Science.gov

Sample records for active matrix oled

  1. Active Matrix OLED Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  2. Low-power SXGA active matrix OLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2009-05-01

    This paper presents the design and first evaluation of a full-color 1280×3×1024 pixel, active matrix organic light emitting diode (AMOLED) microdisplay that operates at a low power of 200mW under typical operating conditions of 35fL, and offers a precision 30-bit RGB digital interface in a compact size (0.78-inch diagonal active area). The new system architecture developed by eMagin for the SXGA microdisplay, based on a separate FPGA driver and AMOLED display chip, offers several benefits, including better power efficiency, cost-effectiveness, more features for improved performance, and increased system flexibility.

  3. Full colour RGB OLEDs on CMOS for active-matrix OLED microdisplays

    NASA Astrophysics Data System (ADS)

    Kreye, D.; Toerker, M.; Vogel, U.; Amelung, J.

    2006-08-01

    Microdisplays are used in various optical devices such as headsets, viewfinders and helmet-mounted displays. The use of organic light emitting diodes (OLEDs) in a microdisplay on silicone substrate provides the opportunity of lower power consumption and higher optical performance compared to other near-to-eye display technologies. Highly efficient, low-voltage, top emitting OLEDs are well suitable for the integration into a CMOSprocess. By reducing the operating voltage for the OLEDs below 5V, the costs for the CMOS process can be reduced significantly, because a standard process without high-voltage option can be used. Various OLED stacks on silicone substrate are presented, suitable for full colour (RGB) applications. Red and green emitting phosphorescent OLEDs and blue emitting fluorescent OLEDs all with doped charge transport layers were prepared on a two metal layer CMOS test substrate without active transistor area. Afterwards, the different test displays were measured and compared with respect to their performance (current, luminance, voltage, luminance dependence on viewing angle, optical outcoupling etc.)

  4. AMOLED (active matrix OLED) functionality and usable lifetime at temperature

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Prache, Olivier; Jones, Susan

    2005-05-01

    Active Matrix Organic Light Emitting Diode (AMOLED) displays are known to exhibit high levels of performance, and these levels of performance have continually been improved over time with new materials and electronics design. eMagin Corporation developed a manually adjustable temperature compensation circuit with brightness control to allow for excellent performance over a wide temperature range. Night Vision and Electronic Sensors Directorate (US Army) tested the performance and survivability of a number of AMOLED displays in a temperature chamber over a range from -55°C to +85°C. Although device performance of AMOLEDs has always been its strong suit, the issue of usable display lifetimes for military applications continues to be an area of discussion and research. eMagin has made improvements in OLED materials and worked towards the development of a better understanding of usable lifetime for operation in a military system. NVESD ran luminance degradation tests of AMOLED panels at 50°C and at ambient to characterize the lifetime of AMOLED devices. The result is a better understanding of the applicability of AMOLEDs in military systems: where good fits are made, and where further development is needed.

  5. Active matrix OLED for rugged HMD and viewfinder applications

    NASA Astrophysics Data System (ADS)

    Low, Kia; Jones, Susan K.; Prache, Olivier; Fellowes, David A.

    2004-09-01

    We present characterization of a full-color 852x3x600-pixel, active matrix organic light emitting diode (AMOLED) color microdisplay (eMagin Corporation's SVGA+ display) for environmentally demanding applications. The results show that the AMOLED microdisplay can provide cold-start turn-on and operate at extreme temperature conditions, far in excess of non-emissive displays. Correction factors for gamma response of the AMOLED microdisplay as a function of temperature have been determined to permit consistent luminance and contrast from -40°C to over +80°C. Gamma adjustments are made by a simple temperature compensation adjustment of the reference voltages of the AMOLED. The typical room temperature full-on luminance half-life of the SVGA+ full color display organic light emitting diode (OLED) display at over 3,000 hr at a starting luminance at approx. 100 cd/m2, translates to more than 15,000 hr of continuous full-motion video usage, based on a 25% duty cycle at a typical 50-60 cd/m2 commercial luminance level, or over 60,000 hr half-life in monochrome white usage, or over 100,000 hr luminance half-life in monochrome yellow usage at similar operating conditions. Half life at typical night vision luminance levels would be much longer.

  6. Active matrix organic light emitting diode (OLED)-XL life test results

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier

    2008-04-01

    OLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. As a result of this need, the US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to improve the lifetime of OLED displays. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications, and RDECOM CERDEC NVESD ran life tests on these displays, finding over 200% lifetime improvement for the XL devices over the standard displays. Early results were published at the 2007 SPIE Defense and Security Symposium. Further life testing of XL and standard devices at ambient conditions and at high temperatures will be presented this year along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed. This is a continuation of the paper "Life test results of OLED-XL long-life devices for use in active matrix organic light emitting diode (AMOLED) displays for head mounted applications" presented at SPIE DSS in 2007.

  7. Technology and design of an active-matrix OLED on crystalline silicon direct-view display for a wristwatch computer

    NASA Astrophysics Data System (ADS)

    Sanford, James L.; Schlig, Eugene S.; Prache, Olivier; Dove, Derek B.; Ali, Tariq A.; Howard, Webster E.

    2002-02-01

    The IBM Research Division and eMagin Corp. jointly have developed a low-power VGA direct view active matrix OLED display, fabricated on a crystalline silicon CMOS chip. The display is incorporated in IBM prototype wristwatch computers running the Linus operating system. IBM designed the silicon chip and eMagin developed the organic stack and performed the back-end-of line processing and packaging. Each pixel is driven by a constant current source controlled by a CMOS RAM cell, and the display receives its data from the processor memory bus. This paper describes the OLED technology and packaging, and outlines the design of the pixel and display electronics and the processor interface. Experimental results are presented.

  8. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    SciTech Connect

    McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, Ivan I; Kim, D. Y.; So, Franky; Rinzler, A. G.

    2011-01-01

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  9. Life test results of OLED-XL long-life devices for use in active matrix organic light emitting diode (AMOLED) displays for head mounted applications

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier

    2007-04-01

    eMagin Corporation has recently developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. AMOLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. The new OLED-XL devices gave the promise of improvements in usable lifetime over 6X what the standard full color, white, and green devices could provide. The US Army's RDECOM CERDEC NVESD performed life tests on several standard and OLED-XL panels from eMagin under a Cooperative Research and Development Agreement (CRADA). Displays were tested at room temperature, utilizing eMagin's Design Reference Kit driver, allowing computer controlled optimization, brightness adjustment, and manual temperature compensation. The OLED Usable Lifetime Model, developed under a previous NVESD/eMagin SPIE paper presented at DSS 2005, has been adjusted based on the findings of these tests. The result is a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed.

  10. Color tunability in multilayer OLED based on DCM doped in a PVK matrix

    NASA Astrophysics Data System (ADS)

    Petrova, P. K.; Ivanov, P. I.; Tomova, R. L.

    2014-12-01

    In this work, we present our achievements in color tunability in novel multilayer organic light-emitting diodes (OLEDs) based on DCM (4-(Dicyanomethylene)-2-methyl-6-[p- (dimethylamino)styryl]-4H-pyran) as red emitter doped in a composite PVK:TPD holetransporting layer, DPVBi (4,4'-Bis(2,2-diphenylvinyl)-1,1'-biphenyl) as a separate blue emitting layer, BAlq (aluminum bis(2-methyl-8-quinolinate)-4-phenylphenolate) as holeblocking layer and blue emitter at the same time, and Zn(BTz)2 (zinc bis(2-(2-hydroxyphenyl) benzothiazole)) as yellow emitter and electron transporting layer. By modification of the OLED structure and changing the DCM doped concentration in the matrix (in the range of 0 up to 5 %) the color tunability of OLED structures has been obtained. The efficiencies, luminance and chromaticity coordinates of the fabricated OLED structures have been specified.

  11. Laminated active matrix organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Sun, Runguang

    2008-02-01

    Laminated active matrix organic light-emitting device (AMOLED) realizing top emission by using bottom-emitting organic light-emitting diode (OLED) structure was proposed. The multilayer structure of OLED deposited in the conventional sequence is not on the thin film transistor (TFT) backplane but on the OLED plane. The contact between the indium tin oxide (ITO) electrode of TFT backplane and metal cathode of OLED plane is implemented by using transfer electrode. The stringent pixel design for aperture ratio of the bottom-emitting AMOLED, as well as special technology for the top ITO electrode of top-emitting AMOLED, is unnecessary in the laminated AMOLED.

  12. OLED displays for military applications

    NASA Astrophysics Data System (ADS)

    Mahon, Janice K.; Brown, Julie J.; Hack, Michael G.; Hewitt, Richard H.; Huffman, David C.

    2000-08-01

    Through the years, there has been a steady evolution of technology to ruggedize displays for harsh military environments. This work has spanned cathode-ray-tubes (CRTs) to present day active matrix liquid crystal displays (AMLCDs). Organic light emitting device (OLED) display technology has the potential to solve many of the inherent limitations of today's AMLCD technology and to provide the military system designer with a more cost effective solution. OLED technology offers bright, colorful emissive light with excellent power efficiency, wide viewing angle and video response rates; it is also demonstrating the requisite environmental robustness for a wide variety of display applications. OLED displays also have a very thin and lightweight form factor. Moreover, in full production, OLEDs are projected to be very cost-effective by comparison to AMLCDs. This paper will examine some of these advantages and the opportunities presented by the rapidly emerging OLED display technology for military applications.

  13. Amorphous silicon thin film transistor active-matrix organic light-emitting diode displays fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan A.

    Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.

  14. High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1).

    PubMed

    Seino, Yuki; Inomata, Susumu; Sasabe, Hisahiro; Pu, Yong-Jin; Kido, Junji

    2016-04-01

    A green organic light-emitting device (OLED) with an extremely high power efficiency of over 100 lm W(-1) is realized through energy transfer from an exciplex. An optimized OLED showed a maximum external efficiency of 25.7%, and a power efficiency of 79.4 lm W(-1) at 1000 cd m(-2) , which is 1.6-times higher than that of state-of-the-art green thermally activated delayed fluorescence (TADF) OLEDs. PMID:26833580

  15. Optical characterization of OLED displays with touch screens

    NASA Astrophysics Data System (ADS)

    Cropper, A. D.; Feldman, Rodney D.; Siwinski, Michael; Kilmer, Kathleen

    2002-02-01

    Brightness and color resolution, wider viewing angles, lower power consumption, and a thin aspect ratio are all well understood physical characteristics of organic light emitting diode (OLED) displays, an up-and-coming flat panel displays. Increasing numbers of applications of flat panel displays are being commercialized with touch screens. This paper will describe the optical characteristics of mating a touch screen with a full-color active matrix OLED display. We will quantify the OLED optical properties with respect to touch screens with matte finishes and anti-reflective topcoats, and with and without the use of a polarizer on the OLEDs top glass.

  16. OLED study for military applications

    NASA Astrophysics Data System (ADS)

    Barre, F.; Chiquard, A.; Faure, S.; Landais, L.; Patry, P.

    2005-07-01

    The presentation deals with some applications of OLED displays in military optronic systems, which are scheduled by SAGEM DS (Defence and Security). SAGEM DS, one of the largest group in the defence and security market, is currently investigating OLED Technologies for military programs. This technology is close from being chosen for optronic equipment such as future infantry night vision goggles, rifle-sight, or, more generally, vision enhancement systems. Most of those applications requires micro-display with an active matrix size below 1". Some others, such as, for instance, ruggedized flat displays do have a need for higher active matrix size (1,5" to 15"). SAGEM DS takes advantages of this flat, high luminance and emissive technology in highly integrated systems. In any case, many requirements have to be fulfilled: ultra-low power consumption, wide viewing angle, good pixel to pixel uniformity, and satisfactory behaviour in extreme environmental conditions.... Accurate measurements have been achieved at SAGEM DS on some micro display OLEDs and will be detailed: luminance (over 2000 cd/m2 achieved), area uniformity and pixel to pixel uniformity, robustness at low and high temperature (-40°C to +60°C), lifetime. These results, which refer to military requirements, provide a valuable feedback representative of the state of the art OLED performances.

  17. Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  18. Improved AC pixel electrode circuit for active matrix of organic light-emitting display

    NASA Astrophysics Data System (ADS)

    Si, Yujuan; Lang, Liuqi; Chen, Wanzhong; Liu, Shiyong

    2004-05-01

    In this paper, a modified four-transistor pixel circuit for active-matrix organic light-emitting displays (AMOLED) was developed to improve the performance of OLED device. This modified pixel circuit can provide an AC driving mode to make the OLED working in a reversed-biased voltage during the certain cycle. The optimized values of the reversed-biased voltage and the characteristics of the pixel circuit were investigated using AIM-SPICE. The simulated results reveal that this circuit can provide a suitable output current and voltage characteristic, and little change was made in luminance current.

  19. Active Matrix Organic light Emitting Diode Display Based on “Super Top Emission” Technology

    NASA Astrophysics Data System (ADS)

    Ishibashi, Tadashi; Yamada, Jiro; Hirano, Takashi; Iwase, Yuichi; Sato, Yukio; Nakagawa, Ryo; Sekiya, Mitsunobu; Sasaoka, Tatsuya; Urabe, Tetsuo

    2006-05-01

    We developed an original “Super Top Emission” technology, which enables us to optimize the distinctive features of an organic light emitting diode (OLED) display. With this technology, the following characteristics can be obtained: (1) high color reproduction of a 100% NTSC gamut ratio, (2) wide viewing angle, (3) high contrast of 1000:1 maintaining high luminous efficiency with a color filter, (4) original all-solid sealing structure. In addition, Super Top Emission technology was demonstrated by developing a 3.8-type size half video graphics array (HVGA) active matrix organic light emitting diode (AM-OLED) display by the shadow mask patterning process.

  20. Achieving high power efficiency and low roll-off OLEDs based on energy transfer from thermally activated delayed excitons to fluorescent dopants.

    PubMed

    Wang, Shipan; Zhang, Yuewei; Chen, Weiping; Wei, Jinbei; Liu, Yu; Wang, Yue

    2015-08-01

    Achieving high power efficiencies at high-brightness levels is still an important issue for organic light-emitting diodes (OLEDs) based on the thermally activated delayed fluorescence (TADF) mechanism. Herein, enhanced electroluminescence efficiencies were achieved in fluorescent OLEDs using a TADF molecule, (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN), as a host and quinacridone derivatives (QA) as fluorescent dopants. PMID:26120606

  1. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  2. OLED area illumination source

    DOEpatents

    Foust, Donald Franklin; Duggal, Anil Raj; Shiang, Joseph John; Nealon, William Francis; Bortscheller, Jacob Charles

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  3. OLED devices

    DOEpatents

    Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

    2011-02-22

    An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

  4. An olive pollen protein with allergenic activity, Ole e 10, defines a novel family of carbohydrate-binding modules and is potentially implicated in pollen germination

    PubMed Central

    2005-01-01

    CBMs (carbohydrate-binding modules) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. They have been frequently identified by amino acid sequence alignments, but only a few have been experimentally established to have a carbohydrate-binding activity. A small olive pollen protein, Ole e 10 (10 kDa), has been described as a major inducer of type I allergy in humans. In the present study, the ability of Ole e 10 to bind several polysaccharides has been analysed by affinity gel electrophoresis, which demonstrated that the protein bound 1,3-β-glucans preferentially. Analytical ultracentrifugation studies confirmed binding to laminarin, at a protein/ligand ratio of 1:1. The interaction of Ole e 10 with laminarin induced a conformational change in the protein, as detected by CD and fluorescence analyses, and an increase of 3.6 °C in the thermal denaturation temperature of Ole e 10 in the presence of the glycan. These results, and the absence of alignment of the sequence of Ole e 10 with that of any classified CBM, indicate that this pollen protein defines a novel family of CBMs, which we propose to name CBM43. Immunolocalization of Ole e 10 in mature and germinating pollen by transmission electron microscopy and confocal laser scanning microscopy demonstrated the co-localization of Ole e 10 and callose (1,3-β-glucan) in the growing pollen tube, suggesting a role for this protein in the metabolism of carbohydrates and in pollen tube wall re-formation during germination. PMID:15882149

  5. Driving Method for Compensating Reliability Problem of Hydrogenated Amorphous Silicon Thin Film Transistors and Image Sticking Phenomenon in Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong

    2011-03-01

    In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.

  6. Enzymatic activation of a matrix metalloproteinase inhibitor†

    PubMed Central

    Major Jourden, Jody L.; Cohen, Seth M.

    2010-01-01

    Matrix metalloproteinase inhibitors (MMPi) possessing a glucose protecting group on the zinc-binding group (ZBG) show a dramatic increase in inhibitory activity upon cleavage by β-glucosidase. PMID:20449263

  7. Driving platform for OLED lighting investigations

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Elgner, Andreas; Kreye, Daniel; Amelung, Jörg; Scholles, Michael

    2006-08-01

    OLED technology may be excellently suitable for lighting applications by combining high efficiency, cost effective manufacturing and the use of low cost materials. Certain issues remain to be solved so far, including OLED brightness, color, lifetime, large area uniformity and encapsulation. Another aspect, that might be capable in addressing some of the mentioned issues, is OLED lighting electrical driving. We report on the design of a driving platform for OLED lighting test panels or substrates. It is intended for being a test environment for lighting substrates as well as demonstration/presentation environment. It is based on a 128-channel passive-matrix driver/controller ASIC OC2. Its key component is an MSP430-compatible 16-bit micro-controller core including embedded Flash memory (program), EEPROM (parameter), and RAM (data memory). A significant feature of the device is an electronic approach for improving the lifetime/uniformity behavior of connected OLED. The embedded micro-controller is the key to the high versatility of OC2, since by firmware modification it can be adapted to various applications and conditions. Here its application for an OLED lighting driving platform is presented. Major features of this platform are PC-control mode (via USB interface), stand-alone mode (no external control necessary, just power supply), on-board OLED panel parameter storage, flat geometry of OLED lighting panel carrier (board), AC and DC driving regimes, adjustable reverse voltage, dedicated user SW (PC/Windows-based), sub-tile patterning and single sub-tile control, combination of multiple channels for increasing driving current. This publication contains results of the project "High Brightness OLEDs for ICT & Next Generation Lighting Applications" (OLLA), funded by the European Commission.

  8. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters.

    PubMed

    Dias, Fernando B; Bourdakos, Konstantinos N; Jankus, Vygintas; Moss, Kathryn C; Kamtekar, Kiran T; Bhalla, Vandana; Santos, José; Bryce, Martin R; Monkman, Andrew P

    2013-07-19

    Organic light-emitting diodes (OLEDs) have their performance limited by the number of emissive singlet states created upon charge recombination (25%). Recently, a novel strategy has been proposed, based on thermally activated up-conversion of triplet to singlet states, yielding delayed fluorescence (TADF), which greatly enhances electroluminescence. The energy barrier for this reverse intersystem crossing mechanism is proportional to the exchange energy (ΔEST ) between the singlet and triplet states; therefore, materials with intramolecular charge transfer (ICT) states, where it is known that the exchange energy is small, are perfect candidates. However, here it is shown that triplet states can be harvested with 100% efficiency via TADF, even in materials with ΔEST of more than 20 kT (where k is the Boltzmann constant and T is the temperature) at room temperature. The key role played by lone pair electrons in achieving this high efficiency in a series of ICT molecules is elucidated. The results show the complex photophysics of efficient TADF materials and give clear guidelines for designing new emitters. PMID:23703877

  9. Release of OLe peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    OLe is a high oleic Spanish-type peanut that has excellent yield and enhanced Sclerotinia blight and pod rot resistance when compared to other high oleic Spanish cultivars. The purpose for releasing OLe is to provide peanut producers with a true Spanish peanut that is high oleic and has enhanced yi...

  10. EDITORIAL: Flexible OLEDs and organic electronics Flexible OLEDs and organic electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jang-Joo; Han, Min-Koo; Noh, Yong-Young

    2011-03-01

    Following the great discovery of the electrically conducting polymer, doped polyacetylene, which was honorably recognized in 2000 with the Nobel Prize in chemistry, conjugated molecules, i.e. organic semiconductors, have become an attractive class of active elements for various electronic or opto-electronic applications. Significant effort has been made in both academia and industry to investigate π-conjugated molecules for their unique electrical or opto-electrical properties over the last three decades. The discovery of electroluminescence in conjugated small molecules in 1982 and in polymers in 1989 was a major breakthrough, bringing those molecules to commercial applications within reach for the first time in (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells (OPVs), and field-effect transistors (OFETs). Nowadays, we use OLED displays in everyday life in mobile devices. The potential of these devices, which have been fabricated with conjugated molecules, lies in the possibility to combine the advantages of solution processability, chemical tunability and material strength of polymers with the typical properties of plastics, to realize low-cost, large-area electronic devices on flexible substrates by solution deposition and direct-write graphic art printing techniques. The articles in the flexible OLEDs and organic electronics special issue in Semiconductor Science and Technology deal with a diversity of topics and effectively reflect the current status of research from all over the world on various organic electronic devices, including OLEDs, OPVs, and OFETs. Firstly, S Park et al describe the recent progress in thin-film encapsulation techniques for flexible AM-OLED and large-area OLED lightings, and their applications are discussed by J-W Park et al. Flexible active-matrix OLEDs on plastics require stable and flexible thin-film transistors processed at low temperature. Metal oxide thin-film transistors are proposed

  11. OLED panel with fuses

    DOEpatents

    Levermore, Levermore; Pang, Huiqing; Rajan, Kamala

    2014-09-16

    Embodiments may provide a first device that may comprise a substrate, a plurality of conductive bus lines disposed over the substrate, and a plurality of OLED circuit elements disposed on the substrate, where each of the OLED circuit elements comprises one and only one pixel electrically connected in series with a fuse. Each pixel may further comprise a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. The fuse of each of the plurality of OLED circuit elements may electrically connect each of the OLED circuit elements to at least one of the plurality of bus lines. Each of the plurality of bus lines may be electrically connected to a plurality of OLED circuit elements that are commonly addressable and at least two of the bus lines may be separately addressable.

  12. Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs.

    PubMed

    Nikolaenko, Andrey E; Cass, Michael; Bourcet, Florence; Mohamad, David; Roberts, Matthew

    2015-11-25

    Efficient intermonomer thermally activated delayed fluorescence is demonstrated for the first time, opening a new route to achieving high-efficiency solution processable polymer light-emitting device materials. External quantum efficiency (EQE) of up to 10% is achieved in a simple fully solution-processed device structure, and routes for further EQE improvement identified. PMID:26457683

  13. Anisotropy in OLEDs

    NASA Astrophysics Data System (ADS)

    Callens, M. K.; Yokoyama, D.; Neyts, K.

    2015-09-01

    Small-molecule OLEDs, deposited by thermal evaporation, allow for precise control over layer thicknesses. This enables optimisation of the optical behaviour of the stack which ultimately determines the outcoupling efficiency. In terms of optical outcoupling there are limits to the efficiency by which the generated electromagnetic radiation can be extracted from the stack. These limitations are linked to the refractive indices of the individual layers. Values for maximum outcoupling efficiency are sometimes calculated under the implicit assumptions that the OLED stack is planar, that all layers are isotropic with a certain refractive index and that the emitters are not preferentially oriented. In reality it is known that these assumptions are not always valid, be it intentional or unintentional. In our work we transcend these limiting assumptions and look at different forms of anisotropy in OLEDs. Anisotropy in OLEDs comes in three distinct flavours; 1. Geometrical anisotropy, as for example in gratings, lenses or other internal or external scattering centres, 2. Anisotropic emitters, where the orientation significantly influences the direction in which radiation is emitted and 3. Anisotropic optical materials, where their anisotropic nature breaks the customary assumption of isotropic OLED materials. We investigate the effect of these anisotropic features on the outcoupling efficiency and ultimately, on the external quantum efficiency (EQE).

  14. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  15. OLEDS FOR GENERAL LIGHTING

    SciTech Connect

    Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

    2004-02-29

    The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most

  16. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination. PMID:17086359

  17. OLED-on-CMOS integration for optoelectronic sensor applications

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Kreye, Daniel; Reckziegel, Sven; Törker, Michael; Grillberger, Christiane; Amelung, Jörg

    2007-02-01

    Highly-efficient, low-voltage organic light emitting diodes (OLEDs) are well suitable for post-processing integration onto the top metal layer of CMOS devices. This has been proven for OLED microdisplays so far. Moreover, OLEDon- CMOS technology may also be excellently suitable for various optoelectronic sensor applications by combining highly efficient emitters, use of low-cost materials and cost-effective manufacturing together with silicon-inherent photodetectors and CMOS circuitry. The use of OLEDs on CMOS substrates requires a top-emitting, low-voltage and highly efficient OLED structure. By reducing the operating voltage for the OLED below 5V, the costs for the CMOS process can be reduced, because a process without high-voltage option can be used. Red, orange, white, green and blue OLED-stacks with doped charge transport layers were prepared on different dualmetal layer CMOS test substrates without active transistor area. Afterwards, the different devices were measured and compared with respect to their performance (current, luminance, voltage, luminance dependence on viewing angle, optical outcoupling etc.). Low operating voltages of 2.4V at 100cd/m2 for the red p-i-n type phosphorescent emitting OLED stack, 2.5V at 100cd/m2 for the orange phosphorescent emitting OLED stack and 3.2V at 100cd/m2 for the white fluorescent emitting OLED have been achieved here. Therefore, those OLED stacks are suitable for use in a CMOS process even within a regular 5V process option. Moreover, the operating voltage achieved so far is expected to be reduced further when using different top electrode materials. Integrating such OLEDs on a CMOS-substrate provide a preferable choice for silicon-based optical microsystems targeted towards optoelectronic sensor applications, as there are integrated light barriers, optocouplers, or lab-onchip devices.

  18. AIE-Active Fluorene Derivatives for Solution-Processable Nondoped Blue Organic Light-Emitting Devices (OLEDs).

    PubMed

    Feng, Xin Jiang; Peng, Jinghong; Xu, Zheng; Fang, Renren; Zhang, Hua-Rong; Xu, Xinjun; Li, Lidong; Gao, Jianhua; Wong, Man Shing

    2015-12-30

    A series of fluorene derivatives end-capped with diphenylamino and oxadiazolyl were synthesized, and their photophysical and electrochemical properties are reported. Aggregation-induced emission (AIE) effects were observed for the materials, and bipolar characteristics of the molecules are favored with measurement of carrier mobility and calculation of molecular orbitals using density functional theory (DFT). Using the fluorene derivatives as emitting-layer, nondoped organic light-emitting devices (OLEDs) have been fabricated by spin-coating in the configuration ITO/PEDOT:PSS(35 nm)/PVK(15 nm)/PhN-OF(n)-Oxa(80 nm)/SPPO13(30 nm)/Ca(8 nm)/Al(100 nm) (n = 2-4). The best device with PhN-OF(2)-Oxa exhibits a maximum luminance of 14 747 cd/m(2), a maximum current efficiency of 4.61 cd/A, and an external quantum efficiency (EQE) of 3.09% in the blue region. Investigation of the correlation between structures and properties indicates that there is no intramolecular charge transfer (ICT) increase in these molecules with the increase of conjugation length. The device using material of the shortest conjugation length as emitting-layer gives the best electroluminescent (EL) performances in this series of oligofluorenes. PMID:26647284

  19. The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

    SciTech Connect

    Zhuo, Ye

    2011-01-01

    In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this

  20. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    NASA Astrophysics Data System (ADS)

    Xiao, Teng

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxy-thiophene):polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3-hexylthiophene) (P3HT):phenyl-C 61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A

  1. Integration of OLEDs in biomedical sensor systems: design and feasibility analysis

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.

    2010-04-01

    Organic (electronic) Light Emitting Diodes (OLEDs) have been shown to have applications in the field of lighting and flexible display. These devices can also be incorporated in sensors as light source for imaging/fluorescence sensing for miniaturized systems for biomedical applications and low-cost displays for sensor output. The current device capability aligns well with the aforementioned applications as low power diffuse lighting and momentary/push button dynamic display. A top emission OLED design has been proposed that can be incorporated with the sensor and peripheral electrical circuitry, also based on organic electronics. Feasibility analysis is carried out for an integrated optical imaging/sensor system, based on luminosity and spectrum band width. A similar study is also carried out for sensor output display system that functions as a pseudo active OLED matrix. A power model is presented for device power requirements and constraints. The feasibility analysis is also supplemented with the discussion about implementation of ink-jet printing and stamping techniques for possibility of roll to roll manufacturing.

  2. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    SciTech Connect

    Xiao, Teng

    2012-01-01

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A

  3. Modeling Active Mechanosensing in Cell-Matrix Interactions.

    PubMed

    Chen, Bin; Ji, Baohua; Gao, Huajian

    2015-01-01

    Cells actively sense the mechanical properties of the extracellular matrix, such as its rigidity, morphology, and deformation. The cell-matrix interaction influences a range of cellular processes, including cell adhesion, migration, and differentiation, among others. This article aims to review some of the recent progress that has been made in modeling mechanosensing in cell-matrix interactions at different length scales. The issues discussed include specific interactions between proteins, the structure and mechanosensitivity of focal adhesions, the cluster effects of the specific binding, the structure and behavior of stress fibers, cells' sensing of substrate stiffness, and cell reorientation on cyclically stretched substrates. The review concludes by looking toward future opportunities in the field and at the challenges to understanding active cell-matrix interactions. PMID:26098510

  4. Structure and characterization of a white up-emitting OLED on silicon for microdisplays

    NASA Astrophysics Data System (ADS)

    Feng, Tom; Ali, Tariq A.; Ramakrishnan, E. S.; Campos, Richard A.; Howard, Webster E.

    2001-02-01

    We have developed highly efficient, top-emitting white OLED structures suitable for black-and-white or full color microdisplay applications. White light emission was obtained from both singly doped and doubly doped emitter layer structures. However, the double-dopant structure, employing fluorescent blue and red-emitting dyes, generated much higher luminous efficiency than that of the single dopant structure incorporating only the red dopant. For top- emitting, white OLED devices with the double-dopant structure, we have achieved luminous efficiencies of 974 cd/m2, 4.9 cd/A, 1.9 lm/W and an external quantum efficiency of 1.8% when driven at 20 mA/cm2 and 7.9 V. The device has an electroluminescence turn-on voltage of 2.2 V. After turn-on, the current varies as the 14th power of the voltage. The projected operational half-life of these devices is greater than 6000 hrs. This estimate is based on devices that have been continuously driven at a constant current of 20 mA/cm2 for more than 3000 hrs. Based on an up-emitting, double-dopant white OLED structure, we have developed an SXGA-resolution, black-and-white active matrix OLED (AMOLED) on silicon microdisplay. This AMOLED-on-Si has demonstrated real-time video with 256 gray levels and consumes less than 400 mW of power at a brightness of 200 cd/m2.

  5. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED)

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng

    2014-01-01

    A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving

  6. Characterization and optimization of OLED materials and layer sequences

    NASA Astrophysics Data System (ADS)

    Kowalsky, Wolfgang; Becker, Edo; Benstem, Torsten; Johannes, Hans-Hermann; Metzdorf, Dirk; Neuner, H.; Schoebel, Joerg

    2001-02-01

    In recent years, considerable effort has been put into the development of light emitting devices based on evaporated layers of organic semiconductors. To date, matrix displays consisting of organic light emitting diodes (OLEDs) have been brought into marketable commodity. OLED matrix displays offer high contrast, wide viewing angle and a broad temperature range at low power consumption. In contrast to polymer devices, OLEDs are processed in ultrahigh vacuum systems. The organic source materials are sublimated from effusion cells. Due to the sensitivity of organic thin films, device structuring by conventional etching techniques is not feasible and alternative structuring techniques were developed. Electrical current in organic devices is limited by the low conductivity of organic semiconductors and by energy barriers at the metal-organic semiconductor interface. Photoelectric measurements facilitate the determination of barrier height differences between various electrode setups. Further insight in the energy band alignment at organic heterointerfaces are gained by ultraviolet photoelectron spectroscopy (UPS). In addition to widely employed electrical (I-V, C-V) and optical (P-I) measurements, thermally stimulated current (TSC) and luminescence (TSL) allow the characterization and a more detailed understanding of carrier traps and charge transport in organic devices. Energy transfer in a doped OLED emitting layer can be investigated by time-resolved photoluminescence measurements.

  7. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  8. Recent developments in OLED-based chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Zhou, Zhaoqun; Cai, Yuankun; Shinar, Ruth

    2007-09-01

    Recent developments in the structurally integrated OLED-based platform of luminescent chemical and biological sensors are reviewed. In this platform, an array of OLED pixels, which is structurally integrated with the sensing elements, is used as the photoluminescence (PL) excitation source. The structural integration is achieved by fabricating the OLED array and the sensing element on opposite sides of a common glass substrate or on two glass substrates that are attached back-to-back. As it does not require optical fibers, lens, or mirrors, it results in a uniquely simple, low-cost, and potentially rugged geometry. The recent developments on this platform include the following: (1) Enhancing the performance of gas-phase and dissolved oxygen sensors. This is achieved by (a) incorporating high-dielectric TiO II nanoparticles in the oxygen-sensitive Pt and Pd octaethylporphyrin (PtOEP and PdOEP, respectively)- doped polystyrene (PS) sensor films, and (b) embedding the oxygen-sensitive dyes in a matrix of polymer blends such as PS:polydimethylsiloxane (PDMS). (2) Developing sensor arrays for simultaneous detection of multiple serum analytes, including oxygen, glucose, lactate, and alcohol. The sensing element for each analyte consists of a PtOEP-doped PS oxygen sensor, and a solution containing the oxidase enzyme specific to the analyte. Each sensing element is coupled to two individually addressable OLED pixels and a Si photodiode photodetector (PD). (3) Enhancing the integration of the platform, whereby a PD array is also structurally integrated with the OLED array and sensing elements. This enhanced integration is achieved by fabricating an array of amorphous or nanocrystalline Si-based PDs, followed by fabrication of the OLED pixels in the gaps between these Si PDs.

  9. Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)

    SciTech Connect

    Gang Li

    2003-12-12

    Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thus OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.

  10. Development of functional nano-particle layer for highly efficient OLED

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyun; Kim, Min-Hoi; Choi, Haechul; Choi, Yoonseuk

    2015-12-01

    Organic light emitting diodes (OLEDs) are now widely commercialized in market due to many advantages such as possibility of making thin or flexible devices. Nevertheless there are still several things to obtain the high quality flexible OLEDs, one of the most important issues is the light extraction of the device. It is known that OLEDs have the typical light loss such as the waveguide loss, plasmon absorption loss and internal total reflection. In this paper, we demonstrate the one-step processed light scattering films with aluminum oxide nano-particles and polystyrene matrix composite to achieve highly efficient OLEDs. Optical characteristics and surface roughness of light scattering film was optimized by changing the mixing concentration of Al2O3 nano-particles and investigated with the atomic force microscopy and hazemeter, respectively.

  11. Evidence that the Yeast Desaturase Ole1p Exists as a Dimer In Vivo

    SciTech Connect

    Lou, Y.; Shanklin, J.

    2010-06-18

    Desaturase enzymes are composed of two classes, the structurally well characterized soluble class found predominantly in the plastids of higher plants and the more widely distributed but poorly structurally defined integral membrane class. Despite their distinct evolutionary origins, the two classes both require an iron cofactor and molecular oxygen for activity and are inhibited by azide and cyanide, suggesting strong mechanistic similarities. The fact that the soluble desaturase is active as a homodimer prompted us test the hypothesis that an archetypal integral membrane desaturase from Saccharomyces cerevisiae, the {Delta}{sup o}-acyl-Co-A desaturase Ole1p, also exhibits a dimeric organization. Ole1p was chosen because it is one of the best characterized integral membrane desaturase and because it retains activity when fused with epitope tags. FLAG-Ole1p was detected by Western blotting of immunoprecipitates in which anti-Myc antibodies were used for capture from yeast extracts co-expressing Ole1p-Myc and Ole1p-FLAG. Interaction was confirmed by two independent bimolecular complementation assays (i.e. the split ubiquitin system and the split luciferase system). Co-expression of active and inactive Ole1p subunits resulted in an {approx}75% suppression of the accumulation of palmitoleic acid, demonstrating that the physiologically active form of Ole1p in vivo is the dimer in which both protomers must be functional.

  12. Electrochemical Proteolytic Beacon for Detection of Matrix Metalloproteinase Activities

    SciTech Connect

    Liu, Guodong; Wang, Jun; Wunschel, David S.; Lin, Yuehe

    2006-09-27

    This communication describes a novel method for detecting of matrix metalloproteinase-7 activity using a peptide substrate labeled with a ferrocene reporter. The substrate serves as a selective ‘electrochemical proteolytic beacon’ (EPB) for this metalloproteinase. The EPB is immobilized on a gold electrode surface to enable ‘on-off’ electrochemical signaling capability for uncleaved and cleaved events. The EPB is efficiently and selectively cleaved by MMP-7 as measured by the rate of decrease in redox current of ferrocene. Direct transduction of a signal corresponding to peptide cleavage events into an electronic signal thus provides a simple, sensitive route for detecting the MMP activity. The new method allows for identification of the activity of MMP-7 in concentrations as low as 3.4 pM. The concept can be extended to design multiple peptide substrate labeled with different electroactive reporters for assaying multiple MMPs activities.

  13. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  14. Alkali metal sources for OLED devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  15. Full-color OLED on silicon microdisplay

    NASA Astrophysics Data System (ADS)

    Ghosh, Amalkumar P.

    2002-02-01

    eMagin has developed numerous enhancements to organic light emitting diode (OLED) technology, including a unique, up- emitting structure for OLED-on-silicon microdisplay devices. Recently, eMagin has fabricated full color SVGA+ resolution OLED microdisplays on silicon, with over 1.5 million color elements. The display is based on white light emission from OLED followed by LCD-type red, green and blue color filters. The color filters are patterned directly on OLED devices following suitable thin film encapsulation and the drive circuits are built directly on single crystal silicon. The resultant color OLED technology, with hits high efficiency, high brightness, and low power consumption, is ideally suited for near to the eye applications such as wearable PCS, wireless Internet applications and mobile phone, portable DVD viewers, digital cameras and other emerging applications.

  16. Lumican: a new inhibitor of matrix metalloproteinase-14 activity.

    PubMed

    Pietraszek, Katarzyna; Chatron-Colliet, Aurore; Brézillon, Stéphane; Perreau, Corinne; Jakubiak-Augustyn, Anna; Krotkiewski, Hubert; Maquart, François-Xavier; Wegrowski, Yanusz

    2014-11-28

    We previously showed that lumican regulates MMP-14 expression. The aim of this study was to compare the effect of lumican and decorin on MMP-14 activity. In contrast to decorin, the glycosylated form of lumican was able to significantly decrease MMP-14 activity in B16F1 melanoma cells. Our results suggest that a direct interaction occurs between lumican and MMP-14. Lumican behaves as a competitive inhibitor which leads to a complete blocking of the activity of MMP-14. It binds to the catalytic domain of MMP-14 with moderate affinity (KD∼275 nM). Lumican may protect collagen against MMP-14 proteolysis, thus influencing cell-matrix interaction in tumor progression. PMID:25304424

  17. Solid State Lighting OLED Manufacturing Roundtable Summary

    SciTech Connect

    none,

    2010-03-31

    Summary of a meeting of OLED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  18. Series connected OLED structure and fabrication method

    DOEpatents

    Foust, Donald Franklin; Balch, Ernest Wayne; Duggal, Anil Raj; Heller, Christian Maria; Guida, Renato; Nealon, William Francis; Faircloth, Tami Janene

    2006-05-23

    A light emitting device comprises a plurality of organic light emitting diode (OLED) modules. The OLED modules are arranged into a series group where the individual OLED modules are electrically connected in series. The device is configured to be coupled to a power supply. A display is also provided. The display includes a plurality of OLED modules arranged to depict a shape selected from the group consisting of at least one letter, at least one number, at least one image, and a combination thereof.

  19. Rigid and flexible OLEDs: prototypes to applications

    NASA Astrophysics Data System (ADS)

    Monz, Stefan; Wolf, Konrad; Möbius, Hildegard; Blankenbach, Karlheinz

    2011-03-01

    Major achievements of this research project on rigid and flexible OLEDs are: lifetime enhancement by advanced constant luminance (L) operation, integration into textiles and furthermore, the prototype production on flexible PET/ITO substrates of polymer OLEDs. Our OLEDs were manufactured with spin-coating assisted by ink-jet printing. We introduced constant luminance operation (instead of the usual constant current) which was implemented in order to extend the overall lifetime of OLEDs. A threefold lifetime improvement was achieved by maintaining 50% luminance using an advanced microcontroller-based lifetime(LT) model. Various approaches to textile integration and evaluation of environmental issues in clothes (e.g. moisture) were investigated.

  20. Modeling mechanophore activation within a crosslinked glassy matrix

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Min, Kyoungmin; Cremar, Lee D.; Degen, Cassandra M.; Martinez, Todd J.; Aluru, Narayana R.; White, Scott R.; Sottos, Nancy R.

    2013-07-01

    Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.

  1. Matrix metalloproteinase-1 inhibitory activity of Kaempferia pandurata Roxb.

    PubMed

    Shim, Jae-Seok; Choi, Eun-Jung; Lee, Chan-Woo; Kim, Han-Sung; Hwang, Jae-Kwan

    2009-06-01

    Matrix metalloproteinase (MMP)-1 is a superfamily of zinc-dependent endopeptidases that are capable of degrading all components of the extracellular matrix. Kaempferia pandurata extract (0.01-0.5 microg/mL) significantly reduced the expression of MMP-1 and induced the expression of type 1 procollagen at the protein and mRNA levels in a dose-dependent manner. Ultraviolet (UV)-induced MMP-1 initiates cleavage of fibrillar collagen. Once cleaved by MMP-1, collagen can be further degraded by elevated levels of MMP-3 and MMP-9. It was found that increased MMP-1 expression due to UV irradiation was mediated by activation of mitogen-activated protein kinases such as extracellular-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38 kinase. Treatment of K. pandurata extract in the range of 0.01-0.5 microg/mL inhibited the UV-induced phosphorylations of ERK, JNK, and p38, respectively. Moreover, inhibition of phosphorylated ERK, JNK, and p38 by K. pandurata extract resulted in decreased c-Fos expression and c-Jun phosphorylation induced by UV light. The results strongly suggest that K. pandurata is potentially useful for the prevention and treatment of skin aging. PMID:19627209

  2. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    PubMed

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  3. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  4. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  5. Recent progress in flexible OLED displays

    NASA Astrophysics Data System (ADS)

    Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.

    2001-09-01

    Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.

  6. Active-matrix polymer displays made with electroluminescent polymers

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Srdanov, Gordana; Zhang, Belinda; Stevenson, Matthew; Wang, Jian; Chen, Peter; Baggao, Erlinda; Macias, Johnny; Sun, Runguang; McPherson, Charlie; Sant, Paul; Innocenzo, Jeffrey; Stainer, Matthew; O'Regan, Marie B.

    2003-09-01

    Active-matrix organic/polyeric light emitting displays (AMOLEDs/AMPLEDs) are of great potentials for high information content display applications. They offer high brightness, fast response time, high image quality (high contrast, high gray levels and small pixel pitch size) and low power consumption. AMPLEDs are ideal for portable electronic devices such as web-phones, personal data assistants, GPS and handhold computers. AMPLEDs are especially suitable for motion picture applications. Since the image pixels consume power only when they are turned on, and only consume the power necessary for their corresponding brightness, video displays made with AMOLED/AMPLED reduce power consumption and extend display lifetime considerably. Motion picture applications also minimize image retention and optimize display homogeneity. In this presentation, we discuss our recent progress on AMPLEDs and compare their performance with that of AMLCD.

  7. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  8. Using prismatic microstructured films for image blending in OLEDS

    SciTech Connect

    Haenichen, Lukas; Pschenitzka, Florian

    2009-09-08

    An apparatus such as a light source is disclosed which has an OLED device and a microstructured film disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The microstructured film contains features which diffuse light emitted by said OLED device and increase the luminance of the device.

  9. Purification and Characterization of OleA from Xanthomonas campestris and Demonstration of a Non-decarboxylative Claisen Condensation Reaction

    SciTech Connect

    Frias, JA; Richman, JE; Erickson, JS; Wackett, LP

    2011-03-25

    OleA catalyzes the condensation of fatty acyl groups in the first step of bacterial long-chain olefin biosynthesis, but the mechanism of the condensation reaction is controversial. In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli and purified to homogeneity. The purified protein was shown to be active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length. With limiting myristoyl-CoA (C(14)), 1 mol of the free coenzyme A was released/mol of myristoyl-CoA consumed. Using [(14)C] myristoyl-CoA, the other products were identified as myristic acid, 2-myristoylmyristic acid, and 14-heptacosanone. 2-Myristoylmyristic acid was indicated to be the physiologically relevant product of OleA in several ways. First, 2-myristoylmyristic acid was the major condensed product in short incubations, but over time, it decreased with the concomitant increase of 14-heptacosanone. Second, synthetic 2-myristoylmyristic acid showed similar decarboxylation kinetics in the absence of OleA. Third, 2-myristoylmyristic acid was shown to be reactive with purified OleC and OleD to generate the olefin 14-heptacosene, a product seen in previous in vivo studies. The decarboxylation product, 14-heptacosanone, did not react with OleC and OleD to produce any demonstrable product. Substantial hydrolysis of fatty acyl-CoA substrates to the corresponding fatty acids was observed, but it is currently unclear if this occurs in vivo. In total, these data are consistent with OleA catalyzing a non-decarboxylative Claisen condensation reaction in the first step of the olefin biosynthetic pathway previously found to be present in at least 70 different bacterial strains.

  10. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    SciTech Connect

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  11. Monolithic active pixel matrix with binary counters (MAMBO III) ASIC

    SciTech Connect

    Khalid, Farah; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond; /Fermilab

    2010-01-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  12. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus

    PubMed Central

    Dabo, Abdoulaye J.; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2015-01-01

    Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR. PMID:26284919

  13. Host compounds for red phosphorescent OLEDs

    SciTech Connect

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  14. Active matrix metalloproteinase-7 is associated with invasion in buccal squamous cell carcinoma.

    PubMed

    Chuang, Hui-Ching; Su, Chih-Ying; Huang, Hsuang-Ying; Huang, Chao-Cheng; Chien, Chih-Yen; Du, Yung-Ying; Chuang, Jiin-Haur

    2008-12-01

    Protein microarrays have shown that matrix metalloproteinase-7 is upregulated in head and neck squamous cell carcinomas, but its role in local tissue invasion is still uncertain. We investigated the expression of active matrix metalloproteinase-7, using tissue microarray, immunohistochemistry, and western blotting, in oral tissues from 24 patients with buccal squamous cell carcinoma, and correlated the findings with clinicopathological features. Normal buccal tissue samples from the same patients, obtained at sites at least 1 cm from tumor tissue, served as normal controls. Total matrix metalloproteinase-7 was detected on western blots in 9 of 15 (60%) tumor tissue samples and in 2 of 15 (13%) normal mucosal samples; this difference was significant (P=0.008). Moreover, the active matrix metalloproteinase-7 was expressed only in eight of the nine (89%) tumor samples that expressed matrix metalloproteinase-7, and in none of the normal tissue samples, regardless of the expression status of the pro-matrix metalloproteinase-7. Immunostaining of matrix metalloproteinase-7 was observed histologically in both tumor and nonneoplastic epithelium, but immunostaining of active matrix metalloproteinase-7 was present only in tumor nests. Expression of active matrix metalloproteinase-7 was associated with larger tumor size (P=0.022) and was significantly higher in buccal squamous cell carcinoma with adjacent skin or bone invasion (P=0.036). In conclusion, active matrix metalloproteinase-7 expression was associated with more aggressive buccal squamous cell carcinomas. PMID:18931651

  15. OLED microdisplay design and materials

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ali, Tariq; Khayrullin, Ilyas; Ghosh, Amalkumar

    2010-04-01

    AMOLED microdisplays from eMagin Corporation are finding growing acceptance within the military display market as a result of their excellent power efficiency, wide operating temperature range, small size and weight, good system flexibility, and ease of use. The latest designs have also demonstrated improved optical performance including better uniformity, contrast, MTF, and color gamut. eMagin's largest format display is currently the SXGA design, which includes features such as a 30-bit wide RGB digital interface, automatic luminance regulation from -45 to +70°C, variable gamma control, and a dynamic range exceeding 50:000 to 1. This paper will highlight the benefits of eMagin's latest microdisplay designs and review the roadmap for next generation devices. The ongoing development of reduced size pixels and larger format displays (up to WUXGA) as well as new OLED device architecture (e.g. high-brightness yellow) will be discussed. Approaches being explored for improved performance in next generation designs such as lowpower serial interfaces, high frame rate operation, and new operational modes for reduction of motion artifacts will also be described. These developments should continue to enhance the appeal of AMOLED microdisplays for a broad spectrum of near-to-the-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming.

  16. Skills, Activities, Matrixing System: Project SAMS. A Curriculum Process for Students with Profound Disabilities. Final Report.

    ERIC Educational Resources Information Center

    Logan, Kent R.; And Others

    Project SAMS (Skills, Activities, Matrixing System) was designed to develop and validate a curriculum process for educating students with profound disabilities. Central to the 3-year curriculum process was matrixing, or integrating, basic developmental skills across multiple functional, age-appropriate, and integrated activities. Components…

  17. Interaction matrix uncertainty in active (and adaptive) optics.

    PubMed

    Macmynowski, Douglas G

    2009-04-10

    Uncertainty in the interaction matrix between sensors and actuators can lead to performance degradation or instability in control of segmented mirrors (typically the telescope primary). The interaction matrix is ill conditioned, and thus the position estimate required for control can be highly sensitive to small errors in knowledge of the matrix, due to uncertainty or temporal variations. The robustness to different types of uncertainty is bounded here using the small gain theorem and structured singular values. The control is quite robust to moderate uncertainty in actuator gain, sensor gain, or the ratio of sensor dihedral and height sensitivity. However, the control is extremely sensitive to small errors in geometry, with the maximum error that can be tolerated scaling inversely with the number of segments. The same tools can be applied to adaptive optics; however, the interaction matrix here is better conditioned and so uncertainty is less of an issue, with the tolerable error scaling inversely with the square root of the number of actuators. PMID:19363549

  18. Platinum and Gold Complexes for OLEDs.

    PubMed

    Tang, Man-Chung; Chan, Alan Kwun-Wa; Chan, Mei-Yee; Yam, Vivian Wing-Wah

    2016-08-01

    Encouraging efforts on the design of high-performance organic materials and smart architecture during the past two decades have made organic light-emitting device (OLED) technology an important competitor for the existing liquid crystal displays. Particularly, the development of phosphorescent materials based on transition metals plays a crucial role for this success. Apart from the extensively studied iridium(III) complexes with d(6) electronic configuration and octahedral geometry, the coordination-unsaturated nature of d(8) transition metal complexes with square-planar structures has been found to provide intriguing spectroscopic and luminescence properties. This article briefly summarizes the development of d(8) platinum(II) and gold(III) complexes and their application studies in the fabrication of phosphorescent OLEDs. An in-depth understanding of the nature of the excited states has offered a great opportunity to fine-tune the emission colors covering the entire visible spectrum as well as to improve their photophysical properties. With good device engineering, high performance vacuum-deposited OLEDs with external quantum efficiencies (EQEs) of up to 30 % and solution-processable OLEDs with EQEs of up to 10 % have been realized by modifying the cyclometalated or pincer ligands of these metal complexes. These impressive demonstrations reveal that d(8) metal complexes are promising candidates as phosphorescent materials for OLED applications in displays as well as in solid-state lighting in the future. PMID:27573398

  19. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In

  20. Follow-up: Prospective compound design using the 'SAR Matrix' method and matrix-derived conditional probabilities of activity.

    PubMed

    Gupta-Ostermann, Disha; Hirose, Yoichiro; Odagami, Takenao; Kouji, Hiroyuki; Bajorath, Jürgen

    2015-01-01

    In a previous Method Article, we have presented the 'Structure-Activity Relationship (SAR) Matrix' (SARM) approach. The SARM methodology is designed to systematically extract structurally related compound series from screening or chemical optimization data and organize these series and associated SAR information in matrices reminiscent of R-group tables. SARM calculations also yield many virtual candidate compounds that form a "chemical space envelope" around related series. To further extend the SARM approach, different methods are developed to predict the activity of virtual compounds. In this follow-up contribution, we describe an activity prediction method that derives conditional probabilities of activity from SARMs and report representative results of first prospective applications of this approach. PMID:25949808

  1. Active matrix organic light emitting diode (AMOLED)-XL performance and life test results

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Draper, Russell S.; Lum, Alden K.; Ghosh, Amalkumar P.; Prache, Olivier; Wacyk, Ihor

    2009-05-01

    The US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. RDECOM CERDEC NVESD conducted life tests on these displays, finding over 200% lifetime improvement for the OLED-XL devices over the standard OLED displays, publishing results at the 2007 and 2008 SPIE Defense and Security Symposia1,2. In 2008, eMagin Corporation made additional improvements on the lifetime of their displays and developed the first SXGA (1280 × 1024 triad pixels) OLED microdisplay. A summary of the life and performance tests run at CERDEC NVESD will be presented along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be desirable.

  2. Analytical Model of Water Flow in Coal with Active Matrix

    NASA Astrophysics Data System (ADS)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  3. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3.

    PubMed Central

    Cowell, S; Knäuper, V; Stewart, M L; D'Ortho, M P; Stanton, H; Hembry, R M; López-Otín, C; Reynolds, J J; Murphy, G

    1998-01-01

    SW1353 chondrosarcoma cells cultured in the presence of interleukin-1, concanavalin A or PMA secreted procollagenase 3 (matrix metalloproteinase-13). The enzyme was detected in the culture medium by Western blotting using a specific polyclonal antibody raised against recombinant human procollagenase 3. Oncostatin M enhanced the interleukin-1-induced production of procollagenase 3, whereas interleukin-4 decreased procollagenase 3 synthesis. The enzyme was latent except when the cells had been treated with concanavalin A, when a processed form of 48 kDa, which corresponds to the active form, was found in the culture medium and collagenolytic activity was detected by degradation of 14C-labelled type I collagen. The concanavalin A-induced activation of procollagenase 3 coincided with the processing of progelatinase A (matrix metalloproteinase-2) by the cells, as measured by gelatin zymography. In addition, progelatinase B (matrix metalloproteinase-9) was activated when gelatinase A and collagenase 3 were in their active forms. Concanavalin A treatment of SW1353 cells increased the amount of membrane-type-1 matrix metalloproteinase protein in the cell membranes, suggesting that this membrane-bound enzyme participates in an activation cascade involving collagenase 3 and the gelatinases. This cascade was effectively inhibited by tissue inhibitors of metalloproteinases-2 and -3. Tissue inhibitor of metalloproteinases-1, which is a much weaker inhibitor of membrane-type 1 matrix metalloproteinase than tissue inhibitors of metalloproteinases-2 and -3 [Will, Atkinson, Butler, Smith and Murphy (1996) J. Biol. Chem. 271, 17119-17123], was a weaker inhibitor of the activation cascade. PMID:9531484

  4. OLED devices with internal outcoupling

    DOEpatents

    Liu, Jie Jerry; Sista, Srinivas Prasad; Shi, Xiaolei; Zhao, Ri-An; Chichak, Kelly Scott; Youmans, Jeffrey Michael; Janora, Kevin Henry; Turner, Larry Gene

    2015-03-03

    Optoelectronic devices that have enhanced internal outcoupling are disclosed. The devices include a substrate, an anode, a cathode, an electroluminescent layer, and a hole injecting layer. The hole injecting layer includes inorganic nanoparticles that have a bimodal particle size distribution and which are dispersed in an organic matrix.

