnt deregulation in the tumor-stroma directly contributing to skin cancer progression.

  19. Novel nuclear matrix protein HET binds to and influences activity of the HSP27 promoter in human breast cancer cells.

    PubMed

    Oesterreich, S; Lee, A V; Sullivan, T M; Samuel, S K; Davie, J R; Fuqua, S A

    1997-11-01

    Since the small heat shock protein hsp27 enhances both growth and drug resistance in breast cancer cells, and is a bad prognostic factor in certain subsets of breast cancer patients, we have characterized the transcriptional regulation of hsp27, with the long-term goal of targeting its expression clinically. The majority of the promoter activity resides in the most proximal 200 bp. This region contains an imperfect estrogen response element (ERE) that is separated by a 13-bp spacer that contains a TATA box. Gel-shift analysis revealed the binding of a protein (termed HET for Hsp27-ERE-TATA-binding protein) to this region that was neither the estrogen receptor nor TATA-binding protein. We cloned a complete cDNA (2.9 kb) for HET from an MCF-7 cDNA library. To confirm the identity of the HET clone, we expressed a partial HET clone as a glutathione S-transferase fusion protein, and showed binding to the hsp27 promoter fragment in gel-retardation assays. The HET clone is almost identical to a recently published scaffold attachment factor (SAF-B) cloned from a HeLa cell cDNA library. Scaffold attachment factors are a subset of nuclear matrix proteins (NMP) that interact with matrix attachment regions. Analyzing how HET could act as a regulator of hsp27 transcription and as a SAF/NMP, we studied its subnuclear localization and its effect on hsp27 transcription in human breast cancer cells. We were able to show that HET is localized in the nuclear matrix in various breast cancer cell lines. Furthermore, in transient transfection assays using hsp27 promoter-luciferase reporter constructs, HET overexpression resulted in a dose-dependent decrease of hsp27 promoter activity in several cell lines.

  20. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation

    PubMed Central

    Singh, Manjulata; Close, David A.; Mukundan, Shilpaa; Johnston, Paul A.

    2015-01-01

    Abstract Despite significant investments in cancer research and drug discovery/development, the rate of new cancer drug approval is ≤5% and most cases of metastatic cancer remain incurable. Ninety-five percent of new cancer drugs fail in clinical development because of a lack of therapeutic efficacy and/or unacceptable toxicity. One of the major factors responsible for the low success rate of anticancer drug development is the failure of preclinical models to adequately recapitulate the complexity and heterogeneity of human cancer. For throughput and capacity reasons, high-throughput screening growth inhibition assays almost exclusively use two-dimensional (2D) monolayers of tumor cell lines cultured on tissue culture-treated plastic/glass surfaces in serum-containing medium. However, these 2D tumor cell line cultures fail to recapitulate the three-dimensional (3D) context of cells in solid tumors even though the tumor microenvironment has been shown to have a profound effect on anticancer drug responses. Tumor spheroids remain the best characterized and most widely used 3D models; however, spheroid sizes tend to be nonuniform, making them unsuitable for high-throughput drug testing. To circumvent this challenge, we have developed defined size microwell arrays using nonadhesive hydrogels that are applicable to a wide variety of cancer cell lines to fabricate size-controlled 3D microtumors. We demonstrate that the hydrogel microwell array platform can be applied successfully to generate hundreds of uniform microtumors within 3–6 days from many cervical and breast, as well as head and neck squamous cell carcinoma (HNSCC) cells. Moreover, controlling size of the microwells in the hydrogel array allows precise control over the size of the microtumors. Finally, we demonstrate the application of this platform technology to probe activation as well as inhibition of epidermal growth factor receptor (EGFR) signaling in 3D HNSCC microtumors in response to EGF and

  1. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System

    PubMed Central

    Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank

    2017-01-01

    Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer. PMID:28145516

  2. Simultaneous Solar Maximum Mission (SMM) and very large array observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, K. R.

    1986-01-01

    The research deals mainly with Very Large Array and Solar Maximum Mission observations of the ubiquitous coronal loops that dominate the structure of the low corona. As illustrated, the observations of thermal cyclotron lines at microwave wavelengths provide a powerful new method of accurately specifying the coronal magnetic field strength. Processes are delineated that trigger solar eruptions from coronal loops, including preburst heating and the magnetic interaction of coronal loops. Evidence for coherent burst mechanisms is provided for both the Sun and nearby stars, while other observations suggest the presence of currents that may amplify the coronal magnetic field to unexpectedly high levels. The existence is reported of a new class of compact, variable moving sources in regions of apparently weak photospheric field.

  3. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System.

    PubMed

    Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank

    2017-02-01

    Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer.

  4. A Phased-Array Stimulator System for Studying Planar and Curved Cardiac Activation Wave Fronts

    PubMed Central

    Abbas, Rashida A.; Lin, Shien Fong; Mashburn, David; Xu, Junkai; Wikswo, John P.

    2009-01-01

    Wave front propagation in cardiac tissue is affected greatly by the geometry of the wave front. We describe a computer-controlled stimulator system that creates reproducible wave fronts of a predetermined shape and orientation for the investigation of the effects of wave front geometry. We conducted demonstration experiments on isolated perfused rabbit hearts, which were stained with the voltage-sensitive dye, di-4-ANEPPS. The wave fronts were imaged using a laser and a CCD camera. The stimulator and imaging systems have been used to characterize the relationship between wave front velocity and fiber orientation. This approach has potential applications in investigating curvature effects, testing numerical models of cardiac tissue, and creating complex wave fronts using one-, twoor three-dimensional electrode arrays. PMID:18232365

  5. Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System

    NASA Astrophysics Data System (ADS)

    Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank

    2017-02-01

    Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer.

  6. PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities

    PubMed Central

    Huang, Wen; Eum, Sung Yong; András, Ibolya E; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    The blood-brain barrier (BBB) plays an important role in HIV trafficking into the brain and the development of the central nervous system complications in HIV infection. Tight junctions are the main structural and functional elements that regulate the BBB integrity. Exposure of human brain microvascular endothelial cells (hCMEC/D3 cell line) to HIV-infected monocytes resulted in decreased expression of tight junction proteins, such as junctional adhesion molecule-A (JAM)-A, occludin, and zonula occludens (ZO)-1. Control experiments involved exposure to uninfected monocytes. Alterations of tight junction protein expression were associated with increased endothelial permeability and elevated transendothelial migration of HIV-infected monocytes across an in vitro model of the BBB. Notably, overexpression of the peroxisome proliferator-activated receptor (PPAR)α or PPARγ attenuated HIV-mediated dysregulation of tight junction proteins. With the use of exogenous PPARγ agonists and silencing of PPARα or PPARγ, these protective effects were connected to down-regulation of matrix metalloproteinase (MMP) and proteasome activities. Indeed, the HIV-induced decrease in the expression of JAM-A and occludin was restored by inhibition of MMP activity. Moreover, both MMP and proteasome inhibitors attenuated HIV-mediated altered expression of ZO-1. The present data indicate that down-regulation of MMP and proteasome activities constitutes a novel mechanism of PPAR-induced protections against HIV-induced disruption of brain endothelial cells.—Huang, W., Eum, S. Y., András, I. E., Hennig, B., Toborek, M. PPARα and PPARγ attenuate HIV-induced dysregulation of tight junction proteins by modulations of matrix metalloproteinase and proteasome activities. PMID:19141539

  7. Expression of membrane-type 1 matrix metalloproteinase and activation of progelatinase A in human osteoarthritic cartilage.

    PubMed Central

    Imai, K.; Ohta, S.; Matsumoto, T.; Fujimoto, N.; Sato, H.; Seiki, M.; Okada, Y.

    1997-01-01

    Matrix metalloproteinases (MMPs) are expressed in osteoarthritic (OA) cartilage and are thought to be involved in the degradation of cartilage extracellular matrix (ECM). Among these proteinases, MMP-2 (gelatinase A) demonstrates a wide range of substrate specificity against the ECM present in cartilage. Although MMP-2 expression increases in OA cartilage, the activation mechanism of the corresponding zymogen (pro-MMP-2) in cartilage is unknown. In this study, we examined the expression pattern of membrane-type 1 MMP (MT1-MMP) in human OA articular cartilage and its correlation with the activation of pro-MMP-2. Immunohistochemical studies demonstrate that MT1-MMP localizes to the chondrocytes in the superficial and transitional zones in all of the samples examined directly correlating with cartilage degradation. Reverse transcription polymerase chain reaction confirmed the predominant expression of MT1-MMP mRNA in the OA cartilage. In situ hybridization revealed the site of expression of MT1-MMP in OA cartilage to be the chondrocytes. Through gelatin zymography and a sandwich enzyme immunoassay it was demonstrated that OA cartilage explants secrete significantly higher levels of pro-MMP-2 than normal samples. Pro-MMP-2 activation was enhanced in the OA cartilage samples and correlated with MT1-MMP expression in the cartilage. Plasma membranes prepared from cultured chondrocytes with MT1-MMP expression and those directly isolated from OA cartilage could activate pro-MMP-2. MT1-MMP gene expression in cultured chondrocytes was induced by treatment with interleukin-1 alpha and/or tumor necrosis factor-alpha. These data suggest that cytokine-induced MT1-MMP in the chondrocytes may play a key role in the activation of pro-MMP-2 in the OA articular cartilage, leading to cartilage destruction through ECM degradation. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:9212749

  8. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  9. The influence of opioid peptides on matrix metalloproteinase-9 and urokinase plasminogen activator expression in three cancer cell lines.

