Science.gov

Sample records for active membrane properties

  1. Mechanical properties that influence antimicrobial peptide activity in lipid membranes.

    PubMed

    Marín-Medina, Nathaly; Ramírez, Diego Alejandro; Trier, Steve; Leidy, Chad

    2016-12-01

    Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.

  2. Effect of activated sludge properties and membrane operation conditions on fouling characteristics in membrane bioreactors.

    PubMed

    Choi, Hyeok; Zhang, Kai; Dionysiou, Dionysios D; Oerther, Daniel B; Sorial, George A

    2006-06-01

    Biofouling control is considered to be a major challenge in operating membrane bioreactors (MBRs) for the treatment of wastewater. This study examined the impact of biological, chemical, and physical properties of activated sludge on membrane filtration performance in laboratory-scale MBRs. Sludges with different microbial communities were produced using pseudo-continuous stirred-tank reactors and pseudo-plug flow reactors treating a synthetic paper mill wastewater. Various filtration resistances were used to investigate membrane fouling characteristics, and molecular biology tools targeting 16S ribosomal DNA gene sequences were used to identify predominant bacterial populations in the sludges or attached to the fouled membranes. Filtration experiments using axenic cultures of Escherichia coli, Acinetobacter calcoaceticus, and Gordonia amarae were also performed to better understand the initiation and development of biofouling. The results showed that the tendency of membranes to biofoul depended upon membrane operating conditions as well as the properties of the activated sludge in the MBR systems. Specific bacterial populations, which were not dominant in the activated sludges, were selectively accumulated on the membrane surface leading to the development of irreversible biofouling.

  3. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability.

    PubMed

    Chen, Guan-Jie; Kuo, Chia-Hung; Chen, Chih-I; Yu, Chung-Cheng; Shieh, Chwen-Jen; Liu, Yung-Chuan

    2012-02-01

    In this study, three membranes: regenerated cellulose (RC), glass fiber (GF) and polyvinylidene fluoride (PVDF), were grafted with 1,4-diaminobutane (DA) and activated with glutaraldehyde (GA) for lipase covalent immobilization. The efficiencies of lipases immobilized on these membranes with different hydrophobic/hydrophilic properties were compared. The lipase immobilized on hydrophobic PVDF-DA-GA membrane exhibited more than an 11-fold increase in activity compared to its immobilization on a hydrophilic RC-DA-GA membrane. The relationship between surface hydrophobicity and immobilized efficiencies was investigated using hydrophobic/hydrophilic GF membranes which were prepared by grafting a different ratio of n-butylamine/1,4-diaminobutane (BA/DA). The immobilized lipase activity on the GF membrane increased with the increased BA/DA ratio. This means that lipase activity was exhibited more on the hydrophobic surface. Moreover, the modified PVDF-DA membrane was grafted with GA, epichlorohydrin (EPI) and cyanuric chloride (CC), respectively. The lipase immobilized on the PVDF-DA-EPI membrane displayed the highest specific activity compared to other membranes. This immobilized lipase exhibited more significant stability on pH, thermal, reuse, and storage than did the free enzyme. The results exhibited that the EPI modified PVDF is a promising support for lipase immobilization.

  4. Salt stress in a membrane bioreactor: dynamics of sludge properties, membrane fouling and remediation through powdered activated carbon dosing.

    PubMed

    De Temmerman, L; Maere, T; Temmink, H; Zwijnenburg, A; Nopens, I

    2014-10-15

    Membrane bioreactors are a well-established technology for wastewater treatment. However, their efficiency is adversely impacted by membrane fouling, primarily inciting very conservative operations of installations that makes them less appealing from an economic perspective. This fouling propensity of the activated sludge is closely related to system disturbances. Therefore, improved insight into the impact of fouling is crucial towards increased membrane performance. In this work, the disturbance of a salt shock was investigated with respect to sludge composition and filterability in two parallel lab-scale membrane bioreactors. Several key sludge parameters (soluble microbial products, sludge-bound extracellular polymeric substances, supramicron particle size distributions (PSD), submicron particle concentrations) were intensively monitored prior to, during, and after a disturbance to investigate its impact as well as the potential governing mechanism. Upon salt addition, the supramicron PSD immediately shifted to smaller floc sizes, and the total fouling rate increased. Following a certain delay, an increase in submicron particles, supernatant proteins, and polysaccharides was observed as well as an increase in the irreversible membrane fouling rate. Recovery from the disturbance was evidenced with a simultaneous decrease in the above mentioned quantities. A similar experiment introducing powdered activated carbon (PAC) addition used for remediation resulted in either no or less significant changes in the above mentioned quantities, signifying its potential as a mitigation strategy.

  5. Membrane properties induced by anionic phospholipids and phosphatidylethanolamine are critical for the membrane binding and catalytic activity of human cytochrome P450 3A4.

    PubMed

    Kim, Keon-Hee; Ahn, Taeho; Yun, Chul-Ho

    2003-12-30

    Human cytochrome P450 (CYP) 3A4, a membrane anchoring protein, is the major CYP enzyme present in both liver and small intestine. The enzyme plays a major role in the metabolism of many drugs and procarcinogens. The roles of individual phospholipids and membrane properties in the catalytic activity, membrane binding, and insertion into the membrane of CYP3A4 are poorly understood. Here we report that the catalytic activity of testosterone 6beta-hydroxylation, membrane binding, and membrane insertion of CYP3A4 increase as a function of anionic phospholipid concentration in the order phosphatidic acid (PA) > phosphatidylserine (PS) in a binary system of phosphatidylcholine (PC)/anionic phospholipid and as a function of phosphatidylethanolamine (PE) content in ternary systems of PC/PE/PA or PC/PE/PS having a fixed concentration of anionic phospholipids. These results suggest that PA and PE might help the binding of CYP3A4 to the membrane and the interaction with NPR. Cytochrome b(5) (b(5)) and apolipoprotein b(5) further enhanced the testosterone 6beta-hydroxylation activities of CYP3A4 in all tested phospholipids vesicles with various compositions. Phospholipid-dependent changes of the CYP3A4 conformation were also revealed by altered Trp fluorescence and CD spectra. We also found that PE induced the formation of anionic phospholipid-enriched domains in ternary systems using extrinsic fluorescent probes incorporated into lipid bilayers. Taken together, it can be suggested that the chemical and physical properties of membranes induced by anionic phospholipids and PE are critical for the membrane binding and catalytic activity of CYP3A4.

  6. Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans.

    PubMed

    Hwang, Ji Hong; Jin, Qinglong; Woo, Eun-Rhan; Lee, Dong Gun

    2013-10-01

    In this study, the antifungal activity and mode of action(s) of hibicuslide C derived from Abutilon theophrasti were investigated. Antifungal susceptibility testing showed that hibicuslide C possessed potent activities toward various fungal strains and less hemolytic activity than amphotericin B. To understand the antifungal mechanism(s) of hibicuslide C in Candida albicans, flow cytometric analysis with propidium iodide was done. The results showed that hibicuslide C perturbed the plasma membrane of the C. albicans. The analysis of the transmembrane electrical potential with 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)] indicated that hibicuslide C induced membrane depolarization. Furthermore, model membrane studies were performed with calcein encapsulating large unilamellar vesicles (LUVs) and FITC-dextran (FD) loaded LUVs. These results demonstrated that the antifungal effects of hibicuslide C on the fungal plasma membrane were through the formation of pores with radii between 2.3 nm and 3.3 nm. Finally, in three dimensional flow cytometric contour plots, a reduced cell sizes by the pore-forming action of hibicuslide C were observed. Therefore, the present study suggests that hibicuslide C exerts its antifungal effect by membrane-active mechanism.

  7. Amphiphilic Indole Derivatives as Antimycobacterial Agents: Structure-Activity Relationships and Membrane Targeting Properties.

    PubMed

    Yang, Tianming; Moreira, Wilfried; Nyantakyi, Samuel Agyei; Chen, Huan; Aziz, Dinah Binte; Go, Mei-Lin; Dick, Thomas

    2017-03-28

    Antibacterials that disrupt cell membrane function have the potential to eradicate "persister" organisms and delay the emergence of resistance. Here we report the antimycobacterial activities of 4-fluoro and 6-methoxyindoles bearing a cationic amphiphilic motif represented by a lipophilic n-octyl side chain at position 1 and a positively charged azepanyl or 1,4-dioxa-8-azaspiro[4.5]decane moiety at position 3. These analogues exhibited balanced profiles of potency (Mycobacterium bovis BCG, M tuberculosis H37Rv), selective activity, solubility, and metabolic stability. Bacteriological mechanism of action investigations on a representative analogue revealed cell membrane permeabilization and depolarization in M bovis BCG. These membrane-related changes preceded cell death indicating that the loss in membrane integrity was not an epiphenomenon. Bactericidal activity was observed against both growing and nongrowing mycobacterial cultures. The analogue also upregulated cell envelope stress-inducible promoters piniBAC and pclgR, implicating the involvement of envelope-related targets in its mode of action.

  8. Complex Intrinsic Membrane Properties and Dopamine Shape Spiking Activity in a Motor Axon

    PubMed Central

    Ballo, Aleksander W.; Bucher, Dirk

    2009-01-01

    We studied the peripheral motor axons of the two pyloric dilator (PD) neurons of the stomatogastric ganglion in the lobster, Homarus americanus. Intracellular recordings from the motor nerve showed both fast and slow voltage- and activity-dependent dynamics. During rhythmic bursts, the PD axons displayed changes in spike amplitude and duration. Pharmacological experiments and the voltage-dependence of these phenomena suggest that inactivation of sodium and A-type potassium channels are responsible. In addition, the “resting” membrane potential was dependent on ongoing spike or burst activity, with more hyperpolarized values when activity was strong. Nerve stimulations, pharmacological block and current clamp experiments suggest that this is due to a functional antagonism between a slow after-hyperpolarization (sAHP) and inward rectification through hyperpolarization-activated current (IH). Dopamine application resulted in modest depolarization and “ectopic” peripheral spike initiation in the absence of centrally generated activity. This effect was blocked by CsCl and ZD7288, consistent with a role of IH. High frequency nerve stimulation inhibited peripheral spike initiation for several seconds, presumably due to the sAHP. Both during normal bursting activity and antidromic nerve stimulation, the conduction delay over the length of the peripheral nerve changed in a complex manner. This suggests that axonal membrane dynamics can have a substantial effect on the temporal fidelity of spike patterns propagated from a spike initiation site to a synaptic target, and that neuromodulators can influence the extent to which spike patterns are modified. PMID:19386902

  9. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.

    PubMed

    Monteiro, Claudia; Fernandes, Mariana; Pinheiro, Marina; Maia, Sílvia; Seabra, Catarina L; Ferreira-da-Silva, Frederico; Costa, Fabíola; Reis, Salette; Gomes, Paula; Martins, M Cristina L

    2015-05-01

    Antimicrobial peptides (AMPs) are a class of broad-spectrum antibiotics known by their ability to disrupt bacterial membranes and their low tendency to induce bacterial resistance, arising as excellent candidates to fight bacterial infections. In this study we aimed at designing short 12-mer AMPs, derived from a highly effective and broad spectrum synthetic AMP, MSI-78 (22 residues), by truncating this peptide at the N- and/or C-termini while spanning its entire sequence with 1 amino acid (aa) shifts. These designed peptides were evaluated regarding antimicrobial activity against selected gram-positive Staphylococcus strains and the gram-negative Pseudomonas aeruginosa (P. aeruginosa). The short 12-mer peptide CEM1 (GIGKFLKKAKKF) was identified as an excellent candidate to fight P. aeruginosa infections as it displays antimicrobial activity against this strain and selectivity, with negligible toxicity to mammalian cells even at high concentrations. However, in general most of the short 12-mer peptides tested showed a reduction in antimicrobial activity, an effect that was more pronounced for gram-positive Staphylococcus strains. Interestingly, CEM1 and a highly similar peptide differing by only one aa-shift (CEM2: IGKFLKKAKKFG), showed a remarkably contrasting AMP activity. These two peptides were chosen for a more detailed study regarding their mechanism of action, using several biophysical assays and simple membrane models that mimic the mammalian and bacterial lipid composition. We confirmed the correlation between peptide helicity and antimicrobial activity and propose a mechanism of action based on the disruption of the bacterial membrane permeability barrier.

  10. Neuronal activity causes rapid changes of lateral amygdala neuronal membrane properties and reduction of synaptic integration and synaptic plasticity in vivo

    PubMed Central

    Rosenkranz, J. Amiel

    2011-01-01

    Neuronal membrane properties dictate neuronal responsiveness. Plasticity of membrane properties alters neuronal function and can arise in response to robust neuronal activity. Despite the potential for great impact, there is little evidence for a rapid effect of activity-dependent changes of membrane properties on many neuronal functions in vivo in mammalian brain. In this study it was tested whether periods of neuronal firing lead to a rapid change of membrane properties in neurons of a rat brain region important for some forms of learning, the lateral nucleus of the amygdala (LAT), using in vivo intracellular recordings. Our results demonstrate that rapid plasticity of membrane properties occurs in vivo, in response to action potential firing. This plasticity of membrane properties leads to changes of synaptic integration and subsequent synaptic plasticity. These changes require Ca2+, but are NMDA independent. Furthermore, the parameters and timecourse of these changes would not have been predicted from most in vitro studies. The plasticity of membrane properties demonstrated here may represent a basic form of in vivo short-term plasticity that modifies neuronal function. PMID:21508236

  11. Modeling Electrically Active Viscoelastic Membranes

    PubMed Central

    Roy, Sitikantha; Brownell, William E.; Spector, Alexander A.

    2012-01-01

    The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric) force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism. PMID:22701528

  12. Peptides actively transported across the tympanic membrane: Functional and structural properties

    PubMed Central

    Kurabi, Arwa; Beasley, Kerry A.; Chang, Lisa; McCann, James; Pak, Kwang; Ryan, Allen F.

    2017-01-01

    Otitis media (OM) is the most common infectious disease of children under six, causing more antibiotic prescriptions and surgical procedures than any other pediatric condition. By screening a bacteriophage (phage) library genetically engineered to express random peptides on their surfaces, we discovered unique peptides that actively transport phage particles across the intact tympanic membrane (TM) and into the middle ear (ME). Herein our goals were to characterize the physiochemical peptide features that may underlie trans-TM phage transport; assess morphological and functional effects of phage peptides on the ME and inner ear (IE); and determine whether peptide-bearing phage transmigrate from the ME into the IE. Incubation of five peptide-bearing phage on the TM for over 4hrs resulted in demonstrably superior transport of one peptide, in level and in exponential increase over time. This suggests a preferred peptide motif for TM active transport. Functional and structural comparisons revealed unique features of this peptide: These include a central lysine residue, isoelectric point of 0.0 at physiological pH and a hydrophobic C-terminus. When the optimal peptide was applied to the TM independent of phage, similar transport was observed, indicating that integration into phage is not required. When 109 particles of the four different trans-TM phage were applied directly into the ME, no morphological effects were detected in the ME or IE when compared to saline or wild-type (WT) phage controls. Comparable, reversible hearing loss was observed for saline controls, WT phage and trans-TM peptide phage, suggesting a mild conductive hearing loss due to ME fluid. Perilymph titers after ME incubation established that few copies of trans-TM peptide phage crossed into the IE. The results suggest that, within the parameters tested, trans-TM peptides are safe and could be used as potential agents for noninvasive delivery of drugs, particles and gene therapy vectors to the ME

  13. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  14. A pore-forming toxin requires a specific residue for its activity in membranes with particular physicochemical properties.

    PubMed

    Morante, Koldo; Caaveiro, Jose M M; Tanaka, Koji; González-Mañas, Juan Manuel; Tsumoto, Kouhei

    2015-04-24

    The physicochemical landscape of the bilayer modulates membrane protein function. Actinoporins are a family of potent hemolytic proteins from sea anemones acting at the membrane level. This family of cytolysins preferentially binds to target membranes containing sphingomyelin, where they form lytic pores giving rise to cell death. Although the cytolytic activity of the actinoporin fragaceatoxin C (FraC) is sensitive to vesicles made of various lipid compositions, it is far from clear how this toxin adjusts its mechanism of action to a broad range of physiochemical landscapes. Herein, we show that the conserved residue Phe-16 of FraC is critical for pore formation in cholesterol-rich membranes such as those of red blood cells. The interaction of a panel of muteins of Phe-16 with model membranes composed of raft-like lipid domains is inactivated in cholesterol-rich membranes but not in cholesterol-depleted membranes. These results indicate that actinoporins recognize different membrane environments, resulting in a wider repertoire of susceptible target membranes (and preys) for sea anemones. In addition, this study has unveiled promising candidates for the development of protein-based biosensors highly sensitive to the concentration of cholesterol within the membrane.

  15. Mechanical properties of warped membranes

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.

    2014-03-01

    We explore how a frozen background metric affects the mechanical properties of solid planar membranes at zero temperature. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h(q) in Fourier space with zero mean and variance < | h(q) | 2 > q-m . Using statistical physics tools to treat this quenched random disorder, we find that in the linear response regime, similar to thermally fluctuating polymerized membranes, an increasing scale-dependent effective bending rigidity, while the Young and the shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h(x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . Numerical results show good agreement with theoretical predictions, which are now being tested experimentally, where warped membranes are prepared with 3D printers.

  16. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  17. Membrane elastic properties and cell function.

    PubMed

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C; Romão, Luciana F; Amaral, Racκele F; Salgado, Leonardo T; Lima, Flavia R; Farina, Marcos; Viana, Nathan B; Moura-Neto, Vivaldo; Nussenzveig, H Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  18. Membrane Elastic Properties and Cell Function

    PubMed Central

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C.; Romão, Luciana F.; Amaral, Racκele F.; Salgado, Leonardo T.; Lima, Flavia R.; Farina, Marcos; Viana, Nathan B.; Moura-Neto, Vivaldo; Nussenzveig, H. Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function. PMID:23844071

  19. Physical properties, lipid composition and enzyme activities of hepatic subcellular membranes from chick embryo after ethanol treatment

    SciTech Connect

    Sanchez-Amate, M.C.; Marco, C.; Segovia, J.L. )

    1992-01-01

    Exposure of chick embryos to ethanol resulted in significant alterations to the lipid composition of various different hepatic subcellular membranes. A marked decrease in cholesterol levels and an increase in the phospholipid content of microsomes and mitochondria was observed. Ethanol also affected the fatty acid profiles, mainly by decreasing the percentage of oleic acid in phosphatidylcholine and phosphatidylethanolamine in the mitochondria and phosphatidylethanolamine in the microsomes. In spite of these changes ethanol only induced alterations in the fluidity of the mitochondrial membranes, which showed a more rigid core, in contrast to the phospholipid-head region, which was not affected. In accordance with the changes observed in the physical state of the membrane, the enzymes involved in the microsomal electron-transport systems were not modified by ethanol, while cytochrome oxidase activity decreased by 50% compared to the activity in the mitochondria from control chick embryos.

  20. Enzymatically active ultrathin pepsin membranes.

    PubMed

    Raaijmakers, Michiel J T; Schmidt, Thomas; Barth, Monika; Tutus, Murat; Benes, Nieck E; Wessling, Matthias

    2015-05-11

    Enzymatically active proteins enable efficient and specific cleavage reactions of peptide bonds. Covalent coupling of the enzymes permits immobilization, which in turn reduces autolysis-induced deactivation. Ultrathin pepsin membranes were prepared by facile interfacial polycondensation of pepsin and trimesoyl chloride. The pepsin membrane allows for simultaneous enzymatic conversion and selective removal of digestion products. The large water fluxes through the membrane expedite the transport of large molecules through the pepsin layers. The presented method enables the large-scale production of ultrathin, cross-linked, enzymatically active membranes.

  1. Membrane activity of tetra-p-guanidinoethylcalix[4]arene as a possible reason for its antibacterial properties.

    PubMed

    Sautrey, Guillaume; Orlof, Monika; Korchowiec, Beata; de Vains, Jean-Bernard Regnouf; Rogalska, Ewa

    2011-12-22

    Tetra-p-guanidinoethylcalix[4]arene trifluoroacetate salt (CX1) was synthesized recently as an antibacterial agent. It showed to be active in vitro against various Gram-positive and Gram-negative bacteria. To get more insight in the mechanism of the biological activity of this derivative, it was studied upon interactions with model lipid membranes. Langmuir monolayers were formed with zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine or 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, and with anionic 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) and 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine. The two classes of lipids were used, respectively, as model lipids of the eukaryotic and bacterial cell membranes. The monolayers were exposed to CX1 at different concentrations around the minimum inhibitory concentration found for E. coli . The surface pressure-area and surface potential-area compression isotherms, as well as Brewster angle microscopy and polarization-modulation infrared reflection-absorption spectroscopy, were employed to study the monolayers. The results obtained show a higher affinity of CX1 for the anionic lipids, indicating importance of charge-charge interactions. On the basis of a comparative study of the behavior of CX1 and that of p-guanidinoethylphenol trifluoroacetate salt, we propose that interplay of charge-charge and apolar interactions between CX1 and lipids is responsible for the important reorganization of model membranes. This proposal may be helpful in developing new antibacterial calixarene derivatives.

  2. Computational analysis of local membrane properties

    NASA Astrophysics Data System (ADS)

    Gapsys, Vytautas; de Groot, Bert L.; Briones, Rodolfo

    2013-10-01

    In the field of biomolecular simulations, dynamics of phospholipid membranes is of special interest. A number of proteins, including channels, transporters, receptors and short peptides are embedded in lipid bilayers and tightly interact with phospholipids. While the experimental measurements report on the spatial and/or temporal average membrane properties, simulation results are not restricted to the average properties. In the current study, we present a collection of methods for an efficient local membrane property calculation, comprising bilayer thickness, area per lipid, deuterium order parameters, Gaussian and mean curvature. The local membrane property calculation allows for a direct mapping of the membrane features, which subsequently can be used for further analysis and visualization of the processes of interest. The main features of the described methods are highlighted in a number of membrane systems, namely: a pure dimyristoyl-phosphatidyl-choline (DMPC) bilayer, a fusion peptide interacting with a membrane, voltage-dependent anion channel protein embedded in a DMPC bilayer, cholesterol enriched bilayer and a coarse grained simulation of a curved palmitoyl-oleoyl-phosphatidyl-choline lipid membrane. The local membrane property analysis proves to provide an intuitive and detailed view on the observables that are otherwise interpreted as averaged bilayer properties.

  3. Active microrheology of smectic membranes.

    PubMed

    Qi, Zhiyuan; Ferguson, Kyle; Sechrest, Yancey; Munsat, Tobin; Park, Cheol Soo; Glaser, Matthew A; Maclennan, Joseph E; Clark, Noel A; Kuriabova, Tatiana; Powers, Thomas R

    2017-02-01

    Thin fluid membranes embedded in a bulk fluid of different viscosity are of fundamental interest as experimental realizations of quasi-two-dimensional fluids and as models of biological membranes. We have probed the hydrodynamics of thin fluid membranes by active microrheology using small tracer particles to observe the highly anisotropic flow fields generated around a rigid oscillating post inserted into a freely suspended smectic liquid crystal film that is surrounded by air. In general, at distances more than a few Saffman lengths from the meniscus around the post, the measured velocities are larger than the flow computed by modeling a moving disklike inclusion of finite extent by superposing Levine-MacKintosh response functions for pointlike inclusions in a viscous membrane. The observed discrepancy is attributed to additional coupling of the film with the air below the film that is displaced directly by the shaft of the moving post.

  4. Active microrheology of smectic membranes

    NASA Astrophysics Data System (ADS)

    Qi, Zhiyuan; Ferguson, Kyle; Sechrest, Yancey; Munsat, Tobin; Park, Cheol Soo; Glaser, Matthew A.; Maclennan, Joseph E.; Clark, Noel A.; Kuriabova, Tatiana; Powers, Thomas R.

    2017-02-01

    Thin fluid membranes embedded in a bulk fluid of different viscosity are of fundamental interest as experimental realizations of quasi-two-dimensional fluids and as models of biological membranes. We have probed the hydrodynamics of thin fluid membranes by active microrheology using small tracer particles to observe the highly anisotropic flow fields generated around a rigid oscillating post inserted into a freely suspended smectic liquid crystal film that is surrounded by air. In general, at distances more than a few Saffman lengths from the meniscus around the post, the measured velocities are larger than the flow computed by modeling a moving disklike inclusion of finite extent by superposing Levine-MacKintosh response functions for pointlike inclusions in a viscous membrane. The observed discrepancy is attributed to additional coupling of the film with the air below the film that is displaced directly by the shaft of the moving post.

  5. Thermodynamic properties of purple membrane.

    PubMed Central

    Marque, J; Eisenstein, L; Gratton, E; Sturtevant, J M; Hardy, C J

    1984-01-01

    We measured the density, expansivity, specific heat at constant pressure, and sound velocity of suspensions of purple membrane from Halobacterium halobium and their constituent buffers. From these quantities we calculated the apparent values for the density, expansivity, adiabatic compressibility, isothermal compressibility, specific heat at constant pressure, and specific heat at constant volume for the purple membrane. These results are discussed with respect to previously reported measurements on globular proteins and lipids. Our data suggest a simple additive model in which the protein and lipid molecules expand and compress independently of each other. However, this simple model seems to fail to describe the specific heat data. Our compressibility data suggest that bacteriorhodopsin in native purple membrane binds less water than many globular proteins in neutral aqueous solution, a finding consistent with the lipid surround of bacteriorhodopsin in purple membrane. PMID:6498271

  6. Mechano-capacitive properties of polarized membranes.

    PubMed

    Mosgaard, Lars D; Zecchi, Karis A; Heimburg, Thomas

    2015-10-28

    Biological membranes are capacitors that can be charged by applying a field across the membrane. The charges on the capacitor exert a force on the membrane that leads to electrostriction, i.e. a thinning of the membrane. Since the force is quadratic in voltage, negative and positive voltage have an identical influence on the physics of symmetric membranes. However, this is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of identical magnitude lead to different properties. Such an asymmetry can originate from a lipid composition that is different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called 'flexoelectricity'. As a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical phenomena such as outward or inward rectification of membrane permeability. Here, we introduce a generalized theoretical framework, that treats capacitance, polarization, flexoelectricity, piezoelectricity and thermoelectricity in the same language. We show applications to electrostriction, membrane permeability and piezoelectricity and thermoelectricity close to melting transitions, where such effects are especially pronounced.

  7. Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. I. General properties of variously prepared membranes and the mechanism of the isosmotic imidazole effect.

    PubMed

    Farrance, M L; Vincenzi, F F

    1977-11-15

    1. Membranes prepared from human erythrocytes hemolyzed in isosmotic (310 imosM) imidazole buffer, pH 7.4, show enhanced and stabilized (Ca2+ + Mg2+)-ATPase activity compared with membranes prepared from erythrocytes hemolyzed in hypotonic (20 imosM) phosphate or imidazole buffer, pH 7.4. 2. Exposure of intact erythrocytes or well-washed erythrocyte membranes to isosmotic imidazole does not cause enhanced (Ca2+ + Mg2+)-ATPase activity. 3. Exposure of erythrocyte membranes, in the presence of isosmotic imidazole, to the supernatant of erythrocyte hemolysis or to a partially purified endogenous (Ca2+ + Mg2+)-ATPase activator, promotes enhanced (Ca2+ + Mg2+)-ATPase activity. Under appropriate conditions, NaCl can be shown to substitute for imidazole. The results demonstrate that imidazole does not act directly on the erythrocyte membrane but rather by promoting interaction between an endogenous (Ca2+ + Mg2+)-ATPase activator and the erythrocyte membrane.

  8. The hyperpolarization-activated non-specific cation current (In ) adjusts the membrane properties, excitability, and activity pattern of the giant cells in the rat dorsal cochlear nucleus.