  5. Blue Oleds: High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives (Adv. Mater. 23/2016).

    PubMed

    Lee, Sae Youn; Adachi, Chihaya; Yasuda, Takuma

    2016-06-01

    High-performance blue thermally activated delayed fluorescence (TADF) emitters containing a phenoxaphosphine oxide or phenoxathiin dioxide acceptor unit coupled with a dimethylacridan donor unit are developed by T. Yasuda and co-workers, as desribed on page 4626. These emitters can allow efficient up-conversion of triplet excitons into singlet excitons, leading to both photoluminescence and internal electroluminescence quantum efficiencies of up to nearly 100%. PMID:27281046

  6. Assessment of OLED displays for vision research

    PubMed Central

    Cooper, Emily A.; Jiang, Haomiao; Vildavski, Vladimir; Farrell, Joyce E.; Norcia, Anthony M.

    2013-01-01

    Vision researchers rely on visual display technology for the presentation of stimuli to human and nonhuman observers. Verifying that the desired and displayed visual patterns match along dimensions such as luminance, spectrum, and spatial and temporal frequency is an essential part of developing controlled experiments. With cathode-ray tubes (CRTs) becoming virtually unavailable on the commercial market, it is useful to determine the characteristics of newly available displays based on organic light emitting diode (OLED) panels to determine how well they may serve to produce visual stimuli. This report describes a series of measurements summarizing the properties of images displayed on two commercially available OLED displays: the Sony Trimaster EL BVM-F250 and PVM-2541. The results show that the OLED displays have large contrast ratios, wide color gamuts, and precise, well-behaved temporal responses. Correct adjustment of the settings on both models produced luminance nonlinearities that were well predicted by a power function (“gamma correction”). Both displays have adjustable pixel independence and can be set to have little to no spatial pixel interactions. OLED displays appear to be a suitable, or even preferable, option for many vision research applications. PMID:24155345

  7. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance. PMID:23667866

  8. Donor-acceptor-structured 1,4-diazatriphenylene derivatives exhibiting thermally activated delayed fluorescence: design and synthesis, photophysical properties and OLED characteristics

    NASA Astrophysics Data System (ADS)

    Takahashi, Takehiro; Shizu, Katsuyuki; Yasuda, Takuma; Togashi, Kazunori; Adachi, Chihaya

    2014-06-01

    A new series of luminescent 1,4-diazatriphenylene (ATP) derivatives with various peripheral donor units, including phenoxazine, 9,9-dimethylacridane and 3-(diphenylamino)carbazole, is synthesized and characterized as thermally activated delayed fluorescence (TADF) emitters. The influence of the donor substituents on the electronic and photophysical properties of the materials is investigated by theoretical calculations and experimental spectroscopic measurements. These ATP-based molecules with donor-acceptor-donor (D-A-D) structures can reduce the singlet-triplet energy gap (0.04-0.26 eV) upon chemical modification of the ATP core, and thus exhibit obvious TADF characteristics in solution and doped thin films. As a demonstration of the potential of these materials, organic light-emitting diodes containing the D-A-D-structured ATP derivatives as emitters are fabricated and tested. External electroluminescence quantum efficiencies above 12% and 8% for green- and sky-blue-emitting devices, respectively, are achieved.

  9. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. PMID:26706769

  10. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    NASA Technical Reports Server (NTRS)

    Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  11. Mechanophore activation in a crosslinked polymer matrix via instrumented indentation

    NASA Astrophysics Data System (ADS)

    Davis, Chelsea; Forster, Aaron; Woodcock, Jeremiah; Wang, Muzhou; Gilman, Jeffrey; Material Measurement Laboratory Team

    Recent advances in mechanically-activated fluorophores will enable a host of unique scientific challenges and opportunities to be addressed. Several mechanophores (MPs) in polymers have been reported, yet the specific deformation required to activate these molecules in a bulk polymer network has not been sufficiently specified. In an effort to develop the mechano-activation/deformation relationship of a spirolactam-based MP, scratches were applied to a MP-functionalized glassy crosslinked material at varying normal loads and lateral displacement rates. This experimental design allowed strain and strain rate effects to be decoupled. The fluorescence activation was then observed with a laser scanning confocal microscope. Areas of elastic and plastic deformation as well as brittle fracture were observed within each scratch as the normal loading of the indenter increased. The fluorescence intensity increased with increasing strain. Contact mechanics models are employed to demonstrate that relatively high degrees of strain are required to initiate the ring-opening activation transition within the spirolactam-based MP. These self-reporting damage sensors can be incorporated within polymeric coatings to allow real time structural health monitoring for a myriad of applications.

  12. Active matrix organic light-emitting diode (AMOLED) performance and life test results

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Draper, Russell S.; Ghosh, Amalkumar; Prache, Olivier; Wacyk, Ihor; Ali, Tariq; Khayrullin, Ilyas

    2011-06-01

    The US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. Through research and development programs from 2007 to 2010 with the US Government, eMagin made additional improvements in OLED life and developed the first SXGA (1280 X 1024 triad pixels) OLED microdisplay. US Army RDECOM CERDEC NVESD conducted life and performance tests on these displays, publishing results at the 2007, 2008, 2009, and 2010 SPIE Defense and Security Symposia1,2,3,4. Life and performance tests have continued through 2010, and this data will be presented along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be desirable.

  13. Active matrix organic light emitting diode (AMOLED) performance and life test results

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Draper, Russell S.; Lum, Alden K.; Ghosh, Amalkumar P.; Prache, Olivier; Wacyk, Ihor

    2010-04-01

    The US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XLTM devices for use in their AMOLED microdisplays for head-worn applications. Through Research and Development programs from 2007 to 2009 with the US Government, eMagin made additional improvements in OLED life and developed the first SXGA (1280 × 1024 triad pixels) OLED microdisplay. US Army RDECOM CERDEC NVESD conducted life and performance tests on these displays, publishing results at the 2007, 2008, and 2009 SPIE Defense and Security Symposia1,2,3. Life and performance tests have continued through 2009, and this data will be presented along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be desirable.

  14. Active matrix organic light emitting diode (AMOLED) performance and life test results

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Draper, Russell S.; Ghosh, Amalkumar; Prache, Olivier; Wacyk, Ihor

    2012-06-01

    The US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. Through Research and Development programs from 2007 to 2011 with the US Government, eMagin made additional improvements in OLED life and developed the first SXGA (1280 X 1024 triad pixels) and WUXGA (1920 X 1200) OLED microdisplays. US Army RDECOM CERDEC NVESD conducted life and performance tests on these displays, publishing results at the 2011, 2010, 2009, 2008, and 2007 SPIE Defense, Security and Sensing Symposia1,2,3,4,5. Life and performance tests have continued through 2012, and this data will be presented along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems by determining where good fits are made and where further development might be desirable.

  15. Active matrix organic light emitting diode (AMOLED) performance and life test results

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Botkin, Michael E.; Draper, Russell S.; Coletta, Jason

    2013-05-01

    The U.S. Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. Through Research and Development programs from 2007 to 2012 with the U.S. Government, eMagin made additional improvements in OLED life and developed the first SXGA (1280 X 1024 with triad pixels) and WUXGA (1920 X 1200 with triad pixels) OLED microdisplays. US Army RDECOM CERDEC NVESD conducted life and performance tests on these displays, publishing results at the 2012, 2011, 2010, 2009, 2008, and 2007 SPIE Defense, Security and Sensing Symposia. Life and performance tests have continued through 2013, and this data will be presented along with a comparison to previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems, where good fits are made, and where further development might be desirable.

  16. OLES : Online Laboratory for Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Anquetin, Sandrine; Beaufil, Xavier; Chaffard, Véronique; Juen, Patrick

    2015-04-01

    One of the major scientific challenges in the 21st century is to improve our understanding on the evolution of the water cycle associated with the climate variability. Main issues concern the prediction of i) the water resource and the access to drinkable water and ii) the extreme events, both droughts and floods. Observation strategies covering a wide range of space and time scales must therefore be set up, while continuing advanced research on the involved mechanisms and developing integrated modeling approaches. Within this general context, the present work relies on three natural observatories, located in West Africa, Worldwide Glaciers, and in Mediterranean region, managed at LTHE (Laboratoire d'étude des Transferts en Hydrologie et Environnement; Grenoble, France) and gathered at OSUG (Observatoire des Sciences de l'Univers; Grenoble, France). Their scientific objectives aim at improving the understanding of the water cycle functioning, providing water and mass balances for multi-scale basin sizes, and evaluating the hydrological impacts of the evolving climate. Water cycle variables (precipitation; soil moisture; snow cover; discharge; air and river temperatures; suspended material; etc …) are observed and recorded in 3 different databases built under specific technical constraints linked to the respective partnerships of the natural observatories. Each of the observatories has its own database, and modeling tools were developed separately leading to important efforts often duplicated. Therefore, there was a need to build an integrated cyber-infrastructure to provide access to data, and to shared tools and models that enable the understanding of the water cycle. This is the project called OLES, for Online Laboratory for Environmental Sciences. Focused on the understanding of the water cycle under contrasted climates, OLES facilitates the work of the scientific community and then, help interactions between the research community and water agencies or

  17. Effect of electrodes properties on OLED performances

    NASA Astrophysics Data System (ADS)

    Petrosino, Mario; Vacca, Paolo; Miscioscia, Riccardo; Nenna, Giuseppe; Minarini, Carla; Rubino, Alfredo

    2007-05-01

    The effects induced by different electrical contacts, both for the anode and for the cathode, have been analyzed in Organic Light Emitting Diodes (OLEDs). The properties of anode electrode, Indium Tin Oxide (ITO), have been varied through different surface treatments allowing roughness control, carbon impurity removal, spikes decrement. These induce changes of ITO surface chemical-physical characteristics as roughness, surface energy and surface polarity. OLEDs manufactured employing treated ITO have showed an improvement of 25 times in luminance. Thermionic injection model has been used to estimate decrement in effective hole barrier at ITO-organic layer. It is shown that this effect is correlated to ITO surface energy. The second step of process optimization has concerned the cathode electrode investigation. In order to perform this task, Al, Ca/Al, Ag, Mg/Ag have been used to realize different ITO/PEDOT:PSS/PF6/Alq 3/Metal OLEDs. Measurements of electrical and optical behaviour have been performed. A thermionic injection model, with and without Schottky barrier decrement, has been used to calculate the change of the cathode electrical barrier.

  18. Update of status of OLED technology

    NASA Astrophysics Data System (ADS)

    Saini, Gurdial S.

    1999-08-01

    Flat-panel displays are basically of two types: light valve (needs an external source of light) and emissive type (generates light at the display surface). The light emitting diode (LED) display is of the emissive type. The inorganic LED displays have been in use for more than 25 years in one form or the other. Because of certain limitations of inorganic materials (such as luminous efficiency and color), LED applications have been limited. The recent discovery (over the past 15 years) of polymer and organic materials has changed LED prospects. It now may become possible to make LED displays that are inexpensive, bright, low-power, large size, and at the same time provide full color. If present research objectives are met, LEDs, especially organic LEDs (OLEDs), may have the potential to revolutionize a certain segment of flat- panel display market. This paper discusses various types of OLED technologies with particular reference to Small Molecule and Conjugated Polymer displays. Some unique versions of these displays such as transparent displays and flexible displays will also be discussed. A part of the discussion will be devoted to various driver circuitry and full color generation schemes. A comprehensive list of various research efforts in OLED technology all over the world will be presented with their differentiating features. The strength of the underlying technology and the challenges facing these types of displays will be discussed.

  19. Multifunction Habitat Workstation/OLED Development

    NASA Technical Reports Server (NTRS)

    Schumacher, Shawn; Salazar, George; Schmidt, Oron

    2013-01-01

    This paper gives a general outline of both a multifunction habitat workstation and the research put into an Organic Light Emitting Diode (OLED) device. It first covers the tests that the OLED device will go through to become flight ready along with reasoning. Guidelines for building an apparatus to house the display and its components are given next, with the build of such following. The three tests the OLED goes through are presented (EMI, Thermal/Vac, Radiation) along with the data recovered. The second project of a multifunction workstation is then discussed in the same pattern. Reasoning for building such a workstation with telepresence in mind is offered. Build guidelines are presented first, with the build timeline following. Building the workstation will then be shown in great detail along with accompanying photos. Once the workstation has been discussed, the versatility of its functions are given. The paper concludes with future views and concepts that can added when the time or technology presents itself.

  20. Luminescent Platinum Compounds: From Molecules to OLEDs

    NASA Astrophysics Data System (ADS)

    Murphy, Lisa; Williams, J. A. Gareth

    Around 30 years ago, much of the research into platinum coordination chemistry was being driven either by research into one-dimensional, electrically conducting molecular materials exploiting the stacking interactions of planar complexes, or by the unprecedented success of cis-Pt(NH3)2Cl2 (cisplatin) as an anticancer agent. At that time, a number of simple platinum(II) compounds were known to be photoluminescent at low temperature or in the solid state, but almost none in fluid solution at room temperature. Since that time, several families of complexes have been discovered that are brightly luminescent, and a number of investigations have shed light on the factors that govern the luminescence efficiencies of Pt(II) complexes. Over the past decade, such studies have been spurred on by the potential application of triplet-emitting metal complexes as phosphors in organic light-emitting devices (OLEDs), where their ability to trap otherwise wasted triplet states can lead to large gains in efficiency. In this contribution, we take a chemist's perspective of the field, overviewing in the first instance the factors that need to be taken into account in the rational design of highly luminescent platinum(II) complexes, and the background to their use in OLEDs. We then consider in more detail the properties of some individual classes, highlighting work from the past 3 years, and including selected examples of their utility in OLEDs and other applications.

  1. Physical process in OLED architectures with transparent carbon nanotube sheets as electrodes

    NASA Astrophysics Data System (ADS)

    Ovalle Robles, Raquel

    There has been a great deal of activity in the development of organic light emitting diodes (OLED's) and polymeric light emitting diodes (PLED's). Research in OLEDs and PLEDs have been having a significant development over the last few years towards commercialization, extended life time, stability, efficiency and new fabrication processes suitable for mass production are some of the topics. The potential for commercialization is high due to their low operating voltage (typically between 2.5 to 5 volts), their high brightness and their ease to process. They are light weight and can be flexible. Furthermore, these devices can be easily color tune to produce red, green and blue colors. Research in this type of electroluminescence devices has advanced rapidly and device prototypes now meet realistic specifications for applications. By proper device engineering these devices can achieve high electroluminescence efficiencies and lifetimes. In this research project we present several methods and procedures that we developed and use to produce OLEDs and PLEDs. We have incorporated quantum dots into OLEDs as emissive dopants that contribute to the control of the spectral distribution of emitted light allowing the production of white OLEDs using both a multilayer structure with emission from multiple layers and a bilayer structure with emission from only the quantum dots. We have also produced PLED devices with a new family of novel PPV polymers achieving high bright efficient devices. OLED structures with transparent carbon nanotube sheets, obtained by dry drawing from a CVD-grown forest have been produced. The devices shown to be very bright and the MCNT sheets are efficient hole-injecting anodes for OLEDs Also, for flexible display applications, there is a need for high strength, flexible materials which can be deposited as transparent films and can act as hole injectors for organic films. By using a hybrid ITO/MWCNT anode onto flexible substrates an enhancement of the

  2. Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein*

    PubMed Central

    Barbolina, Maria V.; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A.; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D.; Penzes, Peter; Ravosa, Matthew J.; Stack, M. Sharon

    2013-01-01

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling. PMID:23152495

  3. Extracellular matrix is a source of mitogenically active platelet-derived growth factor.

    PubMed

    Field, S L; Khachigian, L M; Sleigh, M J; Yang, G; Vandermark, S E; Hogg, P J; Chesterman, C N

    1996-08-01

    Platelet-derived growth factor (PDGF) is a chemotactic and mitogenic agent for fibroblasts and smooth muscle cells and plays a key role in the development of atherosclerotic lesions. PDGF is produced by a number of normal and transformed cell types and occurs as homo- or heterodimers of A and B polypeptide chains. Using Chinese hamster ovary (CHO) cells transfected with various forms of PDGF, we have previously shown that PDGF A(s) (short splice version) is secreted, PDGF A(l) (long splice version) predominantly extracellular matrix-associated, and PDGF B divided between medium, cells, and matrix. In the present study we have demonstrated the mitogenic activity of matrix-localized PDGF in artificial and more physiologically relevant models by culturing Balb/c-3T3 cells (3T3), human foreskin fibroblasts (HFF), and rabbit aortic smooth muscle cells (SMC) on extracellular matrix (ECM) laid down by PDGF-expressing CHO cells and human umbilical vein endothelial cells (HUVEC). These cells responded to the local growth stimulus of PDGF-containing CHO ECM and HUVEC ECM. We showed that 3T3 cells required proteolytic activity to utilize matrix-localized PDGF, as aprotinin and epsilon-ACA inhibited growth and 3T3 cells were shown to possess plasminogen activator activity. HFF and SMC did not appear to require proteolytic activity (including metalloproteinase and serine protease activity) as a prerequisite for mitogenesis but were able to access immobilized PDGF by contact with the matrix. An understanding of the mechanisms whereby the utilization of stored PDGF is controlled in situations of excessive cellular proliferation will aid in the development of therapy for these conditions. PMID:8707868

  4. Steerable patterned OLED backlight for autostereoscopic display application

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Fehse, Karsten; Wartenberg, Philipp; Knobbe, Jens; Scholles, Michael; Richter, Bernd; Hild, Olaf

    2015-09-01

    OLED can be applied as highly efficient and high-resolution patternable illumination source for controllable and steerable backlights, e.g., for use in autostereoscopic displays. To evaluate technology and approach a 3.5" 3D QVGA display prototype has been developed and combines several achievements: large-area OLED backlight, highly-efficient and fast-response OLED top-emitter, striped patterned backlight, individual electronic driving for adaptive backlight control and 3D mobile display application.

  5. High Efficient OLEDs and Their Application to Lighting

    NASA Astrophysics Data System (ADS)

    Komoda, Takuya; Ide, Nobuhiro; Kido, Junji

    Organic Light Emitting Diode (OLED) is one of the strongest candidates for the next generation solid state lighting alternative to conventional incandescent bulbs and fluorescent lamps. There are still a lot of issues to overcome in order to commercialize OLED lighting, but a number of elemental technologies indispensable for OLED lighting such as high efficiency, long lifetime at high luminance and large area uniform emission have been developed.

  6. Extracting and shaping the light of OLED devices

    NASA Astrophysics Data System (ADS)

    Riedel, Daniel; Dlugosch, Julian; Wehlus, Thomas; Brabec, Christoph

    2015-09-01

    Before the market entry of organic light emitting diodes (OLEDs) into the field of general illumination can occur, limitations in lifetime, luminous efficacy and cost must be overcome. Additional requirements for OLEDs used for general illumination may be imposed by workplace glare reduction requirements, which demand limited luminance for high viewing angles. These requirements contrast with the typical lambertian emission characteristics of OLEDs, which result in the same luminance levels for all emission angles. As a consequence, without additional measures glare reduction could limit the maximum possible luminance of lambertian OLEDs to relatively low levels. However, high luminance levels are still desirable in order to obtain high light output. We are presenting solutions to overcome this dilemma. Therefore this work is focused on light-shaping structures for OLEDs with an internal light extraction layer. Simulations of beam-shaping structures and shapes are presented, followed by experimental measurements to verify the simulations of the most promising structures. An investigation of the loss channels has been carried out and the overall optical system efficiency was evaluated for all structures. The most promising light shaping structures achieve system efficiencies up to 80%. Finally, a general illumination application scenario has been simulated. The number of OLEDs needed to illuminate an office room has been deduced from this scenario. By using light-shaping structures for OLEDs, the number of OLEDs needed to reach the mandatory illuminance level for a workplace environment can be reduced to one third compared to lambertian OLEDs.

  7. Matrix fibronectin disruption and altered endothelial cell adhesion induced by activated leukocytes

    SciTech Connect

    Vincent, P.; Richards, P.; Saba, T.; DelVecchio, P.

    1986-03-01

    Sequestration of activated leukocytes (PMN) within the lung may contribute to pulmonary vascular injury following trauma, sepsis, or intravascular coagulation. Monolayers of cultured rat endothelial cells were utilized to evaluate the effect of activated PMNs on endothelial cell attachment and the extracellular fibronectin matrix over a 4 hr incubation interval. Rat endothelial cells were identified by immunofluorescent staining of Factor VIII R:Ag. Endothelial cells were labeled with /sup 51/Cr in order to establish a cell injury assay in which the release of pelletable (cell associated) or non-pelletable activity was measured in the media. PMN activation was verified by chemiluminescence activity. Following phorbol myristate acetate (PMA) the leukocytes aggregated, chemiluminesced, and caused detachment of /sup 51/Cr endothelial cells. Endothelial detachment increased as a function of time with a plateau by 3 hrs. Immunofluorescent analysis of extracellular fibronectin in endothelial cell cultures revealed disruption of the fibrillar matrix fibronectin in association with endothelial cell disadhesion. Matrix fibronectin disruption was not seen with PMNs or PMA alone. Thus, disruption of the fibronectin matrix by released proteases may contribute to endothelial cell detachment.

  8. Kinematic matrix theory and universalities in self-propellers and active swimmers.

    PubMed

    Nourhani, Amir; Lammert, Paul E; Borhan, Ali; Crespi, Vincent H

    2014-06-01

    We describe an efficient and parsimonious matrix-based theory for studying the ensemble behavior of self-propellers and active swimmers, such as nanomotors or motile bacteria, that are typically studied by differential-equation-based Langevin or Fokker-Planck formalisms. The kinematic effects for elementary processes of motion are incorporated into a matrix, called the "kinematrix," from which we immediately obtain correlators and the mean and variance of angular and position variables (and thus effective diffusivity) by simple matrix algebra. The kinematrix formalism enables us recast the behaviors of a diverse range of self-propellers into a unified form, revealing universalities in their ensemble behavior in terms of new emergent time scales. Active fluctuations and hydrodynamic interactions can be expressed as an additive composition of separate self-propellers. PMID:25019773

  9. Fluorescent and Bioluminescent Nanoprobes for In Vitro and In Vivo Detection of Matrix Metalloproteinase Activity.

    PubMed

    Lee, Hawon; Kim, Young-Pil

    2015-06-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix (ECM) and regulate the extracellular microenvironment. Despite the significant role that MMP activity plays in cell-cell and cell-ECM interactions, migration, and differentiation, analyses of MMPs in vitro and in vivo have relied upon their abundance using conventional immunoassays, rather than their enzymatic activities. To resolve this issue, diverse nanoprobes have emerged and proven useful as effective activity-based detection tools. Here, we review the recent advances in luminescent nanoprobes and their applications in in vitro diagnosis and in vivo imaging of MMP activity. Nanoprobes with the purpose of sensing MMP activity consist of recognition and detection units, which include MMP-specific substrates and luminescent (fluorescent or bioluminescent) nanoparticles, respectively. With further research into improvement of the optical performance, it is anticipated that luminescent nanoprobes will have great potential for the study of the functional roles of proteases in cancer biology and nanomedicine. PMID:25817215

  10. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays.

    PubMed

    Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu

    2009-11-24

    We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature. PMID:19842677

  11. Optimisation of gain matrix with UZAWA algorithm—theory and application to an active panel

    NASA Astrophysics Data System (ADS)

    Arrouf, Mhamed; Charon, Willy; Peyraut, François

    2004-03-01

    This paper deals with the gain matrix optimisation in the framework of adaptive mechanical systems with LQG control. The purpose of this optimisation is to provide to the engineer the theoretical tools enabling him to position actuators as well as possible on a structure. It was carried out using a conventional UZAWA algorithm which was adapted to the active system context.

  12. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase

    PubMed Central

    2014-01-01

    Background Cytochrome P450 OleTJE from Jeotgalicoccus sp. ATCC 8456, a new member of the CYP152 peroxygenase family, was recently found to catalyze the unusual decarboxylation of long-chain fatty acids to form α-alkenes using H2O2 as the sole electron and oxygen donor. Because aliphatic α-alkenes are important chemicals that can be used as biofuels to replace fossil fuels, or for making lubricants, polymers and detergents, studies on OleTJE fatty acid decarboxylase are significant and may lead to commercial production of biogenic α-alkenes in the future, which are renewable and more environmentally friendly than petroleum-derived equivalents. Results We report the H2O2-independent activity of OleTJE for the first time. In the presence of NADPH and O2, this P450 enzyme efficiently decarboxylates long-chain fatty acids (C12 to C20) in vitro when partnering with either the fused P450 reductase domain RhFRED from Rhodococcus sp. or the separate flavodoxin/flavodoxin reductase from Escherichia coli. In vivo, expression of OleTJE or OleTJE-RhFRED in different E. coli strains overproducing free fatty acids resulted in production of variant levels of multiple α-alkenes, with a highest total hydrocarbon titer of 97.6 mg·l-1. Conclusions The discovery of the H2O2-independent activity of OleTJE not only raises a number of fundamental questions on the monooxygenase-like mechanism of this peroxygenase, but also will direct the future metabolic engineering work toward improvement of O2/redox partner(s)/NADPH for overproduction of α-alkenes by OleTJE. PMID:24565055

  13. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    PubMed Central

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  14. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs.

    PubMed

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-01-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a "one-way" rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259

  15. Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs

    NASA Astrophysics Data System (ADS)

    Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya

    2015-02-01

    Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a ``one-way'' rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved.

  16. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2.

    PubMed

    Jerrell, Rachel J; Parekh, Aron

    2016-04-01

    ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis. PMID:26826790

  17. Lightweight, Actively Cooled Ceramic Matrix Composite Thrustcells Successfully Tested in Rocket Combustion Lab

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Elam, Sandra K.; Effinger, Michael R.

    2002-01-01

    In a joint effort between the NASA Glenn Research Center and the NASA Marshall Space Flight Center, regeneratively cooled ceramic matrix composite (CMC) thrustcells were developed and successfully tested in Glenn's Rocket Combustion Lab. Cooled CMC's offer the potential for substantial weight savings over more traditional metallic parts. Two CMC concepts were investigated. In the first of these concepts, an innovative processing approach utilized by Hyper-Therm, Inc., allowed woven CMC coolant containment tubes to be incorporated into the complex thruster design. In this unique design, the coolant passages had varying cross-sectional shapes but maintained a constant cross-sectional area along the length of the thruster. These thrusters were silicon carbide matrix composites reinforced with silicon carbide fibers. The second concept, which was supplied by Ceramic Composites, Inc., utilized copper cooling coils surrounding a carbon-fiber-reinforced carbon matrix composite. In this design, a protective gradient coating was applied to the inner thruster wall. Ceramic Composites, Inc.'s, method of incorporating the coating into the fiber and matrix eliminated the spallation problem often observed with thermal barrier coatings during hotfire testing. The focus of the testing effort was on screening the CMC material's capabilities as well as evaluating the performance of the thermal barrier or fiber-matrix interfacial coatings. Both concepts were hot-fire tested in gaseous O2/H2 environments. The test matrix included oxygen-to-fuel ratios ranging from 1.5 to 7 with chamber pressures to 400 psi. Steady-state internal wall temperatures in excess of 4300 F were measured in situ for successful 30-sec test runs. Photograph of actively cooled composite thrustcell fabricated by Hyper-Therm is shown. The thrustcell is a silicon-carbide-fiber-reinforced silicon carbide matrix composite with woven cooling channels. The matrix is formed via chemical vapor infiltration. Photograph of

  18. Stenotrophomonas maltophilia OleC-Catalyzed ATP-Dependent Formation of Long-Chain Z-Olefins from 2-Alkyl-3-hydroxyalkanoic Acids.

    PubMed

    Kancharla, Papireddy; Bonnett, Shilah A; Reynolds, Kevin A

    2016-08-01

    The bacterial pathway of olefin biosynthesis starts with OleA catalyzed "head-to-head" condensation of two CoA-activated long-chain fatty acids to generate (R)-2-alkyl-3-ketoalkanoic acids. A subsequent OleD-catalyzed reduction generates (2R,3S)-2-alkyl-3-hydroxyalkanoic acids. We now show that the final step in the pathway is an OleC-catalyzed ATP-dependent decarboxylative dehydration to form the corresponding Z olefins. Higher kcat /Km values were seen for substrates with longer alkyl chains. All four stereoisomers of 2-hexyl-3-hydroxydecanoic acid were shown to be substrates, and GC-MS and NMR analyses confirmed that the product in each case was (Z)-pentadec-7-ene. LC-MS analysis supported the formation of AMP adduct as an intermediate. The enzymatic and stereochemical course of olefin biosynthesis from long-chain fatty acids by OleA, OleD and OleC is now established. PMID:27238740

  19. Dimerization of matrix metalloproteinase-2 (MMP-2): functional implication in MMP-2 activation.

    PubMed

    Koo, Bon-Hun; Kim, Yeon Hyang; Han, Jung Ho; Kim, Doo-Sik

    2012-06-29

    Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2. PMID:22577146

  20. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis.

    PubMed

    Garratt, Luke W; Sutanto, Erika N; Ling, Kak-Ming; Looi, Kevin; Iosifidis, Thomas; Martinovich, Kelly M; Shaw, Nicole C; Kicic-Starcevich, Elizabeth; Knight, Darryl A; Ranganathan, Sarath; Stick, Stephen M; Kicic, Anthony

    2015-08-01

    Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively correlates with neutrophil elastase activity, disease severity and bronchiectasis in young children with cystic fibrosis.Total MMP-1, MMP-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 levels were measured in bronchoalveolar lavage fluid collected from young children with cystic fibrosis during annual clinical assessment. Active/pro-enzyme ratio of MMP-9 was determined by gelatin zymography. Annual chest computed tomography imaging was scored for bronchiectasis.A higher MMP-9/TIMP-1 ratio was associated with free neutrophil elastase activity. In contrast, MMP-2/TIMP-2 ratio decreased and MMP-1 and MMP-7 were not detected in the majority of samples. Ratio of active/pro-enzyme MMP-9 was also higher in the presence of free neutrophil elastase activity, but not infection. Across the study cohort, both MMP-9/TIMP-1 and active MMP-9 were associated with progression of bronchiectasis.Both MMP-9/TIMP-1 and active MMP-9 increased with free neutrophil elastase and were associated with bronchiectasis, further demonstrating that free neutrophil elastase activity should be considered an important precursor to cystic fibrosis structural disease. PMID:25929954

  1. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders

    PubMed Central

    MURAKAMI, Kohei; MAEDA, Shingo; YONEZAWA, Tomohiro; MATSUKI, Naoaki

    2016-01-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes. PMID:26902805

  2. A nutrient mixture reduces the expression of matrix metalloproteinases in an animal model of spinal cord injury by modulating matrix metalloproteinase-2 and matrix metalloproteinase-9 promoter activities

    PubMed Central

    ZHANG, HONGQI; CHU, GE; PAN, CHAO; HU, JIANZHONG; GUO, CHAOFENG; LIU, JINYANG; WANG, YUXIANG; WU, JIANHUANG

    2014-01-01

    This study aimed to determine whether a novel nutrient mixture (NM), composed of lysine, ascorbic acid, proline, green tea extracts and other micronutrients, attenuates impairments induced by spinal cord injury (SCI) and to investigate the related molecular mechanisms. A mouse model of SCI was established. Thirty-two mice were divided into four groups. The sham group received vehicle only. The SCI groups were treated orally with saline (saline group), a low dose (500 μg 3 times/day) of NM (NM-LD group) or a high dose (2,000 μg 3 times/day) of NM (NM-HD group). The levels of mouse hindlimb movement were determined every day in the first week post-surgery. The protein expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by western blotting. Wild-type and mutant MMP-2- and MMP-9-directed luciferase constructs were generated and their luciferase activities were determined. NM significantly facilitated the recovery of hindlimb movement of the mice in comparison to that in the saline group. The expression levels of MMP-2 in the NM-LD and NM-HD groups were decreased by ~50% compared with the saline group as indicated by western blotting results. The expression levels of MMP-9 in the NM-LD and NM-HD groups were decreased to ~25 and ~10%, respectively. These results suggest that NM significantly inhibits the expression of MMP-2 and MMP-9 proteins. Reverse transcription quantitative polymerase chain reaction results indicated that NM reduced the levels of MMP-2 and MMP-9 mRNA. Furthermore, the luciferase results indicated that site-directed mutagenesis comprising a −1306 C to T (C/T) base change in the MMP-2 promoter and a −1562 C/T base change in the MMP-9 promoter abolished the inhibitory effects of NM on MMP-2 and MMP-9 promoters. These results suggest that NM attenuates SCI-induced impairments in mice movement by negatively affecting the promoter activity of MMP-2 and MMP-9 genes and thus decreasing the expression of MMP-2 and MMP-9

  3. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    SciTech Connect

    Cai, Yuankun

    2010-01-01

    General introduction to OLED basics and OLED-based structurally integrated sensors was provided in chapter 1 and chapter 2. As discussed in chapter 3, OLEDs were developed or improved using novel engineering methods for better charge injection (increased by over 1 order of magnitude) and efficiency. As the excitation sources, these OLEDs have preferred characteristics for sensor applications, including narrowed emission, emission at desired wavelength, and enhanced output for reduced EL background, higher absorption and improved device lifetime. In addition to OLEDs with desired performance, sensor integration requires oxidase immobilization with the sensor film for O2-based biological and chemical sensing. Nanoparticles such as ZnO have large surface area and high isoelectric point (~9.5), which favors enzyme immobilization via physical adsorption as well as Coulombic bonding. In chapter 4, it was demonstrated that ZnO could be used for this purpose, although future work is needed to further bond the ZnO to the sensor film. In chapter 5, single unit sensor was extended to multianalyte parallel sensing based on an OLED platform, which is compact and integrated with silicon photodiodes and electronics. Lactate and glucose were simultaneously monitored with a low limit of detection 0.02 mM, fast response time (~1 minute) and dynamic range from 0-8.6 ppm of dissolved oxygen. As discovered in previous work, the dynamic range covers 0-100% gas phase O2 or 0-40 ppm dissolved oxygen at room temperature. PL decay curve, which is used to extract the decay time, is usually not a simple exponential at high O2 concentration, which indicates that O2 is not equally accessible for different luminescent sites. This creates a challenge for data analysis, which however was successfully processed by stretched exponential as shown in chapter 6. This also provides an insight about the distribution of O2:dye collisional quenching

  4. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized

  5. Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation.

    PubMed Central

    Stack, M S; Gately, S; Bafetti, L M; Enghild, J J; Soff, G A

    1999-01-01

    Angiostatin, a kringle-containing fragment of plasminogen, is a potent inhibitor of angiogenesis. The mechanism(s) responsible for the anti-angiogenic properties of angiostatin are unknown. We now report that human angiostatin blocks plasmin(ogen)-enhanced in vitro invasion of tissue plasminogen activator (t-PA)-producing endothelial and melanoma cells. Kinetic analyses demonstrated that angiostatin functions as a non-competitive inhibitor of extracellular-matrix (ECM)-enhanced, t-PA-catalysed plasminogen activation, with a Ki of 0.9+/-0.03 microM. This mechanism suggests that t-PA has a binding site for the inhibitor angiostatin, as well as for its substrate plasminogen that, when occupied, prevents ternary complex formation between t-PA, plasminogen and matrix protein. Direct binding experiments confirmed that angiostatin bound to t-PA with an apparent Kd [Kd(app)] of 6.7+/-0.7 nM, but did not bind with high affinity to ECM proteins. Together, these data suggest that angiostatin in the cellular micro-environment can inhibit matrix-enhanced plasminogen activation, resulting in reduced invasive activity, and suggest a biochemical mechanism whereby angiostatin-mediated regulation of plasmin formation could influence cellular migration and invasion. PMID:10229661

  6. Virus activated filopodia promote human papillomavirus type 31 uptake from the extracellular matrix

    PubMed Central

    Smith, Jessica L.; Lidke, Diane S.; Ozbun, Michelle A.

    2011-01-01

    Human papillomaviruses (HPVs), etiological agents of epithelial tumors and cancers, initiate infection of basal human keratinocytes (HKs) facilitated by wounding. Virions bind to HKs and their secreted extracellular matrix (ECM), but molecular roles for wounding or ECM binding during infection are unclear. Herein we demonstrate HPV31 activates signals promoting cytoskeletal rearrangements and virion transport required for internalization and infection. Activation of tyrosine and PI3 kinases precedes induction of filopodia whereon virions are transported toward the cell body. Coupled with loss of ECM bound virions this supports a model whereby virus activated filopodial transport contributes to increased and protracted virion uptake into susceptible cells. PMID:18834609

  7. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  8. Urinary matrix metalloproteinase activities: biomarkers for plaque angiogenesis and nephropathy in diabetes.

    PubMed

    McKittrick, Ian B; Bogaert, Yolanda; Nadeau, Kristen; Snell-Bergeon, Janet; Hull, Amber; Jiang, Tao; Wang, Xiaoxin; Levi, Moshe; Moulton, Karen S

    2011-12-01

    Diabetic complications of nephropathy and accelerated atherosclerosis are associated with vascular remodeling and dysregulated angiogenesis. Matrix metalloproteinases (MMP) modify extracellular matrix during vascular remodeling and are excreted in urine of patients with vascular malformation or tumor angiogenesis. We hypothesized that urinary MMP activities would be sensitive biomarkers for vascular remodeling in diabetic complications. Activities of MMP-2, MMP-9, and its complex with neutrophil gelatinase-associated lipocalin (NGAL/MMP-9) were measured by substrate gel zymography in urine from nondiabetic (ND) and type 1 diabetic (T1D) rodents that were susceptible to both T1D-induced plaque angiogenesis and nephropathy, or nephropathy alone. Additionally, these urine activities were measured in ND and T1D adolescents. Urinary MMP-9, MMP-2, and NGAL/MMP-9 activities were increased and more prevalent in T1D compared with ND controls. Urinary MMP-2 activity was detected in mice with T1D-induced plaque neovascularization. In nephropathy models, urinary NGAL/MMP-9 and MMP-9 activities appeared before onset of albuminuria, whereas MMP-2 was absent or delayed. Finally, urinary MMP activities were increased in adolescents with early stages of T1D. Urinary MMP activities may be sensitive, noninvasive, and clinically useful biomarkers for predicting vascular remodeling in diabetic renal and vascular complications. PMID:21921021

  9. Urinary matrix metalloproteinase activities: biomarkers for plaque angiogenesis and nephropathy in diabetes

    PubMed Central

    McKittrick, Ian B.; Bogaert, Yolanda; Nadeau, Kristen; Snell-Bergeon, Janet; Hull, Amber; Jiang, Tao; Wang, Xiaoxin; Levi, Moshe

    2011-01-01

    Diabetic complications of nephropathy and accelerated atherosclerosis are associated with vascular remodeling and dysregulated angiogenesis. Matrix metalloproteinases (MMP) modify extracellular matrix during vascular remodeling and are excreted in urine of patients with vascular malformation or tumor angiogenesis. We hypothesized that urinary MMP activities would be sensitive biomarkers for vascular remodeling in diabetic complications. Activities of MMP-2, MMP-9, and its complex with neutrophil gelatinase-associated lipocalin (NGAL/MMP-9) were measured by substrate gel zymography in urine from nondiabetic (ND) and type 1 diabetic (T1D) rodents that were susceptible to both T1D-induced plaque angiogenesis and nephropathy, or nephropathy alone. Additionally, these urine activities were measured in ND and T1D adolescents. Urinary MMP-9, MMP-2, and NGAL/MMP-9 activities were increased and more prevalent in T1D compared with ND controls. Urinary MMP-2 activity was detected in mice with T1D-induced plaque neovascularization. In nephropathy models, urinary NGAL/MMP-9 and MMP-9 activities appeared before onset of albuminuria, whereas MMP-2 was absent or delayed. Finally, urinary MMP activities were increased in adolescents with early stages of T1D. Urinary MMP activities may be sensitive, noninvasive, and clinically useful biomarkers for predicting vascular remodeling in diabetic renal and vascular complications. PMID:21921021

  10. Activation of AMPK Prevents Monocrotaline-Induced Extracellular Matrix Remodeling of Pulmonary Artery

    PubMed Central

    Li, Shaojun; Han, Dong; Zhang, Yonghong; Xie, Xinming; Ke, Rui; Zhu, Yanting; Liu, Lu; Song, Yang; Yang, Lan; Li, Manxiang

    2016-01-01

    Background The current study was performed to investigate the effect of adenosine monophosphate (AMP) – activated protein kinase (AMPK) activation on the extracellular matrix (ECM) remodeling of pulmonary arteries in pulmonary arterial hypertension (PAH) and to address its potential mechanisms. Material/Methods PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) into Sprague-Dawley rats. Metformin (MET) was administered to activate AMPK. Immunoblotting was used to determine the phosphorylation and expression of AMPK and expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Gelatin zymography was performed to determine the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9. Results Activation of AMPK by MET significantly reduced the right ventricle systolic pressure and the right ventricular hypertrophy in MCT-induced rat PAH model, and partially inhibited the ECM remodeling of pulmonary arteries. These effects were coupled with the decrease of MMP-2/9 activity and TIMP-1 expression. Conclusions This study suggests that activation of AMPK benefits PAH by inhibiting ECM remodeling of pulmonary arteries. Enhancing AMPK activity might have potential value in clinical treatment of PAH. PMID:26978596

  11. Responsibility modulates pain-matrix activation elicited by the expressions of others in pain

    PubMed Central

    Cui, Fang; Abdelgabar, Abdel-Rahman; Keysers, Christian; Gazzola, Valeria

    2015-01-01

    Here we examine whether brain responses to dynamic facial expressions of pain are influenced by our responsibility for the observed pain. Participants played a flanker task with a confederate. Whenever either erred, the confederate was seen to receive a noxious shock. Using functional magnetic resonance imaging, we found that regions of the functionally localized pain-matrix of the participants (the anterior insula in particular) were activated most strongly when seeing the confederate receive a noxious shock when only the participant had erred (and hence had full responsibility). When both or only the confederate had erred (i.e. participant's shared or no responsibility), significantly weaker vicarious pain-matrix activations were measured. PMID:25800210

  12. Flexible active-matrix displays and shift registers based on solution-processed organic transistors.

    PubMed

    Gelinck, Gerwin H; Huitema, H Edzer A; van Veenendaal, Erik; Cantatore, Eugenio; Schrijnemakers, Laurens; van der Putten, Jan B P H; Geuns, Tom C T; Beenhakkers, Monique; Giesbers, Jacobus B; Huisman, Bart-Hendrik; Meijer, Eduard J; Benito, Estrella Mena; Touwslager, Fred J; Marsman, Albert W; van Rens, Bas J E; de Leeuw, Dago M

    2004-02-01

    At present, flexible displays are an important focus of research. Further development of large, flexible displays requires a cost-effective manufacturing process for the active-matrix backplane, which contains one transistor per pixel. One way to further reduce costs is to integrate (part of) the display drive circuitry, such as row shift registers, directly on the display substrate. Here, we demonstrate flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-microm-thick polyimide substrates. The displays can be bent to a radius of 1 cm without significant loss in performance. Using the same process flow we prepared row shift registers. With 1,888 transistors, these are the largest organic integrated circuits reported to date. More importantly, the operating frequency of 5 kHz is sufficiently high to allow integration with the display operating at video speed. This work therefore represents a major step towards 'system-on-plastic'. PMID:14743215

  13. In vivo detecting matrix metalloproteinase (MMP) activity by a genetically engineered fluorescent probe

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Zhihong; Su, Ting; Luo, Qingming

    2007-02-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) enhances tumor invasion and metastasis. To monitor MMP activity, we constructed plasmid that encoded a fluorescent sensor DC, in which an MMP substrate site (MSS) is sandwiched between DsRed2 and ECFP. MMPs are secretory proteins, only acting on the outside of cells; hence, an expressing vector was used that displayed the fluorescent sensor on the cellular surface. The DC was expressed in cells with high secretory MMP, so MSS was cleaved by MMP. Also, GM6001, an MMP inhibitor, causes DsRed2 signals to increase in living cells and on the chick embryo chorioallantoic membrane (CAM). Thus, this fluorescent sensor was able to sensitively monitor MMP activation in vivo. Potential applications for this sensor include high-throughput screening for MMP inhibitors for anti-cancer research, and detailed analysis of the effects of MMP inhibitors.

  14. The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p

    PubMed Central

    De Smet, Cedric H.; Vittone, Elisa; Scherer, Max; Houweling, Martin; Liebisch, Gerhard; Brouwers, Jos F.; de Kroon, Anton I.P.M.

    2012-01-01

    The degree of fatty acid unsaturation, that is, the ratio of unsaturated versus saturated fatty acyl chains, determines membrane fluidity. Regulation of expression of the fatty acid desaturase Ole1p was hitherto the only known mechanism governing the degree of fatty acid unsaturation in Saccharomyces cerevisiae. We report a novel mechanism for the regulation of fatty acid desaturation that is based on competition between Ole1p and the glycerol-3-phosphate acyltransferase Sct1p/Gat2p for the common substrate C16:0-CoA. Deletion of SCT1 decreases the content of saturated fatty acids, whereas overexpression of SCT1 dramatically decreases the desaturation of fatty acids and affects phospholipid composition. Whereas overexpression of Ole1p increases desaturation, co-overexpression of Ole1p and Sct1p results in a fatty acid composition intermediate between those obtained upon overexpression of the enzymes separately. On the basis of these results, we propose that Sct1p sequesters C16:0-CoA into lipids, thereby shielding it from desaturation by Ole1p. Ta­king advantage of the growth defect conferred by overexpressing SCT1, we identified the acyltransferase Cst26p/Psi1p as a regulator of Sct1p activity by affecting the phosphorylation state and overexpression level of Sct1p. The level of Sct1p phosphorylation is increased when cells are supplemented with saturated fatty acids, demonstrating the physiological relevance of our findings. PMID:22323296

  15. Proton Channel Activity of Influenza A Virus Matrix Protein 2 Contributes to Autophagy Arrest

    PubMed Central

    Ren, Yizhong; Feng, Liqiang; Pan, Weiqi; Li, Liang; Wang, Qian; Li, Jiashun; Li, Na; Han, Ling; Zheng, Xuehua; Niu, Xuefeng; Sun, Caijun

    2015-01-01

    Influenza A virus infection can arrest autophagy, as evidenced by autophagosome accumulation in infected cells. Here, we report that this autophagosome accumulation can be inhibited by amantadine, an antiviral proton channel inhibitor, in amantadine-sensitive virus infected cells or cells expressing influenza A virus matrix protein 2 (M2). Thus, M2 proton channel activity plays a role in blocking the fusion of autophagosomes with lysosomes, which might be a key mechanism for arresting autophagy. PMID:26468520

  16. Implementation of advanced matrix corrections for active interrogation of waste drums using the CTEN instrument

    SciTech Connect

    Melton, S.; Estep, R.; Hollas, C.

    1998-12-31

    The combined thermal/epithermal neutron instrument (CTEN) was designed at Los Alamos to improve measurement accuracy and mitigate self shielding effects inherent in the differential dieaway technique (DDT). A major goal in this research effort has been the development of a calibration technique that incorporates recently developed matrix and self-shielding corrections using data generated from additional detectors and new acquisition techniques. A comprehensive data set containing both active and passive measurements was generated using 26 different matrices and comprising a total of 1,400 measurements. In all, 31 flux-and-matrix-dependent parameters, 24 positional parameters, two dieaway times, and a correlated ratio were determined from each of the over 1,400 measurements. A reduced list of matrix indicators, prioritized using the alternating conditional expectation (ACE) algorithm, was used to train a neural network using a generalized regression technique (GRNN) to determine matrix- and position-corrected calibration factors. This paper describes the experimental, analytical, and empirical techniques used to determine the corrected calibration factor for an unknown waste drum. Results from a range of cases are compared with those obtained using a mobile DDT instrument and traditional DDT algorithms.

  17. High-performance OLEDs and their application to lighting

    NASA Astrophysics Data System (ADS)

    Ide, Nobuhiro; Tsuji, Hiroya; Ito, Norihiro; Sasaki, Hiroyuki; Nishimori, Taisuke; Kuzuoka, Yoshikazu; Fujihara, Koki; Miyai, Takao; Komoda, Takuya

    2008-08-01

    Organic light emitting diodes (OLED) are expected to be used in next generation solid state lighting sources serving as an alternative to conventional incandescent bulbs and fluorescent lamps. OLEDs will provide the environmental benefits of possible considerable energy savings and elimination of mercury, as well as some other advantages such as thin flat shape, planar emission, and no UV emission. Recently, important properties of OLEDs such as efficiency and lifetime have been greatly improved. Additionally, for lighting applications, a high color rendering index (CRI) at the desired CIE chromaticity coordinates, high luminance and large area uniform emission, and high stability over long time operation are also required. In this paper, we describe the development and performance of our high CRI OLEDs: the conventional OLED with multiple emissive layers and the multi-unit OLED with only two emissive units (a fluorescent blue emissive unit and a phosphorescent green / red emissive unit). Related technologies for OLED lighting to obtain uniform emission at high luminance in large areas are also described.

  18. Luminance uniformity study of OLED lighting panels depending on OLED device structures.

    PubMed

    Bae, Hyeong Woo; Son, Young Hoon; Kang, Byoung Yeop; Lee, Jung Min; Nam, Hyoungsik; Kwon, Jang Hyuk

    2015-11-30

    This paper describes the luminance uniformity of OLED lighting panels depending on OLED device structures of single emission layer (single-EML), 2-tandem, and 3-tandem. The luminance distribution is evaluated through the circuit simulation and the fabricated panel measurement. In the simulation results with yellow-green color panels of 30 × 80 mm2 emission area, a 3-tandem structure shows the lowest non-uniformity (1.34% at 7.5V), compared to single-EML (5.67% at 2.8V) and 2-tandem (2.78% at 5.3 V) structures at 1,000 cd/m2. The luminance non-uniformity is germane to the OLED conductance showing that the high luminance-current efficiency is of the most importance to achieve the uniform voltage and luminance distribution. In measurement, a 3-tandem structure also achieves the most uniform luminance distribution with non-uniformity of 4.1% while single EML and 2-tandem structures accomplish 9.6%, and 6.4%, respectively, at ~1,000 cd/m2. In addition, the simulation results ensure that a 3-tandem structure panel is allowed to be enlarged the panel size up to about 5,000 mm2 for lower luminance non-uniformity than 10% without any auxiliary metal electrodes. PMID:26698702

  19. Transcriptional Activation of Human Matrix Metalloproteinase-9 Gene Expression by Multiple Coactivators

    PubMed Central

    Zhao, Xueyan; Benveniste, Etty N.

    2008-01-01

    Summary Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme for matrix proteins, chemokines and cytokines, is a major target in cancer and autoimmune diseases since it is aberrantly upregulated. To control MMP-9 expression in pathological conditions, it is necessary to understand the regulatory mechanisms of MMP-9 expression. MMP-9 gene expression is regulated primarily at the transcriptional level. In this study, we investigated the role of multiple coactivators in regulating MMP-9 transcription. We demonstrate that multiple transcriptional coactivators are involved in MMP-9 promoter activation, including CBP/p300, PCAF, CARM1 and GRIP1. Furthermore, enhancement of MMP-9 promoter activity requires the histone acetyltransferase activity of PCAF but not that of CBP/p300, and the methyltransferase activity of CARM1. More importantly, these coactivators are not only able to activate MMP-9 promoter activity independently, but also function in a synergistic manner. Significant synergy was observed among CARM1, p300 and GRIP1, which is dependent on the interaction of p300 and CARM1 with the AD1 and AD2 domains of GRIP1, respectively. This suggests the formation of a ternary coactivator complex on the MMP-9 promoter. Chromatin immunoprecipitation assays demonstrate that these coactivators associate with the endogenous MMP-9 promoter, and that siRNA knockdown of expression of these coactivators reduces endogenous MMP-9 expression. Taken together, these studies demonstrate a new level of transcriptional regulation of MMP-9 expression by the cooperative action of coactivators. PMID:18790699

  20. Structure and Biochemical Properties of the Alkene Producing Cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 Bacterium*

    PubMed Central

    Belcher, James; McLean, Kirsty J.; Matthews, Sarah; Woodward, Laura S.; Fisher, Karl; Rigby, Stephen E. J.; Nelson, David R.; Potts, Donna; Baynham, Michael T.; Parker, David A.; Leys, David; Munro, Andrew W.