    PubMed

    Gach, K; Wyrebska, A; Szemraj, J; Janecka, A

    2012-01-01

    Matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) regulate proteolysis of the extracellular matrix (ECM) and as a consequence are involved in a number of physiological and pathological states, including cancer. A crucial feature of cancer progression and metastasis is the disruption of the ECM and spreading of proliferating cancer cells. Over-expression of MMPs and uPA is common for most types of cancers and correlates well with the adverse prognosis. Compounds able to modulate the activity of these proteolytic enzymes may become important agents in cancer therapy. In the present study, we examined the effect of the mu-opioid receptor selective peptide, morphiceptin, and its two synthetic analogs on mRNA and protein levels of MMP-9 and uPA in three human cancer cell lines: MCF-7, HT-29, and SH-SY5Y. Our findings indicate that in all three cell lines morphiceptin and its analogs attenuated MMP-9 expression and secretion and that this effect is not mediated by opioid receptors but is under control of the nitric oxide system. On the other hand, tested opioids up-regulated uPA levels through a mechanism that involved opioid-receptors. Different pathways by which opioid peptides exert their actionin cancer cells can explain their contradictory influence on the level of cancer markers.

  10. Magnetic arrays

    SciTech Connect

    Trumper, David L.; Kim, Won-jong; Williams, Mark E.

    1997-05-20

    Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.

  11. Magnetic arrays

    DOEpatents

    Trumper, D.L.; Kim, W.; Williams, M.E.

    1997-05-20

    Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.

  12. Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells.

    PubMed

    Lee, Hak Joo; Mariappan, Meenalakshmi M; Feliers, Denis; Cavaglieri, Rita C; Sataranatarajan, Kavithalakshmi; Abboud, Hanna E; Choudhury, Goutam Ghosh; Kasinath, Balakuntalam S

    2012-02-10

    Hydrogen sulfide, a signaling gas, affects several cell functions. We hypothesized that hydrogen sulfide modulates high glucose (30 mm) stimulation of matrix protein synthesis in glomerular epithelial cells. High glucose stimulation of global protein synthesis, cellular hypertrophy, and matrix laminin and type IV collagen content was inhibited by sodium hydrosulfide (NaHS), an H(2)S donor. High glucose activation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), shown by phosphorylation of p70S6 kinase and 4E-BP1, was inhibited by NaHS. High glucose stimulated mTORC1 to promote key events in the initiation and elongation phases of mRNA translation: binding of eIF4A to eIF4G, reduction in PDCD4 expression and inhibition of its binding to eIF4A, eEF2 kinase phosphorylation, and dephosphorylation of eEF2; these events were inhibited by NaHS. The role of AMP-activated protein kinase (AMPK), an inhibitor of protein synthesis, was examined. NaHS dose-dependently stimulated AMPK phosphorylation and restored AMPK phosphorylation reduced by high glucose. Compound C, an AMPK inhibitor, abolished NaHS modulation of high glucose effect on events in mRNA translation as well as global and matrix protein synthesis. NaHS induction of AMPK phosphorylation was inhibited by siRNA for calmodulin kinase kinase β, but not LKB1, upstream kinases for AMPK; STO-609, a calmodulin kinase kinase β inhibitor, had the same effect. Renal cortical content of cystathionine β-synthase and cystathionine γ-lyase, hydrogen sulfide-generating enzymes, was significantly reduced in mice with type 1 diabetes or type 2 diabetes, coinciding with renal hypertrophy and matrix accumulation. Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes.

  13. The use of a diode matrix in commissioning activities for electron energies > or = 9 MeV: a feasibility study.

    PubMed

    Borca, Valeria Casanova; Pasquino, Massimo; Ozzello, Franca; Tofani, Santi

    2009-04-01

    The contribution of a commercially available diode matrix (MapCHECK, provided by Sun Nuclear, Melbourne, FL) for the commissioning procedures of the voxel based Monte Carlo (VMC++) algorithm for electron beams of MasterPlan treatment planning system was investigated. The attention is mainly focused on the calculation in homogeneous and heterogeneous phantoms. With this aim, following a data set similar to that proposed by Electron Collaborative Working Group (ECWG), the dose profiles and two-dimensional (2D) dose distributions measured by the diode matrix were compared with the calculated ones using the gamma analysis method with acceptance criteria for the dose difference and the distance to agreement equal to 4% and 4 mm, respectively. The average and standard deviation of the percentage of points satisfying the constraint gamma < or = 1 are 98.3 +/- 4.1% and 99.3 +/- 1.7% for the 9 and 12 MeV electron beam, respectively, showing that the accuracy of MasterPlan electron beam algorithm is good for simple two-dimensional geometries as well as for more complicated three-dimensional ones. The results are in agreement with those reported in literature by Cygler et al. ["Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning," Med. Phys. 31, 142-153 (2004)]. In addition, the authors have also analyzed the response of the 2D array in terms of dose profiles at different depths, comparing the results with those obtained in water phantom using an electron diode. The results show that in the low gradient regions there were no deviations larger than the criteria of acceptability set by Van Dyk et al. ["Commissioning and quality assurance of treatment planning computers," Int. J. Radiat. Oncol. Biol. Phys. 26, 261-273 (1993)]; in the high gradient region, the maximum deviations are less than 2 mm with most of the values less than 1 mm. The present article shows that MapCHECK can play a useful role in the commissioning of

  14. The use of a diode matrix in commissioning activities for electron energies {>=}9 MeV: A feasibility study

    SciTech Connect

    Casanova Borca, Valeria; Pasquino, Massimo; Ozzello, Franca; Tofani, Santi

    2009-04-15

    The contribution of a commercially available diode matrix (MapCHECK trade mark sign , provided by Sun Nuclear, Melbourne, FL) for the commissioning procedures of the voxel based Monte Carlo (VMC++) algorithm for electron beams of MasterPlan treatment planning system was investigated. The attention is mainly focused on the calculation in homogeneous and heterogeneous phantoms. With this aim, following a data set similar to that proposed by Electron Collaborative Working Group (ECWG), the dose profiles and two-dimensional (2D) dose distributions measured by the diode matrix were compared with the calculated ones using the gamma analysis method with acceptance criteria for the dose difference and the distance to agreement equal to 4% and 4 mm, respectively. The average and standard deviation of the percentage of points satisfying the constraint {gamma}{<=}1 are 98.3{+-}4.1% and 99.3{+-}1.7% for the 9 and 12 MeV electron beam, respectively, showing that the accuracy of MasterPlan electron beam algorithm is good for simple two-dimensional geometries as well as for more complicated three-dimensional ones. The results are in agreement with those reported in literature by Cygler et al. [''Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning,'' Med. Phys. 31, 142-153 (2004)]. In addition, the authors have also analyzed the response of the 2D array in terms of dose profiles at different depths, comparing the results with those obtained in water phantom using an electron diode. The results show that in the low gradient regions there were no deviations larger than the criteria of acceptability set by Van Dyk et al. [''Commissioning and quality assurance of treatment planning computers,'' Int. J. Radiat. Oncol. Biol. Phys. 26, 261-273 (1993)]; in the high gradient region, the maximum deviations are less than 2 mm with most of the values less than 1 mm. The present article shows that MapCHECK trade mark sign can play a

  15. Modulation of matrix metalloproteinase-9 activity by hyaluronan is dependent on NF-kappaB activity in lymphoma cell lines with dissimilar invasive behavior.

    PubMed

    Alaniz, Laura; García, Mariana; Cabrera, Paula; Arnaiz, María; Cavaliere, Victoria; Blanco, Guillermo; Alvarez, Elida; Hajos, Silvia

    2004-11-12

    Expression and activity of matrix metalloproteinase-9 (MMP-9) as well as its relationship with hyaluronan (HA) and NF-kappaB activity were analyzed in two murine lymphoma cell lines with dissimilar migration and invasive behavior. MMP activity was evaluated by zymograms in supernatants, membrane extracts of tumor cells, and in the organs invaded by these cells. The more aggressive LBLa cell line showed MMP-9 activity in vitro, which increased after HA treatment and was blocked by anti-CD44 mAb. Such activity was not found in the less aggressive LBLc. MMP-9 and MMP-2 activity was found in organs invaded by both cell lines, although differential MMP-9 activity was observed in lung infiltrated only by LBLa cell line. NF-kappaB activation was evaluated to determine whether differential activity of MMP-9 was dependent on downstream signaling pathway, showing higher NF-kappaB activity in the more aggressive LBLa cell line. Our results showed that MMP-9 activity modulated by HA through NF-kappaB signaling pathway may be involved in the aggressive behavior of LBLa.