    PubMed

    Rusznák, Zoltán; Pál, Balázs; Kőszeghy, Aron; Fu, Yuhong; Szücs, Géza; Paxinos, George

    2013-03-01

    Giant cells of the cochlear nucleus are thought to integrate multimodal sensory inputs and participate in monaural sound source localization. Our aim was to explore the significance of a hyperpolarization-activated current in determining the activity of giant neurones in slices prepared from 10 to 14-day-old rats. When subjected to hyperpolarizing stimuli, giant cells produced a 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyridinium chloride (ZD7288)-sensitive inward current with a reversal potential and half-activation voltage of -36 and -88 mV, respectively. Consequently, the current was identified as the hyperpolarization-activated non-specific cationic current (Ih ). At the resting membrane potential, 3.5% of the maximum Ih conductance was available. Immunohistochemistry experiments suggested that hyperpolarization-activated, cyclic nucleotide-gated, cation non-selective (HCN)1, HCN2, and HCN4 subunits contribute to the assembly of the functional channels. Inhibition of Ih hyperpolarized the membrane by 6 mV and impeded spontaneous firing. The frequencies of spontaneous inhibitory and excitatory postsynaptic currents reaching the giant cell bodies were reduced but no significant change was observed when evoked postsynaptic currents were recorded. Giant cells are affected by biphasic postsynaptic currents consisting of an excitatory and a subsequent inhibitory component. Inhibition of Ih reduced the frequency of these biphasic events by 65% and increased the decay time constants of the inhibitory component. We conclude that Ih adjusts the resting membrane potential, contributes to spontaneous action potential firing, and may participate in the dendritic integration of the synaptic inputs of the giant neurones. Because its amplitude was higher in young than in adult rats, Ih of the giant cells may be especially important during the postnatal maturation of the auditory system.

  9. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  10. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  11. Influence of membrane lipid composition on flavonoid-membrane interactions: Implications on their biological activity.

    PubMed

    Selvaraj, Stalin; Krishnaswamy, Sridharan; Devashya, Venkappayya; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-04-01

    The membrane interactions and localization of flavonoids play a vital role in altering membrane-mediated cell signaling cascades as well as influence the pharmacological activities such as anti-tumour, anti-microbial and anti-oxidant properties of flavonoids. Various techniques have been used to investigate the membrane interaction of flavonoids. These include partition coefficient, fluorescence anisotropy, differential scanning calorimetry, NMR spectroscopy, electrophysiological methods and molecular dynamics simulations. Each technique will provide specific information about either alteration of membrane fluidity or localization of flavonoids within the lipid bilayer. Apart from the diverse techniques employed, the concentrations of flavonoids and lipid membrane composition employed in various studies reported in literature also are different and together these variables contribute to diverse findings that sometimes contradict each other. This review highlights different techniques employed to investigate the membrane interaction of flavonoids with special emphasis on erythrocyte model membrane systems and their significance in understanding the nature and extent of flavonoid-membrane interactions. We also attempt to correlate the membrane localization and alteration in membrane fluidity with the biological activities of flavonoids such as anti-oxidant, anti-cancer and anti-microbial properties.

  12. Structure and permeation properties of cellulose esters asymmetric membranes.

    PubMed

    Stamatialis, D F; Dias, C R; de Pinho, M N

    2000-01-01

    The permeation properties of a series of membranes of cellulose esters, presenting a wide range of characteristics, were studied and correlated to the structure of water in the pores, to the polymer hydrophilicity/hydrophobicity, and to the morphology of the surface of the active layer. Asymmetric membranes of cellulose acetate, cellulose acetate propionate, and cellulose acetate butyrate were prepared by the phase inversion method and their preferential permeation performance tested. The surface morphology and the structure of the water in the pores of the active layer were studied by atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, respectively. Results show that higher rejection to NaCl and low fluxes are generally associated with smaller clusters of water in the pores. On the other hand, the surface of the membranes presenting smaller clusters of water in the active layer show generally surfaces with lower roughness as measured by AFM.

  13. Urease immobilized on modified polysulphone membrane: preparation and properties.

    PubMed

    Poźniak, G; Krajewska, B; Trochimczuk, W

    1995-01-01

    Porous asymmetric membranes were formed by the phase inversion method from one-to-one blends of polysulphone and its aminated derivative. Amino groups were introduced into polysulphone UDEL P 1700 by chlorosulphonation followed by amination. Urease was immobilized on the modified polysulphone membranes. The properties of the immobilized urease were investigated and related to the free enzyme. The Michaelis constant was 4.4 times higher for the immobilized than for the free urease. Immobilization improved the pH stability of the enzyme at pH < 6.5 as well as its temperature stability. However, the immobilization did not protect the enzyme against heat inactivation at 70 degrees C; the half-times for the activity decay were equal to 120 and 50 min for the free and immobilized enzymes, respectively. The immobilized urease exhibited good storage and operational stability, and good reusability, properties that prove the applicability of the obtained system in enzymatic-membrane reactors.

  14. Stability properties of elementary dynamic models of membrane transport.

    PubMed

    Hernández, Julio A

    2003-01-01

    Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.

  15. A common landscape for membrane-active peptides

    PubMed Central

    Last, Nicholas B; Schlamadinger, Diana E; Miranker, Andrew D

    2013-01-01

    Three families of membrane-active peptides are commonly found in nature and are classified according to their initial apparent activity. Antimicrobial peptides are ancient components of the innate immune system and typically act by disruption of microbial membranes leading to cell death. Amyloid peptides contribute to the pathology of diverse diseases from Alzheimer's to type II diabetes. Preamyloid states of these peptides can act as toxins by binding to and permeabilizing cellular membranes. Cell-penetrating peptides are natural or engineered short sequences that can spontaneously translocate across a membrane. Despite these differences in classification, many similarities in sequence, structure, and activity suggest that peptides from all three classes act through a small, common set of physical principles. Namely, these peptides alter the Brownian properties of phospholipid bilayers, enhancing the sampling of intrinsic fluctuations that include membrane defects. A complete energy landscape for such systems can be described by the innate membrane properties, differential partition, and the associated kinetics of peptides dividing between surface and defect regions of the bilayer. The goal of this review is to argue that the activities of these membrane-active families of peptides simply represent different facets of what is a shared energy landscape. PMID:23649542

  16. Effect of granular activated carbon addition on the effluent properties and fouling potentials of membrane-coupled expanded granular sludge bed process.

    PubMed

    Ding, An; Liang, Heng; Qu, Fangshu; Bai, Langming; Li, Guibai; Ngo, Huu Hao; Guo, Wenshan

    2014-11-01

    To mitigate membrane fouling of membrane-coupled anaerobic process, granular activated carbon (GAC: 50 g/L) was added into an expanded granular sludge bed (EGSB). A short-term ultrafiltration test was investigated for analyzing membrane fouling potential and underlying fouling mechanisms. The results showed that adding GAC into the EGSB not only improved the COD removal efficiency, but also alleviated membrane fouling efficiently because GAC could help to reduce soluble microbial products, polysaccharides and proteins by 26.8%, 27.8% and 24.7%, respectively, compared with the control system. Furthermore, excitation emission matrix (EEM) fluorescence spectroscopy analysis revealed that GAC addition mainly reduced tryptophan protein-like, aromatic protein-like and fulvic-like substances. In addition, the resistance distribution analysis demonstrated that adding GAC primarily decreased the cake layer resistance by 53.5%. The classic filtration mode analysis showed that cake filtration was the major fouling mechanism for membrane-coupled EGSB process regardless of the GAC addition.

  17. O-(carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties.

    PubMed

    Wang, Jiali; Gao, Xueli; Wang, Jian; Wei, Yi; Li, Zhaokui; Gao, Congjie

    2015-02-25

    A novel O-(carboxymethyl)-chitosan (OCMC) nanofiltration (NF) membrane is developed via surface functionalization with graphene oxide (GO) nanosheets to enhance desalting properties. Using ring-opening polymerization between epoxy groups of GO nanosheets and amino groups of OCMC active layer, GO nanosheets are irreversibly bound to the membrane. The OCMC NF membranes surface-functionalized with GO nanosheets are characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, contact angle analyzer, and zeta potential analyzer. The membranes exhibit not only higher permeability but also better salt rejections than the pristine membranes and the commercial NF membranes; besides, the desalting properties are enhanced with the concentration of GO nanosheets increasing. Furthermore, the transport mechanism of GO-OCMC NF membranes reveals that the nanoporous structure of GO-OCMC functional layer and size exclusion and electrostatic repulsion of water nanochannels formed by GO nanosheets lead to the membranes possessing enhanced desalting properties.

  18. Influence of membrane properties on physically reversible and irreversible fouling in membrane bioreactors.

    PubMed

    Tsuyuhara, T; Hanamoto, Y; Miyoshi, T; Kimura, K; Watanabe, Y

    2010-01-01

    This study aimed to examine the impact of membrane properties on membrane fouling in membrane bioreactor (MBR). Membrane fouling was divided into two categories: physically reversible and irreversible fouling. Membrane properties related to each type of membrane fouling were investigated separately. Five microfiltration (MF) and one ultrafiltration (UF) membranes with different properties (pore size, contact angle, roughness, zeta potential, and pure water permeability) were examined with a laboratory-scale MBR, fed with synthetic wastewater. Two separate experiments were conducted: the first to examine physically reversible fouling, and the second to examine physically irreversible fouling. The correlation between the degree of each type of fouling and membrane properties was studied. High correlation was observed between the degree of physically reversible fouling and roughness (R(2)=0.96). In contrast, with regard to physically irreversible fouling, strong correlation between roughness and degree of membrane fouling can only be found in the case of MF membranes. Except for the membrane with the highest roughness, the degree of physically irreversible fouling can be well correlated with pure water permeability (lower pure water permeability results in higher degree of physically irreversible fouling) including UF membrane. On the basis of the results obtained in this study, it can be concluded that roughness is an important factor in determination of physically reversible fouling regardless of the types of membrane (i.e. MF or UF membranes) and evolutions of physically irreversible fouling can be mitigated when an MBR is operated with membranes with smooth surface and high pure water permeability.

  19. Structural and thermodynamic properties of water-membrane interphases: significance for peptide/membrane interactions.

    PubMed

    Disalvo, E A; Martini, M F; Bouchet, A M; Hollmann, A; Frías, M A

    2014-09-01

    Water appears as a common intermediary in the mechanisms of interaction of proteins and polypeptides with membranes of different lipid composition. In this review, how water modulates the interaction of peptides and proteins with lipid membranes is discussed by correlating the thermodynamic response and the structural changes of water at the membrane interphases. The thermodynamic properties of the lipid-protein interaction are governed by changes in the water activity of monolayers of different lipid composition according to the lateral surface pressure. In this context, different water populations can be characterized below and above the phase transition temperature in relation to the CH₂ conformers' states in the acyl chains. According to water species present at the interphase, lipid membrane acts as a water state regulator, which determines the interfacial water domains in the surface. It is proposed that those domains are formed by the contact between lipids themselves and between lipids and the water phase, which are needed to trigger adsorption-insertion processes. The water domains are essential to maintain functional dynamical properties and are formed by water beyond the hydration shell of the lipid head groups. These confined water domains probably carries information in local units in relation to the lipid composition thus accounting for the link between lipidomics and aquaomics. The analysis of these results contributes to a new insight of the lipid bilayer as a non-autonomous, responsive (reactive) structure that correlates with the dynamical properties of a living system.

  20. Membrane-Binding and Enzymatic Properties of RPE65

    PubMed Central

    Kiser, Philip D.; Palczewski, Krzysztof

    2010-01-01

    Regeneration of visual pigments is essential for sustained visual function. Although the requirement for non-photochemical regeneration of the visual chromophore, 11-cis-retinal, was recognized early on, it was only recently that the trans to cis retinoid isomerase activity required for this process was assigned to a specific protein, a microsomal membrane enzyme called RPE65. In this review, we outline progress that has been made in the functional characterization of RPE65. We then discuss general concepts related to protein-membrane interactions and the mechanism of the retinoid isomerization reaction and describe some of the important biochemical and structural features of RPE65 with respect to its membrane-binding and enzymatic properties. PMID:20304090

  1. Digital simulation of associated and nonassociated liquid membrane electrochemical properties.

    PubMed Central

    Stover, F S; Buck, R P

    1976-01-01

    The method and results of a digital simulation of electrochemical properties for associated and nonassociated liquid ion-exchange membranes are presented. It is assumed that the membranes is ideally permselective, sites are completely trapped, electroneutrality holds everywhere in the membrane, and the bathing solutions contain no more than two counterions, of which one is completely dissociated in the membrane. Electrochemical properties are simulated for the single counterion case and in the interference region. Concentration profiles, potentiometric responses, transient potential responses to activity steps, and current-voltage curves are given and the effects of ion-pairing and species mobilities are studied. It is found that ion-pairing increases the potentiometric selectivity toward the complexing ion over the noncomplexing ion. Transient responses to an ion activity step are shown to depend in a complex way on the ion-pair formation constant and the various mobilities. Current-voltage curves are simulated for varying degrees of ion-pairing and qualitative agreement is found with previous theoretical treatments, as well as quantitative agreement in those cases where closed-form expressions are known. PMID:938716

  2. [Bianticollagen membrane: preparation and analysis of properties].

    PubMed

    Li, C; Fan, M

    1997-11-01

    This study was undertaken to assess the antiplaque and anticollagenase properties of bianticollagen membrane (BACM) for use in the guided tissue regeneration (GTR). First, preparing cross-linked collagen membrane (GLCM) from bone collagen by glutaraldehyde and ultraviolet irradiation. Then, the GLCM was coated with tetracycline (TC) delivery device, which is BACM. BACM's properties are as follows: under scan electron microscope (SEM), it is a three dimensional structure with small pores; the modulus of elasticity in low strain regions and swelling ratio are 20.4 g/mm2 and 0.141 respectively; immediate type and delayed type hypersensitivity are negative; BACM with TC 150 micrograms placed into pockets, the average intrasulcular TC concentration measured at the end of the 7-days is 46.76 +/- 5.69 micromol/L, which is 2 times higher than MIC of TC; the period against collagenase (100 u) digestion is over 30 days in vitro; 1 mg GLCM and BACM implanted in mice may maintain about 4 weeks and 7 weeks respectively, and BACM and GLCM placed onto patient's root surface in flap operation and taken at 7th day the bacteria on BACM are significantly less than that on GLCM under SEM. These results indicate that BACM has antiplaque and stronger antidegradation effects than GLCM.

  3. [Membrane fouling by secondary effluent of urban sewage and the membrane properties].

    PubMed

    Meng, Xiao-rong; Zhang, Hai-zhen; Wang, Lei; Wang, Xu-dong; Zhao, Liang

    2013-05-01

    The fouling behavior of UF membranes by secondary effluent of municipal wastewater was investigated using both original PVDF membranes and PVA, PVP and PMMA modified PVDF membranes. The results showed that the structure parameters of UF membranes were optimized by blending; PVP and PVA could effectively improve the hydrophilicity and permeate flux of the membranes. The hydrophilicity and structure properties of UF membrane had stronger effect on the anti-fouling properties. Pore plugging resistance was the main reason for the unrecoverable fouling. For UF membranes with stronger hydrophilicity, there was some flux reduction in the initial filtration, which was attributed to the formation of concentration polarization layer. However, this layer can be easily removed and the irreversible fouling index (r(ir)) was 0, thus guaranteeing the membrane a better anti-fouling property. The dense membrane surface could prevent low-molecular-weight pollutants from entering the internal pores of the membrane. For UF membrane with fully developed macropores in the cross-section and loose spongy layer structure, pollutants deposition to membrane internal pores, which would cause membrane pore plugging, could be effectively inhibited. In contrast, for membranes with porous surface and not fully developed macropores in the cross-section, pore plugging was more prone to occur. As a result, flux declined seriously and was difficult to be recovered by physical cleaning, which gave rise to the irreversible fouling.

  4. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    PubMed

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA).

  5. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    NASA Astrophysics Data System (ADS)

    Duan, Qiongjuan; Ge, Shanhai; Wang, Chao-Yang

    2013-12-01

    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34.

  6. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    PubMed Central

    Tang, Ching-Chia; Shi, Yi-Jun; Chen, Ying-Jung; Chang, Long-Sen

    2017-01-01

    The aim of the present study was to investigate whether glycated ovalbumin (OVA) showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA) was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d)-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface. PMID:28264493

  7. Polyvinylidenefluoride/carbon nanotubes mixed matrix membranes with tailored properties

    NASA Astrophysics Data System (ADS)

    Fontananova, Enrica; Grosso, Valentina; Aljlil, Saad A.; Bahattab, Mohammed A.; Vuono, Danilo; Di Profio, Gianluca; Drioli, Enrico

    2016-05-01

    Membrane operations are promising tools for efficient and environmentally friendly separations. However, the development of advanced membranes with tailored properties is a key issue to be addressed in order to better exploit the potentialities of membrane-based separations. An important approach toward this aim is the development of mixed matrix membranes in which an organic and an inorganic phase coexist in order to have synergic effects on membrane properties. The peculiar properties of carbon nanotubes (CNTs) such as high electrical and thermal conductivity, high strength and unique transport properties, has motivated a considerable effort to produce CNT-polymer composites in order to engineer membrane properties. In this work the roughness, wettability, morphology, crystalline phase and pore size of polyvinylidenefluoride (PVDF) membranes were tailored working on the membrane preparation conditions, as well as, by blending the polymer with multiwalled carbon nanotubes (MWCNTs). A study on the effect of concentration of the polymer, use of pore forming additives, type and concentration of MWCNTs (pristine and functionalized), was carried out. The results highlighted interesting relationships between membrane microstructure and composition, as well as, MWCNTs distribution, on transport and wettability properties, in the perspectives of a more efficient application of PVDF membranes in liquid phase separations.

  8. Redistribution of Cholesterol in Model Lipid Membranes in Response to the Membrane-Active Peptide Alamethicin

    NASA Astrophysics Data System (ADS)

    Heller, William; Qian, Shuo

    2013-03-01

    The cellular membrane is a heterogeneous, dynamic mixture of molecules and macromolecules that self-assemble into a tightly-regulated functional unit that provides a semipermeable barrier between the cell and its environment. Among the many compositional differences between mammalian and bacterial cell membranes that impact its physical properties, one key difference is cholesterol content, which is more prevalent in mammals. Cholesterol is an amphiphile that associates with membranes and serves to maintain its fluidity and permeability. Membrane-active peptides, such as the alpha-helical peptide alamethicin, interact with membranes in a concentration- and composition-dependent manner to form transmembrane pores that are responsible for the lytic action of the peptide. Through the use of small-angle neutron scattering and deuterium labeling, it was possible to observe a redistribution of the lipid and cholesterol in unilamellar vesicles in response to the presence of alamethicin at a peptide-to-lipid ratio of 1/200. The results demonstrate that the membrane remodeling powers of alamethicin reach beyond the membrane thinning effect to altering the localization of specific components in the bilayer, complementing the accepted two-state mechanism of pore formation. Research was supported by U. S. DOE-OBER (CSMB; FWP ERKP291) and the U. S. DOE-BES Scientific User Facilities Division (ORNL's SNS and HFIR).

  9. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties.

    PubMed

    Tiraferri, Alberto; Vecitis, Chad D; Elimelech, Menachem

    2011-08-01

    We propose an innovative approach to impart nanomaterial-specific properties to the surface of thin-film composite membranes. Specifically, biocidal properties were obtained by covalently binding single-walled carbon nanotubes (SWNTs) to the membrane surface. The SWNTs were first modified by purification and ozonolysis to increase their sidewall functionalities, maximize cytotoxic properties, and achieve dispersion in aqueous solution. A tailored reaction protocol was developed to exploit the inherent moieties of hand-cast polyamide membrane surfaces and create covalent amide bonds with the functionalized SWNTs. The reaction is entirely aqueous-based and entails activation of the carboxylate groups of both the membrane and the nanomaterials to maximize reaction with ethylenediamine. The presence of SWNTs was verified after sonication of the membranes, confirming the strength of the bond between the SWNTs and the membrane surface. Characterization of the SWNT-functionalized surfaces demonstrated the attainment of membranes with novel properties that continued to exhibit high performance in water separation processes. The presence of surface-bound antimicrobial SWNTs was confirmed by experiments using E. coli cells that demonstrated an enhanced bacterial cytotoxicity for the SWNT-coated membranes. The SWNT membranes were observed to achieve up to 60% inactivation of bacteria attached to the membrane within 1 h of contact time. Our results suggest the potential of covalently bonded SWNTs to delay the onset of membrane biofouling during operation.

  10. Membrane has high urea-rejection properties

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wydeven, T.

    1977-01-01

    Membranes are synthesized from ethylene and nitrogen in RF plasma at low power, gas-flow rates, and pressure. Ethylene and nitrogen are used because flow rate and partial pressure of each gas can be independently controlled to produce optimum conditions for synthesizing membrane. Membrane is particularly useful in recycling and purifying water.

  11. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, Ingo; Toy, Lora G.; Casillas, Carlos G.

    1997-05-20

    A process for restoring the selectivity of high-flee-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70-100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use.

  12. Process for restoring membrane permeation properties

    DOEpatents

    Pinnau, I.; Toy, L.G.; Casillas, C.G.

    1997-05-20

    A process is described for restoring the selectivity of high-free-volume, glassy polymer membranes for condensable components over less-condensable components or non-condensable components of a gas mixture. The process involves exposing the membrane to suitable sorbent vapor, such as propane or butane, thereby reopening the microvoids that make up the free volume. The selectivity of an aged membrane may be restored to 70--100% of its original value. The selectivity of a membrane which is known to age over time can also be maintained by keeping the membrane in a vapor environment when it is not in use. 8 figs.

  13. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.

  14. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.

    PubMed

    An, Alicia Kyoungjin; Guo, Jiaxin; Jeong, Sanghyun; Lee, Eui-Jong; Tabatabai, S Assiyeh Alizadeh; Leiknes, TorOve

    2016-10-15

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR18), and acid yellow 36 (AY36) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane-dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye-dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  15. Activated Membrane Patches Guide Chemotactic Cell Motility

    PubMed Central

    Hecht, Inbal; Skoge, Monica L.; Charest, Pascale G.; Ben-Jacob, Eshel; Firtel, Richard A.; Loomis, William F.; Levine, Herbert; Rappel, Wouter-Jan

    2011-01-01

    Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches. PMID:21738453

  16. Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups.

    PubMed

    Mo, Yinghui; Tiraferri, Alberto; Yip, Ngai Yin; Adout, Atar; Huang, Xia; Elimelech, Menachem

    2012-12-18

    Carboxyls are inherent functional groups of thin-film composite polyamide nanofiltration (NF) membranes, which may play a role in membrane performance and fouling. Their surface presence is attributed to incomplete reaction of acyl chloride monomers during the membrane active layer synthesis by interfacial polymerization. In order to unravel the effect of carboxyl group density on organic fouling, NF membranes were fabricated by reacting piperazine (PIP) with either isophthaloyl chloride (IPC) or the more commonly used trimesoyl chloride (TMC). Fouling experiments were conducted with alginate as a model hydrophilic organic foulant in a solution, simulating the composition of municipal secondary effluent. Improved antifouling properties were observed for the IPC membrane, which exhibited lower flux decline (40%) and significantly greater fouling reversibility or cleaning efficiency (74%) than the TMC membrane (51% flux decline and 40% cleaning efficiency). Surface characterization revealed that there was a substantial difference in the density of surface carboxyl groups between the IPC and TMC membranes, while other surface properties were comparable. The role of carboxyl groups was elucidated by measurements of foulant-surface intermolecular forces by atomic force microscopy, which showed lower adhesion forces and rupture distances for the IPC membrane compared to TMC membranes in the presence of calcium ions in solution. Our results demonstrated that a decrease in surface carboxyl group density of polyamide membranes fabricated with IPC monomers can prevent calcium bridging with alginate and, thus, improve membrane antifouling properties.

  17. Supported phospholipid/alkanethiol biomimetic membranes: insulating properties.

    PubMed Central

    Plant, A L; Gueguetchkeri, M; Yap, W

    1994-01-01

    A novel model lipid bilayer membrane is prepared by the addition of phospholipid vesicles to alkanethiol monolayers on gold. This supported hybrid bilayer membrane is rugged, easily and reproducibly prepared in the absence of organic solvent, and is stable for very long periods of time. We have characterized the insulating characteristics of this membrane by examining the rate of electron transfer and by impedance spectroscopy. Supported hybrid bilayers formed from phospholipids and alkanethiols are pinhole-free and demonstrate measured values of conductivity and resistivity which are within an order of magnitude of that reported for black lipid membranes. Capacitance values suggest a dielectric constant of 2.7 for phospholipid membranes in the absence of organic solvent. The protein toxin, melittin, destroys the insulating capability of the phospholipid layer without significantly altering the bilayer structure. This model membrane will allow the assessment of the effect of lipid membrane perturbants on the insulating properties of natural lipid membranes. PMID:7811924

  18. The Properties of Water in Polymeric Membranes.

    DTIC Science & Technology

    cellulose acetate (CA) membranes have been investigated by magnetic resonance techniques. The data suggest existence in the CA membrane, of two ’types’ of water: a small fraction of highly immobilized ’bound’ water and the remaining large fraction of ’free’ water. The NMR spectra of water adsorbed at various relative humidities on various cellulose ester membranes also have been studied. Membranes of cellulose acetate , triacetate and acetate-butyrate were investigated. The data suggest that the dependence of the

  19. The properties of an ion selective enzymatic asymmetric synthetic membrane.

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1971-01-01

    With the aid of a simple model membrane system, the properties of cellulose enzymes and of membrane selectivity and pump-like action are considered. The model is based on materials possibly present on a primitive earth, as well as on a membrane able to sort or concentrate these materials. An overview of the model membrane system is presented in terms of how it is constructed, what its properties are, and what to expect in performance characteristics. The model system is shown to be useful for studying the selective and in some cases accelerated transfer of nutrients and metabolites.

  20. Membrane Surface Nanostructures and Adhesion Property of T Lymphocytes Exploited by AFM

    NASA Astrophysics Data System (ADS)

    Wu, Yangzhe; Lu, Hongsong; Cai, Jiye; He, Xianhui; Hu, Yi; Zhao, Hongxia; Wang, Xiaoping

    2009-08-01

    The activation of T lymphocytes plays a very important role in T-cell-mediated immune response. Though there are many related literatures, the changes of membrane surface nanostructures and adhesion property of T lymphocytes at different activation stages have not been reported yet. However, these investigations will help us further understand the biophysical and immunologic function of T lymphocytes in the context of activation. In the present study, the membrane architectures of peripheral blood T lymphocytes were obtained by AFM, and adhesion force of the cell membrane were measured by acquiring force-distance curves. The results indicated that the cell volume increased with the increases of activation time, whereas membrane surface adhesion force decreased, even though the local stiffness for resting and activated cells is similar. The results provided complementary and important data to further understand the variation of biophysical properties of T lymphocytes in the context of in vitro activation.

  1. Membrane Permeability Properties of Dental Adhesive Films

    PubMed Central

    Carrilho, Marcela R.; Tay, Franklin R.; Donnelly, Adam M.; Agee, Kelli A.; Carvalho, Ricardo M.; Hosaka, Keiichi; Reis, Alessandra; Loguercio, Alessandro D.; Pashley, David H.