    2014-01-01

    The production of hydrocarbons in nature has been documented for only a limited set of organisms, with many of the molecular components underpinning these processes only recently identified. There is an obvious scope for application of these catalysts and engineered variants thereof in the future production of biofuels. Here we present biochemical characterization and crystal structures of a cytochrome P450 fatty acid peroxygenase: the terminal alkene forming OleTJE (CYP152L1) from Jeotgalicoccus sp. 8456. OleTJE is stabilized at high ionic strength, but aggregation and precipitation of OleTJE in low salt buffer can be turned to advantage for purification, because resolubilized OleTJE is fully active and extensively dissociated from lipids. OleTJE binds avidly to a range of long chain fatty acids, and structures of both ligand-free and arachidic acid-bound OleTJE reveal that the P450 active site is preformed for fatty acid binding. OleTJE heme iron has an unusually positive redox potential (−103 mV versus normal hydrogen electrode), which is not significantly affected by substrate binding, despite extensive conversion of the heme iron to a high spin ferric state. Terminal alkenes are produced from a range of saturated fatty acids (C12–C20), and stopped-flow spectroscopy indicates a rapid reaction between peroxide and fatty acid-bound OleTJE (167 s−1 at 200 μm H2O2). Surprisingly, the active site is highly similar in structure to the related P450BSβ, which catalyzes hydroxylation of fatty acids as opposed to decarboxylation. Our data provide new insights into structural and mechanistic properties of a robust P450 with potential industrial applications. PMID:24443585

  1. Polymer OLED White Light Development Program

    SciTech Connect

    Homer Antoniadis; Vi-En Choong; Stelios Choulis; Brian Cumpston; Rahul Gupta; Mathew Mathai; Michael Moyer; Franky So

    2005-12-19

    OSRAM Opto Semiconductors (OSRAM) successfully completed development, fabrication and characterization of the large area, polymer based white light OLED prototype at their OLED Research and Development (R&D) facility in San Jose, CA. The program, funded by the Department of Energy (DOE), consisted of three key objectives: (1) Develop new polymer materials and device architectures--in order to improve the performance of organic light emitters. (2) Develop processing techniques--in order to demonstrate and enable the manufacturing of large area, white light and color tunable, solid state light sources. (3) Develop new electronics and driving schemes for organic light sources, including color-tunable light sources. The key performance goals are listed. A world record efficiency of 25 lm/W was established for the solution processed white organic device from the significant improvements made during the project. However, the challenges to transfer this technology from an R&D level to a large tile format such as, the robustness of the device and the coating uniformity of large area panels, remain. In this regard, the purity and the blend nature of the materials are two factors that need to be addressed in future work. During the first year, OSRAM's Materials and Device group (M&D) worked closely with the major polymer material suppliers to develop the polymer emissive technology. M&D was successful in demonstrating a 7-8 lm/W white light source which was based on fluorescent materials. However, it became apparent that the major gains in efficiency could only be made if phosphorescent materials were utilized. Thus, in order to improve the performance of the resulting devices, the focus of the project shifted towards development of solution-processable phosphorescent light emitting diodes (PHOLEDs) and device architectures. The result is a higher efficiency than the outlined project milestone.

  2. Recent advances in small molecule OLED-on-silicon microdisplays

    NASA Astrophysics Data System (ADS)

    Ghosh, Amalkumar P.; Ali, Tariq A.; Khayrullin, Ilyas; Vazan, Fridrich; Prache, Olivier F.; Wacyk, Ihor

    2009-08-01

    High resolution OLED-on-silicon microdisplay technology is unique and challenging since it requires very small subpixel dimensions (~ 2-5 microns). eMagin's OLED microdisplay is based on white top emitter architecture using small molecule organic materials. The devices are fabricated using high Tg materials. The devices are hermetically sealed with vacuum deposited thin film layers. LCD-type color filters are patterned using photolithography methods to generate primary R, G, B colors. Results of recent improvements in the OLED-on-silicon microdisplay technology, with emphasis on efficiencies, lifetimes, grey scale and CIE color coordinates for SVGA and SXGA resolution microdisplays is presented.

  3. Integration of OLE into the TACL control system

    SciTech Connect

    Bowling, B.; Douglas, D.; Kewisch, J.; Kloeppel, P.; Kraft, G.A. )

    1993-12-25

    OLE, the On-Line Envelope program, is a first-order optics code which was designed to provide fast lattice transfer functions from actual accelerator magnet and cavity control values. This paper addresses the results of a successful integration of OLE into the CEBAF control system, TACL. This marriage provides the user with the ability for obtaining real-time Twiss parameters and transfer functions which reflect the current operational state of the machine. The resultant OLE calculation provides the analytical core for many control and diagnostic functions used at CEBAF, including focusing corrections, orbit corrections, emittance measurements, and beamline analysis.

  4. Effects of ultrasound on the catalytic activity of matrix-bound glucoamylase.

    PubMed

    Schmidt, P; Rosenfeld, E; Millner, R; Schellenberger, A

    1987-09-01

    The effect of ultrasonic waves on the activity of glucoamylase bound to a porous polystyrene matrix is investigated in this Paper. The immobilized enzyme was sonated in a flow cuvette at frequencies between 1 and 11 MHz and sound intensities up to 5 kW m-2. The effect was measured as a function of the type and concentration of the substrate, carrier particle size, flow rate of the substrate solution and ultrasonic frequency. The activity increase is discussed in terms of a possible ultrasonic mechanism. PMID:3116735

  5. Fluorescent and bioluminescent nanoprobes for in vitro and in vivo detection of matrix metalloproteinase activity

    PubMed Central

    Lee, Hawon; Kim, Young-Pil

    2015-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix (ECM) and regulate the extracellular microenvironment. Despite the significant role that MMP activity plays in cell-cell and cell-ECM interactions, migration, and differentiation, analyses of MMPs in vitro and in vivo have relied upon their abundance using conventional immunoassays, rather than their enzymatic activities. To resolve this issue, diverse nanoprobes have emerged and proven useful as effective activity-based detection tools. Here, we review the recent advances in luminescent nanoprobes and their applications in in vitro diagnosis and in vivo imaging of MMP activity. Nanoprobes with the purpose of sensing MMP activity consist of recognition and detection units, which include MMP-specific substrates and luminescent (fluorescent or bioluminescent) nanoparticles, respectively. With further research into improvement of the optical performance, it is anticipated that luminescent nanoprobes will have great potential for the study of the functional roles of proteases in cancer biology and nanomedicine. [BMB Reports 2015; 48(6): 313-318] PMID:25817215

  6. Near Infrared Optical Proteolytic Beacons for In Vivo Imaging of Matrix Metalloproteinase Activity

    PubMed Central

    McIntyre, J. Oliver; Scherer, Randy L.; Matrisian, Lynn M.

    2010-01-01

    The exuberant expression of proteinases by tumor cells has long been associated with the breakdown of the extracellular matrix, tumor invasion, and metastasis to distant organs. There is both epidemiological and experimental data that support a causative role for proteinases of the matrix metalloproteinase (MMP) family in tumor progression. Optical imaging techniques provide an extraordinary opportunity for non-invasive “molecular imaging” of tumor-associated proteolytic activity. The application of optical proteolytic beacons for the detection of specific proteinase activities associated with tumors has several potential purposes: 1) Detection of small, early-stage tumors with increased sensitivity due to the catalytic nature of proteolytic activity, 2) Diagnosis and Prognosis to distinguished tumors that require particularly aggressive therapy or those that will not benefit from therapy, 3) Identification of tumors appropriate for specific anti-proteinase therapeutics and optimization of drug and dose based on determination of target modulation, and 4) as an indicator of efficacy of proteolytically-activated pro-drugs. This chapter describes the synthesis, characterization, and application of reagents that use visible and near infrared fluorescence resonance energy transfer (FRET) fluorophore pairs to detect and measure MMP-referable proteolytic activity in tumors in mouse models of cancer. PMID:20135290

  7. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma.

    PubMed

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma. PMID:26733734

  8. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma

    PubMed Central

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma. PMID:26733734

  9. Classically Activated Macrophages Use Stable Microtubules for Matrix Metalloproteinase-9 (MMP-9) Secretion*

    PubMed Central

    Hanania, Raed; Song Sun, He; Xu, Kewei; Pustylnik, Sofia; Jeganathan, Sujeeve; Harrison, Rene E.

    2012-01-01

    As major effector cells of the innate immune response, macrophages must adeptly migrate from blood to infected tissues. Endothelial transmigration is accomplished by matrix metalloproteinase (MMP)-induced degradation of basement membrane and extracellular matrix components. The classical activation of macrophages with LPS and IFN-γ causes enhanced microtubule (MT) stabilization and secretion of MMPs. Macrophages up-regulate MMP-9 expression and secretion upon immunological challenge and require its activity for migration during the inflammatory response. However, the dynamics of MMP-9 production and intracellular distribution as well as the mechanisms responsible for its trafficking are unknown. Using immunofluorescent imaging, we localized intracellular MMP-9 to small Golgi-derived cytoplasmic vesicles that contained calreticulin and protein-disulfide isomerase in activated RAW 264.7 macrophages. We demonstrated vesicular organelles of MMP-9 aligned along stable subsets of MTs and showed that selective modulation of MT dynamics contributes to the enhanced trafficking of MMP-9 extracellularly. We found a Rab3D-dependent association of MMP-9 vesicles with the molecular motor kinesin, whose association with the MT network was greatly enhanced after macrophage activation. Finally, we implicated kinesin 5B and 3B isoforms in the effective trafficking of MMP-9 extracellularly. PMID:22270361

  10. Active metal-matrix composites with embedded smart materials by ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Hahnlen, Ryan; Dapino, Marcelo J.

    2010-04-01

    This paper presents the development of active aluminum-matrix composites manufactured by Ultrasonic Additive Manufacturing (UAM), an emerging rapid prototyping process based on ultrasonic metal welding. Composites created through this process experience temperatures as low as 25 °C during fabrication, in contrast to current metal-matrix fabrication processes which require temperatures of 500 °C and above. UAM thus provides unprecedented opportunities to develop adaptive structures with seamlessly embedded smart materials and electronic components without degrading the properties that make these materials and components attractive. This research focuses on developing UAM composites with aluminum matrices and embedded shape memory NiTi, magnetostrictive Galfenol, and electroactive PVDF phases. The research on these composites will focus on: (i) electrical insulation between NiTi and Al phases for strain sensors, investigation and modeling of NiTi-Al composites as tunable stiffness materials and thermally invariant structures based on the shape memory effect; (ii) process development and composite testing for Galfenol-Al composites; and (iii) development of PVDF-Al composites for embedded sensing applications. We demonstrate a method to electrically insulate embedded materials from the UAM matrix, the ability create composites containing up to 22.3% NiTi, and their resulting dimensional stability and thermal actuation characteristics. Also demonstrated is Galfenol-Al composite magnetic actuation of up to 54 μ(see manuscript), and creation of a PVDF-Al composite sensor.

  11. Emission enhancement of microlens on OLED with different layer structures

    NASA Astrophysics Data System (ADS)

    Ho, Yu-Hsuan; Fang, Jheng-Hao; Lee, Jiun-Haw; Wei, Mao-Kuo; Lin, Hoang-Yan

    2008-04-01

    Low out-coupling efficiency is one of the most critical problems in organic light-emitting device (OLED) application. Only 20~30% of the emitting light from OLED can propagate into air [1]. Therefore, several methods have been utilized to extract more light from device. Here, we use the microlens array attached on device to couple out wave-guiding mode in the glass substrate. We found that, the luminous enhancement behavior has great dependence on OLED structure. When light emitted in the layered structure of OLED, the wide angle interference and multi-beam interference occurred, and far-field emission profile change simultaneously. For different emission profile, microlens array film shows a different enhancement behavior. For a conventional OLED device, the most critical interference will occur at the electron transport layer (ETL). We fabricated a series of OLEDs with different ETL thicknesses to investigate the influence to the optical properties, such as spectrum, CIE coordinate change, and emission profile at different view angles. By controlling the emission dipole position, we investigate the relation between the emission profile and the efficiency enhancement by microlens array attachment. When increasing the ETL thicknesses from 30nm to 150nm, the weaker micro cavity effect results in broader spectrum and more light extracted. In these devices, the luminous enhancement varies from 25.1% to 51.3%.

  12. Inhibition of matrix metalloproteinase activity in human dentin via novel antibacterial monomer

    PubMed Central

    Li, Fang; Majd, Hessam; Weir, Michael D.; Arola, Dwayne D.; Xu, Hockin H.K.

    2015-01-01

    Objectives Dentin-composite bond failure is caused by factors including hybrid layer degradation, which in turn can be caused by hydrolysis and enzymatic degradation of the exposed collagen in the dentin. The objectives of this study were to investigate a new antibacterial monomer (dimethylaminododecyl methacrylate, DMADDM) as an inhibitor for matrix metalloproteinases (MMPs), and to determine the effects of DMADDM on both soluble recombinant human MMPs (rhMMPs) and dentin matrix-bound endogenous MMPs. Methods Inhibitory effects of DMADDM at six mass% (0.1% to 10%) on soluble rhMMP-8 and rhMMP-9 were measured using a colorimetic assay. Matrix-bound endogenous MMP activity was evaluated in demineralized human dentin. Dentin beams were divided into four groups (n = 10) and incubated in calcium- and zinc-containing media (control medium); or control medium + 0.2% chlorhexidine (CHX); 5% 12-methacryloyloxydodecylpyridinium bromide (MDPB); or 5% DMADDM. Dissolution of dentin collagen peptides was evaluated by mechanical testing in three-point flexure, loss of dentin mass, and a hydroxyproline assay. Results Use of 0.1% to 10% DMADDM exhibited a strong concentration-dependent anti-MMP effect, reaching 90% of inhibition on rhMMP-8 and rhMMP-9 at 5% DMADDM concentration. Dentin beams in medium with 5% DMADDM showed 34% decrease in elastic modulus (vs. 73% decrease for control), 3% loss of dry dentin mass (vs. 28% loss for control), and significantly less solubilized hydroxyproline when compared with control (p < 0.05). Significance The new antibacterial monomer DMADDM was effective in inhibiting both soluble rhMMPs and matrix-bound human dentin MMPs. These results, together with previous studies showing that adhesives containing DMADDM inhibited biofilms without compromising dentin bond strength, suggest that DMADDM is promising for use in adhesives to prevent collagen degradation in hybrid layer and protect the resin-dentin bond. PMID:25595564

  13. Active polarization imaging system to discriminate adaptively with diagonal Mueller matrix

    NASA Astrophysics Data System (ADS)

    Geng, Lixiang; Chen, Qian; Qian, Weixian; Gu, Guohua

    2015-11-01

    A promising method to optimize the polarization state of two-channel active polarization imaging system is presented. In this method, it is seminal that the detecting function of the imaging system is regarded as a discriminant projection of the observed objects' polarization features (elements of the Mueller matrix). The polarization state can be seen as a physical classifier which can be obtained by training samples. The image acquired with the system that has the designed optimal polarization state become discriminative results directly. The effectiveness of the proposed method and the discriminative ability of the optimal polarization state are demonstrated by the experimental results.

  14. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  15. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing.

    PubMed Central

    Saarialho-Kere, U K; Kovacs, S O; Pentland, A P; Olerud, J E; Welgus, H G; Parks, W C

    1993-01-01

    We reported that interstitial collagenase is produced by keratinocytes at the edge of ulcers in pyogenic granuloma, and in this report, we assessed if production of this metalloproteinase is a common feature of the epidermal response in a variety of wounds. In all samples of chronic ulcers, regardless of etiology, and in incision wounds, collagenase mRNA, localized by in situ hybridization, was prominently expressed by basal keratinocytes bordering the sites of active re-epithelialization indicating that collagenolytic activity is a characteristic response of the epidermis to wounding. No expression of mRNAs for 72- and 92-kD gelatinases or matrilysin was seen in keratinocytes, and no signal for any metalloproteinase was detected in normal epidermis. Immunostaining for type IV collagen showed that collagenase-positive keratinocytes were not in contact with an intact basement membrane and, unlike normal keratinocytes, expressed alpha 5 beta 1 receptors. These observations suggest that cell-matrix interactions influence collagenase expression by epidermal cells. Indeed, as determined by ELISA, primary cultures of human keratinocytes grown on basement membrane proteins (Matrigel; Collaborative Research Inc., Bedford, MA) did not express significant levels of collagenase, whereas cells grown on type I collagen produced markedly increased levels. These results suggest that migrating keratinocytes actively involved in re-epithelialization acquire a collagenolytic phenotype upon contact with the dermal matrix. Images PMID:8254040

  16. Prostate Cancer-Associated Kallikrein-Related Peptidase 4 Activates Matrix Metalloproteinase-1 and Thrombospondin-1.

    PubMed

    Fuhrman-Luck, Ruth A; Stansfield, Scott H; Stephens, Carson R; Loessner, Daniela; Clements, Judith A

    2016-08-01

    Prostate cancer metastasis to bone is terminal; thus, novel therapies are required to prevent end-stage disease. Kallikrein-related peptidase 4 (KLK4) is a serine protease that is overproduced in localized prostate cancer and is abundant in prostate cancer bone metastases. In vitro, KLK4 induces tumor-promoting phenotypes; however, the underlying proteolytic mechanism is undefined. The protein topography and migration analysis platform (PROTOMAP) was used for high-depth identification of KLK4 substrates secreted by prostate cancer bone metastasis-derived PC-3 cells to delineate the mechanism of KLK4 action in advanced prostate cancer. Thirty-six putative novel substrates were determined from the PROTOMAP analysis. In addition, KLK4 cleaved the established substrate, urokinase-type plasminogen activator, thus validating the approach. KLK4 activated matrix metalloproteinase-1 (MMP1), a protease that promotes prostate tumor growth and metastasis. MMP1 was produced in the tumor compartment of prostate cancer bone metastases, highlighting its accessibility to KLK4 at this site. KLK4 further liberated an N-terminal product, with purported angiogenic activity, from thrombospondin-1 (TSP1) and cleaved TSP1 in an osteoblast-derived matrix. This is the most comprehensive analysis of the proteolytic action of KLK4 in an advanced prostate cancer model to date, highlighting KLK4 as a potential multifunctional regulator of prostate cancer progression. PMID:27378148

  17. Antimicrobial and antioxidant activities of Cichorium intybus root extract using orthogonal matrix design.

    PubMed

    Liu, Haitao; Wang, Quanzhen; Liu, Yuyan; Chen, Guo; Cui, Jian

    2013-02-01

    Solvent, impregnation time, sonication repetitions, and ultrasonic power were important factors in the process of ultrasound-assisted extraction from chicory (Cichorium intybus) root, while there were no studies about optimizing these 4 factors for extract yield, total phenolic content (TPC), antioxidant, antibacterial, and antifungal activity of the extracts using orthogonal matrix design. The present research demonstrated that the solvent composition played a significant role in the improving extract yield, TPC, antioxidant, and antibacterial activities. The other 3 factors had inequable effect on different purposes, ultrasonic power could improve TPC and antioxidant activity, but long time of extraction lowered antioxidant activity. The TPC increased from 22.34 to 27.87 mg GAE (gallic acid equivalents)/100 g (dry extracts) with increasing solvent polarity. The half inhibition concentration (IC(50,) μg/mL) of the radical scavenging activity of the chicory extracts ranged from 281.00 to 983.33 μg/mL. The content of caffeoylquinic acids of root extract, which was extracted by the optimal combination was 0.104%. Several extracts displayed antibacterial activities against Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, Bacillus subtilis, and Salmonella typhi, while Penicillium sp. and Aspergillus sp. resisted against all the extracts. Combination of 70% ethanol v/v, 24-h impregnation time, 3 sonication rounds, and 300-W ultrasonic input power was found to be the optimal combination for the chicory extract yield, TPC, antioxidant activity, and antibacterial activity. PMID:23387896

  18. Structurally Integrated Photoluminescence-Based Lactate Sensor Using Organic Light Emitting Devices (OLEDs) as the Light Source

    SciTech Connect

    Chengliang Qian

    2006-08-09

    Multianalyte bio(chemical) sensors are extensively researched for monitoring analytes in complex systems, such as blood serum. As a step towards developing such multianalyte sensors, we studied a novel, structurally integrated, organic light emitting device (OLED)-based sensing platform for detection of lactate. Lactate biosensors have attracted numerous research efforts, due to their wide applications in clinical diagnosis, athletic training and food industry. The OLED-based sensor is based on monitoring the oxidation reaction of lactate, which is catalyzed by the lactate oxidase (LOX) enzyme. The sensing component is based on an oxygen-sensitive dye, Platinum octaethyl porphyrin (PtOEP), whose photoluminescence (PL) lifetime {tau} decreases as the oxygen level increases. The PtOEP dye was embedded in a thin film polystyrene (PS) matrix; the LOX was dissolved in solution or immobilized in a sol-gel matrix. {tau} was measured as a function of the lactate concentration; as the lactate concentration increases, {tau} increases due to increased oxygen consumption. The sensors performance is discussed in terms of the detection sensitivity, dynamic range, and response time. A response time of {approx}32 sec was achieved when the LOX was dissolved in solution and kept in a closed cell. Steps towards development of a multianalyte sensor array using an array of individually addressable OLED pixels were also presented.

  19. TOPICAL REVIEW: Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Shinar, Ruth

    2008-07-01

    The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ~2 × 105 h (~23 yr) at ~150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor.

  20. Novel Smart Windows Based on Transparent Phosphorescent OLEDs

    SciTech Connect

    Brian D'Andrade; Stephen Forest

    2006-09-15

    In this program, Universal Display Corporation (UDC) and Princeton University developed the use of white transparent phosphorescent organic light emitting devices (PHOLEDs{trademark}) to make low-cost ''transparent OLED (TOLED) smart windows'', that switch rapidly from being a highly efficient solid-state light source to being a transparent window. PHOLEDs are ideal for large area devices, and the UDC-Princeton team has demonstrated white PHOLEDs with efficiencies of >24 lm/W at a luminance of 1,000 cd/m{sup 2}. TOLEDs have transparencies >70% over the visible wavelengths of light, but their transparency drops to less than 5% for wavelengths shorter than 350 nm, so they can also be used as ultraviolet (UV) light filters. In addition to controlling the flow of UV radiation, TOLEDs coupled with an electromechanical or electrically activated reflecting shutter on a glass window can be employed to control the flow of heat from infrared (IR) radiation by varying the reflectance/transparency of the glass for wavelengths greater than 800nm. One particularly attractive shutter technology is reversible electrochromic mirrors (REM). Our goal was therefore to integrate two innovative concepts to meet the U.S. Department of Energy goals: high power efficiency TOLEDs, plus electrically controlled reflectors to produce a ''smart window''. Our efforts during this one year program have succeeded in producing a prototype smart window shown in the Fig. I, below. The four states of the smart window are pictured: reflective with lamp on, reflective with lamp off, transparent with lamp on, and transparent with lamp off. In the transparent states, the image is an outdoor setting viewed through the window. In the reflective states, the image is an indoor setting viewed via reflection off the window. We believe that the integration of our high efficiency white phosphorescent TOLED illumination source, with electrically activated shutters represents an innovative low-cost approach to

  1. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  2. Alpha1-antichymotrypsin activity correlates with and may modulate matrix metalloproteinase-9 in human acute wounds.

    PubMed

    Reiss, Matthew J; Han, Yuan-Ping; Garner, Warren L

    2009-01-01

    Matrix metalloproteinase-9 (MMP-9) plays a central role in many physiologic processes including acute and the chronic wounds. MMP-9 is not routinely expressed in healthy tissues but is promptly expressed as a proenzyme and converted into active enzyme after tissue injury. The mechanisms involved, including the activators and inhibitors for this enzyme in human tissue remain largely obscure. We recently identified alpha1-antichymotrypsin (alpha1-ACT), an acute phase factor, as a potent inhibitor controlling activation of pro-MMP-9 by human skin. The aim of this study is to establish the clinical relevance of the inhibitor in cutaneous wound healing. Fluids from acute burn blisters and conditioned media from skin explants of burn patients were analyzed. We observed that the presence pro-MMP-9 and its activation correlated with the proximity to and degree of injury. Early after trauma, massive levels of wound alpha1-ACT were associated with an absence of pro-MMP-9 activation. Conversely, the active MMP-9 occurs simultaneously with inactivation of alpha1-ACT. Our results suggest a role for alpha1-ACT as a physiologic inhibitor of MMP-9 activation in human wound healing. PMID:19660051

  3. Universal Host Materials for High-Efficiency Phosphorescent and Delayed-Fluorescence OLEDs.

    PubMed

    Li, Wei; Li, Jiuyan; Wang, Fang; Gao, Zhuo; Zhang, Shufen

    2015-12-01

    A series of bipolar hosts, namely, 5-(2-(9H-carbazol-9-yl)-phenyl)-1,3-dipyrazolbenzene (o-CzDPz), 5-(3-(9H-carbazol-9-yl)-phenyl)-1,3-dipyrazolbenzene (m-CzDPz), 5-(9-phenyl-9H-carbazol-3-yl)-1,3-dipyrazolbenzene (3-CzDPz), and 5-(3,5-di(9H-carbazol-9-yl)-phenyl)-1,3-dipyrazolbenzene (mCPDPz), are developed for phosphorescent and thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs). They are designed by selecting pyrazole as n-type unit and carbazole as p-type one. The triplet energy (E(T)), the frontier molecular orbital level, and charge transporting abilities, are adjusted by varying the molar ratio of pyrazole to carbazole and the linking mode between them. They have high E(T) values of 2.76-3.02 eV. Their electroluminescence performance is evaluated by fabricating both phosphorescent and TADF devices with blue or green emitters. The m-CzDPz hosted blue phosphorescent OLEDs achieves high efficiency of 48.3 cd A(-1) (26.8%), the 3-CzDPz hosted green phosphorescent device exhibits 91.2 cd A(-1) (29.0%). The blue and green TADF devices with 3-CzDPz host also reach high efficiencies of 26.2 cd A(-1) (15.8%) and 41.1 cd A(-1) (13.3%), respectively. The excellent performance of all these OLEDs verifies that these pyrazole-based bipolar compounds are capable of being universal host materials for OLED application. The influence of molar ratio of n-type unit to p-type one and the molecular conformation of these hosts on their device performance is discussed and interpreted. PMID:26544965

  4. Chromium liquid waste inertization in an inorganic alkali activated matrix: leaching and NMR multinuclear approach.

    PubMed

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-04-01

    A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈ 2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process--from the precursor dissolution to the final geopolymer matrix hardening--of different geopolymers containing a waste amount ranging from 3 to 20%wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of TOT bonds (where T is Al or Si) by (29)Si and (27)Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers containing high amounts of waste (10-20%wt). The results show the formation of a stable matrix after only 15 days independently on the waste amount introduced; the longer curing times increase the matrices stabilities and their ability to immobilize chromium cations. The maximum amount of waste that can be inertized is around 10 wt% after a curing time of 28 days

  5. Cost-Effective Force Field Tailored for Solid-Phase Simulations of OLED Materials.

    PubMed

    Moral, M; Son, W-J; Sancho-García, J C; Olivier, Y; Muccioli, L

    2015-07-14

    A united atom force field is empirically derived by minimizing the difference between experimental and simulated crystal cells and melting temperatures for eight compounds representative of organic electronic materials used in OLEDs and other devices: biphenyl, carbazole, fluorene, 9,9'-(1,3-phenylene)bis(9H-carbazole)-1,3-bis(N-carbazolyl)benzene (mCP), 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (pCBP), phenazine, phenylcarbazole, and triphenylamine. The force field is verified against dispersion-corrected DFT calculations and shown to also successfully reproduce the crystal structure for two larger compounds employed as hosts in phosphorescent and thermally activated delayed fluorescence OLEDs: N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPD), and 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBI). The good performances of the force field coupled to the large computational savings granted by the united atom approximation make it an ideal choice for the simulation of the morphology of emissive layers for OLED materials in crystalline or glassy phases. PMID:26575772

  6. Serum matrix metalloproteinase‐3 levels correlate with disease activity in relapsing‐remitting multiple sclerosis

    PubMed Central

    Kanesaka, T; Mori, M; Hattori, T; Oki, T; Kuwabara, S

    2006-01-01

    Background Adhesion molecules and matrix metalloproteinases (MMPs) are known to be relevant to the ongoing development and disappearance of areas of demyelination in the white matter of the CNS of multiple sclerosis (MS) patients. This study examined whether serum matrix metalloproteinase‐3 (MMP‐3) levels correlate with disease activity in MS. Methods Serum MMP‐3 levels in 47 consecutive patients with relapsing‐remitting MS were measured by immunoassay every 4 weeks over a 15 month period. Results During the study period, 48 clinical relapses occurred. Serum MMP‐3 levels within 1 month of relapse were significantly higher than during the remission phase. Sequential analysis showed that serum MMP‐3 levels had increased transiently at the time of clinical relapse but returned to the normal range within a month. Conclusions Circulatory MMP‐3 levels are correlated with disease activity in relapsing‐remitting MS. This may contribute to the breakdown of the blood‐brain barrier at the time of relapse. PMID:16421119

  7. Active-matrix organic light-emitting displays on flexible metal foils

    NASA Astrophysics Data System (ADS)

    Chuang, T. K.; Jamshidi Roudbari, A.; Troccoli, M. N.; Chang, Y. L.; Reed, G.; Hatalis, M.; Spirko, J.; Klier, K.; Preis, S.; Pearson, R.; Najafov, H.; Biaggio, I.; Afentakis, T.; Voutsas, A.; Forsythe, E.; Shi, J.; Blomquist, S.

    2005-05-01

    This paper describes the development of a 3.5 inch diagonal Active Matrix Organic Light Emitting Diode Display on flexible metal foils. The active matrix array had the VGA format and was fabricated using the polysilicon TFT technology. The advantages that the metal foil substrates offer for flexible display applications will first be discussed, followed by a discussion on the multilayer coatings that were investigated in order to achieve a high quality insulating layer on the metal foil substrate prior to TFT fabrication. Then the polysilicon TFT device performance will be presented as a function of the polysilicon crystallization method. Both laser crystallized polysilicon and solid phased crystallized polysilicon films were investigated for the TFT device fabrication. Due to the opaque nature of the metal foil substrates the display had a top emission structure. Both small molecule and polymer based organic material were investigated for the display emissive part. The former were evaporated while the latter were applied by spin-cast. Various transparent multi-layer metal films were investigated as the top cathode. The approach used to package the finished AMOLED display in order to protect the organic layers from environmental degradation will be described. The display had integrated polysilicon TFT scan drivers consisting of shift registers and buffers but external data drivers. The driving approach of the display will be discussed in detail. The performance of the finished display will be discussed as a function of the various materials and fabrication processes that were investigated.

  8. Gelatinase activity of matrix metalloproteinases in the cerebrospinal fluid of various patient populations.

    PubMed

    Valenzuela, M A; Cartier, L; Collados, L; Kettlun, A M; Araya, F; Concha, C; Flores, L; Wolf, M E; Mosnaim, A D

    1999-01-01

    We have studied the enzymatic gelatinolytic activity of matrix metalloproteinases (MMPs) present in cerebrospinal fluid (CSF) of samples obtained from 67 individuals, twenty-one nonneurological patients (considered controls) and 46 subjects with various neurological disorders e.g., vascular lesions, demyelination, inflammatory, degenerative and prion diseases. Biochemical characterization of MMPs, a family of neutral proteolytic enzymes involved in extracellular matrix modeling, included determination of substrate specificity and Ca+2 dependency, as well as the effects of protease inactivators, carboxylic and His (histidine) residue modifiers, and antibiotics. Whereas all CSF samples expressed MMP-2 (gelatinase A) activity, it corresponded in most cases (normal and pathological samples) to its latent form (proenzyme; pMMP-2). In general, inflammatory neurological diseases (especially meningitis and neurocisticercosis) were associated with the presence of a second enzyme, MMP-9 (or gelatinase B). Whereas MMP-9 was found in the CSF of every tropical spastic paraparesis patient studied, its presence in samples from individuals with vascular lesions was uncommon. Patients blood-brain barrier damage was ascertained by determining total CSF protein content using both, the conventional polyacrylamide gel electrophoresis procedure under denaturing conditions and capillary zone electrophoresis. PMID:10604277

  9. Regulation of membrane-type 1 matrix metalloproteinase activity by vacuolar H+-ATPases.

    PubMed Central

    Maquoi, Erik; Peyrollier, Karine; Noël, Agnès; Foidart, Jean-Michel; Frankenne, Francis

    2003-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a key enzyme in normal development and malignant processes. The regulation of MT1-MMP activity on the cell surface is a complex process involving autocatalytic processing, tissue inhibitor of MMPs (TIMP) binding and constitutive internalization. However, the fate of internalized MT1-MMP is not known. Acidification of intracellular vacuolar compartments is essential for membrane trafficking, protein sorting and degradation. This acidification is controlled by vacuolar H(+)-ATPases, which can be selectively inhibited by bafilomycin-A(1). Here, we treated human tumour cell lines expressing MT1-MMP with bafilomycin-A(1), and analysed its effects on MT1-MMP activity, internalization and processing. We show that the activity of MT1-MMP on the cell surface is constitutively down-regulated through a vacuolar H(+)-ATPase-dependent degradation process. Blockade of this degradation caused the accumulation of TIMP-free active MT1-MMP molecules on the cell surface, although internalization was not affected. As a consequence of this impaired degradation, pro-MMP-2 activation was strongly enhanced. This study demonstrates that the catalytic activity of MT1-MMP on the cell surface is regulated through a vacuolar H(+)-ATPase-dependent degradation process. PMID:12667140

  10. Hospital acquired pneumonia with high-risk bacteria is associated with increased pulmonary matrix metalloproteinase activity

    PubMed Central

    Schaaf, Bernhard; Liebau, Cornelia; Kurowski, Volkhard; Droemann, Daniel; Dalhoff, Klaus

    2008-01-01

    Background Neutrophil products like matrix metalloproteinases (MMP), involved in bacterial defence mechanisms, possibly induce lung damage and are elevated locally during hospital- acquired pneumonia (HAP). In HAP the virulence of bacterial species is known to be different. The aim of this study was to investigate the influence of high-risk bacteria like S. aureus and pseudomonas species on pulmonary MMPconcentration in human pneumonia. Methods In 37 patients with HAP and 16 controls, MMP-8, MMP-9 and tissue inhibitors of MMP (TIMP) were analysed by ELISA and MMP-9 activity using zymography in bronchoalveolar lavage (BAL). Results MMP-9 activity in mini-BAL was increased in HAP patients versus controls (149 ± 41 vs. 34 ± 11, p < 0.0001). In subgroup analysis, the highest MMP concentrations and activity were seen in patients with high-risk bacteria: patients with high-risk bacteria MMP-9 1168 ± 266 vs. patients with low-risk bacteria 224 ± 119 ng/ml p < 0.0001, MMP-9 gelatinolytic activity 325 ± 106 vs. 67 ± 14, p < 0.0002. In addition, the MMP-8 and MMP-9 concentration was associated with the state of ventilation and systemic inflammatory marker like CRP. Conclusion Pulmonary MMP concentrations and MMP activity are elevated in patients with HAP. This effect is most pronounced in patients with high-risk bacteria. Artificial ventilation may play an additional role in protease activation. PMID:18700005

  11. Nascent Integrin Adhesions Form on All Matrix Rigidities after Integrin Activation.

    PubMed

    Changede, Rishita; Xu, Xiaochun; Margadant, Felix; Sheetz, Michael P

    2015-12-01

    Integrin adhesions assemble and mature in response to ligand binding and mechanical factors, but the molecular-level organization is not known. We report that ∼100-nm clusters of ∼50 β3-activated integrins form very early adhesions under a wide variety of conditions on RGD surfaces. These adhesions form similarly on fluid and rigid substrates, but most adhesions are transient on rigid substrates. Without talin or actin polymerization, few early adhesions form, but expression of either the talin head or rod domain in talin-depleted cells restores early adhesion formation. Mutation of the integrin binding site in the talin rod decreases cluster size. We suggest that the integrin clusters constitute universal early adhesions and that they are the modular units of cell matrix adhesions. They require the association of activated integrins with cytoplasmic proteins, in particular talin and actin, and cytoskeletal contraction on them causes adhesion maturation for cell motility and growth. PMID:26625956

  12. Optical characteristics of the OLED with microlens array film attachment

    NASA Astrophysics Data System (ADS)

    Lin, Hoang-Yan; Lee, Jiun-Haw; Wei, Mao-Kuo; Chen, Kuan-Yu; Hsu, Sheng-Chih; Ho, Yu-Hsuan; Lin, Chung-Yu

    2007-09-01

    We investigated the luminance enhancement, spectral shift and image blur of the OLED with the microlens array film (MAF) attachment experimentally and theoretically. Higher density, larger curvature, and smaller diameter of the microlenses extracted more light from the substrate mode. The maximum improvements of the luminance at the normal direction and the total power were 42.5% (80%) and 45% (85%) from our experimental (simulation) results, respectively. The differences between the theoretical and experimental results may come from the non-Lambertian radiation of OLED and the imperfection of the microlens array film. From observing the planar OLED, the peak wavelength is blue-shifted and the full width at the half maximum (FWHM) decreased with respect to increasing viewing angles due to the microcavity effect. When the MAF was attached, the spectral peak had a further blue shift (5 to 10 nm at different viewing angles) compared to that of the planar OLED and it came from the light extraction of the MAF from the substrate mode. We also quantitatively investigated the "blur width" of the OLED with MAF attachment. Higher image blur was observed as accompanied with higher extraction efficiency which showed a tradeoff between the image quality and extraction efficiency. It means that the MAF attachment is more suitable for OLED lighting application, rather than display application. To reduce the image blur and keep the high extraction efficiency at the same time, we re-designed the arrangement of the microlens arrays on the film. In our optimized case, we found that the blur width can be reduced from 79 μm to 9 μm, while the extraction efficiency is kept nearly the same. It shows a possibility to use the microlens array film on real OLED display for improving the extraction efficiency without image quality degradation.

  13. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach

    NASA Astrophysics Data System (ADS)

    Roos, Björn O.; Taylor, Peter R.; Si≐gbahn, Per E. M.

    1980-05-01

    A density matrix formulation of the super-CI MCSCF method is presented. The MC expansion is assumed to be complete in an active subset of the orbital space, and the corresponding CI secular problem is solved by a direct scheme using the unitary group approach. With a density matrix formulation the orbital optimization step becomes independent of the size of the CI expansion. It is possible to formulate the super-CI in terms of density matrices defined only in the small active subspace; the doubly occupied orbitals (the inactive subspace) do not enter. Further, in the unitary group formalism it is straightforward and simple to obtain the necessary density matrices from the symbolic formula list. It then becomes possible to treat very long MC expansions, the largest so far comprising 726 configurations. The method is demonstrated in a calculation of the potential curves for the three lowest states ( 1Σ +g, 3Σ +u and 3Π g) of the N 2 molecule, using a medium-sized gaussian basis set. Seven active orbitals were used yielding the following results: De: 8.76 (9.90), 2.43 (3.68) and 3.39 (4.90) eV; re: 1.108 (1.098), 1.309 (1.287) and 1.230 (1.213) Å; ω e: 2333 (2359), 1385 (1461) and 1680 (1733) cm -1, for the three states (experimental values within parentheses). The results of these calculations indicate that it is important to consider not only the dissociation limit but also the united atom limit in partitioning the occupied orbital space into an active and an inactive part.

  14. [Regulation of biochar on matrix enzyme activities and microorganisms around cucumber roots under continuous cropping].

    PubMed

    Zou, Chun-jiao; Zhang, Yong-yong; Zhang, Yi-ming; Guo, Xiao-ou; Li, Ming-jing; Li, Tian-lai

    2015-06-01

    The effects of addition of biochar on the matrix enzymes activity, microorganisms population and microbial community structure were evaluated under cucumber continuous cropping for 6 years (11 rotations). Cucumbers were grown in pots in greenhouse with 5% or 3% of medium (by mass) substituted with biochar. The control consisted of medium alone without biochar. The results showed that the activity of peroxidase was significantly improved to the level of the first rotation crop form 30 to 120 d after planting in both biochar treatments, with the effect of 5% biochar being more significant than that of 3% biochar. However, the neutral phosphatase activity was markedly reduced after biochar treatment. The addition of 5% biochar had significant regulation effect on the activities of invertase and urease from 30 to 90 d after planting, while the addition of 3% biochar had little effect. The populations of bacteria and actinomycetes were increased and the fungi population was reduced in both biochar treatments from 30 to 90 d after planting, and the effect of 5% biochar was more significant than that of 3% biochar. Meanwhile, the addition of biochar significantly increased the diversity of the bacterial community structure. In summary, biochar had obvious regulation effect on soil enzyme activity, microorganism quantity and microbial community in continuous cropping nutrition medium. PMID:26572031

  15. Exploration of the Zinc Finger Motif in Controlling Activity of Matrix Metalloproteinases

    PubMed Central

    2015-01-01

    Discovering ways to control the activity of matrix metalloproteinases (MMPs), zinc-dependent enzymes capable of degrading extracellular matrix proteins, is an important field of cancer research. We report here a novel strategy for assembling MMP inhibitors on the basis of oligopeptide ligands by exploring the pattern known as the zinc finger motif. Advanced molecular modeling tools were used to characterize the structural binding motifs of experimentally tested MMP inhibitors, as well as those of newly proposed peptidomimetics, in their zinc-containing active sites. The results of simulations based on the quantum mechanics/molecular mechanics (QM/MM) approach and Car–Parrinello molecular dynamics with QM/MM potentials demonstrate that, upon binding of Regasepin1, a known MMP-9 inhibitor, the Zn2+(His3) structural element is rearranged to the Zn2+(Cys2His2) zinc finger motif, in which two Cys residues are borrowed from the ligand. Following consideration of the crystal structure of MMP-2 with its inhibitor, the oligopeptide APP-IP, we proposed a new peptidomimetic with two replacements in the substrate, Tyr3Cys and Asp6Cys. Simulations show that this peptide variant blocks an enzyme active site by the Zn2+(Cys2His2) zinc finger construct. Similarly, a natural substrate of MMP-2, Ace-Gln-Gly ∼ Ile-Ala-Gly-Nme, can be converted to an inhibiting compound by two replacements, Ile by Cys and Gly by the d isomer of Cys, favoring formation of the zinc finger motif. PMID:25375834

  16. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, James F

    2008-06-01

    Today there exists only one FDA-approved treatment for ischemic stroke; i.e., the serine protease tissue-type plasminogen activator (tPA). In the aftermath of the failed stroke clinical trials with the nitrone spin trap/radical scavenger, NXY-059, a number of articles raised the question: are we doing the right thing? Is the animal research truly translational in identifying new agents for stroke treatment? This review summarizes the current state of affairs with plasminogen activators in thrombolytic therapy. In addition to therapeutic value, potential side effects of tPA also exist that aggravate stroke injury and offset the benefits provided by reperfusion of the occluded artery. Thus, combinational options (ultrasound alone or with microspheres/nanobubbles, mechanical dissociation of clot, activated protein C (APC), plasminogen activator inhibitor-1 (PAI-1), neuroserpin and CDP-choline) that could offset tPA toxic side effects and improve efficacy are also discussed here. Desmoteplase, a plasminogen activator derived from the saliva of Desmodus rotundus vampire bat, antagonizes vascular tPA-induced neurotoxicity by competitively binding to low-density lipoprotein related-receptors (LPR) at the blood-brain barrier (BBB) interface, minimizing the tPA uptake into brain parenchyma. tPA can also activate matrix metalloproteinases (MMPs), a family of endopeptidases comprised of 24 mammalian enzymes that primarily catalyze the turnover and degradation of the extracellular matrix (ECM). MMPs have been implicated in BBB breakdown and neuronal injury in the early times after stroke, but also contribute to vascular remodeling, angiogenesis, neurogenesis and axonal regeneration during the later repair phase after stroke. tPA, directly or by activation of MMP-9, could have beneficial effects on recovery after stroke by promoting neurovascular repair through vascular endothelial growth factor (VEGF). However, any treatment regimen directed at MMPs must consider their

  17. Physical activity of children: a global matrix of grades comparing 15 countries.

    PubMed

    Tremblay, Mark S; Gray, Casey E; Akinroye, Kingsley; Harrington, Dierdre M; Katzmarzyk, Peter T; Lambert, Estelle V; Liukkonen, Jarmo; Maddison, Ralph; Ocansey, Reginald T; Onywera, Vincent O; Prista, Antonio; Reilly, John J; Rodríguez Martínez, María Pilar; Sarmiento Duenas, Olga L; Standage, Martyn; Tomkinson, Grant

    2014-05-01

    The Active Healthy Kids Canada (AHKC) Report Card on Physical Activity for Children and Youth has been effective in powering the movement to get kids moving by influencing priorities, policies, and practice in Canada. The AHKC Report Card process was replicated in 14 additional countries from 5 continents using 9 common indicators (Overall Physical Activity, Organized Sport Participation, Active Play, Active Transportation, Sedentary Behavior, Family and Peers, School, Community and Built Environment, and Government Strategies and Investments), a harmonized process and a standardized grading framework. The 15 Report Cards were presented at the Global Summit on the Physical Activity of Children in Toronto on May 20, 2014. The consolidated findings are summarized here in the form of a global matrix of grades. There is a large spread in grades across countries for most indicators. Countries that lead in certain indicators lag in others. Overall, the grades for indicators of physical activity (PA) around the world are low/poor. Many countries have insufficient information to assign a grade, particularly for the Active Play and Family and Peers indicators. Grades for Sedentary Behaviors are, in general, better in low income countries. The Community and Built Environment indicator received high grades in high income countries and notably lower grades in low income countries. There was a pattern of higher PA and lower sedentary behavior in countries reporting poorer infrastructure, and lower PA and higher sedentary behavior in countries reporting better infrastructure, which presents an interesting paradox. Many surveillance and research gaps and weaknesses were apparent. International cooperation and cross-fertilization is encouraged to tackle existing challenges, understand underlying mechanisms, derive innovative solutions, and overcome the expanding childhood inactivity crisis. PMID:25426906

  18. Differential effects of mechanical and biological stimuli on matrix metalloproteinase promoter activation in the thoracic aorta

    PubMed Central

    Ruddy, Jean Marie; Jones, Jeffrey A.; Stroud, Robert E.; Mukherjee, Rupak; Spinale, Francis G.; Ikonomidis, John S.

    2009-01-01

    Background The effect of multiple integrated stimuli on vascular wall expression of matrix metalloproteinases (MMPs) remains unknown. Accordingly, this study has examined the influence of the vasoactive peptide angiotensin II (AngII) on wall tension-induced promoter activation of MMP-2, MMP-9, and membrane type-1 MMP (MT1-MMP). Methods and Results Thoracic aortic rings harvested from transgenic reporter mice containing the MMP-2, MMP-9, or MT1-MMP promoter sequence fused to a reporter gene were subjected to three hours of wall tension at 70, 85, or 100 mmHg with or without 100nM AngII. Total RNA was harvested from the aortic rings, and reporter gene transcripts were quantified by QPCR to measure MMP promoter activity. MT1-MMP promoter activity was increased at both 85 and 100 mmHg compared to baseline tension of 70 mmHg, while treatment with AngII stimulated MT1-MMP promoter activity to the same degree at all tension levels (p<0.05). Elevated tension and AngII displayed a potential synergistic enhancement of MMP-2 promoter activation at 85 and 100mmHg, while the same stimuli caused a decrease in MMP-9 promoter activity (p<0.05) at 100 mmHg. Conclusions This study has demonstrated that exposure to a relevant biological stimulus (AngII) in the presence of elevated tension modulated MMP promoter activation. Furthermore, these data suggest that a mechanical-molecular set point exists for the induction of MMP promoter activation, and that this set point can be adjusted up or down by a secondary biological stimulus. Together, these results may have significant clinical implications toward the regulation of hypertensive vascular remodeling. PMID:19752377

  19. Whey peptide Isoleucine-Tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta.

    PubMed

    Kopaliani, Irakli; Martin, Melanie; Zatschler, Birgit; Müller, Bianca; Deussen, Andreas

    2016-08-01

    Aortic stiffness is an independent risk factor for development of cardiovascular diseases. Activation of renin-angiotensin-aldosterone system (RAAS) including angiotensin converting enzyme (ACE) activity leads to overproduction of angiotensin II (ANGII) from its precursor angiotensin I (ANGI). ANGII leads to overexpression and activation of matrix metalloproteinase-2 (MMP2), which is critically associated with pathophysiology of aortic stiffness. We previously reported that the whey peptide Isoleucine-Tryptophan (IW) acts as a potent ACE inhibitor. Herein, we critically elucidate the mechanism of action by which IW causes inhibition of expression and activity of MMP2 in aortic tissue. Effects of IW on expression and activity of MMP2 were assessed on endothelial and smooth muscle cells (ECs and SMCs) in vitro and ex vivo (isolated rat aorta). As controls we used the pharmaceutical ACE inhibitor - captopril and the ANGII type 1 receptor blocker - losartan. In vitro, both ANGII and ANGI stimulation significantly (P<0.01) increased expression of MMP2 assessed with western blot. Similarly, to captopril IW significantly (P<0.05) inhibited ANGI, but not ANGII mediated increase in expression of MMP2, while losartan also blocked effects of ANGII. Signaling pathways regulating MMP2 expression in ECs and SMCs were similarly inhibited after treatment with IW or captopril. In ECs IW significantly (P<0.05) inhibited JNK pathway, whereas in SMCs JAK2/STAT3 pathway, assessed with western blot. In vitro findings were fully consistent with results in isolated rat aorta ex vivo. Moreover, IW not only inhibited the MMP2 expression, but also its activation assessed with gelatin zymography. Our findings demonstrate that IW effectively inhibits expression and activation of MMP2 in rat aorta by decreasing local conversion of ANGI to ANGII. Thus, similar to pharmaceutical ACE inhibitor captopril the dipeptide IW may effectively inhibit ACE activity and prevent the age and hypertension

  20. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease.

    PubMed

    Burns, E H; Marciel, A M; Musser, J M

    1996-11-01

    Human umbilical vein endothelial cells (HUVECs) were used to gain insight into the molecular mechanism whereby the major extracellular protease from group A streptococci damages host tissue. HUVECs exposed to streptococcal cysteine protease (SCP) for various times exhibited cytopathic effect and cell detachment from the culture vessel. Gelatin substrate zymography showed that a time- and concentration-dependent increase in the level of activity of an approximately 66-kDa gelatinase occurred in culture medium taken from cells exposed to enzymatically active SCP. This gelatinase comigrated in gelatin zymograms with the activated form of purified recombinant matrix metalloprotease 2 (MMP-2) and had type IV collagenase activity. In contrast, medium taken from cells exposed to inactivated (boiled) SCP and cells exposed to SCP inhibited by treatment with N-benzyloxycarbonyl-leucyl-valyl-glycine diazomethyl ketone lacked the 66-kDa gelatinase. Appearance of the 66-kDa gelatinase activity was also prevented by 1,10-phenanthroline, a zinc chelator and MMP inhibitor. Inasmuch as proteolytically active SCP is required for the emergence of this gelatinase and MMP activation occurs by proteolytic processing, the 66-kDa gelatinase may be a proteolytic cleavage product of a latent MMP expressed extracellularly by HUVECs. Direct SCP treatment of culture supernatant taken from HUVECs not exposed to SCP also produced the 66-kDa gelatinase. The data show that SCP activates an MMP produced by human endothelial cells, a process that may contribute to endothelial cell damage, tissue destruction, and hemodynamic derangement observed in some patients with severe, invasive group A streptococcal infection. PMID:8890235

  1. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease.

    PubMed Central

    Burns, E H; Marciel, A M; Musser, J M

    1996-01-01

    Human umbilical vein endothelial cells (HUVECs) were used to gain insight into the molecular mechanism whereby the major extracellular protease from group A streptococci damages host tissue. HUVECs exposed to streptococcal cysteine protease (SCP) for various times exhibited cytopathic effect and cell detachment from the culture vessel. Gelatin substrate zymography showed that a time- and concentration-dependent increase in the level of activity of an approximately 66-kDa gelatinase occurred in culture medium taken from cells exposed to enzymatically active SCP. This gelatinase comigrated in gelatin zymograms with the activated form of purified recombinant matrix metalloprotease 2 (MMP-2) and had type IV collagenase activity. In contrast, medium taken from cells exposed to inactivated (boiled) SCP and cells exposed to SCP inhibited by treatment with N-benzyloxycarbonyl-leucyl-valyl-glycine diazomethyl ketone lacked the 66-kDa gelatinase. Appearance of the 66-kDa gelatinase activity was also prevented by 1,10-phenanthroline, a zinc chelator and MMP inhibitor. Inasmuch as proteolytically active SCP is required for the emergence of this gelatinase and MMP activation occurs by proteolytic processing, the 66-kDa gelatinase may be a proteolytic cleavage product of a latent MMP expressed extracellularly by HUVECs. Direct SCP treatment of culture supernatant taken from HUVECs not exposed to SCP also produced the 66-kDa gelatinase. The data show that SCP activates an MMP produced by human endothelial cells, a process that may contribute to endothelial cell damage, tissue destruction, and hemodynamic derangement observed in some patients with severe, invasive group A streptococcal infection. PMID:8890235

  2. Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N. M.; de Rosny, J.; Brenguier, F.; Landès, M.

    2016-03-01

    Modern seismic networks are recording the ground motion continuously at the Earth's surface, providing dense spatial samples of the seismic wavefield. The aim of our study is to analyse these records with statistical array-based approaches to identify coherent time-series as a function of time and frequency. Using ideas mainly brought from the random matrix theory, we analyse the spatial coherence of the seismic wavefield from the width of the covariance matrix eigenvalue distribution. We propose a robust detection method that could be used for the analysis of weak and emergent signals embedded in background noise, such as the volcanic or tectonic tremors and local microseismicity, without any prior knowledge about the studied wavefields. We apply our algorithm to the records of the seismic monitoring network of the Piton de la Fournaise volcano located at La Réunion Island and composed of 21 receivers with an aperture of ˜15 km. This array recorded many teleseismic earthquakes as well as seismovolcanic events during the year 2010. We show that the analysis of the wavefield at frequencies smaller than ˜0.1 Hz results in detection of the majority of teleseismic events from the Global Centroid Moment Tensor database. The seismic activity related to the Piton de la Fournaise volcano is well detected at frequencies above 1 Hz.

  3. High Quantum Efficiency OLED Lighting Systems

    SciTech Connect

    Shiang, Joseph

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  4. On the lighting design aspect of OLED lighting

    NASA Astrophysics Data System (ADS)

    Ngai, Peter Y.

    2010-02-01

    One of the most promising market segments to mainstream OLED lighting is the Commercial and Institutional Segment. It account for 40% of the entire lighting market. 75% of all the fluorescent luminaires are sold into this market segment. In order to meet the future lighting energy allowances, it is recommended that OLED efficacy be designed to around 70+ lumens/watt initially and gradually increases to 100 lumens per watt and perhaps ultimately to 140 lumens per watt. Luminous Exitance of an OLED can be designed to 6400 - 8000 lumens per square meter (approximately 2000 - 2500 candelas per square meter). This level of performance will enable OLED to participate in most of the lighting applications found in commercial and institutional market segment. As for lifetime of an OLED, an initial lifetime of around 20,000 hours at L70 is reasonable. The performance will move toward the target of around 50,000 hours of effective operating life at L85. Proper lighting design with daylight harvesting and other means can be very helpful in accomplishing this target.