  16. A matrix-focused structure-activity and binding site flexibility study of quinolinol inhibitors of botulinum neurotoxin serotype A.

    PubMed

    Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A

    2017-02-01

    Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay.

  17. Testing the toxicity of influents to activated sludge plants with the Vibrio fischeri bioassay utilising a sludge matrix.

    PubMed

    Hoffmann, C; Christofi, N

    2001-10-01

    To protect the bioceonosis within activated sludge, a method of predicting the toxic effect of influents to the biological treatment stage of waste water treatment plants, based on DIN method 38412 L 34, has been developed. A population of the luminescent marine bacterium Vibrio fischeri was incorporated into a sludge testing matrix derived from a model laboratory and real activated sludge plants. The sludge was challenged with different concentrations of pure toxicants and complex aqueous samples, and light output by V. fischeri monitored. The results were compared to toxicant testing in the absence of sludge (standard test). The modified method was found to be less sensitive for some toxicants tested than the standard DIN and other bioluminescent tests, but considered more realistic as it provides buffering and takes into account sorption which can affect the sensitivity of the test towards some compounds. The method is comparable in terms of ease of use, speed, reproducibility and cost effectiveness to standard V. fischeri luminescence methods.

  18. Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic x-ray applications.

    PubMed

    Antonuk, L E; Jee, K W; El-Mohri, Y; Maolinbay, M; Nassif, S; Rong, X; Zhao, Q; Siewerdsen, J H; Street, R A; Shah, K S

    2000-02-01

    A theoretical investigation of factors limiting the detective quantum efficiency (DQE) of active matrix flat-panel imagers (AMFPIs), and of methods to overcome these limitations, is reported. At the higher exposure levels associated with radiography, the present generation of AMFPIs is capable of exhibiting DQE performance equivalent, or superior, to that of existing film-screen and computed radiography systems. However, at exposure levels commonly encountered in fluoroscopy, AMFPIs exhibit significantly reduced DQE and this problem is accentuated at higher spatial frequencies. The problem applies both to AMFPIs that rely on indirect detection as well as direct detection of the incident radiation. This reduced performance derives from the relatively large magnitude of the square of the total additive noise compared to the system gain for existing AMFPIs. In order to circumvent these restrictions, a variety of strategies to decrease additive noise and enhance system gain are proposed. Additive noise could be reduced through improved preamplifier, pixel and array design, including the incorporation of compensation lines to sample external line noise. System gain could be enhanced through the use of continuous photodiodes, pixel amplifiers, or higher gain x-ray converters such as lead iodide. The feasibility of these and other strategies is discussed and potential improvements to DQE performance are quantified through a theoretical investigation of a variety of hypothetical 200 microm pitch designs. At low exposures, such improvements could greatly increase the magnitude of the low spatial frequency component of the DQE, rendering it practically independent of exposure while simultaneously reducing the falloff in DQE at higher spatial frequencies. Furthermore, such noise reduction and gain enhancement could lead to the development of AMFPIs with high DQE performance which are capable of providing both high resolution radiographic images, at approximately 100 microm

  19. Matrix solid-phase dispersion extraction coupled with HPLC-diode array detection method for the analysis of sesquiterpene lactones in root of Saussurea lappa C.B.Clarke.

    PubMed

    Zhang, Qi; Cai, Defu; Liu, Jianhua

    2011-09-15

    We developed a reliable and effective method to determine costunolide and dehydrocostuslactone in the root of Saussurea lappa C. B.Clarke using matrix solid-phase dispersion (MSPD) extraction, HPLC separation and diode array detection (DAD). Several extraction parameters for the MSPD were optimized. Florisil was chosen as dispersing adsorbent with methanol as elution solvent. The ratio of Florisil to sample was selected to be 4:1 and no additional clean-up steps were needed. Linearities (r>0.9995) were determined to be in the range of 22.5-360.0 μg/mL for costunolide and 25.0-400.0 μg/mL for dehydrocostuslactone. Intra- and inter-day precisions were also determined with a relative standard deviation (RSD) less than 3.2%. The limits of detection were found to be 0.122 μg/mL for costunolide and 0.135 μg/mL for dehydrocostuslactone. The recoveries were in the range of 92.5-99.8% with relative standard deviations ranged from 1.2% to 3.5%. The proposed MSPD method required shorter time and lower solvent volume than maceration-ultrasonic and Soxhlet extraction methods.

  20. Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF

    PubMed Central

    Vandenbroucke, Roosmarijn E; Dejonckheere, Eline; Van Hauwermeiren, Filip; Lodens, Sofie; De Rycke, Riet; Van Wonterghem, Elien; Staes, An; Gevaert, Kris; López-Otin, Carlos; Libert, Claude

    2013-01-01

    Several pathological processes, such as sepsis and inflammatory bowel disease (IBD), are associated with impairment of intestinal epithelial barrier. Here, we investigated the role of matrix metalloproteinase MMP13 in these diseases. We observed that MMP13−/− mice display a strong protection in LPS- and caecal ligation and puncture-induced sepsis. We could attribute this protection to reduced LPS-induced goblet cell depletion, endoplasmic reticulum stress, permeability and tight junction destabilization in the gut of MMP13−/− mice compared to MMP13+/+ mice. Both in vitro and in vivo, we found that MMP13 is able to cleave pro-TNF into bioactive TNF. By LC-MS/MS, we identified three MMP13 cleavage sites, which proves that MMP13 is an alternative TNF sheddase next to the TNF converting enzyme TACE. Similarly, we found that the same mechanism was responsible for the observed protection of the MMP13−/− mice in a mouse model of DSS-induced colitis. We identified MMP13 as an important mediator in sepsis and IBD via the shedding of TNF. Hence, we propose MMP13 as a novel drug target for diseases in which damage to the gut is essential. PMID:23723167

  1. Accelerated biodegradation of silk sutures through matrix metalloproteinase activation by incorporating 4-hexylresorcinol

    PubMed Central

    Jo, You-Young; Kweon, HaeYong; Kim, Dae-Won; Kim, Min-Keun; Kim, Seong-Gon; Kim, Jwa-Young; Chae, Weon-Sik; Hong, Sam-Pyo; Park, Young-Hwan; Lee, Si Young; Choi, Je-Yong

    2017-01-01

    Silk suture material is primarily composed of silk fibroin and regarded as a non-resorbable material. It is slowly degraded by proteolysis when it is implanted into the body. 4-Hexylresorcinol (4HR) is a well-known antiseptic. In this study, the biodegradability of 4HR-incorporated silk sutures were compared to that of untreated silk sutures and polyglactin 910 sutures, a commercially available resorbable suture. 4HR-incorporated silk sutures exhibited anti-microbial properties. Matrix metalloproteinase (MMP) can digest a wide spectrum of proteins. 4HR increased MMP-2, -3, and -9 expression in RAW264.7 cells. MMP-2, -3, and -9 were able to digest not only silk fibroin but also silk sutures. Consequently, 59.5% of the 4HR-incorporated silk suture material remained at 11 weeks after grafting, which was similar to that of polyglactin 910 degradation (56.4% remained). The residual amount of bare silk suture material at 11 weeks after grafting was 91.5%. The expression levels of MMP-2, -3 and -9 were high in the 4HR-incorporated silk suture-implanted site 12 weeks after implantation. In conclusion, 4HR-treated silk sutures exhibited anti-microbial properties and a similar level of bio-degradation to polyglactin 910 sutures and induced higher expression of MMP-2, -3, and -9 in macrophages. PMID:28205580

  2. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation.

    PubMed

    Kramann, Rafael; Dirocco, Derek P; Maarouf, Omar H; Humphreys, Benjamin D

    2013-12-01

    Chronic injury to the kidney causes kidney fibrosis with irreversible loss of functional renal parenchyma and leads to the clinical syndromes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Regardless of the type of initial injury, kidney disease progression follows the same pathophysiologic processes characterized by interstitial fibrosis, capillary rarefaction and tubular atrophy. Myofibroblasts play a pivotal role in fibrosis by driving excessive extracellular matrix (ECM) deposition. Targeting these cells in order to prevent the progression of CKD is a promising therapeutic strategy, however, the cellular source of these cells is still controversial. In recent years, a growing amount of evidence points to resident mesenchymal cells such as pericytes and perivascular fibroblasts, which form extensive networks around the renal vasculature, as major contributors to the pool of myofibroblasts in renal fibrogenesis. Identifying the cellular origin of myofibroblasts and the key regulatory pathways that drive myofibroblast proliferation and transdifferentiation as well as capillary rarefaction is the first step to developing novel anti-fibrotic therapeutics to slow or even reverse CKD progression and ultimately reduce the prevalence of ESRD. This review will summarize recent findings concerning the cellular source of myofibroblasts and highlight recent discoveries concerning the key regulatory signaling pathways that drive their expansion and progression in CKD.