    2013-01-01

    This study evaluated the permeability properties of five experimental resin membranes that ranged from relatively hydrophobic to relatively hydrophilic to seal acid-etched dentin saturated with water or ethanol. The experimental resins (R1, R2, R3, R4 and R5) were evaluated as neat bonding agents or as solutions solvated with ethanol (70% resin/30% ethanol). The quality of dentin sealing by these experimental resins was expressed in terms of reflection coefficients calculated as the ratio of the effective osmotic pressure to the theoretical osmotic pressure of test solutions. The effective osmotic pressure produced across resin-bonded dentin was induced in hypertonic solutions (CaCl2 or albumin) at zero hydrostatic pressure. The outward fluid flow induced by these solutions was brought to zero by applying an opposing negative hydrostatic pressure. The least hydrophilic resins blends, R1 and R2, exhibited significantly (p<0.05) higher reflection coefficients than the most hydrophilic resins (R4 and R5) in both conditions of dentin saturation (water and ethanol). The reflection coefficients of neat resins were, in general, significantly higher when compared to their corresponding solvated versions in both conditions of dentin saturation. In dentin saturated with ethanol, bonding with neat or solvated resins, resulted in reflections coefficients that were significantly higher when compared to the results obtained in dentin saturated with water. Reflection coefficients of CaCl2 (ca. 1 × 10−4) were significantly lower (p<0.05) than for albumin (ca. 3 × 10−2). Application of hydrophobic resins may provide better sealing of acid-etched dentin if the substrate is saturated with ethanol, instead of water. PMID:18161803

  2. Ultralow Dielectric Property of Electrospun Polylactide-Polyglycolide Nanofibrous Membranes

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Jung; Chiou, Lung-Yi; Liao, Jun-Yi

    2011-10-01

    Polylactide-polyglycolide (PLGA) has been one of the most important biodegradable and biocompatible materials. In this study, nanofibrous membranes of PLGA were fabricated using an electro fiber spinning setup that consisted of a syringe and needle (the internal diameter is 0.42 mm), a ground electrode, an aluminum sheet, and a high voltage supply. The dielectric properties of the electrospun membranes were characterized. The experimental results suggested that the electrospun membranes exhibited ultralow dielectric behavior. The influences of the nanofibers diameter and the density of the membranes on the dielectric properties were also instigated. It was found that the dielectric constants decreased with the fiber diameter and increased with the density of the nanofibrous membranes. By employing the electrospinning process, one will be able to fabricate polymeric membranes with ultralow dielectric performance.

  3. Study on surface properties of gamma-alumina catalytic membrane

    SciTech Connect

    Mengchenu Lu; Guoxing Xiong; Bauser, H.

    1994-12-31

    In recent years, preparation and separation applications of gamma-alumina membranes have been extensively studied. In catalysis research field, this membrane can be used not only as a separating medium but also as a catalyst or catalyst support. In this paper, a gamma-alumina catalytic membrane was prepared by a sol-gel technique, then special attention was paid to its surface properties related to catalysis, its surface acidity, hydroxyl, microstructure and pore properties was studied by IR with pyridine adsorption, XRD and N{sub 2} adsorption at low temperature, 1-butanol dehydration as a probe reaction was used to study its reaction property.

  4. Ion channel activity in lobster skeletal muscle membrane.

    PubMed

    Worden, M K; Rahamimoff, R; Kravitz, E A

    1993-09-01

    Ion channel activity in the sarcolemmal membrane of muscle fibers is critical for regulating the excitability, and therefore the contractility, of muscle. To begin the characterization of the biophysical properties of the sarcolemmal membrane of lobster exoskeletal muscle fibers, recordings were made from excised patches of membrane from enzymatically induced muscle fiber blebs. Blebs formed as evaginations of the muscle sarcolemmal membrane and were sufficiently free of extracellular debris to allow the formation of gigaohm seals. Under simple experimental conditions using bi-ionic symmetrical recording solutions and maintained holding potentials, a variety of single channel types with conductances in the range 32-380 pS were detected. Two of these ion channel species are described in detail, both are cation channels selective for potassium. They can be distinguished from each other on the basis of their single-channel conductance and gating properties. The results suggest that current flows through a large number of ion channels that open spontaneously in bleb membranes in the absence of exogenous metabolites or hormones.

  5. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    PubMed Central

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  6. The Properties of Water in Polymeric Membranes.

    DTIC Science & Technology

    The relative amounts of freezing and non-freezing water in various water-wet cellulose acetate (CA) membranes have been determined by NMR techniques...by reverse osmosis is compared to that of the commonly used cellulose acetate .

  7. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.

    PubMed

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2014-02-01

    This study elucidates the relationship between membrane properties and the rejection of trace organic contaminants (TrOCs) in forward osmosis (FO). An asymmetric cellulose triacetate (CTA) and a thin-film composite (TFC) polyamide FO membrane were used for this investigation. The effective average pore radius (rp), selective barrier thickness over porosity parameter (l/ε), surface charge, support layer structural parameter (S), pure water permeability coefficient (A) and salt (NaCl) permeability coefficient (B) of the two membranes were systematically characterised. Results show that measured rejection of TrOCs as a function of permeate water flux can be well described by the pore hindrance transport model. This observation represents the first successful application of this model, which was developed for pressure-driven nanofiltration, to an osmotically-driven membrane process. The rejection of charged TrOCs by the CTA and TFC membranes was high and was governed by both electrostatic repulsion and steric hindrance. The TFC membrane exhibited higher rejection of neutral TrOCs with low molecular weight than the CTA membrane, although the estimated pore size of the TFC membrane (0.42 nm) was slightly larger than that of the CTA membrane (0.37 nm). This higher rejection of neutral TrOCs by the TFC membrane is likely attributed to its active layer properties, namely a more effective active layer structure, as indicated by a larger l/ε parameter, and pore hydration induced by the negative surface charge.

  8. Antibacterial properties of PES/CuCl(2) three-bore hollow fiber UF membrane.

    PubMed

    Dang, Jingchuan; Zhang, Yatao; Du, Zhan; Zhang, Haoqin; Liu, Jindun

    2012-01-01

    In this study, a three-bore polyethersulfone (PES) hollow fiber ultrafiltration (UF) membrane with antibacterial properties was prepared by phase inversion, using PES as the membrane material, N,N-dimethylacetamide (DMAC) as solvent, polyvinylpyrrolidone (PVP) and CuCl(2) as additives. The effect of CuCl(2) content on the water flux and rejection was studied and the antibacterial properties of PES hollow fiber UF membrane were also investigated. The water flux results indicated that the hydrophilic properties of PES UF membranes were improved after adding CuCl(2). The rejection of PVA-50000 was expected to drop slightly but remain high above 96%. The membranes showed good antibacterial activity against Escherichia coli (E. coli) after adding CuCl(2) and the antibacterial rate of PES/CuCl(2) UF membranes was close to 100% after running for 48 h. PES hollow fiber UF membranes with antibacterial properties were prepared through the formation of the water-soluble PVP/Cu(2+) complex with spatial network structure, which have good antibacterial and hydrophilic properties. Therefore, this study could provide an effective method for membrane antifouling.

  9. Linking membrane physical properties and low temperature tolerance in arthropods.

    PubMed

    Waagner, Dorthe; Bouvrais, Hélène; Ipsen, John H; Holmstrup, Martin

    2013-12-01

    Maintenance of membrane fluidity is of crucial importance in ectotherms experiencing thermal changes. This maintenance has in ectotherms most often been indicated using indirect measures of biochemical changes of phospholipid membranes, which is then assumed to modulate the physico-chemical properties of the membrane. Here, we measure bending rigidity characterizing the membrane flexibility of re-constituted membrane vesicles to provide a more direct link between membrane physical characteristics and low temperature tolerance. Bending rigidity of lipid bilayers was measured in vitro using Giant Unilamellar Vesicles formed from phospholipid extracts of the springtail, Folsomia candida. The bending rigidity of these membranes decreased when exposed to 0.4 vol% ethanol (0.23 mM/L). Springtails exposed to ethanol for 24h significantly increased their cold shock tolerance. Thus, by chemically inducing decreased membrane rigidity, we have shown a direct link between the physico-chemical properties of the membranes and the capacity to tolerate low temperature in a chill-susceptible arthropod.

  10. Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles.

    PubMed

    Ollila, Samuli; Hyvönen, Marja T; Vattulainen, Ilpo

    2007-03-29

    We elucidate the influence of unsaturation on single-component membrane properties, focusing on their dynamical aspects and lateral pressure profiles across the membrane. To this end, we employ atomistic molecular dynamics simulations to study five different membrane systems with varying degrees of unsaturation, starting from saturated membranes and systematically increasing the level of unsaturation, ending up with a bilayer of phospholipids containing the docosahexaenoic acid. For an increasing level of unsaturation, we find considerable effects on dynamical properties, such as accelerated dynamics of the phosphocholine head groups and glycerol backbones and speeded up rotational dynamics of the lipid molecules. The lateral pressure profile is found to be altered by the degree of unsaturation. For an increasing number of double bonds, the peak in the middle of the bilayer decreases. This is compensated for by changes in the membrane-water interface region in terms of increasing peak heights of the lateral pressure profile. Implications of the findings are briefly discussed.

  11. Ionic transport properties of template-synthesized gold nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Ionic transport in nanotubes exhibits unique properties due to the strong interactions between ions and the nanotube surface. The main objective of my research is to explore and regulate the ionic transport in gold nanotube membranes. Chapter 1 overviews a versatile method of fabricating nanostructured materials, called the template synthesis. Important parameters of the template synthesis are introduced such as templates and deposition methods. The template synthesis method is used to prepare membranes used in this dissertation. Chapter 2 describes a method to increase the ionic conductivity in membranes containing gold nanotubes with small diameter (4 nm). The gold nanotube membrane is prepared by the electroless plating of gold in a commercially available polycarbonate membrane. Voltages are applied to the gold nanotube membrane and fixed charges are injected on the gold nanotube walls. We show that ionic conductivity of the gold nanotube membrane can be enhanced in aqueous potassium chloride (KCl) solution at negative applied voltages. When the most negative voltage (-0.8 V vs. Ag/AgCl) is applied to the membrane, the ionic conductivity of the solution inside the gold nanotube (94 mS.cm-1) is comparable to that of 1 M aqueous KCl, over two orders of magnitude higher than that of the 0.01 M KCl contacting the membrane. Chapter 3 explores another important transport property of the gold nanotube membrane -- ion permselectivity. When the permselective membrane separates two electrolyte solutions at different concentrations, a membrane potential is developed and measured by the potentiometric method. Surface charge density and the ion mobilities are estimated by fitting the experimental data with a pre-existing model. The surface charge density of the gold nanotube membrane in this research is estimated to be 2 muC/cm2. Chapter 4 describes voltage-controlled ionic transport in a gold/polypyrrole membrane doped with sodium dodecylbenzene sulfonate (DBS). Polypyrrole

  12. Purification and properties of a shortened form of cytochrome P-450 2E1: deletion of the NH2-terminal membrane-insertion signal peptide does not alter the catalytic activities.

    PubMed Central

    Larson, J R; Coon, M J; Porter, T D

    1991-01-01

    As reported previously, alcohol-inducible cytochrome P-450 2E1 lacking the hydrophobic NH2-terminal segment is located primarily in the inner cell membrane when expressed in Escherichia coli and is active with a typical substrate. To study the catalytic properties in detail, we have purified the truncated P-450 lacking residues 3-29 to electrophoretic homogeneity from the solubilized bacterial membrane fraction in the presence of 4-methylpyrazole as a stabilizing agent. The resulting heme protein with a specific content of 15.8 nmol of P-450 per mg of protein has a reduced CO difference spectrum identical to that of the full-length enzyme, with a Soret maximum at 452 nm. The rates of catalysis of four reactions in the reconstituted enzyme system, including the oxygenation of ethanol to give acetaldehyde, the oxidative dealkylation of N-nitrosodiethylamine to give ethylene and acetaldehyde, and the ring hydroxylation of aniline and p-nitrophenol, are the same with the shortened and full-length enzymes. The apparent Km of p-nitrophenol is also the same, as is that for NADPH-cytochrome P-450 reductase and for cytochrome b5, which stimulates p-nitrocatechol formation about 3-fold. Moreover, the requirement for phosphatidylcholine for full catalytic activity is unchanged despite the absence of the NH2-terminal segment. Although this highly hydrophobic segment is believed to play a role in the intact cell as a membrane-insertion signal sequence, we conclude that it has no function in the catalytic activity of the cytochrome as an oxygenase, including interactions with the other components of the enzyme system. Images PMID:1656462

  13. Characterization of a hybrid powdered activated carbon-dynamic membrane bioreactor (PAC-DMBR) process with high flux by gravity flow: Operational performance and sludge properties.

    PubMed

    Hu, Yisong; Wang, Xiaochang C; Sun, Qiyuan; Ngo, Huu Hao; Yu, Zhenzhen; Tang, Jialing; Zhang, Qionghua

    2017-01-01

    Three PAC-DMBRs were developed for wastewater treatment under different PAC dosages with biomass concentrations averaged at 2.5, 3.5 and 5.0g/L. The DMBRs could be continuously operated at 40-100L/m(2)h, while higher fluxes were obtained within the PAC-DMBRs with hydraulic retention times varying in 4-10h. A dose of 1g/L PAC brought about obvious improvement in the sludge particle size distribution, settling, flocculating and dewatering properties due to the formation of biological PAC, and the sludge properties were further improved at a higher PAC dose (3g/L). The addition of PAC notably shortened the DM formation time after air backwashing and enhanced pollutant removal. Moreover, under a long solid retention time (approximately 150d), the concentrations of both soluble and bound extracellular polymeric substances (EPS) decreased substantially because of the adsorption and biodegradation effects of the biological PAC. No obvious impact on biomass activity was observed with PAC addition.

  14. Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility.

    PubMed

    Xie, Yi; Li, Shuang-Si; Jiang, Xin; Xiang, Tao; Wang, Rui; Zhao, Chang-Sheng

    2015-04-01

    In this study, novel zwitterionic glycosyl modified polyethersulfone (PES) ultrafiltration membranes were prepared via in-situ cross-linking polymerization coupled with phase inversion technique, and the following reactions. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), (1)HNMR spectrum, and static water contact angles (WCAs) measurements. The modified membranes showed excellent anti-fouling property, and the flux recovery ratio could reach almost 100%. Meanwhile, the blood compatibility of the membranes was measured by protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT), and thrombin time (TT). The results implied that the zwitterionic glycosyl modified PES membranes had good anti-fouling property and blood compatibility.

  15. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties[S

    PubMed Central

    Sousa, Tânia; Castro, Rui E.; Pinto, Sandra N.; Coutinho, Ana; Lucas, Susana D.; Moreira, Rui; Rodrigues, Cecília M. P.; Prieto, Manuel; Fernandes, Fábio

    2015-01-01

    Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure. PMID:26351365

  16. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties.

    PubMed

    Sousa, Tânia; Castro, Rui E; Pinto, Sandra N; Coutinho, Ana; Lucas, Susana D; Moreira, Rui; Rodrigues, Cecília M P; Prieto, Manuel; Fernandes, Fábio

    2015-11-01

    Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure.

  17. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  18. Erythrocyte membrane tropomyosin. Purification and properties.

    PubMed

    Fowler, V M; Bennett, V

    1984-05-10

    Two polypeptides of Mr approximately 29,000 and 27,000 have been identified in human erythrocyte membranes that cross-react specifically with affinity purified antibodies to chicken gizzard tropomyosin. The cross-reacting polypeptides are quantitatively retained on the membrane after cell lysis if millimolar concentrations of magnesium are included in the lysis and wash buffers, indicating that they are membrane-bound proteins under physiological conditions. Milligram quantities of these immunoreactive polypeptides have been purified to greater than 95% purity from a low salt extract of membranes by DEAE-chromatography, precipitation at pH 4.4, and heating to 85 degrees C to denature contaminants. Physical similarities of the erythrocyte protein to other tropomyosins include (a) amino acid composition (b) anomalous migration of the Mr approximately 29,000 and 27,000 polypeptides on sodium dodecyl sulfate-gels in the presence of 6 M urea to apparent Mr approximately 43,000 and 38,000, respectively (c) arrangement of chains as dimers of Mr approximately 60,000 based on cross-linking studies and calculation of molecular weight from hydrodynamic values (Rs = 5.9 nm, sedimentation coefficient = 2.5 S; partial specific volume = 0.72 cm3/g) and (d) highly asymmetric shape, based on a frictional ratio of 2.07. Binding of erythrocyte tropomyosin to muscle F-actin saturates at one tropomyosin molecule (Mr approximately 60,000) to 6-7 actin monomers and is highly cooperative with a Hill coefficient of about 2.8, similar to muscle tropomyosins. Binding also exhibits a high degree of cooperativity as a function of the magnesium concentration with a transition between no binding and complete binding between 1 and 2 mM MgCl2. Increasing the magnesium concentration from 2 to 10 mM increases the apparent affinity of tropomyosin for actin from approximately 2.6 X 10(6) M-1 to approximately 2.7 X 10(7) M-1 without effect on the Hill coefficient. The tropomyosin polypeptides comprise

  19. Mechanical properties of 3D printed warped membranes

    NASA Astrophysics Data System (ADS)

    Kosmrlj, Andrej; Xiao, Kechao; Weaver, James C.; Vlassak, Joost J.; Nelson, David R.

    2015-03-01

    We explore how a frozen background metric affects the mechanical properties of solid planar membranes. Our focus is a special class of ``warped membranes'' with a preferred random height profile characterized by random Gaussian variables h (q) in Fourier space with zero mean and variance < | h (q) | 2 > q-m . It has been shown theoretically that in the linear response regime, this quenched random disorder increases the effective bending rigidity, while the Young's and shear moduli are reduced. Compared to flat plates of the same thickness t, the bending rigidity of warped membranes is increased by a factor hv / t while the in-plane elastic moduli are reduced by t /hv , where hv =√{< | h (x) | 2 > } describes the frozen height fluctuations. Interestingly, hv is system size dependent for warped membranes characterized with m > 2 . We present experimental tests of these predictions, using warped membranes prepared via high resolution 3D printing.

  20. Architectural study of active membrane antennas

    NASA Technical Reports Server (NTRS)

    Moussessian, A.; DiDomenico, L.; Edelstein, W.

    2002-01-01

    One method to dramatically reduce the weight, volume and associated cost of space-based SyntheticAperture Radars (SAR) is to replace the conventional rigid manifold antenna architecture with a flexible thin-film membrane. This has been successfully demonstrated as a passive array. To further reduce the cost and weight and provide 2D scanning required by space-based applications we also need to integrate the Transmit/Receive (TR) function into the inflatable antenna elements. This paper explores the constraints that must be placed on the active electronics of a flexible antenna array as well as some of the preliminary work in this area.

  1. Molecular properties of steroids involved in their effects on the biophysical state of membranes.

    PubMed

    Wenz, Jorge J

    2015-10-01

    The activity of steroids on membranes was studied in relation to their ordering, rigidifying, condensing and/or raft promoting ability. The structures of 82 steroids were modeled by a semi-empirical procedure (AM1) and 245 molecular descriptors were next computed on the optimized energy conformations. Principal component analysis, mean contrasting and logistic regression were used to correlate the molecular properties with 212 cases of documented activities. It was possible to group steroids based on their properties and activities, indicating that steroids having similar molecular properties have similar activities on membranes. Steroids having high values of area, partition coefficient, volume, number of rotatable bonds, molar refractivity, polarizability or mass displayed ordering, rigidifying, condensing and/or raft promoting activity on membranes higher than those steroids having low values in such molecular properties. After a variable selection procedure circumventing correlation problems among descriptors, area and log P were found as the most relevant properties in governing and predicting the activity of steroids on membranes. A logistic regression model as a function of the area and log P of the steroids is proposed, which is able to predict correctly 92.5% of the cases. A rationale of the findings is discussed.

  2. Reverse osmosis membrane of high urea rejection properties. [water purification

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  3. Transport Properties of Aqueous Glycerol and Aqueous Mannitol through the Zirconium Oxide Membrane

    PubMed

    Blokhra; Sharma; Blokhra

    1997-08-15

    The transport properties of aqueous glycerol and aqueous mannitol across a zirconium oxide membrane are, investigated from the point of view of irreversible thermodynamics. The data on hydrodynamic permeability are analyzed in terms of frictional coefficients and entropy of activation. The phenomenological coefficient characterizing the electroosmotic flow and the membrane characteristics are also estimated for the various solutions with the object of determining the efficiencies of electrokinetic energy conversion and zeta potential. Copyright 1997Academic Press

  4. Effect of defoliant (butiphose) on morpho-physiological properties and enzyme systems of natural membranes.

    PubMed

    Mirakhmedov, A K; Ochilov, K R; Sagatova, G A; Khan, M Z; Khole, V

    1989-03-01

    Butiphose (Tributyltritiophosphate, (C4H9S)3PO) a commonly used defoliant in cotton growing regions of USSR, caused extensive alterations in morphological features of erythrocyte and nuclear membranes and affected the permeability properties of rat liver mitochondrial membrane. It disrupted Ca2+ transport system and other energy dependent processes in mitochondria. A reduction in the activity of cytochrome-c-oxidase and NAD.H-oxidase was also observed.

  5. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    NASA Astrophysics Data System (ADS)

    Li, Jian-Hua; Li, Mi-Zi; Miao, Jing; Wang, Jia-Bin; Shao, Xi-Sheng; Zhang, Qi-Qing

    2012-06-01

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  6. Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes.

    PubMed

    Varela, Ana R P; Ventura, Ana E; Carreira, Ana C; Fedorov, Aleksander; Futerman, Anthony H; Prieto, Manuel; Silva, Liana C

    2016-12-21

    Glucosylceramide (GlcCer) plays an active role in the regulation of various cellular events. Moreover, GlcCer is also a key modulator of membrane biophysical properties, which might be linked to the mechanism of its biological action. In order to understand the biophysical implications of GlcCer on membranes of living cells, we first studied the effect of GlcCer on artificial membranes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). Using an array of biophysical methods, we demonstrate that at lower GlcCer/Chol ratios, GlcCer stabilizes SM/Chol-enriched liquid-ordered domains. However, upon decreasing the Chol content, GlcCer significantly increased membrane order through the formation of gel domains. Changes in pH disturbed the packing properties of GlcCer-containing membranes, leading to an increase in membrane fluidity and reduced membrane electronegativity. To address the biophysical impact of GlcCer in biological membranes, studies were performed in wild type and in fibroblasts treated with conduritol-B-epoxide (CBE), which causes intracellular GlcCer accumulation, and in fibroblasts from patients with type I Gaucher disease (GD). Decreased membrane fluidity was observed in cells containing higher levels of GlcCer, such as in CBE-treated and GD cells. Together, we demonstrate that elevated GlcCer levels change the biophysical properties of cellular membranes, which might compromise membrane-associated cellular events and be of relevance for understanding the pathology of diseases, such as GD, in which GlcCer accumulates at high levels.

  7. Endocrine Activity of Extraembryonic Membranes Extends beyond Placental Amniotes

    PubMed Central

    Albergotti, Lori C.; Hamlin, Heather J.; McCoy, Michael W.; Guillette,, Louis J.

    2009-01-01

    Background During development, all amniotes (mammals, reptiles, and birds) form extraembryonic membranes, which regulate gas and water exchange, remove metabolic wastes, provide shock absorption, and transfer maternally derived nutrients. In viviparous (live-bearing) amniotes, both extraembryonic membranes and maternal uterine tissues contribute to the placenta, an endocrine organ that synthesizes, transports, and metabolizes hormones essential for development. Historically, endocrine properties of the placenta have been viewed as an innovation of placental amniotes. However, an endocrine role of extraembryonic membranes has not been investigated in oviparous (egg-laying) amniotes despite similarities in their basic structure, function, and shared evolutionary ancestry. In this study, we ask whether the oviparous chorioallantoic membrane (CAM) of chicken (Gallus gallus) has the capability to synthesize and receive signaling of progesterone, a major placental steroid hormone. Methodology/Principal Findings We quantified mRNA expression of key steroidogenic enzymes involved in progesterone synthesis and found that 3β-hydroxysteroid dehydrogenase, which converts pregnenolone to progesterone exhibited a 464 fold increase in the CAM from day 8 to day 18 of embryonic development (F5, 68 = 89.282, p<0.0001). To further investigate progesterone synthesis, we performed explant culture and found that the CAM synthesizes progesterone in vitro in the presence of a steroid precursor. Finally, we quantified mRNA expression and performed protein immunolocalization of the progesterone receptor in the CAM. Conclusions/Significance Collectively, our data indicate that the chick CAM is steroidogenic and has the capability to both synthesize progesterone and receive progesterone signaling. These findings represent a paradigm shift in evolutionary reproductive biology by suggesting that endocrine activity of extraembryonic membranes is not a novel characteristic of placental

  8. Antiviral activity of squalamine: Role of electrostatic membrane binding

    NASA Astrophysics Data System (ADS)

    Beckerman, Bernard; Qu, Wei; Mishra, Abhijit; Zasloff, Michael; Wong, Gerard; Luijten, Erik

    2012-02-01

    Recent workootnotetextM. Zasloff et al., Proc. Nat. Acad. Sci. (USA) 108, 15978 (2011). has demonstrated that squalamine, a molecule found in the liver of sharks, exhibits broad-spectrum antiviral properties. It has been proposed that this activity results from the charge-density matching of squalamine and phospholipid membranes, causing squalamine to bind to membranes and displace proteins such as Rac1 that are crucial for the viral replication cycle. Here we investigate this hypothesis by numerical simulation of a coarse-grained model for the competition between Rac1 and squalamine in binding affinity to a flat lipid bilayer. We perform free-energy calculations to test the ability of squalamine to condense stacked bilayer systems and thereby displace bulkier Rac1 molecules. We directly compare our findings to small-angle x-ray scattering results for the same setup.

  9. Membrane properties of smooth muscle cells in pulmonary arteries of the rat.

    PubMed

    Suzuki, H; Twarog, B M

    1982-05-01

    Electrical properties of the membrane of smooth muscle cells in the rat main pulmonary artery (MPA) and a small pulmonary artery (SPA) were compared. MPA and SPA differed in several important respects, suggesting characteristic quantitative and qualitative differences in membrane properties. 1) Resting membrane potentials were similar in both (MPA 52.2 +/- 1.3 mV; SPA 51.5 +/- 1.7 mV). The cells displayed no spontaneous electrical activity. The muscle layers in both MPA and SPA showed cablelike properties; a graded local response to outward current pulses was observed, but no action potentials were evoked. 2) Tetraethylammonium chloride (TEA, 1-5 mM) depolarized, increased membrane resistance, and suppressed rectification in MPA. TEA strongly depolarized SPA and contraction ensued. 3) The maximum membrane depolarization produced by a 10-fold increase in extracellular [K+] was 48 mV in MPA and 47 mV in SPA. In K+-free solution gradual depolarization was observed in SPA, but the membrane potential in MPA was not modified. Restoration of K+-containing solution produced equivalent hyperpolarization in both tissues, indicating a similar degree of stimulation of electrogenic Na+-K+ pumping. 4) A Na+-deficient solution did not affect the membrane potential in MPA but depolarized SPA.

  10. Membrane protein properties revealed through data-rich electrostatics calculations

    PubMed Central

    Guerriero, Christopher J.; Brodsky, Jeffrey L.; Grabe, Michael

    2015-01-01

    SUMMARY The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem including: full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane induced pKa shifts, calculation of non-polar energies, and command-line scripting for large scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane potentially revealing interesting functional information. PMID:26118532

  11. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    SciTech Connect

    Duan, QJ; Ge, SH; Wang, CY

    2013-12-01

    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34. (C) 2013 Elsevier B.V. All rights reserved.