  5. Analysis of current driving capability of pentacene TFTs for OLEDs

    NASA Astrophysics Data System (ADS)

    Ryu, Gi Seong; Byun, Hyun Sook; Xu, Yong Xian; Pyo, Kyung Soo; Choe, Ki Beom; Song, Chung Kun

    2005-01-01

    The flexible display and the application of Roll-To-Roll process is difficult because high temperature process of a-Si;H TFT and poly-Si TFT limited the use of plastic substrate. We proposed AMOLED using Pentacene TFT (OTFT) to fabricate flexible display. The first stage for OTFT application to OLED, we analyzed OTFT as driving device of OLED. The process performed on glass and plastic (PET) substrate that is coated ITO and PVP is used for gate insulator. The field effect mobility of the fabricated OTFT is 0.1~0.3cm2/V"sec and Ion/Ioff current ratio is 103~105. OLED is fabricated with two stories structure of TPD and Alq3, and we can observe the light at 5V by the naked eye. The wavelength of observed lights is 530nm ~550nm. We can confirm the driving of OLED due to OTFT using Test panel and observe OLED control by gate voltage of OTFT. Also, we verify designed structure and process, and make a demonstration fabricating 64 by 64 backplane based on Test panel.

  6. Fabrication of OLED Devices on Engineered Plastic Substrates

    SciTech Connect

    Graff, Gordon L.; Gross, Mark E.; Hall, Michael G.; Mast, Eric S.; Bonham, Charles C.; Martin, Peter M.; Shi, Ming-Kun; Brown, J.; Mahon, J.; Burrows, P.; Sullivan, M.

    2000-04-15

    Protective ultrabarrier coatings for displays on flexible polymeric film substrates were deposited. The ultrabarrier coatings met a number of tight performance specifications including low gas permeation, high conductivity transparent electrodes, chemical resistance, thermal stability and scratch resistance must be met. Transmission of oxygen and water vapors by native polymeric materials was sufficiently high to prohibit their use in LCD and OLED applications. A multilayer film structure with alternate layers of organic polymer and metal oxide, demonstrated oxygen and moisture permeation rates below the measurement limit of commercial instrumentation (<0.005 O2 cc/m2/day, H2O g/m2/day). This highly transparent, multilayer ultra-barrier coating, with and without ITO overocats, was deposited by roll-to-roll compatible, vacuum deposition processes. The process for vacuum evaporation of organic monomers and in-situ polymerization, was used to deposit the organic layers. This process was also used to encapsulate OLED structures on plastic, glass, and silicon. Flexible OLED devices have been successfully fabricated using these ultrabarrier substrates. Lifetimes of greater than 10,000 hours were achieved for encapsulated OLED devices. Performance of the OLED devices on plastic substrates was similar to those on glass substrates.

  7. Toward Active-Matrix Lab-On-A-Chip: Programmable Electrofluidic control Enaled by Arrayed Oxide Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-01

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m x n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm{sup 2} V{sup -1} s{sup -1}, low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 x 5 electrode array connected to a 2 x 5 IGZO thin film transistor array with the semiconductor channel width of 50 {mu}m and mobility of 6.3 cm{sup 2} V{sup -1} s{sup -1}. Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  8. ["The Society for letters and natural science" The young Ole H. Mynster and the chemical revolution around 1800].

    PubMed

    Hansen, Sven Erik

    2015-01-01

    Ole H. Mynster (1772-1818) was a stepson of the leading physician at the Royal Frederik Hospital in Copenhagen. At an early age he became fond of zoology and mineralogy. He created "societies" in Enlightenment-style for boys and young people with lectures and collections. Later on a circle of talented young students, scientists and poets met in his small room at the hospital. Some of them with Ole Mynster as the head set up a modern scientific journal, Physicalsk, oeconomisk og medicochirurgisk Bibliotek for Danmark og Norge which encouraged the introduction of antiphlogistic chemistry. Ole Mynster became physician at the Royal Frederik Hospital and lecturer in clinical pharmacology. He wrote the first book in Danish on pharmacology based upon chemistry. In their memoirs, prominent members of his circle have told about him, and his son F.L. Mynster has written a draft for a biography. An overview of the activities within natural science and medicine of the young Ole Hieronymus Mynster is presented. PMID:27086444

  9. ACROLEIN ACTIVATES MATRIX METALLOPROTEINASES BY INCREASING REACTIVE OXYGEN SPECIES IN MACROPHAGES

    PubMed Central

    O’Toole, Timothy E.; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+]i), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+]I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+]I, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure. PMID:19371603

  10. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages.

    PubMed

    O'Toole, Timothy E; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure. PMID:19371603

  11. [Regulation of cell activity by the extracellular matrix: the concept of matrikines].

    PubMed

    Maquart, F X; Siméon, A; Pasco, S; Monboisse, J C

    1999-01-01

    The activity of connective tissue cells is modulated by a number of factors present in their environment. In addition to the soluble factors such as hormones, cytokines or growth factors, cells also receive signals from the surrounding extracellular matrix (ECM) macromolecules. Moreover, they may degrade the ECM proteins and liberate peptides which may by themselves constitute new signals for the surrounding cells. Therefore, an actual regulation loop exists in connective tissue, constituted by peptides generated by ECM degradation and connective tissue cells. The term of "matrikine" has been proposed to designate such ECM-derived peptides able to regulate cell activity. In this review, we summarize some data obtained in our laboratory with two different matrikines: the tripeptide glycyl-histidyl-lysine (GHK) and the heptapeptide cysteinyl-asparaginyl-tyrosyl-tyrosyl-seryl-asparaginyl-serine (CNYYSNS). GHK is a potent activator of ECM synthesis and remodeling, whereas CNYYSNS is able to inhibit polymorphonuclear leukocytes activation and decrease the invasive capacities of cancer cells. PMID:10689625

  12. Matrix metalloproteinase levels and gelatinolytic activity in clinically healthy and inflamed human dental pulps.

    PubMed

    Gusman, Heloisa; Santana, Ronaldo B; Zehnder, Matthias

    2002-10-01

    The role of matrix metalloproteinases (MMPs) in the breakdown of pulp tissue of teeth with severe caries has not yet been directly elucidated. This study was to determine the levels of selected MMPs and the overall gelatinolytic activity in clinically healthy and inflamed human dental pulps of 29 healthy subjects, aged 10-19 yr. Seventeen pulps were collected from subjects diagnosed with symptomatic pulpitis, and 18 control pulps were obtained from 12 subjects following premolar extraction for orthodontic reasons. The levels of MMP-1, MMP-2, MMP-3 and MMP-9 were determined with enzyme-linked immunosorbent assay. Densitometric analysis of gelatin zymograms was used to assay gelatinolytic activity in pulp supernatants. The MMP-1 levels were below the detection limit for both groups. Levels of MMP-2 and MMP-3 were significantly lower in symptomatic vs. clinically healthy pulps. In contrast, levels of MMP-9 in inflamed pulps were significantly higher than those recorded in clinically normal pulps. The overall gelatinolytic activity was elevated in inflamed pulps compared with healthy counterparts. Further, the gelatinolytic activity was positively correlated with MMP-9 levels. The data obtained suggest a key role of MMP-9 in the breakdown of inflamed human dental pulp tissue. PMID:12664465

  13. Matrix metalloproteinase-2 of human carotid atherosclerotic plaques promotes platelet activation. Correlation with ischaemic events.

    PubMed

    Lenti, Massimo; Falcinelli, Emanuela; Pompili, Marcella; de Rango, Paola; Conti, Valentina; Guglielmini, Giuseppe; Momi, Stefania; Corazzi, Teresa; Giordano, Giuseppe; Gresele, Paolo

    2014-06-01

    Purified active matrix metalloproteinase-2 (MMP-2) is able to promote platelet aggregation. We aimed to assess the role of MMP-2 expressed in atherosclerotic plaques in the platelet-activating potential of human carotid plaques and its correlation with ischaemic events. Carotid plaques from 81 patients undergoing endarterectomy were tested for pro-MMP-2 and TIMP-2 content by zymography and ELISA. Plaque extracts were incubated with gel-filtered platelets from healthy volunteers for 2 minutes before the addition of a subthreshold concentration of thrombin receptor activating peptide-6 (TRAP-6) and aggregation was assessed. Moreover, platelet deposition on plaque extracts immobilised on plastic coverslips under high shear-rate flow conditions was measured. Forty-three plaque extracts (53%) potentiated platelet aggregation (+233 ± 26.8%), an effect prevented by three different specific MMP-2 inhibitors (inhibitor II, TIMP-2, moAb anti-MMP-2). The pro-MMP-2/TIMP-2 ratio of plaques potentiating platelet aggregation was significantly higher than that of plaques not potentiating it (3.67 ± 1.21 vs 1.01 ± 0.43, p<0.05). Moreover, the platelet aggregation-potentiating effect, the active-MMP-2 content and the active MMP-2/pro-MMP-2 ratio of plaque extracts were significantly higher in plaques from patients who developed a subsequent major cardiovascular event. In conclusion, atherosclerotic plaques exert a prothrombotic effect by potentiating platelet activation due to their content of MMP-2; an elevated MMP-2 activity in plaques is associated with a higher rate of subsequent ischaemic cerebrovascular events. PMID:24499865

  14. Successful implantation after reducing matrix metalloproteinase activity in the uterine cavity

    PubMed Central

    2013-01-01

    Background Recently, the concept of recurrent implantation failure (RIF) in assisted reproductive technology has been enlarged. Chronic uterine inflammation is a known cause of implantation failure and is associated with high matrix metalloproteinase (MMP) activity in uterine cavity flushing. MMP activity of women with RIF has been reported to be higher than that of fertile women. In the present retrospective study we evaluated the efficacy of treatment for high MMP activity in the uterine cavity of patients with RIF. Methods Of the 597 patients recruited to the study, 360 patients underwent MMP measurements and 237 patients did not (control group). All patients had failed to become pregnant, despite at least two transfers of good-quality embryos. Gelatinase MMP-2 and MMP-9 activity in uterine flushing fluid was detected by enzymology (MMP test). All samples were classified into two groups (positive or negative) based on the intensity of the bands on the enzyme zymogram, which represents the degree of MMP activity. Patients who tested positive on the initial test were treated for 2 weeks with a quinolone antibiotic and a corticosteroid, and subsequently underwent a second MMP test. Negative results on the second MMP tests after treatment and subsequent rates of pregnancy and miscarriage were used to evaluate the efficacy of treatment. Data were analyzed by the Mann–Whitney U-test and the chi-square test. Results Of the patients who underwent the MMP test, 15.6% had positive results (high MMP activity). After treatment, 89.3% of patients had negative results on the second MMP test. These patients had a significantly better pregnancy rate (42.0%) than the control group (26.6%), as well as a lower miscarriage rate (28.5% vs 36.5%, respectively). Conclusions A 2-week course of antibiotics and corticosteroids effectively improves the uterine environment underlying RIF by reducing MMP activity. PMID:23663265

  15. MONOLITHIC ACTIVE PIXEL MATRIX WITH BINARY COUNTERS IN AN SOI PROCESS.

    SciTech Connect

    DUPTUCH,G.; YAREMA, R.

    2007-06-07

    The design of a Prototype monolithic active pixel matrix, designed in a 0.15 {micro}m CMOS SOI Process, is presented. The process allowed connection between the electronics and the silicon volume under the layer of buried oxide (BOX). The small size vias traversing through the BOX and implantation of small p-type islands in the n-type bulk result in a monolithic imager. During the acquisition time, all pixels register individual radiation events incrementing the counters. The counting rate is up to 1 MHz per pixel. The contents of counters are shifted out during the readout phase. The designed prototype is an array of 64 x 64 pixels and the pixel size is 26 x 26 {micro}m{sup 2}.

  16. Reduction in Power Consumption for Full-Color Active Matrix Organic Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Mameno, Kazunobu; Shibata, Kenichi

    2006-09-01

    The active matrix organic light-emitting diode (AMOLED) is expected to serve as next generation flat panels display with the outstanding features of wide viewing angle, vivid images, and quick response. For practical use of full-color AMOLEDs in mobile devices, it is essential to reduce the power consumption, which is generally higher than that of liquid crystal displays (LCDs). For this aim, a red, green, blue, and white (RGBW) pixel format combined with an RGB color filter array (RGBW format) with a common white emission layer (EML) has been developed. We find that the RGBW format can successfully reduce the power consumption of a full-color AMOLED by nearly half that of a conventionally filtered RGB pixel format. This improved power consumption is almost equal to the power consumption of a same-sized LCD. The RGBW format is a promising technique for the further reduction of the power consumption of a full-color AMOLED.

  17. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well. PMID:23089779

  18. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    SciTech Connect

    Chen, Shuming Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  19. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    NASA Astrophysics Data System (ADS)

    Chen, Shuming; Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  20. DP-b99 modulates matrix metalloproteinase activity and neuronal plasticity.

    PubMed

    Yeghiazaryan, Marine; Rutkowska-Wlodarczyk, Izabela; Konopka, Anna; Wilczyński, Grzegorz M; Melikyan, Armenuhi; Korkotian, Eduard; Kaczmarek, Leszek; Figiel, Izabela

    2014-01-01

    DP-b99 is a membrane-activated chelator of zinc and calcium ions, recently proposed as a therapeutic agent. Matrix metalloproteinases (MMPs) are zinc-dependent extracellularly operating proteases that might contribute to synaptic plasticity, learning and memory under physiological conditions. In excessive amounts these enzymes contribute to a number of neuronal pathologies ranging from the stroke to neurodegeneration and epileptogenesis. In the present study, we report that DP-b99 delays onset and severity of PTZ-induced seizures in mice, as well as displays neuroprotective effect on kainate excitotoxicity in hippocampal organotypic slices and furthermore blocks morphological reorganization of the dendritic spines evoked by a major neuronal MMP, MMP-9. Taken together, our findings suggest that DP-b99 may inhibit neuronal plasticity driven by MMPs, in particular MMP-9, and thus may be considered as a therapeutic agent under conditions of aberrant plasticity, such as those subserving epileptogenesis. PMID:24918931

  1. Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Jones, Michael W.; Kulick, Jeffrey H.; Lindquist, Robert G.; Kowel, Stephen T.

    1996-12-01

    We describe the design, construction, and performance of the first real-time autostereoscopic 3D display based on the partial pixel 3D display architecture. The primary optical components of the 3D display are an active-matrix liquid crystal display and a diffractive optical element (DOE). The display operates at video frame rates and is driven with a conventional VGA signal. 3D animations with horizontal motion parallax are readily viewable as sets of stereo images. Formation of the virtual viewing slits by diffraction from the partial pixel apertures is experimentally verified. The measured contrast and perceived brightness of the display are excellent, but there are minor flaws in image quality due to secondary images. The source of these images and how they may be eliminated is discussed. The effects of manufacturing-related systematic errors in the DOE are also analyzed.

  2. High performance organic transistor active-matrix driver developed on paper substrate

    NASA Astrophysics Data System (ADS)

    Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.

    2014-09-01

    The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V-1s-1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up.

  3. Low-voltage, low-power, organic light-emitting transistors for active matrix displays.

    PubMed

    McCarthy, M A; Liu, B; Donoghue, E P; Kravchenko, I; Kim, D Y; So, F; Rinzler, A G

    2011-04-29

    Intrinsic nonuniformity in the polycrystalline-silicon backplane transistors of active matrix organic light-emitting diode displays severely limits display size. Organic semiconductors might provide an alternative, but their mobility remains too low to be useful in the conventional thin-film transistor design. Here we demonstrate an organic channel light-emitting transistor operating at low voltage, with low power dissipation, and high aperture ratio, in the three primary colors. The high level of performance is enabled by a single-wall carbon nanotube network source electrode that permits integration of the drive transistor and the light emitter into an efficient single stacked device. The performance demonstrated is comparable to that of polycrystalline-silicon backplane transistor-driven display pixels. PMID:21527708

  4. Density-matrix renormalization-group study of current and activity fluctuations near nonequilibrium phase transitions.

    PubMed

    Gorissen, Mieke; Hooyberghs, Jef; Vanderzande, Carlo

    2009-02-01

    Cumulants of a fluctuating current can be obtained from a free-energy-like generating function, which for Markov processes equals the largest eigenvalue of a generalized generator. We determine this eigenvalue with the density-matrix renormalization group for stochastic systems. We calculate the variance of the current in the different phases, and at the phase transitions, of the totally asymmetric exclusion process. Our results can be described in the terms of a scaling ansatz that involves the dynamical exponent z . We also calculate the generating function of the dynamical activity (total number of configuration changes) near the absorbing-state transition of the contact process. Its scaling properties can be expressed in terms of known critical exponents. PMID:19391693

  5. Materials and architectures for efficient harvesting of singlet and triplet excitons for white light emitting OLEDs

    SciTech Connect

    Thompson, Mark E; Forrest, Stephen

    2015-02-03

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

  6. Numerical analysis of nanostructures for enhanced light extraction from OLEDs

    NASA Astrophysics Data System (ADS)

    Zschiedrich, Lin; Greiner, Horst J.; Burger, Sven; Schmidt, Frank

    2013-03-01

    Nanostructures, like periodic arrays of scatters or low-index gratings, are used to improve the light outcoupling from organic light-emitting diodes (OLED). In order to optimize geometrical and material properties of such structures, simulations of the outcoupling process are very helpful. The finite element method is best suited for an accurate discretization of the geometry and the singular-like field profile within the structured layer and the emitting layer. However, a finite element simulation of the overall OLED stack is often beyond available computer resources. The main focus of this paper is the simulation of a single dipole source embedded into a twofold infinitely periodic OLED structure. To overcome the numerical burden we apply the Floquet transform, so that the computational domain reduces to the unit cell. The relevant outcoupling data are than gained by inverse Flouqet transforming. This step requires a careful numerical treatment as reported in this paper.

  7. Design of OLED gamma correction system based on the LUT

    NASA Astrophysics Data System (ADS)

    Tai, Yonghang; Yun, Lijun; Shi, Junsheng; Chen, Zaiqing; Li, Qiong

    2011-11-01

    Gamma correction is an important processing in reproduce images information realizing of video source. In order to improve the image sharpness of the OLED micro-display, a Gamma correction system was established to compensate for the gray scale distortion of the micro-display which is caused by the difference between the optical and electrical characteristic property. Based on the North OLEiD Company's 0.5 inch OLED, We proposed a Gamma correction system to converts 8 bits input signal into 9 bits displayed on the OLED. It used Microchip as the MCU and the master of the I2C serial bus, Development of the hardware system measurement verified the correction of VGA and CVBS video input and the picture quality also apparently improved.

  8. Coordinate regulation of fibronectin matrix assembly by the plasminogen activator system and vitronectin in human osteosarcoma cells

    PubMed Central

    Vial, Daniel; Monaghan-Benson, Elizabeth; McKeown-Longo, Paula J

    2006-01-01

    Background Plasminogen activators are known to play a key role in the remodeling of bone matrix which occurs during tumor progression, bone metastasis and bone growth. Dysfunctional remodeling of bone matrix gives rise to the osteoblastic and osteolytic lesions seen in association with metastatic cancers. The molecular mechanisms responsible for the development of these lesions are not well understood. Studies were undertaken to address the role of the plasminogen activator system in the regulation of fibronectin matrix assembly in the osteoblast-like cell line, MG-63. Results Treatment of MG-63 cells with P25, a peptide ligand for uPAR, resulted in an increase in assembly of fibronectin matrix which was associated with an increase in the number of activated β1 integrins on the cell surface. Overexpression of uPAR in MG-63 cells increased the effect of P25 on fibronectin matrix assembly and β1 integrin activation. P25 had no effect on uPAR null fibroblasts, confirming a role for uPAR in this process. The addition of plasminogen activator inhibitor Type I (PAI-1) to cells increased the P25-induced fibronectin polymerization, as well as the number of activated integrins. This positive regulation of PAI-1 on fibronectin assembly was independent of PAI-1's anti-proteinase activity, but acted through PAI-1 binding to the somatomedin B domain of vitronectin. Conclusion These results indicate that vitronectin modulates fibronectin matrix assembly in osteosarcoma cells through a novel mechanism involving cross-talk through the plasminogen activator system. PMID:16569238

  9. Matrix metalloproteinases 2 and 9 and MMP9/NGAL complex activity in women with PCOS.

    PubMed

    Ranjbaran, Javad; Farimani, Marzieh; Tavilani, Heidar; Ghorbani, Marzieh; Karimi, Jamshid; Poormonsefi, Faranak; Khodadadi, Iraj

    2016-04-01

    It is believed that matrix metalloproteinases (MMPs) play important roles in follicular development and pathogenesis of polycystic ovary syndrome (PCOS). However, conflicting results are available about the alteration of MMP2 and MMP9 concentrations or activities in PCOS. In fact, there is no study entirely investigating both concentration and activity of these MMPs and serum levels of their tissue inhibitors TIMP2 and TIMP1, as well as lipocalin-bound form of MMP9 (MMP9/NGAL). Therefore, the thoroughness of previous studies is questionable. This study was conducted to determine circulatory concentration of MMP2, MMP9, MMP9/NGAL complex, TIMP1 and TIMP2 as well as gelatinase activities of MMP2, MMP9 and MMP9/NGAL complex in women with PCOS and controls. Mean age and BMI as well as serum levels of total cholesterol, triacylglycerol, HDL-C, LDL-C, fasting blood sugar (FBS), insulin, estradiol and sex hormone-binding globulin did not differ between groups, whereas a marked decrease in FSH and significant increases in LH, LH/FSH ratio, testosterone and free androgen index were observed. Women with PCOS and controls showed closed concentrations of MMP2, MMP9, MMP9/NGAL, TIMP1 and TIMP2. Gelatinase activity of MMP9 was found significantly higher in PCOS than in controls (64.53±15.32 vs 44.61±18.95 respectively) while patients and healthy subjects showed similar activities of MMP2 and MMP9/NGAL complex. Additionally, PCOS patients showed a higher MMP9/TIMP1 ratio compared with control women. Direct correlations were also observed between circulatory MMP9 level and the concentration and activity of MMP9/NGAL complex. In conclusion, based on the results of present study, we believe that MMP9 may be involved in the pathogenesis of PCOS. PMID:26733727

  10. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke

    PubMed Central

    Zinnhardt, Bastian; Viel, Thomas; Wachsmuth, Lydia; Vrachimis, Alexis; Wagner, Stefan; Breyholz, Hans-Jörg; Faust, Andreas; Hermann, Sven; Kopka, Klaus; Faber, Cornelius; Dollé, Frédéric; Pappata, Sabina; Planas, Anna M; Tavitian, Bertrand; Schäfers, Michael; Sorokin, Lydia M; Kuhlmann, Michael T; Jacobs, Andreas H

    2015-01-01

    Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [18F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [18F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation. PMID:26126867

  11. Activity of lung neutrophils and matrix metalloproteinases in cyclophosphamide-treated mice with experimental sepsis

    PubMed Central

    Hirsh, Mark; Carmel, Julie; Kaplan, Viktoria; Livne, Erella; Krausz, Michael M

    2004-01-01

    Sepsis in patients receiving chemotherapy may result in acute respiratory distress syndrome, despite decreased number of blood neutrophils [polymorphonuclear neutrophils (PMNs)]. In the present study, we investigated the correlation of cyclophosphamide (CY)-induced neutropenia with the destructive potential of lung PMN in respect to formation of septic acute lung injury (ALI). Mice were treated with 250 mg/kg of CY or saline (control) and subjected to cecal ligation and puncture (CLP) or sham operation. ALI was verified by histological examination. Lung PMNs and matrix metalloproteinases (MMPs) were assessed by flow cytometry and gelatin zymography. CLP in CY-treated mice induced a typical lung injury. Despite profound neutropenia, CY treatment did not attenuate CLP-induced ALI. This might relate to only a partial suppression of PMN: CY has significantly reduced PMN influx into the lungs (P = 0.008) and suppressed their oxidative metabolism, but had no suppressive effect on degranulation (P = 0.227) and even induced MMP-9 activity (P = 0.0003). In CY-untreated animals, peak of CLP-induced ALI coincided with massive PMN influx (P = 0.013), their maximal degranulation (P = 0.014) and activation of lung MMP-9 (P = 0.002). These findings may indicate an important role of the residual lung PMN and activation of MMP-9 in septic lung injury during CY chemotherapy. PMID:15255968

  12. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke.

    PubMed

    Zinnhardt, Bastian; Viel, Thomas; Wachsmuth, Lydia; Vrachimis, Alexis; Wagner, Stefan; Breyholz, Hans-Jörg; Faust, Andreas; Hermann, Sven; Kopka, Klaus; Faber, Cornelius; Dollé, Frédéric; Pappata, Sabina; Planas, Anna M; Tavitian, Bertrand; Schäfers, Michael; Sorokin, Lydia M; Kuhlmann, Michael T; Jacobs, Andreas H

    2015-11-01

    Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [(18)F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [(18)F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation. PMID:26126867

  13. Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells

    SciTech Connect

    Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara; McIntyre, J. Oliver; Matrisian, Lynn M. . E-mail: lynn.matrisian@vanderbilt.edu

    2005-02-15

    Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment as compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7{sup HIGH}-polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium.

  14. Distribution and relative activity of matrix metalloproteinase-2 in human coronal dentin

    PubMed Central

    Boushell, Lee W; Kaku, Masaru; Mochida, Yoshiyuki; Yamauchi, Mitsuo

    2011-01-01

    The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L−1 EDTA/2 mol·L−1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD>ID>MD. Western blotting analysis detected ∼66 and ∼72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a ∼66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD>ID>OD. The concentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions. PMID:22010577

  15. AMP-activated protein kinase suppresses matrix metalloproteinase-9 expression in mouse embryonic fibroblasts.

    PubMed

    Morizane, Yuki; Thanos, Aristomenis; Takeuchi, Kimio; Murakami, Yusuke; Kayama, Maki; Trichonas, George; Miller, Joan; Foretz, Marc; Viollet, Benoit; Vavvas, Demetrios G

    2011-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα(-/-) MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα(-/-) MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα(-/-) MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway. PMID:21402702

  16. Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells

    PubMed Central

    Kim, Seung Joon; Wan, Qiaoqiao; Cho, Eunhye; Han, Bumsoo; Yoder, Mervin C.; Voytik-Harbin, Sherry L.; Na, Sungsoo

    2014-01-01

    Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs. PMID:24393843

  17. Osteoblast-released Matrix Vesicles, Regulation of Activity and Composition by Sulfated and Non-sulfated Glycosaminoglycans.

    PubMed

    Schmidt, Johannes R; Kliemt, Stefanie; Preissler, Carolin; Moeller, Stephanie; von Bergen, Martin; Hempel, Ute; Kalkhof, Stefan

    2016-02-01

    Our aging population has to deal with the increasing threat of age-related diseases that impair bone healing. One promising therapeutic approach involves the coating of implants with modified glycosaminoglycans (GAGs) that mimic the native bone environment and actively facilitate skeletogenesis. In previous studies, we reported that coatings containing GAGs, such as hyaluronic acid (HA) and its synthetically sulfated derivative (sHA1) as well as the naturally low-sulfated GAG chondroitin sulfate (CS1), reduce the activity of bone-resorbing osteoclasts, but they also induce functions of the bone-forming cells, the osteoblasts. However, it remained open whether GAGs influence the osteoblasts alone or whether they also directly affect the formation, composition, activity, and distribution of osteoblast-released matrix vesicles (MV), which are supposed to be the active machinery for bone formation. Here, we studied the molecular effects of sHA1, HA, and CS1 on MV activity and on the distribution of marker proteins. Furthermore, we used comparative proteomic methods to study the relative protein compositions of isolated MVs and MV-releasing osteoblasts. The MV proteome is much more strongly regulated by GAGs than the cellular proteome. GAGs, especially sHA1, were found to severely impact vesicle-extracellular matrix interaction and matrix vesicle activity, leading to stronger extracellular matrix formation and mineralization. This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms. PMID:26598647

  18. Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith.

    PubMed

    Glazer, Lilah; Tom, Moshe; Weil, Simy; Roth, Ziv; Khalaila, Isam; Mittelman, Binyamin; Sagi, Amir

    2013-05-15

    Gastroliths are transient extracellular calcium deposits formed by the crayfish Cherax quadricarinatus von Martens on both sides of the stomach wall during pre-molt. Gastroliths are made of a rigid chitinous organic matrix, constructed as sclerotized chitin-protein microfibrils within which calcium carbonate is deposited. Although gastroliths share many characteristics with the exoskeleton, they are simpler in structure and relatively homogeneous in composition, making them an excellent cuticle-like model for the study of cuticular proteins. In searching for molt-related proteins involved in gastrolith formation, two integrated approaches were employed, namely the isolation and mass spectrometric analysis of proteins from the gastrolith matrix, and 454-sequencing of mRNAs from both the gastrolith-forming and sub-cuticular epithelia. SDS-PAGE separation of gastrolith proteins revealed a set of bands at apparent molecular masses of 75-85 kDa; mass spectrometry data matched peptide sequences from the deduced amino acid sequences of seven hemocyanin transcripts. This assignment was then examined by immunoblot analysis using anti-hemocyanin antibodies, also used to determine the spatial distribution of the proteins in situ. Apart from contributing to oxygen transport, crustacean hemocyanins were previously suggested to be involved in several aspects of the molt cycle, including hardening of the new post-molt exoskeleton via phenoloxidation. The phenoloxidase activity of gastrolith hemocyanins was demonstrated. It was also noted that hemocyanin transcript expression during pre-molt was specific to the hepatopancreas. Our results thus reflect a set of functionally versatile proteins, expressed in a remote metabolic tissue and dispersed via the hemolymph to perform different roles in various organs and structures. PMID:23393281

  19. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity.

    PubMed

    Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos

    2016-07-01

    Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity. PMID:27040530

  20. High Efficancy Integrated Under-Cabinet Phosphorescent OLED

    SciTech Connect

    Michael Hack

    2001-10-31

    In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been

  1. Dexamethasone-Mediated Activation of Fibronectin Matrix Assembly Reduces Dispersal of Primary Human Glioblastoma Cells

    PubMed Central

    Shannon, Stephen; Vaca, Connan; Jia, Dongxuan; Entersz, Ildiko; Schaer, Andrew; Carcione, Jonathan; Weaver, Michael; Avidar, Yoav; Pettit, Ryan; Nair, Mohan; Khan, Atif; Foty, Ramsey A.

    2015-01-01

    Despite resection and adjuvant therapy, the 5-year survival for patients with Glioblastoma multiforme (GBM) is less than 10%. This poor outcome is largely attributed to rapid tumor growth and early dispersal of cells, factors that contribute to a high recurrence rate and poor prognosis. An understanding of the cellular and molecular machinery that drive growth and dispersal is essential if we are to impact long-term survival. Our previous studies utilizing a series of immortalized GBM cell lines established a functional causation between activation of fibronectin matrix assembly (FNMA), increased tumor cohesion, and decreased dispersal. Activation of FNMA was accomplished by treatment with Dexamethasone (Dex), a drug routinely used to treat brain tumor related edema. Here, we utilize a broad range of qualitative and quantitative assays and the use of a human GBM tissue microarray and freshly-isolated primary human GBM cells grown both as conventional 2D cultures and as 3D spheroids to explore the role of Dex and FNMA in modulating various parameters that can significantly influence tumor cell dispersal. We show that the expression and processing of fibronectin in a human GBM tissue-microarray is variable, with 90% of tumors displaying some abnormality or lack in capacity to secrete fibronectin or assemble it into a matrix. We also show that low-passage primary GBM cells vary in their capacity for FNMA and that Dex treatment reactivates this process. Activation of FNMA effectively “glues” cells together and prevents cells from detaching from the primary mass. Dex treatment also significantly increases the strength of cell-ECM adhesion and decreases motility. The combination of increased cohesion and decreased motility discourages in vitro and ex vivo dispersal. By increasing cell-cell cohesion, Dex also decreases growth rate of 3D spheroids. These effects could all be reversed by an inhibitor of FNMA and by the glucocorticoid receptor antagonist, RU-486. Our

  2. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity.

    PubMed

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  3. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix.

    PubMed

    Babu, Ranjith; Zhang, Jianying; Beckman, Eric J; Virji, Mohammed; Pasculle, William A; Wells, Alan

    2006-08-01

    Wound healing is a complex and orchestrated process that re-establishes the barrier and other functions of the skin. While wound healing proceeds apace in healthy individual, bacterial overgrowth and infection disrupts this process with significant morbidity and mortality. As such, any artificial matrix to promote wound healing must also control infecting microbes. We had earlier developed a two-part space-conforming gel backbone based on polyethyleneglycol (PEG) or lactose, which used ionic silver as the catalyst for gelation. As silver is widely used as an in vitro antimicrobial, use of silver as a catalyst for gelation provided the opportunity to assess its function as an anti-microbial agent in the gels. We found that these gels show bacteriostatic and bactericidal activity for a range of Gram-negative and Gram-positive organisms, including aerobic as well as anaerobic bacteria. This activity lasted for days, as silver leached out of the formed gels over a day in the manner of second-order decay. Importantly the gels did not limit either cell growth or viability, though cell migration was affected. Adding collagen I fragments to the gels corrected this effect on cell migration. We also found that the PEG gel did not interfere with hemostasis. These observations provide the basis for use of the gel backbones for incorporation of anesthetic agents and factors that promote wound repair. In conclusion, silver ions can serve dual functions of catalyzing gelation and providing anti-microbial properties to a biocompatible polymer. PMID:16635526

  4. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix

    PubMed Central

    Babu, Ranjith; Zhang, Jianying; Beckman, Eric J.; Virji, Mohammed; Pasculle, William A.; Wells, Alan

    2007-01-01

    Wound healing is a complex and orchestrated process that re-establishes the barrier and other functions of the skin. While wound healing proceeds apace in healthy individual, bacterial overgrowth and infection disrupts this process with significant morbidity and mortality. As such, any artificial matrix to promote wound healing must also control infecting microbes. We had earlier developed a two-part space-conforming gel backbone based on polyethyleneglycol (PEG) or lactose, which used ionic silver as the catalyst for gelation. As silver is widely used as an in vitro antimicrobial, use of silver as a catalyst for gelation provided the opportunity to assess its function as an anti-microbial agent in the gels. We found that these gels show bacteriostatic and bactericidal activity for a range of Gram-negative and Gram-positive organisms, including aerobic as well as anaerobic bacteria. This activity lasted for days, as silver leached out of the formed gels over a day in the manner of second-order decay. Importantly the gels did not limit either cell growth or viability, though cell migration was affected. Adding collagen I fragments to the gels corrected this effect on cell migration. We also found that the PEG gel did not interfere with hemostasis. These observations provide the basis for use of the gel backbones for incorporation of anesthetic agents and factors that promote wound repair. In conclusion, silver ions can serve dual functions of catalyzing gelation and providing anti-microbial properties to a biocompatible polymer. PMID:16635526

  5. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  6. Influence of neutron activation factors on matrix tablets for site specific delivery to the colon.

    PubMed

    Ahrabi, S F; Heinämäki, J; Sande, S A; Graffner, C

    2000-05-01

    The impact of the neutron activation procedure, i.e. incorporation of samarium oxide (Sm(2)O(3)) and neutron irradiation, on the compression properties (including the crushing strength) and in vitro dissolution of potential colonic delivery systems based on matrix tablets of amidated pectin (Am.P) or two types of hydroxypropyl methylcellulose (HPMC) was investigated. The neutron activation factors did not influence the compression properties of the tablets. Replacement of magnesium stearate with samarium stearate in directly compressed Am.P tablets to achieve both radiolabelling and lubrication resulted in a greater extent of concentration-dependent reduction of the crushing strength. Dissolution tests demonstrated that irradiation increased the release of the model drug ropivacaine from the tablets. The extent of this increase was unexpectedly low considering the previously observed degradation of the polymer expressed as an irradiation-induced viscosity reduction in solutions prepared from the polymers. Delayed-release coating with Eudragit L 100 protected the HPMC tablets against the release-increasing effect of irradiation until the late phases of release. Sm(2)O(3) retarded the release to a varying extent depending on particle characteristics. Incorporation of Sm(2)O(3) in the coating layer did not influence the release. However, one-third of the radioactivity leached from the coating within 60 min in 0.1 M HCl. PMID:10767600

  7. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    SciTech Connect

    O'Toole, Timothy E. Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca{sup 2+}]{sub i}), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca{sup 2+}]{sub I} with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca{sup 2+}]{sub I}, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  8. Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures

    SciTech Connect

    Liu, Rui

    2012-01-01

    After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O2 and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized

  9. Expanding the substrate scope and reactivity of cytochrome P450 OleT.

    PubMed

    Hsieh, Chun H; Makris, Thomas M

    2016-08-01

    The efficient hydrogen peroxide-dependent hydroxylation and epoxidation of hydrocarbons is catalysed by a P450 fatty acid decarboxylase (OleT) active-site variant. The introduction of an acidic functionality in the protein framework circumvents the necessity for a carboxylate that is typically provided by the substrate for efficient H2O2 heterolysis. Spectroscopic and turnover studies show that the mutation eliminates the binding and metabolism of prototypical fatty acid substrates, but permits the oxidation of a broad range of inert hydrocarbon substrates. PMID:27246733

  10. Sync Matrix

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  11. Current state of OLED technology relative to military avionics requirements

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.; Hufnagel, Bruce D.; Bahadur, Birendra

    2014-06-01

    The paper will review optical and environmental performance thresholds required for OLED technology to be used on various military platforms. Life study results will be summarized to highlight trends while identifying remaining performance gaps to make this technology viable for future military avionics platforms.

  12. Some approaches for fabricating high-efficiency OLEDs

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Wang, Wei-Ben; Shen, Shih-Ming; Wu, Ming-Hsuan

    2009-08-01

    High-efficiency is strongly desired for organic light-emitting diodes (OLEDs) to be fully realized as the future display and lighting technology. To replace current illumination tools, such as incandescent bulbs and fluorescent tubes, for examples, OLEDs with much higher efficiency are demanded. We will present herein some approaches for fabricating high-efficiency OLEDs of blue and white emission. Besides employing highly efficient electroluminescent guests and thin device architecture, low injection barriers to carriers, high carrier-transporting character, effective carrier/exciton confinement, balanced carrier-injection, exciton generation on host, effective host-to-guest energy-transfer and improved light-coupling efficiency are essential. Amongst, the incorporation of nano-dots in emissive- and non-emissive-layers can markedly improve the device efficiency. The enhancement is especially marked as small polymeric nano-dots are incorporated into the non-emissive layers. Since the incorporation is not in the emissive layer, the efficiency improvement mechanism works for both fluorescent and phosphorescent devices. Importantly, the efficiency improvement is also a strong function of the surface charge density of the nano-dots. Regardless positively or negatively charged, the improvement becomes more pronounced as the charge density increases. Results regarding some lately achieved extraordinarily highly-efficient OLEDs containing nano-dots with high surface charge will be presented.

  13. Modulation of matrix metalloproteinase activity by EDTA prevents posterior capsular opacification

    PubMed Central

    Guha, Rajdeep; Jongkey, Geram; Palui, Himangshu; Mishra, Akhilesh; Vemuganti, Geeta K.; Basak, Samar K.; Mandal, Tapan Kumar; Konar, Aditya

    2012-01-01

    Purpose To evaluate the effect of ethylenediaminetetraacetic acid (EDTA) on posterior capsular opacification (PCO) of rabbits and to assess its effect on intraocular tissues. Methods Modulation of matrix metalloproteinase (MMP) activity in the aqueous following cataract surgery in rabbits and its prevention by different doses of EDTA was determined by zymography. For evaluation of PCO, lensectomized rabbits were intracamerally injected with single dose of either 5 mg EDTA or normal saline. After one month, the degree of PCO was determined by slitlamp biomicroscopy, Miyake-Apple view, and histology of the lens capsule. The effect of EDTA on intra ocular pressure (IOP), corneal endothelial cells, and the retina was evaluated by tonometry, specular microscopy and scanning electron microscopy, and electroretinography. The concentration of EDTA in the aqueous was determined by high performance liquid chromatography (HPLC) at different time points. Results The MMP activity was significantly increased in the aqueous of the operated eyes, and EDTA reduced the degree of increase in a dose-dependent manner. EDTA treatment significantly reduced the degree of PCO (p<0.05). Histopathology of the lens capsule showed a reduction in the number of proliferating and migrating cells as well as MMP2 expression in the EDTA-treated eyes. EDTA treatment did not change the IOP; density, morphology and ultrastructure of the corneal endothelial cells; and electroretinography (ERG). EDTA was detectable in the aqueous humor up to 72 h following a single intracameral injection. Conclusions EDTA reduces the degree of PCO by suppressing the MMP activity and it is not toxic to intra ocular structures at the concentration used. PMID:22815623

  14. Airway mucus obstruction triggers macrophage activation and matrix metalloproteinase 12-dependent emphysema.

    PubMed

    Trojanek, Joanna B; Cobos-Correa, Amanda; Diemer, Stefanie; Kormann, Michael; Schubert, Susanne C; Zhou-Suckow, Zhe; Agrawal, Raman; Duerr, Julia; Wagner, Claudius J; Schatterny, Jolanthe; Hirtz, Stephanie; Sommerburg, Olaf; Hartl, Dominik; Schultz, Carsten; Mall, Marcus A

    2014-11-01

    Whereas cigarette smoking remains the main risk factor for emphysema, recent studies in β-epithelial Na(+) channel-transgenic (βENaC-Tg) mice demonstrated that airway surface dehydration, a key pathophysiological mechanism in cystic fibrosis (CF), caused emphysema in the absence of cigarette smoke exposure. However, the underlying mechanisms remain unknown. The aim of this study was to elucidate mechanisms of emphysema formation triggered by airway surface dehydration. We therefore used expression profiling, genetic and pharmacological inhibition, Foerster resonance energy transfer (FRET)-based activity assays, and genetic association studies to identify and validate emphysema candidate genes in βENaC-Tg mice and patients with CF. We identified matrix metalloproteinase 12 (Mmp12) as a highly up-regulated gene in lungs from βENaC-Tg mice, and demonstrate that elevated Mmp12 expression was associated with progressive emphysema formation, which was reduced by genetic deletion and pharmacological inhibition of MMP12 in vivo. By using FRET reporters, we show that MMP12 activity was elevated on the surface of airway macrophages in bronchoalveolar lavage from βENaC-Tg mice and patients with CF. Furthermore, we demonstrate that a functional polymorphism in MMP12 (rs2276109) was associated with severity of lung disease in CF. Our results suggest that MMP12 released by macrophages activated on dehydrated airway surfaces may play an important role in emphysema formation in the absence of cigarette smoke exposure, and may serve as a therapeutic target in CF and potentially other chronic lung diseases associated with airway mucus dehydration and obstruction. PMID:24828142

  15. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  16. Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire

    SciTech Connect

    Michael Hack

    2010-07-09

    In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projected lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.

  17. Roll-to-Roll Solution-Processible Small-Molecule OLEDs

    SciTech Connect

    Liu, Jie Jerry

    2012-07-31

    The objective of this program is to develop key knowledge and make critical connections between technologies needed to enable low-cost manufacturing of OLED lighting products. In particular, the program was intended to demonstrate the feasibility of making high performance Small-Molecule OLEDs (SM-OLED) using a roll-to-roll (R2R) wet-coating technique by addressing the following technical risks (1) Whether the wet-coating technique can provide high performance OLEDs, (2) Whether SM-OLED can be made in a R2R manner, (3) What are the requirements for coating equipment, and (4) Whether R2R OLEDs can have the same performance as the lab controls. The program has been managed and executed according to the Program Management Plan (PMP) that was first developed at the beginning of the program and further revised accordingly as the program progressed. Significant progress and risk reductions have been accomplished by the end of the program. Specific achievements include: (1) Demonstrated that wet-coating can provide OLEDs with high LPW and long lifetime; (2) Demonstrated R2R OLEDs can be as efficient as batch controls (Figure 1) (3) Developed & validated basic designs for key equipment necessary for R2R SM-OLEDs; (4) Developed know-hows & specifications on materials & ink formulations critical to wetcoating; (5) Developed key R2R processes for each OLED layer (6) Identified key materials and components such as flexible barrier substrates necessary for R2R OLEDs.

  18. Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Fu, Yue; Zhang, Jialu; Wang, Chuan; Chen, Pochiang; Zhou, Chongwu

    2012-02-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Pre-separated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  19. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays.

    PubMed

    Zhang, Jialu; Fu, Yue; Wang, Chuan; Chen, Po-Chiang; Liu, Zhiwei; Wei, Wei; Wu, Chao; Thompson, Mark E; Zhou, Chongwu

    2011-11-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components, such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics. PMID:21942351

  20. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13.

    PubMed

    Wen, Hanyu; Qin, Yuan; Zhong, Weilong; Li, Cong; Liu, Xiang; Shen, Yehua

    2016-10-01

    Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications. PMID:27542739

  1. Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion

    PubMed Central

    Podsędek, Anna; Koziołkiewicz, Maria

    2014-01-01

    Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage. PMID:24575407

  2. Estimating nonnegative matrix model activations with deep neural networks to increase perceptual speech quality.

    PubMed

    Williamson, Donald S; Wang, Yuxuan; Wang, DeLiang

    2015-09-01

    As a means of speech separation, time-frequency masking applies a gain function to the time-frequency representation of noisy speech. On the other hand, nonnegative matrix factorization (NMF) addresses separation by linearly combining basis vectors from speech and noise models to approximate noisy speech. This paper presents an approach for improving the perceptual quality of speech separated from background noise at low signal-to-noise ratios. An ideal ratio mask is estimated, which separates speech from noise with reasonable sound quality. A deep neural network then approximates clean speech by estimating activation weights from the ratio-masked speech, where the weights linearly combine elements from a NMF speech model. Systematic comparisons using objective metrics, including the perceptual evaluation of speech quality, show that the proposed algorithm achieves higher speech quality than related masking and NMF methods. In addition, a listening test was performed and its results show that the output of the proposed algorithm is preferred over the comparison systems in terms of speech quality. PMID:26428778

  3. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    NASA Astrophysics Data System (ADS)

    Parali, Levent; Şabikoğlu, İsrafil; Kurbanov, Mirza A.

    2014-11-01

    A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO3, SiO2 to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO3 or SiO2), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT-PVDF) and the hybrid structure (PZT-PVDF-BaTiO3) composite are compared. The d33 value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d33 value and the coupling factor of the hybrid structure (PZT-HDPE-SiO2) have exhibited about 68 and 52% increase according to microstructure composite (PZT-HDPE), respectively.

  4. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    NASA Astrophysics Data System (ADS)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  5. Lag measurement in an a-Se active matrix flat-panel imager.

    PubMed

    Schroeder, C; Stanescu, T; Rathee, S; Fallone, B G

    2004-05-01

    Lag and residual contrast have been quantified in an amorphous selenium (a-Se) active-matrix flat-panel imager (AMFPI) as a function of frame time, kilovoltage (kV) and megavoltage (MV) x-ray photon energies and amount of radiation incident on the detector. The AMFPI contains a 200 microm thick a-Se layer deposited on a thin film transistor (TFT) array of size 8.7 cm x 8.7 cm with an 85-microm pixel pitch. For all energies, the lag (signal normalized to the signal due to exposure) for the first (n = 1) and second (n = 2) frame after exposure ranges from 0.45% to 0.91% and from 0.29% to 0.51%, respectively. The amount of lag was determined to be a function of the time after the x-ray exposure irrespective of frame time or the magnitude of exposure. The lag for MV photon energies was slightly less than that for kV photon energies. The residual contrast for all energies studied ranges from 0.41% to 0.75% and from 0.219% to 0.41% for the n = 1 and n = 2 frames, respectively. These results show that lag and residual contrast in kV and MV radiographic applications are always less than 1% for the detection system used and only depend on the time after x-ray exposure. PMID:15191310

  6. Design and feasibility of active matrix flat panel detector using avalanche amorphous selenium for protein crystallography.

    PubMed

    Sultana, Afrin; Reznik, Alla; Karim, Karim S; Rowlands, J A

    2008-10-01

    Protein crystallography is the most important technique for resolving the three-dimensional atomic structure of protein by measuring the intensity of its x-ray diffraction pattern. This work proposes a large area flat panel detector for protein crystallography based on direct conversion x-ray detection technique using avalanche amorphous selenium (a-Se) as the high gain photoconductor, and active matrix readout using amorphous silicon (a-Si:H) thin film transistors. The detector employs avalanche multiplication phenomenon of a-Se to make the detector sensitive to each incident x ray. The advantages of the proposed detector over the existing imaging plate and charge coupled device detectors are large area, high dynamic range coupled to single x-ray detection capability, fast readout, high spatial resolution, and inexpensive manufacturing process. The optimal detector design parameters (such as detector size, pixel size, and thickness of a-Se layer), and operating parameters (such as electric field across the a-Se layer) are determined based on the requirements for protein crystallography application. The performance of the detector is evaluated in terms of readout time (<1 s), dynamic range (approximately 10(5)), and sensitivity (approximately 1 x-ray photon), thus validating the detector's efficacy for protein crystallography. PMID:18975678

  7. Transglutaminase activity arising from Factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in osteoblast cultures.

    PubMed

    Cui, Cui; Wang, Shuai; Myneni, Vamsee D; Hitomi, Kiyotaka; Kaartinen, Mari T

    2014-02-01

    Circulating plasma fibronectin (pFN), produced by hepatocytes, is a major component of the noncollagenous bone matrix where it was recently shown in vivo in mice to control the biomechanical quality as well as the mineral-to-matrix ratio in bone. FN fibrillogenesis is a process generally requiring FN binding to cellular integrins, and cellular tension to elongate and assemble the molecule. Whether soluble pFN undergoes cell-mediated assembly in bone is not fully established. FN is a well-known substrate for transglutaminases (TGs), which are protein-crosslinking enzymes capable of stabilizing macromolecular structures. The role of this modification regarding the function of FN in bone matrix has remained unknown. Osteoblasts express two TGs-transglutaminase 2 and Factor XIIIA-and we have shown that Factor XIIIA is the main TG active during osteoblast differentiation. In the present study, conducted using MC3T3-E1 osteoblast cultures and bone marrow stromal cells, we demonstrate that pFN requires a TG-mediated crosslinking step to form osteoblast matrix in vitro. This modification step is specific for pFN; cellular FN (EDA-FN) does not serve as a TG substrate. Inhibition of pFN assembly using a TG inhibitor, or depletion of pFN from cell culture serum, dramatically decreased total FN matrix assembly in the osteoblast cultures and affected both the quantity and quality of the type I collagen matrix, and decreased lysyl oxidase and alkaline phosphatase levels, resulting in decreased mineralization. Experiments with isozyme-specific substrate peptides showed that FXIIIA is responsible for the crosslinking of pFN. Addition of exogenous preactivated FXIIIA to osteoblast cultures promoted pFN assembly from the media into matrix. Exogenous TG2 had no effect. Analysis of pFN and EDA-FN fibrils by immunofluorescence microscopy demonstrated that they form distinct matrix network, albeit with minor overlap, suggesting different functions for the two FN forms. Further analysis

  8. Biosensing of matrix metalloproteinase activity with Cd-free quantum dots

    NASA Astrophysics Data System (ADS)

    Plumley, John Bryan

    Quantum dots (QDs) have become attractive in the biomedical field on account of their superior optical properties and stability, in comparison to traditional fluorophores. QDs also have properties which make them ideal for complex in vivo conditions. However, toxicity has been a chief concern in the eventual implementation of QDs for in vivo applications such as biosensing and tumor imaging. Commercially available QDs contain a notoriously noxious Cd component and therefore continuous research has gone into developing QDs without toxic heavy metals, generally Cd, that would still yield comparable performance in terms of their optical properties. Nonetheless, even in the case of Cd-free QDs, toxicity should be evaluated on a case by case basis, as other properties such as size, coating, stability, and charge can affect toxicity of nanomaterials as well, making it a very complex issue. With the high promise of QDs in the field of biomedical development as a motivation, this work strives to develop the efficient and repeatable synthesis of Cd-free QDs with high stability and luminescence, with proven low toxicity, and the ability to detect active matrix metalloproteinase (MMP) in a biosensing system, designed to identify direct biomarkers for pathological conditions, which in turn would enable early disease diagnosis and better treatment development. In this work, highly luminescent ZnSe:Mn/ZnS QDs have been synthesized, characterized, and modified with peptides with a bioconjugation procedure that utilized thiol-metal affinity. Experiments aiming at MMP detection were conducted using the peptide/QD conjugates. In addition, the ApoTox-Glo(TM) Triplex assay was utilized to evaluate cytotoxicity, and a safe concentration below 0.125 microM was identified for peptide-coated ZnSe:Mn/ZnS QDs in water. Finally, in contribution to developing an in vivo fiberoptic system for sensing MMP activity, the QDs were successfully tethered to silica and MMP detection was demonstrated

  9. EGF AND TGF-{alpha} motogenic activities are mediated by the EGF receptor via distinct matrix-dependent mechanisms

    SciTech Connect

    Ellis, Ian R.; Schor, Ana M.; Schor, Seth L. . E-mail: s.l.schor@dundee.ac.uk

    2007-02-15

    EGF and TGF-{alpha} induce an equipotent stimulation of fibroblast migration and proliferation. In spite of their homologous structure and ligation by the same receptor (EGFR), we report that their respective motogenic activities are mediated by different signal transduction intermediates, with p70{sup S6K} participating in EGF signalling and phospholipase C{gamma} in TGF-{alpha} signalling. We additionally demonstrate that EGF and TGF-{alpha} motogenic activities may be resolved into two stages: (a) cell 'activation' by a transient exposure to either cytokine, and (b) the subsequent 'manifestation' of an enhanced migratory phenotype in the absence of cytokine. The cell activation and manifestation stages for each cytokine are mediated by distinct matrix-dependent mechanisms: motogenetic activation by EGF requires the concomitant functionality of EGFR and the hyaluronan receptor CD44, whereas activation by TGF-{alpha} requires EGFR and integrin {alpha}v{beta}3. Manifestation of elevated migration no longer requires the continued presence of exogenous cytokine and functional EGFR but does require the above mentioned matrix receptors, as well as their respective ligands, i.e., hyaluronan in the case of EGF, and vitronectin in the case of TGF-{alpha}. In contrast, the mitogenic activities of EGF and TGF-{alpha} are independent of CD44 and {alpha}v{beta}3 functionality. These results demonstrate clear qualitative differences between EGF and TGF-{alpha} pathways and highlight the importance of the extracellular matrix in regulating cytokine bioactivity.

  10. [Study on an actuation system for matrix control of the active catheter in a minimally-invasive intervention surgery].