  3. Digital radiology using active matrix readout of amorphous selenium: detectors with high voltage protection.

    PubMed

    Zhao, W; Law, J; Waechter, D; Huang, Z; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector is being investigated for digital radiography and fluoroscopy. The detector uses a layer of amorphous selenium (a-Se) to convert x rays to a charge image, which is then electronically read out with a two-dimensional array of thin film transistors (TFTs). In order to sensitize the a-Se layer to x rays, a high voltage (of the order of several thousand volts) is applied to its top surface. The TFTs, which are at the bottom surface of the a-Se layer, are not subjected to any high voltage under normal radiological operational conditions since the pixel potential is < 10 V. However under a fault condition where these two events occur simultaneously: (1) suspended detector scan; and (2) an x-ray exposure more than ten times higher than normal, the voltage on the TFTs could rise to a damaging value. This paper describes a method for protecting the TFTs from high voltage damage under this fault condition. It employs a dual-gate TFT structure, one gate is for scanning control and the other is connected to the pixel electrode for high voltage protection. Before the pixel potential reaches a damaging value, the protection gate turns on the TFT automatically and drains excess charge away from the pixel thus providing a safe pixel saturation potential. In this paper, the characteristic curves of dual-gate TFTs are studied both theoretically and experimentally. The pixel x-ray response for imaging detectors with high voltage protection are predicted, and it is shown that with practical TFT designs the detector can provide a safe pixel saturation potential as well as satisfy the dynamic range required for diagnostic x-ray imaging applications.

  4. Self-Supported PtAuP Alloy Nanotube Arrays with Enhanced Activity and Stability for Methanol Electro-Oxidation.

    PubMed

    Zhang, Lili; Ding, Liang-Xin; Chen, Hongbin; Li, Dongdong; Wang, Suqing; Wang, Haihui

    2017-02-21

    Inhibiting CO formation can more directly address the problem of CO poisoning during methanol electro-oxidation. In this study, 1D self-supported porous PtAuP alloy nanotube arrays (ANTAs) are synthesized via a facile electro-codeposition approach and present enhanced activity and improved resistance to CO poisoning through inhibiting CO formation (non-CO pathway) during the methanol oxidation reaction in acidic medium. This well-controlled Pt-/transition metal-/nonmetal ternary nanostructure exhibits a specific electroactivity twice as great as that of PtAu alloy nanotube arrays and Pt/C. At the same time, PtAuP ANTAs show a higher ratio of forward peak current density (If ) to backward peak current density (Ib ) (2.34) than PtAu ANTAs (1.27) and Pt/C (0.78). The prominent If /Ib value of PtAuP ANTAs indicates that most of the intermediate species are electro-oxidized to carbon dioxide in the forward scan, which highlights the high electroactivity for methanol electro-oxidation.

  5. Detection of hormone active chemicals using genetically engineered yeast cells and microfluidic devices with interdigitated array electrodes.

    PubMed

    Ino, Kosuke; Kitagawa, Yusuke; Watanabe, Tsuyoshi; Shiku, Hitoshi; Koide, Masahiro; Itayama, Tomoaki; Yasukawa, Tomoyuki; Matsue, Tomokazu

    2009-10-01

    Endocrine disruptors that act like hormones in the endocrine system might have toxic effects. Therefore, it is important to develop a portable device that can detect hormone active chemicals in samples rapidly and easily. In this study, a microfluidic device was developed for the detection of hormone active chemicals using genetically engineered yeast cells. The yeast cells were used as biosensors since they were genetically engineered to respond to the presence of hormone active chemicals by synthesizing beta-galactosidase (beta-gal). For achieving further sensitivity, we incorporated interdigitated array (IDA) electrodes (width, 1.2 microm; gap, 0.8 microm) with 40 electrode fingers into the analytical chamber of the microfluidic device. The yeast cells precultured with a hormone active chemical, 17beta-estradiol (E2), were trapped from the main channel of the device to the analytical camber by electrophoresis. After trapping in the analytical chamber, we performed electrochemical detection of beta-gal induced in the yeast cells with the IDA electrodes. Actually, electrochemical detection was performed on p-aminophenol that was converted from p-aminophenyl-beta-D-galactopyranoside with beta-gal. The electrochemical signals from the yeast cells precultured with 17beta-estradiol were successfully detected with the device. Furthermore, the inhibitory effects of antagonists such as tamoxifen were also detected electrochemically by using the device. Thus, the present microfluidic device can be used for highly sensitive detection of hormone active chemicals.

  6. Control growth of single crystalline ZnO nanorod arrays and nanoflowers with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Feng, Jiu-Ju; Wang, Zhen-Zhen; Li, Yong-Fang; Chen, Jian-Rong; Wang, Ai-Jun

    2013-04-01

    Single crystalline vertical nanorod arrays and nanoflowers of ZnO have been grown in situ on cheap zinc foils under hydrothermal conditions, by means of hexamethylenetetramine and ethanolamine, respectively. Their morphologies and crystal structures are characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The nanorods and flowers of ZnO grew along the { 10bar{1}1} and { 0001} planes, respectively. Both types of ZnO display high photocatalytic ability toward the degradation of methylene orange under UV irradiation. The ZnO nanorods show better performance than that of the ZnO nanoflowers, and the { 10bar{1}1} facets of the ZnO nanorods have higher photoactivity than that of the { 000bar{1}} or { 10bar{1}0} crystal planes. This is because the weaker coordinated O atoms on the surface are more likely to be saturated by H atoms in aqueous solution, thereby releasing more free OH radicals.

  7. Detection of active matrix metalloproteinase-3 in serum and fibroblast-like synoviocytes of collagen-induced arthritis mice.

    PubMed

    Lee, Aeju; Choi, Sung-Jae; Park, Kyeongsoon; Park, Jong Woong; Kim, Kwangmeyung; Choi, Kuiwon; Yoon, Soo-Young; Youn, Inchan

    2013-06-19

    The activity of rheumatoid arthritis (RA) correlates with the expression of proteases. Among several proteases, matrix metalloproteinase-3 (MMP-3) is one of the biological markers used to diagnose RA. The active form of MMP-3 is a key enzyme involved in RA-associated destruction of cartilage and bone. Thus, detection of active MMP-3 in serum or in vivo is very important for early diagnosis of RA. In this study, a soluble MMP-3 probe was prepared to monitor RA progression by detecting expression of active MMP-3 in collagen-induced arthritis (CIA) mice in vivo in both serum and fibroblast-like synoviocytes (FLSs). The MMP-3 probe exhibited strong sensitivity to MMP-3 and moderate sensitivity to MMP-7 at nanomolecular concentrations, but was not sensitive to other MMPs such as MMP-2, MMP-9, and MMP-13. In an optical imaging study, the MMP-3 probe produced early and strong NIR fluorescence signals prior to observation of erythema and swelling in CIA mice. The MMP-3 probe was able to rapidly and selectively detect and monitor active MMP-3 in diluted serum from CIA mice. Furthermore, histological data demonstrated that activated FLSs in arthritic knee joints expressed active MMP-3. Together, our results demonstrated that the MMP-3 probe may be useful for detecting active MMP-3 for diagnosis of RA. More importantly, the MMP-3 probe was able to detect active MMP-3 in diluted serum with high sensitivity. Therefore, the MMP-3 probe developed in this study may be a very promising probe, useful as a biomarker for early detection and diagnosis of RA.

  8. Molecular structures and dynamics of the stepwise activation mechanism of a matrix metalloproteinase zymogen: challenging the cysteine switch dogma.

    PubMed

    Rosenblum, Gabriel; Meroueh, Samy; Toth, Marta; Fisher, Jed F; Fridman, Rafael; Mobashery, Shahriar; Sagi, Irit

    2007-11-07

    Activation of matrix metalloproteinase zymogen (pro-MMP) is a vital homeostatic process, yet its molecular basis remains unresolved. Using stopped-flow X-ray spectroscopy of the active site zinc ion, we determined the temporal sequence of pro-MMP-9 activation catalyzed by tissue kallikrein protease in milliseconds to several minutes. The identity of three intermediates seen by X-ray spectroscopy was corroborated by molecular dynamics simulations and quantum mechanics/molecular mechanics calculations. The cysteine-zinc interaction that maintains enzyme latency is disrupted via active-site proton transfers that mediate transient metal-protein coordination events and eventual binding of water. Unexpectedly, these events ensue as a direct result of complexation of pro-MMP-9 and kallikrein and occur before proteolysis and eventual dissociation of the pro-peptide from the catalytic site. Here we demonstrate the synergism among long-range protein conformational transitions, local structural rearrangements, and fine atomic events in the process of zymogen activation.