  12. Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane

    PubMed Central

    Reddy, A. Srinivas; Warshaviak, Dora Toledo; Chachisvilis, Mirianas

    2013-01-01

    Molecular dynamics simulations of a dioleoylphosphocholine (DOPC) lipid bilayer were performed to explore its mechanosensitivity. Variations in the bilayer properties, such as area per lipid, volume, thickness, hydration depth (HD), hydration thickness (HT), lateral diffusion coefficient, and changes in lipid structural order were computed in the membrane tension range 0 to 15 dyn/cm. We determined that an increase in membrane tension results in a decrease in the bilayer thickness and HD of ∼5% and ∼5.7% respectively, whereas area per lipid, volume, and HT/HD increased by 6.8%, 2.4%, and 5% respectively. The changes in lipid conformation and orientation were characterized using orientational (S2) and deuterium (SCD) order parameters. Upon increase of membrane tension both order parameters indicated an increase in lipid disorder by 10– 20%, mostly in the tail end region of the hydrophobic chains. The effect of membrane tension on lipid lateral diffusion in the DOPC bilayer was analyzed on three different time scales corresponding to inertial motion, anomalous diffusion and normal diffusion. The results showed that lateral diffusion of lipid molecules is anomalous in nature due to the non-exponential distribution of waiting times. The anomalous and normal diffusion coefficients increased by 20% and 52% when the membrane tension changed from 0 to 15 dyn/cm, respectively. In conclusion, our studies showed that membrane tension causes relatively significant changes in the area per lipid, volume, polarity, membrane thickness, and fluidity of the membrane suggesting multiple mechanisms by which mechanical perturbation of the membrane could trigger mechanosensitive response in cells. PMID:22588133

  13. Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties.

    PubMed

    Prades, Jesús; Vögler, Oliver; Alemany, Regina; Gomez-Florit, Manuel; Funari, Sérgio S; Ruiz-Gutiérrez, Valentina; Barceló, Francisca

    2011-03-01

    Free triterpenic acids (TTPs) present in plants are bioactive compounds exhibiting multiple nutriceutical activities. The underlying molecular mechanisms have only been examined in part and mainly focused on anti-inflammatory properties, cancer and cardiovascular diseases, in all of which TTPs frequently affect membrane-related proteins. Based on the structural characteristics of TTPs, we assume that their effect on biophysical properties of cell membranes could play a role for their biological activity. In this context, our study is focused on the compounds, oleanolic (3β-hydroxy-12-oleanen-28-oic acid, OLA), maslinic (2α,3β-dihydroxy-12-oleanen-28-oic acid, MSL) and ursolic ((3β)-3-hydroxyurs-12-en-28-oic acid, URL) as the most important TTPs present in orujo olive oil. X-ray diffraction, differential scanning calorimetry, (31)P nuclear magnetic resonance and Laurdan fluorescence data provide experimental evidence that OLA, MSL and URL altered the structural properties of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and DPPC-Cholesterol (Cho) rich membranes, being located into the polar-hydrophobic interphase. Specifically, in DPPC membranes, TTPs altered the structural order of the L(β'), phase without destabilizing the lipid bilayer. The existence of a nonbilayer isotropic phase in coexistence with the liquid crystalline L(α) phase, as observed in DPPC:URL samples, indicated the presence of lipid structures with high curvature (probably inverted micelles). In DPPC:Cho membranes, TTPs affected the membrane phase properties increasing the Laurdan GP values above 40°C. MSL and URL induced segregation of Cho within the bilayer, in contrast to OLA, that reduced the structural organization of the membrane. These results strengthen the relevance of TTP interactions with cell membranes as a molecular mechanism underlying their broad spectrum of biological effects.

  14. Cable theory in neurons with active, linearized membranes.

    PubMed

    Koch, C

    1984-01-01

    This investigation aims at exploring some of the functional consequences of single neurons containing active, voltage dependent channels for information processing. Assuming that the voltage change in the dendritic tree of these neurons does not exceed a few millivolts, it is possible to linearize the non-linear channel conductance. The membrane can then be described in terms of resistances, capacitances and inductances, as for instance in the small-signal analysis of the squid giant axon. Depending on the channel kinetics and the associated ionic battery the linearization yields two basic types of membrane: a membrane modeled by a collection of resistances and capacitances and membranes containing in addition to these components inductances. Under certain specified conditions the latter type of membrane gives rise to a membrane impedance that displays a prominent maximum at some nonzero resonant frequency fmax. We call this type of membrane quasi-active, setting it apart from the usual passive membrane. We study the linearized behaviour of active channels giving rise to quasi-active membranes in extended neuronal structures and consider several instances where such membranes may subserve neuronal function: 1. The resonant frequency of a quasi-active membrane increases with increasing density of active channels. This might be one of the biophysical mechanisms generating the large range over which hair cells in the vertebrate cochlea display frequency tuning. 2. The voltage recorded from a cable with a quasi-active membrane can be proportional to the temporal derivative of the injected current. 3. We modeled a highly branched dendritic tree (delta-ganglion cell of the cat retina) using a quasi-active membrane. The voltage attenuation from a given synaptic site to the soma decreases with increasing frequency up to the resonant frequency, in sharp contrast to the behaviour of passive membranes.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Solubilization of active (H+ + K+)-ATPase from gastric membrane.

    PubMed

    Soumarmon, A; Grelac, F; Lewin, M J

    1983-08-10

    (H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 +/- 9 mumol Pi and 2.9 +/- 0.6 mumol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 +/- 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1-2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 X g X 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (mumol Pi/mg protein per h) 32 +/- 9 (basal) and 86 +/- 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (mumol p-nitrophenol/mg protein per h) 2.6 +/- 0.5 (basal) and 22.2 +/- 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 +/- 0.041 (basal) and 0.057 +/- 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure.

  16. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor.

    PubMed

    Zhang, Weidong; Qing, Weihua; Ren, Zhongqi; Li, Wei; Chen, Jiangrong

    2014-11-01

    A composite catalytically active membrane immobilized with Candida rugosa lipase has been prepared by immersion phase inversion technique for enzymatic synthesis of lauryl stearate in a pervaporation membrane reactor. SEM images showed that a "sandwich-like" membrane structure with a porous lipase-PVA catalytic layer uniformly coated on a polyvinyl alcohol (PVA)/polyethersulfone (PES) bilayer was obtained. Optimum conditions for lipase immobilization in the catalytic layer were determined. The membrane was proved to exhibit superior thermal stability, pH stability and reusability than free lipase under similar conditions. In the case of pervaporation coupled synthesis of lauryl stearate, benefited from in-situ water removal by the membrane, a conversion enhancement of approximately 40% was achieved in comparison to the equilibrium conversion obtained in batch reactors. In addition to conversion enhancement, it was also found that excess water removal by the catalytically active membrane appears to improve activity of the lipase immobilized.

  17. The evolution of endothermy: role for membranes and molecular activity.

    PubMed

    Else, Paul L; Turner, N; Hulbert, A J

    2004-01-01

    On the basis of the comparative approach and three models of metabolism (endothermic and ectothermic vertebrates, body mass, and mammalian development), we suggest that a few common cellular processes, linked either directly or indirectly to membranes, consume the majority of energy used by most organisms; that membranes act as pacemakers of metabolism through changes in lipid composition, altering membrane characteristics and the working environment of membrane proteins--specifically, that changes in the membrane environment similarly affect the molecular activities (specific rates of activity) of membrane-bound proteins; and that polyunsaturation of membranes increases whereas monounsaturation decreases the activity of membrane proteins. Experiments designed to test this theory using the sodium pump support this supposition. Potential mechanisms considered include fluidity, electrical fields, and related surface area requirements of lipids. In considering the evolution of endothermy in mammals, for example, if the first mammals were small, possibly nocturnal and active organisms, all these factors would favour increased polyunsaturation of membranes. Such changes (from monounsaturated to polyunsaturated membranes) would allow membranes to set the pace of metabolism in the evolution of endothermy.

  18. Improving the Performance and Antifouling Properties of Thin-Film Composite Membranes for Water Separation Technologies

    NASA Astrophysics Data System (ADS)

    Tiraferri, Alberto

    Membrane-based water separation processes utilize semi-permeable membranes to retain dissolved solids and contaminants. Deployment of these technologies for desalination and wastewater reuse has the potential to sustainably increase the supply of potable, agricultural, and industrial water. Despite considerable development of semi-permeable membranes in the last decades, several design obstacles hampering their progress have yet to be overcome. Specifically, major membrane improvements are currently sought with respect to their performance and productivity, as well as their resistance to fouling. This dissertation research aims at the advancement of semi-permeable membranes by rational optimization of their design to: (i) understand and improve their transport properties and (ii) reduce fouling by organic molecules and delay biofouling by microorganisms. In particular, thin-film composite polyamide membranes for both reverse osmosis and forward osmosis processes are the main target of the investigation. The structural and physicochemical properties of thin-film composite membranes are both characterized and tailored through implementation of original techniques and novel functionalization protocols. The membrane structure and morphology are rationally modified to enhance the mass transport within the support layer. The influence of fabrication conditions on support layer formation and on its final structure is elucidated. The intricate interrelationship among the performance of the different layers of the composite membrane is highlighted and a new protocol is developed to characterize the transport properties of membranes deployed in forward osmosis processes. Novel approaches to impart targeted properties to the active surface of thin-film composite membranes are also proposed. The functionalization is achieved by exploiting the inherent moieties of the polyamide layer to irreversibly bind nanomaterials with desired properties. An experimental method to determine

  19. Interface design and reinforced features of arrowroot (Maranta arundinacea) starch/polyester-based membranes: Preparation, antioxidant activity, and cytocompatibility.

    PubMed

    Wu, Chin-San; Liao, Hsin-Tzu

    2017-01-01

    The structural, mechanical, antioxidant, and cytocompatibility properties of membranes prepared from the polyhydroxyalkanoate (PHA) and arrowroot (Maranta arundinacea) starch powder (ASP) blend (PHA/ASP) were studied. The acrylic acid-grafted PHA (PHA-g-AA) and the coupling agent treated ASP (TASP) were used to enhance the desired characteristics of these membranes. The PHA-g-AA/TASP membranes had better mechanical properties than the PHA/ASP membrane. This effect was attributed to greater compatibility between the grafted PHA and TASP. The water resistance of the PHA-g-AA/TASP membranes was greater than that of the PHA/ASP membranes, and a cytocompatibility evaluation with human foreskin fibroblasts (FBs) indicated that both materials were nontoxic. Moreover, both ASP and TASP enhanced the polyphenol content and antioxidant properties of the membranes. PHA-g-AA/TASP and PHA/ASP membranes had better antioxidant activity than the control group.

  20. Effect of free fatty acids on the structure and properties of erythrocyte membrane.

    PubMed

    Lapshina, E A; Zavodnik, I B; Bryszewska, M

    1995-08-01

    The changes in the structure and properties of erythrocyte membranes that are induced by free fatty acids and their derivatives have been studied. The state of the membrane has been evaluated using the activity of membrane-bound acetylcholinesterase (AChE), the pyrene monomer/excimer fluorescence intensity ratio as an indicator of membrane lipid microviscosity and the fluorescence of membrane-bound 1-anilinonaphtalene-8-sulphonic acid (ANS). Free fatty acids and corresponding aliphatic aldehydes induced an inhibition of membrane-bound AChE, effectively decreased the bulk lipid and protein-bound lipid microviscosity, and quenched the fluorescence of membrane-bound ANS. The type and efficiency of the enzyme inhibition, as well as the efficiency of microviscosity decrease and ANS fluorescence quenching, depended on the hydrophobicity and the end group in the effector molecule. Therefore, it is proposed that fatty acids and related compounds perturb the lipid bilayer and disturb the protein-lipid complementarity of the human erythrocyte membrane.

  1. Magnetically Activated Self-Cleaning Membranes

    DTIC Science & Technology

    2010-06-01

    available nanofiltration membranes were modified by growing polymer brushes from the surface of the membrane. Two different polymerization methods have been...dimethylaminopyridine DMF: n,n-dimethylformamide EDC: 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HEMA: 2-hydroxyethylmethacrylate NF: Nanofiltration NHS... nanofiltration , oily wastewaters, rejection, superparamagnetic nanoparticles Acknowledgements The financial support of the Strategic Environmental Research

  2. Influences of acid-base property of membrane on interfacial interactions related with membrane fouling in a membrane bioreactor based on thermodynamic assessment.

    PubMed

    Zhao, Leihong; Qu, Xiaolu; Zhang, Meijia; Lin, Hongjun; Zhou, Xiaoling; Liao, Bao-Qiang; Mei, Rongwu; Hong, Huachang

    2016-08-01

    Failure of membrane hydrophobicity in predicting membrane fouling requires a more reliable indicator. In this study, influences of membrane acid base (AB) property on interfacial interactions in two different interaction scenarios in a submerged membrane bioreactor (MBR) were studied according to thermodynamic approaches. It was found that both the polyvinylidene fluoride (PVDF) membrane and foulant samples in the MBR had relatively high electron donor (γ(-)) component and low electron acceptor (γ(+)) component. For both of interaction scenarios, AB interaction was the major component of the total interaction. The results showed that, the total interaction monotonically decreased with membrane γ(-), while was marginally affected by membrane γ(+), suggesting that γ(-) could act as a reliable indicator for membrane fouling prediction. This study suggested that membrane modification for fouling mitigation should orient to improving membrane surface γ(-) component rather than hydrophilicity.

  3. Polymer electrolyte membranes from fluorinated polyisoprene-block-sulfonated polystyrene: Membrane structure and transport properties

    SciTech Connect

    Sodeye, Akinbode; Huang, Tianzi; Gido, Samuel; Mays, Jimmy

    2011-01-01

    With a view to optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block copolymer ionomers of fluorinated polyisoprene-block-sulfonated polystyrene (FISS) with various sulfonation levels, in both the acid form and the cesium neutralized form. The morphology of these membranes was characterized by transmission electron microscopy and ultra-small angle X-ray scattering, as well as water uptake, proton conductivity and methanol permeability within the temperature range from 20 to 60 C. Random phase separated morphologies were obtained for all samples except the cesium sample with 50 mol% sulfonation. The transport properties increased with increasing degree of sulfonation and temperature for all samples. The acid form samples absorbed more water than the cesium samples with a maximum swelling of 595% recorded at 60 C for the acid sample having 50 mol% sulfonation. Methanol permeability for the latter sample was more than an order of magnitude less than for Nafion 112 but so was the proton conductivity within the plane of the membrane at 20 C. Across the plane of the membrane this sample had half the conductivity of Nafion 112 at 60 C.

  4. [Properties of the chorioamnios zone inducing premature membranes rupture].

    PubMed

    Meraz Cruz, M C Noemí; Beltrán Montoya, Jorge; Bustos López, Hugo; Flores Pliego, Arturo; Espejel, Aurora; Buendía Díaz, Gerardo; Vadillo-Ortega, Felipe

    2003-11-01

    Premature membrane rupture (PMR) is one of the most serious public health problems in the world, ocurring in 10% of all pregnancies. PMR has important adverse effects on maternofetal morbidity-mortality, as it has been estimated that it accounts on the whole for 70% and 40% of neonatal morbidity and mortality, respectively. PMR treatment is empirical, as its aetiology is unknown and its physiopathogenic description has just been initiated. This work analyzes the possibility of documenting functional differences in human chorio-amnios, comparing the zone where rupture most frequently occurs in PMR with some other distant chorio-amnionic zones and with equivalent zones of fetal membranes obtained from nine month pregnancies which have not undergone labor. The membrane zone which was nearest to the cervical os was identified and marked to be analyzed later for extracellular matrix metalloprotease (MMP) activity, histology and topographical MMP distribution. The MMP expression was quantitatively determined in explant culture media from membrane fragments using specific immuno-enzymatic essays (ELISA) and zymography. In addition, immuno-histochemistry methods were used to reveal MMP expression in the different tissues. This methods allowed us to show the existence of a decreasing MMP activity gradient, with the greatest value corresponding to the zone nearest to the cervical os in the membranes obtained from PMR cases. In membranes obtained from cesarean operations no characteristic pattern was documented and values were always lower than those obtained for PMR tissues. We conclude that there is a chorio-amnionic zone in which connective tissue degradation is specifically induced and which coincides with the membrane zone in contact with the cervical os.

  5. How Lipid Membranes Affect Pore Forming Toxin Activity.

    PubMed

    Rojko, Nejc; Anderluh, Gregor

    2015-12-15

    Pore forming toxins (PFTs) evolved to permeate the plasma membrane of target cells. This is achieved in a multistep mechanism that usually involves binding of soluble protein monomer to the lipid membrane, oligomerization at the plane of the membrane, and insertion of part of the polypeptide chain across the lipid membrane to form a conductive channel. Introduced pores allow uncontrolled transport of solutes across the membrane, inflicting damage to the target cell. PFTs are usually studied from the perspective of structure-function relationships, often neglecting the important role of the bulk membrane properties on the PFT mechanism of action. In this Account, we discuss how membrane lateral heterogeneity, thickness, and fluidity influence the pore forming process of PFTs. In general, lipid molecules are more accessible for binding in fluid membranes due to steric reasons. When PFT specifically binds ordered domains, it usually recognizes a specific lipid distribution pattern, like sphingomyelin (SM) clusters or SM/cholesterol complexes, and not individual lipid species. Lipid domains were also suggested to act as an additional concentration platform facilitating PFT oligomerization, but this is yet to be shown. The last stage in PFT action is the insertion of the transmembrane segment across the membranes to build the transmembrane pore walls. Conformational changes are a spontaneous process, and sufficient free energy has to be available for efficient membrane penetration. Therefore, fluid bilayers are permeabilized more readily in comparison to highly ordered and thicker liquid ordered lipid phase (Lo). Energetically more costly insertion into the Lo phase can be driven by the hydrophobic mismatch between the thinner liquid disordered phase (Ld) and large protein complexes, which are unable to tilt like single transmembrane segments. In the case of proteolipid pores, membrane properties can directly modulate pore size, stability, and even selectivity. Finally

  6. The Structural Basis of Cholesterol Activity in Membranes

    SciTech Connect

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  7. Effect of glucosylceramide on the biophysical properties of fluid membranes.

    PubMed

    Varela, Ana R P; Gonçalves da Silva, Amélia M P S; Fedorov, Alexander; Futerman, Anthony H; Prieto, Manuel; Silva, Liana C

    2013-03-01

    Glucosylceramide (GlcCer), a relevant intermediate in the pathways of glycosphingolipid metabolism, plays key roles in the regulation of cell physiology. The molecular mechanisms by which GlcCer regulates cellular processes are unknown, but might involve changes in membrane biophysical properties and formation of lipid domains. In the present study, fluorescence spectroscopy, confocal microscopy and surface pressure-area (π-A) measurements were used to characterize the effect of GlcCer on the biophysical properties of model membranes. We show that C16:0-GlcCer has a high tendency to segregate into highly ordered gel domains and to increase the order of the fluid phase. Monolayer studies support the aggregation propensity of C16:0-GlcCer. π-A isotherms of single C16:0-GlcCer indicate that bilayer domains, or crystal-like structures, coexist within monolayer domains at the air-water interface. Mixtures with POPC exhibit partial miscibility with expansion of the mean molecular areas relative to the additive behavior of the components. Moreover, C16:0-GlcCer promotes morphological alterations in lipid vesicles leading to formation of flexible tubule-like structures that protrude from the fluid region of the bilayer. These results support the hypothesis that alterations in membrane biophysical properties induced by GlcCer might be involved in its mechanism of action.

  8. Development of active-transport membrane devices

    SciTech Connect

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  9. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids.

    PubMed

    Castro, Bruno M; Fedorov, Aleksander; Hornillos, Valentin; Delgado, Javier; Acuña, A Ulises; Mollinedo, Faustino; Prieto, Manuel

    2013-07-03

    Edelfosine (1-O-octadecyl-2-O-methyl-sn-glycero-phosphocholine) and miltefosine (hexadecylphosphocholine) are synthetic alkylphospholipids (ALPs) that are reported to selectively accumulate in tumor cell membranes, inducing Fas clustering and activation on lipid rafts, triggering apoptosis. However, the exact mechanism by which these lipids elicit these events is still not fully understood. Recent studies propose that their mode of action might be related with alterations of lipid rafts biophysical properties caused by these lipid drugs. To achieve a clear understanding of this mechanism, we studied the effects of pharmacologically relevant amounts of edelfosine and miltefosine in the properties of model and cellular membranes. The influence of these molecules on membrane order, lateral organization, and lipid rafts molar fraction and size were studied by steady-state and time-resolved fluorescence methods, Förster resonance energy transfer (FRET), confocal and fluorescence lifetime imaging microscopy (FLIM). We found that the global membrane and lipid rafts biophysical properties of both model and cellular membranes were not significantly affected by both the ALPs. Nonetheless, in model membranes, a mild increase in membrane fluidity induced by both alkyl lipids was detected, although this effect was more noticeable for edelfosine than miltefosine. This absence of drastic alterations shows for the first time that ALPs mode of action is unlikely to be directly linked to alterations of lipid rafts biophysical properties caused by these drugs. The biological implications of this result are discussed in the context of ALPs effects on lipid metabolism, mitochondria homeostasis modulation, and their relationship with tumor cell death.

  10. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing.

  11. Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties.

    PubMed

    Spruston, N; Jaffe, D B; Johnston, D

    1994-04-01

    The dendritic trees of neurons are structurally and functionally complex integrative units receiving thousands of synaptic inputs that have excitatory and inhibitory, fast and slow, and electrical and biochemical effects. The pattern of activation of these synaptic inputs determines if the neuron will fire an action potential at any given point in time and how it will respond to similar inputs in the future. Two critical factors affect the integrative function of dendrites: the distribution of voltage-gated ion channels in the dendritic tree and the passive electrical properties, or 'electrotonic structure', upon which these active channels are superimposed. The authors review recent data from patch-clamp recordings that provide new estimates of the passive membrane properties of hippocampal neurons, and show, with examples, how these properties affect the shaping and attenuation of synaptic potentials as they propagate in the dendrites, as well as how they affect the measurement of current from synapses located in the dendrites. Voltage-gated channels might influence the measurement of 'passive' membrane properties and, reciprocally, passive membrane properties might affect the activation of voltage-gated channels in dendrites.

  12. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  13. Relationship between peptide membrane curvature generation and bactericidal activities

    NASA Astrophysics Data System (ADS)

    Schmidt, Nathan; Lee, Michelle; Kuo, David; Ouellette, Andre; Wong, Gerard

    2013-03-01

    Many amphipathic peptides and amphipathic domains in proteins can restructure biological membranes. Two examples are host defense antimicrobial peptides (AMPs) which disrupt and destabilize the cell membranes of microbes, and apolipoproteins which help stabilize nanoscale lipid aggregates. We use complementary x-ray and bacterial cell assays to elucidate the molecular length scale membrane deformations generated by amphipathic peptides with different structural motifs and relate these deformations to their activities on bacteria. Small angle x-ray scattering is used to study the interactions of model membranes with prototypical AMPs and consensus peptides from the amphipathic domains in apolipoproteins. By characterizing the nanoscale curvature deformations induced by these two distinct classes of membrane restructuring peptides we will discuss the role of amino acid composition on curvature generation. Bactericidal assays are used to access the in vivo activities of different amphipathic peptide motifs in order to understand the relationships between cell viability and membrane curvature generation.

  14. Elastic Properties of Polymerised and Fluid Membranes Under Stress

    NASA Astrophysics Data System (ADS)

    Shillcock, Julian Charles

    The stability of a living cell relies on the properties and interrelations of its constituent parts. The fluid bilayer surrounding the cell separates the cytoplasm inside the cell from the extracellular environment. A cross-linked network of proteins within the cytoplasm supports the fluid bilayer and contributes to the cell's elasticity. Three properties relating to the behaviour of a model fluid bilayer and polymerised network are investigated by Monte Carlo simulation: the phase behaviour of a system of discotic liquid crystal molecules, the elastic properties of a model polymerised network, and the stability and rupture of a model fluid membrane. The isotropic to nematic transition induced by hydrostatic pressure in a system of discotic liquid cystal molecules in three dimensions is presented. The study concentrates on the phase behaviour resulting from the anisotropy of the disks. The transition is present for disks whose thickness to radius ratio is less than 40%, but is absent for thicker disks. A more specialised model of disks restricted to intersect a planar interface between two immiscible fluids is investigated, but has no isotropic -nematic phase transition at finite temperature. The elastic properties of a two-dimensional, triangulated network of Hookean springs are investigated as a function of temperature and applied tension. The compression modulus decreases, and the shear modulus increases, as the tension on the network is increased. The elastic properties of self-avoiding networks at low temperature are well described by a mean field theory. When the self-avoidance constraint is removed, the network undergoes a phase transition to a collapsed state of small area as the tension is reduced to zero. Both types of network show an unstable expansion of their area when the stretching tension exceeds a specified value. Both networks also have the unusual property (referred to as a negative Poisson ratio) of expanding transversely when stretched

  15. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater.

    PubMed

    Valentino, Lauren; Renkens, Tennie; Maugin, Thomas; Croué, Jean-Philippe; Mariñas, Benito J

    2015-02-17

    This study contributed to improving our understanding of how disinfectants, applied to control biofouling of reverse osmosis (RO) membranes, result in membrane performance degradation. We investigated changes in physicochemical properties and permeation performance of a RO membrane with fully aromatic polyamide (PA) active layer. Membrane samples were exposed to varying concentrations of monochloramine, bromide, and iodide in both synthetic and natural seawater. Elemental analysis of the membrane active layer by Rutherford backscattering spectrometry (RBS) revealed the incorporation of bromine and iodine into the polyamide. The kinetics of polyamide bromination were first order with respect to the concentration of the secondary oxidizing agent Br2 for the conditions investigated. Halogenated membranes were characterized after treatment with a reducing agent and heavy ion probes to reveal the occurrence of irreversible ring halogenation and an increase in carboxylic groups, the latter produced as a result of amide bond cleavage. Finally, permeation experiments revealed increases in both water permeability and salt passage as a result of oxidative damage.

  16. Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Khazaee, I.; Ghazikhani, M.; Esfahani, M. Nasr

    2012-01-01

    A complete three-dimensional and single phase computational dynamics model for annular proton exchange membrane (PEM) fuel cell is used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the two-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by decreasing the thickness of the membrane the performance of the cell increases.

  17. Preparation of the superhydrophobic nano-hybrid membrane containing carbon nanotube based on chitosan and its antibacterial activity.

    PubMed

    Song, Kaili; Gao, Aiqin; Cheng, Xi; Xie, Kongliang

    2015-10-05

    The functional nano-hybrid surface containing multi-walled carbon nanotubes (MWCNT) on chitosan incorporated with the cationic chitosan (C-CS), MWCNTs and silicon couple agent (KH-560) was designed and prepared. The nano-hybrid membranes (NHM) containing MWCNTs were modified by perfluorooctanesulfonyl fluoride (PFOSF). The superhydrophobic multi-functional membranes with biological activity and superhydrophobic surface were obtained. The incorporated MWCNTs improved the roughness of the nano-hybrid membranes. The perfluorinated end groups of the nano-hybrid membrane surface provided low energy surface. The antibacterial activity, surface superhydrophobicity and mechanical property of the perfluorinated nano-hybrid membranes (PFNM) were discussed. Their morphological structures and surface ingredients were characterized by energy dispersive X-ray spectrometer (SEM-EDX). The PFNMs had excellent antibacterial property and superhydrophobicity. The novel nano-hybrid membranes with excellent antibacterial, superhydrophbic, and mechanical properties have potential applications in the food engineering, bioengineering fields and medical materials.

  18. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects.