    PubMed

    Fu, Yi-li; Ma, Hui-hui; Li, Xian-ling

    2006-11-01

    As it is impossible for an active catheter with a very small space to accommodate overmany lead wires in minimally-invasive surgery, a matrix network system is presented, in this paper, to control SMA actuators using minimum lead wires. Pulse current is adjusted by pulse width modulation (PWM) signals from the single-chip processor. In addition, multiple SMA actuators' cooperation helps the active catheter to succeed in guiding motion. PMID:17300007

  11. Secretion and Reversible Assembly of Extracellular-like Matrix by Enzyme-Active Colloidosome-Based Protocells.

    PubMed

    Akkarachaneeyakorn, Khrongkhwan; Li, Mei; Davis, Sean A; Mann, Stephen

    2016-03-29

    The secretion and reversible assembly of an extracellular-like matrix by enzyme-active inorganic protocells (colloidosomes) is described. Addition of N-fluorenyl-methoxycarbonyl-tyrosine-(O)-phosphate to an aqueous suspension of alkaline phosphatase-containing colloidosomes results in molecular uptake and dephosphorylation to produce a time-dependent sequence of supramolecular hydrogel motifs (outer membrane wall, cytoskeletal-like interior and extra-protocellular matrix) that are integrated and remodelled within the microcapsule architecture and surrounding environment. Heat-induced disassembly of the extra-protocellular matrix followed by cooling produces colloidosomes with a densely packed hydrogel interior. These procedures are exploited for the fabrication of nested colloidosomes with spatially delineated regions of hydrogelation. PMID:26981922

  12. Determination of fission neutron transmission through waste matrix material using neutron signal correlation from active assay of {sup 239}Pu

    SciTech Connect

    Hollas, C.L.; Arnone, G.; Brunson, G.; Coop, K.

    1996-09-01

    The accuracy of TRU (transuranic) waste assay using the differential die-away technique depends upon significant corrections to compensate for the effects of the matrix material in which the TRU waste is located. The authors have used a new instrument, the Combined Thermal/Epithermal Neutron (CTEN) instrument for the assay of TRU waste, to develop methods to improve the accuracy of these corrections. Neutrons from a pulsed 14-MeV neutron generator are moderated in the walls of the CTEN cavity and induce fission in the TRU material. The prompt neutrons from these fission events are detected in cadmium-wrapped {sup 3}He neutron detectors. They report new methods of data acquisition and analysis to extract correlation in the neutron signals resulting form fission during active interrogation. They use the correlation information in conjunction with the total number of neutrons to determine the fraction of fission neutrons transmitted through the matrix material into the {sup 3}He detectors. This determination allows them to cleanly separate the matrix effects into two processes: matrix modification upon the neutron interrogating flux and matrix modification upon the fraction of fission neutrons transmitted to the neutron detectors. This transmission information is also directly applied in a neutron multiplicity analysis in the passive assay of {sup 240}Pu.

  13. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ☆

    PubMed Central

    Jones, Eleanor R.; Jones, Gavin C.; Legerlotz, Kirsten; Riley, Graham P.

    2013-01-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1 Hz for 48 h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy. PMID:23830915

  14. Countering beam divergence effects with focused segmented scintillators for high DQE megavoltage active matrix imagers

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-08-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ∼1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through the utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by the degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ∼130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs.

  15. Countering Beam Divergence Effects with Focused Segmented Scintillators for High DQE Megavoltage Active Matrix Imagers

    PubMed Central

    Liu, Langechuan; Antonuk, Larry E; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-01-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ~1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ~130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs. PMID:22854009

  16. The Role of Collagen Charge Clusters in the Modulation of Matrix Metalloproteinase Activity*

    PubMed Central

    Lauer, Janelle L.; Bhowmick, Manishabrata; Tokmina-Roszyk, Dorota; Lin, Yan; Van Doren, Steven R.; Fields, Gregg B.

    2014-01-01

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-l-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23–P23′ subsites of collagenous substrates. PMID:24297171

  17. Levels of Matrix Metalloproteinases in Arthroplasty Patients and Their Correlation With Inflammatory and Thrombotic Activation Processes.

    PubMed

    Alexander, Kyle; Banos, Andrew; Abro, Schuharazad; Hoppensteadt, Debra; Fareed, Jawed; Rees, Harold; Hopkinson, William

    2016-07-01

    An imbalance of matrix metalloproteinases (MMPs) and their inhibitors is thought to play a major role in the pathophysiology of joint diseases. The aim of this study is to provide additional insights into the relevance of MMP levels in arthroplasty patients in relation to inflammation and thrombosis. Deidentified plasma samples from 100 patients undergoing total hip arthroplasty or total knee arthroplasty were collected preoperatively, on postoperative day 1, and on postoperative day 3. Tissue inhibitor of MMP 4, tumor necrosis factor α (TNF-α), pro-MMP1, MMP3, MMP9, MMP13, and d-dimer were measured using enzyme-linked immunosorbent assay kits. A biochip array was used to profile interleukin (IL) 2, IL-4, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), interferon gamma, TNF-α, IL-1α, IL-1β, monocyte chemoattractant protein 1, and endothelial growth factor (EGF) levels. The levels of MMP1, MMP9, MMP13, and TNF-α were elevated preoperatively in arthroplasty patients when compared to healthy individuals. The concentrations of MMP1 and MMP9 increased slightly in postsurgical samples. d-Dimer levels were elevated preoperatively, increased postoperatively, and started decreasing on postoperative day 3. Significant correlations between MMP9 with TNF-α, IL-6, IL-8, VEGF, and EGF were identified. Elevated preoperative MMP1, MMP9, and MMP13 concentrations suggest that they may play a role in the pathogenesis of arthritis. There is also evidence of increased coagulation activity and possible upregulation of several MMPs postsurgically. Correlation analysis indicates that MMP9 levels may potentially be related to inflammation and thrombosis in arthroplasty patients. PMID:27052781

  18. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes.

    PubMed

    Kim, Mounggon; Jeon, Sang Kyu; Hwang, Seok-Ho; Lee, Jun Yeob

    2015-04-17

    High quantum efficiency above 18% and extended lifetime three times longer than that of phosphorescent organic light-emitting diodes (OLEDs) are demonstrated in blue thermally activated delayed fluorescent OLEDs. PMID:25757226

  19. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  20. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation.

    PubMed

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  1. Expression and activation of matrix metalloproteinases in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+.

    PubMed

    Siméon, A; Monier, F; Emonard, H; Gillery, P; Birembaut, P; Hornebeck, W; Maquart, F X

    1999-06-01

    We investigated the expression and activation of matrix metalloproteinases in a model of experimental wounds in rats, and their modulation by glycyl-L-histidyl-L-lysine-Cu(II), a potent activator of wound repair. Wound chambers were inserted under the skin of Sprague-Dawley rats and received serial injections of either 2 mg glycyl-L-histidyl-L-lysine-Cu(II) or the same volume of saline. The wound fluid and the neosynthetized connective tissue deposited in the chambers were collected and analyzed for matrix metalloproteinase expression and/or activity. Interstitial collagenase increased progressively in the wound fluid throughout the experiment. Glycyl-L-histidyl-L-lysine-Cu(II) treatment did not alter its activity. Matrix metalloproteinase-9 (gelatinase B) and matrix metalloproteinase-2 (gelatinase A) were the two main gelatinolytic activities expressed during the healing process. Pro-matrix metalloproteinase (pro-form of matrix metalloproteinase)-9 was strongly expressed during the early stages of wound healing (day 3). In the wound fluid, it decreased rapidly and disappeared after day 18, whereas in the wound tissue, matrix metalloproteinase-9 expression persisted in the glycyl-L-histidyl-L-lysine-Cu(II) injected chamber until day 22. Pro-matrix metalloproteinase-2 was expressed at low levels at the beginning of the healing process, increased progressively until day 7, then decreased until day 18. Activated matrix metalloproteinase-2 was present in wound fluid and wound tissue. It increased until day 12, then decreased progressively. Glycyl-L-histidyl-L-lysine-Cu(II) injections increased pro-matrix metalloproteinase-2 and activated matrix metalloproteinase-2 during the later stages of healing (days 18 and/or 22). These results demonstrate that various types of matrix metalloproteinases are selectively expressed or activated at the various periods of wound healing. Glycyl-L-histidyl-L-lysine-Cu(II) is able to modulate their expression and might significantly alter

  2. Organic light-emitting diode (OLED) and its application to lighting devices

    NASA Astrophysics Data System (ADS)

    Ide, Nobuhiro; Komoda, Takuya; Kido, Junji

    2006-08-01

    Organic Light Emitting Diode (OLED) is an emerging technology as one of the strong candidates for next generation solid state lighting with various advantages such as thin flat shape, no UV emission and environmental benefits. At this moment, OLED still has a lot of issues to be solved before widely used as lighting devices. Nonetheless, typical properties of OLED, such as efficiency and lifetime, have been recently made great progress. For example, a green phosphorescent OLED with over 100 lm/W and a red fluorescent OLED with an estimated half decay time of over 100,000 h at 1,000 cd/m2 were reported. Large area, white OLEDs with long lifetime were also demonstrated. In this way, some of the issues are going to be steadily overcome. In this publication, we will present a phosphorescent white OLED with a high luminous efficiency of 46 lm/W and an external quantum efficiency of 20.6 percent observed at 100 cd/m2. This device achieves a luminous efficiency of 62.8 lm/W with a light-outcoupling film attached on the glass substrate. This is one of the highest values so far reported for white OLEDs. And we will also show a color-tunable stacked OLED with improved emission characteristics. This device minimizes a viewing angle dependence of the emission spectra and has color tunability from white to reddish-white. These technologies will be applied to OLED lighting.

  3. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration.

    PubMed

    Pan, Haitao; Zheng, Qixin; Yang, Shuhua; Guo, Xiaodong; Wu, Bin; Zou, Zhenwei; Duan, Zhixia

    2014-08-01

    The osteogenic differentiation of bone marrow stromal cells (BMSCs) can be regulated by systemic or local growth factor, especially by transforming growth factor beta 1 (TGF-β1). However, how to maintain the bioactivity of exogenous TGF-β1 is a great challenge due to its short half-life time. The most promising solution is to transfer TGF-β1 gene into seed cells through transgenic technology and then transgenic cells to continuously secret endogenous TGF-β1 protein via gene expression. In this study, a novel non-viral vector (K)16GRGDSPC was chemically linked to bioactive bone matrices PLGA-[ASP-PEG]n using cross-linker to construct a novel non-viral gene transfer system. TGF-β1 gene was incubated with this system and subsequently rabbit-derived BMSCs were co-cultured with this gene-activated PLGA-[ASP-PEG]n, while co-cultured with PLGA-[ASP-PEG]n modified with (K)16GRGDSPC only and original PLGA-[ASP-PEG]n as control. Thus we fabricated three kinds of composites: Group A (BMSCs-TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); Group B (BMSCs-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); and Group C (BMSCs-PLGA-[ASP-PEG]n composite). TGF-β1 and other osteogenic phenotype markers of alkaline phosphatase, osteocalcin, osteopontin and type I collagen in Group A were all significantly higher than the other two groups ex vivo. In vivo, 15-mm long segmental rabbit bone defects were created and randomly implanted the aforementioned composites separately, and then fixed with plate-screws. The results demonstrated that the implants in Group A significantly accelerated bone regeneration compared with the other implants based on X-rays, histological and biomechanical examinations. Therefore, we conclude this novel peptide-modified and gene-activated biomimetic bone matrix of TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n is a very promising scaffold biomaterial for accelerating bone regeneration. PMID:24115366

  4. Organic Light-Emitting Devices: High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W(-1) (Adv. Mater. 13/2016).

    PubMed

    Seino, Yuki; Inomata, Susumu; Sasabe, Hisahiro; Pu, Yong-Jin; Kido, Junji

    2016-04-01

    On page 2638, H. Sasabe, J. Kido, and co-workers introduce a high-power-efficiency thermally activated fluorescent organic LED with 100 lm W(-1) , developed using energy transfer from an exciplex. The performance is almost comparable with that in a phosphorescent organic LED. PMID:27037945

  5. Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages.

    PubMed

    Rodríguez-Roque, María Janeth; de Ancos, Begoña; Sánchez-Vega, Rogelio; Sánchez-Moreno, Concepción; Cano, M Pilar; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2016-01-01

    The biological activity of carotenoids depends on their bioaccessibility and solubilization in the gastrointestinal tract. These compounds are poorly dispersed in the aqueous media of the digestive tract due to their lipophilic nature. Thus, it is important to analyze the extent to which some factors, such as the food matrix and food processing, may improve their bioaccessibility. Beverages formulated with a blend of fruit juices and water (WB), milk (MB) or soymilk (SB) were treated by high-intensity pulsed electric fields (HIPEF) (35 kV cm(-1) with 4 μs bipolar pulses at 200 Hz for 1800 μs), high-pressure processing (HPP) (400 MPa at 40 °C for 5 min) or thermal treatment (TT) (90 °C for 1 min) in order to evaluate the influence of food matrix and processing on the bioaccessibility of carotenoids and on the lipophilic antioxidant activity (LAA). The bioaccessibility of these compounds diminished after applying any treatment (HIPEF, HPP and TT), with the exception of cis-violaxanthin + neoxanthin, which increased by 79% in HIPEF and HPP beverages. The lowest carotenoid bioaccessibility was always obtained in TT beverages (losses up to 63%). MB was the best food matrix for improving the bioaccessibility of carotenoids, as well as the LAA. The results demonstrate that treatment and food matrix modulated the bioaccessibility of carotenoids as well as the lipophilic antioxidant potential of beverages. Additionally, HIPEF and HPP could be considered as promising technologies to obtain highly nutritional and functional beverages. PMID:26499515

  6. Thin film encapsulation for flexible AM-OLED: a review

    NASA Astrophysics Data System (ADS)

    Park, Jin-Seong; Chae, Heeyeop; Chung, Ho Kyoon; In Lee, Sang

    2011-03-01

    Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.

  7. INK-JET PRINTING OF PF6 FOR OLED APPLICATIONS

    SciTech Connect

    Burrasca, G.; Fasolino, T.; Miscioscia, R.; Nenna, G.; Vacca, P.; Villani, F.; Minarini, C.; Della Sala, D.

    2008-08-28

    In the last years there has been much interest in applying ink-jet printing (IJP) technology to the deposition of several materials for organic electronics applications, including metals, polymers and nanoparticles dispersions on flexible substrates. The aim of this work is to study the effect of ink-jet deposition of polymer films in the manufacturing of OLED devices comparing their performances to standard technologies. The ink-jet printed polymer is introduced in an hybrid structure in which other layers are deposited by vacuum thermal evaporation. The electrical and optical properties of the obtained devices are investigated.OLEDs with the same structure were fabricated by spin-coating a polymer film by the same solution used as ink. Results have been compared to the above ones to determine how the deposition method affects the device optoelectronic properties.

  8. Inkjet printing of photopolymerizable small molecules for OLED applications

    NASA Astrophysics Data System (ADS)

    Olivier, Simon; Derue, Lionel; Geffroy, Bernard; Ishow, Eléna; Maindron, Tony

    2015-09-01

    The elaboration of organic light-emitting diodes (OLEDs) via a solution deposition process turns out to be a cheaper alternative to the vacuum evaporation technique. However the most popular spin-coating wet deposition process mainly used in the semiconductor industry is not applicable for large mother glass substrates used in display applications. The inkjet technology addresses this drawback and appears to be a good solution to produce on a large scale wet deposited OLEDs1. This process has been commonly used for polymer deposition and only a few examples2-4 have demonstrated the possibility of depositing small molecules in functional devices. Deposition of small molecules from inkjet printing is supposed to be easier than polymers because monomers do not show polydispersity and consequently the viscosity of the solution containing the monomers, the ink, is easily controllable in production. This work aims at fabricating OLEDs composed of inkjet-printed hole-transporting molecules and a new class of fluorescent molecules that have been further UV-photopolymerized right after deposition.

  9. Multi-objective optimization of microcavity OLEDs with DBR mirror

    NASA Astrophysics Data System (ADS)

    Lu, Albert W.; Chan, J.; Ng, Alan Man Ching; Djurišić, A. B.; Rakić, A. D.

    2007-02-01

    In this work, the emission efficiency and spectral shift with respect to viewing angle were optimized by optimizing the design of the multi-layer top mirror of a microcavity OLED device. We first established criteria for the emission side mirror in order to optimize light intensity and spectral shift with viewing angle. Then we designed mirror using metallic and dielectric layers based on the target defined. The electroluminescence emission spectra of a microcavity OLED consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq 3) as emitting and electron transporting layer was then calculated. Silver was used as the anode and back reflection mirror for the microcavity OLED. The simulation was performed for both the conventional LiF/Al cathode/top mirror and the optimized 5-layered top mirror. Our results indicate that by following the design procedure outlined, we simultaneously optimize the device for better light intensity and spectral shift with viewing angle.

  10. Extraction of internal emission characteristics from printed OLEDs

    NASA Astrophysics Data System (ADS)

    Hildner, Mark L.; Ziebarth, Jonathan M.

    2012-09-01

    Accurate optical modeling of OLED device performance is beneficial to OLED manufacturing because as materials and architectures are modified, experimental effort and resources are saved in the search for optimal structures. The success of such modeling depends crucially on model inputs, which include, along with layer thicknesses and optical constants, internal emission characteristics such as the internal emission spectrum (IES) of the emitter and the location and profile of emission in the emissive layer (EML). This presentation will describe two methods we have used to extract the internal emission characteristics of our printed bottom emitting OLEDs. The first method, which we devised and implemented with assumptions specific to our devices, is a simpler one for both modeling and data collection: we collected spectra at normal viewing angle for a series of devices with different architectures, and extracted a normalized IES common to all these devices. We will show how an emission location was obtained from this method with some simple model assumptions. In the more rigorous second method - one presented by van Mensfoort et al 1 - internal emission characteristics were extracted independently for each device: spectra at multiple angles were collected, which allowed the extraction of an individual IES and emission profile. We will compare the findings of the two methods and assess the validity of the assumptions used in the first method.

  11. HL7 with CORBA and OLE: software components for healthcare.

    PubMed

    Rishel, W

    1996-01-01

    Componentized software promises easier, more fine-grained integration of disparate software systems. Variations of the technology can help to achieve tight coupling among disparate programs on the clinical workstation or across wide area networks. HL7 members have been designing extensions to the protocol for the exchange of healthcare information using Microsoft OLE and CORBA technologies. Extensive prototyping has been performed, including the simultaneous interconnection of sixteen different vendor systems exchanging demographic data and lab results. The first release of this standard will be notable in that the specifications for OLE and CORBA will be entirely isomorphic, they will be based directly, on HL7 version 2.3, and they may easily be implemented in systems that are not written using object-oriented programming tools. As HL7 version 3 is developed on an object-oriented model of healthcare information, the same approach will be used so information about the objects may be shared using CORBA and OLE. PMID:8947635

  12. Antioxidant and antiproliferative activity of chokeberry juice phenolics during in vitro simulated digestion in the presence of food matrix.

    PubMed

    Stanisavljević, Nemanja; Samardžić, Jelena; Janković, Teodora; Šavikin, Katarina; Mojsin, Marija; Topalović, Vladanka; Stevanović, Milena

    2015-05-15

    Chokeberry juice was subjected to in vitro gastric digestion in the presence of food matrix in order to determine the changes in polyphenol content and antioxidant activity. Addition of food matrix immediately decreased the total phenolic content, anthocyanin content, DPPH scavenging activity as well as total reducing power by 36%, 90%, 45% and 44%, respectively. After in vitro digestion, total phenolic content, anthocyanin content and reducing power are slightly elevated, but they are still lower than in initial non-digested juice. The effect of digested juice on Caco-2 cells proliferation was also studied, and the reduction of proliferative rate by approximately 25% was determined. Our results suggested that although a large proportion of chokeberry phenolics undergo transformation during digestion they are still potent as antioxidant and antiproliferative agents. PMID:25577114

  13. X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.

    SciTech Connect

    CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

    2007-10-29

    An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

  14. Ole e 13 is the unique food allergen in olive: Structure-functional, substrates docking, and molecular allergenicity comparative analysis.

    PubMed

    Jimenez-Lopez, J C; Robles-Bolivar, P; Lopez-Valverde, F J; Lima-Cabello, E; Kotchoni, S O; Alché, J D

    2016-05-01

    Thaumatin-like proteins (TLPs) are enzymes with important functions in pathogens defense and in the response to biotic and abiotic stresses. Last identified olive allergen (Ole e 13) is a TLP, which may also importantly contribute to food allergy and cross-allergenicity to pollen allergen proteins. The goals of this study are the characterization of the structural-functionality of Ole e 13 with a focus in its catalytic mechanism, and its molecular allergenicity by extensive analysis using different molecular computer-aided approaches covering a) functional-regulatory motifs, b) comparative study of linear sequence, 2-D and 3D structural homology modeling, c) molecular docking with two different β-D-glucans, d) conservational and evolutionary analysis, e) catalytic mechanism modeling, and f) IgE-binding, B- and T-cell epitopes identification and comparison to other allergenic TLPs. Sequence comparison, structure-based features, and phylogenetic analysis identified Ole e 13 as a thaumatin-like protein. 3D structural characterization revealed a conserved overall folding among plants TLPs, with mayor differences in the acidic (catalytic) cleft. Molecular docking analysis using two β-(1,3)-glucans allowed to identify fundamental residues involved in the endo-1,3-β-glucanase activity, and defining E84 as one of the conserved residues of the TLPs responsible of the nucleophilic attack to initiate the enzymatic reaction and D107 as proton donor, thus proposing a catalytic mechanism for Ole e 13. Identification of IgE-binding, B- and T-cell epitopes may help designing strategies to improve diagnosis and immunotherapy to food allergy and cross-allergenic pollen TLPs. PMID:27017426

  15. Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays

    NASA Astrophysics Data System (ADS)

    Almanza-Workman, A. Marcia; Jeans, Albert; Braymen, Steve; Elder, Richard E.; Garcia, Robert A.; de la Fuente Vornbrock, Alejandro; Hauschildt, Jason; Holland, Edward; Jackson, Warren; Jam, Mehrban; Jeffrey, Frank; Junge, Kelly; Kim, Han-Jun; Kwon, Ohseung; Larson, Don; Luo, Hao; Maltabes, John; Mei, Ping; Perlov, Craig; Smith, Mark; Stieler, Dan; Taussig, Carl P.; Trovinger, Steve; Zhao, Lihua

    2012-03-01

    Good surface quality of plastic substrates is essential to reduce pixel defects during roll-to-roll fabrication of flexible display active matrix backplanes. Standard polyimide substrates have a high density of "bumps" from fillers and belt marks and other defects from dust and surface scratching. Some of these defects could be the source of shunts in dielectrics. The gate dielectric must prevent shorts between the source/drain and the gate in the transistors, resist shorts in the hold capacitor and stop shorts in the data/gate line crossovers in active matrix backplanes fabricated by self-aligned imprint lithography (SAIL) roll-to-roll processes. Otherwise data and gate lines will become shorted creating line or pixel defects. In this paper, we discuss the development of a proprietary UV curable planarization material that can be coated by roll-to-roll processes. This material was engineered to have low shrinkage, excellent adhesion to polyimide, high dry etch resistance, and great chemical and thermal stability. Results from PECVD deposition of an amorphous silicon stack on the planarized polyimide and compatibility with roll-to-roll processes to fabricate active matrix backplanes are also discussed. The effect of the planarization on defects in the stack, shunts in the dielectric and curvature of finished arrays will also be described.

  16. Digital radiology using active matrix readout of amorphous selenium: radiation hardness of cadmium selenide thin film transistors.

    PubMed

    Zhao, W; Waechter, D; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector using active matrix readout of amorphous selenium (a-Se) is being investigated for digital radiography and fluoroscopy. The active matrix consists of a two-dimensional array of thin film transistors (TFTs). Radiation penetrating through the a-Se layer will interact with the TFTs and it is important to ensure that radiation induced changes will not affect the operation of the x-ray imaging detector. The methodology of the present work is to investigate the effects of radiation on the characteristic curves of the TFTs using individual TFT samples made with cadmium selenide (CdSe) semiconductor. Four characteristic parameters, i.e., threshold voltage, subthreshold swing, field effect mobility, and leakage current, were examined. This choice of parameters was based on the well established radiation damage mechanisms for crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), which have a similar principle of operation as CdSe TFTs. It was found that radiation had no measurable effect on the leakage current and the field effect mobility. However, radiation shifted the threshold voltage and increased the subthreshold swing. But even the estimated lifetime dose (50 Gy) of a diagnostic radiation detector will not affect the normal operation of an active matrix x-ray detector made with CdSe TFTs. The mechanisms of the effects of radiation will be discussed and compared with those for MOSFETs and hydrogenated amorphous silicon (a-Si:H) TFTs. PMID:9571621

  17. Roles of mitogen activated protein kinases and EGF receptor in arsenite-stimulated matrix metalloproteinase-9 production

    SciTech Connect

    Cooper, Karen L.; Myers, Terrance Alix; Rosenberg, Martina; Chavez, Miquella; Hudson, Laurie G. . E-mail: lghudson@unm.edu

    2004-11-01

    The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations {>=}100 {mu}M stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important

  18. Recent advances in AM OLED technologies for application to aerospace and military systems

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles

    2012-06-01

    While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.

  19. MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL

    SciTech Connect

    DR. DEVIN MACKENZIE

    2011-12-13

    Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost

  20. Carbonate aquifers with hydraulically non-active matrix: A case study from Poland

    NASA Astrophysics Data System (ADS)

    Rzonca, Bartłomiej

    2008-06-01

    SummaryThe Devonian carbonate (karst) rocks of the Holy Cross Mountains (Góry Świętokrzyskie) in Poland, which constitute a major water supply for the region, are the subject of the presented study. Using standard laboratory methods, the matrix hydrogeological properties (open porosity, permeability and specific yield) of the limestones and dolomites were determined. The test results showed very low open porosities of the samples, as well as an extremely low permeability. The specific yield in all the cases was zero. There was a very slight correlation between the permeability (represented by the hydraulic conductivity) and the open porosity for limestones - and no correlation for dolomites. The measured parameters do not depend on the structure of the rock matrix (classified as pelite, sparite or crystalline) nor does the occurrence of fractures. Differences in open porosity (but not in hydraulic conductivity) were observed between the samples from different structural units.

  1. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  2. Relationship between activation volume and polymer matrix effects on photochromic performance: bridging molecular parameter to macroscale effect.

    PubMed

    Shima, Kentaro; Mutoh, Katsuya; Kobayashi, Yoichi; Abe, Jiro

    2015-02-19

    Photochromic compounds have attracted attention as ophthalmic lenses because of their reversible color modulation upon irradiation with light. However, the efficiency of the photochromism is strongly affected by their surrounding because of the structural changes concomitant with the photochromism, which causes the decrease in the photochromic performance in the polymer matrix. Therefore, the clarification of the degree of the structural changes is necessary to apply to the ophthalmic lenses. Bridged imidazole dimers are one of the fast photoswitch molecules possessing high photochromic quantum yield and durability. Although the enhancement of the photochromic properties of bridged imidazole dimers has been vigorously studied, the quantitative information about the structural changes has not been revealed in detail. In this study, we investigated the pressure effects on the photochromic properties of bridged imidazole dimers. The activation volume for the thermal back-reaction of the photogenerated biradical species becomes an effective measure to predict the degree of the structural change during the photochromic reaction. We revealed that the smaller activation volume is suitable for keeping the efficient photochromic reaction in the polymer matrix because the photochromic reaction is not affected by the surroundings. These fundamental insights into the molecular dynamics provide valuable information to develop fast photochromic compounds that are suitable for the use in the polymer matrix and pressure sensitive photochromic materials. PMID:25621415

  3. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity

    PubMed Central

    Grass, G. Daniel; Toole, Bryan P.

    2015-01-01

    Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. PMID:26604323

  4. Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules.

    PubMed

    Piperigkou, Zoi; Karamanou, Konstantina; Afratis, Nikolaos A; Bouris, Panagiotis; Gialeli, Chrysostomi; Belmiro, Celso L R; Pavão, Mauro S G; Vynios, Dimitrios H; Tsatsakis, Aristidis M

    2016-01-01

    The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting. PMID:26476401

  5. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening

  6. (±)Equol inhibits invasion in prostate cancer DU145 cells possibly via down-regulation of matrix metalloproteinase-9, matrix metalloproteinase-2 and urokinase-type plasminogen activator by antioxidant activity

    PubMed Central

    Zheng, Wei; Zhang, Yumei; Ma, Defu; Shi, Yuhui; Liu, Changqiu; Wang, Peiyu

    2012-01-01

    Exposure to soy isoflavones has been associated with low mortality of prostate cancer. In this study, we examined the effects of (±)equol and two representative isoflavones, daidzein and genistein, on migration and invasion in human prostate cancer DU145 cells. First of all, the three regents did not show significant growth inhibitive effect in DU145 cells until the treatments last for 72 h. Treatment with 5 µM, 10 µM, 50 µM (±)equol, 0.5 µM, 1 µM, 5 µM daidzein and genistein for 24 h decreased cell migration and invasion significantly. (±)equol activated phosphatase and tensin homologue deleted on chromosome ten at protein level but not mRNA level, which activated antioxidants, including superoxide dismutase and nuclear factor (erythroid-derived 2)-like 2. A reduction of malondialdehyde concentration, the product of lipid per-oxidation, was observed as well. Moreover, matrix metalloproteinase-2, matrix metalloproteinase-9, and urokinase-type plasminogen activator, the crucial members in metastasis, were down-regulated. Overall, our data indicate that (±)equol, daidzein and genistein may have significant anti-invasion effect in DU145 cells (in vitro). The effects induced by (±)equol may relate to its anti-oxidant effect mediated by phosphatase and tensin homologue deleted on chromosome ten. PMID:22798715

  7. Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells.

    PubMed

    Hui, Angela Y; Meens, Jalna A; Schick, Colleen; Organ, Shawna L; Qiao, Hui; Tremblay, Eric A; Schaeffer, Erik; Uniyal, Shashi; Chan, Bosco M C; Elliott, Bruce E

    2009-08-15

    Cell-matrix adhesion has been shown to promote activation of the hepatocyte growth factor receptor, Met, in a ligand-independent manner. This process has been linked to transformation and tumorigenesis in a variety of cancer types. In the present report, we describe a key role of integrin signaling via the Src/FAK axis in the activation of Met in breast epithelial and carcinoma cells. Expression of an activated Src mutant in non-neoplastic breast epithelial cells or in carcinoma cells was found to increase phosphorylation of Met at regulatory tyrosines in the auto-activation loop domain, correlating with increased cell spreading and filopodia extensions. Furthermore, phosphorylated Met is complexed with beta1 integrins and is co-localized with vinculin and FAK at focal adhesions in epithelial cells expressing activated Src. Conversely, genetic or pharmacological inhibition of Src abrogates constitutive Met phosphorylation in carcinoma cells or epithelial cells expressing activated Src, and inhibits filopodia formation. Interestingly, Src-dependent phosphorylation of Met requires cell-matrix adhesion, as well as actin stress fiber assembly. Phosphorylation of FAK by Src is also required for Src-induced Met phosphorylation, emphasizing the importance of the Src/FAK signaling pathway. However, stimulation of Met phosphorylation by addition of exogenous HGF in epithelial cells is refractory to inhibition of Src family kinases, indicating that HGF-dependent and Src/integrin-dependent Met activation occur via distinct mechanisms. Together these findings demonstrate a novel mechanism by which the Src/FAK axis links signals from the integrin adhesion complex to promote Met activation in breast epithelial cells. PMID:19533669

  8. Flexible OLED fabrication with ITO thin film on polymer substrate

    NASA Astrophysics Data System (ADS)

    Kim, Sung Il; Lee, Kyo Woong; Bhusan Sahu, Bibhuti; Geon Han, Jeon

    2015-09-01

    This paper reports the synthesis of flexible indium tin oxide (ITO) films in a dual pulse magnetron sputtering (DPMS) system at low temperature (<100 °C) deposition condition. This study also presents experimental demonstration of the ITO films for their possible use in the fabrication of organic light emitting diode (OLED) device, and the device performance on the super polycarbonate substrates. The presented data reveals the feasibility of ITO films, with a very low sheet resistance of ∼30 Ω/□ and high transmittance of ∼88% at 550 nm, simply by the magnetron pulse mode operations with increasing pulse frequency from 0 to 50 kHz.

  9. The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator.

    PubMed

    Moser, T L; Enghild, J J; Pizzo, S V; Stack, M S

    1993-09-01

    This study describes the binding of plasminogen and tissue-type plasminogen activator (t-PA) to the extracellular matrix proteins fibronectin and laminin. Plasminogen bound specifically and saturably to both fibronectin and laminin immobilized on microtiter wells, with Kd(app) values of 115 and 18 nM, respectively. Limited proteolysis by endoproteinase V8 coupled with ligand blotting analysis showed that both plasminogen and t-PA preferentially bind to a 55-kDa fibronectin fragment and a 38-kDa laminin fragment. Amino acid sequence analysis demonstrated that the 5-kDa fragment originates with the fibronectin amino terminus whereas the laminin fragment was derived from the carboxyl-terminal globular domain of the laminin A chain. Ligand blotting experiments using isolated plasminogen domains were also used to identify distinct regions of the plasminogen molecule involved in fibronectin and laminin binding. Solution phase fibronectin binding to immobilized plasminogen was mediated primarily via lysine binding site-dependent interactions with plasminogen kringles 1-4. Lysine binding site-dependent binding of soluble laminin to immobilized plasminogen kringles 1-5 as well as an additional lysine binding site-independent interaction between mini-plasminogen and the 38-kDa laminin A chain fragment were also observed. These studies demonstrate binding of plasminogen and tissue-type plasminogen activator to specific regions of the extracellular matrix glycoproteins laminin and fibronectin and provide further insight into the mechanism of regulation of plasminogen activation by components of the extracellular matrix. PMID:8360181

  10. MicroRNA-375 Suppresses Extracellular Matrix Degradation and Invadopodial Activity in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Jimenez, Lizandra; Sharma, Ved P.; Condeelis, John; Harris, Thomas; Ow, Thomas J.; Prystowsky, Michael B.; Childs, Geoffrey; Segall, Jeffrey E.

    2015-01-01

    Context Head and neck squamous cell carcinoma (HNSCC) is a highly invasive cancer with an association with locoregional recurrence and lymph node metastasis. We have previously reported that low microRNA-375 (miR-375) expression levels correlate with poor patient survival, increased locoregional recurrence, and distant metastasis. Increasing miR-375 expression in HNSCC cell lines to levels found in normal cells results in suppressed invasive properties. HNSCC invasion is mediated in part by invadopodia-associated degradation of the extracellular matrix. Objective To determine whether elevated miR-375 expression in HNSCC cell lines also affects invadopodia formation and activity. Design For evaluation of the matrix degradation properties of the HNSCC lines, an invadopodial matrix degradation assay was used. The total protein levels of invadopodia-associated proteins were measured by Western blot analyses. Immunoprecipitation experiments were conducted to evaluate the tyrosine phosphorylation state of cortactin. Human Protease Arrays were used for the detection of the secreted proteases. Quantitative real time–polymerase chain reaction measurements were used to evaluate the messenger RNA (mRNA) expression of the commonly regulated proteases. Results Increased miR-375 expression in HNSCC cells suppresses extracellular matrix degradation and reduces the number of mature invadopodia. Higher miR-375 expression does not reduce cellular levels of selected invadopodia-associated proteins, nor is tyrosine phosphorylation of cortactin altered. However, HNSCC cells with higher miR-375 expression had significant reductions in the mRNA expression levels and secreted levels of specific proteases. Conclusions MicroRNA-375 regulates invadopodia maturation and function potentially by suppressing the expression and secretion of proteases. PMID:26172508

  11. Stacked white OLED having separate red, green and blue sub-elements

    DOEpatents

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2016-06-28

    The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.

  12. Stacked white OLED having separate red, green and blue sub-elements

    DOEpatents

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2015-06-23

    The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.

  13. NF-κB and Matrix-Dependent Regulation of Osteopontin Promoter Activity in Allylamine-Activated Vascular Smooth Muscle Cells

    PubMed Central

    Williams, E. Spencer; Wilson, Emily; Ramos, Kenneth S.

    2012-01-01

    Repeated cycles of oxidative injury by allylamine in vivo induce a proliferative rat vascular (aortic) smooth muscle cell (vSMC) phenotype characterized by matrix-dependent enhancement of mitogenic sensitivity, changes in cell surface integrin expression, and osteopontin (opn) overexpression. Here, we show that constitutive and mitogen-stimulated NF-κB DNA binding activity is enhanced in allylamine vSMCs. Matrix-specific changes in cellular Rel protein expression were observed in allylamine vSMCs. The NF-κB DNA binding element located at −1943 in the 5′-UTR strongly inhibited opn promoter activity in allylamine vSMCs, and this response was regulated by the extracellular matrix. Constitutive increases in opn promoter activity were only seen when allylamine cells were seeded on a fibronectin substrate, and this response was independent of the NF-κB DNA binding sequence within the regulatory region. Thus, NF-κB functions as a critical regulator of the allylamine-induced proliferative phenotype in vSMCs. PMID:22315656

  14. Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Harada, Chihiro; Hata, Takuya; Chuman, Takashi; Ishizuka, Shinichi; Yoshizawa, Atsushi

    2013-05-01

    We developed a 3-in. organic thin-film transistor (OTFT) array with an ink-jetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm2 V-1 s-1, the threshold voltage was 3.3 V, and the on/off current ratio was more than 106. We demonstrated a 3-in. active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving images. The peak luminance of the display was 170 cd/m2.

  15. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  16. Helicobacter pylori Activates Matrix Metalloproteinase 10 in Gastric Epithelial Cells via EGFR and ERK-mediated Pathways.

    PubMed

    Costa, Angela M; Ferreira, Rui M; Pinto-Ribeiro, Ines; Sougleri, Ioanna S; Oliveira, Maria J; Carreto, Laura; Santos, Manuel A; Sgouras, Dionyssios N; Carneiro, Fatima; Leite, Marina; Figueiredo, Ceu

    2016-06-01

    Helicobacter pylori colonizes the human stomach and increases the risk for peptic ulcer disease and gastric carcinoma. H. pylori upregulates the expression and activity of several matrix metalloproteinases (MMPs) in cell lines and in the gastric mucosa. The aim of this study was to explore the mechanisms leading to upregulation of MMP10 in gastric epithelial cells induced by H. pylori Infection of gastric cells with H. pylori led to an increase in levels of MMP-10 messenger RNA, protein secretion, and activity. cagA knockout mutants or CagA phosphorylation-defective mutants failed to increase MMP10 expression. These results were confirmed in infection experiments with clinical isolates with known cagA status and in human gastric biopsy specimens. Treatment of cells with chemical inhibitors of the receptor tyrosine kinase EGFR and the kinase Src abrogated H. pylori-induced MMP10 expression. Inhibitors of ERK1/2 and JNK kinases abolished and significantly decreased H. pylori-induced MMP10 expression, respectively, whereas inhibition of the kinase p38 had no effect. Finally, inhibition of MMP10 expression by small interfering RNA led to a decrease in the gastric cell-invasive phenotype mediated by the infection. In conclusion, CagA-positive H. pylori strains stimulate MMP10 expression. MMP-10 modulation occurs via EGFR activation in a process that involves Src, ERK, and JNK pathways. MMP-10 may be implicated in H. pylori-mediated extracellular matrix remodeling. PMID:26802142

  17. A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis.

    PubMed

    Munesue, Seiichi; Yoshitomi, Yasuo; Kusano, Yuri; Koyama, Yoshie; Nishiyama, Akiko; Nakanishi, Hayao; Miyazaki, Kaoru; Ishimaru, Takeshi; Miyaura, Shuichi; Okayama, Minoru; Oguri, Kayoko

    2007-09-21

    The syndecans comprise a family of cell surface heparan sulfate proteoglycans exhibiting complex biological functions involving the interaction of heparan sulfate side chains with a variety of soluble and insoluble heparin-binding extracellular ligands. Here we demonstrate an inverse correlation between the expression level of syndecan-2 and the metastatic potential of three clones derived from Lewis lung carcinoma 3LL. This correlation was proved to be a causal relationship, because transfection of syndecan-2 into the higher metastatic clone resulted in the suppression of both spontaneous and experimental metastases to the lung. Although the expression levels of matrix metalloproteinase-2 (MMP-2) and its cell surface activators, such as membrane-type 1 matrix metalloproteinase and tissue inhibitor of metalloproteinase-2, were similar regardless of the metastatic potentials of the clones, elevated activation of MMP-2 was observed in the higher metastatic clone. Removal of heparan sulfate from the cell surface of low metastatic cells by treatment with heparitinase-I promoted MMP-2 activation, and transfection of syndecan-2 into highly metastatic cells suppressed MMP-2 activation. Furthermore, transfection of mutated syndecan-2 lacking glycosaminoglycan attachment sites into highly metastatic cells did not have any suppressive effect on MMP-2 activation, suggesting that this suppression was mediated by the heparan sulfate side chains of syndecan-2. Actually, MMP-2 was found to exhibit a strong binding ability to heparin, the dissociation constant value being 62 nM. These results indicate a novel function of syndecan-2, which acts as a suppressor for MMP-2 activation, causing suppression of metastasis in at least the metastatic system used in the present study. PMID:17623663

  18. Thioredoxin fusion construct enables high-yield production of soluble, active matrix metalloproteinase-8 (MMP-8) in Escherichia coli.

    PubMed

    McNiff, M L; Haynes, E P; Dixit, N; Gao, F P; Laurence, J S

    2016-06-01

    Matrix metalloproteinases (MMPs) are crucial proteases in maintaining the health and integrity of many tissues, however their dysregulation often facilitates disease progression. In disease states these remodeling and repair functions support, for example, metastasis of cancer by both loosening the matrix around tumors to enable cellular invasion and by affecting proliferation and apoptosis, and they promote degradation of biological restorations by weakening the substrate to which the restoration is attached. As such, MMPs are important therapeutic targets. MMP-8 participates in cancer, arthritis, asthma and failure of dental fillings. MMP-8 differs from other MMPs in that it has an insertion that enlarges its active site. To elucidate the unique features of MMP-8 and develop selective inhibitors to this therapeutic target, a stable and active form of the enzyme is needed. MMP-8 has been difficult to express at high yield in a soluble, active form. Typically recombinant MMPs accumulate in inclusion bodies and complex methods are applied to refold and purify protein in acceptable yield. Presented here is a streamlined approach to produce in Escherichia coli a soluble, active, stable MMP-8 fusion protein in high yield. This fusion shows much greater retention of activity when stored refrigerated without glycerol. A variant of this construct that contains the metal binding claMP Tag was also examined to demonstrate the ability to use this tag with a metalloprotein. SDS-PAGE, densitometry, mass spectrometry, circular dichroism spectroscopy and an activity assay were used to analyze the chemical integrity and function of the enzyme. PMID:26923061

  19. Light diffusing effects of nano and micro-structures on OLED with microcavity.

    PubMed

    Cho, Doo-Hee; Shin, Jin-Wook; Joo, Chul Woong; Lee, Jonghee; Park, Seung Koo; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2014-10-20

    We examined the light diffusing effects of nano and micro-structures on microcavity designed OLEDs. The results of FDTD simulations and experiments showed that the pillar shaped nano-structure was more effective than the concave micro-structure for light diffusing of microcavity OLEDs. The sharp luminance distribution of the microcavity OLED was changed to near Lambertian luminance distribution by the nano-structure, and light diffusing effects increased with the height of the nano-structure. Furthermore, the nano-structure has advantages including light extraction of the substrate mode, reproducibility of manufacturing process, and minimizing pixel blur problems in an OLED display panel. The nano-structure is a promising candidate for a light diffuser, resolving the viewing angle problems in microcavity OLEDs. PMID:25607307

  20. Improved spatiotemporal-multiplexing super-multiview display based on planar aligned OLED microdisplays.

    PubMed

    Teng, Dongdong; Pang, Zhiyong; Zhang, Yueli; Wu, Dong; Wang, Jiahui; Liu, Lilin; Wang, Biao

    2015-08-24

    Through gating spectrum plane of multiple planar aligned OLED microdisplays by a timely sequential manner, a super-multiview (SMV) three-dimensional (3D) display based on spatiotemporal-multiplexing was developed in our previous paper. But an upper limit of the allowable sub-viewing-zones (SVZs) for an OLED microdisplay did exist in the previous system, even if microdisplays with very high frame rates could be commercially available. In this manuscript, an improved spatiotemporal-multiplexing SMV displays system is developed, which removes the above limitation through controllable fusing of light beams from adjacent OLED microdisplays. The employment of a liquid-crystal panel as the gating-aperture array allows the improved system to accommodate multiple rows of OLED microdisplays for denser SVZs. Experimentally, a prototype system is demonstrated by 24 OLED microdisplays, resulting in 120 SVZs with an interval small to 1.07mm. PMID:26368135

  1. Activation of matrix metalloproteinase-26 by HOXA10 promotes embryo adhesion in vitro.

    PubMed

    Jiang, Yue; Yan, Guijun; Zhang, Hui; Shan, Huizhi; Kong, Chengcai; Yan, Qiang; Xue, Bai; Diao, Zhenyu; Hu, Yali; Sun, Haixiang

    2014-03-14

    Successful embryonic implantation requires an effective maternal-embryonic molecular dialogue. However, the detailed mechanisms of epithelial-embryo adhesion remain poorly understood. Here, we report that matrix metalloproteinase-26 (MMP-26) is a novel downstream target gene of homeobox a 10 (HOXA10) in human endometrial cells. HOXA10 binds directly to a conserved TTAT unit (-442 to -439) located within the 5' regulatory region of the MMP-26 gene and regulates the expression and secretion of MMP-26 in a concentration-dependent manner. Moreover, the adenovirus-mediated overexpression of MMP-26 in Ishikawa cells markedly increased BeWo spheroid adhesion. An antibody blocking assay further demonstrated that the promotion of BeWo spheroid adhesion by HOXA10 and MMP-26 was significantly inhibited by pre-treatment with a specific antibody against MMP-26. These results demonstrate that the HOXA10-mediated expression of MMP-26 promotes embryo adhesion during the process of embryonic implantation. PMID:24565841

  2. Targeted SPECT/CT Imaging of Matrix Metalloproteinase Activity in the Evaluation of Remodeling Tissue-Engineered Vascular Grafts Implanted in a Growing Lamb Model

    PubMed Central

    Stacy, Mitchel R.; Naito, Yuji; Maxfield, Mark W.; Kurobe, Hirotsugu; Tara, Shuhei; Chan, Chung; Rocco, Kevin A.; Shinoka, Toshiharu; Sinusas, Albert J.; Breuer, Christopher K.

    2014-01-01

    Objective(s) The clinical translation of tissue-engineered vascular grafts has been demonstrated in children. The remodeling of biodegradable, cell-seeded scaffolds to functional neovessels is partially attributed to matrix metalloproteinases. Noninvasive assessment of matrix metalloproteinase activity may indicate graft remodeling and elucidate the progression of neovessel formation. Therefore, matrix metalloproteinase activity was evaluated in grafts implanted in lambs using in vivo and ex vivo hybrid imaging. Graft growth and remodeling was quantified using in vivo X-ray computed tomography angiography. Methods Cell-seeded and unseeded scaffolds were implanted in lambs (n=5) as inferior vena cava interposition grafts. At 2 and 6 months post-implantation, in vivo angiography assessed graft morphology. In vivo and ex vivo single photon emission tomography/X-ray computed tomography imaging was performed with a radiolabeled compound targeting matrix metalloproteinase activity at 6 months. Neotissue was examined at 6 months using qualitative histologic and immunohistochemical staining and quantitative biochemical analysis. Results Seeded grafts demonstrated significant luminal and longitudinal growth from 2 to 6 months. In vivo imaging revealed subjectively higher matrix metalloproteinase activity in grafts vs. native tissue. Ex vivo imaging confirmed a quantitative increase in matrix metalloproteinase activity and demonstrated higher activity in unseeded vs. seeded grafts. Glycosaminoglycan content was increased in seeded grafts vs. unseeded grafts, without significant differences in collagen content. Conclusions Matrix metalloproteinase activity remains elevated in tissue-engineered grafts 6 months post-implantation and may indicate remodeling. Optimization of in vivo imaging to noninvasively evaluate matrix metalloproteinase activity may assist in serial assessment of vascular graft remodeling. PMID:24952823

  3. Fast algorithm of low power image reformation for OLED display

    NASA Astrophysics Data System (ADS)

    Lee, Myungwoo; Kim, Taewhan

    2014-04-01

    We propose a fast algorithm of low-power image reformation for organic light-emitting diode (OLED) display. The proposed algorithm scales the image histogram in a way to reduce power consumption in OLED display by remapping the gray levels of the pixels in the image based on the fast analysis of the histogram of the input image while maintaining contrast of the image. The key idea is that a large number of gray levels are never used in the images and these gray levels can be effectively exploited to reduce power consumption. On the other hand, to maintain the image contrast the gray level remapping is performed by taking into account the object size in the image to which each gray level is applied, that is, reforming little for the gray levels in the objects of large size. Through experiments with 24 Kodak images, it is shown that our proposed algorithm is able to reduce the power consumption by 10% even with 9% contrast enhancement. Our algorithm runs in a linear time so that it can be applied to moving pictures with high resolution.

  4. Near independence of OLED operating voltage on transport layer thickness

    SciTech Connect

    Swensen, James S.; Wang, Liang; Polikarpov, Evgueni; Rainbolt, James E.; Koech, Phillip K.; Cosimbescu, Lelia; Padmaperuma, Asanga B.

    2013-01-01

    We report organic light emitting devices (OLEDs) with weak drive voltage dependence on the thickness of the hole transport layer (HTL) for thicknesses up to 1150 Å using the N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine (α-NPD) and N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'diamine (TPD), both of which have hole mobilities in the range of 2 × 10-3 cm2V-1s-1. Lower mobility HTL materials show larger operating voltage dependence on thickness. The near independence of the operating voltage for high mobility transport material thickness was only observed when the energy barrier for charge injection into the transport material was minimized. To ensure low injection barriers, a thin film of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) was cast from solution onto the ITO surface. These results indicate that thick transport layers can be integrated into OLED stacks without the need for bulk conductivity doping.

  5. Active mechanical coupling between the nucleus, cytoskeleton and the extracellular matrix, and the implications for perinuclear actomyosin organization.

    PubMed

    Zemel, Assaf

    2015-03-28

    Experimental and theoretical studies have demonstrated that the polarization of actomyosin forces in the cytoskeleton of adherent cells is governed by local elastic stresses. Based on this phenomenon, and the established observation that the nucleus is mechanically connected to the extracellular matrix (ECM) via the cytoskeleton, we theoretically analyze here the active mechanical coupling between the nucleus, cytoskeleton and the ECM. The cell is modeled as an active spherical inclusion, containing a round nucleus at its center, and embedded in a 3D elastic matrix. We investigate three sources of cellular stress: spreading-induced stress, actomyosin contractility and chromatin entropic forces. Formulating the coupling of actomyosin contractility to the local stress we predict the consequences that the nucleus, cytoskeleton and ECM mechanical properties may have on the overall force-balance in the cell and the perinuclear acto-myosin polarization. We demonstrate that the presence of the nucleus induces symmetry breaking of the elastic stress that, we predict, elastically tends to orient actomyosin alignment tangentially around the nucleus; the softer the nucleus or the matrix, the stronger is the preference for tangential alignment. Spreading induced stresses may induce radial actomyosin alignment near stiff nuclei. In addition, we show that in regions of high actomyosin density myosin motors have an elastic tendency to orient tangentially as often occurs near the cell periphery. These conclusions highlight the role of the nucleus in the regulation of cytoskeleton organization and may provide new insight into the mechanics of stem cell differentiation involving few fold increase in nucleus stiffness. PMID:25652010

  6. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity

    PubMed Central

    2013-01-01

    Background Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Methods Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. Results CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. Conclusions CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2. PMID:23855590

  7. Factor H–Related Protein 5 Interacts with Pentraxin 3 and the Extracellular Matrix and Modulates Complement Activation

    PubMed Central

    Csincsi, Ádám I.; Kopp, Anne; Zöldi, Miklós; Bánlaki, Zsófia; Uzonyi, Barbara; Hebecker, Mario; Caesar, Joseph J. E.; Pickering, Matthew C.; Daigo, Kenji; Hamakubo, Takao; Lea, Susan M.; Goicoechea de Jorge, Elena

    2015-01-01

    The physiological roles of the factor H (FH)-related proteins are controversial and poorly understood. Based on genetic studies, FH-related protein 5 (CFHR5) is implicated in glomerular diseases, such as atypical hemolytic uremic syndrome, dense deposit disease, and CFHR5 nephropathy. CFHR5 was also identified in glomerular immune deposits at the protein level. For CFHR5, weak complement regulatory activity and competition for C3b binding with the plasma complement inhibitor FH have been reported, but its function remains elusive. In this study, we identify pentraxin 3 (PTX3) as a novel ligand of CFHR5. Binding of native CFHR5 to PTX3 was detected in human plasma and the interaction was characterized using recombinant proteins. The binding of PTX3 to CFHR5 is of ∼2-fold higher affinity compared with that of FH. CFHR5 dose-dependently inhibited FH binding to PTX3 and also to the monomeric, denatured form of the short pentraxin C–reactive protein. Binding of PTX3 to CFHR5 resulted in increased C1q binding. Additionally, CFHR5 bound to extracellular matrix in vitro in a dose-dependent manner and competed with FH for binding. Altogether, CFHR5 reduced FH binding and its cofactor activity on pentraxins and the extracellular matrix, while at the same time allowed for enhanced C1q binding. Furthermore, CFHR5 allowed formation of the alternative pathway C3 convertase and supported complement activation. Thus, CFHR5 may locally enhance complement activation via interference with the complement-inhibiting function of FH, by enhancement of C1q binding, and by activating complement, thereby contributing to glomerular disease. PMID:25855355

  8. Expression and characterization of common carp (Cyprinus carpio) matrix metalloproteinase-2 and its activity against type I collagen.