  9. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice.

    PubMed

    Tyagi, Neetu; Givvimani, Srikanth; Qipshidze, Natia; Kundu, Soumi; Kapoor, Shray; Vacek, Jonathan C; Tyagi, Suresh C

    2010-01-01

    An elevated level of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H(2)S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H(2)S), we sought to test whether the H(2)S protected the brain during HHcy. Cystathionine-beta-synthase heterozygous (CBS+/-) and wild type (WT) mice were supplemented with or without NaHS (30 microM/L, H(2)S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS-/+ and (CBS-/+)+NaHS-treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H(2)S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (-/+) mice, while H(2)S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (-/+) mice. Microscopy data revealed increase in permeability in CBS (-/+) mice. These effects were ameliorated by H(2)S and suggested that physiological levels of H(2)S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain.

  10. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.

    PubMed

    Ghosh, Somnath; Saraswathi, A; Indi, S S; Hoti, S L; Vasan, H N

    2012-06-05

    A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.

  11. Transcriptional activation by a matrix associating region-binding protein. contextual requirements for the function of bright.

    PubMed

    Kaplan, M H; Zong, R T; Herrscher, R F; Scheuermann, R H; Tucker, P W

    2001-06-15

    Bright (B cell regulator of IgH transcription) is a B cell-specific, matrix associating region-binding protein that transactivates gene expression from the IgH intronic enhancer (E mu). We show here that Bright has multiple contextual requirements to function as a transcriptional activator. Bright cannot transactivate via out of context, concatenated binding sites. Transactivation is maximal on integrated substrates. Two of the three previously identified binding sites in E mu are required for full Bright transactivation. The Bright DNA binding domain defined a new family, which includes SWI1, a component of the SWI.SNF complex shown to have high mobility group-like DNA binding characteristics. Similar to one group of high mobility group box proteins, Bright distorts E mu binding site-containing DNA on binding, supporting the concept that it mediates E mu remodeling. Transfection studies further implicate Bright in facilitating spatially separated promoter-enhancer interactions in both transient and stable assays. Finally, we show that overexpression of Bright leads to enhanced DNase I sensitivity of the endogenous E mu matrix associating regions. These data further suggest that Bright may contribute to increased gene expression by remodeling the immunoglobulin locus during B cell development.

  12. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    PubMed Central

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  13. Active control of microbubbles stream in multi-bifurcated flow by using 2D phased array ultrasound transducer.

    PubMed

    Koda, Ren; Koido, Jun; Hosaka, Naoto; Ito, Takumi; Onogi, Shinya; Mochizuki, Takashi; Masuda, Kohji; Ikeda, Seiichi; Arai, Fumihito

    2013-01-01

    We have previously reported our attempt to propel microbbles in flow by a primary Bjerknes force, which is a physical phenomenon where an acoustic wave pushes an obstacle along its direction of propagation. However, when ultrasound was emitted from surface of the body, controlling bubbles in against flow was needed. It is unpractical to use multiple transducers to produce the same number of focal points because single element transducer cannot produce more than two focal points. In this study, we introduced a complex artificial blood vessel according to a capillary model and a 2D array transducer to produce multiple focal points for active control of microbubbles in against flow. Furthermore, we investigated bubble control in viscous fluid. As the results, we confirmed clearly path selection of MBs in viscous fluid as well as in water.

  14. The MU radar with active phased array system. I - Antenna and power amplifiers. II - In-house equipment

    NASA Astrophysics Data System (ADS)

    Fukao, S.; Sato, T.; Tsuda, T.; Kato, S.; Wakasugi, K.

    1985-12-01

    The MU (middle and upper atmosphere) radar of Japan, a 46.5 MHz pulse-modulated monostatic Doppler radar with an active phased array system, is described. The system's nominal beam width is 3.6 deg, and the peak radiation power is 1 MW with maximum average power of 50 kW. The system is composed of 475 crossed three-subelement Yagi antennas and an equivalent number of solid state power amplifiers. Each Yagi antenna is driven by a transmitter-receiver module with peak output power of 2.4 kW. This configuration enables very fast and almost continuous beam steering that has not been realized by other mesosphere-stratosphere-troposphere radars. The system's antenna and power amplifiers are described, as is the in-house equipment related to transmission reception, on-line data processing, and system control.

  15. Effects of various hydrogenated treatments on formation and photocatalytic activity of black TiO2 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Chieh; Chou, Po-Hsun

    2016-08-01

    The effects of hydrogen thermal and plasma treatment on the formation and photocatalytic activities of black TiO2 nanowire arrays were investigated and discussed. After either the hydrogen thermal or plasma treatment, the TiO2 nanowires remained. However, in contrast to the plasma treated nanowires, the diameter of the thermal treated TiO2 nanowires reduced more significantly, which was attributed to a thicker surface amorphous layer and more oxygen vacancies. A higher photoresponse in both UV and visible light regions and more hydroxide groups were also observed for the thermal treated nanowires. In addition, the black nanowires possessed greater carrier concentration, leading to a more efficient separation of electron-hole pairs. As a consequence, much enhanced photoelectrochemical water splitting and photocatalytic degradation of methylene blue were obtained.

  16. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology.

    PubMed

    Napoli, Alessandro; Obeid, Iyad

    2016-03-01

    Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans.

  17. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes

    NASA Astrophysics Data System (ADS)

    Someya, Takao; Kato, Yusaku; Sekitani, Tsuyoshi; Iba, Shingo; Noguchi, Yoshiaki; Murase, Yousuke; Kawaguchi, Hiroshi; Sakurai, Takayasu

    2005-08-01

    Skin-like sensitivity, or the capability to recognize tactile information, will be an essential feature of future generations of robots, enabling them to operate in unstructured environments. Recently developed large-area pressure sensors made with organic transistors have been proposed for electronic artificial skin (E-skin) applications. These sensors are bendable down to a 2-mm radius, a size that is sufficiently small for the fabrication of human-sized robot fingers. Natural human skin, however, is far more complex than the transistor-based imitations demonstrated so far. It performs other functions, including thermal sensing. Furthermore, without conformability, the application of E-skin on three-dimensional surfaces is impossible. In this work, we have successfully developed conformable, flexible, large-area networks of thermal and pressure sensors based on an organic semiconductor. A plastic film with organic transistor-based electronic circuits is processed to form a net-shaped structure, which allows the E-skin films to be extended by 25%. The net-shaped pressure sensor matrix was attached to the surface of an egg, and pressure images were successfully obtained in this configuration. Then, a similar network of thermal sensors was developed with organic semiconductors. Next, the possible implementation of both pressure and thermal sensors on the surfaces is presented, and, by means of laminated sensor networks, the distributions of pressure and temperature are simultaneously obtained. Author contributions: T. Someya designed research; T. Someya, Y.K., T. Sekitani, S.I., Y.N., Y.M., H.K., and T. Sakurai performed research; and T. Someya wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Freely available online through the PNAS open access option.Abbreviations: E-skin, electronic artificial skin; IDS, source-drain current; PTCDI, 3,4,9,10-perylene-tetracarboxylic-diimide; parylene, polychloro-para-xylylene; CuPc, copper

  18. Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations

    NASA Astrophysics Data System (ADS)

    Nakatani, Naoki; Guo, Sheng

    2017-03-01

    This paper describes an interface between the density matrix renormalization group (DMRG) method and the complete active-space self-consistent field (CASSCF) method and its analytical gradient, as well as an extension to the second-order perturbation theory (CASPT2) method. This interfacing allows large active-space multi-reference computations to be easily performed. The interface and its extension are both implemented in terms of reduced density matrices (RDMs) which can be efficiently computed via the DMRG sweep algorithm. We also present benchmark results showing that, in practice, the DMRG-CASSCF calculations scale with active-space size in a polynomial manner in the case of quasi-1D systems. Geometry optimization of a binuclear iron-sulfur cluster using the DMRG-CASSCF analytical gradient is demonstrated, indicating that the inclusion of the valence p-orbitals of sulfur and double-shell d-orbitals of iron lead to non-negligible changes in the geometry compared to the results of small active-space calculations. With the exception of the selection of M values, many computational settings in these practical DMRG calculations have been tuned and black-boxed in our interface, and so the resulting DMRG-CASSCF and DMRG-CASPT2 calculations are now available to novice users as a common tool to compute strongly correlated electronic wavefunctions.