    PubMed

    Tokarska-Schlattner, Malgorzata; Epand, Raquel F; Meiler, Flurina; Zandomeneghi, Giorgia; Neumann, Dietbert; Widmer, Hans R; Meier, Beat H; Epand, Richard M; Saks, Valdur; Wallimann, Theo; Schlattner, Uwe

    2012-01-01

    A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state (31)P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could

  19. Effect of lipid head group interactions on membrane properties and membrane-induced cationic β-hairpin folding.

    PubMed

    Ganesan, Sai J; Xu, Hongcheng; Matysiak, Silvina

    2016-07-21

    Stages in POPS membrane induced SVS-1 folding. One key characteristic of mIFs is the dielectric gradient and subsequently, electrostatic potential that arises from dipolar interactions in the head group region. In this work, we present a coarse-grained (CG) model for anionic and zwitterionic lipids that accounts for dipolar intricacies in the head group region. Prior work on adding dipolar interactions in a coarse grained (CG) model for peptides enabled us to achieve α/β secondary structure content de novo, without any added bias. We have now extended this idea to lipids. To mimic dipolar interactions, two dummy particles with opposite charges are added to CG polar beads. These two dummy charges represent a fluctuating dipole that introduces structural polarization into the head group region. We have used POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine) as our model lipids. We characterize structural, dynamic, and dielectric properties of our CG bilayer, along with the effect of monovalent ions. We observe head group dipoles to play a significant role in membrane dielectric gradient and lipid clustering induced by dipole-dipole interactions in POPS lipids. In addition, we studied membrane-induced peptide folding of a cationic antimicrobial peptide with anticancer activity, SVS-1. We find that membrane-induced peptide folding is driven by both (a) cooperativity in peptide self-interaction and (b) cooperativity in membrane-peptide interaction. In particular, dipolar interactions between the peptide backbone and lipid head groups contribute to stabilizing folded conformations.

  20. Intrinsic membrane properties determine hippocampal differential firing pattern in vivo in anesthetized rats

    PubMed Central

    Gan, Jian; Jonas, Peter

    2015-01-01

    ABSTRACT The hippocampus plays a key role in learning and memory. Previous studies suggested that the main types of principal neurons, dentate gyrus granule cells (GCs), CA3 pyramidal neurons, and CA1 pyramidal neurons, differ in their activity pattern, with sparse firing in GCs and more frequent firing in CA3 and CA1 pyramidal neurons. It has been assumed but never shown that such different activity may be caused by differential synaptic excitation. To test this hypothesis, we performed high‐resolution whole‐cell patch‐clamp recordings in anesthetized rats in vivo. In contrast to previous in vitro data, both CA3 and CA1 pyramidal neurons fired action potentials spontaneously, with a frequency of ∼3–6 Hz, whereas GCs were silent. Furthermore, both CA3 and CA1 cells primarily fired in bursts. To determine the underlying mechanisms, we quantitatively assessed the frequency of spontaneous excitatory synaptic input, the passive membrane properties, and the active membrane characteristics. Surprisingly, GCs showed comparable synaptic excitation to CA3 and CA1 cells and the highest ratio of excitation versus hyperpolarizing inhibition. Thus, differential synaptic excitation is not responsible for differences in firing. Moreover, the three types of hippocampal neurons markedly differed in their passive properties. While GCs showed the most negative membrane potential, CA3 pyramidal neurons had the highest input resistance and the slowest membrane time constant. The three types of neurons also differed in the active membrane characteristics. GCs showed the highest action potential threshold, but displayed the largest gain of the input‐output curves. In conclusion, our results reveal that differential firing of the three main types of hippocampal principal neurons in vivo is not primarily caused by differences in the characteristics of the synaptic input, but by the distinct properties of synaptic integration and input‐output transformation. © 2015 The

  1. Intrinsic membrane properties determine hippocampal differential firing pattern in vivo in anesthetized rats.

    PubMed

    Kowalski, Janina; Gan, Jian; Jonas, Peter; Pernía-Andrade, Alejandro J

    2016-05-01

    The hippocampus plays a key role in learning and memory. Previous studies suggested that the main types of principal neurons, dentate gyrus granule cells (GCs), CA3 pyramidal neurons, and CA1 pyramidal neurons, differ in their activity pattern, with sparse firing in GCs and more frequent firing in CA3 and CA1 pyramidal neurons. It has been assumed but never shown that such different activity may be caused by differential synaptic excitation. To test this hypothesis, we performed high-resolution whole-cell patch-clamp recordings in anesthetized rats in vivo. In contrast to previous in vitro data, both CA3 and CA1 pyramidal neurons fired action potentials spontaneously, with a frequency of ∼3-6 Hz, whereas GCs were silent. Furthermore, both CA3 and CA1 cells primarily fired in bursts. To determine the underlying mechanisms, we quantitatively assessed the frequency of spontaneous excitatory synaptic input, the passive membrane properties, and the active membrane characteristics. Surprisingly, GCs showed comparable synaptic excitation to CA3 and CA1 cells and the highest ratio of excitation versus hyperpolarizing inhibition. Thus, differential synaptic excitation is not responsible for differences in firing. Moreover, the three types of hippocampal neurons markedly differed in their passive properties. While GCs showed the most negative membrane potential, CA3 pyramidal neurons had the highest input resistance and the slowest membrane time constant. The three types of neurons also differed in the active membrane characteristics. GCs showed the highest action potential threshold, but displayed the largest gain of the input-output curves. In conclusion, our results reveal that differential firing of the three main types of hippocampal principal neurons in vivo is not primarily caused by differences in the characteristics of the synaptic input, but by the distinct properties of synaptic integration and input-output transformation.

  2. Proton electrolyte membrane properties and direct methanol fuel cell performance. II. Fuel cell performance and membrane properties effects

    NASA Astrophysics Data System (ADS)

    Silva, V. S.; Schirmer, J.; Reissner, R.; Ruffmann, B.; Silva, H.; Mendes, A.; Madeira, L. M.; Nunes, S. P.

    In order to study the relationship between the properties of proton electrolyte membranes (PEMs), obtained through standard characterization methods, and the direct methanol fuel cell (DMFC) performance, inorganic-organic hybrid membranes, modified via in situ hydrolysis, were used in a membrane electrolyte assembly (MEA) for DMFC application. The membranes, the characterization of which was performed in the previous paper of this series, were based on sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree (SD) of 87% and were loaded with different amounts of zirconium oxide (5.0, 7.5, 10.0, 12.5 wt.%). The standard characterization methods applied were impedance spectroscopy (proton conductivity), water uptake, and pervaporation (permeability to methanol). The MEAs were characterized investigating the DMFC current-voltage polarization curves, constant voltage current (CV, 35 mV), and open-circuit voltage (OCV). The fuel cell ohmic resistance (null phase angle impedance, NPAI) and CO 2 concentration in the cathode outlet were also measured. The characterization results show that the incorporation of the inorganic oxide in the polymer network decreases the DMFC current density for CV experiments, CO 2 concentration in the cathode outlet for both OCV and CV experiments and, finally, the maximum power density output. The opposite effect was verified in terms of the NPAI (ohmic resistance) for both OCV and CV experiments. A good agreement was found between the studied DMFC performance parameters and the characterization results evaluated by impedance spectroscopy, water uptake and pervaporation experiments.

  3. Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional, Morphological, and Functional Property Relationships

    DTIC Science & Technology

    2015-12-01

    properties of nanofiber composite anion-exchange membranes for alkaline fuel cells. A new membrane fabrication strategy, utilizing polymer fiber...electrospinning, will be employed to make hydroxide-conducting membranes with an entirely new morphology, where one electrospun polymer provides pathways...for ion conductivity and the second electrospun polymer restricts ionomer swelling and imparts mechanical strength to the membrane. The functional

  4. Separation of a toluene/ethanol mixture by pervaporation using active carbon-filled polymeric membranes

    SciTech Connect

    Duval, J.M. ); Folkers, B.; Mulder, M.H.V.; Smolders, C.A. ); Desgrandchamps, G. )

    1994-02-01

    In order to improve the separation properties of dense polymeric membranes toward a toluene/ethanol mixture, various active carbons and two types of zeolites were introduced into a thin polymeric film in order to form a heterogeneous membrane composed of solid particles surrounded by a polymer phase. Active carbons show a high adsorption selectivity for an aromatic compound over ethanol in the low concentration range of the aromatic component. Sorption and pervaporation experiments were carried out with a toluene/ethanol mixture, and they showed no improvement in selectivity and a decrease in flux for membranes filled with active carbons. For zeolite-filled membranes, both selectivity and flux decreased. A permeability model derived for heterogeneous systems was used. It confirmed that the carbon particles have a closed porous structure, allowing no transport from one side to the other, and that the zeolites have an ethanol selective permeation behavior. 21 refs., 7 figs., 6 tabs.

  5. An Extended Membrane System with Active Membranes to Solve Automatic Fuzzy Clustering Problems.

    PubMed

    Peng, Hong; Wang, Jun; Shi, Peng; Pérez-Jiménez, Mario J; Riscos-Núñez, Agustín

    2016-05-01

    This paper focuses on automatic fuzzy clustering problem and proposes a novel automatic fuzzy clustering method that employs an extended membrane system with active membranes that has been designed as its computing framework. The extended membrane system has a dynamic membrane structure; since membranes can evolve, it is particularly suitable for processing the automatic fuzzy clustering problem. A modification of a differential evolution (DE) mechanism was developed as evolution rules for objects according to membrane structure and object communication mechanisms. Under the control of both the object's evolution-communication mechanism and the membrane evolution mechanism, the extended membrane system can effectively determine the most appropriate number of clusters as well as the corresponding optimal cluster centers. The proposed method was evaluated over 13 benchmark problems and was compared with four state-of-the-art automatic clustering methods, two recently developed clustering methods and six classification techniques. The comparison results demonstrate the superiority of the proposed method in terms of effectiveness and robustness.

  6. Mechanical properties of basement membrane in health and disease.

    PubMed

    Miller, R Tyler

    2017-01-01

    Physical properties are differentiated characteristics of tissues that are essential to their function. For example, the function of bone depends on its rigidity, and the function of skin depends on its elasticity. The aggregate physical properties of tissues are determined by a collaborative relationship between their cells and matrix and are the product of genetic programs, circulating chemical signals, physical signals, and age. The mechanical properties of matrix and basement membranes in biologic systems are difficult to understand in detail because of their complexity and technical limitations of measurements. Matrix may contain fibrillary collagens, network collagens, other fibrillar proteins such as elastin, fibronectin, and laminins, proteoglycans, and can be a reservoir for growth factors. In each tissue and in different regions of the same tissue, matrix composition can vary. The goal of measuring the mechanical properties of matrix is to understand the physical environment experienced by specific cell types to be able to control cell behavior in vivo and for tissue engineering. At this time, such precise analysis is not possible. The general elastic properties of tissues are now better characterized, and model systems using limited numbers of matrix constituents permit improved understanding of the physical behavior of matrix and its effects on cells. This review will describe model systems for understanding problems of matrix elasticity, focus on a relatively new aspect of matrix mechanics, strain-stiffening, and the interactions of cells with matrix to produce overall tissue mechanical properties.

  7. Structural Model of Active Bax at the Membrane

    PubMed Central

    Bleicken, Stephanie; Jeschke, Gunnar; Stegmueller, Carolin; Salvador-Gallego, Raquel; García-Sáez, Ana J.; Bordignon, Enrica

    2016-01-01

    Bax plays a central role in the mitochondrial pathway of apoptosis. Upon activation, cytosolic Bax monomers oligomerize on the surface of mitochondria and change conformation concertedly to punch holes into the outer membrane. The subsequent release of cytochrome c initiates cell death. However, the structure of membrane-inserted Bax and its mechanism of action remain largely unknown. Here, we propose a 3D model of active Bax at the membrane based on double electron-electron resonance (DEER) spectroscopy in liposomes and isolated mitochondria. We show that active Bax is organized at the membrane as assemblies of dimers. In addition to a stable dimerization domain, each monomer contains a more flexible piercing domain involved in interdimer interactions and pore formation. The most important structural change during Bax activation is the opening of the hairpin formed by helices 5 and 6, which adopts a clamp-like conformation central to the mechanism of mitochondrial permeabilization. PMID:25458844

  8. PE and PS Lipids Synergistically Enhance Membrane Poration by a Peptide with Anticancer Properties.

    PubMed

    Leite, Natália Bueno; Aufderhorst-Roberts, Anders; Palma, Mario Sergio; Connell, Simon D; Ruggiero Neto, João; Beales, Paul A

    2015-09-01

    Polybia-MP1 (MP1) is a bioactive host-defense peptide with known anticancer properties. Its activity is attributed to excess serine (phosphatidylserine (PS)) on the outer leaflet of cancer cells. Recently, higher quantities of phosphatidylethanolamine (PE) were also found at these cells' surface. We investigate the interaction of MP1 with model membranes in the presence and absence of POPS (PS) and DOPE (PE) to understand the role of lipid composition in MP1's anticancer characteristics. Indeed we find that PS lipids significantly enhance the bound concentration of peptide on the membrane by a factor of 7-8. However, through a combination of membrane permeability assays and imaging techniques we find that PE significantly increases the susceptibility of the membrane to disruption by these peptides and causes an order-of-magnitude increase in membrane permeability by facilitating the formation of larger transmembrane pores. Significantly, atomic-force microscopy imaging reveals differences in the pore formation mechanism with and without the presence of PE. Therefore, PS and PE lipids synergistically combine to enhance membrane poration by MP1, implying that the combined enrichment of both these lipids in the outer leaflet of cancer cells is highly significant for MP1's anticancer action. These mechanistic insights could aid development of novel chemotherapeutics that target pathological changes in the lipid composition of cancerous cells.

  9. Modulation of membrane mechanical properties by Sar1, a vesicle trafficking protein.

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2009-03-01

    The trafficking of cargo in cells involves dramatic changes in membrane shape and topology. Though trafficking is widely studied and the identities and interactions of the responsible proteins are well mapped, remarkably little is known about the mechanics involved. We focus on Sar1, the key regulator of the coat protein complex II (COPII) family that ferries newly synthesized proteins from the ER to the Golgi. Sar1 is the only member of the COPII coat that interacts directly with the ER lipid bilayer membrane. It has an amphipathic N-terminal helix; when Sar1 is GTP-bound, the helix is exposed and the hydrophobic hemi-cylinder can insert into the bilayer. To investigate whether Sar1 has a role beyond merely localizing the other COPII proteins, we directly measure the force involved in membrane deformation as a function of its presence or absence, using optically trapped microspheres to pull tethers from lipid membranes whose composition and large surface area mimic the composition and geometry of the ER. Tether measurements allow extraction of the membrane bending modulus, the parameter that governs the energetics of deformation. We find that the bending modulus measured in the presence of Sar1 with a non-hydrolyzable GTP analogue is half that measured without Sar1 or with Sar1-GDP. These results reveal a paradigm-altering insight into COPII trafficking: Sar1 actively alters the material properties of the membranes it binds to, lowering the energetic cost of curvature generation.

  10. PE and PS Lipids Synergistically Enhance Membrane Poration by a Peptide with Anticancer Properties

    PubMed Central

    Leite, Natália Bueno; Aufderhorst-Roberts, Anders; Palma, Mario Sergio; Connell, Simon D.; Neto, João Ruggiero; Beales, Paul A.

    2015-01-01

    Polybia-MP1 (MP1) is a bioactive host-defense peptide with known anticancer properties. Its activity is attributed to excess serine (phosphatidylserine (PS)) on the outer leaflet of cancer cells. Recently, higher quantities of phosphatidylethanolamine (PE) were also found at these cells’ surface. We investigate the interaction of MP1 with model membranes in the presence and absence of POPS (PS) and DOPE (PE) to understand the role of lipid composition in MP1’s anticancer characteristics. Indeed we find that PS lipids significantly enhance the bound concentration of peptide on the membrane by a factor of 7–8. However, through a combination of membrane permeability assays and imaging techniques we find that PE significantly increases the susceptibility of the membrane to disruption by these peptides and causes an order-of-magnitude increase in membrane permeability by facilitating the formation of larger transmembrane pores. Significantly, atomic-force microscopy imaging reveals differences in the pore formation mechanism with and without the presence of PE. Therefore, PS and PE lipids synergistically combine to enhance membrane poration by MP1, implying that the combined enrichment of both these lipids in the outer leaflet of cancer cells is highly significant for MP1’s anticancer action. These mechanistic insights could aid development of novel chemotherapeutics that target pathological changes in the lipid composition of cancerous cells. PMID:26331251

  11. Active rehabilitation in a pediatric extracorporeal membrane oxygenation patient.

    PubMed

    Zebuhr, Carleen; Sinha, Amit; Skillman, Heather; Buckvold, Shannon

    2014-05-01

    Decreased intensive care unit (ICU) mortality has led to an increase in ICU morbidity. ICU-induced immobilization plays a major role in this morbidity. Recently, ICU mobility has been shown to be safe and effective in adolescent and adult patients. We report the successful rehabilitation of an 8-year-old boy with severe acute respiratory distress syndrome on extracorporeal membrane oxygenation. A child who is critically ill may safely perform active rehabilitation while on venovenous extracorporeal membrane oxygenation. The gains achieved through active rehabilitation and optimal nutrition can facilitate recovery from severe acute respiratory distress syndrome in select pediatric patients on extracorporeal membrane oxygenation.

  12. Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering.

    PubMed

    Peurois, François; Veyron, Simon; Ferrandez, Yann; Ladid, Ilham; Benabdi, Sarah; Zeghouf, Mahel; Peyroche, Gérald; Cherfils, Jacqueline

    2017-02-14

    Attachment of active, GTP-bound small GTPases to membranes by post-translational lipid modifications is pivotal for their ability to process and propagate information in cells. However, generating and manipulating lipidated GTPases has remained difficult, which has limited our quantitative understanding of their activation by GEFs and their termination by GAPs. Here we replaced the lipid modification by a histidine tag in eleven full-length, human small GTPases belonging to the Arf, Rho and Rab families, which allowed to tether them to nickel-lipid containing membranes and characterize the kinetics of their activation by GEFs. Remarkably this strategy uncovered large effects of membranes on the efficiency and/or specificity in all systems studied. Notably, it recapitulated the release of autoinhibition of Arf1, Arf3, Arf4, Arf5 and Arf6 GTPases by membranes and revealed that all isoforms are efficiently activated by two GEFs with different regulatory regimes, ARNO and Brag2. It demonstrated that membranes stimulate the GEF activity of Trio towards RhoG by ≈30 fold and Rac1 by ≈10 fold, and uncovered a previously unknown broader specificity towards RhoA and Cdc42 that was undetectable in solution. Finally, it demonstrated that the exceptional affinity of the bacterial RabGEF DrrA for the phosphoinositide PI(4)P delimits the activation of Rab1 to the immediate vicinity of the membrane-bound GEF. Our study thus validates the histidine tag strategy as a potent and simple means to mimic small GTPases lipidation, which opens broad perspectives of applications to uncover regulations brought about by membranes.

  13. Structural and functional properties of hydration and confined water in membrane interfaces.

    PubMed

    Disalvo, E A; Lairion, F; Martini, F; Tymczyszyn, E; Frías, M; Almaleck, H; Gordillo, G J

    2008-12-01

    The scope of the present review focuses on the interfacial properties of cell membranes that may establish a link between the membrane and the cytosolic components. We present evidences that the current view of the membrane as a barrier of permeability that contains an aqueous solution of macromolecules may be replaced by one in which the membrane plays a structural and functional role. Although this idea has been previously suggested, the present is the first systematic work that puts into relevance the relation water-membrane in terms of thermodynamic and structural properties of the interphases that cannot be ignored in the understanding of cell function. To pursue this aim, we introduce a new definition of interphase, in which the water is organized in different levels on the surface with different binding energies. Altogether determines the surface free energy necessary for the structural response to changes in the surrounding media. The physical chemical properties of this region are interpreted in terms of hydration water and confined water, which explain the interaction with proteins and could affect the modulation of enzyme activity. Information provided by several methodologies indicates that the organization of the hydration states is not restricted to the membrane plane albeit to a region extending into the cytoplasm, in which polar head groups play a relevant role. In addition, dynamic properties studied by cyclic voltammetry allow one to deduce the energetics of the conformational changes of the lipid head group in relation to the head-head interactions due to the presence of carbonyls and phosphates at the interphase. These groups are, apparently, surrounded by more than one layer of water molecules: a tightly bound shell, that mostly contributes to the dipole potential, and a second one that may be displaced by proteins and osmotic stress. Hydration water around carbonyl and phosphate groups may change by the presence of polyhydroxylated compounds

  14. Graphene immobilized enzyme/polyethersulfone mixed matrix membrane: Enhanced antibacterial, permeable and mechanical properties

    NASA Astrophysics Data System (ADS)

    Duan, Linlin; Wang, Yuanming; Zhang, Yatao; Liu, Jindun

    2015-11-01

    Enzyme immobilization has been developed to address lots of issues of free enzyme, such as instability, low activity and difficult to retain. In this study, graphene was used as an ideal carrier for lysozyme immobilization, including graphene oxide (GO) immobilized lysozyme (GO-Ly) and chemically reduced graphene oxide (CRGO) immobilized lysozyme (CRGO-Ly). Herein, lysozyme as a bio-antibacterial agent has excellent antibacterial performance and the products of its catalysis are safety and nontoxic. Then the immobilized lysozyme materials were blended into polyethersulfone (PES) casting solution to prepare PES ultrafiltration membrane via phase inversion method. GO and CRGO were characterized by Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible spectrum (UV), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and the immobilized lysozyme composites were observed by fluorescent microscopy. The results revealed that GO and CRGO were successfully synthesized and lysozyme was immobilized on their surfaces. The morphology, hydrophilicity, mechanical properties, separation properties and antibacterial activity of the hybrid membranes were characterized in detail. The hydrophilicity, water flux and mechanical strength of the hybrid membranes were significantly enhanced after adding the immobilized lysozyme. In the antibacterial experiment, the hybrid membranes exhibited an effective antibacterial performance against Escherichia coli (E. coli).

  15. Nervous factors influencing the membrane activity of intestinal smooth muscle

    PubMed Central

    Kuriyama, H.; Osa, T.; Toida, N.

    1967-01-01

    The effects of various chemical agents on the spontaneous membrane activities and those electrically elicited in the smooth muscles of small intestine were investigated. 1. The effects of various chemicals on the spontaneously active membrane might be summarized as follows. (a) Cholinergic agents; atropine slightly hyperpolarized the membrane and reduced the amplitude of slow potential changes even in aged preparations. Prostigmine depolarized the membrane, and enhanced the amplitude and prolonged the duration of the slow potential changes. Atropine prevented the actions of prostigmine on the membrane. (b) Ba2+ depolarized the membrane, and enhanced the amplitude and prolonged the duration of the slow potential changes. The spike frequency was initially increased, then reduced. Atropine and tetrodotoxin partially prevented the action of Ba2+ on the membrane activities. 2. Effects of chemical agents on the membrane activity elicited by electrical stimulation might be summarized as follows. (a) Short pulse stimulation (0·5-1 msec) generated the spike as a direct response of the muscle cell membrane, then it was followed by slow depolarization, delayed hyperpolarization, i.e. the `inhibitory potential', and post-inhibitory rebound successively. (b) The slow depolarization and the post-inhibitory rebound were reduced in amplitude by treatment with atropine, and enhanced by treatments with prostigmine and Ba2+. Tetrodotoxin blocked all activities except the spike. 3. When repetitive stimulation (20 c/s) was applied to the membrane, the membrane hyperpolarized; then, after 3-5 sec, it gradually depolarized even if the stimulation was continued, and triggered spikes. The hyperpolarization always preceded depolarization. The duration and the amplitude of the delayed depolarization was proportionally increased by the increased intensity and duration of stimulation. Atropine and tetrodotoxin blocked the generation of the post-inhibitory rebound. 4. Effects of repetitive

  16. Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis

    PubMed Central

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Plano, Gregory V.; Marassi, Francesca M.

    2014-01-01

    The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways. PMID:25433311

  17. Mechano-capacitive properties of polarized membranes and the application to conductance measurements of lipid membrane patches

    NASA Astrophysics Data System (ADS)

    Zecchi, Karis A.; Mosgaard, Lars D.; Heimburg, Thomas

    2017-01-01

    Biological membranes are capacitors that can be charged by applying an electric field across the membrane. The charges on the capacitor exert a force on the membrane that leads to electrostriction, i.e., a thinning of the membrane. This effect is especially strong close to chain melting transitions. A consequence is voltage induced pore formation in the lipid membrane. Since the force is quadratic in voltage, negative and positive voltages have an identical influence on the physics of symmetric membranes. This is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of identical magnitude lead to different physical properties. Such an asymmetry can originate from a lipid composition that is different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called flexoelectricity. It was investigated in detail by A.G. Petrov in the recent decades. As a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical phenomena such as outward or inward rectification of membrane permeability. The changes in current-voltage relationships are consistent with the known magnitude of the flexoelectric effect.

  18. Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.

    PubMed

    Alvares, Dayane S; Neto, João Ruggiero; Ambroggio, Ernesto E

    2017-03-05

    Polybia-MP1 (IDWKKLLDAAKQIL-NH2) is a lytic peptide from the Brazilian wasp venom with known anti-cancer properties. Previous evidence indicates that phosphatidylserine (PS) lipids are relevant for the lytic activity of MP1. In agreement with this requirement, phosphatidylserine lipids are translocated to the outer leaflet of cells, and are available for MP1 binding, depending on the presence of liquid-ordered domains. Here, we investigated the effect of PS on MP1 activity when this lipid is reconstituted in membranes of giant or large liposomes with different lipid-phase states. By monitoring the membrane and soluble luminal content of giant unilamellar vesicles (GUVs), using fluorescence confocal microscopy, we were able to determine that MP1 has a pore-forming activity at the membrane level. Liquid-ordered domains, which were phase-separated within the membrane of GUVs, influenced the pore-forming activity of MP1. Experiments evaluating the membrane-binding and lytic activity of MP1 on large unilamellar vesicles (LUVs), with the same lipid composition as GUVs, demonstrated that there was synergy between liquid-ordered domains and PS, which enhanced both activities. Based on our findings, we propose that the physicochemical properties of cancer cell membranes, which possess a much higher concentration of PS than normal cells, renders them susceptible to MP1 binding and lytic pore formation. These results can be correlated with MP1's potent and selective anti-cancer activity and pave the way for future research to develop cancer therapies that harness and exploit the properties of MP1.

  19. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  20. Modulation of hyaluronan synthase activity in cellular membrane fractions.

    PubMed

    Vigetti, Davide; Genasetti, Anna; Karousou, Evgenia; Viola, Manuela; Clerici, Moira; Bartolini, Barbara; Moretto, Paola; De Luca, Giancarlo; Hascall, Vincent C; Passi, Alberto

    2009-10-30

    Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1beta, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.

  1. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons.

    PubMed

    Spruston, N; Johnston, D

    1992-03-01

    1. Perforated patch-clamp recordings were made from the three major classes of hippocampal neurons in conventional in vitro slices prepared from adult guinea pigs. This technique provided experimental estimates of passive membrane properties (input resistance, RN, and membrane time constant, tau m) determined in the absence of the leak conductance associated with microelectrode impalement or the washout of cytoplasmic constituents associated with conventional whole-cell recordings. 2. To facilitate comparison of our data with previous results and to determine the passive membrane properties under conditions as physiological as possible, recordings were made at the resting potential, in physiological saline, and without any added blockers of voltage-dependent conductances. 3. Membrane-potential responses to current steps were analyzed, and four criteria were used to identify voltage responses that were the least affected by activation of voltage-dependent conductances. tau m was estimated from the slowest component (tau 0) of multiexponential fits of responses deemed passive by these criteria. RN was estimated from the slope of the linear region in the hyperpolarizing direction of the voltage-current relation. 4. It was not possible to measure purely passive membrane properties that were completely independent of membrane potential in any of the three classes of hippocampal neurons. Changing the membrane potential by constant current injection resulted in changes in RN and tau 0; subthreshold depolarization produced an increase, and hyperpolarization a decrease, in both RN and tau 0 for all three classes of hippocampal neurons. 5. Each of the three classes of hippocampal neurons also displayed a depolarizing "sag" during larger hyperpolarizing voltage transients. To evaluate the effect of the conductances underlying this sag on passive membrane properties, 2-5 mM Cs+ was added to the physiological saline. Extracellular Cs+ effectively blocked the sag in all three

  2. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  3. The influence of membrane lipid structure on plasma membrane Ca2+ -ATPase activity.