    PubMed

    Wang, Ci; Zhan, Chun-Lan; Cai, Qiu-Feng; Du, Cui-Hong; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2014-05-10

    Matrix metalloproteinases (MMPs) play essential roles in the metabolism of animal collagen while few reports are available for MMPs in aquatic animals. In this study, we report the complete sequence of matrix metalloproteinase-2 (MMP-2) gene from common carp (Cyprinus carpio) skeletal muscle. The full-length cDNA of MMP-2 was 2792bp which contains an open reading frame of 1974bp, corresponding to a protein of 657 amino acid residues. Based on the structural feature of MMP-2, the gene of the catalytic domain containing 351 amino acid residues was cloned and expressed in Escherichia coli. SDS-PAGE showed that the truncated recombinant MMP-2 (trMMP-2) with molecular mass of approximately 38kDa was in the form of inclusion body. The trMMP-2 was further purified by immobilized metal ion affinity chromatography. After renaturation, similar to native MMP-2, the trMMP-2 exhibited high hydrolyzing activity toward gelatin as appeared on gelatin zymography and optimal activity was at pH 8.0 and 40°C. The activity of the trMMP-2 was completely suppressed by metalloproteinase inhibitors, including EDTA, EGTA and 1,10-phenanthroline while other proteinase inhibitors did not show any inhibitory effect. Divalent metal ion Ca(2+) was necessary for the gelatinolytic activity, suggesting it is a calcium-dependent metalloproteinase. Moreover, the trMMP-2 effectively hydrolyzed native type I collagen at 37°C and even at 4°C, implying its potential application value as a collagenase for preparation of biologically active oligopeptides. PMID:24613299

  9. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  10. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity

    PubMed Central

    Londino, James D.; Lazrak, Ahmed; Jurkuvenaite, Asta; Collawn, James F.; Noah, James W.

    2013-01-01

    The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl−) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H+) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o−) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H+, did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection. PMID:23457187

  11. Ratio of Active Matrix Metalloproteinases and Proenzymes during Growth and Metastasizing of Mouse Lewis Lung Adenocarcinoma.

    PubMed

    Kisarova, Ya A; Kaledin, V I; Bogdanova, L A; Korolenko, T A

    2015-08-01

    Ratio between proMMP and active MMP was studied in the dynamics of growth of the Lewis lung adenocarcinoma with lung metastasis. It was shown that tumor growth is associated with an increase in the content of proMMP (day 20; terminal stage), but the level of active MMP in tumor tissue did not signifi cantly change. The development of lung metastasis was accompanied by accumulation of active MMP (days 7, 15, and 20) and a decrease in the content of pro-MMP (days 7, and 20) in comparison with the control. In the spleen of these mice (metastasis-free organ), an increase in the levels of proMMP (day 20) and especially active MMP (days 7, 15, and 20) were found. The results suggest that tumor development shifts the proportion between active MMP and proenzymes in the tumor, lungs with metastasis, and spleen without metastasis. PMID:26392281

  12. Enamel matrix proteins exhibit growth factor activity: A review of evidence at the cellular and molecular levels

    PubMed Central

    WYGANOWSKA-ŚWIĄTKOWSKA, MARZENA; URBANIAK, PAULINA; NOHAWICA, MICHAŁ MAREK; KOTWICKA, MAŁGORZATA; JANKUN, JERZY

    2015-01-01

    Enamel matrix derivative (EMD) is a commercially available protein extract, mainly comprising amelogenins. A number of other polypeptides have been identified in EMD, mostly growth factors, which promote cementogenesis and osteogenesis during the regeneration processes through the regulation of cell proliferation, differentiation and activity; however, not all of their functions are clear. Enamel extracts have been proposed to have numerous activities such as bone morphogenetic protein- and transforming growth factor β (TGF-β)-like activity, and activities similar to those of insulin-like growth factor, fibroblast growth factor, platelet-derived growth factor, vascular endothelial growth factor and epidermal growth factor. These activities have been observed at the molecular and cellular levels and in numerous animal models. Furthermore, it has been suggested that EMD contains an unidentified biologically active factor that acts in combination with TGF-β1, and several studies have reported functional similarities between growth factors and TGF-β in cellular processes. The effects of enamel extracts on the cell cycle and biology are summarized and discussed in this review. PMID:26161150

  13. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. PMID:27083788

  14. Bright coppertunities: efficient OLED devices with copper(I)iodide-NHetPHOS-emitters

    NASA Astrophysics Data System (ADS)

    Wallesch, Manuela; Volz, Daniel; Fléchon, Charlotte; Zink, Daniel M.; Bräse, Stefan; Baumann, Thomas

    2014-10-01

    The mass market application of OLEDs is currently hindered because i) the materials are too expensive and contain rare metals such as iridium and ii) current processing techniques are elaborate and cannot easily be up-scaled. Solution processable Cu(I)-complexes promise to solve both problems with one blow: Copper is an abundant metal, which offers new opportunities to develop materials for OLEDs. Due to their structural diversity, Cu(I) emitters allow for the design of materials with tunable properties. Beside this, it is also possible to adjust solution properties and introduce functionalities for cross-linking. The new materials feature exciting photophysical properties such as PLQY values close to unity and a tunable emission. The emission decay times are in the range of common emitters or lower, which is expected to reduce efficiency roll-off at high driving voltages. Cu(I)-complexes often feature thermally-activated delayed fluorescence (TADF). As a consequence, they can make use of triplet and singlet excitons in a process called Singlet Harvesting, which paves the way for high efficiencies. Unlike Ir(III)-complexes such as Irppy3, triplet-triplet annihilation does not occur when using Cu(I), even in very high doping concentrations. The feasibility of NHetPHOS-type Cu(I)-complexes is demonstrated as well as strategies that enable a smart crosslinking process, where the Cu(I) emitters themselves play an important role. In addition, high-brightness devices, which were operated at medium voltages, yielding 50.000 cd m-2 are shown. In a showcase example, we recently presented a device with an external quantum efficiency greater than 20% with a solution processed Cu(I)-PyrPHOS-device without using outcoupling techniques.

  15. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect

    Benton, Scott; Bhandari, Abhinav

    2012-12-26

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG's program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG's high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with

  16. Evolution of a supercooled Ice Shelf Water plume with an actively growing subice platelet matrix

    NASA Astrophysics Data System (ADS)

    Robinson, Natalie J.; Williams, Michael J. M.; Stevens, Craig L.; Langhorne, Patricia J.; Haskell, Timothy G.

    2014-06-01

    We use new observations in Western McMurdo Sound, combined with longitudinal hydrographic transects of the sound, to identify a northward-flowing Ice Shelf Water (ISW) plume exiting the cavity of the McMurdo-Ross Ice Shelf. We estimate the plume's net northward transport at 0.4 ± 0.1 Sv, carving out a corridor approximately 35 km wide aligned with the Victoria Land Coast. Basal topography of the McMurdo Ice Shelf is such that the plume is delivered to the surface without mixing with overlying warmer water, and is therefore able to remain below the surface freezing temperature at the point of observation beneath first-year ice. Thus, the upper ocean was supercooled, by up to 50 mK at the surface, due to pressure relief from recent rapid ascent of the steep basal slope. The 70 m thick supercooled layer supports the growth and maintenance of a thick, semirigid, and porous matrix of platelet ice, which is trapped by buoyancy at the ice-ocean interface. Continued growth of individual platelets in supercooled water creates significant brine rejection at the top of the water column which resulted in convection over the upper 200 m thick, homogeneous layer. By examining the diffusive nature of the intermediate water between layers of ISW and High Salinity Shelf Water, we conclude that the ISW plume must have originated beneath the Ross Ice Shelf and demonstrate that it is likely to expand eastward across McMurdo Sound with the progression of winter.

  17. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice*

    PubMed Central

    Tyagi, Neetu; Givvimani, Srikanth; Qipshidze, Natia; Kundu, Soumi; Kapoor, Shray; Vacek, Jonathan C.; Tyagi, Suresh C.

    2010-01-01

    An elevated level of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H2S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H2S), we sought to test whether the H2S protected the brain during HHcy. Cystathionine-β-synthase heterozygous (CBS+/−) and wild type (WT) mice were supplemented with or without NaHS (30 µM/L, H2S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS−/+ and CBS−/+ + NaHS treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H2S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (−/+) mice, while H2S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through Immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (−/+) mice. Microscopy data revealed increase in permeability in CBS (−/+) mice. These effects were ameliorated by H2S and suggested that physiological levels of H2S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain. PMID:19913585

  18. Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding ▿

    PubMed Central

    Jones, Christopher P.; Datta, Siddhartha A. K.; Rein, Alan; Rouzina, Ioulia; Musier-Forsyth, Karin

    2011-01-01

    Retroviruses replicate by reverse transcribing their single-stranded RNA genomes into double-stranded DNA using specific cellular tRNAs to prime cDNA synthesis. In HIV-1, human tRNA3Lys serves as the primer and is packaged into virions during assembly. The viral Gag protein is believed to chaperone tRNA3Lys placement onto the genomic RNA primer binding site; however, the timing and possible regulation of this event are currently unknown. Composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains, the multifunctional HIV-1 Gag polyprotein orchestrates the highly coordinated process of virion assembly, but the contribution of these domains to tRNA3Lys annealing is unclear. Here, we show that NC is absolutely essential for annealing and that the MA domain inhibits Gag's tRNA annealing capability. During assembly, MA specifically interacts with inositol phosphate (IP)-containing lipids in the plasma membrane (PM). Surprisingly, we find that IPs stimulate Gag-facilitated tRNA annealing but do not stimulate annealing in Gag variants lacking the MA domain or containing point mutations involved in PM binding. Moreover, we find that IPs prevent MA from binding to nucleic acids but have little effect on NC or Gag. We propose that Gag binds to RNA either with both NC and MA domains or with NC alone and that MA-IP interactions alter Gag's binding mode. We propose that MA's interactions with the PM trigger the switch between these two binding modes and stimulate Gag's chaperone function, which may be important for the regulation of events such as tRNA primer annealing. PMID:21123373

  19. Growth-inhibiting extracellular matrix proteins also inhibit electrical activity by reducing calcium and increasing potassium conductances.

    PubMed

    Vargas, J; De-Miguel, F F

    2009-01-23

    Inhibitionof neurite sprouting and electrical activity by extracellular matrix (ECM) glycoproteins was studied during neurite regeneration by using anterior pagoda (AP) neurons of the leech. Adult isolated neurons were plated in culture inside ganglion capsules, which among many ECM proteins, contain a group of inhibitory peanut lectin- (PNA) binding glycoproteins. These proteins inhibit neurite production and contribute to the formation of a bipolar outgrowth pattern by AP neurons. Addition of PNA lectin to the culture medium to block the inhibitory effects of ECM glycoproteins induced an increase of neurite sprouting, the loss of the bipolar pattern, and also an increase in the amplitude and duration of action potentials evoked by intracellular current injection. PNA lectin had independent effects on neurite sprouting and electrical activity, since there was no correlation between the total neurite length and the amplitude of the action potentials. Moreover, action potentials were increased by the presence of PNA lectin even in neurons that did not grow. The changes induced by PNA lectin on the active conductances underlying the action potentials were estimated by quantitative model simulations. We predict that the increases in the amplitude and duration of the action potential induced by PNA lectin were due to an increase in a calcium conductance and a reduction in the delayed rectifier potassium conductance. Our results suggest that inhibitory ECM glycoproteins may use independent signaling pathways to inhibit neurite sprouting and electrical activity. These proteins affect the action potential by changing the proportion of inward and outward active conductances. PMID:18976697

  20. Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting

    SciTech Connect

    James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

    2011-01-21

    With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

  1. Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascocarps.

    PubMed

    Sbrana, C; Bagnoli, G; Bedini, S; Filippi, C; Giovannetti, M; Nuti, M P

    2000-03-01

    Pseudomonas spp. isolates from Tuber borchii ascocarps, known to be able to produce phytoregulatory and biocontrol substances in pure culture, were used to perform studies on their possible physiological role in nature. Antimycotic activity was confirmed against fungal contaminants isolated from the ascocarps, suggesting that populations associated with Tuber borchii fruit bodies may play a role in the maintenance of ascocarp health. Fifty-five percent of strains tested were also able to release metabolites which affected T. borchii mycelial growth and morphogenesis in culture. On the contrary, growth of the arbuscular mycorrhizal fungus Glomus mosseae and the ectomycorrhizal fungus Laccaria bicolor, putative competitors of Tuber for mycorrhizal infection sites on roots, was not influenced by the presence of any bacterial strain. The possibility that these bacteria, which show antifungal activity and fungal growth modulation activities, might be incorporated in the developing ascocarp by means of their preferential adhesion to Tuber mycelium is discussed. PMID:10749539

  2. Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity.

    PubMed

    Zhang, Mei; Zhao, Yanhua; Yan, Li; Peltier, Raoul; Hui, Wenli; Yao, Xi; Cui, Yali; Chen, Xianfeng; Sun, Hongyan; Wang, Zuankai

    2016-04-01

    Environmental biofouling caused by the formation of biofilm has been one of the most urgent global concerns. Silver nanoparticles (NPs), owing to their wide-spectrum antimicrobial property, have been widely explored to combat biofilm, but their extensive use has raised growing concern because they persist in the environment. Here we report a novel hybrid nanocomposite that imparts enhanced antimicrobial activity and low cytotoxicity yet with the advantage of reduced silver loading. The nanocomposite consists of Pt/Ag bimetallic NPs (BNPs) decorated on the porous reduced graphene oxide (rGO) nanosheets. We demonstrate that the enhanced antimicrobial property against Escherichia coli is ascribed to the intricate control of the interfaces between metal compositions, rGO matrix, and bacteria, where the BNPs lead to a rapid release of silver ions, and the trapping of bacteria by the porous rGO matrix further provides high concentration silver ion sites for efficient bacteria-bactericide interaction. We envision that our facile approach significantly expands the design space for the creation of silver-based antimicrobial materials to achieve a wide spectrum of functionalities. PMID:27007980

  3. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.

    PubMed

    Ghosh, Somnath; Saraswathi, A; Indi, S S; Hoti, S L; Vasan, H N

    2012-06-01

    A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria. PMID:22582868

  4. Recent progress in OLED and flexible displays and their potential for application to aerospace and military display systems

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri

    2015-05-01

    Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.

  5. Exciton formation and diffusion in OLEDs (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ingram, Grayson L.; Lu, Zheng-Hong

    2015-10-01

    This talk will discuss recent experiments designed to study the formation of excitons and their subsequent diffusions in OLEDs. These experimental results suggest that contrary to conventional wisdom, host singlet exciton diffusion can occur over long distances, while host triplet excitons are confined close to the exciton formation region for the archetype host and hole transport layer CBP. The exciton formation mechanism is studied and we show that the ratio of excitons formed on the host to excitons formed on the dopant varies strongly with the applied voltage. Refinements to models of efficiency roll off are discussed in light of the improved understanding of exciton formation and we suggest design guidelines to improve efficiency by engineering exciton formation.

  6. High-sensitivity permeation measurements on flexible OLED substrates

    NASA Astrophysics Data System (ADS)

    Paetzold, Ralph; Henseler, Debora; Heuser, Karsten; Cesari, Valentina; Sarfert, Wiebke; Wittmann, Georg; Winnacker, Albrecht

    2004-02-01

    We describe a novel method to measure permeation rates for oxidizing agents with very high sensitivity. The technique is based on monitoring the resistance of a degrading Ca sensor in situ, inside a climate chamber. A sensitivity limit below 10-6 g/m2 day is reported for accelerated measurement conditions of 38°C and 90% relative humidity. The benefits of the method are demonstrated for single- and double-sided barrier foils, and the temperature and humidity dependence of the transport through PET is analyzed in detail. The method is also applied to obtain permeation rates for a barrier-coated substrate after as well as during bending. Theoretical simulations are used to evaluate the influence of a defect-dominated transport mechanism on the experimental results and to model the time evolution of the concentration profile in a double-barrier stack. Implications for the development of barrier-enhanced substrates for flexible OLED applications are discussed.

  7. Water-soluble iridium phosphorescent complexes for OLED applications

    NASA Astrophysics Data System (ADS)

    Eum, Min-Sik; Yoon, Heekoo; Kim, Tae Hyung

    2012-09-01

    Newly prepared water-soluble iridium phosphorescent complexes, trans-[Ir(ppy)(PAr3)2(H)L]0,+ (ppy = bidentate 2-phenylpyridinato anionic ligand; L= Cl (1), CO (2), CN- (3); H being trans to the nitrogen of ppy ligand; PAr3 (TPPTS) = P(m-C6H4SO3Na)3), have been synthesized and characterized. Those complexes containing water-soluble phosphine ligands can emit any color region as altering cyclometalated ligands in aqueous media with high quantum efficiencies. Even though these water-soluble phosphorescent iridium complexes can be the sensing probe for toxic CO gas and CN anion, they will be capable of promising materials in the solution processible OLED applications.

  8. Electroluminescence property of organic light emitting diode (OLED)

    SciTech Connect

    Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gökdemir, F. Pınar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay; Tekin, Emine; Pravadalı, Selin

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  9. Progesterone-induced blocking factor differentially regulates trophoblast and tumor invasion by altering matrix metalloproteinase activity.

    PubMed

    Halasz, Melinda; Polgar, Beata; Berta, Gergely; Czimbalek, Livia; Szekeres-Bartho, Julia

    2013-12-01

    Invasiveness is a common feature of trophoblast and tumors; however, while tumor invasion is uncontrolled, trophoblast invasion is strictly regulated. Both trophoblast and tumor cells express high levels of the immunomodulatory progesterone-induced blocking factor (PIBF), therefore, we aimed to test the possibility that PIBF might be involved in invasion. To this aim, we used PIBF-silenced or PIBF-treated trophoblast (HTR8/Svneo, and primary trophoblast) and tumor (HT-1080, A549, HCT116, PC3) cell lines. Silencing of PIBF increased invasiveness as well as MMP-2,-9 secretion of HTR8/SVneo, and decreased those of HT-1080 cells. PIBF induced immediate STAT6 activation in both cell lines. Silencing of IL-4Rα abrogated all the above effects of PIBF, suggesting that invasion-related signaling by PIBF is initiated through the IL-4Rα/PIBF-receptor complex. In HTR-8/SVneo, PIBF induced fast, but transient Akt and ERK phosphorylation, whereas in tumor cells, PIBF triggered sustained Akt, ERK, and late STAT3 activation. The late signaling events might be due to indirect action of PIBF. PIBF induced the expression of EGF and HB-EGF in HT-1080 cells. The STAT3-activating effect of PIBF was reduced in HB-EGF-deficient HT-1080 cells, suggesting that PIBF-induced HB-EGF contributes to late STAT3 activation. PIBF binds to the promoters of IL-6, EGF, and HB-EGF; however, the protein profile of the protein/DNA complex is different in the two cell lines. We conclude that in tumor cells, PIBF induces proteins, which activate invasion signaling, while-based on our previous data-PIBF might control trophoblast invasion by suppressing proinvasive genes. PMID:23807209

  10. Next Generation Hole Injection/Transport Nano-Composites for High Efficiency OLED Development

    SciTech Connect

    King Wang

    2009-07-31

    The objective of this program is to use a novel nano-composite material system for the OLED anode coating/hole transport layer. The novel anode coating is intended to significantly increase not only hole injection/transport efficiency, but the device energy efficiency as well. Another goal of the Core Technologies Program is the optimization and scale-up of air-stable and cross-linkable novel HTL nano-composite materials synthesis and the development of low-cost, large-scale mist deposition processes for polymer OLED fabrication. This proposed technology holds the promise to substantially improve OLED energy efficiency and lifetime.

  11. Outcoupling efficiency of OLEDs with 2D periodical corrugation at the cathode

    NASA Astrophysics Data System (ADS)

    Belousov, Sergei; Bogdanova, Maria; Teslyuk, Anton

    2016-03-01

    We study theoretically the optical performance of organic light-emitting diodes (OLEDs) with 2D periodical corrugation at the cathode. We show how emergence of radiative surface plasmon resonances at the 2D corrugated cathode leads to the enhancement of the outcoupling efficiency of the OLED, which is primarily due to the outcoupling of emission generated by vertically oriented emitting excitons in the emission layer. We analyze the outcoupling efficiency of the OLED as a function of geometrical parameters of the corrugation and establish design rules for optimal outcoupling enhancement with the 2D corrugation at the cathode.

  12. Large-Scale Variational Two-Electron Reduced-Density-Matrix-Driven Complete Active Space Self-Consistent Field Methods.

    PubMed

    Fosso-Tande, Jacob; Nguyen, Truong-Son; Gidofalvi, Gergely; DePrince, A Eugene

    2016-05-10

    A large-scale implementation of the complete active space self-consistent field (CASSCF) method is presented. The active space is described using the variational two-electron reduced-density-matrix (v2RDM) approach, and the algorithm is applicable to much larger active spaces than can be treated using configuration-interaction-driven methods. Density fitting or Cholesky decomposition approximations to the electron repulsion integral tensor allow for the simultaneous optimization of large numbers of external orbitals. We have tested the implementation by evaluating singlet-triplet energy gaps in the linear polyacene series and two dinitrene biradical compounds. For the acene series, we report computations that involve active spaces consisting of as many as 50 electrons in 50 orbitals and the simultaneous optimization of 1892 orbitals. For the dinitrene compounds, we find that the singlet-triplet gaps obtained from v2RDM-driven CASSCF with partial three-electron N-representability conditions agree with those obtained from configuration-interaction-driven approaches to within one-third of 1 kcal mol(-1). When enforcing only the two-electron N-representability conditions, v2RDM-driven CASSCF yields less accurate singlet-triplet energy gaps in these systems, but the quality of the results is still far superior to those obtained from standard single-reference approaches. PMID:27065086

  13. Activity-based assay of matrix metalloproteinase on nonbiofouling surfaces using time-of-flight secondary ion mass spectrometry.

    PubMed

    Kim, Young-Pil; Lee, Bong Soo; Kim, Eunkyung; Choi, Insung S; Moon, Dae Won; Lee, Tae Geol; Kim, Hak-Sung

    2008-07-01

    A label-free, activity-based assay of matrix metalloproteinase (MMP) and its inhibition was demonstrated on peptide-conjugated gold nanoparticles (AuNPs) with nonbiofouling poly(oligo(ethylene glycol) methacrylate) (pOEGMA) films using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Following surface-initiated atom-transfer radical polymerization of OEGMA on a Si/SiO2 substrate, the MMP activity was determined by analyzing the cleaved peptide fragments using TOF-SIMS on the peptide-conjugated AuNPs. The use of nonbiofouling pOEGMA films in conjunction with AuNPs synergistically enhanced the sensitivity of assays for MMP activity and its inhibition in human serum. The detection sensitivity of MMP-7 in serum was as low as 20 ng mL(-1) (1 pmol mL(-1)), and the half-maximal inhibitory concentration (IC50) of minocycline, which is a MMP-7 inhibitor, was estimated to be 450 nM. It is anticipated that the developed system will be broadly useful for conducting activity-based assays of serum proteases, as well as for screening of their inhibitors, with high sensitivity in a high-throughput manner. PMID:18505270

  14. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells.

    PubMed

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-08-15

    Thyroid hormone (3,5,3'-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  15. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    PubMed

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity. PMID:27207538

  16. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells

    PubMed Central

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J.; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-01-01

    Thyroid hormone (3,5,3′-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  17. Activity of matrix metalloproteinases 2 and 9 in cultured rabbit corneal epithelium cells stimulated by tumor necrosis factor alpha.

    PubMed

    Wu, Z-Q; Zhang, Z-L; Nie, S-W; Yuan, J; Yang, Y-N

    2015-01-01

    We studied the activity of matrix metalloproteinases (MMP) 2 and 9 generated by cultured rabbit corneal epithelium cells that had been stimulated with tumor necrosis factor alpha (TNF-α), to investigate the possible regulative mechanisms of MMP-2/9 and their potential effect on corneal inflammatory diseases. The rabbit corneal epithelium cells were cultured in vitro and incubated with different concentrations of TNF-α (0, 1, 10, and 100 ng/mL) for 24 h. The activity of MMP-2/9 was examined using gelatin zymography. The results were analyzed by computer image analysis and statistical tests. TNF-α stimulated the secretion of MMP-2/9 in a dose-dependent manner, and MMP-2 was activated by TNF-α. Inflammatory factors such as TNF-α can stimulate MMP-2/9 activity in corneal epithelium cells. This may be a potential manipulating mechanism of MMP expression in the pathogenesis of corneal diseases, and could play an important role in the prevention and treatment of corneal inflammatory diseases. PMID:26125840

  18. Effects of diosgenin on myometrial matrix metalloproteinase-2 and -9 activity and expression in ovariectomized rats.

    PubMed

    Chang, Chi-Chen; Kuan, Tang-Ching; Hsieh, Yao-Yuan; Ho, Ying-Jui; Sun, Yu-Ling; Lin, Chih-Sheng

    2011-01-01

    Diosgenin, a traditional Yam extraction, has been used in hormone replacement for menopausal women. We aimed to investigate the influences of diosgenin administration upon the MMP-2 and -9 activity and expression and reproductive hormones of ovariectomized (OVX) rats, a model of menopausal status. Seven-week old female Wistar rats with bilateral OVX or sham operation (controls) were divided and administered different dosages of diosgenin (0, 10, 50, or 100 mg/kg/day) for 8 weeks. Serum was then sampled for progesterone (P4) and estradiol (E2) assay and uterine horns harvested. Myometrial MMP-2 and -9 activity and expression were surveyed and myometrial collagen expression was also assayed. The results show higher body weight in OVX rats across the 8 weeks post surgery and no significant differences were noted among OVX or Sham rats with diosgenin supplements. There were lower P4 and E2 concentrations in OVX rats compared to Sham rats, and higher P4 concentration of Sham rats post diosgenin supplement. MMP-2 and -9 mRNA expression and activity was lower in OVX rats, although higher MMP-2 and lower MMP-9 activity/mRNA expression was observed in OVX rats post diosgenin supplementation. Collagen mRNA expression was higher in OVX rats compared to Sham controls, and diosgenin administration decreased collagen mRNA expression in OVX rats. In conclusion, diosgenin is associated with gelatinase expression and collagen metabolism in OVX rats. Diosgenin administration can partially reverse the effects of OVX upon MMP functions and hormone status. Adequate diosgenin supplement might modulate myometrial gelatinase expression and collagen metabolism in menopausal subjects. PMID:21814480

  19. Effects of Diosgenin on Myometrial Matrix Metalloproteinase-2 and -9 Activity and Expression in Ovariectomized Rats

    PubMed Central

    Chang, Chi-Chen; Kuan, Tang-Ching; Hsieh, Yao-Yuan; Ho, Ying-Jui; Sun, Yu-Ling; Lin, Chih-Sheng

    2011-01-01

    Diosgenin, a traditional Yam extraction, has been used in hormone replacement for menopausal women. We aimed to investigate the influences of diosgenin administration upon the MMP-2 and -9 activity and expression and reproductive hormones of ovariectomized (OVX) rats, a model of menopausal status. Seven-week old female Wistar rats with bilateral OVX or sham operation (controls) were divided and administered different dosages of diosgenin (0, 10, 50, or 100 mg/kg/day) for 8 weeks. Serum was then sampled for progesterone (P4) and estradiol (E2) assay and uterine horns harvested. Myometrial MMP-2 and -9 activity and expression were surveyed and myometrial collagen expression was also assayed. The results show higher body weight in OVX rats across the 8 weeks post surgery and no significant differences were noted among OVX or Sham rats with diosgenin supplements. There were lower P4 and E2 concentrations in OVX rats compared to Sham rats, and higher P4 concentration of Sham rats post diosgenin supplement. MMP-2 and -9 mRNA expression and activity was lower in OVX rats, although higher MMP-2 and lower MMP-9 activity/mRNA expression was observed in OVX rats post diosgenin supplementation. Collagen mRNA expression was higher in OVX rats compared to Sham controls, and diosgenin administration decreased collagen mRNA expression in OVX rats. In conclusion, diosgenin is associated with gelatinase expression and collagen metabolism in OVX rats. Diosgenin administration can partially reverse the effects of OVX upon MMP functions and hormone status. Adequate diosgenin supplement might modulate myometrial gelatinase expression and collagen metabolism in menopausal subjects. PMID:21814480

  20. A signal processing approach for enhanced Acoustic Emission data analysis in high activity systems: Application to organic matrix composites

    NASA Astrophysics Data System (ADS)

    Kharrat, M.; Ramasso, E.; Placet, V.; Boubakar, M. L.

    2016-03-01

    Structural elements made of Organic Matrix Composites (OMC) under complex loading may suffer from high Acoustic Emission (AE) activity caused by the emergence of different emission sources at high rates with high noise level, which finally engender continuous emissions. The detection of hits in this situation becomes a challenge particularly during fatigue tests. This work suggests an approach based on the Discrete Wavelet Transform (DWT) denoising applied on signal segments. A particular attention is paid to the adjustment of the denoising parameters based on pencil lead breaks and their influence on the quality of the denoised AE signals. The validation of the proposed approach is performed on a ring-shaped Carbon Fiber Reinforced Plastics (CFRP) under in-service-like conditions involving continuous emissions with superimposed damage-related transients. It is demonstrated that errors in hit detection are greatly reduced leading to a better identification of the natural damage scenario based on AE signals.

  1. Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity

    PubMed Central

    Wang, Qian; Kang, Fuxing; Gao, Yanzheng; Mao, Xuewei; Hu, Xiaojie

    2016-01-01

    Most artificial nanomaterials are known to exhibit broad-spectrum bactericidal activity; however, the defence mechanisms that bacteria use based on extracellular polymeric substances (EPS) to detoxify nanoparticles (NPs) are not well known. We ruled out the possibility of ion-specific bactericidal activity by showing the lack of equivalent dissolved zinc and silicon toxicity and determined the particle-specific toxicity of ZnO and SiO2 nanoparticles (ZnONPs/SiO2NPs) through dialysis isolation experiments. Surprisingly, the manipulation of the E. coli EPS (i.e., no EPS manipulation or EPS removal by sonication/centrifugation) showed that their particle-specific bactericidal activity could be antagonized by NP-EPS sequestration. The survival rates of pristine E. coli (no EPS manipulation) reached 65% (ZnONPs, 500 mg L−1) and 79% (SiO2NPs, 500 mg L−1), whereas survival rates following EPS removal by sonication/centrifugation were 11% and 63%, respectively. Transmission electron microscopy (TEM) combined with fluorescence micro-titration analysis and Fourier-transform infrared spectroscopy (FTIR) showed that protein-like substances (N-H and C-N in amide II) and secondary carbonyl groups (C=O) in the carboxylic acids of EPS acted as important binding sites that were involved in NP sequestration. Accordingly, the amount and composition of EPS produced by bacteria have important implications for the bactericidal efficacy and potential environmental effects of NPs. PMID:26856606

  2. Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity.

    PubMed

    Wang, Qian; Kang, Fuxing; Gao, Yanzheng; Mao, Xuewei; Hu, Xiaojie

    2016-01-01

    Most artificial nanomaterials are known to exhibit broad-spectrum bactericidal activity; however, the defence mechanisms that bacteria use based on extracellular polymeric substances (EPS) to detoxify nanoparticles (NPs) are not well known. We ruled out the possibility of ion-specific bactericidal activity by showing the lack of equivalent dissolved zinc and silicon toxicity and determined the particle-specific toxicity of ZnO and SiO2 nanoparticles (ZnONPs/SiO2NPs) through dialysis isolation experiments. Surprisingly, the manipulation of the E. coli EPS (i.e., no EPS manipulation or EPS removal by sonication/centrifugation) showed that their particle-specific bactericidal activity could be antagonized by NP-EPS sequestration. The survival rates of pristine E. coli (no EPS manipulation) reached 65% (ZnONPs, 500 mg L(-1)) and 79% (SiO2NPs, 500 mg L(-1)), whereas survival rates following EPS removal by sonication/centrifugation were 11% and 63%, respectively. Transmission electron microscopy (TEM) combined with fluorescence micro-titration analysis and Fourier-transform infrared spectroscopy (FTIR) showed that protein-like substances (N-H and C-N in amide II) and secondary carbonyl groups (C=O) in the carboxylic acids of EPS acted as important binding sites that were involved in NP sequestration. Accordingly, the amount and composition of EPS produced by bacteria have important implications for the bactericidal efficacy and potential environmental effects of NPs. PMID:26856606

  3. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2

    PubMed Central

    Ghosh, Manik C.; Makena, Patrudu S.; Gorantla, Vijay; Sinclair, Scott E.

    2012-01-01

    Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury. PMID:22345572

  4. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases

    SciTech Connect

    Heljasvaara, Ritva; Nyberg, Pia; Luostarinen, Jani; Parikka, Mataleena; Heikkilae, Pia; Rehn, Marko; Sorsa, Timo; Salo, Tuula; Pihlajaniemi, Taina . E-mail: taina.pihlajaniemi@oulu.fi

    2005-07-15

    Endostatin, a potent inhibitor of endothelial cell proliferation, migration, angiogenesis and tumor growth, is proteolytically cleaved from the C-terminal noncollagenous NC1 domain of type XVIII collagen. We investigated the endostatin formation from human collagen XVIII by several MMPs in vitro. The generation of endostatin fragments differing in molecular size (24-30 kDa) and in N-terminal sequences was identified in the cases of MMP-3, -7, -9, -13 and -20. The cleavage sites were located in the protease-sensitive hinge region between the trimerization and endostatin domains of NC1. MMP-1, -2, -8 and -12 did not show any significant activity against the C-terminus of collagen XVIII. The anti-proliferative effect of the 20-kDa endostatin, three longer endostatin-containing fragments generated in vitro by distinct MMPs and the entire NC1 domain, on bFGF-stimulated human umbilical vein endothelial cells was established. The anti-migratory potential of some of these fragments was also studied. In addition, production of endostatin fragments between 24-30 kDa by human hepatoblastoma cells was shown to be due to MMP action on type XVIII collagen. Our results indicate that certain, especially cancer-related, MMP family members can generate biologically active endostatin-containing polypeptides from collagen XVIII and thus, by releasing endostatin fragments, may participate in the inhibition of endothelial cell proliferation, migration and angiogenesis.

  5. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2016-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. PMID:26609811

  6. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways.

    PubMed

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, D L; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-08-27

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm(2)) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  7. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. DOI: http://dx.doi.org/10.7554/eLife.11290.001 PMID:26609811

  8. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation

    PubMed Central

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-01-01

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  9. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    PubMed

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes. PMID:25833102

  10. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    NASA Astrophysics Data System (ADS)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-02-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  11. Direct production of functional matrix metalloproteinase--14 without refolding or activation and its application for in vitro inhibition assays.

    PubMed

    Nam, Dong Hyun; Ge, Xin

    2016-04-01

    Human matrix metalloproteinase (MMP)-14, a membrane-bound zinc endopeptidase, is one of the most important cancer targets because it plays central roles in tumor growth and invasion. Large amounts of active MMP-14 are required for cancer research and the development of chemical or biological MMP-14 inhibitors. Current methods of MMP-14 production through refolding and activation are labor-intensive, time-consuming, and often associated with low recovery rates, lot-to-lot variation and heterogeneous products. Here, we report direct production of the catalytic domain of MMP-14 in the periplasmic space of Escherichia coli. 0.5 mg/L of functional MMP-14 was produced without tedious refolding or problematic activation process. MMP-14 prepared by simple periplasmic treatment can be readily utilized to evaluate the potencies of chemical and antibody-based inhibitors. Furthermore, co-expression of both MMP-14 and antibody Fab fragments in the periplasm facilitated inhibitory antibody screening by avoiding purification of MMP-14 or Fabs. We expect this MMP-14 expression strategy can expedite the development of therapeutic drugs targeting MMPs with biological significance. PMID:26416249

  12. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect

    Goblirsch, Brandon R.; Frias, Janice A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2012-10-25

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short {beta}-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117{beta}) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly

  13. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect

    Goblirsch, BR; Frias, JA; Wackett, LP; Wilmot, CM

    2012-05-22

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acylcoenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short beta-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117 beta) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117

  14. Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    DOEpatents

    Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

    2014-06-03

    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

  15. Random nanostructure scattering layer for suppression of microcavity effect and light extraction in OLEDs.

    PubMed

    Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Lee, Jonghee; Huh, Jin Woo; Park, Seung Koo; Han, Jun-Han; Cho, Nam Sung; Hwang, Joohyun; Chu, Hye Yong; Lee, Jeong-Ik

    2014-06-15

    In this study, we investigated the effect of a random nanostructure scattering layer (RSL) on the microcavity and light extraction in organic light emitting diodes (OLEDs). In the case of the conventional OLED, the optical properties change with the thickness of the hole transporting layer (HTL) because of the presence of a microcavity. However, OLEDs equipped with the an RSL showed similar values of external quantum efficiency and luminous efficacy regardless of the HTL thickness. These phenomena can be understood by the scattering effect because of the RSL, which suppresses the microcavity effect and extracts the light confined in the device. Moreover, OLEDs with the RSL led to reduced spectrum and color changes with the viewing angle. PMID:24978528

  16. Materials design concepts for efficient blue OLEDs: A joint theoretical and experimental study

    SciTech Connect

    Polikarpov, Evgueni; Padmaperuma, Asanga B.

    2012-04-01

    Since their discovery, organic light emitting devices have evolved from a scientific curiosity into a technology with applications in flat panel displays and the potential to revolutionize the lighting market. During their relatively short history, the technology incorporated into OLEDs has rapidly advanced. Device quantum efficiencies have increased more than 20-fold since the first OLEDs, approaching the theoretical limit for internal quantum efficiencies. , , At this point, OLED research moves towards optimization of manufacturing processes, drive circuitry, light extraction, and overall cost reduction. However, finding the organic materials that provide both operational stability and high efficiency for the devices still remains one of the biggest challenges, particularly for blue emission. In this presentation, we will describe our approach to design functional OLED materials to meet the complex criteria set forth by device efficiency and stability goals.

  17. Novel 19F Activatable Probe for the Detection of Matrix Metalloprotease-2 Activity by MRI/MRS

    PubMed Central

    2015-01-01

    Matrix metalloproteases (MMPs) have been found to be highly expressed in a variety of malignant tumor tissues. Noninvasive visualization of MMP activity may play an important role in the diagnosis of MMP associated diseases. Here we report the design and synthesis of a set of fluorine-19 dendron-based magnetic resonance imaging (MRI) probes for real-time imaging of MMP-2 activity. The probes have the following features: (a) symmetrical fluorine atoms; (b) the number of fluorine atoms can be increased through facile chemical modification; (c) readily accessible peptide sequence as the MMP-2 substrate; (d) activatable 19F signal (off/on mode) via paramagnetic metal ion incorporation. Following optimization for water solubility, one of the probes was selected to evaluate MMP-2 activity by 19F magnetic resonance spectroscopy (MRS). Our results showed that the fluorine signal increased by 8.5-fold in the presence of MMP-2. The specific cleavage site was verified by mass spectrometry. The selected probe was further applied to detect secreted MMP-2 activity of living SCC7 squamous cell carcinoma cells. The fluorine signal was increased by 4.8-fold by MRS analysis after 24 h incubation with SCC7 cells. This type of fluorine probe can be applied to evaluate other enzyme activities by simply tuning the substrate structures. This symmetrical fluorine dendron-based probe design extends the scope of the existing 19F MRI agents and provides a simple but robust method for real-time 19F MRI application. PMID:25271556

  18. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C

    PubMed Central

    Ruggiero, Sabrina; Cosgarea, Raluca; Potempa, Jan; Potempa, Barbara; Eick, Sigrun; Chiquet, Matthias

    2014-01-01

    Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease. PMID:23313574

  19. Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation.

    PubMed

    Kim, Hyun Ji; Kang, Gyeoung Jin; Kim, Eun Ji; Park, Mi Kyung; Byun, Hyun Jung; Nam, Seungyoon; Lee, Ho; Lee, Chang Hoon

    2016-09-01

    Sphingosylphosphorylcholine (SPC) participates in several cellular processes including metastasis. SPC induces keratin reorganization and regulates the viscoelasticity of metastatic cancer cells including PANC-1 cancer cells leading to enhanced migration and invasion. The role of SPC and the relevant mechanism in invasion of breast cell are as yet unknown. SPC dose-dependently induces invasion of breast cancer cells or breast immortalized cells. Reverse transcription polymerase chain reaction and Western blot analyses of MCF10A and ZR-75-1 cells indicated that SPC induces expression and secretion of matrix metalloproteinase-3 (MMP3). From online KMPLOT, relapse free survival is high in patients having low MMP3 expressed basal breast cancer (n=581, p=0.032). UK370106 (MMP3 inhibitor) or gene silencing of MMP3 markedly inhibited the SPC-induced invasion of MCF10A cells. An extracellular signal-regulated kinase (ERK) inhibitor, PD98059, significantly suppressed the secretion and the gelatinolytic activity of MMP3, and invasion in MCF10A cells. Over-expression of ERK1 and ERK2 promoted both the expression and secretion of MMP3. In contrast, gene silencing of ERK1 and ERK2 attenuated the secretion of MMP3 in MCF10A cells. The effects of SPC-induced MMP3 secretion on β-catenin and TCF/lymphoid enhancer factor (LEF) promoter activity were examined since MMP3 indirectly activates canonical Wnt signaling. SPC induced translocation of β-catenin to nucleus and increased TCF/LEF promoter activity. These events were suppressed by UK370106 or PD98059. Wnt inhibitor, FH535 inhibited SPC-induced MMP3 secretion and invasion. Taken together, these results suggest that SPC induces MMP3 expression and secretion via ERK leading to Wnt activation. PMID:27216977

  20. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C.

    PubMed

    Ruggiero, Sabrina; Cosgarea, Raluca; Potempa, Jan; Potempa, Barbara; Eick, Sigrun; Chiquet, Matthias

    2013-04-01

    Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease. PMID:23313574

  1. Dual side transparent OLED 3D display using Gabor super-lens

    NASA Astrophysics Data System (ADS)

    Chestak, Sergey; Kim, Dae-Sik; Cho, Sung-Woo

    2015-03-01

    We devised dual side transparent 3D display using transparent OLED panel and two lenticular arrays. The OLED panel is sandwiched between two parallel confocal lenticular arrays, forming Gabor super-lens. The display provides dual side stereoscopic 3D imaging and floating image of the object, placed behind it. The floating image can be superimposed with the displayed 3D image. The displayed autostereoscopic 3D images are composed of 4 views, each with resolution 64x90 pix.

  2. Numerical simulation on white OLEDs with dotted-line doped emitting layers

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Hsuan; Wen, Chien-Yang; Huang, Yi-Hsiang; Kuo, Yen-Kuang

    2009-02-01

    White organic light-emitting diodes (OLEDs) have attracted great attention recently. In this study, high-efficiency white organic light-emitting diodes with dotted-line doped layers are numerically investigated with the APSYS (abbreviation of Advanced Physical Model of Simulation Devices) simulation program. The APSYS simulation program, developed by Crosslight Inc., is capable of dealing with the optical, electrical, and thermal characteristics of OLED devices. To approach the real situation, the OLED device fabricated by Park et al. (Current Applied Physics 1, 116, 2001) was first modeled by adjusting the appropriate physical parameters. Based on this OLED structure, a new structure of ITO/α-NPD (40 nm)/Alq3:DCJTB (30 nm)/Alq3 (30 nm)/Mg:Ag emitting quasi-white light was then proposed. Then, the single layer of Alq3:DCJTB was replaced by multi-(Alq3:DCJTB/Alq3)n layers, which are the so-called dotted-line doped layers (see, e.g., paper by Han et al., Solid State Communications 141, 332, 2007), to further improve the optical performance. The optical properties of the white OLEDs with different pairs of (Alq3:DCJTB/Alq3)n dotted-line doped layers are investigated and discussed in detail. Optimization of the proposed quasi-white OLED structures is attempted. The simulation results indicate that the OLED with dotted-line doped layers has higher radiative recombination rate and better emission efficiency than that with a single Alq3:DCJTB layer. The physical origin of the improved optical performance for the OLED with dotted-line doped layers could be due to the increased electrons and holes at the interfaces between the Alq3:DCJTB and Alq3 layers, which thus results in higher radiative recombination rate and better emission efficiency.

  3. Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins.

    PubMed

    Zhang, Yu; Gu, Ying; Lee, Hsi-Ming; Hambardjieva, Elena; Vranková, Kveta; Golub, Lorne M; Johnson, Francis

    2012-01-01

    Matrix metalloproteinases (MMPs) are essential for the degradation and turnover of components of the extracellular matrix (ECM) and, when pathologically elevated, mediate connective tissue loss (including bone destruction) in various inflammatory and other diseases. Tetracyclines (TCs) are known inhibitors of mammalian-derived MMPs, and non-antibiotic formulations of Doxycycline are FDA-approved to treat periodontitis and the chronic inflammatory skin disease, rosacea. Because the C-11/ C-12 diketonic moiety of the tetracyclines is primarily responsible, through zinc-binding, for MMP inhibition, we have uniquely modified curcumin as a "core" molecule, since it contains a similar enolic system and is known to have beneficial effects in diseases where connective-tissue loss occurs. Specifically we have developed new congeners which exhibit improved zinc-binding and solubility, and potent reduction of excessive MMP levels and activity. We now describe a series of curcuminoid bi- and tri-carbonylmethanes in which all of these properties are substantially improved. An N-phenylaminocarbonyl derivative of bis-demethoxycurcumin (CMC2.24) was selected as the "lead" substance because it showed superior potency in vitro (i.e., the lowest IC(50)) against a series of neutral proteases (MMPs) associated with tissue erosion. Moreover, CMC2.24 administered to diabetic rats orally (30mg/kg), reduced the secretion of pathologically-excessive levels of MMP-9 to normal in cultured peritoneal macrophages with no evidence of toxicity. Thus, this (and other similar novel) compound(s) may be useful in various diseases of connective-tissue loss. PMID:22830350

  4. Phosphorescent OLEDs: Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer (Adv. Mater. 24/2016).

    PubMed

    Shin, Hyun; Lee, Jeong-Hwan; Moon, Chang-Ki; Huh, Jin-Suk; Sim, Bomi; Kim, Jang-Joo

    2016-06-01

    J.-J. Kim and co-workers achieve highly efficient blue organic light-emitting diodes (OLEDs) using a low-refractive-index layer. As described on page 4920, an external quantum efficiency over 34% is achieved, owing to the low refractive index of the materials. A milepost and a shining entrance of the castle are the metaphor indicating the way to highly efficient blue OLEDs. On the way to the castle, the depicted chemical structures serve as the light-emitting layer. PMID:27311092

  5. Study of a new type anode of OLED by MIC poly-Si

    NASA Astrophysics Data System (ADS)

    Li, Yang; Meng, Zhiguo; Wu, Chunya; Man, Wong; Hoi, Kwok Sing; Xiong, Shaozhen

    2007-11-01

    In this paper, a boron-doped poly-Si crystallized by solution-based metal induced (S-MIC) as the anode of organic light emitting diode (OLED) was studied. The semi-transparent and semi-reflective anode of OLED systemized with the high reflectivity of Al cathode could form a micro-cavity structure with a low Q to improve the efficiency. The maximum luminance efficiency of red OLED made by Alq3: DCJTB (1.5wt %)( 30nm) with the poly-Si anode is 2.66cd/A, higher than that of the OLED with the ITO anodes by 30%. In order to improve the device performance, some key to optimize the character of MIC poly-Si thin film are analyzed theoretically. A new kind of TFT/OLED coupling structure in AMOLED was proposed, in which the pixel electrode of OLED was made by the same poly-Si thin film with its driver TFT's drain electrode. So that this coupling structure will simplify the AMOLED processes flow.

  6. Flexible low-power-consumption OLED displays for a universal communication device

    NASA Astrophysics Data System (ADS)

    Hack, Michael G.; Chwang, Anna B.; Lu, Min-Hao M.; Kwong, Raymond C.; Weaver, Michael S.; Tung, Yeh-Jiun; Brown, Julie J.

    2003-09-01

    In this paper we will outline the technical challenges and progress towards enabling a novel communication device based on a roll-out, low power consumption, OLED display. Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. We believe that phosphorescent OLED (PHOLED) technology fabricated on a truly flexible substrate, enables a mobile Universal Communication Device (UCD) to offer a high information content display in an extendable form, while rolling up into a small form factor when not in use. This communication device is of great interest for a range of both consumer and military applications. From the display perspective, the key component is achieving a long-lived, low power consumption display. We believe the OLEDs are the preferred display media, and in this talk we will outline our flexible phosphorescent OLED technology. The key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing. UDC has been developing long-lived flexible OLED (FOLED) displays based on plastic substrates and multi-layer monolithic encapsulation. Recent progress in this area will also be reported. Finally, we will outline the backplane requirements for flexible OLED displays and compare the various technology options that can be used to fabricate the UCD.

  7. Matrix-addressable, active electrode arrays for neural stimulation using organic semiconductors—cytotoxicity and pilot experiments in vivo

    NASA Astrophysics Data System (ADS)

    Feili, Dara; Schuettler, Martin; Stieglitz, Thomas

    2008-03-01

    Organic field effect transistors can be integrated into micromachined polyimide-based neural stimulation electrode arrays in order to build active switching matrices. With this approach, a matrix of N × M electrode contacts requires only N + M interconnects to a stimulator when active switching elements are used instead of N × M interconnects. In this paper, we demonstrated that pentacene-based organic field effect transistors (OFETs) can be used to drive stimulation currents through neural electrodes in a physiological-like environment. In order to prove the general applicability as an implant material, the cytotoxicity of pentacene was evaluated with respect to potential effects on cell viability. The results of these tests indicate that extracts from pentacene inhibit neither proliferation nor metabolism of the tested mouse fibroblasts. However, some effect on cell spreading was observed when cells were in direct contact to pentacene for 48 h. In pilot experiments it was demonstrated for the very first time that pentacene transistors can be used as switching elements, acting as voltage-controlled current sources, capable of driving currents suitable for electrical stimulation of a peripheral nerve via a tripolar cuff electrode.

  8. Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity.

    PubMed

    Wu, Xue-Feng; Fei, Ming-Jian; Shu, Ren-Geng; Tan, Ren-Xiang; Xu, Qiang

    2005-09-01

    In the present paper, the effect of Fumigaclavine C, a fungal metabolite, on experimental colitis was examined. Fumigaclavine C, when administered intraperitoneally once a day, significantly reduced the weight loss and mortality rate of mice with experimental colitis induced by intrarectally injection of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). This compound also markedly alleviated the macroscopic and microscopic appearances of colitis. Furthermore, Fumigaclavine C, given both in vivo and in vitro, showed a marked inhibition on the expression of several inflammatory cytokines, including IL-1beta, IL-2, IL-12alpha, IFN-gamma, TNF-alpha as well as MMP-9 in sacral lymph node cells, colonic patch lymphocytes and colitis tissues from the TNBS colitis mice. Meanwhile, the compound caused a dose-dependent reduction in IL-2 and IFN-gamma from the lymphocytes at the protein level and MMP-9 activity. These results suggest that Fumigaclavine C may alleviate experimental colitis mainly via down-regulating the production of Th1 cytokines and the activity of matrix metalloproteinase. PMID:16023606

  9. Fluid Shear Stress Regulates the Invasive Potential of Glioma Cells via Modulation of Migratory Activity and Matrix Metalloproteinase Expression

    PubMed Central

    Qazi, Henry; Shi, Zhong-Dong; Tarbell, John M.

    2011-01-01

    Background Glioma cells are exposed to elevated interstitial fluid flow during the onset of angiogenesis, at the tumor periphery while invading normal parenchyma, within white matter tracts, and during vascular normalization therapy. Glioma cell lines that have been exposed to fluid flow forces in vivo have much lower invasive potentials than in vitro cell motility assays without flow would indicate. Methodology/Principal Findings A 3D Modified Boyden chamber (Darcy flow through collagen/cell suspension) model was designed to mimic the fluid dynamic microenvironment to study the effects of fluid shear stress on the migratory activity of glioma cells. Novel methods for gel compaction and isolation of chemotactic migration from flow stimulation were utilized for three glioma cell lines: U87, CNS-1, and U251. All physiologic levels of fluid shear stress suppressed the migratory activity of U87 and CNS-1 cell lines. U251 motility remained unaltered within the 3D interstitial flow model. Matrix Metalloproteinase (MMP) inhibition experiments and assays demonstrated that the glioma cells depended on MMP activity to invade, and suppression in motility correlated with downregulation of MMP-1 and MMP-2 levels. This was confirmed by RT-PCR and with the aid of MMP-1 and MMP-2 shRNA constructs. Conclusions/Significance Fluid shear stress in the tumor microenvironment may explain reduced glioma invasion through modulation of cell motility and MMP levels. The flow-induced migration trends were consistent with reported invasive potentials of implanted gliomas. The models developed for this study imply that flow-modulated motility involves mechanotransduction of fluid shear stress affecting MMP activation and expression. These models should be useful for the continued study of interstitial flow effects on processes that affect tumor progression. PMID:21637818

  10. A Single Amino Acid Deletion in the Matrix Protein of Porcine Reproductive and Respiratory Syndrome Virus Confers Resistance to a Polyclonal Swine Antibody with Broadly Neutralizing Activity

    PubMed Central

    Popescu, Luca N.; Monday, Nicholas; Calvert, Jay G.; Rowland, Raymond R. R.

    2015-01-01

    Assessment of virus neutralization (VN) activity in 176 pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) identified one pig with broadly neutralizing activity. A Tyr-10 deletion in the matrix protein provided escape from broad neutralization without affecting homologous neutralizing activity. The role of the Tyr-10 deletion was confirmed through an infectious clone with a Tyr-10 deletion. The results demonstrate differences in the properties and specificities of VN responses elicited during PRRSV infection. PMID:25855739

  11. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character.

    PubMed

    Moral, M; Muccioli, L; Son, W-J; Olivier, Y; Sancho-García, J C

    2015-01-13

    New materials for OLED applications with low singlet-triplet energy splitting have been recently synthesized in order to allow for the conversion of triplet into singlet excitons (emitting light) via a Thermally Activated Delayed Fluorescence (TADF) process, which involves excited-states with a non-negligible amount of Charge-Transfer (CT). The accurate modeling of these states with Time-Dependent Density Functional Theory (TD-DFT), the most used method so far because of the favorable trade-off between accuracy and computational cost, is however particularly challenging. We carefully address this issue here by considering materials with small (high) singlet-triplet gap acting as emitter (host) in OLEDs and by comparing the accuracy of TD-DFT and the corresponding Tamm-Dancoff Approximation (TDA), which is found to greatly reduce error bars with respect to experiments thanks to better estimates for the lowest singlet-triplet transition. Finally, we quantitatively correlate the singlet-triplet splitting values with the extent of CT, using for it a simple metric extracted from calculations with double-hybrid functionals, that might be applied in further molecular engineering studies. PMID:26574215

  12. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  13. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  14. Liver X receptor regulates rheumatoid arthritis fibroblast-like synoviocyte invasiveness, matrix metalloproteinase 2 activation, interleukin-6 and CXCL10.