  19. Performance evaluation of nonnegative matrix factorization algorithms to estimate task-related neuronal activities from fMRI data.

    PubMed

    Ding, Xiaoyu; Lee, Jong-Hwan; Lee, Seong-Whan

    2013-04-01

    Nonnegative matrix factorization (NMF) is a blind source separation (BSS) algorithm which is based on the distinct constraint of nonnegativity of the estimated parameters as well as on the measured data. In this study, according to the potential feasibility of NMF for fMRI data, the four most popular NMF algorithms, corresponding to the following two types of (1) least-squares based update [i.e., alternating least-squares NMF (ALSNMF) and projected gradient descent NMF] and (2) multiplicative update (i.e., NMF based on Euclidean distance and NMF based on divergence cost function), were investigated by using them to estimate task-related neuronal activities. These algorithms were applied firstly to individual data from a single subject and, subsequently, to group data sets from multiple subjects. On the single-subject level, although all four algorithms detected task-related activation from simulated data, the performance of multiplicative update NMFs was significantly deteriorated when evaluated using visuomotor task fMRI data, for which they failed in estimating any task-related neuronal activities. In group-level analysis on both simulated data and real fMRI data, ALSNMF outperformed the other three algorithms. The presented findings may suggest that ALSNMF appears to be the most promising option among the tested NMF algorithms to extract task-related neuronal activities from fMRI data.

  20. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities.

    PubMed

    Lu, Ming-Kun; Shih, Yuan-Wei; Chang Chien, Tzu-Tsung; Fang, Li-Heng; Huang, Hsiang-Ching; Chen, Pin-Shern

    2010-01-01

    α-Solanine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis of tumor cells. However, the effect of α-solanine on cancer metastasis remains unclear. In the present study, we examined the effect of α-solanine on metastasis in vitro. Data demonstrated that α-solanine inhibited proliferation of human melanoma cell line A2058 in a dose-dependent manner. When treated with non-toxic doses of α-solanine, cell migration and invasion were markedly suppressed. Furthermore, α-solanine reduced the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9, which are involved in the migration and invasion of cancer cells. Our biochemical assays indicated that α-solanine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK). In addition, α-solanine significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that α-solanine inhibited NF-κB activity. Taken together, the results suggested that α-solanine inhibited migration and invasion of A2058 cells by reducing MMP-2/9 activities. It also inhibited JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for α-solanine in anti-metastatic therapy.

  1. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    PubMed

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity.

  2. A strategy to establish a gene-activated matrix on titanium using gene vectors protected in a polylactide coating.

    PubMed

    Kolk, Andreas; Haczek, Cornelia; Koch, Christian; Vogt, Stephan; Kullmer, Martin; Pautke, Christoph; Deppe, Herbert; Plank, Christian

    2011-10-01

    Bioactive implants are promising tools in regenerative medicine. Here we describe a versatile procedure for preparing a gene-activated matrix on titanium. Lyophilized copolymer-protected gene vectors (COPROGs) suspended in poly(d,l-lactide) (PDLLA) solutions in ethyl acetate were used to varnish solid surfaces. The gene-activated PDLLA surfaces were first established on polypropylene 96-well plates. Vector release from these surfaces in aqueous buffer, cell viability and gene transfer efficiency to NIH 3T3 fibroblasts was strongly dependent on the vector dose and its ratio to PDLLA film thickness. A detailed analysis of these relationships allowed establishing correlations which can be used to calculate suitable combinations of COPROGs and PDLLA yielding optimal gene transfer efficiency. This was verified with COPROG-activated PDLLA coatings on titanium foils. HEK 293 and mesenchymal stem cells expressed the BMP-2 gene comprised in the gene-activated surface in a manner that was consistent with the predicted dose-response and toxicity profiles found in NIH 3T3 cells. The systematic procedure presented here for identifying optimal coating compositions can be applied to any combination of vector type and coating material.

  3. Spatial analysis of slowly oscillating electric activity in the gut of mice using low impedance arrayed microelectrodes.

    PubMed

    Taniguchi, Mizuki; Kajioka, Shunichi; Shozib, Habibul B; Sawamura, Kenta; Nakayama, Shinsuke

    2013-01-01

    Smooth and elaborate gut motility is based on cellular cooperation, including smooth muscle, enteric neurons and special interstitial cells acting as pacemaker cells. Therefore, spatial characterization of electric activity in tissues containing these electric excitable cells is required for a precise understanding of gut motility. Furthermore, tools to evaluate spatial electric activity in a small area would be useful for the investigation of model animals. We thus employed a microelectrode array (MEA) system to simultaneously measure a set of 8×8 field potentials in a square area of ∼1 mm(2). The size of each recording electrode was 50×50 µm(2), however the surface area was increased by fixing platinum black particles. The impedance of microelectrode was sufficiently low to apply a high-pass filter of 0.1 Hz. Mapping of spectral power, and auto-correlation and cross-correlation parameters characterized the spatial properties of spontaneous electric activity in the ileum of wild-type (WT) and W/W(v) mice, the latter serving as a model of impaired network of pacemaking interstitial cells. Namely, electric activities measured varied in both size and cooperativity in W/W(v) mice, despite the small area. In the ileum of WT mice, procedures suppressing the excitability of smooth muscle and neurons altered the propagation of spontaneous electric activity, but had little change in the period of oscillations. In conclusion, MEA with low impedance electrodes enables to measure slowly oscillating electric activity, and is useful to evaluate both histological and functional changes in the spatio-temporal property of gut electric activity.

  4. A gene-centric analysis of activated partial thromboplastin time and activated protein C resistance using the HumanCVD focused genotyping array.

    PubMed

    Gaunt, Tom R; Lowe, Gordon D O; Lawlor, Debbie A; Casas, Juan-Pablo; Day, Ian N M

    2013-07-01

    Activated partial thromboplastin time (aPTT) is an important routine measure of intrinsic blood coagulation. Addition of activated protein C (APC) to the aPTT test to produce a ratio, provides one measure of APC resistance. The associations of some genetic mutations (eg, factor V Leiden) with these measures are established, but associations of other genetic variations remain to be established. The objective of this work was to test for association between genetic variants and blood coagulation using a high-density genotyping array. Genetic association with aPTT and APC resistance was analysed using a focused genotyping array that tests approximately 50 000 single-nucleotide polymorphisms (SNPs) in nearly 2000 cardiovascular candidate genes, including coagulation pathway genes. Analyses were conducted on 2544 European origin women from the British Women's Heart and Health Study. We confirm associations with aPTT at the coagulation factor XII (F12)/G protein-coupled receptor kinase 6 (GRK6) and kininogen 1 (KNG1)/histidine-rich glycoprotein (HRG) loci, and identify novel SNPs at the ABO locus and novel locus kallikrein B (KLKB1)/F11. In addition, we confirm association between APC resistance and factor V Leiden mutation, and identify novel SNP associations with APC resistance in the HRG and F5/solute carrier family 19 member 2 (SLC19A2) regions. In conclusion, variation at several genetic loci influences intrinsic blood coagulation as measured by both aPTT and APC resistance.

  5. An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity Against Diverse Fungal Pathogens

    PubMed Central

    Robbins, Nicole; Spitzer, Michaela; Yu, Tennison; Cerone, Robert P.; Averette, Anna K.; Bahn, Yong-Sun; Heitman, Joseph; Sheppard, Donald C.; Tyers, Mike; Wright, Gerard D.

    2015-01-01

    SUMMARY There is an urgent need to identify new treatments for fungal infections. By combining sub-lethal concentrations of the known antifungals fluconazole, caspofungin, amphotericin B, terbinafine, benomyl and cyprodinil with ~3600 compounds in diverse fungal species, we generated a deep reservoir of chemical-chemical interactions termed the Antifungal Combinations Matrix (ACM). Follow-up susceptibility testing against a fluconazole resistant isolate of C. albicans unveiled ACM combinations capable of potentiating fluconazole in this clinical strain. We used chemical genetics to elucidate the mode-of-action of the antimycobacterial drug clofazimine, a compound with unreported antifungal activity that synergized with several antifungals. Clofazimine induces a cell membrane stress for which the Pkc1 signaling pathway is required for tolerance. Further tests against additional fungal pathogens, including Aspergillus fumigatus, highlighted that clofazimine exhibits efficacy as a combination agent against multiple fungi. Thus, the ACM is a rich reservoir of chemical combinations with therapeutic potential against diverse fungal pathogens. PMID:26549450

  6. Inhibitory effect of acetylsalicylic acid on matrix metalloproteinase - 2 activity in human endothelial cells exposed to high glucose.