    PubMed

    Tang, Daxin; Dean, William L; Borchman, Douglas; Paterson, Christopher A

    2006-03-01

    Lipid composition and Ca(2+)-ATPase activity both change with age and disease in many tissues. We explored relationships between lipid composition/structure and plasma membrane Ca(2+)-ATPase (PMCA) activity. PMCA was purified from human erythrocytes and was reconstituted into liposomes prepared from human ocular lens membrane lipids and synthetic lipids. Lens lipids were used in this study as a model for naturally ordered lipids, but the influence of lens lipids on PMCA function is especially relevant to the lens since calcium homeostasis is vital to lens clarity. Compared to fiber cell lipids, epithelial lipids exhibited an ordered to disordered phase transition temperature that was 12 degrees C lower. Reconstitution of PMCA into lipids was essential for maximal activity. PMCA activity was two to three times higher when the surrounding phosphatidylcholine molecules contained acyl chains that were ordered (stiff) compared to disordered (fluid) acyl chains. In a completely ordered lipid hydrocarbon chain environment, PMCA associates more strongly with the acidic lipid phosphatidylserine in comparison to phosphatidylcholine. PMCA associates much more strongly with phosphatidylcholine containing disordered hydrocarbon chains than ordered hydrocarbon chains. PMCA activity is influenced by membrane lipid composition and structure. The naturally high degree of lipid order in plasma membranes such as those found in the human lens may serve to support PMCA activity. The absence of PMCA activity in the cortical region of human lenses is apparently not due to a different lipid environment. Changes in lipid composition such as those observed with age or disease could potentially influence PMCA function.

  4. Biogenesis of plasma membrane glycoproteins. Purification and properties of two rat liver plasma membrane glycoproteins.

    PubMed

    Elovson, J

    1980-06-25

    As a preliminary to a study of the biogenesis of individual plasma membrane glycoproteins, the marker enzyme nucleotide pyrophosphatase (NPPase) and a major rat liver plasma membrane sialoprotein, subsequently found to be identical with the enzyme dipeptidyl peptidase IV (DPP IV), were purified 10,000- and 2,000-fold, respectively, from rat liver. Both were amphipathic proteins which formed defined micellar complexes with detergents and aggregated in their absence. Gel filtration, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the Triton X-100 complex of NPPase to contain a single 150,000-dalton peptide, while that of DPP IV was composed of two 120,000-dalton subunits; each complex also contained about 150,000-dalton Triton X-100. Trypsin cleaved the detergent complexes with release of major hydrophilic fragments which no longer bound detergent micelles; the accompanying change in peptide size was small for NPPase and undetectable for DPP IV, which also retained the dimer structure of its native form. DPP IV was the only major glycoprotein in rat liver plasma membrane which bound strongly to wheat germ agglutinin. Monospecific rabbit antibodies against NPPase and DPP IV precipitated the antigens without affecting their enzymatic activities.

  5. The depth of porphyrin in a membrane and the membrane's physical properties affect the photosensitizing efficiency.

    PubMed Central

    Lavi, Adina; Weitman, Hana; Holmes, Robert T; Smith, Kevin M; Ehrenberg, Benjamin

    2002-01-01

    Photosensitized biological processes, as applied in photodynamic therapy, are based on light-triggered generation of molecular singlet oxygen by a membrane-residing sensitizer. Most of the sensitizers currently used are hydrophobic or amphiphilic porphyrins and their analogs. The possible activity of the short-lived singlet oxygen is limited to the time it is diffusing in the membrane, before it emerges into the aqueous environment. In this paper we demonstrate the enhancement of the photosensitization process that is obtained by newly synthesized protoporphyrin derivatives, which insert their tetrapyrrole chromophore deeper into the lipid bilayer of liposomes. The insertion was measured by fluorescence quenching by iodide and the photosensitization efficiency was measured with 9,10-dimethylanthracene, a fluorescent chemical target for singlet oxygen. We also show that when the bilayer undergoes a melting phase transition, or when it is fluidized by benzyl alcohol, the sensitization efficiency decreases because of the enhanced diffusion of singlet oxygen. The addition of cholesterol or of dimyristoyl phosphatydilcholine to the bilayer moves the porphyrin deeper into the bilayer; however, the ensuing effect on the sensitization efficiency is different in these two cases. These results could possibly define an additional criterion for the choice and design of hydrophobic, membrane-bound photosensitizers. PMID:11916866

  6. Dynamic Properties of Human Round Window Membrane in Auditory Frequencies

    PubMed Central

    Zhang, Xiangming; Gan, Rong Z.

    2012-01-01

    Round window is one of the two openings into cochlea from the middle ear. Mechanical properties of round window membrane (RWM) affect cochlear fluid motion and play an important role in transmission of sound into cochlea. However, no measurement of mechanical properties of RWM has been reported because of the complication of its location and small size. This paper reports the first investigation on dynamic properties of human RWM using acoustic stimulation and laser Doppler vibrometry measurement. The experiments on RWM specimens were subsequently simulated in finite element (FE) model and an inverse-problem solving method was used to determine the complex modulus in frequency-domain and the relaxation modulus in time-domain. The results show that the average storage modulus of human RWM changes from 2.32 to 3.83 MPa and the average loss modulus from 0.085 to 0.925 MPa over frequencies of 200 to 8000 Hz. The effects of specimen geometry and experimental condition on complex modulus measurements were discussed through FE modeling analysis. Dynamic properties of RWM reported in this paper provide important data for study of middle ear and cochlear mechanics. PMID:22673004

  7. Protein binding properties of surface-modified porous polyethylene membranes.

    PubMed

    Greene, George; Radhakrishna, Harish; Tannenbaum, Rina

    2005-10-01

    In this study, we quantified the adsorption of immunoglobulin G (IgG) protein onto several polyelectrolyte-modified sintered porous polyethylene (PPE) membranes. The polymer surfaces had both cationic and anionic charges obtained via the adsorption of polyethylenimine (PEI) and polyacrylic acid (PAA), respectively, onto plasma-activated PPE. The amount of IgG adsorption was determined by measuring the gamma radiation emitted by [125I]-IgG radio labeled protein. By studying the impact of pH and ionic strength on IgG adsorption, we attempted to characterize the role and nature of the electrostatic interactions involved in the adsorption process to better understand how these interactions were influenced by the charge and structure of immobilized polyelectrolyte complexes at modified membrane surfaces. We were able to show that surface modification of PPE membranes with adsorbed PEI monolayers and PEI-PAA bilayers can greatly improve the IgG binding ability of the membrane under optimized conditions. We also showed that the observed improvement in the IgG binding is derived from electrostatic interactions between IgG and the polyelectrolyte surface. In addition, we found that the greatest IgG adsorption occurred when the IgG and the surface possessed predominantly opposite charges, rather than when the surface possessed the greatest electrostatic charge. Finally, we have found that the molecular weight of the terminating polyelectrolyte has a noticeable effect upon the electrostatic interactions between IgG and the PEI-PAA bilayer-modified PPE surfaces.

  8. Membrane properties of the smooth muscle of guinea-pig ureter

    PubMed Central

    Kuriyama, H.; Osa, T.; Toida, N.

    1967-01-01

    1. The membrane properties of the guinea-pig ureter were studied in physiological Krebs solution by intra- and extracellular stimulating methods. 2. The mean membrane potential was 50 mV. Action potentials triggered by external stimulation were composed of repetitive spikes and a plateau phase. 3. The effects of intracellular polarization on the membrane activity elicited by extracellular stimulation were observed. Anodal polarization enhanced the amplitude and the maximum rate of rise of the spike while cathodal polarization reduced them. The number of the spikes, the duration and amplitude of the plateau phase were not changed by polarization of any direction. 4. The spikes triggered by intracellular stimulation were mostly graded, but repetitive spikes sometimes continued even after cessation of the stimulation. The effective membrane resistance was 15-23 MΩ and the time constant was 2-3 msec. 5. Conduction velocity (V), chronaxie, time constant (τ) and space constant (λ) of the tissue were measured by extracellular stimulation. These values were as follows: V, 3-6 cm/sec; chronaxie, 20-40 msec; τ, 200-300 msec; λ, 2·5-3 mm. The conduction of excitation might be related to the cable properties of the tissue. 6. The relative refractory period measured by extracellular stimulation was as long as 30 sec. During the relative refractory period dissociation of the slow depolarization and the spikes was observed by successive stimuli. 7. The plateau phase was prolonged and the frequency of the spontaneous discharges was increased by treatment with Ba2+. Tetrodotoxin had no effect on spike activity nor on the plateau phase, but Mn2+ blocked the membrane activity. PMID:6050102

  9. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin.

    PubMed

    Alves, Daiane S; Pérez-Fons, Laura; Estepa, Amparo; Micol, Vicente

    2004-08-01

    Commercial plant extracts containing anthraquinones are being increasingly used for cosmetics, food and pharmaceuticals due to their wide therapeutic and pharmacological properties. In this work, the interaction with model membranes of two representative 1,8-dihydroxyanthraquinones, barbaloin (Aloe) and emodin (Rheum, Polygonum), has been studied in order to explain their effects in biological membranes. Emodin showed a higher affinity for phospholipid membranes than barbaloin did, and was more effective in weakening hydrophobic interactions between hydrocarbon chains in phospholipid bilayers. Whereas emodin induced the formation of hexagonal-H(II) phase, barbaloin stabilized lamellar structures. Barbaloin promoted the formation of gel-fluid intermediate structures in phosphatidylglycerol membranes at physiological pH and ionic strength values. It is proposed that emodin's chromophore group is located at the upper half of the membrane, whereas barbaloin's one is in a deeper position but having its glucopyranosyl moiety near the phospholipid/water interface. Moreover, membrane disruption by emodin or barbaloin showed specificity for the two major phospholipids present in bacterial membranes, phosphatidylethanolamine and phosphatidylglycerol. In order to relate their strong effects on membranes to their biological activity, the capacity of these compounds to inhibit the infectivity of the viral haemorrhagic septicaemia rhabdovirus (VHSV), a negative RNA enveloped virus, or the growth of Escherichia coli was tested. Anthraquinone-loaded liposomes showed a strong antimicrobial activity whereas these compounds in their free form did not. Both anthraquinones showed antiviral activity but only emodin was a virucidal agent. In conclusion, a molecular mechanism based on the effect of these compounds on the structure of biological membranes is proposed to account for their multiple biological activities. Anthraquinone-loaded liposomes may suppose an alternative for

  10. Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations.

    PubMed

    Mello-Vieira, João; Sousa, Tânia; Coutinho, Ana; Fedorov, Aleksander; Lucas, Susana D; Moreira, Rui; Castro, Rui E; Rodrigues, Cecília M P; Prieto, Manuel; Fernandes, Fábio

    2013-09-01

    Submillimolar concentrations of cytotoxic bile acids (BAs) induce cell death via apoptosis. On the other hand, several cytoprotective BAs were shown to prevent apoptosis in the same concentration range. Still, the mechanisms by which BAs trigger these opposite signaling effects remain unclear. This study was aimed to determine if cytotoxic and cytoprotective BAs, at physiologically active concentrations, are able to modulate the biophysical properties of lipid membranes, potentially translating into changes in the apoptotic threshold of cells. Binding of BAs to membranes was assessed through the variation of fluorescence parameters of suitable derivatized BAs. These derivatives partitioned with higher affinity to liquid disordered than to the cholesterol-enriched liquid ordered domains. Unlabeled BAs were also shown to have a superficial location upon interaction with the lipid membrane. Additionally, the interaction of cytotoxic BAs with membranes resulted in membrane expansion, as concluded from FRET data. Moreover, it was shown that cytotoxic BAs were able to significantly disrupt the ordering of the membrane by cholesterol at physiologically active concentrations of the BA, an effect not associated with cholesterol removal. On the other hand, cytoprotective bile acids had no effect on membrane properties. It was concluded that, given the observed effects on membrane rigidity, the apoptotic activity of cytotoxic BAs could be potentially associated with changes in plasma membrane organization (e.g. modulation of lipid domains) or with an increase in mitochondrial membrane affinity for apoptotic proteins.

  11. Surface interactions and fouling properties of Micrococcus luteus with microfiltration membranes.

    PubMed

    Feng, Lei; Li, Xiufen; Song, Ping; Du, Guocheng; Chen, Jian

    2011-11-01

    This study was conducted to investigate microbial adhesion of Micrococcus luteus to polypropylene (PP) and polyvinylidene fluoride (PVDF) membranes in relation to the variation of the interfacial energies in the membrane-bacteria systems, for revealing effects of short-range surface interactions on filtration behavior. Both the membranes and M. luteus showed typical strong electron donors and hydrophilic properties. The AB component was dominant in the interfacial energies of the two membrane-bacteria systems. M. luteus presented larger negative U(mlb)(XDLVO) to the PP membrane than to the PVDF membrane. The adhesion experiments also proved that M. luteus had higher adhesion percentage to the PP membrane. This study demonstrated that the adhesion potentials of M. luteus to the PP and PVDF membranes might be explained in terms of bacterium, membrane, and intervening medium surface properties, which are mainly determined by the interfacial energies in the systems according to the XDLVO theory.

  12. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes.

    PubMed

    Coronell, Orlando; Mariñas, Benito J; Cahill, David G

    2011-05-15

    We studied the depth heterogeneity of fully aromatic polyamide (PA) active layers in commercial reverse osmosis (RO) and nanofiltration (NF) membranes by quantifying near-surface (i.e., top 6 nm) and volume-averaged properties of the active layers using X-ray photoelectron spectrometry (XPS) and Rutherford backscattering spectrometry (RBS), respectively. Some membranes (e.g., ESPA3 RO) had active layers that were depth homogeneous with respect to the concentration and pK(a) distribution of carboxylic groups, degree of polymer cross-linking, concentration of barium ion probe that associated with ionized carboxylic groups, and steric effects experienced by barium ion. Other membranes (e.g., NF90 NF) had active layers that were depth heterogeneous with respect to the same properties. Our results therefore support the existence of both depth-homogeneous and depth-heterogeneous active layers. It remains to be assessed whether the depth heterogeneity consists of gradually changing properties throughout the active layer depth or of distinct sublayers with different properties.

  13. Membrane anchoring of diacylglycerol lactones substituted with rigid hydrophobic acyl domains correlates with biological activities.

    PubMed

    Raifman, Or; Kolusheva, Sofiya; Comin, Maria J; Kedei, Noemi; Lewin, Nancy E; Blumberg, Peter M; Marquez, Victor E; Jelinek, Raz

    2010-01-01

    Synthetic diacylglycerol lactones (DAG lactones) are effective modulators of critical cellular signaling pathways downstream of the lipophilic second messenger diacylglycerol that activate a host of protein kinase C (PKC) isozymes as well as other non-kinase proteins that share with PKC similar C1 membrane-targeting domains. A fundamental determinant of the biological activity of these amphiphilic molecules is the nature of their interactions with cellular membranes. This study characterizes the membrane interactions and bilayer anchoring of a series of DAG lactones in which the hydrophobic moiety is a 'molecular rod', namely a rigid 4-[2-(R-phenyl)ethynyl]benzoate moiety in the acyl position. Use of assays employing chromatic biomimetic vesicles and biophysical techniques revealed that the mode of membrane anchoring of the DAG lactone derivatives was markedly affected by the presence of the hydrophobic diphenyl rod and by the size of the functional unit at the terminus of the rod. Two primary mechanisms of interaction were observed: surface binding of the DAG lactones at the lipid/water interface and deep insertion of the ligands into the alkyl core of the lipid bilayer. These membrane-insertion properties could explain the different patterns of the PKC translocation from the cytosol to membranes that is induced by the molecular-rod DAG lactones. This investigation emphasizes that the side residues of DAG lactones, rather than simply conferring hydrophobicity, profoundly influence membrane interactions, and thus may further contribute to the diversity of biological actions of these synthetic biomimetic ligands.

  14. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction.

    PubMed

    Wang, Yin; Botelho, Ana Vitória; Martinez, Gary V; Brown, Michael F

    2002-07-03

    Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pK(a) for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6omega3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H(3)O(+), in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H(0)) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the approximately zero H(0) from PS and the negative H(0) due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer

  15. Trichoplaxin - a new membrane-active antimicrobial peptide from placozoan cDNA.

    PubMed

    Simunić, Juraj; Petrov, Dražen; Bouceba, Tahar; Kamech, Nédia; Benincasa, Monica; Juretić, Davor

    2014-05-01

    A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural properties, biological activities and membrane selectivity were investigated. It adopts an α-helical structure in contact with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial activity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low affinity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for development of broad-spectrum antibacterial drugs.

  16. A membrane-type acoustic metamaterial with adjustable acoustic properties

    NASA Astrophysics Data System (ADS)

    Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorff, O.

    2016-07-01

    A new realization of a membrane-type acoustic metamaterial (MAM) with adjustable sound transmission properties is presented. The proposed design distinguishes itself from other realizations by a stacked arrangement of two MAMs which is inflated using pressurized air. The static pressurization leads to large nonlinear deformations and, consequently, geometrical stiffening of the MAMs which is exploited to adjust the eigenmodes and sound transmission loss of the structure. A theoretical analysis of the proposed inflatable MAM design using numerical and analytical models is performed in order to identify two important mechanisms, namely the shifting of the eigenfrequencies and modal residuals due to the pressurization, responsible for the transmission loss adjustment. Analytical formulas are provided for predicting the eigenmode shifting and normal incidence sound transmission loss of inflated single and double MAMs using the concept of effective mass. The investigations are concluded with results from a test sample measurement inside an impedance tube, which confirm the theoretical predictions.

  17. Measurement of Anisotropic Mechanical Properties of the Tectorial Membrane

    NASA Astrophysics Data System (ADS)

    Gavara, N.; Chadwick, R. S.

    2009-02-01

    The tectorial membrane (TM) in the cochlea is an anisotropic tissue with a key role in hearing. The TM's structural andmechanical anisotropy is provided by oriented collagen bundles about 1 micron thick. Here we report the three elastic moduli that characterize the TM, as well as the novel technique used to measure the mechanical properties of an anisotropic material. We have measured mechanical anisotropy by combining Atomic Force Microscopy (AFM) and optical tracking of microspheres. The surface Green's tensor for an incompressible anisotropic material was then used to compute the elastic moduli from imposed forces and the resulting surface deformations. Our results suggest a critical role of TM's strong anisotropy by enhancing the cochlear amplifier.

  18. Effect of Amorphisation on the Thermal Properties of Nanostructured Membranes

    NASA Astrophysics Data System (ADS)

    Termentzidis, Konstantinos; Verdier, Maxime; Lacroix, David

    2017-02-01

    The majority of the silicon devices contain amorphous phase and amorphous/crystalline interfaces which both considerably affect the transport of energy carriers as phonons and electrons. In this article, we investigate the impact of amorphous phases (both amorphous silicon and amorphous SiO2) of silicon nanoporous membranes on their thermal properties via molecular dynamics simulations. We show that a small fraction of amorphous phase reduces dramatically the thermal transport. One can even create nanostructured materials with subamorphous thermal conductivity, while keeping an important crystalline fraction. In general, the a-SiO2 shell around the pores reduces the thermal conductivity by a factor of five to ten compared to a-Si shell. The phonon density of states for several systems is also given to give the impact of the amorphisation on the phonon modes.

  19. Active properties of neuronal dendrites.

    PubMed

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  20. A thermal and electrochemical properties research on gel polymer electrolyte membrane of lithium ion battery

    NASA Astrophysics Data System (ADS)

    Li, Libo; Ma, Yue; Wang, Wentao; Xu, Yanping; You, Jun; Zhang, Yonghong

    2016-12-01

    N-methyl-N-propyl-piperidin-bis(trifluoromethylsulfonyl)imide/bis(trifluoromethylsulfonyl) imide lithium base/polymethyl methacrylate(PP13TFSI/LiTFSI/PMMA) gel polymer electrolyte (GPE) membrane was prepared by in situ polymerization. The physical and chemical properties were comprehensively discussed. The decomposition characteristics were emphasized by thermogravimetric (TG-DTG) method in the nitrogen atmosphere at the different heating rates of 5, 10, 15 and 20 °C min-1, respectively. The activation energy was calculated with the iso-conversional methods of Ozawa and Kissinger, Friedman, respectively, and the Coats-Redfern methods were adopted to employ the detailed mechanism of the electrolyte membrane. The equation f(α)=3/2[(1-α)1/3-1] was quite an appropriate kinetic mechanisms to describe the thermal decomposition process with an activation energy (Eα) of 184 kJ/mol and a pre-exponential factor (A) of 1.894×1011 were obtained.

  1. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane.

    PubMed

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-17

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl(-)/SO4(2-) separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl(-)/SO4(2-) permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm(2) 30 minutes later.

  2. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    PubMed Central

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-01-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl−/SO42− separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl−/SO42− permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later. PMID:27853255

  3. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl‑/SO42‑ separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl‑/SO42‑ permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  4. Tailored fibro-porous structure of electrospun polyurethane membranes, their size-dependent properties and trans-membrane glucose diffusion

    PubMed Central

    Wang, Ning; Burugapalli, Krishna; Song, Wenhui; Halls, Justin; Moussy, Francis; Zheng, Yudong; Ma, Yanxuan; Wu, Zhentao; Li, Kang

    2012-01-01

    The aim of this study was to develop polyurethane (PU) based fibro-porous membranes and to investigate the size-effect of hierarchical porous structure on permeability and surface properties of the developed electrospun membranes. Non-woven Selectophore™ PU membranes having tailored fibre diameters, pore sizes, and thickness were spun using electrospinning, and their chemical, physical and glucose permeability properties were characterised. Solvents, solution concentration, applied voltage, flow rate and distance to collector, each were systematically investigated, and electrospinning conditions for tailoring fibre diameters were identified. Membranes having average fibre diameters – 347, 738 and 1102 nm were characterized, revealing average pore sizes of 800, 870 and 1060 nm and pore volumes of 44, 63 and 68% respectively. Hydrophobicity increased with increasing fibre diameter and porosity. Effective diffusion coefficients for glucose transport across the electrospun membranes varied as a function of thickness and porosity, indicating high flux rates for mass transport. Electrospun PU membranes having significantly high pore volumes, extensively interconnected porosity and tailorable properties compared to conventional solvent cast membranes can find applications as coatings for sensors requiring analyte exchange. PMID:23170040

  5. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus Gag Protein

    SciTech Connect

    Dick, Robert A.; Datta, Siddhartha A. K.; Nanda, Hirsh; Fang, Xianyang; Wen, Yi; Barros, Marilia; Wang, Yun-Xing; Rein, Alan; Vogt, Volker M.; Sundquist, W. I.

    2016-05-06

    Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.

    Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our

  6. Physical-chemical properties of plasma membrane and function of erythrocytes of cosmonauts after long-term space flight

    NASA Astrophysics Data System (ADS)

    Ivanova, S. M.; Brazhe, N. A.; Luneva, O. G.; Yarlikova, Y. V.; Labetskaya, O. I.; Parshina, E. Y.; Baizhumanov, A. A.; Maksimov, G. V.; Morukov, B. V.

    2011-05-01

    We studied microfluidity and selective ion permeability of plasma membranes and O 2-binding properties of erythrocytes of cosmonauts during early rehabilitation after a long-term space flight (LTSF). Microfluidity of plasma membranes in surface regions was found to undergo a reversible decrease during 13-15 days following LTSF, which was accompanied by a reversible increase in relative cholesterol content. Cosmonauts' erythrocytes revealed an increased activity of Na/H-exchanger and K Ca-channel as well as a decrease in number of discocytes and increase in number of echinocytes, stomatocytes and knizocytes. Total hemoglobin content as well as oxyhemoglobin content were lowered after the LTSF, while the affinity of hemoglobin to O 2 was advanced. It is suggested that the changes in Hb properties, microfluidity and selective permeability of plasma membranes following the elevated cholesterol content in the membranes can decrease tissue supply with O 2.

  7. Fabrication and EM shielding properties of electrospining PANi/MWCNT/PEO fibrous membrane and its composite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Jiang, Xueyong; Liu, Yanju; Leng, Jinsong

    2012-04-01

    In this paper, Polyaniline-based fibrous membranes were fabricated with multi-walled carbon nanotubes and polyethylene oxide (PEO) by the electrospinning method. And then PANi/PEO/MWCNT fibrous membranes reinforced epoxy based nanocomposite was then fabricated. The morphology and electrical properties of PANi /MWCNT /PEO fibrous membrane was characterized by scanning electron microscope (SEM). The morphologies of the membranes indicate that the electrospining method can fabricate well nano structures fibrous membrane. The EM properties of the composite reinforced with the electrospining fibrous membrane were measured by vector network analyzer. The results show that the permittivity real, image parts and permeability real part of the composite increase by filling with PANI/PEO and PANI/CNT/PEO membrane. The EM shielding and absorb performance is base on the dielectric dissipation. And different membranes made of different materials show different EM parameter, and different EM shielding performance, which can be used to the EM shielding and stealth material design and fabrication.

  8. Pervaporation properties of dense polyamide-6 membranes in separation of water-ethanol mixtures

    SciTech Connect

    Kujawski, W.; Waczynski, M.; Lasota, M.

    1996-04-01

    Several dense polyamide-6 membranes were prepared by casting 7 wt% and/or 10 wt% solutions of polymer in trifluoroethanol. The cast membranes were dried at different temperatures from 25 to 80{degrees}C. Sorption and pervaporation properties of PA-6 membranes in water-ethanol mixtures were obtained. The data obtained showed that water was preferentially sorbed into the membrane and transported through the membrane; however, the pervaporation selectivity factor {alpha}{sup PV} was close to unity at higher concentrations. The selectivity parameters in pervaporation were improved for membranes obtained from 10 wt% polymer and dried at higher temperatures.

  9. Membrane Thinning and Thickening Induced by Membrane-Active Amphipathic Peptides

    PubMed Central

    Grage, Stephan L.; Afonin, Sergii; Kara, Sezgin; Buth, Gernot; Ulrich, Anne S.

    2016-01-01

    Membrane thinning has been discussed as a fundamental mechanism by which antimicrobial peptides can perturb cellular membranes. To understand which factors play a role in this process, we compared several amphipathic peptides with different structures, sizes and functions in their influence on the lipid bilayer thickness. PGLa and magainin 2 from X. laevis were studied as typical representatives of antimicrobial cationic amphipathic α-helices. A 1:1 mixture of these peptides, which is known to possess synergistically enhanced activity, allowed us to evaluate whether and how this synergistic interaction correlates with changes in membrane thickness. Other systems investigated here include the α-helical stress-response peptide TisB from E. coli (which forms membrane-spanning dimers), as well as gramicidin S from A. migulanus (a natural antibiotic), and BP100 (designer-made antimicrobial and cell penetrating peptide). The latter two are very short, with a circular β-pleated and a compact α-helical structure, respectively. Solid-state 2H-NMR and grazing incidence small angle X-ray scattering (GISAXS) on oriented phospholipid bilayers were used as complementary techniques to access the hydrophobic thickness as well as the bilayer-bilayer repeat distance including the water layer in between. This way, we found that magainin 2, gramicidin S, and BP100 induced membrane thinning, as expected for amphiphilic peptides residing in the polar/apolar interface of the bilayer. PGLa, on the other hand, decreased the hydrophobic thickness only at very high peptide:lipid ratios, and did not change the bilayer-bilayer repeat distance. TisB even caused an increase in the hydrophobic thickness and repeat distance. When reconstituted as a mixture, PGLa and magainin 2 showed a moderate thinning effect which was less than that of magainin 2 alone, hence their synergistically enhanced activity does not seem to correlate with a modulation of membrane thickness. Overall, the absence of a

  10. Effects of various osmotic solutions on membrane properties of smooth muscle cells of the guinea pig ureter.

    PubMed

    Ohshima, K

    1981-09-01

    Effects of various osmotic solutions on membrane properties of smooth muscle cells of the guinea pig ureter were investigated using the microelectrode and double sucrose gap methods. In Krebs solution, the mean membrane potential was -53 mV, chronaxie was 104 msec, length constant of the tissue was 1.03 mm, time constant of the membrane was 65.8 msec, and conduction velocity of excitation was 19.2 mm per sec. Hyperosmotic solution (1.5, 2.0, or 2.5 times the normal osmolarity) depolarized the membrane, generated the spike activity, reduced the length constant of the tissue, increased the time constant of the membrane, prolonged the chronaxie, and reduced the conduction velocity. Hyposmotic solutions (0.85 and 0.67 times the normal osmolarity) produced opposite changes on the passive and active characteristics of the membrane compared to findings in hyperosmotic solution except that the time constant of the membrane was increased in both hyper- and hyposmolar solutions. Increase in the time constant of the membrane and reduced length constant of the tissue in hyperosmotic solution can be explained by an increase in the internal resistance, including the cell to cell junctional resistance and shrinkage of the cell diameter (from 6.2 to 3.0 micrometer).