    PubMed

    Laragione, Teresina; Gulko, Pércio S

    2012-01-01

    Fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA), yet little is known about its regulation. In this study we aimed to determine the role of the nuclear receptor liver X receptor (LXR) in FLS invasion. FLS were isolated from synovial tissues obtained from RA patients and from DA rats with pristane-induced arthritis. Invasion was tested on Matrigel-coated chambers in the presence of the LXR agonist T0901317, or control vehicle. FLS were cultured in the presence or absence of T0901317, and supernatants were used to quantify matrix metalloproteinase 1 (MMP-1), MMP-2, MMP-3, interleukin-6 (IL-6), tumor necrosis factor-α and C-X-C motif chemokine ligand 10 (CXCL10). Nuclear factor-κB (NF-κB) (p65) and Akt activation, actin cytoskeleton, cell morphology and lamellipodia formation were also determined. The LXR agonist T0901317 significantly reduced DA FLS invasion by 99% (P ≤ 0.001), and RA FLS invasion by 96% (P ≤ 0.001), compared with control. T0901317-induced suppression of invasion was associated with reduced production of activated MMP-2, IL-6 and CXCL10 by RA FLS, and with reduction of actin filament reorganization and reduced polarized formation of lamellipodia. T0901317 also prevented both IL-1β-induced and IL-6-induced FLS invasion. NF-κB (p65) and Akt activation were not significantly affected by T0901317. This is the first description of a role for LXR in the regulation of FLS invasion and in processes and pathways implicated both in invasion as well as in inflammatory responses. These findings provide a new rationale for considering LXR agonists as therapeutic agents aimed at reducing both inflammation and FLS-mediated invasion and destruction in RA. PMID:22634718

  15. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth.

    PubMed

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-07-18

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies. PMID:24867951

  16. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    SciTech Connect

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret; Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens; Albrecht, Martin

    2010-09-03

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  17. The spin-Dicke effect in OLED magnetoresistance

    NASA Astrophysics Data System (ADS)

    Waters, D. P.; Joshi, G.; Kavand, M.; Limes, M. E.; Malissa, H.; Burn, P. L.; Lupton, J. M.; Boehme, C.

    2015-11-01

    Pairs of charge-carrier spins in organic semiconductors constitute four-level systems that can be driven electromagnetically. Given appropriate conditions for ultrastrong coupling--weak local hyperfine fields Bhyp, large magnetic resonant driving fields B1 and low static fields B0 that define Zeeman splitting--the spin-Dicke effect, a collective transition of spin states, has been predicted. This parameter range is challenging to probe by electron paramagnetic resonance spectroscopy because thermal magnetic polarization is negligible. It is accessed through spin-dependent conductivity that is controlled by electron-hole pairs of singlet and triplet spin-permutation symmetry without the need of thermal spin polarization. Signatures of collective behaviour of carrier spins are revealed in the steady-state magnetoresistance of organic light-emitting diodes (OLEDs), rather than through radiative transitions. For intermediate B1, the a.c.-Zeeman effect appears. For large B1, a collective spin-ensemble state arises, inverting the current change under resonance and removing power broadening, thereby offering a unique window to ambient macroscopic quantum coherence.

  18. Photochemically induced emission tuning of conductive polumers used in OLEDs

    NASA Astrophysics Data System (ADS)

    Vasilopoulou, M.; Pistolis, G.; Argitis, P.

    2005-01-01

    The present work focuses on the use of novel patterning technology schemes for the fabrication of OLED-based displays and in particular on the definition of two colour emitting pixels in one polymeric conducting layer. The approach adopted to this end is based on photochemically induced emition tuning. On the basis of this approach a novel photolithographic patterning technique was developed, aiming at the considerable simplification of the display fabrication process and on the performance improvement. We prepared electroluminescent devices that are emitting blue colour (λmax = 413 nm) with a turnon voltage about 12-15 V. In other devices we introduce a dispersed dye (1-[4-(dimethylamino)phenyl]-6-phenylhexatriene) and a series of photoacid generators (onium salts) in the polymeric layer and, by using an appropriate photochemical transformation through a photomask in a single layer, we were able to change the colour to desirable direction, since the parent compound and its photochemical product have distinguishable luminescence spectra (green and blue colour respectively). We were able to produce two of the three primary colours in a single layer of a conductive polymer by using a photochemical transformation based on photoacid induced emission change. A series of photoacid generators were evaluated.

  19. Widespread Head-to-Head Hydrocarbon Biosynthesis in Bacteria and Role of OleA ▿ †

    PubMed Central

    Sukovich, David J.; Seffernick, Jennifer L.; Richman, Jack E.; Gralnick, Jeffrey A.; Wackett, Lawrence P.

    2010-01-01

    Previous studies identified the oleABCD genes involved in head-to-head olefinic hydrocarbon biosynthesis. The present study more fully defined the OleABCD protein families within the thiolase, α/β-hydrolase, AMP-dependent ligase/synthase, and short-chain dehydrogenase superfamilies, respectively. Only 0.1 to 1% of each superfamily represents likely Ole proteins. Sequence analysis based on structural alignments and gene context was used to identify highly likely ole genes. Selected microorganisms from the phyla Verucomicrobia, Planctomyces, Chloroflexi, Proteobacteria, and Actinobacteria were tested experimentally and shown to produce long-chain olefinic hydrocarbons. However, different species from the same genera sometimes lack the ole genes and fail to produce olefinic hydrocarbons. Overall, only 1.9% of 3,558 genomes analyzed showed clear evidence for containing ole genes. The type of olefins produced by different bacteria differed greatly with respect to the number of carbon-carbon double bonds. The greatest number of organisms surveyed biosynthesized a single long-chain olefin, 3,6,9,12,15,19,22,25,28-hentriacontanonaene, that contains nine double bonds. Xanthomonas campestris produced the greatest number of distinct olefin products, 15 compounds ranging in length from C28 to C31 and containing one to three double bonds. The type of long-chain product formed was shown to be dependent on the oleA gene in experiments with Shewanella oneidensis MR-1 ole gene deletion mutants containing native or heterologous oleA genes expressed in trans. A strain deleted in oleABCD and containing oleA in trans produced only ketones. Based on these observations, it was proposed that OleA catalyzes a nondecarboxylative thiolytic condensation of fatty acyl chains to generate a β-ketoacyl intermediate that can decarboxylate spontaneously to generate ketones. PMID:20418421

  20. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases. PMID:27589705

  1. Effect of transparent film desiccant on the lifetime of top-emitting active matrix organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Duk; Cho, Yoon-Hyung; Kim, Won-Jong; Oh, Min Ho; Lee, Jong Hyuk; Zang, Dong Sik

    2007-03-01

    The effects of a transparent film desiccant on the lifetime of top-emitting active matrix organic light emitting diodes (AMOLEDs) were investigated. The transparent film desiccants were prepared by mixing solutions dispersed with calcium oxide powders and ultraviolet-curable resins. As the solid content in the solutions increased from 15to30wt%, the average particle size increased from 107to240nm, whereas the transmittance of the films decreased from 98% to 80% in the visible range. The devices encapsulated with the transparent film desiccants which contained 20wt% CaO exhibited no dark spots and 97% of the initial luminance, even after being stored for over 500h at 70°C and 90% relative humidity. Also, the operational lifetime of these devices was 1850h, ten times longer than that of a device without desiccant. These results confirmed that the transparent film desiccants, which absorbed the moisture that penetrated into the devices, could be applied to the encapsulation of top-emitting AMOLEDs.

  2. Orally administered betaine reduces photodamage caused by UVB irradiation through the regulation of matrix metalloproteinase-9 activity in hairless mice.

    PubMed

    Im, A-Rang; Lee, Hee Jeong; Youn, Ui Joung; Hyun, Jin Won; Chae, Sungwook

    2016-01-01

    Betaine is widely distributed in plants, microorganisms, in several types of food and in medical herbs, including Lycium chinense. The administration of 100 mg betaine/kg body weight/day is an effective strategy for preventing ultraviolet irradiation‑induced skin damage. The present study aimed to determine the preventive effects of betaine on ultraviolet B (UVB) irradiation‑induced skin damage in hairless mice. The mice were divided into three groups: Control (n=5), UVB‑treated vehicle (n=5) and UVB‑treated betaine (n=5) groups. The level of irradiation was progressively increased between 60 mJ/cm2 per exposure at week 1 (one minimal erythematous dose = 60 mJ/cm2) and 90 mJ/cm2 per exposure at week 7. The formation of wrinkles significantly increased following UVB exposure in the UVB‑treated vehicle group. However, treatment with betaine suppressed UVB‑induced wrinkle formation, as determined by the mean length, mean depth, number, epidermal thickness and collagen damage. Furthermore, oral administration of betaine also inhibited the UVB‑induced expression of mitogen‑activated protein kinase kinase (MEK), extracellular signal‑regulated kinase (ERK), and matrix metalloproteinase‑9 (MMP‑9). These findings suggested that betaine inhibits UVB‑induced skin damage by suppressing increased expression of MMP‑9 through the inhibition of MEK and ERK. PMID:26648401

  3. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  4. Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14

    PubMed Central

    Eckhard, Ulrich; Huesgen, Pitter F.; Schilling, Oliver; Bellac, Caroline L.; Butler, Georgina S.; Cox, Jennifer H.; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; auf dem Keller, Ulrich; Klein, Theo; Lange, Philipp F.; Marino, Giada; Morrison, Charlotte J.; Prudova, Anna; Rodriguez, David; Starr, Amanda E.; Wang, Yili; Overall, Christopher M.

    2016-01-01

    The data described provide a comprehensive resource for the family-wide active site specificity portrayal of the human matrix metalloproteinase family. We used the high-throughput proteomic technique PICS (Proteomic Identification of protease Cleavage Sites) to comprehensively assay 9 different MMPs. We identified more than 4300 peptide cleavage sites, spanning both the prime and non-prime sides of the scissile peptide bond allowing detailed subsite cooperativity analysis. The proteomic cleavage data were expanded by kinetic analysis using a set of 6 quenched-fluorescent peptide substrates designed using these results. These datasets represent one of the largest specificity profiling efforts with subsequent structural follow up for any protease family and put the spotlight on the specificity similarities and differences of the MMP family. A detailed analysis of this data may be found in Eckhard et al. (2015) [1]. The raw mass spectrometry data and the corresponding metadata have been deposited in PRIDE/ProteomeXchange with the accession number PXD002265. PMID:26981551

  5. Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14.

    PubMed

    Eckhard, Ulrich; Huesgen, Pitter F; Schilling, Oliver; Bellac, Caroline L; Butler, Georgina S; Cox, Jennifer H; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; Auf dem Keller, Ulrich; Klein, Theo; Lange, Philipp F; Marino, Giada; Morrison, Charlotte J; Prudova, Anna; Rodriguez, David; Starr, Amanda E; Wang, Yili; Overall, Christopher M

    2016-06-01

    The data described provide a comprehensive resource for the family-wide active site specificity portrayal of the human matrix metalloproteinase family. We used the high-throughput proteomic technique PICS (Proteomic Identification of protease Cleavage Sites) to comprehensively assay 9 different MMPs. We identified more than 4300 peptide cleavage sites, spanning both the prime and non-prime sides of the scissile peptide bond allowing detailed subsite cooperativity analysis. The proteomic cleavage data were expanded by kinetic analysis using a set of 6 quenched-fluorescent peptide substrates designed using these results. These datasets represent one of the largest specificity profiling efforts with subsequent structural follow up for any protease family and put the spotlight on the specificity similarities and differences of the MMP family. A detailed analysis of this data may be found in Eckhard et al. (2015) [1]. The raw mass spectrometry data and the corresponding metadata have been deposited in PRIDE/ProteomeXchange with the accession number PXD002265. PMID:26981551

  6. Activated matrix metalloproteinase-8 in saliva as diagnostic test for periodontal disease? A case-control study.

    PubMed

    Izadi Borujeni, Susan; Mayer, Matthias; Eickholz, Peter

    2015-12-01

    Untreated periodontal disease may influence general health. However, how may a physician, who is not trained in periodontal probing, detect untreated periodontitis? Activated matrix metalloproteinase-8 (aMMP-8) in saliva correlates with periodontal probing parameters. Thus, sensitivity and specificity of a chair-side test for aMMP-8 to detect periodontitis were evaluated. Thirty cases [untreated chronic periodontitis (ChP); 15 generalized moderate and 15 generalized severe] and 30 controls [probing depths (PD) ≤3 mm, vertical probing attachment level (PAL-V) ≤2 mm at <30 % of sites) were examined periodontally (PD, PAL-V, bleeding on probing). Subsequently, the aMMP-8 test was performed. The test kit becomes positive with ≥25 ng/ml aMMP-8 in the sample. The aMMP-8 test was positive in 87 % of ChP and in 40 % of controls. That corresponds to a sensitivity of 87 % and a specificity of 60 %. The sensitivity to detect generalized severe ChP was 93 % (60 % specificity). Backward stepwise logistic regression analysis to explain positive aMMP-8 tests identified exclusively ChP with an odds ratio of 9.8 (p < 0.001). Positive results of the aMMP-8 test significantly correlate with generalized ChP. The aMMP-8 test may be used by physicians to detect periodontitis in their patients. PMID:25841875

  7. Validation and interpretation of CALUX as a tool for the estimation of dioxin-like activity in marine biological matrixes.

    PubMed

    Windal, Isabelle; Van Wouwe, Nathalie; Eppe, Gauthier; Xhrouet, Céline; Debacker, Virginie; Baeyens, Willy; De Pauw, Edwin; Goeyens, Leo

    2005-03-15

    Among the different analytical tools proposed as an alternative to the very expensive gas chromatography high-resolution mass spectrometry (GC-HRMS) analyses of polychlorodibenzo-p-dioxin and polychlorodibenzofurans, Chemically Activated LUciferase gene eXpression (CALUX) in vitro cell bioassay is very promising. It allows the analyses of a high number of samples since it is relatively fast, inexpensive, and sensitive. However, this technique is not yet widely applied for screening or environmental monitoring. The main reasons are probably the lack of validation and the difficulty in interpreting the global biological response of the bioassay. In this paper, the strict quality control criteria set up for the validation of CALUX are described. The validation has shown good repeatability (relative standard deviation (RSD) = 9%) and good within-lab reproducibility (RSD = 15%) of the results. The quantification limit, in the conditions applied in this paper, is 1.25 pg CALUX-TEQ/g fat. Comparison of CALUX and GC-HRMS analysis was made forvarious marine matrixes (fishes, mussels, starfishes, sea birds, and marine mammals). Good correlations are usually observed, but there are systematic differences between the results. Attempts are made to identify the origin of the discrepancy between the two methods. PMID:15819233

  8. Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter.

    PubMed Central

    Bian, J; Sun, Y

    1997-01-01

    p53, a tumor suppressor and a transcription factor, has been shown to transcriptionally activate the expression of a number of important genes involved in the regulation of cell growth, DNA damage, angiogenesis, and apoptosis. In a computer search for other potential p53 target genes, we identified a perfect p53 binding site in the promoter of the human type IV collagenase (also called 72-kDa gelatinase or matrix metalloproteinase 2 [MMP-2]) gene. This p53 binding site was found to specifically bind to p53 protein in a gel shift assay. Transcription assays with luciferase reporters driven by the promoter or enhancer of the type IV collagenase gene revealed that (i) activation of the promoter activity is p53 binding site dependent in p53-positive cells but not in p53-negative cells and (ii) wild-type p53, but not p53 mutants commonly found in human cancers, transactivates luciferase expression driven by the type IV collagenase promoter as well as by a p53 site-containing enhancer element in the promoter. Significantly, expression of the endogenous type IV collagenase is also under the control of p53. Treatment of U2-OS cells, a wild-type p53-containing osteogenic sarcoma line, with a common p53 inducer, etoposide, induced p53 DNA binding and transactivation activities in a time-dependent manner. Induction of type IV collagenase expression followed the p53 activation pattern. No induction of type IV collagenase expression can be detected under the same experimental conditions in p53-negative Saos-2 cells. All these in vitro and in vivo assays strongly suggest that the type IV collagenase gene is a p53 target gene and that its expression is subject to p53 regulation. Our finding links p53 to a member of the MMP genes, a family of genes implicated in trophoblast implantation, wound healing, angiogenesis, arthritis, and tumor cell invasion. p53 may regulate these processes by upregulating expression of type IV collagenase. PMID:9343394

  9. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    SciTech Connect

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  10. Integrated OLED as excitation light source in fluorescent lateral flow immunoassays.

    PubMed

    Venkatraman, Vishak; Steckl, Andrew J

    2015-12-15

    The integration of organic light emitting diodes (OLEDs) as excitation light sources for quantum dot-based fluorescent lateral flow immunoassay systems (LFIA) was investigated. This approach has the potential to deliver a sensitive visible detection scheme for low-cost, disposable lab-on-chip point-of-care (POC) diagnosis system. Thin film phosphorescent green OLEDs fabricated on plastic substrates were integrated on-chip to excite the test line of a quantum dot-based LFIA (QD-LFIA). OLEDs were fabricated by sequential deposition of organic thin films (total of ~100 nm) onto ITO-coated PET substrates. CdSe/ZnS QDs emitting at 655 nm and Au nanoparticles (NP - 10 nm size) conjugated antibodies were used for the fluorescence QD-LFIA and conventional reflection-mode Au NP-LFIA, respectively. Thin plastic color light filters were integrated for filtering the excitation light source and, thereby, increasing the contrast of the emitted light for optimized visual detection. Integration of the OLED and color filters with the analytical membrane was achieved using adhesive techniques facilitated by the planar nature of the layers, which suggests possible large scale manufacturing using roll-to-roll processing. Gray scale analysis from digital images captured with a digital camera was used to quantify the visual sensitivity. The signal intensity, signal-to-noise ratio (SNR) and the limit of detection (LOD) of OLED integrated QD-LFIAs were compared to Au NP LFIAs. OLED QD-LFIA exhibited superior performance in all signal aspects: 7-8× higher signal intensity and SNR, and a 7× lower LOD of 3 nM (measured at S/N=3). These results demonstrate the potential of OLED-integrated in LFIA devices for obtaining sensitive, fast and low-cost POC diagnostics. PMID:26134292

  11. High mobility group box-1 promotes hepatocellular carcinoma progression through miR-21-mediated matrix metalloproteinase activity

    PubMed Central

    Chen, Man; Liu, Yao; Varley, Patrick; Chang, Ying; He, Xing-xing; Huang, Hai; Tang, Daolin; Lotze, Michael T.; Lin, Jusheng; Tsung, Allan

    2015-01-01

    Liver inflammation plays a critical role in hepatocellular carcinoma (HCC) etiology. Damage associated molecular patterns (DAMPs), such as high mobility group box-1 (HMGB1), and dysregulated microRNAs (miRNAs) involved in inflammatory disease states, such as miR-21, may participate in the link between inflammation and cancer. We sought to determine the role of HMGB1 signaling in HCC tumor progression. We first document the concordant expression increase of HMGB1 and miR-21 in HCC cell lines and primary HCC tumor samples and subsequently show that HMGB1 stimulation results in over-expression of miR-21. These changes were found to be dependent on the IL-6/Stat3 signaling axis. Invasion and migration of HCC cells in vitro was inhibited by both Stat3 and miR-21 antagonists, suggesting a role for this pathway in HCC tumor progression. We verified that HMGB1-induced expression of miR-21 in HCC provides a post-transcriptional repression of the matrix metalloproteinase (MMP) inhibitors RECK and TIMP3, which are known to impact HCC progression and metastases. Finally, we found that inhibition of miR-21 in murine HMGB1-overexpressing HCC xenografts led to reduced tumor MMP activity through released repression of the miR-21 targets RECK and TIMP3, which ultimately impeded tumor progression. The prototypical DAMP, HMGB1, is released during liver inflammation and provides a favorable environment for HCC growth. HMGB1 signaling increases miR-21 expression to mediate the enhanced activity of MMPs through RECK and TIMP3. These findings provide a novel mechanism for HMGB1-mediated HCC progression through the IL-6/Stat3-miR-21 axis. PMID:25720799

  12. Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model

    PubMed Central

    Parhi, Rabinarayan; Suresh, Padilam

    2015-01-01

    The present investigation focused on the development of Diltiazem HCl (DTH) matrix film and its characterization by in-vitro, ex-vivo and in-vivo methods. Films were prepared by solvent casting method by taking different ratios of hydroxypropyl methylcellulose K4M (HPMC K4M) and Eudragit RS100. Various parameters of the films were analyzed such as mechanical property using tensile tester, interaction study by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), in-vitro drug release through cellulose acetate membrane, ex-vivo permeation study using abdominal skin of rat employing Franz diffusion cell, and in-vivo antihypertensive activity using rabbit model. The FTIR studies confirmed the absence of interaction between DTH and selected polymers. Thermal analysis showed the shifting of endothermic peak of DTH in film, indicating the dispersion of DTH in molecular form throughout the film. Incorporation of 1,8-cineole showed highest flux (89.7 μg/cm2/h) of DTH compared to other penetration enhancers such as capsaicin, dimethyl sulfoxide (DMSO), and N-methyl pyrrolidone (NMP). Photomicrographs of histology study on optimized formulation (DF9) illustrated disruption of stratum corneum (SC) supporting the ex-vivo results. The in-vivo antihypertensive activity results demonstrated that formulation DF9 was effective in reducing arterial blood pressure in normotensive rabbits. SEM analysis of films kept for stability study (40 ± 2 °C/75% ± 5%RH for 3 months) revealed the formation of drug crystals which may be due to higher temperature. The findings of the study provide a better alternative dosage form of DTH for the effective treatment of hypertension with enhanced patient compliance. PMID:27222758

  13. Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model.

    PubMed

    Parhi, Rabinarayan; Suresh, Padilam

    2016-05-01

    The present investigation focused on the development of Diltiazem HCl (DTH) matrix film and its characterization by in-vitro, ex-vivo and in-vivo methods. Films were prepared by solvent casting method by taking different ratios of hydroxypropyl methylcellulose K4M (HPMC K4M) and Eudragit RS100. Various parameters of the films were analyzed such as mechanical property using tensile tester, interaction study by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), in-vitro drug release through cellulose acetate membrane, ex-vivo permeation study using abdominal skin of rat employing Franz diffusion cell, and in-vivo antihypertensive activity using rabbit model. The FTIR studies confirmed the absence of interaction between DTH and selected polymers. Thermal analysis showed the shifting of endothermic peak of DTH in film, indicating the dispersion of DTH in molecular form throughout the film. Incorporation of 1,8-cineole showed highest flux (89.7 μg/cm(2)/h) of DTH compared to other penetration enhancers such as capsaicin, dimethyl sulfoxide (DMSO), and N-methyl pyrrolidone (NMP). Photomicrographs of histology study on optimized formulation (DF9) illustrated disruption of stratum corneum (SC) supporting the ex-vivo results. The in-vivo antihypertensive activity results demonstrated that formulation DF9 was effective in reducing arterial blood pressure in normotensive rabbits. SEM analysis of films kept for stability study (40 ± 2 °C/75% ± 5%RH for 3 months) revealed the formation of drug crystals which may be due to higher temperature. The findings of the study provide a better alternative dosage form of DTH for the effective treatment of hypertension with enhanced patient compliance. PMID:27222758

  14. Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager.

    PubMed

    El-Mohri, Y; Jee, K W; Antonuk, L E; Maolinbay, M; Zhao, Q

    2001-12-01

    After years of aggressive development, active matrix flat-panel imagers (AMFPIs) have recently become commercially available for radiotherapy imaging. In this paper we report on a comprehensive evaluation of the signal and noise performance of a large-area prototype AMFPI specifically developed for this application. The imager is based on an array of 512 x 512 pixels incorporating amorphous silicon photodiodes and thin-film transistors offering a 26 x 26 cm2 active area at a pixel pitch of 508 microm. This indirect detection array was coupled to various x-ray converters consisting of a commercial phosphor screen (Lanex Fast B, Lanex Regular, or Lanex Fine) and a 1 mm thick copper plate. Performance of the imager in terms of measured sensitivity, modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) is reported at beam energies of 6 and 15 MV and at doses of 1 and 2 monitor units (MU). In addition, calculations of system performance (NPS, DQE) based on cascaded-system formalism were reported and compared to empirical results. In these calculations, the Swank factor and spatial energy distributions of secondary electrons within the converter were modeled by means of EGS4 Monte Carlo simulations. Measured MTFs of the system show a weak dependence on screen type (i.e., thickness), which is partially due to the spreading of secondary radiation. Measured DQE was found to be independent of dose for the Fast B screen, implying that the imager is input-quantum-limited at 1 MU, even at an extended source-to-detector distance of 200 cm. The maximum DQE obtained is around 1%--a limit imposed by the low detection efficiency of the converter. For thinner phosphor screens, the DQE is lower due to their lower detection efficiencies. Finally, for the Fast B screen, good agreement between calculated and measured DQE was observed. PMID:11797959

  15. Pesticide-Exposure Matrix

    Cancer.gov

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  16. Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a β-Arrestin–Dependent Manner via Activation of RAS

    PubMed Central

    Li, Jinju; Ghio, Andrew J.; Cho, Seung-Hyun; Brinckerhoff, Constance E.; Simon, Sidney A.; Liedtke, Wolfgang

    2009-01-01

    Background Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. Objective We elucidated the molecular mechanisms of DEPs’ up-regulation of MMP-1. Methods/Results Using permanent and primary human bronchial epithelial (HBE) cells at air–liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by β-arrestins. Short interfering RNA mediated β-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the –1607GG polymorphism, present in 60–80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. Conclusion Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human –1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of β-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2. PMID:19337515

  17. Tunable white light emission in Parallel Tandem OLEDs made with silver metal as interlayer

    NASA Astrophysics Data System (ADS)

    Oliva, Jorge; Papadimitratos, Alexios; Zakhidov, Anvar; UT Dallas Team

    Parallel tandem organic light emitting diodes (OLEDs) which consisted in a top and bottom subunits, and joined with a thin layer of silver (interlayer) were fabricated. In this parallel tandem architecture the Ag metal is an active common anode, which permitted to inject holes into top and bottom subunits. Both subunits of the tandem can thus be connected functionally in a new geometry and addressed separately. Those Tandems had a yellow emitter (a mixture of MEH-PPV and TFB polymers) in the bottom subunit and a blue emitting molecule in the top subunit. The simultaneous combination of the emitted yellow and blue light when both subunits are operating produced white light. We could tune the white light from cool (CIE: 0.33, 0.25) to warm (CIE: 0.38, 0.39) by changing the intensity of the yellow light, that in turn depends on the ratio of MEH-PPV/TFB mixture used to make the emitting layer in the bottom subunit. We also compared the performance of the parallel tandem with these in series and we found additional advantages of the parallel architecture over the configuration for the series tandems such as: tunable chromaticity, lower turn on voltage (4V compared to 7V in the in-series tandem) and higher brightness. The best CIE coordinate we obtained for white light was (0.35, 0.35) which is near the ideal coordinate of (0.33,0.33).

  18. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a

  19. FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer.

    PubMed

    Kim, Jun-Whee; Jang, Ji-Hyang; Oh, Min-Cheol; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jae-Hyun; Lee, Jeong-Ik

    2014-01-13

    The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a certain spatial and temporal coherence was incorporated, and the light extraction efficiency with respect to the fill factor of the RSL and the absorption coefficient of the material was investigated. The design results were compared to the experimental results of the RSL-OLEDs in order to confirm the usefulness of FDTD in predicting experimental results. According to our FDTD simulations, the light confined within the ITO-organic waveguide was quickly absorbed, and the absorption coefficients of ITO and RSL materials should be reduced in order to obtain significant improvement in the external quantum efficiency (EQE). When the extinction coefficient of ITO was 0.01, the EQE in the RSL-OLED was simulated to be enhanced by a factor of 1.8. PMID:24515010

  20. OLED-based sensor array for simultaneous monitoring of multiple analytes

    NASA Astrophysics Data System (ADS)

    Cai, Yuankun; Shinar, Ruth; Zhou, Zhaoqun; Shinar, Joseph

    2007-09-01

    A compact, photoluminescence (PL)-based sensor array, utilizing tris(quinolinolate) Al OLED pixels as the excitation sources, for sequential or simultaneous monitoring of dissolved oxygen (DO), glucose, lactate, and alcohol, is described. The DO is monitored through its effect on the PL lifetime of the oxygen-sensitive dye Pt octaethylporphyrin (PtOEP) embedded in a polystyrene film. The other analytes are monitored through their oxidation, catalyzed by an appropriate oxidase, which reduces the amount of DO in their vicinity. The OLED pixels are fabricated on a glass substrate; each pixel is typically 2×2 mm2, with a 2 mm gap between the pixels. Two OLED pixels are associated with the detection of each of the analytes. The pixels are individually addressable, enabling consecutive detection of the different analytes within a few minutes utilizing a single photodetector (PD). Simultaneous detection is achieved by using an array of PDs. The OLED-based sensing array is compact and uniquely simple in its ease of fabrication and integration. Its performance attributes are comparable to those obtained for a single analyte using any excitation source. The potential of small-size, multi-color OLED pixel arrays for multianalyte detection is also discussed.

  1. Efficient, inkjet-printed TADF-OLEDs with an ultra-soluble NHetPHOS complex

    NASA Astrophysics Data System (ADS)

    Verma, Anand; Zink, Daniel M.; Fléchon, Charlotte; Leganés Carballo, Jaime; Flügge, Harald; Navarro, José M.; Baumann, Thomas; Volz, Daniel

    2016-03-01

    Using printed organic light-emitting diodes (OLEDs) for lighting, smart-packaging and other mass-market applications has remained a dream since the first working OLED devices were demonstrated in the late 1980s. The realization of this long-term goal is hindered by the very low abundance of iridium and problems when using low-cost wet chemical production processes. Abundant, solution-processable Cu(I) complexes promise to lower the cost of OLEDs. A new copper iodide NHetPHOS emitter was prepared and characterized in solid state with photoluminescence spectroscopy and UV photoelectron spectroscopy under ambient conditions. The photoluminescence quantum efficiency was determined as 92 ± 5 % in a thin film with yellowish-green emission centered around 550 nm. This puts the material on par with the most efficient copper complexes known so far. The new compound showed superior solubility in non-polar solvents, which allowed for the fabrication of an inkjet-printed OLED device from a decalin-based ink formulation. The emission layer could be processed under ambient conditions and was annealed under air. In a very simple stack architecture, efficiency values up to 45 cd A-1 corresponding to 13.9 ± 1.9 % EQE were achieved. These promising results open the door to printed, large-scale OLED devices with abundant copper emitters.

  2. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    NASA Astrophysics Data System (ADS)

    Cai, Min

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs' performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  3. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown.

    PubMed

    Scaini, Giselli; Morais, Meline O S; Galant, Leticia S; Vuolo, Francieli; Dall'Igna, Dhébora M; Pasquali, Matheus A B; Ramos, Vitor M; Gelain, Daniel P; Moreira, Jose Claudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Soriano, Francisco G; Dal-Pizzol, Felipe; Streck, Emilio L

    2014-10-01

    Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a severe deficiency in the activity of the branched-chain α-keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Infections have a significant role in precipitating acute metabolic decompensation in patients with MSUD; however, the mechanisms underlying the neurotoxicity in this disorder are poorly understood. In this study, we subjected rats to the coadministration of lipopolysaccharide (LPS), which is a major component of gram-negative bacteria cell walls, and high concentrations of BCAA (H-BCAA) to determine their effects on the permeability of the blood-brain barrier (BBB) and on the levels of matrix metalloproteinases (MMP-2 and MMP-9). Our results demonstrated that the coadministration of H-BCAA and LPS causes breakdown of the BBB and increases the levels of MMP-2 and MMP-9 in the hippocampus of these rats. On the other hand, examination of the cerebral cortex of the 10- and 30-day-old rats revealed a significant difference in Evan's Blue content after coadministration of H-BCAA and LPS, as MMP-9 levels only increased in the cerebral cortex of the 10-day-old rats. In conclusion, these results suggest that the inflammatory process associated with high levels of BCAA causes BBB breakdown. Thus, we suggest that BBB breakdown is relevant to the perpetuation of brain inflammation and may be related to the brain dysfunction observed in MSUD patients. PMID:24390570

  4. High efficient OLEDs based on novel Re(I) complexes with phenanthroimidazole derivatives

    NASA Astrophysics Data System (ADS)

    Zhao, Guang-Wei; Hu, Yong-Xu; Chi, Hai-Jun; Dong, Yan; Xiao, Guo-Yong; Li, Xiao; Zhang, Dong-Yu

    2015-09-01

    Novel rhenium(I) [Re(I)] complexes with phenanthroimidazole ligands were successfully designed, synthesized and characterized. The Re(I) complexes displayed intense phosphorescence with yellow or orange color around 540-580 nm at room temperature with relatively short lifetimes. The phosphorescent simple-structure OLEDs using these Re(I) complexes as dopants exhibited low turn-on voltage of 3.5-3.6 V, maximum current efficiencies of 18.7-21.1 cd A-1 and maximum power efficiencies of 13.3-18.9 lm W-1, which were amongst the highest reported for OLEDs based on Re(I) complexes with phenanthroline ligands as emitters. The excellent performances are due to the bulky steric Re(I) complexes with short lifetime and good electron-transporting ability, which may improve the electron injection and result in greater balance between electron and hole fluxes. The results suggest that these complexes have potential application in OLEDs.

  5. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes

    SciTech Connect

    Blochwitz-Nimoth, Jan; Bhandari, Abhinav; Boesch, Damien; Fincher, Curtis R.; Gaspar, Daniel J.; Gotthold, David W.; Greiner, Mark T.; Kido, Junji; Kondakov, Denis; Korotkov, Roman; Krylova, Valentina A.; Loeser, Falk; Lu, Min-Hao; Lu, Zheng-Hong; Lussem, Bjorn; Moro, Lorenza; Padmaperuma, Asanga B.; Polikarpov, Evgueni; Rostovtsev, Vsevolod V.; Sasabe, Hisahiro; Silverman, Gary; Thompson, Mark E.; Tietze, Max; Tyan, Yuan-Sheng; Weaver, Michael; Xin , Xu; Zeng, Xianghui

    2015-05-26

    What is an organic light emitting diode (OLED)? Why should we care? What are they made of? How are they made? What are the challenges in seeing these devices enter the marketplace in various applications? These are the questions we hope to answer in this book, at a level suitable for knowledgeable non-experts, graduate students and scientists and engineers working in the field who want to understand the broader context of their work. At the most basic level, an OLED is a promising new technology composed of some organic material sandwiched between two electrodes. When current is passed through the device, light is emitted. The stack of layers can be very thin and has many variations, including flexible and/or transparent. The organic material can be polymeric or composed small molecules, and may include inorganic components. The electrodes may consist of metals, metal oxides, carbon nanomaterials, or other species, though of course for light to be emitted, one electrode must be transparent. OLEDs may be fabricated on glass, metal foils, or polymer sheets (though polymeric substrates must be modified to protect the organic material from moisture or oxygen). In any event, the organic material must be protected from moisture during storage and operation. A control circuit, the exact nature of which depends on the application, drives the OLED. Nevertheless, the control circuit should have very stable current control to generate uniform light emission. OLEDs can be designed to emit a single color of light, white light, or even tunable colors. The devices can be switched on and off very rapidly, which makes them suitable for displays or for general lighting. Given the amazing complexity of the technical and design challenges for practical OLED applications, it is not surprising that applications are still somewhat limited. Although organic electroluminescence is more than 50 years old, the modern OLED field is really only about half that age – with the first high

  6. OLEDs: light-emitting thin film thermistors revealing advanced self-heating effects

    NASA Astrophysics Data System (ADS)

    Fischer, Axel; Koprucki, Thomas; Glitzky, Annegret; Liero, Matthias; Gärtner, Klaus; Hauptmann, Jacqueline; Reineke, Sebastian; Kasemann, Daniel; Lüssem, Björn; Leo, Karl; Scholz, Reinhard

    2015-09-01

    Large area OLEDs show pronounced Joule self-heating at high brightness. This heating induces brightness inhomogeneities, drastically increasing beyond a certain current level. We discuss this behavior considering 'S'-shaped negative differential resistance upon self-heating, even allowing for 'switched-back' regions where the luminance finally decreases (Fischer et al., Adv. Funct. Mater. 2014, 24, 3367). By using a multi-physics simulation the device characteristics can be modeled, resulting in a comprehensive understanding of the problem. Here, we present results for an OLED lighting panel considered for commercial application. It turns out that the strong electrothermal feedback in OLEDs prevents high luminance combined with a high degree of homogeneity unless new optimization strategies are considered.

  7. Advances in OLED/OPD-based spectrometer on-a-chip

    NASA Astrophysics Data System (ADS)

    Manna, Eeshita; Fungura, Fadzai; Shinar, Joseph; Shinar, Ruth

    2015-08-01

    We describe ongoing advances toward achieving an integrated all-organic spectrometer on a chip. To this end, 2-dimensional combinatorial arrays of microcavity (μc) organic light emitting diodes (OLEDs) with systematically varying optical cavity lengths were fabricated on a single chip by changing the thickness of different organic and/or spacer layers sandwiched between the two metal electrodes. The latter, one of which is semitransparent, form the cavity. The tunable and narrower emissions from the μcOLEDs serve as excitation sources of varying wavelength for monitoring light absorption or emission. For each wavelength, the light from the μcOLED is partially absorbed by the sample under study and the transmitted light (or the light emitted by an electronically excited sample) is detected by a photodetector (PD). To obtain a compact monitor, an organic PD (OPD) is fabricated and integrated with the μcOLED array. We show the potential of encompassing a broader wavelength range by using μcOLEDs based on different emitting layers. The OPD used to realize the first all-organic integrated spectrometer described here is based on P3HT:PCBM, though more sensitive OPDs we utilized in sensing applications are expected to improve the spectrometers' performance. The utility of this all-organic μcOLED/OPD spectrometer is shown for monitoring the absorption spectra of P3HT and Alexa Fluor 405 films. The results show excellent agreement with the absorption spectra obtained with a commercial Ocean Optics spectrometer.

  8. Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt.

    PubMed

    Rangarajan, A; Syal, R; Selvarajah, S; Chakrabarti, O; Sarin, A; Krishna, S

    2001-07-20

    Invasive cervical tumors, a major subset of human epithelial neoplasms, are characterized by the consistent presence of papillomavirus oncogenes 16 or 18 E6 and E7 products. Cervical tumors also consistently exhibit cytosolic and nuclear forms of Notch1, suggesting the possible persistent activation of the Notch pathway. Here we show that activated Notch1 synergizes with papillomavirus oncogenes in transformation of immortalized epithelial cells and leads to the generation of resistance to anoikis, an apoptotic response induced on matrix withdrawal. This resistance to anoikis by activated Notch1 is mediated through the activation of PKB/Akt, a key effector of activated Ras in transformation. We suggest that activated Notch signaling may serve to substitute for the lack of activated Ras mutations in the majority of human cervical neoplasms. PMID:11448155

  9. 2-Photon Characterization of Optical Proteolytic Beacons for Imaging Changes in Matrix-Metalloprotease Activity in a Mouse Model of Aneurysm

    PubMed Central

    Haskett, Darren G.; Maestas, David; Howerton, Stephen J.; Smith, Tyler; Ardila, D. Catalina; Doetschman, Tom; Utzinger, Urs; McGrath, Dominic; McIntyre, J. Oliver; Vande Geest, Jonathan P.

    2016-01-01

    Abdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM). Single and 2-photon spectra for proteolytic beacons were determined in vitro. Ex vivo experiments using the apolipoprotein E knockout angiotensin II-infused mouse model of aneurysm imaged ECM architecture simultaneously with the MMP-activated FRET beacons. 2-photon spectra of the two-color proteolytic beacons showed peaks for the individual fluorophores that enable imaging of MMP activity through proteolytic cleavage. Ex vivo imaging of the beacons within the ECM revealed both microstructure and MMP activity. 2-photon imaging of the beacons in aneurysmal tissue showed an increase in proteolytic cleavage within the ECM (p < 0.001), thus indicating an increase in MMP activity. Our data suggest that FRET-based proteolytic beacons show promise in assessing MMP activity within the ECM and will therefore allow future studies to identify the heterogeneous distribution of simultaneous ECM remodeling and protease activity in aneurysmal disease. PMID:26903264

  10. 2-Photon Characterization of Optical Proteolytic Beacons for Imaging Changes in Matrix-Metalloprotease Activity in a Mouse Model of Aneurysm.

    PubMed

    Haskett, Darren G; Maestas, David; Howerton, Stephen J; Smith, Tyler; Ardila, D Catalina; Doetschman, Tom; Utzinger, Urs; McGrath, Dominic; McIntyre, J Oliver; Vande Geest, Jonathan P

    2016-04-01

    Abdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM). Single and 2-photon spectra for proteolytic beacons were determined in vitro. Ex vivo experiments using the apolipoprotein E knockout angiotensin II-infused mouse model of aneurysm imaged ECM architecture simultaneously with the MMP-activated FRET beacons. 2-photon spectra of the two-color proteolytic beacons showed peaks for the individual fluorophores that enable imaging of MMP activity through proteolytic cleavage. Ex vivo imaging of the beacons within the ECM revealed both microstructure and MMP activity. 2-photon imaging of the beacons in aneurysmal tissue showed an increase in proteolytic cleavage within the ECM (p<0.001), thus indicating an increase in MMP activity. Our data suggest that FRET-based proteolytic beacons show promise in assessing MMP activity within the ECM and will therefore allow future studies to identify the heterogeneous distribution of simultaneous ECM remodeling and protease activity in aneurysmal disease. PMID:26903264

  11. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect

    Cai, Min

    2011-01-01

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  12. Color tunability in multilayer OLEDs based on DCM and DPVBi as emitting materials

    NASA Astrophysics Data System (ADS)

    Petrova, P. K.; Ivanov, P. I.; Tomova, R. L.

    2014-05-01

    We report studies on the color tunability of a novel type of multilayer organic light-emitting diodes (OLEDs) based on three emitting materials: DCM (4-(Dicyanomethylene)-2-methyl-6-[p-(dimethylamino)styryl]-4H-pyran) as a red emitter, DPVBi [4,4'-Bis(2,2-diphenylvinyl)-1,1'-biphenyl] as a blue emitter and zinc bis(2-(2-hydroxyphenyl) benzothiazole) (Zn(BTz)2) as a yellow emitter, and an electron transporting layer. We established that the positions and thicknesses of the different emitting layers determine the efficiencies, luminance and color of the light emitted by the OLEDs.

  13. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  14. Investigation of cross-linking characteristics of novel hole-transporting materials for solution-processed phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Lee, Jaemin; Ameen, Shahid; Lee, Changjin

    2016-04-01

    After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.

  15. Capillary-induced Homogenization of Matrix in Paper: A Powerful Approach for the Quantification of Active Pharmaceutical Ingredients Using Mass Spectrometry Imaging

    PubMed Central

    de Menezes, Maico; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-01-01

    Herein we present a novel approach for the quantification of active pharmaceutical ingredients (APIs) using mass spectrometry imaging. This strategy uses a filter paper previously “eluted” with a MALDI matrix solution as a support for analyte application. Samples are submitted to mass spectrometry imaging (MSI) and quantification through characteristic fingerprints is ultimately performed. Results for the content of rosuvastatin from a known formulation are comparable to those obtained with a validated HPLC method. PMID:27439589

  16. Capillary-induced Homogenization of Matrix in Paper: A Powerful Approach for the Quantification of Active Pharmaceutical Ingredients Using Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    de Menezes, Maico; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-07-01

    Herein we present a novel approach for the quantification of active pharmaceutical ingredients (APIs) using mass spectrometry imaging. This strategy uses a filter paper previously “eluted” with a MALDI matrix solution as a support for analyte application. Samples are submitted to mass spectrometry imaging (MSI) and quantification through characteristic fingerprints is ultimately performed. Results for the content of rosuvastatin from a known formulation are comparable to those obtained with a validated HPLC method.

  17. Capillary-induced Homogenization of Matrix in Paper: A Powerful Approach for the Quantification of Active Pharmaceutical Ingredients Using Mass Spectrometry Imaging.

    PubMed

    de Menezes, Maico; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-01-01

    Herein we present a novel approach for the quantification of active pharmaceutical ingredients (APIs) using mass spectrometry imaging. This strategy uses a filter paper previously "eluted" with a MALDI matrix solution as a support for analyte application. Samples are submitted to mass spectrometry imaging (MSI) and quantification through characteristic fingerprints is ultimately performed. Results for the content of rosuvastatin from a known formulation are comparable to those obtained with a validated HPLC method. PMID:27439589

  18. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  19. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  20. Metal-organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts.

    PubMed

    Li, Qing; Pan, Hengyu; Higgins, Drew; Cao, Ruiguo; Zhang, Guoqi; Lv, Haifeng; Wu, Kangbing; Cho, Jaephil; Wu, Gang

    2015-03-25

    In this work, large size (i.e., diameter > 100 nm) graphene tubes with nitrogen-doping are prepared through a high-temperature graphitization process of dicyandiamide (DCDA) and Iron(II) acetate templated by a novel metal-organic framework (MIL-100(Fe)). The nitrogen-doped graphene tube (N-GT)-rich iron-nitrogen-carbon (Fe-N-C) catalysts exhibit inherently high activity towards the oxygen reduction reaction (ORR) in more challenging acidic media. Furthermore, aiming to improve the activity and stability of conventional Pt catalysts, the ORR active N-GT is used as a matrix to disperse Pt nanoparticles in order to build a unique hybrid Pt cathode catalyst. This is the first demonstration of the integration of a highly active Fe-N-C catalyst with Pt nanoparticles. The synthesized 20% Pt/N-GT composite catalysts demonstrate significantly enhanced ORR activity and H(2) -air fuel cell performance relative to those of 20% Pt/C, which is mainly attributed to the intrinsically active N-GT matrix along with possible synergistic effects between the non-precious metal active sites and the Pt nanoparticles. Unlike traditional Pt/C, the hybrid catalysts exhibit excellent stability during the accelerated durability testing, likely due to the unique highly graphitized graphene tube morphologies, capable of providing strong interaction with Pt nanoparticles and then preventing their agglomeration. PMID:25400088

  1. Permanent polarization and charge distribution in organic light-emitting diodes (OLEDs): Insights from near-infrared charge-modulation spectroscopy of an operating OLED

    SciTech Connect

    Marchetti, Alfred P.; Haskins, Terri L.; Young, Ralph H.; Rothberg, Lewis J.

    2014-03-21

    Vapor-deposited Alq{sub 3} layers typically possess a strong permanent electrical polarization, whereas NPB layers do not. (Alq{sub 3} is tris(8-quinolinolato)aluminum(III); NPB is 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.) The cause is a net orientation of the Alq{sub 3} molecules with their large dipole moments. Here we report on consequences for an organic light-emitting diode (OLED) with an NPB hole-transport layer and Alq{sub 3} electron-transport layer. The discontinuous polarization at the NPB|Alq{sub 3} interface has the same effect as a sheet of immobile negative charge there. It is more than compensated by a large concentration of injected holes (NPB{sup +}) when the OLED is running. We discuss the implications and consequences for the quantum efficiency and the drive voltage of this OLED and others. We also speculate on possible consequences of permanent polarization in organic photovoltaic devices. The concentration of NPB{sup +} was measured by charge-modulation spectroscopy (CMS) in the near infrared, where the NPB{sup +} has a strong absorption band, supplemented by differential-capacitance and current-voltage measurements. Unlike CMS in the visible, this method avoids complications from modulation of the electroluminescence and electroabsorption.

  2. Immunoproteomic tools are used to identify masked allergens: Ole e 12, an allergenic isoflavone reductase from olive (Olea europaea) pollen.

    PubMed

    Castro, Lourdes; Crespo, Jesús F; Rodríguez, Julia; Rodríguez, Rosalía; Villalba, Mayte

    2015-12-01

    Proteins performing important biochemical activities in the olive tree (Olea europaea) pollen have been identified as allergens. One novel 37-kDa protein seems to be associated to the IgE-binding profile of a group of patients suffering allergy to peach and olive pollen. Three previously described olive pollen allergens exhibit very similar molecular mass. Our objective was to identify this allergen by using immunoproteomic approaches. After 2D-electrophoresis and mass spectrometry, peptide sequences from several IgE-binding spots, allowed identifying this new allergen, as well as cloning and DNA sequencing of the corresponding gene. The allergen, named Ole e 12, is a polymorphic isoflavone reductase-like protein of 308 amino acids showing 80% and 74% identity with birch and pear allergens, Bet v 6 and Pyr c 5, respectively. A prevalence of 33% in the selected population is in contrast to 4%-10% in groups of subjects suffering from pollinosis. Recombinant allergen was produced in Escherichia coli, and deeply characterised. Immunoblotting and ELISA detection as well as inhibition experiments were performed with polyclonal antisera and allergic patients' sera. The recombinant allergen retains the IgE reactivity of its natural counterpart. Close structural and immunological relationships between members of this protein family were supported by their IgG recognition in vegetable species. In summary, Ole e 12 is a minor olive pollen allergen, which gains relevance in patients allergic to peach with olive pollinosis. Proteomic approaches used to analyse this allergen provide useful tools to identify hidden allergens, relevant for several allergic populations and thus complete allergenic panels. PMID:26391288

  3. Luminescent properties of a di-hydrazone derived from the antituberculosis agent isoniazid: Potentiality as an emitting layer constituent for OLED fabrication

    NASA Astrophysics Data System (ADS)

    Moraes, Rafaela S.; Aderne, Rian E.; Cremona, Marco; Rey, Nicolás A.

    2016-02-01

    Hydrazones constitute a class of compounds presenting azomethine R‧R″Nsbnd Ndbnd CHsbnd R hydrogens, which show diverse properties and a wide range of applications. A hydrazone derived from the antituberculosis drug isoniazid, namely, N,N‧-diisonicotinoyl-2-hydroxy-5-methylisophthalaldehyde hydrazone (DMD) was synthesized and chemically characterized. Its luminescent properties were also investigated, as well as the possibility of using this compound as a constituent of the emitting layer for the fabrication of OLEDs. Co-deposited devices were fabricated using the organic molecule BSBF as matrix and DMD as dopant. All the devices presented a broad electroluminescence band, in which it was possible to recognize the DMD emission along with emissions of some of the other organic layers. The best results were obtained with 35% DMD doping, achieving a luminance of about 35 cd/m2.

  4. Catalytic strategy for carbon-carbon bond scission by the cytochrome P450 OleT.

    PubMed

    Grant, Job L; Mitchell, Megan E; Makris, Thomas Michael

    2016-09-01

    OleT is a cytochrome P450 that catalyzes the hydrogen peroxide-dependent metabolism of Cn chain-length fatty acids to synthesize Cn-1 1-alkenes. The decarboxylation reaction provides a route for the production of drop-in hydrocarbon fuels from a renewable and abundant natural resource. This transformation is highly unusual for a P450, which typically uses an Fe(4+)-oxo intermediate known as compound I for the insertion of oxygen into organic substrates. OleT, previously shown to form compound I, catalyzes a different reaction. A large substrate kinetic isotope effect (≥8) for OleT compound I decay confirms that, like monooxygenation, alkene formation is initiated by substrate C-H bond abstraction. Rather than finalizing the reaction through rapid oxygen rebound, alkene synthesis proceeds through the formation of a reaction cycle intermediate with kinetics, optical properties, and reactivity indicative of an Fe(4+)-OH species, compound II. The direct observation of this intermediate, normally fleeting in hydroxylases, provides a rationale for the carbon-carbon scission reaction catalyzed by OleT. PMID:27555591

  5. Viewing angle and imaging multispectral analysis of OLED display light emission

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2015-03-01

    OLED displays exhibit luminance fluctuations and color shifts that can be sensitive to human eye in particular conditions. Using viewing angle and imaging multispectral measurements we show that color shifts are generally related to the multilayered structure of each sub-pixel. Interference fringes result in angular variations while thickness variations result in surface non-uniformities.

  6. Rearrangement of cyclotriveratrylene (CTV) diketone: 9,10-diarylanthracenes with OLED applications.

    PubMed

    Sarsah, Samuel R S; Lutz, Marlon R; Zeller, Matthias; Crumrine, David S; Becker, Daniel P

    2013-03-01

    Electroluminescent 9,10-diaryl anthracenes have been shown to be promising host and hole-transporting materials in organic electroluminescence due to their high thermal stability, electrochemical reversibility, and wide band gap useful for organic light-emitting diodes (OLEDs), especially blue OLEDs. Oxidation of cyclotriveratrylene (CTV) to the corresponding diketone and subsequent bromination resulted in an unexpected rearrangement to a highly functionalized 9-aryl-10-bromoanthracene derivative, which was employed in Suzuki couplings to synthesize a series of 9,10-diaryl compounds that are structural analogues of anthracene derivatives used in the preparation of OLEDs but are more highly functionalized, including electron-donating methoxy groups in addition to substitution by a carboxylic acid moiety. The UV/fluorescence solution spectra show strong emissions at 446, 438, and 479 nm, respectively, for the anthracene 10-phenyl, 10-naphthyl, and 10-pyrenyl adducts containing a benzoic acid functional group, whereas the analogues bearing the hydroxymethylene moiety from reduction of the benzoic acid to the corresponding alcohols gave much shorter emission wavelengths of 408, 417, and 476 nm, respectively, and had somewhat higher quantum yields, suggesting they are better candidates for OLED applications. PMID:23190432

  7. To enhancement illuminance efficiency of OLED by thin film included microparticle

    NASA Astrophysics Data System (ADS)

    Chiu, Chuang-Hung; Chien, Chao-Heng; Lee, Jen-Chi; Chien, Wei-Cheng

    2015-09-01

    An optical thin film was provided to address light illuminance efficiency of OLED up to 80%. A polymer material was used as a film base material which could avoid the influence of total reflection angle. One kinds of oxidized metal micro-particles was chosen to dope inside the optical thin film and to increase scattering and refractive effect.

  8. Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix.

    PubMed

    Briggs, David C; Birchenough, Holly L; Ali, Tariq; Rugg, Marilyn S; Waltho, Jon P; Ievoli, Elena; Jowitt, Thomas A; Enghild, Jan J; Richter, Ralf P; Salustri, Antonietta; Milner, Caroline M; Day, Anthony J

    2015-11-27

    The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix. PMID:26468290

  9. Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix*

    PubMed Central

    Briggs, David C.; Birchenough, Holly L.; Ali, Tariq; Rugg, Marilyn S.; Waltho, Jon P.; Ievoli, Elena; Jowitt, Thomas A.; Enghild, Jan J.; Richter, Ralf P.; Salustri, Antonietta; Milner, Caroline M.; Day, Anthony J.