    PubMed

    Nicolae, Manuela; Tircol, Magdalena; Alexandru, Dorin

    2005-01-01

    Matrix metalloproteinases play a major role in the process of angiogenesis, an important feature of diabetes complications, cancer or rheumatoid arthritis. High glucose concentrations were reported to augment metalloproteinase-2 secretion in some cell types. In the present study we investigated the influence of acetylsalicylic acid on metalloproteinase- 2 secretion and expression in endothelial cells cultured for one week in high glucose conditions (25 mM and 33 mM). Metalloproteinase-2 activity was evidenced by gel zymography, the protein was identified by Western blotting, and the gene expression was quantitated by RT-PCR. The results indicated a marked inhibitory effect of acetylsalicylic acid at gene expression level (approximately 43%) and also at secretion level in samples of conditioned media (approximately 30%) and cellular homogenates (approximately 70%). This may suggest that acetylsalicylic acid could have a beneficial effect in preventing the angiogenic process that appears in diabetes complications.

  7. A signal processing approach for enhanced Acoustic Emission data analysis in high activity systems: Application to organic matrix composites

    NASA Astrophysics Data System (ADS)

    Kharrat, M.; Ramasso, E.; Placet, V.; Boubakar, M. L.

    2016-03-01

    Structural elements made of Organic Matrix Composites (OMC) under complex loading may suffer from high Acoustic Emission (AE) activity caused by the emergence of different emission sources at high rates with high noise level, which finally engender continuous emissions. The detection of hits in this situation becomes a challenge particularly during fatigue tests. This work suggests an approach based on the Discrete Wavelet Transform (DWT) denoising applied on signal segments. A particular attention is paid to the adjustment of the denoising parameters based on pencil lead breaks and their influence on the quality of the denoised AE signals. The validation of the proposed approach is performed on a ring-shaped Carbon Fiber Reinforced Plastics (CFRP) under in-service-like conditions involving continuous emissions with superimposed damage-related transients. It is demonstrated that errors in hit detection are greatly reduced leading to a better identification of the natural damage scenario based on AE signals.

  8. Correlating In Vitro Target-Oriented Screening and Docking: Inhibition of Matrix Metalloproteinases Activities by Flavonoids.

    PubMed

    Crascì, Lucia; Basile, Livia; Panico, Annamaria; Puglia, Carmelo; Bonina, Francesco P; Basile, Pierluigi Maria; Rizza, Luisa; Guccione, Salvatore

    2017-03-13

    Metalloproteases are a family of zinc-containing endopeptidases involved in a variety of pathological disorders. The use of flavonoid derivatives as potential metalloprotease inhibitors has recently increased.Particular plants growing in Sicily are an excellent yielder of the flavonoids luteolin, apigenin, and their respective glycoside derivatives (7-O-rutinoside, 7-O-glucoside, and 7-O-glucuronide).The inhibitory activity of luteolin, apigenin, and their respective glycoside derivatives on the metalloproteases MMP-1, MMP-3, MMP-13, MMP-8, and MMP-9 was assessed and rationalized correlating in vitro target-oriented screening and in silico docking.The flavones apigenin, luteolin, and their respective glucosides have good ability to interact with metalloproteases and can also be lead compounds for further development. Glycones are more active on MMP-1, -3, -8, and -13 than MMP-9. Collagenases MMP-1, MMP-8, and MMP-13 are inhibited by compounds having rutinoside glycones. Apigenin and luteolin are inactive on MMP-1, -3, and -8, which can be interpreted as a better selectivity for both -9 and -13 peptidases. The more active compounds are apigenin-7-O-rutinoside on MMP-1 and luteolin-7-O-rutinoside on MMP-3. The lowest IC50 values were also found for apigenin-7-O-glucuronide, apigenin-7-O-rutinoside, and luteolin-7-O-glucuronide. The glycoside moiety might allow for a better anchoring to the active site of MMP-1, -3, -8, -9, and -13. Overall, the in silico data are substantially in agreement with the in vitro ones (fluorimetric assay).

  9. Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Kang, Fuxing; Gao, Yanzheng; Mao, Xuewei; Hu, Xiaojie

    2016-02-01

    Most artificial nanomaterials are known to exhibit broad-spectrum bactericidal activity; however, the defence mechanisms that bacteria use based on extracellular polymeric substances (EPS) to detoxify nanoparticles (NPs) are not well known. We ruled out the possibility of ion-specific bactericidal activity by showing the lack of equivalent dissolved zinc and silicon toxicity and determined the particle-specific toxicity of ZnO and SiO2 nanoparticles (ZnONPs/SiO2NPs) through dialysis isolation experiments. Surprisingly, the manipulation of the E. coli EPS (i.e., no EPS manipulation or EPS removal by sonication/centrifugation) showed that their particle-specific bactericidal activity could be antagonized by NP-EPS sequestration. The survival rates of pristine E. coli (no EPS manipulation) reached 65% (ZnONPs, 500 mg L‑1) and 79% (SiO2NPs, 500 mg L‑1), whereas survival rates following EPS removal by sonication/centrifugation were 11% and 63%, respectively. Transmission electron microscopy (TEM) combined with fluorescence micro-titration analysis and Fourier-transform infrared spectroscopy (FTIR) showed that protein-like substances (N-H and C-N in amide II) and secondary carbonyl groups (C=O) in the carboxylic acids of EPS acted as important binding sites that were involved in NP sequestration. Accordingly, the amount and composition of EPS produced by bacteria have important implications for the bactericidal efficacy and potential environmental effects of NPs.

  10. Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity

    PubMed Central

    Wang, Qian; Kang, Fuxing; Gao, Yanzheng; Mao, Xuewei; Hu, Xiaojie

    2016-01-01

    Most artificial nanomaterials are known to exhibit broad-spectrum bactericidal activity; however, the defence mechanisms that bacteria use based on extracellular polymeric substances (EPS) to detoxify nanoparticles (NPs) are not well known. We ruled out the possibility of ion-specific bactericidal activity by showing the lack of equivalent dissolved zinc and silicon toxicity and determined the particle-specific toxicity of ZnO and SiO2 nanoparticles (ZnONPs/SiO2NPs) through dialysis isolation experiments. Surprisingly, the manipulation of the E. coli EPS (i.e., no EPS manipulation or EPS removal by sonication/centrifugation) showed that their particle-specific bactericidal activity could be antagonized by NP-EPS sequestration. The survival rates of pristine E. coli (no EPS manipulation) reached 65% (ZnONPs, 500 mg L−1) and 79% (SiO2NPs, 500 mg L−1), whereas survival rates following EPS removal by sonication/centrifugation were 11% and 63%, respectively. Transmission electron microscopy (TEM) combined with fluorescence micro-titration analysis and Fourier-transform infrared spectroscopy (FTIR) showed that protein-like substances (N-H and C-N in amide II) and secondary carbonyl groups (C=O) in the carboxylic acids of EPS acted as important binding sites that were involved in NP sequestration. Accordingly, the amount and composition of EPS produced by bacteria have important implications for the bactericidal efficacy and potential environmental effects of NPs. PMID:26856606

  11. Kokkos Array

    SciTech Connect

    Edwards Daniel Sunderland, Harold Carter

    2012-09-12

    The Kokkos Array library implements shared-memory array data structures and parallel task dispatch interfaces for data-parallel computational kernels that are performance-portable to multicore-CPU and manycore-accelerator (e.g., GPGPU) devices.

  12. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2007-03-13

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  13. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2009-08-11

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  14. Defect Characterization Using Two-Dimensional Arrays

    NASA Astrophysics Data System (ADS)

    Velichko, A.; Wilcox, P. D.

    2011-06-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. In this paper a quantitative comparison of 2D arrays with different element layouts is performed. A technique for extracting the scattering matrix of a defect from the raw 2D array data is also presented. The method is tested on experimental data for characterization of various volumetric defects.

  15. Synthesis of derivatives of methyl rosmarinate and their inhibitory activities against matrix metalloproteinase-1 (MMP-1).

    PubMed

    Yuan, Hu; Lu, Weiqiang; Wang, Liyan; Shan, Lei; Li, Honglin; Huang, Jin; Sun, Qingyan; Zhang, Weidong

    2013-04-01

    A series of MMP-1 inhibitors have been identified based upon a methyl rosmarinate scaffold using structure-based drug design methods. The best compound in the series showed an IC50 value of 0.4 μM. A docking study was conducted for compound (S)-10n in order to investigate its binding interactions with MMP-1. The structure-activity relationships (SAR) were also briefly discussed. Useful SAR was established which provides important guidelines for the design of future generations of potent inhibitors against MMP-1.

  16. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    NASA Astrophysics Data System (ADS)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-02-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  17. SIGMAR1 Regulates Membrane Electrical Activity in Response to Extracellular Matrix Stimulation to Drive Cancer Cell Invasiveness.