  11. Membrane solubilization by a hydrophobic polyelectrolyte: surface activity and membrane binding.

    PubMed Central

    Thomas, J L; Barton, S W; Tirrell, D A

    1994-01-01

    We have previously observed that the hydrophobic polyelectrolyte poly(2-ethylacrylic acid) solubilizes lipid membranes in a pH-dependent manner, and we have exploited this phenomenon to prepare lipid vesicles that release their contents in response to pH, light, or glucose (Thomas, J. L., and D. A. Tirrell. Acc. Chem. Res. 25:336-342, 1992). The physical basis for the interaction between poly(2-ethylacrylic acid) and lipid membranes has been explored using surface tensiometry and fluorimetry. Varying the polymer concentration results in changes in surface activity and membrane binding that correlate with shifts in the critical pH for membrane solubilization. Furthermore, the binding affinity is reduced as the amount of bound polymer increases. These results are consistent with a hydrophobically driven micellization process, similar to those observed with apolipoproteins, melittin, and other amphiphilic alpha-helix-based polypeptides. The absence of specific secondary structure in the synthetic polymer suggests that amphiphilicity, rather than structure, is the most important factor in membrane micellization by macromolecules. PMID:7811920

  12. Comparative acoustic performance and mechanical properties of silk membranes for the repair of chronic tympanic membrane perforations.

    PubMed

    Allardyce, Benjamin J; Rajkhowa, Rangam; Dilley, Rodney J; Xie, Zhigang; Campbell, Luke; Keating, Adrian; Atlas, Marcus D; von Unge, Magnus; Wang, Xungai

    2016-12-01

    The acoustic and mechanical properties of silk membranes of different thicknesses were tested to determine their suitability as a repair material for tympanic membrane perforations. Membranes of different thickness (10-100μm) were tested to determine their frequency response and their resistance to pressure loads in a simulated ear canal model. Their mechanical rigidity to pressure loads was confirmed by tensile testing. These membranes were tested alongside animal cartilage, currently the strongest available myringoplasty graft as well as paper, which is commonly used for simpler procedures. Silk membranes showed resonant frequencies within the human hearing range and a higher vibrational amplitude than cartilage, suggesting that silk may offer good acoustic energy transfer characteristics. Silk membranes were also highly resistant to simulated pressure changes in the middle ear, suggesting they can resist retraction, a common cause of graft failure resulting from chronic negative pressures in the middle ear. Part of this strength can be explained by the substantially higher modulus of silk films compared with cartilage. This allows for the production of films that are much thinner than cartilage, with superior acoustic properties, but that still provide the same level of mechanical support as thicker cartilage. Together, these in vitro results suggest that silk membranes may provide good hearing outcomes while offering similar levels of mechanical support to the reconstructed middle ear.

  13. Alterations of Red Cell Membrane Properties in Nneuroacanthocytosis

    PubMed Central

    Siegl, Claudia; Hamminger, Patricia; Jank, Herbert; Ahting, Uwe; Bader, Benedikt; Danek, Adrian; Gregory, Allison; Hartig, Monika; Hayflick, Susan; Hermann, Andreas; Prokisch, Holger; Sammler, Esther M.; Yapici, Zuhal; Prohaska, Rainer; Salzer, Ulrich

    2013-01-01

    Neuroacanthocytosis (NA) refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc), McLeod syndrome (MLS), Huntington’s disease-like 2 (HDL2) and pantothenate kinase associated neurodegeneration (PKAN), that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation), associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10%) and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN) red cells but not in patient cells without shape abnormalities. These data suggest an “acanthocytic state” of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration. PMID:24098554

  14. Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals.

    PubMed

    Mo, Yunfei; Guo, Rui; Liu, Jianghui; Lan, Yong; Zhang, Yi; Xue, Wei; Zhang, Yuanming

    2015-08-01

    Although extensively used in the fields of drug-carrier and tissue engineering, the biocompatibility and mechanical properties of polylactide-polyglycolide (PLGA) nanofiber membranes still limit their applications. The objective of this study was to improve their utility by introducing cellulose nanocrystals (CNCs) into PLGA nanofiber membranes. PLGA and PLGA/CNC composite nanofiber membranes were prepared via electrospinning, and the morphology and thermodynamic and mechanical properties of these nanofiber membranes were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The cytocompatibility and cellular responses of the nanofiber membranes were also studied by WST-1 assay, SEM, and confocal laser scanning microscopy (CLSM). Incorporation of CNCs (1, 3, 5, and 7 wt.%) increased the average fiber diameter of the prepared nanofiber membranes from 100 nm (neat PLGA) to ∼400 nm (PLGA/7 wt.% CNC) and improved the thermal stability of the nanofiber membranes. Among the PLGA/CNC composite nanofiber membranes, those loaded with 7 wt.% CNC nanofiber membranes had the best mechanical properties, which were similar to those of human skin. Cell culture results showed that the PLGA/CNC composite nanofiber membranes had better cytocompatibility and facilitated fibroblast adhesion, spreading, and proliferation compared with neat PLGA nanofiber membranes. These preliminary results suggest that PLGA/CNC composite nanofiber membranes are promising new materials for the field of skin tissue engineering.

  15. Membrane binding properties of EBV gp110 C-terminal domain; evidences for structural transition in the membrane environment

    SciTech Connect

    Park, Sung Jean; Seo, Min-Duk; Lee, Suk Kyeong; Lee, Bong Jin

    2008-09-30

    Gp110 of Epstein-Barr virus (EBV) mainly localizes on nuclear/ER membranes and plays a role in the assembly of EBV nucleocapsid. The C-terminal tail domain (gp110 CTD) is essential for the function of gp110 and the nuclear/ER membranes localization of gp110 is ruled by its C-terminal unique nuclear localization signal (NLS), consecutive four arginines. In the present study, the structural properties of gp110 CTD in membrane mimics were investigated using CD, size-exclusion chromatography, and NMR, to elucidate the effect of membrane environment on the structural transition and to compare the structural feature of the protein in the solution state with that of the membrane-bound form. CD and NMR analysis showed that gp110 CTD in a buffer solution appears to adopt a stable folding intermediate which lacks compactness, and a highly helical structure is formed only in membrane environments. The helical content of gp110 CTD was significantly affected by the negative charge as well as the size of membrane mimics. Based on the elution profiles of the size-exclusion chromatography, we found that gp110 CTD intrinsically forms a trimer, revealing that a trimerization region may exist in the C-terminal domain of gp110 like the ectodomain of gp110. The mutation of NLS (RRRR) to RTTR does not affect the overall structure of gp110 CTD in membrane mimics, while the helical propensity in a buffer solution was slightly different between the wild-type and the mutant proteins. This result suggests that not only the helicity induced in membrane environment but also the local structure around NLS may be related to trafficking to the nuclear membrane. More detailed structural difference between the wild-type and the mutant in membrane environment was examined using synthetic two peptides including the wild-type NLS and the mutant NLS.

  16. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes.

    PubMed

    Gao, Chengyun; Zhang, Minhua; Ding, Jianwu; Pan, Fusheng; Jiang, Zhongyi; Li, Yifan; Zhao, Jing

    2014-01-01

    The composite membranes with two-active-layer (a capping layer and an inner layer) were prepared by sequential spin-coatings of hyaluronic acid (HA) and sodium alginate (NaAlg) on the polyacrylonitrile (PAN) support layer. The SEM showed a mutilayer structure and a distinct interface between the HA layer and the NaAlg layer. The coating sequence of two-active-layer had an obvious influence on the pervaporation dehydration performance of membranes. When the operation temperature was 80 °C and water concentration in feed was 10 wt.%, the permeate fluxes of HA/Alg/PAN membrane and Alg/HA/PAN membrane were similar, whereas the separation factor were 1130 and 527, respectively. It was found that the capping layer with higher hydrophilicity and water retention capacity, and the inner layer with higher permselectivity could increase the separation performance of the composite membranes. Meanwhile, effects of operation temperature and water concentration in feed on pervaporation performance as well as membrane properties were studied.

  17. Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF.

    PubMed

    Farris, Carol; Sanowar, Sarah; Bader, Martin W; Pfuetzner, Richard; Miller, Samuel I

    2010-10-01

    Salmonella enterica species are exposed to envelope stresses due to their environmental and infectious lifestyles. Such stresses include amphipathic cationic antimicrobial peptides (CAMPs), and resistance to these peptides is an important property for microbial virulence for animals. Bacterial mechanisms used to sense and respond to CAMP-induced envelope stress include the RcsFCDB phosphorelay, which contributes to survival from polymyxin B exposure. The Rcs phosphorelay includes two inner membrane (IM) proteins, RcsC and RcsD; the response regulator RcsB; the accessory coregulator RcsA; and an outer membrane bound lipoprotein, RcsF. Transcriptional activation of the Rcs regulon occurred within minutes of exposure to CAMP and during the first detectable signs of CAMP-induced membrane disorder. Rcs transcriptional activation by CAMPs required RcsF and preservation of its two internal disulfide linkages. The rerouting of RcsF to the inner membrane or its synthesis as an unanchored periplasmic protein resulted in constitutive activation of the Rcs regulon and RcsCD-dependent phosphorylation. These findings suggest that RcsFCDB activation in response to CAMP-induced membrane disorder is a result of a change in structure or availability of RcsF to the IM signaling constituents of the Rcs phosphorelay.

  18. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  19. Preparation of single-walled carbon nanotubes/polyvinylchloride membrane and its antibacterial property.

    PubMed

    Zhao, Fangbo; Qiu, Feng; Zhang, Xiaohui; Yu, Shuili; Kim, Han-Shin; Park, Hee-Deung; Takizawa, Satoshi; Wang, Peng

    2012-01-01

    Polyvinylchloride (PVC) ultrafiltration membranes were modified by blending with single-walled carbon nanotubes (SWCNTs) to improve the membranes' antibacterial property. Both modified and control samples were characterized for pore structure, roughness, hydrophilicity, permeability and mechanical properties. The membranes' antibacterial property was accessed with Escherichia coli as the model microbes by several methods. It was found that, after being blended with SWCNTs, the surface roughness of the modified membrane increased. Also, the surface hydrophilicity was improved. The membrane flux increased accordingly. But the membrane elongation decreased obviously with the SWCNTs addition. The modified membranes did not show the antibacterial property as expected in this research. There was no bacterial inhibition circle around the SWCNTs/PVC membrane coupons in the culture plates. There were no morphological differences of the cells on the control and the modified membranes. Hoechst 33342/propidium iodide stain test showed that there were more than 90% living bacterial cells which could grow on the SWCNTs/PVC membranes. This study suggests that the polymer wrapping may reduce the SWCNTs' antibacterial property greatly.

  20. Physical properties and biocompatibility of cellulose/soy protein isolate membranes coagulated from acetic aqueous solution.

    PubMed

    Luo, Li-Hua; Wang, Xiao-Mei; Zhang, Yu-Feg; Liu, Yong-Ming; Chang, Peter R; Wang, Yan; Chen, Yun

    2008-01-01

    A series of cellulose/soy protein isolate (SPI) membranes was prepared from cellulose and SPI solution by casting and coagulation from 5 wt% acetic acid and 5 wt% sulphuric acid aqueous solution, respectively. The structure and properties of the membranes were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and tensile testing. The effects of SPI content (W(SPI)) and the coagulants on the structure and properties of the membranes were investigated. The membranes exhibited porous structure. The pore size in the surfaces and cross-sections of the membranes increased with an increase of W(SPI) regardless of the coagulants. The membranes containing 10 wt% W(SPI) showed higher tensile strength and elongation at break than other membranes. The membranes with the same W(SPI) coagulated from acetic acid solution exhibited higher values of tensile strength, elongation at break and pore size in the surfaces and cross-sections than those corresponding membranes coagulated from sulphuric acid. The biocompatibility of the acetic acid-coagulated membranes was preliminarily evaluated by cell culture and in vivo implantation experiments. The results revealed that human umbilical vein endothelial cells (ECV304) grew well on this biomaterial. In comparison with the pure cellulose membrane, because of the incorporation of SPI and the resultant alteration of microstructure, the SPI-modified membranes showed an improved in vivo biocompatibility and biodegradability in the implantation experiments. These cellulose/SPI membranes warrant further explorations in biomedical fields.

  1. Chronic cigarette smoking alters erythrocyte membrane lipid composition and properties in male human volunteers.

    PubMed

    Padmavathi, Pannuru; Reddy, Vaddi Damodara; Kavitha, Godugu; Paramahamsa, Maturu; Varadacharyulu, Nallanchakravarthula

    2010-11-01

    Cigarette smoking is a major lifestyle factor influencing the health of human beings. The present study investigates smoking induced alterations on the erythrocyte membrane lipid composition, fluidity and the role of nitric oxide. Thirty experimental and control subjects (age 35+/-8) were selected for the study. Experimental subjects smoke 12+/-2 cigarettes per day for 7-10 years. In smokers elevated nitrite/nitrate levels in plasma and red cell lysates were observed. Smokers showed increased hemolysis, erythrocyte membrane lipid peroxidation, protein carbonyls, C/P ratio (cholesterol and phospholipid ratio), anisotropic (gamma) value with decreased Na(+)/K(+)-ATPase activity and sulfhydryl groups. Alterations in smokers erythrocyte membrane individual phospholipids were also evident from the study. Red cell lysate nitric oxide positively correlated with C/P ratio (r=0.565) and fluorescent anisotropic (gamma) value (r=0.386) in smokers. Smoking induced generation of reactive oxygen/nitrogen species might have altered erythrocyte membrane physico-chemical properties.

  2. Light-activated control of protein channel assembly mediated by membrane mechanics

    NASA Astrophysics Data System (ADS)

    Miller, David M.; Findlay, Heather E.; Ces, Oscar; Templer, Richard H.; Booth, Paula J.

    2016-12-01

    Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.

  3. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes.

    PubMed

    Kujawa, Joanna; Cerneaux, Sophie; Kujawski, Wojciech; Bryjak, Marek; Kujawski, Jan

    2016-03-23

    The combination of microscopic (atomic force microscopy and scanning electron microscopy) and goniometric (static and dynamic measurements) techniques, and surface characterization (surface free energy determination, critical surface tension, liquid entry pressure, hydraulic permeability) was implemented to discuss the influence of perfluoroalkylsilanes structure and grafting time on the physicochemistry of the created hydrophobic surfaces on the titania ceramic membranes of 5 kD and 300 kD. The impact of molecular structure of perfluoroalkylsilanes modifiers (possessing from 6 to 12 carbon atoms in the fluorinated part of the alkyl chain) and the time of the functionalization process in the range of 5 to 35 h was studied. Based on the scanning electron microscopy with energy-dispersive X-ray spectroscopy, it was found that the localization of grafting molecules depends on the membrane pore size (5 kD or 300 kD). In the case of 5 kD titania membranes, modifiers are attached mainly on the surface and only partially inside the membrane pores, whereas, for 300 kD membranes, the perfluoroalkylsilanes molecules are present within the whole porous structure of the membranes. The application of 4 various types of PFAS molecules enabled for interesting observations and remarks. It was explained how to obtain ceramic membrane surfaces with controlled material (contact angle, roughness, contact angle hysteresis) and separation properties. Highly hydrophobic surfaces with low values of contact angle hysteresis and low roughness were obtained. These surfaces possessed also low values of critical surface tension, which means that surfaces are highly resistant to wetting. This finding is crucial in membrane applicability in separation processes. The obtained and characterized hydrophobic membranes were subsequently applied in air-gap membrane distillation processes. All membranes were very efficient in MD processes, showing good transport and selective properties (∼99% of Na

  4. Simulation of P systems with active membranes on CUDA.

    PubMed

    Cecilia, José M; García, José M; Guerrero, Ginés D; Martínez-del-Amor, Miguel A; Pérez-Hurtado, Ignacio; Pérez-Jiménez, Mario J

    2010-05-01

    P systems or Membrane Systems provide a high-level computational modelling framework that combines the structure and dynamic aspects of biological systems in a relevant and understandable way. They are inherently parallel and non-deterministic computing devices. In this article, we discuss the motivation, design principles and key of the implementation of a simulator for the class of recognizer P systems with active membranes running on a (GPU). We compare our parallel simulator for GPUs to the simulator developed for a single central processing unit (CPU), showing that GPUs are better suited than CPUs to simulate P systems due to their highly parallel nature.

  5. Differential Effects of G- and F-Actin on the Plasma Membrane Calcium Pump Activity

    PubMed Central

    Vanagas, Laura; de La Fuente, María Candelaria; Dalghi, Marianela; Ferreira-Gomes, Mariela; Rossi, Rolando C.; Strehler, Emanuel E.; Rossi, Juan P. F. C.

    2014-01-01

    We have previously shown that plasma membrane calcium ATPase (PMCA) pump activity is affected by the membrane protein concentration (Vanagas et al., Biochim Biophys Acta 1768:1641–1644, 2007). Results show evidences for the involvement of the actin cytoskeleton. In this study, we explored the relationship between the polymerization state of actin and its effects on purified PMCA activity. Our results show that PMCA associates with the actin cytoskeleton and this interaction causes a modulation of the catalytic activity involving the phosphorylated intermediate of the pump. The state of actin polymerization determines whether it acts as an activator or an inhibitor of the pump: G-actin and/or short oligomers activate the pump, while F-actin inhibits it. The effects of actin on PMCA are the consequence of direct interaction as demonstrated by immunoblotting and cosedimentation experiments. Taken together, these findings suggest that interactions with actin play a dynamic role in the regulation of PMCA-mediated Ca2+ extrusion through the membrane. Our results provide further evidence of the activation–inhibition phenomenon as a property of many cytoskeleton-associated membrane proteins where the cytoskeleton is no longer restricted to a mechanical function but is dynamically involved in modulating the activity of integral proteins with which it interacts. PMID:23152090

  6. Importance of Membrane Structural Integrity for RPE65 Retinoid Isomerization Activity

    SciTech Connect

    Golczak, Marcin; Kiser, Philip D.; Lodowski, David T.; Maeda, Akiko; Palczewski, Krzysztof

    2010-04-05

    Regeneration of visual chromophore in the vertebrate visual cycle involves the retinal pigment epithelium-specific protein RPE65, the key enzyme catalyzing the cleavage and isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol. Although RPE65 has no predicted membrane spanning domains, this protein predominantly associates with microsomal fractions isolated from bovine retinal pigment epithelium (RPE). We have re-examined the nature of RPE65 interactions with native microsomal membranes by using extraction and phase separation experiments. We observe that hydrophobic interactions are the dominant forces that promote RPE65 association with these membranes. These results are consistent with the crystallographic model of RPE65, which features a large lipophilic surface that surrounds the entrance to the catalytic site of this enzyme and likely interacts with the hydrophobic core of the endoplasmic reticulum membrane. Moreover, we report a critical role for phospholipid membranes in preserving the retinoid isomerization activity and physical properties of RPE65. Isomerase activity measured in bovine RPE was highly sensitive to phospholipase A{sup 2} treatment, but the observed decline in 11-cis-retinol production did not directly reflect inhibition by products of lipid hydrolysis. Instead, a direct correlation between the kinetics of phospholipid hydrolysis and retinoid isomerization suggests that the lipid membrane structure is critical for RPE65 enzymatic activity. We also provide evidence that RPE65 operates in a multiprotein complex with retinol dehydrogenase 5 and retinal G protein-coupled receptor in RPE microsomes. Modifications in the phospholipid environment affecting interactions with these protein components may be responsible for the alterations in retinoid metabolism observed in phospholipid-depleted RPE microsomes. Thus, our results indicate that the enzymatic activity of native RPE65 strongly depends on its membrane binding and

  7. Functional specializations of primary auditory afferents on the Mauthner cells: Interactions between membrane and synaptic properties

    PubMed Central

    Curti, Sebastian; Pereda, Alberto E.

    2009-01-01

    Primary auditory afferents are usually perceived as passive, timing-preserving, lines of communication. Contrasting this view, a special class of auditory afferents to teleost Mauthner cells, a command neuron that organizes tail-flip escape responses, undergoes potentiation of their mixed (electrical and chemical) synapses in response to high frequency cellular activity. This property is likely to represent a mechanism of input sensitization as these neurons provide the Mauthner cell with essential information for the initiation of an escape response. We review here the anatomical and physiological specializations of these identifiable auditory afferents. In particular, we discuss how their membrane and synaptic properties act in concert to more efficaciously activate the Mauthner cells. The striking functional specializations of these neurons suggest that primary auditory afferents might be capable of more sophisticated contributions to auditory processing than has been generally recognized. PMID:19941953

  8. Effect of Amphotericin B antibiotic on the properties of model lipid membrane

    NASA Astrophysics Data System (ADS)

    Kiryakova, S.; Dencheva-Zarkova, M.; Genova, J.

    2014-12-01

    Model membranes formed from natural and synthetic lipids are an interesting object for scientific investigations due to their similarity to biological cell membrane and their simple structure with controlled composition and properties. Amphotericin B is an important polyene antifungal antibiotic, used for treatment of systemic fungal infections. It is known from the literature that the studied antibiotic has a substantial effect on the transmembrane ionic channel structures. When applied to the lipid membranes it has the tendency to create pores and in this way to affect the structure and the properties of the membrane lipid bilayer. In this work the thermally induced shape fluctuations of giant quasi-spherical liposomes have been used to study the influence of polyene antibiotic amphotericin B on the elastic properties of model lipid membranes. It have been shown experimentally that the presence of 3 mol % of AmB in the lipid membrane reduces the bending elasticity of the lipid membrane for both studied cases: pure SOPC membrane and mixed SOPC-Cholesterol membrane. Interaction of the amphotericin B with bilayer lipid membranes containing channels have been studied in this work. Model membranes were self-assembled using the patch-clamp and tip-dip patch clamp technique. We have found that amphotericin B is an ionophore and reduces the resistance of the lipid bilayer.

  9. Steady-state compartmentalization of lipid membranes by active proteins.

    PubMed Central

    Sabra, M C; Mouritsen, O G

    1998-01-01

    Using a simple microscopic model of lipid-protein interactions, based on the hydrophobic matching principle, we study some generic aspects of lipid-membrane compartmentalization controlled by a dispersion of active integral membrane proteins. The activity of the proteins is simulated by conformational excitations governed by an external drive, and the deexcitation is controlled by interaction of the protein with its lipid surroundings. In response to the flux of energy into the proteins from the environment and the subsequent dissipation of energy into the lipid bilayer, the lipid-protein assembly reorganizes into a steady-state structure with a typical length scale determined by the strength of the external drive. In the specific case of a mixed dimyristoylphosphatidylcholine-distearoylphosphatidylcholine bilayer in the gel-fluid coexistence region, it is shown explicitly by computer simulation that the activity of an integral membrane protein can lead to a compartmentalization of the lipid-bilayer membrane. The compartmentalization is related to the dynamical process of phase separation and lipid domain formation. PMID:9533687

  10. Alkaline ribonuclease and phosphodiesterase activity in rat liver plasma membranes

    PubMed Central

    Prospero, Terence D.; Burge, Malcolm L. E.; Norris, Kenneth A.; Hinton, Richard H.; Reid, Eric

    1973-01-01

    The ribonuclease and phosphodiesterase activities of rat liver plasma membranes, purified from the crude nuclear fraction by centrifugation in an A-XII zonal rotor and flotation, were examined and compared. The plasma membrane is responsible for between 65 and 90% of the phosphodiesterase activity of the cell and between 25 and 30% of the particulate ribonuclease activity measured at pH8.7 in the presence of 7.5mm-MgCl2. Both enzymes were most active between pH8.5 and 8.9. Close to the pH optimum, both enzymes were more active in Tris buffer than in Bicine or glycine buffer. Both plasma-membrane phosphodiesterase and ribonuclease were strongly activated by Mg2+, there being at least a 12-fold difference between the activity in the presence of Mg2+ and of EDTA. There is, however, a difference in the response of the enzymes to Mg2+ and EDTA in that the phosphodiesterase is fully activated by 1.0mm-MgCl2 and fully inhibited by 1.0mm-EDTA, whereas the ribonuclease requires 7.5mm-MgCl2 for full activation and 5mm-EDTA for full inhibition. Density-gradient centrifugation has indicated that on solubilization in Triton X-100 most of the ribonuclease activity is released into a small fragment of the same size as that containing the phosphodiesterase activity. The relationship between the two activities is discussed in view of these results. PMID:4353377

  11. Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Remiš, T.

    2017-01-01

    Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO2)was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO2were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA).

  12. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    PubMed

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc.

  13. Membrane-bound dd-carboxypeptidases from Bacillus megaterium KM. General properties, substrate specificity and sensitivity to penicillins, cephalosporins and peptide inhibitors of the activity at pH5

    PubMed Central

    Diaz-Mauriño, Teresa; Nieto, Manuel; Perkins, Harold R.

    1974-01-01

    1. The membrane from Bacillus megaterium KM contained a dd-carboxypeptidase with optimum activity under the following conditions: pH5.2, bivalent cation, 3mm; ionic strength, 40mm; temperature, 35°C. It was inactivated by treatment with p-chloromercuribenzoate but was fairly insensitive to 2-mercaptoethanol. 2. The enzyme was inhibited by penicillins and cephalosporins. The inhibition of this enzyme was partially reversed on dialysis but 0.2m-2-mercaptoethanol could neither prevent nor reverse the inhibition. 3. The enzyme was extremely sensitive to changes in the configuration and size of the side chain of the C-terminal dipeptide of the substrate. An aliphatic side chain of a well-defined length and polarity was required in the residue that precedes the C-terminal dipeptide. 4. The enzyme was inhibited by a wide range of analogues of the peptidic portion of the natural substrate. PMID:4218954

  14. Preparation and properties of hollow fiber membranes for removing virus and bacteria.

    PubMed

    Woo, Seung Moon; Chung, Youn Suk; Lee, Sun Yong; Nam, Sang Yong

    2014-12-01

    In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 800 L/mh, 0.03 μm at 1.0 kgf/cm2. The bacteria removal performance of prepared UF membranes was over 6 logs

  15. Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, Saeid; Sano, Rie; Ishigami, Toru; Kakihana, Yuriko; Ohmukai, Yoshikage; Matsuyama, Hideto

    2015-01-01

    Hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties were prepared from brominated vinyl chloride-hydroxyethyl methacrylate copolymer (poly(VC-co-HEMA-Br)). The base membrane was grafted with two different zwitterionic monomers, (2-methacryloyloxyethylphosphorylcholine) (MPC) and [2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide) (MEDSAH), and poly(ethylene glycol) methyl ether methacrylate (PEGMA). The effect of the grafting on the base membrane hydrophilicity and antifouling properties was investigated. For comparison of the results, the pure water permeabilities and pore sizes at the outer surfaces of the grafted hollow fiber membranes were controlled to be similar. A poly(VC-co-HEMA-Br) hollow fiber membrane with similar pure water permeability and pore size was also prepared as a control membrane. A BSA solution was used as a model fouling solution for evaluation of the antifouling properties. Grafting with zwitterionic monomers and PEGMA improved the antifouling properties compared with the control membrane. The PEGMA grafted membrane showed the best antifouling properties among the grafted membranes

  16. Dexamethasone differentially regulates functional membrane properties in glioma cell lines and primary astrocytes in vitro.