    2015-01-01

    The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix. PMID:26468290

  10. Matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro

    PubMed Central

    Lu, Shijin; Xiao, Xungang; Cheng, Minghua

    2015-01-01

    Interleukin (IL)-1β plays an important role in promoting osteoarthritis (OA) lesions by inducing chondrocytes to secrete matrix metalloproteinases (MMPs), which degrade the extracellular matrix and facilitate chondrocyte apoptosis. Matrine was shown to exert anti-inflammatory effects. However, the role of matrine in OA is still unclear. Therefore, in this study, we investigated the effects of matrine on the expression of MMPs in IL-1β-treated human chondrocytes and the underlying mechanism. The cell viability of chondrocytes was detected by MTT assay. The cell apoptosis of chondrocytes was measured by flow cytometric analysis. The protein production of MMPs was determined by ELISA. The protein expression of phosphorylation of mitogen-activated protein kinases (MAPKs) and the inhibitor of kappaB alpha (IκBα) was determined by Western blot. Matrine significantly inhibited the IL-1β-induced apoptosis in chondrocytes. It also significantly inhibited the IL-1β-induced release of MMP-3 and MMP-13, and increased the production of TIMP-1. Furthermore, matrine inhibits the phosphorylation of p-38, extracellular regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and IκBα degradation induced by IL-1β in chondrocytes. Taken together, our results show that matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro. Therefore,-matrine may be beneficial in the treatment of OA. PMID:26191166

  11. Activity concentration measurements of 137Cs, 90Sr and 40K in a wild food matrix reference material (Wild Berries) CCRI(II)-S8

    NASA Astrophysics Data System (ADS)

    Wätjen, U.; Altzitzogloa, T.; Ceccatelli, A.; Dikmen, H.; Ferreux, L.; Frechou, C.; García, L.; Gündogdu, G.; Kis-Benedek, G.; La Rosa, J.; Luca, A.; Moreno, Y.; Oropesa, P.; Pierre, S.; Schmiedel, M.; Spasova, Y.; Szücs, L.; Vasile, M.; Wershofen, H.; Yücel, Ü.

    2014-01-01

    In 2009, the CCRI approved a supplementary comparison to be organized by the IRMM as pilot laboratory for the activity concentrations of 137Cs, 90Sr and 40K in a matrix material of dried bilberries. The organization of this comparison and the material and measurement methods used are described. The supplementary comparison reference values (SCRV) for each of the three radionuclides are given together with the degrees of equivalence of each participating laboratory with the SCRV for the specific radionuclide. The results of this supplementary comparison allow the participating NMIs/designated institutes to declare calibration and measurement capabilities (CMCs) for the given radionuclides in a similar type of food matrix, an important aspect given the relatively few supplementary comparisons for activity in matrix materials organized so far. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect

    Silverman, Gary S.; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu, Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve; Hartmann, Sören; Jessen, Frank; Krogmann, Bianaca; Rickers, Christoph; Ruske, Manfred; Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a

  13. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    SciTech Connect

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  14. Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints

    PubMed Central

    Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Yoon, Tae Won; Hasty, Karen A.; Stuart, John M.; Yi, Ae-Kyung

    2016-01-01

    Detection and intervention at an early stage is a critical factor to impede arthritis progress. Here we present a non-invasive method to detect inflammatory changes in joints of arthritic mice. Inflammation was monitored by dual fluorescence optical imaging for near-infrared fluorescent (750F) matrix-metalloproteinase activatable agent and allophycocyanin-conjugated anti-mouse CD11b. Increased intensity of allophycocyanin (indication of macrophage accumulation) and 750F (indication of matrix-metalloproteinase activity) showed a biological relationship with the arthritis severity score and the histopathology score of arthritic joints. Our results demonstrate that this method can be used to detect early stages of arthritis with minimum intervention in small animal models. PMID:27231625

  15. OLED-based physiologically-friendly very low-color temperature illumination for night

    NASA Astrophysics Data System (ADS)

    Jou, Jwo-Huei; Shen, Shih-Ming; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Wang, Yi-Shan; Chen, Chien-Chih; Wang, Ching-Chun; Hsieh, Chun-Yu; Lin, Chin-Chiao; Chen, Chien-Tien

    2012-09-01

    Numerous medical research studies reveal intense white or blue light to drastically suppress at night the secretion of melatonin (MLT), a protective oncostatic hormone. Lighting devices with lower color-temperature (CT) possess lesser MLT suppression effect based on the same luminance, explaining why physicians have long been calling for the development of lighting sources with low CT or free from blue emission for use at night to safeguard human health. We will demonstrate in the presentation the fabrication of OLED devices with very-low CT, especially those with CT much lower than that of incandescent bulbs (2500K) or even candles (2000K). Without any light extraction method, OLEDs with an around 1800K CT are easily obtainable with an efficacy of 30 lm/W at 1,000 nits. To also ensure high color-rendering to provide visual comfort, low CT OLEDs composing long wavelength dominant 5-spectrum emission have been fabricated. While keeping the color-rendering index as high as 85 and CT as low as 2100K, the resulting efficacy can also be much greater than that of incandescent bulbs (15 lm/W), proving these low CT OLED devices to be also capable of being energy-saving and high quality. The color-temperature can be further decreased to 1700K or lower upon removing the undesired short wavelength emission but on the cost of losing some color rendering index. It is hoped that the devised energy-saving, high quality low CT OLED could properly echo the call for a physiologically-friendly illumination for night, and more attention could be drawn to the development of MLT suppression-less non-white light.

  16. Improved designs for p-i-n OLEDs towards the minimal power loss of devices

    NASA Astrophysics Data System (ADS)

    Qin, Dashan

    2014-05-01

    Currently, the low yield, high power loss, and poor stability of organic light emitting diodes (OLEDs) panels are remaining as the obstacles to the fast growth of the OLED industry, especially for the lighting application. The p-i-n OLEDs have been widely recognized as the promising method to circumvent these bottleneck factors, due to the unique merit of the electrical doping to enable low power loss. In p-i-n OLEDs, the frequently used n-doped electron transport layers (n-ETL1) such as n-BCP, n-Alq3 possess markedly lower conductivities but better capabilities of injecting electrons into ETL such as BCP, Alq3, as compared to another class of n-doped ETLs (n-ETL2), e.g., n-NTCDA, n-PTCDA, n-C60. Thus, in order to minimize the electron loss, we provide the structure of uniting two n-doped layers, cathode/ n-ETL2/ n-ETL1/ ETL. In p-i-n OLEDs, the hole current injected from the single p-doped hole transport layer (p-HTL) into the neat HTL must be limited, because the higher conductivity p-HTL has the higher lying highest occupied molecular orbital (HOMO) level, leading to a larger hole transport energy barrier (φB) at the interface with the neat HTL. Therefore, in order to minimize the hole loss, we suggest the structure of uniting two p-HTLs, anode/ p-HTL2/ p-HTL1/ HTL. The p-HTL2 possesses high-lying HOMO level and thereby high conductivity, decreasing the ohmic loss in the hole conduction; the p-HTL1 features a low-lying HOMO level, reducing the φB.

  17. Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2004-11-15

    During liver fibrogenesis, quiescent HSC (hepatic stellate cells) become active, a transformation that is associated with enhanced cell proliferation and overproduction of ECM (extracellular matrix). Inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSC for the prevention and treatment of liver fibrosis. Levels of PPARgamma (peroxisome proliferator-activated receptor gamma) are dramatically diminished in parallel with HSC activation. Stimulation of PPARgamma by its agonists inhibits HSC activation in vitro and in vivo. We demonstrated recently that curcumin, the yellow pigment in curry, inhibited HSC activation in vitro, reducing cell proliferation, inducing apoptosis and inhibiting ECM gene expression. Further studies indicated that curcumin induced the gene expression of PPARgamma and stimulated its activity in activated HSC in vitro, which was required for curcumin to inhibit HSC proliferation. The aims of the present study were to evaluate the roles of PPARgamma activation in the induction of apoptosis and suppression of ECM gene expression by curcumin in activated HSC, and to elucidate the underlying mechanisms. Our results demonstrated that blocking PPARgamma activation abrogated the effects of curcumin on the induction of apoptosis and inhibition of the expression of ECM genes in activated HSC in vitro. Further experiments demonstrated that curcumin suppressed the gene expression of TGF-beta (transforming growth factor-beta) receptors and interrupted the TGF-beta signalling pathway in activated HSC, which was mediated by PPARgamma activation. Taken together, our results demonstrate that curcumin stimulated PPARgamma activity in activated HSC in vitro, which was required for curcumin to reduce cell proliferation, induce apoptosis and suppress ECM gene expression. These results provide novel insight into the mechanisms responsible for the inhibition of HSC activation by curcumin. The characteristics

  18. Methane activation by laser-ablated Th atoms: matrix infrared spectra and theoretical investigations of CH₃-Th-H and CH₂═ThH₂.

    PubMed

    Cho, Han-Gook; Andrews, Lester

    2015-03-19

    Methane activation by laser-ablated Th atoms on the triplet potential energy surface produces the methylthorium hydride, CH3-Th-H, that converts smoothly by α-H transfer to CH2-ThH2, which relaxes in the matrix to the more stable singlet methylidene, CH2═ThH2. This first actinide methylidene was characterized from argon matrix infrared spectra and B3LYP calculations in our laboratory. We now report neon matrix investigations, which include the methylthorium hydride and the Th-D stretching modes of CD2═ThD2 that are blue-shifted in neon from under the intense CD4 precursor absorption, and reactions with CH2D2 that give rise to the CHD═ThHD modifications and their α-H and α-D transfer counterparts CD2═ThH2 and CH2═ThD2. New intrinsic reaction coordinate calculations show that this reaction proceeds smoothly on the triplet potential energy surface. PMID:25054638

  19. Modeling the Effect of Active Fiber Cooling on the Microstructure of Fiber-Reinforced Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Nguyen, Nguyen Q.; Peterson, Sean D.; Gupta, Nikhil; Rohatgi, Pradeep K.

    2009-08-01

    A modified pressure infiltration process was recently developed to synthesize carbon-fiber-reinforced aluminum matrix composites. In the modified process, the ends of carbon fibers are extended out of the crucible to induce selective cooling. The process is found to be effective in improving the quality of composites. The present work is focused on determining the effect of the induced conductive heat transfer on the composite system through numerical methods. Due to the axisymmetry of the system, a two-dimensional (2-D) model is studied that can be expanded into three dimensions. The variables in this transient analysis include the fiber radius, fiber length, and melt superheat temperature. The results show that the composite system can be tailored to have a temperature on the fiber surface that is lower than the melt, to promote nucleation on the fiber surface. It is also observed that there is a point of inflection in the temperature profile along the particle/melt interface at which there is no temperature gradient in the radial direction. The information about the inflection point can be used to control the diffusion of solute atoms in the system. The result can be used in determining the optimum fiber volume fraction in metal matrix composite (MMC) materials to obtain the desired microstructure.

  20. Application of matrix calculation 1: Design and adjustment of a tandem mass spectrometer for Collision-Activated Dissociation (CAD)

    NASA Astrophysics Data System (ADS)

    1982-02-01

    A matrix representation of the ion optics of the analyzing stage has been used in a computer model of a tandem mass spectrometer with simultaneous detection for CAD. The matrix algorithm of this model is discussed here as an elegant way of describing the ion optics in a first-order approximation. The accuracy of the calculations is illustrated by comparing calculated and measured adjustments of the instrument under normal experiment conditions. The ion-optical possibilities with respect to transmission, mass resolution influence of several ion optical parameters on the shape and position of the mass focal plane is discussed. The experimental values of mass range, mass resolution and ion transmission agree very well with the calculations. Moreover, the computer model appears to be a useful tool for giving clear insight into the operation of the rather complex ion optics of the instrument. The calculations have been further developed towards higher accuracy, making possible automatic focusing of the mass focal plane onto the detector.

  1. Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix.

    PubMed

    Dantas, Noelio O; Silva, Alessandra S; Freitas Neto, Ernesto S; Lourenço, Sidney A

    2012-03-14

    Zn(1-x)Mn(x)Te nanocrystals (NCs), at various concentrations x, were successfully grown in a host glass matrix by the fusion method after appropriate annealing. Growth of these NCs was evidenced by optical absorption (OA), X-Ray Diffraction (XRD), magnetic force microscopy (MFM) and photoluminescence (PL) measurements. From the room temperature OA spectra, it was possible to observe the formation of two well defined, different sized groups of NCs, one attributed to quantum dots (QDs) and the other to bulk-like nanocrystals (NCs). XRD results have confirmed that the cubic zincblend structure of nanoparticles is not altered by the substitutional incorporation of Mn(2+) ions into the ZnTe NCs. MFM images supported the OA spectra results and thus provided additional confirmation of the formation of Zn(1-x)Mn(x)Te magnetic nanoparticles in the host glass matrix. The two groups of NCs were also observed in the PL spectra as well as deep defects attributed to the presence of oxygen centers in the electronic structure of the Zn(1-x)Mn(x)Te NCs. Strong agreement between the fitting model, based on rate equation, and experimental PL intensity data at different temperatures demonstrates that this model adequately describes the energy transfer processes between the NCs and the defects of the Zn(1-x)Mn(x)Te system at different temperatures. PMID:22307452

  2. Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba.

    PubMed

    Pabel, Christian T; Vater, Joachim; Wilde, Christopher; Franke, Peter; Hofemeister, Jürgen; Adler, Barbara; Bringmann, Gerhard; Hacker, Jörg; Hentschel, Ute

    2003-01-01

    The aim of this study was to isolate bacteria that are resistant to the strong antimicrobial metabolites characteristic of Aplysina aerophoba. For this purpose, bacterial isolation was performed on agar plates to which sponge tissue extract had been added. Following screening for antifungal and antimicrobial activities, 5 strains were chosen for more detailed analyses. 16S ribosomal DNA sequencing revealed that all isolates belonged to the genus Bacillus, specifically B. subtilis and B. pumilus. Using a combination of matrix-assisted laser desorption/ ionization mass spectrometry typing of whole cells and antimicrobial bioassays against selected reference strains, the bioactive metabolites were identified as lipopeptides. PMID:14730425

  3. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment

    PubMed Central

    Jeong, Su-Yeong; Lee, Ji-Hyun; Shin, Yoojin; Chung, Seok; Kuh, Hyo-Jeong

    2016-01-01

    Multicellular 3D culture and interaction with stromal components are considered essential elements in establishing a ‘more clinically relevant’ tumor model. Matrix-embedded 3D cultures using a microfluidic chip platform can recapitulate the microscale interaction within tumor microenvironments. As a major component of tumor microenvironment, cancer-associated fibroblasts (CAFs) play a role in cancer progression and drug resistance. Here, we present a microfluidic chip-based tumor tissue culture model that integrates 3D tumor spheroids (TSs) with CAF in proximity within a hydrogel scaffold. HT-29 human colorectal carcinoma cells grew into 3D TSs and the growth was stimulated when co-cultured with fibroblasts as shown by 1.5-folds increase of % changes in diameter over 5 days. TS cultured for 6 days showed a reduced expression of Ki-67 along with increased expression of fibronectin when co-cultured with fibroblasts compared to mono-cultured TSs. Fibroblasts were activated under co-culture conditions, as demonstrated by increases in α-SMA expression and migratory activity. When exposed to paclitaxel, a survival advantage was observed in TSs co-cultured with activated fibroblasts. Overall, we demonstrated the reciprocal interaction between TSs and fibroblasts in our 7-channel microfluidic chip. The co-culture of 3D TS-CAF in a collagen matrix-incorporated microfluidic chip may be useful to study the tumor microenvironment and for evaluation of drug screening and evaluation. PMID:27391808

  4. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    PubMed Central

    Cheng, Xiaofei; Ni, Bin; Zhang, Feng; Hu, Ying

    2016-01-01

    Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs) and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM). Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM) were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS) production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9), matrix metalloproteinase 3 (MMP-3), and tissue inhibitor of metalloproteinase 1 (TIMP-1), was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  5. Cumulative influence of elastin peptides and plasminogen on matrix metalloproteinase activation and type I collagen invasion by HT-1080 fibrosarcoma cells.

    PubMed

    Huet, Eric; Brassart, Bertrand; Cauchard, Jean-Hubert; Debelle, Laurent; Birembaut, Philippe; Wallach, Jean; Emonard, Herve; Polette, Myriam; Hornebeck, William

    2002-01-01

    HT-1080 fibrosarcoma cells express at their plasma membrane the elastin-binding protein (EBP). Occupancy of EBP by elastin fragments, tropoelastin or XGVAPG peptides was found to trigger procollagenase-1 (proMMP-1) overproduction by HT-1080 cells at the protein and enzyme levels. RT-PCR analysis indicated that elastin peptides did not modify the MMP-1 mRNA steady state levels, suggesting the involvement of a post-transcriptional mechanism. We previously reported that binding of elastin peptides to EBP induced other matrix metalloproteinases (MMP-2 and MT1-MMP) expression. Since those peptides were here found to also accelerate the secretion of urokinase from HT-1080 cells, culture medium was supplemented with plasminogen together with elastin peptides at aims to induce or potentiate MMPs activation cascades. In such conditions, plasmin activity was generated and exacerbate proMMP-1 and proMMP-2 activation. As a consequence, elastin peptides and plasminogen-treated HT-1080 cells displayed a significant type I collagen matrix invasive capacity. PMID:11964074

  6. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment.

    PubMed

    Jeong, Su-Yeong; Lee, Ji-Hyun; Shin, Yoojin; Chung, Seok; Kuh, Hyo-Jeong

    2016-01-01

    Multicellular 3D culture and interaction with stromal components are considered essential elements in establishing a 'more clinically relevant' tumor model. Matrix-embedded 3D cultures using a microfluidic chip platform can recapitulate the microscale interaction within tumor microenvironments. As a major component of tumor microenvironment, cancer-associated fibroblasts (CAFs) play a role in cancer progression and drug resistance. Here, we present a microfluidic chip-based tumor tissue culture model that integrates 3D tumor spheroids (TSs) with CAF in proximity within a hydrogel scaffold. HT-29 human colorectal carcinoma cells grew into 3D TSs and the growth was stimulated when co-cultured with fibroblasts as shown by 1.5-folds increase of % changes in diameter over 5 days. TS cultured for 6 days showed a reduced expression of Ki-67 along with increased expression of fibronectin when co-cultured with fibroblasts compared to mono-cultured TSs. Fibroblasts were activated under co-culture conditions, as demonstrated by increases in α-SMA expression and migratory activity. When exposed to paclitaxel, a survival advantage was observed in TSs co-cultured with activated fibroblasts. Overall, we demonstrated the reciprocal interaction between TSs and fibroblasts in our 7-channel microfluidic chip. The co-culture of 3D TS-CAF in a collagen matrix-incorporated microfluidic chip may be useful to study the tumor microenvironment and for evaluation of drug screening and evaluation. PMID:27391808

  7. Anti-elastase, anti-tyrosinase and matrix metalloproteinase-1 inhibitory activity of earthworm extracts as potential new anti-aging agent

    PubMed Central

    Azmi, Nurhazirah; Hashim, Puziah; Hashim, Dzulkifly M; Halimoon, Normala; Majid, Nik Muhamad Nik

    2014-01-01

    Objective To examine whether earthworms of Eisenia fetida, Lumbricus rubellus and Eudrilus eugeniae extracts have elastase, tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory activity. Methods The earthworms extract was screened for elastase, tyrosinase and MMP-1 inhibitory activity and compared with the positive controls. It was also evaluated for whitening and anti-wrinkle capacity. Results The extract showed significantly (P<0.05) good elastase and tyrosinase inhibition and excellent MMP-1 inhibition compared to N-Isobutyl-N-(4-methoxyphenylsulfonyl)-glycylhydroxamic acid. Conclusions Earthworms extract showed effective inhibition of tyrosinase, elastase and MMP-1 activities. Therefore, this experiment further rationalizes the traditional use of this worm extracts which may be useful as an anti-wrinkle agent. PMID:25183109

  8. Solution-Processable Transparent Conductive Hole Injection Electrode for OLED SSL

    SciTech Connect

    Pschenitzka, Florian; Mathai, Mathew; Torke, Terri

    2012-07-15

    An interconnected network of silver nanowires has been used as transparent anode in OLED devices. This layer was deposited by spin-coating and slot-die coating from an aqueous nanowire suspension. The sheet resistance of the film was 10ohms/sq with a transmission (including the glass substrate) of higher than 85%. The first phase of the project focused on the implementation of this nanowire layer with a hole-injection-layer (HIL) which has been developed at Plextronics and has been shown to provide good stability and efficiency in conventional OLED devices. We modified the HIL solution such that it coated reasonably well with suitable surface morphology so that actual devices can be manufactured. During the second phase we investigated the hole-injection and stability of hole-onlydevices. We determined that the use of the nanowire network as anode does not introduce an additional degradation mechanism since the observed device characteristics did not differ from those made with ITO anode. We then proceeded to make actual OLED devices with this nanowire / HIL stack and achieved device characteristics similar state-of-the-art OLED devices with a single junction. In order to gain traction with potential OLED manufacturers, we decided to contract Novaled to prepare large-area demonstrators for us. For these devices, we used an allevaporated stack, i.e. we did use Novaled's HIL material instead of Plextronics. We successfully fabricated demonstrators with an area of 25cm2 with a double or triple junction stack. Minor stack optimizations were necessary to achieve efficacies and lifetime equivalent with ITO devices made with the same devices stack. Due to the reduced microcavity effect, the color of the emitted light is significantly more stable with respect to the viewing angle compared to ITO devices. This fact in conjunction with the promise of lower production cost due to the elimination of the ITO sputtering process and the direct patterning of the anode layer are

  9. Matrix Metalloproteinase-3 (MMP-3) Is an Endogenous Activator of the MMP-9 Secreted by Placental Leukocytes: Implication in Human Labor

    PubMed Central

    Flores-Pliego, Arturo; Espejel-Nuñez, Aurora; Castillo-Castrejon, Marisol; Meraz-Cruz, Noemi; Beltran-Montoya, Jorge; Zaga-Clavellina, Veronica; Nava-Salazar, Sonia; Sanchez-Martinez, Maribel; Vadillo-Ortega, Felipe; Estrada-Gutierrez, Guadalupe

    2015-01-01

    Background The activity of matrix degrading enzymes plays a leading role in the rupture of the fetal membranes under normal and pathological human labor, and matrix metalloproteinase-9 (MMP-9) it is considered a biomarker of this event. To gain further insight into local MMP-9 origin and activation, in this study we analyzed the contribution of human placental leukocytes to MMP-9 secretion and explored the local mechanisms of the pro-enzyme activation. Methods Placental blood leukocytes were obtained from women at term gestation without labor and maintained in culture up to 72 h. MMP-9 activity in the culture supernatants was determined by zymography and using a specific substrate. The presence of a potential pro-MMP-9 activator in the culture supernatants was monitored using a recombinant biotin-labeled human pro-MMP-9. To characterize the endogenous pro-MMP-9 activator, MMP-1, -3, -7 and -9 were measured by multiplex assay in the supernatants, and an inhibition assay of MMP-9 activation was performed using an anti-human MMP-3 and a specific MMP-3 inhibitor. Finally, production of MMP-9 and MMP-3 in placental leukocytes obtained from term pregnancies with and without labor was assessed by immunofluorescence. Results Placental leukocytes spontaneously secreted pro-MMP-9 after 24 h of culture, increasing significantly at 48 h (P≤0.05), when the active form of MMP-9 was detected. Culture supernatants activated the recombinant pro-MMP-9 showing that placental leukocytes secrete the activator. A significant increase in MMP-3 secretion by placental leukocytes was observed since 48 h in culture (P≤0.05) and up to 72 h (P≤0.001), when concentration reached its maximum value. Specific activity of MMP-9 decreased significantly (P≤0.005) when an anti-MMP-3 antibody or a specific MMP-3 inhibitor were added to the culture media. Placental leukocytes from term labor produced more MMP-9 and MMP-3 compared to term non-labor cells. Conclusions In this work we confirm that

  10. Sky-Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer.

    PubMed

    Shin, Hyun; Lee, Jeong-Hwan; Moon, Chang-Ki; Huh, Jin-Suk; Sim, Bomi; Kim, Jang-Joo

    2016-06-01

    Blue-phosphorescent organic light-emitting diodes (OLEDs) with 34.1% external quantum efficiency (EQE) and 79.6 lm W(-1) are demonstrated using a hole-transporting layer and electron-transporting layer with low refractive index values. Using optical simulations, it is predicted that outcoupling efficiencies with EQEs > 60% can be achieved if organic layers with a refractive index of 1.5 are used for OLEDs. PMID:27060851

  11. OLED and OPD-based mini-spectrometer integrated on a single-mode planar waveguide chip

    NASA Astrophysics Data System (ADS)

    Ramuz, M.; Leuenberger, D.; Pfeiffer, R.; Bürgi, L.; Winnewisser, C.

    2009-04-01

    Evanescent coupling is used to couple light from an organic Lambertian emitter into a single mode planar waveguide. Either an organic light emitting diode (OLED) directly excites the waveguide mode or an OLED pumps a photoluminescent (PL) material layer located directly on the waveguide. At the out-coupling grating the guided light is diffracted onto an array of organic photodiodes acting as a spectrometer. A spectral resolution of down to 16nm could be achieved with integrated optoelectronic system.

  12. Stromal Cell-Derived Factor-1α Activation of Tissue Engineered Endothelial Progenitor Cell Matrix Enhances Ventricular Function after Myocardial Infarction by Inducing Neovasculogenesis

    PubMed Central

    Frederick, John R.; Fitzpatrick, J. Raymond; McCormick, Ryan C.; Harris, David A.; Kim, Ah-Young; Muenzer, Jeffrey R.; Marotta, Nicole; Smith, Maximilian J.; Cohen, Jeffrey E.; Hiesinger, William; Atluri, Pavan; Woo, Y. Joseph

    2014-01-01

    Background Myocardial ischemia causes cardiomyocyte death, adverse ventricular remodeling, and ventricular dysfunction. Endothelial progenitor cells (EPC) have been shown to ameliorate this process, particularly when activated with stromal cell-derived factor-1α (SDF). We hypothesized that implantation of a tissue engineered extracellular matrix scaffold seeded with EPCs primed with SDF could induce neovasculogenesis, prevent adverse remodeling, and preserve ventricular function after myocardial infarction (MI). Methods and Results Lewis rats (n=82) underwent left anterior descending artery ligation to induce MI. EPCs were cultured on a vitronectin/collagen scaffold, and primed with SDF to generate the activated EPC matrix (EPCM). EPCM was sutured to the anterolateral left ventricular (LV) wall including the region of ischemia.. At four weeks, when compared to controls, borderzone myocardial tissue demonstrated increased levels of VEGF in the EPCM group. Vessel density as assessed by immunohistochemical microscopy was significantly increased in the EPCM group (4.1 vs 6.2 vessels/high-powered field, p<0.001), and microvascular perfusion measured by lectin microangiography was enhanced four-fold (0.7 vs. 2.7% vessel volume/section volume, p=0.04). Ventricular geometry and scar fraction assessed by analysis of sectioned hearts exhibited significantly preserved LV internal diameter (9.7mm vs. 8.6mm, p=0.005) and decreased infarct scar expressed as percent of total section area (16% vs. 7%, p=0.002) when compared to all other groups. In addition, EPCM animals showed a significant preservation of function as measured by echocardiography, pressure volume-conductance, and Doppler flow. Conclusions Extracellular matrix seeded with EPCs primed with SDF induces borderzone neovasculogenesis, attenuates adverse ventricular remodeling, and preserves ventricular function after MI. PMID:20837901

  13. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Panpan; Zhang, Ming; Ai, Changzhi; Wu, Zhixin; Lu, Shuang; Zhang, Xintong; Huang, Niu; Sun, Yihua; Sun, Xiaohua

    2016-07-01

    Considering the undesirable electrocatalytic activity toward I-/I3- redox system of prinstine antimony sulfide (Sb2S3) fabricated with the existing conditions, a mesoporous carbon nanoparticle film (CNP) is introduced here for in-situ growth of Sb2S3 to construct a Sb2S3@CNP hybrid catalyst. Based on a Sb-thiourea precursor solution, in-situ growth of Sb2S3 can be achieved via solution deposition (denoted as Sb2S3@CNP-S) as well as atmospheric pressure thermal evaporation (denoted as Sb2S3@CNP-T) in CNP matrix. Structural characterizations indicate that Sb2S3 particles have well dispersed in the pores of CNP matrix. Because of the introduction of porous and conductive CNP matrix to support Sb2S3, the hybrid catalyst exhibits lower charge transfer resistance at the catalyst/electrolyte interface and higher electrocatalytic activity. When used as counter electrode (CE) for dye-sensitized solar cells (DSSCs), devices using Sb2S3@CNP hybrid catalyst as CE produce fill factor of 67.6% and 66.3%, which is significantly higher than that using pristine Sb2S3 fabricated in our previous work (52.8%). Finally, the corresponding power conversion efficiencies reach 6.69% (Sb2S3@CNP-S) and 6.24% (Sb2S3@CNP-T), respectively, which are comparable to that using Pt CE measured under the same conditions (6.74%).

  14. The HIV Matrix Protein p17 Promotes the Activation of Human Hepatic Stellate Cells through Interactions with CXCR2 and Syndecan-2

    PubMed Central

    Renga, Barbara; Francisci, Daniela; Schiaroli, Elisabetta; Carino, Adriana; Cipriani, Sabrina; D'Amore, Claudio; Sidoni, Angelo; Sordo, Rachele Del; Ferri, Ivana; Lucattelli, Monica; Lunghi, Benedetta; Baldelli, Franco; Fiorucci, Stefano

    2014-01-01

    Background The human immunodeficiency virus type 1 (HIV-1) p17 is a matrix protein involved in virus life's cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs), a key cell type involved in matrix deposition in liver fibrotic disorders. Aim In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes. Methods LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors. Results Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2. Conclusions The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs. PMID:24736615

  15. C-Cl activation by group IV metal oxides in solid argon matrixes: matrix isolation infrared spectroscopy and theoretical investigations of the reactions of MOx (M = Ti, Zr; x = 1, 2) with CH3Cl.

    PubMed

    Zhao, Yanying

    2013-07-11

    Reactions of the ground-state titanium and zirconium monoxide and dioxide molecules with monochloromethane in excess argon matrixes have been investigated in solid argon by infrared absorption spectroscopy and density functional theoretical calculations. The results show that the ground-state MOx (M = Ti, Zr; x = 1, 2) molecules react with CH3Cl to first form the weakly bound MO(CH3Cl) and MO2(CH3Cl) complexes. The MO(CH3Cl) complexes can rearrange to the CH3M(O)Cl isomers with the Cl atom of CH3Cl coordination to the metal center of MO upon UV light irradiation (λ < 300 nm). Theoretical calculations indicate that the electronic state crossings exist from the MO + CH3Cl reaction to the more stable CH3M(O)Cl molecules via the MO(CH3Cl) complexes traversing their corresponding transition states. The MO2(CH3Cl) complexes can isomerize to the more stable CH3OM(O)Cl molecules with the addition of the C-Cl bond of CH3Cl to one of the O═M bonds of MO2 upon annealing after broad-band light irradiation. The C-Cl activation by the MOx mechanism was interpreted by the calculated potential energy profiles. PMID:23763350

  16. Near-to-eye displays with embedded eye-tracking by bi-directional OLED microdisplay

    NASA Astrophysics Data System (ADS)

    Vogel, Uwe; Wartenberg, Philipp; Richter, Bernd; Brenner, Stephan; Baumgarten, Judith; Thomschke, Michael; Fehse, Karsten; Hild, Olaf

    2015-09-01

    Near-to-eye (NTE) projection is the major approach to "Smart Glasses", which have gained lot of traction during the last few years. Micro-displays based on organic light-emitting diodes (OLEDs) achieve high optical performance with excellent contrast ratio and large dynamic range at low power consumption, making them suitable for such application. In state-of-the-art applications the micro-display typically acts as a purely unidirectional output device. With the integration of an additional image sensor, the functionality of the micro-display can be extended to a bidirectional optical input/output device, aiming for implementation of eye-tracking capabilities in see-through (ST-)NTE applications to achieve gaze-based human-display-interaction. This paper describes a new bi-directional OLED microdisplay featuring SVGA resolution for both image display and acquisition, and its implementation with see-through NTE optics.

  17. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film.

    PubMed

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs. PMID:26631223

  18. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film

    NASA Astrophysics Data System (ADS)

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.

  19. Solution-Procesed Small-Molecule OLED Luminaire for Interior Illumination

    SciTech Connect

    Parker, Ian

    2012-02-29

    Prototype lighting panels and luminaires were fabricated using DuPont Displays solution-processed small-molecule OLED technology. These lighting panels were based on a spatially-patterned, 3-color design, similar in concept to an OLED display panel, with materials chosen to maximize device efficacy. The majority of the processing steps take place in air (rather than high vacuum). Optimization of device architecture, processing and construction was undertaken, with a final prototype design of 50 cm{sup 2} being fabricated and tested. Performance of these panels reached 35 lm/W at illuminant-A. A unique feature of this technology is the ability to color tune the emission, and color temperatures ranging from 2700 to > 6,500K were attained in the final build. Significant attention was paid to low-cost fabrication techniques.

  20. High-throughput quantum chemistry and virtual screening for OLED material components

    NASA Astrophysics Data System (ADS)

    Halls, Mathew D.; Giesen, David J.; Hughes, Thomas F.; Goldberg, Alexander; Cao, Yixiang

    2013-09-01

    Computational structure enumeration, analysis using an automated simulation workflow and filtering of large chemical structure libraries to identify lead systems, has become a central paradigm in drug discovery research. Transferring this paradigm to challenges in materials science is now possible due to advances in the speed of computational resources and the efficiency and stability of chemical simulation packages. State-of-the-art software tools that have been developed for drug discovery can be applied to efficiently explore the chemical design space to identify solutions for problems such as organic light-emitting diode material components. In this work, virtual screening for OLED materials based on intrinsic quantum mechanical properties is illustrated. Also, a new approach to more reliably identify candidate systems is introduced that is based on the chemical reaction energetics of defect pathways for OLED materials.

  1. Light-Induced Solubility Modulation of Polyfluorene To Enhance the Performance of OLEDs.

    PubMed

    Schelkle, Korwin M; Bender, Markus; Jeltsch, Krischan; Buckup, Tiago; Müllen, Klaus; Hamburger, Manuel; Bunz, Uwe H F

    2015-11-23

    Liquid-phase processing is a key prerequisite for the cost-efficient fabrication of organic electronic devices. We report an approach for light-induced modulation of the solubility of π-conjugated polymers (polyfluorene) with side chains functionalized with hydroxycinnamic acid. Irradiation with light cleaves the solubilizing side chains and renders the thin films of the polyfluorene insoluble. In a proof of concept device, polyfluorenes were applied as emissive layers in OLEDs. Photoirradiation of the emission layer leads to an increase in OLED performance combined with a modulation of the solubility of the thin film. These results offer the possibility for further development in terms of manipulating the solubility and emissive parameters of an important class of functional materials. PMID:26463263

  2. Stacked white OLED having separate red, green and blue sub-elements

    DOEpatents

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2014-07-01

    The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

  3. Organic vertical field effect transistors: Achieving high on-off ratio and vertical integration with OLEDs (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kwon, Hyukyun; Kim, Mincheol; Cho, Hyunsu; Yoo, Seunghyup

    2015-10-01

    Organic vertical field effect transistors (VFETs) have been explored to enhance the output current level and device operation speed due to the inherent low carrier mobility of organic semiconductors. However, most of VFETs reported to date involve a complex source electrode patterning process owing to their operation mechanism. Here, we investigate on VFETs based on C60 that do not require complex source electrode patterning process by insulting the top surface of a source electrode embedded in C60 layer [1]. In a VFET structure studied in this work, current flow is controlled by the electric field between a gate and a source electrode embedded within an active layer which is called bottom active layer. Based on its operation mechanism, several geometrical parameters such as (i) bottom active layer thickness; (ii) presence of a charge blocking layer and its thickness ensuring insulating properties; and (iii) the width of electrodes are identified as key factors influencing device performance. Through the device optimization with these parameters, the proposed organic VFETs exhibit a large on/off ratio of 6×10^5 and output current that is greater than that of a conventional C60 based OTFT with a similar device dimension. In order to show the benefit of VFETs, a single-pixel organic light-emitting diode (OLED) is integrated vertically with the VFETs under study.

  4. Abnormal activation of calpain and protein kinase Cα promotes a constitutive release of matrix metalloproteinase 9 in peripheral blood mononuclear cells from cystic fibrosis patients.

    PubMed

    Averna, Monica; Bavestrello, Margherita; Cresta, Federico; Pedrazzi, Marco; De Tullio, Roberta; Minicucci, Laura; Sparatore, Bianca; Salamino, Franca; Pontremoli, Sandro; Melloni, Edon

    2016-08-15

    Matrix metalloproteinase 9 (MMP9) is physiologically involved in remodeling the extracellular matrix components but its abnormal release has been observed in several human pathologies. We here report that peripheral blood mononuclear cells (PBMCs), isolated from cystic fibrosis (CF) patients homozygous for F508del-cystic fibrosis transmembrane conductance regulator (CFTR), express constitutively and release at high rate MMP9 due to the alteration in their intracellular Ca(2+) homeostasis. This spontaneous and sustained MMP9 secretion may contribute to the accumulation of this protease in fluids of CF patients. Conversely, in PBMCs isolated from healthy donors, expression and secretion of MMP9 are undetectable but can be evoked, after 12 h of culture, by paracrine stimulation which also promotes an increase in [Ca(2+)]i. We also demonstrate that in both CF and control PBMCs the Ca(2+)-dependent MMP9 secretion is mediated by the concomitant activation of calpain and protein kinase Cα (PKCα), and that MMP9 expression involves extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. Our results are supported by the fact that either the inhibition of Ca(2+) entry or chelation of [Ca(2+)]i as well as the inhibition of single components of the signaling pathway or the restoration of CFTR activity all promote the reduction of MMP9 secretion. PMID:27349634

  5. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  6. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  7. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    SciTech Connect

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P. . E-mail: fpchou@csmu.edu.tw

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.

  8. Fabrication of a three-dimensional nanoporous polymer film as a diffuser for microcavity OLEDs

    NASA Astrophysics Data System (ADS)

    Pyo, Beom; Cho, Ye Ram; Suh, Min Chul

    2015-09-01

    We used a nanoporous polymer film prepared by cellulose acetate butyrate with ~40% of optical haze value as a diffuser. It was fabricated by a simple spin-coating process during continuous water mist supply by a humidifier. The pores were created by the elastic bouncing mechanism (rather than the thermocapillary convection mechanism) of the supplied water droplets. The shapes and sizes of the caves formed near the polymer surface are randomly distributed, with a relatively narrow pore size distribution (300-500 nm). Specifically, we focused on controlling the surface morphology to give a three-dimensional (3D) multi-stacked nanocave structure because we had already learnt that two-dimensional nanoporous structures showed serious loss of luminance in the forward direction. Using this approach, we found that the 3D nanoporous polymer film can effectively reduce the viewing angle dependency of strong microcavity OLEDs without any considerable decrease in the total intensity of the out-coupled light. We applied this nanoporous polymer film to microcavity OLEDs to investigate the possibility of using it as a diffuser layer. The resulting nanoporous polymer film effectively reduced the viewing angle dependency of the microcavity OLEDs, although a pixel blurring phenomenon occurred. Despite its negative effects, such as the drop in efficiency in the forward direction and the pixel blurring, the introduction of a nanoporous polymer film as a scattering medium on the back side of the glass substrate eliminated the viewing angle dependency. Thus, this approach is a promising method to overcome the serious drawbacks of microcavity OLEDs.

  9. Simple Bipolar Host Materials for High-Efficiency Blue, Green, and White Phosphorescence OLEDs.

    PubMed

    Li, Wei; Li, Jiuyan; Liu, Di; Jin, Qian

    2016-08-31

    3-(1H-Pyrazol-1-yl)pyridine is used as electron-transporting unit to construct bipolar host materials o-CzPyPz, m-CzPyPz, and p-CzPyPz for application in phosphorescent organic light-emitting diodes (PhOLEDs). By varying the ortho-, meta-, or para-linking mode between the n-type 3-(1H-pyrazol-1-yl)pyridine and the p-type carbazole on phenylene bridge, the optoelectronic parameters are tuned to large extent. The highly twisted o-CzPyPz has high triplet energy of 2.95 eV, while the isomer p-CzPyPz with more coplanar conformation has smaller triplet energy of 2.67 eV. The m-CzPyPz-hosted blue PhOLED exhibits a peak current efficiency of 49.1 cd A(-1) (corresponding to an external quantum efficiency of 24.5%) and low-efficiency roll-off, while the p-CzPyPz-hosted green PhOLEDs turns on at 2.8 V and exhibits high efficiencies of 91.8 cd A(-1) (96.1 lm W(-1) and 27.3%). Furthermore, two-emitting-layer white OLEDs are fabricated with m-CzPyPz or p-CzPyPz as common hosts for both blue and orange phosphors, which realize high efficiencies of 57.8 cd A(-1) (45.4 lm W(-1) and 23.6%) and 60.7 cd A(-1) (38.1 lm W(-1) and 23.1%). The optimization of host structure for good matching of host and dopant and finally for the ideal performance is discussed. PMID:27517473

  10. Multi-layer printing of OLEDs as a tool for the creation of security features.

    PubMed

    Fischer, Bert; Kreissl, Stefanie; Boeffel, Christine; Wedel, Armin

    2012-03-12

    The combined deposition of structured and homogenous layers for the device setup of OLEDs results in a structured display visible with a gray scale impression. These permanently imprinted structures are only visible during the application of an electrical field and almost invisible in the off state. Most intriguing applications of such devices are security marks, electronic watermarks but also for advertising and design applications the creation of gray scale structures might have interesting applications. PMID:22418671

  11. Roll-To-Roll Process for Transparent Metal Electrodes in OLED Manufacturing

    SciTech Connect

    Slafer, W. Dennis

    2010-06-02

    This program will develop and demonstrate a new manufacturing technology that can help to improve the efficiency and reduce the cost of producing the next generation solid-state lighting (OLEDs)for a broad range of commercial applications. This will not only improve US competitiveness in the manufacturing sector but will also result in a positive impact in meeting the Department of Energy’s goal of developing high efficiency lighting while reducing the environmental impact.

  12. The use of a diode matrix in commissioning activities for electron energies {>=}9 MeV: A feasibility study

    SciTech Connect

    Casanova Borca, Valeria; Pasquino, Massimo; Ozzello, Franca; Tofani, Santi

    2009-04-15

    The contribution of a commercially available diode matrix (MapCHECK trade mark sign , provided by Sun Nuclear, Melbourne, FL) for the commissioning procedures of the voxel based Monte Carlo (VMC++) algorithm for electron beams of MasterPlan treatment planning system was investigated. The attention is mainly focused on the calculation in homogeneous and heterogeneous phantoms. With this aim, following a data set similar to that proposed by Electron Collaborative Working Group (ECWG), the dose profiles and two-dimensional (2D) dose distributions measured by the diode matrix were compared with the calculated ones using the gamma analysis method with acceptance criteria for the dose difference and the distance to agreement equal to 4% and 4 mm, respectively. The average and standard deviation of the percentage of points satisfying the constraint {gamma}{<=}1 are 98.3{+-}4.1% and 99.3{+-}1.7% for the 9 and 12 MeV electron beam, respectively, showing that the accuracy of MasterPlan electron beam algorithm is good for simple two-dimensional geometries as well as for more complicated three-dimensional ones. The results are in agreement with those reported in literature by Cygler et al. [''Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning,'' Med. Phys. 31, 142-153 (2004)]. In addition, the authors have also analyzed the response of the 2D array in terms of dose profiles at different depths, comparing the results with those obtained in water phantom using an electron diode. The results show that in the low gradient regions there were no deviations larger than the criteria of acceptability set by Van Dyk et al. [''Commissioning and quality assurance of treatment planning computers,'' Int. J. Radiat. Oncol. Biol. Phys. 26, 261-273 (1993)]; in the high gradient region, the maximum deviations are less than 2 mm with most of the values less than 1 mm. The present article shows that MapCHECK trade mark sign can play a

  13. Oxidative stress promotes the increase of matrix metalloproteinases-2 and -9 activities in the feto-placental unit of diabetic rats.

    PubMed

    Pustovrh, María Carolina; Jawerbaum, Alicia; Capobianco, Evangelina; White, Verónica; Martínez, Nora; López-Costa, Juan José; González, Elida

    2005-12-01

    Maternal diabetes increases the risk of congenital malformations, placental dysfunction and diseases in both the neonate and the offspring's later life. Oxidative stress has been involved in the etiology of these abnormalities. Matrix metalloproteases (MMPs), involved in multiple developmental pathways, are increased in the fetus and placenta from diabetic experimental models. As oxidants could be involved in the activation of latent MMPs, we investigated a putative relationship between MMPs activities and oxidative stress in the feto-placental unit of diabetic rats at midgestation. We found that H2O2 enhanced and that superoxide dismutase (SOD) reduced MMPs activities in the maternal side of the placenta and in the fetuses from control and diabetic rats. MMPs were not modified by oxidative status in the fetal side of the placenta. Lipid peroxidation was enhanced in the maternal and fetal sides of the placenta and in the fetus from diabetic rats when compared to controls, and gradually decreased from the maternal placental side to the fetus in diabetic animals. The activities of the antioxidant enzymes SOD and catalase were decreased in the maternal placental side, catalase activity was enhanced in the fetal placental side and both enzymes were increased in the fetuses from diabetic rats when compared to controls. Our data demonstrate changes in the oxidative balance and capability of oxidants to upregulate MMPs activity in the feto-placental unit from diabetic rats, a basis to elucidate links between oxidative stress and alterations in the developmental pathways in which MMPs are involved. PMID:16298858

  14. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity.

    PubMed

    Yeh, Chao-Bin; Hsieh, Ming-Ju; Hsieh, Yih-Shou; Chien, Ming-Hsien; Lin, Pen-Yuan; Chiou, Hui-Ling; Yang, Shun-Fa

    2012-01-01

    High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE) exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9). Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR) and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB) and activating protein-1 (AP-1) on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1. PMID:23258989

  15. Internal cleavages of the autoinhibitory prodomain are required for membrane type 1 matrix metalloproteinase activation, although furin cleavage alone generates inactive proteinase.

    PubMed

    Golubkov, Vladislav S; Cieplak, Piotr; Chekanov, Alexei V; Ratnikov, Boris I; Aleshin, Alexander E; Golubkova, Natalya V; Postnova, Tatiana I; Radichev, Ilian A; Rozanov, Dmitri V; Zhu, Wenhong; Motamedchaboki, Khatereh; Strongin, Alex Y

    2010-09-01

    The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD/L(50) site initiates the MT1-MMP activation, whereas the (108)RRKR(111)/Y(112) cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP. PMID:20605791

  16. Internal Cleavages of the Autoinhibitory Prodomain Are Required for Membrane Type 1 Matrix Metalloproteinase Activation, although Furin Cleavage Alone Generates Inactive Proteinase*

    PubMed Central

    Golubkov, Vladislav S.; Cieplak, Piotr; Chekanov, Alexei V.; Ratnikov, Boris I.; Aleshin, Alexander E.; Golubkova, Natalya V.; Postnova, Tatiana I.; Radichev, Ilian A.; Rozanov, Dmitri V.; Zhu, Wenhong; Motamedchaboki, Khatereh; Strongin, Alex Y.

    2010-01-01

    The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD↓L50 site initiates the MT1-MMP activation, whereas the 108RRKR111↓Y112 cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP. PMID:20605791

  17. Quinazolinones and pyrido[3,4-d]pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis.

    PubMed

    Li, Jie Jack; Nahra, Joe; Johnson, Adam R; Bunker, Amy; O'Brien, Patrick; Yue, Wen-Song; Ortwine, Daniel F; Man, Chiu-Fai; Baragi, Vijay; Kilgore, Kenneth; Dyer, Richard D; Han, Hyo-Kyung

    2008-02-28

    Quinazolinones 8 and pyrido[3,4-d]pyrimidin-4-ones 9 as orally active and specific matrix metalloproteinase-13 inhibitors were discovered for the treatment of osteoarthritis. Starting from a high-through-put screening (HTS) hit thizolopyrimidin-dione 7, we obtained two chemotypes, 8 and 9, using computer-aided drug design (CADD) and methodical structure-activity relationship (SAR) studies. They occupy the unique S 1'-specificity pocket and do not bind to the Zn(2+) ion. Some pyrido[3,4-d]pyrimidin-4-ones, such as 10a, possess favorable absorption, distribution, metabolism, and elimination (ADME) and safety profiles. 10a effectively prevents cartilage damage in rabbit animal models of osteoarthritis without inducing musculoskeletal side effects when given at extremely high doses to rats. PMID:18251495

  18. Response surface methodology as an approach to determine optimal activities of lipase entrapped in sol-gel matrix using different vegetable oils.

    PubMed

    Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M

    2008-03-01

    The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading. PMID:18373071

  19. Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats.

    PubMed

    Mao, Xuexuan; Yin, Wei; Liu, Mengfei; Ye, Minzhong; Liu, Peiqing; Liu, Jianxin; Lian, Qishen; Xu, Suowen; Pi, Rongbiao

    2011-04-18

    Previously we demonstrated that Osthole, a natural coumarin, protects against focal cerebral ischemia/reperfusion-induced injury in rats. In the present study, the effects of Osthole on neurobehavioral functions, infarct volume and matrix metalloproteinase-9 (MMP-9) in a rat 2h focal cerebral ischemia model were investigated. Osthole (100mg/kg per dose) was administrated intraperitoneally 30min before ischemic insult and immediately after reperfusion. Osthole treatment significantly reduced neurological deficit score and infarct volume by 38.5% and 33.8%, respectively, as compared with the untreated animals. Osthole reversed ischemia-reperfusion-induced increase in MMP-9 protein level/activity as evidenced by Western blotting and gelatin zymography. Taken together, these results for the first time demonstrate that Osthole reduces infarct volume, restores neurobehavioral functions and downregulates MMP-9 protein level/activity in ischemia/reperfused brain. PMID:21316348

  20. (60)Co in cast steel matrix: A European interlaboratory comparison for the characterisation of new activity standards for calibration of gamma-ray spectrometers in metallurgy.

    PubMed

    Tzika, Faidra; Burda, Oleksiy; Hult, Mikael; Arnold, Dirk; Marroyo, Belén Caro; Dryák, Pavel; Fazio, Aldo; Ferreux, Laurent; García-Toraño, Eduardo; Javornik, Andrej; Klemola, Seppo; Luca, Aurelian; Moser, Hannah; Nečemer, Marijan; Peyrés, Virginia; Reis, Mario; Silva, Lidia; Šolc, Jaroslav; Svec, Anton; Tyminski, Zbigniew; Vodenik, Branko; Wätjen, Uwe

    2016-08-01

    Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively. PMID:27236833

  1. Identification of Proteins with Potential Osteogenic Activity Present in the Water-Soluble Matrix Proteins from Crassostrea gigas Nacre Using a Proteomic Approach

    PubMed Central

    Oliveira, Daniel V.; Silva, Tomé S.; Cordeiro, Odete D.; Cavaco, Sofia I.; Simes, Dina C.

    2012-01-01

    Nacre, when implanted in vivo in bones of dogs, sheep, mice, and humans, induces a biological response that includes integration and osteogenic activity on the host tissue that seems to be activated by a set of proteins present in the nacre water-soluble matrix (WSM). We describe here an experimental approach that can accurately identify the proteins present in the WSM of shell mollusk nacre. Four proteins (three gigasin-2 isoforms and a cystatin A2) were for the first time identified in WSM of Crassostrea gigas nacre using 2DE and LC-MS/MS for protein identification. These proteins are thought to be involved in bone remodeling processes and could be responsible for the biocompatibility shown between bone and nacre grafts. These results represent a contribution to the study of shell biomineralization process and opens new perspectives for the development of new nacre biomaterials for orthopedic applications. PMID:22666151

  2. Phospholipase C{gamma}1 stimulates transcriptional activation of the matrix metalloproteinase-3 gene via the protein kinase C/Raf/ERK cascade

    SciTech Connect

    Shin, Soon Young; Choi, Ha Young; Ahn, Bong-Hyun; Son, Sang Wook; Lee, Young Han . E-mail: younghan@hanyang.ac.kr

    2007-02-16

    The phospholipid hydrolase phospholipase C{gamma}1 (PLC{gamma}1) plays a major role in regulation of cell proliferation, development, and cell motility. Overexpression of PLC{gamma}1 is associated with tumor development, and it is overexpressed in some tumors. Matrix metalloproteinase-3 (MMP-3) is a protein involved in tumor invasion and metastasis. Here, we demonstrate that overexpression of PLC{gamma}1 stimulates MMP-3 expression at the transcriptional level via the PKC-mediated Raf/MEK1/ERK signaling cascade. We propose that modulation of PLC{gamma}1 activity might be of value in controlling the activity of MMPs, which are important regulators of invasion and metastasis in malignant tumors.

  3. Investigation on slot-die coating of hybrid material structure for OLED lightings

    NASA Astrophysics Data System (ADS)

    Choi, Kwang-Jun; Lee, Jin-Young; Shin, Dong-Kyun; Park, Jongwoon

    2016-08-01

    With an attempt to fabricate large-area OLED lighting panels, we investigate slot-die coating of a small molecule (SM) hole transport layer (HTL). It is observed that SM HTL films formed by spin coating exhibit pinhole-like surface, whereas the films by slot-die coating show micro-sized hillocks due to agglomeration. As the plate temperature of the slot coater is increased, smaller hillocks appear more densely. To tackle it, a small amount of a polymer HTL is added into the SM HTL (Hybrid HTL). By the aid of entangled polymer chains, small molecules are prohibited from migrating and thus agglomerations disappear. The peak-to-peak roughness of the slot-coated hybrid HTL films is measured to be about 11.5 nm, which is slightly higher than that (~7 nm) of the polymer HTL film, but much lower than that (~1071 nm) of the SM HTL film. Similar results are also observed in spin-coated films. It is also addressed that OLED with the hybrid HTL shows higher luminous efficacy, compared to OLED with the SM HTL or the polymer HTL. We have further demonstrated that the dissolution problem occurring between two stacked layers with different solvents during slot-die coating can be suppressed to a great extent using such a combination of materials in hybrid structure.

  4. Security Implications of OPC, OLE, DCOM, and RPC in Control Systems

    SciTech Connect

    Not Available

    2006-01-01

    OPC is a collection of software programming standards and interfaces used in the process control industry. It is intended to provide open connectivity