    PubMed

    Crottès, David; Rapetti-Mauss, Raphael; Alcaraz-Perez, Francisca; Tichet, Mélanie; Gariano, Giuseppina; Martial, Sonia; Guizouarn, Hélène; Pellissier, Bernard; Loubat, Agnès; Popa, Alexandra; Paquet, Agnès; Presta, Marco; Tartare-Deckert, Sophie; Cayuela, Maria Luisa; Martin, Patrick; Borgese, Franck; Soriani, Olivier

    2016-02-01

    The sigma 1 receptor (Sig1R) is a stress-activated chaperone that regulates ion channels and is associated with pathologic conditions, such as stroke, neurodegenerative diseases, and addiction. Aberrant expression levels of ion channels and Sig1R have been detected in tumors and cancer cells, such as myeloid leukemia and colorectal cancer, but the link between ion channel regulation and Sig1R overexpression during malignancy has not been established. In this study, we found that Sig1R dynamically controls the membrane expression of the human voltage-dependent K(+) channel human ether-à-go-go-related gene (hERG) in myeloid leukemia and colorectal cancer cell lines. Sig1R promoted the formation of hERG/β1-integrin signaling complexes upon extracellular matrix stimulation, triggering the activation of the PI3K/AKT pathway. Consequently, the presence of Sig1R in cancer cells increased motility and VEGF secretion. In vivo, Sig1R expression enhanced the aggressiveness of tumor cells by potentiating invasion and angiogenesis, leading to poor survival. Collectively, our findings highlight a novel function for Sig1R in mediating cross-talk between cancer cells and their microenvironment, thus driving oncogenesis by shaping cellular electrical activity in response to extracellular signals. Given the involvement of ion channels in promoting several hallmarks of cancer, our study also offers a potential strategy to therapeutically target ion channel function through Sig1R inhibition.

  18. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    PubMed

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  19. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-11-26

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur.

  20. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. DOI: http://dx.doi.org/10.7554/eLife.11290.001 PMID:26609811

  1. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

    PubMed Central

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, DL; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-01-01

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  2. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation

    PubMed Central

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-01-01

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  3. Modular Matrix Multiplication on a Linear Array.

    DTIC Science & Technology

    1983-11-01

    by the algorithm for even n is 3n(r+l). The algo- °4 rithm is similar t3 the algorithm for odd n except steps 1 and 8. For even n, aij is 6inserted at...c.,)+y(c.,) :5 Let y-p+A. As q- pinn +l and p :5y 0qs 0 < A < n+1. Now t(ce8 )=to+2+3ri(u-l)+2(v-1) and y(c.,)=m-p-A. Since t(aj)+p(aj) :5 t(c.,)+y(c...hki will be removable at any t (xk:t<Yk). Assume this is not the case , and at t <Yk, let hki be the first vertex (or one of the first vertices) from

  4. Electromagnetic energy coupling mechanism with matrix architecture control

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2006-01-01

    The present invention relates generally to reconfigurable, solid-state matrix arrays comprising multiple rows and columns of reconfigurable secondary mechanisms that are independently tuned. Specifically, the invention relates to reconfigurable devices comprising multiple, solid-state mechanisms characterized by at least one voltage-varied parameter disposed within a flexible, multi-laminate film, which are suitable for use as magnetic conductors, ground surfaces, antennas, varactors, ferrotunable substrates, or other active or passive electronic mechanisms.

  5. Temporal relation between neural activity and neurite pruning on a numerical model and a microchannel device with micro electrode array.

    PubMed

    Kondo, Yohei; Yada, Yuichiro; Haga, Tatsuya; Takayama, Yuzo; Isomura, Takuya; Jimbo, Yasuhiko; Fukayama, Osamu; Hoshino, Takayuki; Mabuchi, Kunihiko

    2017-04-29

    Synapse elimination and neurite pruning are essential processes for the formation of neuronal circuits. These regressive events depend on neural activity and occur in the early postnatal days known as the critical period, but what makes this temporal specificity is not well understood. One possibility is that the neural activities during the developmentally regulated shift of action of GABA inhibitory transmission lead to the critical period. Moreover, it has been reported that the shifting action of the inhibitory transmission on immature neurons overlaps with synapse elimination and neurite pruning and that increased inhibitory transmission by drug treatment could induce temporal shift of the critical period. However, the relationship among these phenomena remains unclear because it is difficult to experimentally show how the developmental shift of inhibitory transmission influences neural activities and whether the activities promote synapse elimination and neurite pruning. In this study, we modeled synapse elimination in neuronal circuits using the modified Izhikevich's model with functional shifting of GABAergic transmission. The simulation results show that synaptic pruning within a specified period like the critical period is spontaneously generated as a function of the developmentally shifting inhibitory transmission and that the specific firing rate and increasing synchronization of neural circuits are seen at the initial stage of the critical period. This temporal relationship was experimentally supported by an in vitro primary culture of rat cortical neurons in a microchannel on a multi-electrode array (MEA). The firing rate decreased remarkably between the 18-25 days in vitro (DIV), and following these changes in the firing rate, the neurite density was slightly reduced. Our simulation and experimental results suggest that decreasing neural activity due to developing inhibitory synaptic transmission could induce synapse elimination and neurite pruning

  6. Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast.

    PubMed

    Sim, Gwan-Sub; Lee, Bum-Chun; Cho, Ho Seung; Lee, Jae Woong; Kim, Jin-Hwa; Lee, Dong-Hwan; Kim, Jin-Hui; Pyo, Hyeong-Bae; Moon, Dong Cheul; Oh, Ki-Wan; Yun, Yeo Pyo; Hong, Jin Tae

    2007-03-01

    Collagenase, a matrix metalloproteinases (MMPs), is a key regulator in the photoaging process of skin due to the reactive oxygen species generated after exposure to ultraviolet A (UVA). Flavonoid compounds have been demonstrated to possess antioxidant properties, and could be useful in the prevention of photoaging. In this study, to investigate the structure-activity relationship of flavonoid compounds on their antioxidant property and inhibitory effects against the MMP activity, the effects of several flavonoids; myricetin, quercetin, kaempferol, luteolin, apigenin and chrysin, on the reactive oxygen species scavengering activity and inhibitory effect against the MMP activity were examined in vitro and in human dermal fibroblasts induced by UVA. The relative order of antioxidative efficacy, as determined using the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) method and the xanthine/xanthine oxidase system, was as follows; flavones: luteolin > apigenin > chrysin, flavonols: myricetin > quercetin > kaempferol, and correlated with the respective number of OH group on their B-ring. In good correlation with the antioxidant properties, the flavonoids inhibited the collagenase activities, in a dose-dependent manner, and the MMP expression. These results suggested the UVA induced antioxidative activity and inhibitory effects of flavonoids on the collagenase in human dermal fibroblasts depends on the number of OH group in the flavonoid structure, and those with a higher number of OH group may be more useful in the prevention of UV stressed skin aging.

  7. Iron sensitizes keratinocytes and fibroblasts to UVA-mediated matrix metalloproteinase-1 through TNF-α and ERK activation.

    PubMed

    Jian, Jinlong; Pelle, Edward; Yang, Qing; Pernodet, Nadine; Maes, Daniel; Huang, Xi

    2011-03-01

    Oestrogen deficiency is regarded as the main causative factor in postmenopausal skin ageing and photoageing. While women after menopause experience low levels of oestrogen because of cease of ovarian function, they are also exposed to high levels of iron as a result of cessation of menstruation. In this study, we investigated whether this increase in iron presents a risk to the postmenopausal skin. Because of the lack of appropriate animal models to closely mimic the low oestrogen and high iron conditions, we tested the hypothesis in a high iron and low oestrogen culture model. Here, we showed that primary human dermal fibroblasts exposed to iron did not affect the baseline levels of matrix metalloproteinase-1 (MMP-1) activity. However, the iron-exposed fibroblasts were sensitized to UVA exposure, which resulted in a synergistic increase in MMP-1. UVA activated the three members of MAPK family: ERKs, p38, and JNKs. Additional activation of ERKs by iron contributed to the synergistic increases. Primary normal human epidermal keratinocytes (NHEK) did not respond to iron or UVA exposure as measured by MMP-1, but produced tumor necrosis factor-alpha (TNF-α) in the media, which then stimulated MMP-1 in fibroblasts. Our results indicate that iron and UVA increase MMP-1 activity in dermal fibroblasts not only directly through ERK activation but also by an indirect paracrine loop through TNF-α released by NHEK. We conclude that in addition to oestrogen deficiency, increased iron as a result of menopause could be a novel risk factor by sensitizing postmenopausal skin to solar irradiation.

  8. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C

    PubMed Central

    Ruggiero, Sabrina; Cosgarea, Raluca; Potempa, Jan; Potempa, Barbara; Eick, Sigrun; Chiquet, Matthias

    2014-01-01

    Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease. PMID:23313574

  9. Iron sensitizes keratinocytes and fibroblasts to UVA-mediated matrix metalloproteinase-1 through TNF-α and ERK activation