    PubMed

    Hinkerohe, Daniel; Wolfkühler, Dörte; Haghikia, Aiden; Meier, Carola; Faustmann, Pedro M; Schlegel, Uwe

    2011-07-01

    Similar to astrocytes, glioma cells form a well-coupled syncytium via gap junctions. This can be influenced, for example, by activated microglia, the main inflammatory cell population within the central nervous system (CNS). Under pathological conditions such as neoplastic cell growth, microglia number and activation state are enhanced. The aim of the present study is to analyze the influence of dexamethasone (DEX) on cellular and molecular properties in glial coculture models consisting of astroglia and microglia and human and rat glioma cell lines. Primary rat glial cocultures of astrocytes containing 5% (M5, representing "physiological" conditions) or 30% (M30, representing "pathological" conditions) microglia as well as rat and human glioma cell lines (F98, C6, U87) were incubated with DEX for 24 h. DEX-treated M30 cocultures showed significant increased gap junctional intercellular communication (GJIC). DEX treatment of glioma cells resulted in depolarization of the membrane resting potential (MRP) and a significant reduction of GJIC. Furthermore, DEX reduced the amount of activated microglia in M30 cocultures. DEX had no significant effects on the tested variables in the M5 coculture. DEX differentially regulates functional membrane properties of glioma cells and astrocytes in primary glial cocultures, which might resemble steroid effects in glioma cells and adjacent glial components in vivo.

  17. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule.

    PubMed Central

    Gires, O; Zimber-Strobl, U; Gonnella, R; Ueffing, M; Marschall, G; Zeidler, R; Pich, D; Hammerschmidt, W

    1997-01-01

    Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is an integral membrane protein which has transforming potential and is necessary but not sufficient for B-cell immortalization by EBV. LMP1 molecules aggregate in the plasma membrane and recruit tumour necrosis factor receptor (TNF-R) -associated factors (TRAFs) which are presumably involved in the signalling cascade leading to NF-kappaB activation by LMP1. Comparable activities are mediated by CD40 and other members of the TNF-R family, which implies that LMP1 could function as a receptor. LMP1 lacks extended extracellular domains similar to beta-adrenergic receptors but, in contrast, it also lacks any motifs involved in ligand binding. By using LMP1 mutants which can be oligomerized at will, we show that the function of LMP1 in 293 cells and B cells is solely dependent on oligomerization of its carboxy-terminus. Biochemically, oligomerization is an intrinsic property of the transmembrane domain of wild-type LMP1 and causes a constitutive phenotype which can be conferred to the signalling domains of CD40 or the TNF-2 receptor. In EBV, immortalized B cells cross-linking in conjunction with membrane targeting of the carboxy-terminal signalling domain of LMP1 is sufficient for its biological activities. Thus, LMP1 acts like a constitutively activated receptor whose biological activities are ligand-independent. PMID:9359753

  18. Fractal properties of macrophage membrane studied by AFM.

    PubMed

    Bitler, A; Dover, R; Shai, Y

    2012-12-01

    Complexity of cell membrane poses difficulties to quantify corresponding morphology changes during cell proliferation and damage. We suggest using fractal dimension of the cell membrane to quantify its complexity and track changes produced by various treatments. Glutaraldehyde fixed mouse RAW 264.7 macrophage membranes were chosen as model system and imaged in PeakForce QNM (quantitative nanomechanics) mode of AFM (atomic force microscope). The morphology of the membranes was characterized by fractal dimension. The parameter was calculated for set of AFM images by three different methods. The same calculations were done for the AFM images of macrophages treated with colchicine, an inhibitor of the microtubule polymerization, and microtubule stabilizing agent taxol. We conclude that fractal dimension can be additional and useful parameter to characterize the cell membrane complexity and track the morphology changes produced by different treatments.

  19. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    SciTech Connect

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  20. Solubilized placental membrane protein inhibits insulin receptor tyrosine kinase activity

    SciTech Connect

    Strout, H.V. Jr.; Slater, E.E.

    1987-05-01

    Regulation of insulin receptor (IR) tyrosine kinase (TK) activity may be important in modulating insulin action. Utilizing an assay which measures IR phosphorylation of angiotensin II (AII), the authors investigated whether fractions of TX-100 solubilized human placental membranes inhibited IR dependent AII phosphorylation. Autophosphorylated IR was incubated with membrane fractions before the addition of AII, and kinase inhibition measured by the loss of TSP incorporated in AII. An inhibitory activity was detected which was dose, time, and temperature dependent. The inhibitor was purified 200-fold by sequential chromatography on wheat germ agglutinin, DEAE, and hydroxyapatite. This inhibitory activity was found to correlate with an 80 KD protein which was electroeluted from preparative slab gels and rabbit antiserum raised. Incubation of membrane fractions with antiserum before the IRTK assay immunoprecipitated the inhibitor. Protein immunoblots of crude or purified fractions revealed only the 80 KD protein. Since IR autophosphorylation is crucial to IRTK activity, the authors investigated the state of IR autophosphorylation after treatment with inhibitor; no change was detected by phosphoamino acid analysis.

  1. Aluminum ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties.

    PubMed

    Pejchar, Přemysl; Martinec, Jan

    2015-01-01

    The first indication of the aluminum (Al) toxicity in plants growing in acidic soils is the cessation of root growth, but the detailed mechanism of Al effect is unknown. Here we examined the impact of Al stress on the activity of non-specific phospholipase C (NPC) in the connection with the processes related to the plasma membrane using fluorescently labeled phosphatidylcholine. We observed a rapid and significant decrease of labeled diacylglycerol (DAG), product of NPC activity, in Arabidopsis seedlings treated with AlCl₃. Interestingly, an application of the membrane fluidizer, benzyl alcohol, restored the level of DAG during Al treatment. Our observations suggest that the activity of NPC is affected by Al-induced changes in plasma membrane physical properties.

  2. A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst.

    PubMed

    Baroutian, Saeid; Aroua, Mohamed K; Raman, Abdul Aziz A; Sulaiman, Nik M N

    2011-01-01

    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.

  3. Optical activity of membrane suspensions: calculation of artifacts by Mie scattering theory.

    PubMed

    Gordon, D J; Holzwarth, G

    1971-10-01

    The circular dichroism, optical rotatory dispersion, and optical density of a suspension of erythrocyte ghosts are calculated from the measured optical properties of solubilized ghosts by classical general scattering theory (Mie theory). The ghost is represented by a solvent-filled spherical shell 7 nm (70 A) thick and 3.5 mum in radius. The 3- to 5-nm red shifts and unusual band shapes observed in the circular dichroism and optical rotary dispersion of suspensions of the intact ghosts, but not in the solubilized membranes, are reproduced by these calculations. Both differential absorption and differential scattering of left-and right-circularly polarized light contribute significantly to the calculated circular dichroism spectra. The artifacts of small membrane vesicles are shown to be less than those of intact ghosts. It is concluded that the characteristic anomalies in the optical activity of membrane suspensions are artifactual.

  4. Preparation of Cu2O nanowire-blended polysulfone ultrafiltration membrane with improved stability and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Xu, Zehai; Ye, Shuaiju; Fan, Zheng; Ren, Fanghua; Gao, Congjie; Li, Qingbiao; Li, Guoqing; Zhang, Guoliang

    2015-10-01

    Polysulfone (PSF) membranes have been widely applied in water and wastewater treatment, food-processing and biomedical fields. In this study, we report the preparation of modified PSF membranes by blending PSF with Cu2O nanowires (NWs) to improve their stability and antifouling activity. Synthesis of novel Cu2O NWs/PSF-blended ultrafiltration membrane was achieved via phase inversion method by dispersing one-dimensional Cu2O nanowires in PSF casting solutions. Various techniques such as XRD, SEM, TEM, and EDS were applied to characterize and investigate the properties of nanowires and membranes. The introduced Cu2O nanowires can firmly be restricted into micropores of PSF membranes, and therefore, they can effectively prevent the serious leaking problem of inorganic substances in separation process. The blended PSF membranes also provided enhanced antimicrobial activity and superior permeation property compared to pure PSF membrane. The overall work can not only provide a new way for preparation of novel blended membranes with multidimensional nanomaterials, but can also be beneficial to solve the annoying problem of biofouling.

  5. Mechanical Properties of Two-Dimensional Alkanethiol-Coated Gold Nanoparticle Membranes

    NASA Astrophysics Data System (ADS)

    Salerno, K. Michael; Bolintineanu, Dan S.; Lane, J. Matthew D.; Grest, Gary S.

    2014-03-01

    Membranes formed from nanoparticle monolayers have been shown to have mechanical properties that may make them suitable for use in micro-scale devices. Metallic-core nanoparticles with short, organic ligands can form membranes with dimensions up to several micrometers, with large elastic moduli. Experimental tests of membranes with different cores and ligands indicate that ligand length as well as core-ligand and ligand-ligand interactions can influence membrane mechanical response. We use explicit-atom molecular dynamics simulations to examine the properties of membranes formed from a two-dimensional hexagonal array of alkanethiol-coated Au nanoparticles. Results are presented for nanoparticle core diameters from 4-6nm, ligand lengths of 10-18 units and carboxyl and methyl end groups, all of which influence the mechanical properties of the membranes. Knowledge of how microstructure and composition influence membrane properties could lead to efficient membrane manufacture with improved mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    SciTech Connect

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  7. Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena.

    PubMed

    Al-Halbouni, Djamila; Traber, Jacqueline; Lyko, Sven; Wintgens, Thomas; Melin, Thomas; Tacke, Daniela; Janot, Andreas; Dott, Wolfgang; Hollender, Juliane

    2008-03-01

    In this study, activated sludge characteristics were studied with regard to membrane fouling in membrane bioreactors (MBRs) for two pilot plants and one full-scale plant treating municipal wastewater. For the full-scale MBR, concentrations of extracellular polymeric substances (EPS) bound to sludge flocs were shown to have seasonal variations from as low as 17mgg(-1) dry matter (DM) in summer up to 51mg(gDM)(-1) in winter, which correlated with an increased occurrence of filamentous bacteria in the colder season. Therefore, it was investigated at pilot-scale MBRs with different sludge retention times (SRTs) whether different EPS contents and corresponding sludge properties influence membrane fouling. Activated sludge from the pilot MBR with low SRT (23d) was found to have worse filterability, settleability and dewaterability. Photometric analysis of EPS extracts as well as LC-OCD measurements showed that it contained significantly higher concentrations of floc-bound EPS than sludge at higher SRT (40d) The formation of fouling layers on the membranes, characterised by SEM-EDX as well as photometric analysis of EPS extracts, was more distinct at lower SRT where concentrations of deposited EPS were 40-fold higher for proteins and 5-fold higher for carbohydrates compared with the membrane at higher SRT. Floc-bound EPS and metals were suggested to play a role in the fouling process at the full-scale MBR and this was confirmed by the pilot-scale study. However, despite the different sludge properties, the permeability of membranes was found to be similar.

  8. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  9. Mechanical properties of the plasma membrane of isolated plant protoplasts

    SciTech Connect

    Wolfe, J.; Steponkus, P.L.

    1983-01-01

    The volume of isolated protoplasts of rye (Secale cereale L. cv Puma) in a suspending solution at constant concentration is shown to be negligibly changed by tensions in the plasma membrane which approach that tension necessary to lyse them. This allows a detailed investigation of the plasma membrane stress-strain relation by micropipette aspiration. Over periods less than a second, the membrane behaves as an elastic two-dimensional fluid with an area modulus of elasticity of 230 millinewtons per meter. Over longer periods, the stress-strain relation approaches a surface energy law--the resting tension is independent of area and has a value of the order 100 micronewtons per meter. Over longer periods the untensioned area, which is defined as the area that would be occupied by the molecules in the membrane at any given time if the tension were zero, increases with time under large imposed tensions and decreases under sufficiently small tension. It is proposed that these long term responses are the result of exchange of material between the plane of the membrane and a reservoir of membrane material. The irreversibility of large contractions in area is demonstrated directly, and the behavior of protoplasts during osmotically induced cycles of contraction and expansion is explained in terms of the membrane stress-strain relation.

  10. Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process.

    PubMed

    Miura, Takayuki; Okabe, Satoshi; Nakahara, Yoshihito; Sano, Daisuke

    2015-05-15

    In order to evaluate removal properties of human enteric viruses from wastewater by a membrane bioreactor (MBR), influent, anoxic and oxic mixed liquor, and membrane effluent samples were collected in a pilot-scale anoxic-oxic MBR process for 16 months, and concentrations of enteroviruses, norovirus GII, and sapoviruses were determined by real-time PCR using murine norovirus as a process control. Mixed liquor samples were separated into liquid and solid phases by centrifugation, and viruses in the bulk solution and those associated with mixed liquor suspended solids (MLSS) were quantified. Enteroviruses, norovirus GII, and sapoviruses were detected in the influent throughout the sampling period (geometrical mean, 4.0, 3.1, and 4.4 log copies/mL, respectively). Enterovirus concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase, and the mean log reduction value between influent and anoxic mixed liquor was 0.40 log units. In contrast, norovirus GII and sapovirus concentrations in the solid phase were equal to or higher than those in the liquid phase, and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor. This suggested that enteroviruses were less associated with MLSS than norovirus GII and sapoviruses, resulting in lower enterovirus removal in the activated sludge process. Enteroviruses and norovirus GII were detected in the MBR effluent but sapoviruses were not in any effluent samples. When MLSS concentration was reduced to 50-60% of a normal operation level, passages of enteroviruses and norovirus GII through a PVDF microfiltration membrane were observed. Since rejection of viruses by the membrane was not related to trans-membrane pressure which was monitored as a parameter of membrane fouling, the results indicated that adsorption to MLSS plays an important role in virus removal by an MBR, and removal properties vary by viruses reflecting different

  11. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition.

    PubMed

    Scheidt, Holger A; Haralampiev, Ivan; Theisgen, Stephan; Schirbel, Andreas; Sbiera, Silviu; Huster, Daniel; Kroiss, Matthias; Müller, Peter

    2016-06-15

    Mitotane (o,p'.-DDD) is an orphan drug approved for the treatment of adrenocortical carcinoma. The mechanisms, which are responsible for this activity of the drug, are not completely understood. It can be hypothesized that an impact of mitotane is mediated by the interaction with cellular membranes. However, an interaction of mitotane with (lipid) membranes has not yet been investigated in detail. Here, we characterized the interaction of mitotane and its main metabolite o,p'-dichlorodiphenyldichloroacetic acid (o,p'-DDA) with lipid membranes by applying a variety of biophysical approaches of nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that mitotane and o,p'-DDA bind to lipid membranes by inserting into the lipid-water interface of the bilayer. Mitotane but not o,p'-DDA directly causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. Mitotane induced alterations of the membrane integrity required the presence of phosphatidylethanolamine and/or cholesterol. Collectively, our data for the first time characterize the impact of mitotane on the lipid membrane structure and dynamics, which may contribute to a better understanding of specific mitotane effects and side effects.

  12. Comparison of the properties of membranes produced with alginate and chitosan from mushroom and from shrimp.

    PubMed

    Bierhalz, Andréa C K; Westin, Cecília Buzatto; Moraes, Ângela Maria

    2016-10-01

    Dense and porous chitosan-alginate membranes (1:1 in mass) useful as coverages of skin wounds treated through cell therapy were produced using chitosan of different chain sizes from fungal (white mushrooms) and animal (shrimp shells) sources. Porous materials were obtained by adding the surfactant Poloxamer 188 to the formulations. The influence of chitosan type on membranes physicochemical properties and toxicity to fibroblasts was evaluated. Porosity was noticed to be more pronounced in membranes obtained with fungal chitosan and increased with its molecular mass. These formulations showed the highest values of thickness, roughness, opacity, liquid uptake and water vapor permeability. The membranes were not toxic to fibroblasts, but the lowest cytotoxicity values (0.16-0.21%) were observed for membranes prepared with fungal chitosan in the presence of surfactant. In conclusion, it is possible to replace chitosan from animal sources by chitosan of fungal origin to produce membranes with negligible cytotoxicity while maintaining appropriate physicochemical properties.

  13. Effects of diclofenac on EPC liposome membrane properties.

    PubMed

    Ferreira, Helena; Lúcio, Marlene; Lima, José L F C; Matos, Carla; Reis, Salette

    2005-07-01

    In this work the interaction of a non-steroidal anti-inflammatory drug (NSAID), diclofenac, with egg yolk phosphatidylcoline (EPC) liposomes, used as cell-membrane models, was quantified by determination of the partition coefficient. The liposome/aqueous phase partition coefficient was determined by derivative spectrophotometry, fluorescence quenching, and measurement of zeta-potential. Theoretical models based on simple partition of the diclofenac between two different media, were used to fit the experimental data, enabling the determination of K(p). The three techniques used yielded similar results. The effects of the interaction on the membrane's characteristics were further evaluated, either by studying membrane potential changes or by effects on membrane fluidity. The liposome membrane potential and the size and size-homogeneity of liposomes were measured by light scattering. The effects of diclofenac on the internal viscosity or fluidity of the membrane were determined by use of spectroscopic probes-a series of n-(9-anthroyloxy) fatty acids in which the carboxyl terminal group is located at the interfacial region of the membrane and the fluorescent anthracene group is attached at different positions along the fatty acid chain. The location of the diclofenac on the membrane was also evaluated, by fluorescence quenching using the same series of fluorescent probes. Because the fluorescent anthracene group is attached at different positions along the fatty acid chain, it is possible to label at a graded series of depths in the bilayer. The interactions between the drug and the probe are a means of predicting the location of the drug on the membrane.

  14. Preparation and antibacterial property of PES/AgNO3 three-bore hollow fiber ultrafiltration membranes.

    PubMed

    Chen, Yifeng; Dang, Jingchuan; Zhang, Yatao; Zhang, Haoqin; Liu, Jindun

    2013-01-01

    In this study, a three-bore polyethersulfone (PES) hollow fiber ultrafiltration (UF) membrane with antibacterial properties was prepared by phase inversion, using PES as the membrane material, N,N-dimethylacetamide (DMAC) as solvent, polyvinylpyrrolidone (PVP) and AgNO3 as additives. The silver particles were detected by X-ray photoelectron spectroscopy. The effect of AgNO3 content on the antibacterial properties and separation performance was studied in detail. The membranes showed good antibacterial activity against Escherichia coli after adding AgNO3 and the antibacterial rate of PES/AgNO3 UF membrane with AgNO3 content of 1 wt% could reach 99.9% after running for 48 hours. Moreover, the bovine serum albumin solution filtration results indicated that the PES/AgNO3 membranes had a certain degree of antifouling performance. Therefore, three-bore PES/AgNO3 membranes have a potential application to reduce both bacterial and organic fouling in water treatment.

  15. Mechanism for Active Membrane Fusion Triggering by Morbillivirus Attachment Protein

    PubMed Central

    Ader, Nadine; Brindley, Melinda; Avila, Mislay; Örvell, Claes; Horvat, Branka; Hiltensperger, Georg; Schneider-Schaulies, Jürgen; Vandevelde, Marc; Zurbriggen, Andreas; Plemper, Richard K.

    2013-01-01

    The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering. PMID:23077316

  16. Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles

    NASA Astrophysics Data System (ADS)

    Mokhtari, Samaneh; Rahimpour, Ahmad; Shamsabadi, Ahmad Arabi; Habibzadeh, Setareh; Soroush, Masoud

    2017-01-01

    To improve the hydrophilicity and antifouling properties of polysulfone (PS) ultrafiltration membranes, we studied the use of salicylate-alumoxane (SA) nanoparticles as a novel hydrophilic additive. The effects of SA nanoparticles on the membrane characteristics and performance were investigated in terms of membrane structure, permeation flux, solute rejection, hydrophilicity, and antifouling ability. The new mixed-matrix membranes (MMMs) possess asymmetric structures. They have smaller finger-like pores and smoother surfaces than the neat PS membranes. The embedment of SA nanoparticles in the polymer matrix and the improvement of surface hydrophilicity were investigated. Ultrafiltration experiments indicated that the pure-water flux of the new MMMs initially increases with SA nanoparticles loading followed by a decrease at high loadings. Higher BSA solution flux was achieved for the MMMs compared to the neat PS membranes. Membranes with 1 wt.% SA nanoparticles exhibit the highest flux recovery ratio of 87% and the lowest irreversible fouling of 13%.

  17. Biochemical properties of platelet microparticle membranes formed during exocytosis resemble organelles more than plasma membrane.

    PubMed

    Olas, Beata; Lundell, Kerstin; Holmsen, Holm; Fukami, Miriam H

    2002-08-14

    Studies of [3H]glycerol turnover in phosphatidylcholine (PC) in platelets revealed two metabolic pools, a 'low turnover PC' in collagen-induced microparticles with specific radioactivity only 10% of that found in the 'high turnover PC' of bulk platelet PC. Isolated organelle fractions of [3H]glycerol-labelled platelets contained [3H]PC with specific radioactivities about 20% of that in membrane fractions. These results together with studies on distribution of concanavalin A-FITC and GPlb, a plasma membrane receptor, indicate that microparticles formed during exocytosis are not simple vesiculations of plasma membrane, but they seem rather to originate from a relatively metabolically static membrane pool not accessible to extracellular reagents.

  18. Exploring the local elastic properties of bilayer membranes using molecular dynamics simulations.

    PubMed

    Pieffet, Gilles; Botero, Alonso; Peters, Günther H; Forero-Shelton, Manu; Leidy, Chad

    2014-11-13

    Membrane mechanical elastic properties regulate a variety of cellular processes involving local membrane deformation, such as ion channel function and vesicle fusion. In this work, we used molecular dynamics simulations to estimate the local elastic properties of a membrane. For this, we calculated the energy needed to extract a DOPE lipid molecule, modified with a linker chain, from a POPC bilayer membrane using the umbrella sampling technique. Although the extraction energy entails several contributions related not only to elastic deformation but also to solvation, careful analysis of the potential of mean force (PMF) allowed us to dissect the elastic contribution. With this information, we calculated an effective linear spring constant of 44 ± 4 kJ·nm(-2)·mol(-1) for the DOPC membrane, in agreement with experimental estimates. The membrane deformation profile was determined independently during the stretching process in molecular detail, allowing us to fit this profile to a previously proposed continuum elastic model. Through this approach, we calculated an effective membrane spring constant of 42 kJ·nm(-2)·mol(-1), which is in good agreement with the PMF calculation. Furthermore, the solvation energy we derived from the data is shown to match the solvation energy estimated from critical micelle formation constants. This methodology can be used to determine how changes in lipid composition or the presence of membrane modifiers can affect the elastic properties of a membrane at a local level.

  19. Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties.

    PubMed

    Dallan, Paula Rulf Marreco; Moreira, Patrícia da Luz; Petinari, Leandro; Malmonge, Sônia Maria; Beppu, Marisa Masumi; Genari, Selma Candelária; Moraes, Angela Maria

    2007-02-01

    The aim of this work was to perform a systematic study about the effects induced by chitosan solution concentration and by chitin or glycerol incorporation on dense chitosan membranes with potential use as burn dressings. The membrane properties analyzed were total raw material cost, thickness, morphology, swelling ratio, tensile strength, percentage of strain at break, crystallinity, in vitro enzymatic degradation with lysozyme, and in vitro Vero cells adhesion. While the use of the most concentrated chitosan solution (2.5% w/w) increased membrane cost, it also improved the biomaterial mechanical resistance and ductility, as well as reduced membrane degradation when exposed for 2 months to lysozyme. The remaining evaluated properties were not affected by initial chitosan solution concentration. Chitin incorporation, on the other hand, reduced the membranes cost, swelling ratio, mechanical properties, and crystallinity, resulting in thicker biomaterials with irregular surface more easily degradable when exposed to lysozyme. Glycerol incorporation also reduced the membranes cost and crystallinity and increased membranes degradability after exposure to lysozyme. Strong Vero cells adhesion was not observed in any of the tested membrane formulations. The overall results indicate that the majority of the prepared membranes meet the performance requirements of temporary nonbiodegradable burn dressings (e.g. adequate values of mechanical resistance and ductility, low values of in vitro cellular adhesion on their surfaces, low extent of degradation when exposed to lysozyme solution, and high stability in aqueous solutions).

  20. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Xuliang; Xiao, Changfa; Hu, Xiaoyu; Bai, Qianqian

    2013-01-01

    Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  1. Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization.

    PubMed

    Velleman, Leonora; Shearer, Cameron James; Ellis, Amanda Vera; Losic, Dusan; Voelcker, Nicolas Hans; Shapter, Joseph George

    2010-09-01

    This study presents a simple approach to perform selective mass transport through freestanding porous silicon (pSi) membranes. pSi membranes were fabricated by the electrochemical etching of silicon to produce membranes with controlled structure and pore sizes close to molecular dimensions (approximately 12 nm in diameter). While these membranes are capable of size-exclusion based separations, chemically specific filtration remains a great challenge especially in the biomedical field. Herein, we investigate the transport properties of chemically functionalized pSi membranes. The membranes were functionalized using silanes (heptadecafluoro-1,1,2,2-tetrahydrodecyl)dimethylchlorosilane (PFDS) and N-(triethoxysilylpropyl)-o-polyethylene oxide urethane (PEGS) to give membranes hydrophobic (PFDS) and hydrophilic (PEGS) properties. The transport of probe dyes tris(2,2'-bipyridyl)dichlororuthenium(ii) hexahydrate (Rubpy) and Rose Bengal (RB) through these functionalized membranes was examined to determine the effect surface functionalization has on the selectivity and separation ability of pSi membranes. This study provides the basis for further investigation into more sophisticated surface functionalization and coupled with the biocompatibility of pSi will lead to new advances in membrane based bio-separations.

  2. Properties of soluble and membrane bound dopamine-beta-monooxygenase from bovine adrenal medulla cross-linked with dimethyl suberimidate.

    PubMed

    Miras-Portugal, M T; Millaruelo, A; Vara, F

    1980-12-10

    Bovine dopamine-beta-monooxygenase from chromaffin granules in its soluble and membrane-bound forms was cross-linked with the bifunctional reagent dimethyl suberimidate, and its structural and kinetic properties were studied. 1. The cross-linking reaction does not affect the activity of soluble dopamine-beta-monooxygenase; it produces a ten percent inactivation in the membrane-bound enzyme, possibly because the linkage to other membrane proteins hinders its activity. 2. The soluble dopamine-beta-monooxygenase reaction mixture was analyzed by sodium dodecyl sulfate gel electrophoresis, showing appreciable amounts of dimer and tetramer, but only small amounts of trimer. In membrane-bound dopamine-beta-monooxygenase, subjected to the same treatment, appreciable amounts of dimer and higher aggregates were found. 3. The kinetic properties of soluble dopamine-beta-monooxygenase after the crosslinking reaction are the same as those of the native enzyme, with a ping-pong kinetic mechanism and the same real Michaelis constants for tyramine and ascorbate: KmT = 0.36 mM and KmA = 0.32 mM. Membrane-bound dopamine-beta-monooxygenase does not present a ping-pong mechanism before or after cross-linking; its real Michaelis constants are slightly modified by the cross-linking reaction: KmT = 0.4 mM and KMA = 0.4 mM.

  3. Antioxidant activity of membrane-fractionated coffee extracts in dependence of the storage conditions

    NASA Astrophysics Data System (ADS)

    Mitev, D.; Peshev, D.; Peev, G.; Peeva, L.

    2016-10-01

    Present paper aims at one of the important aspects of the application of products with antioxidant activity: namely the preservation and change of their properties during the storage in different conditions, as well as their reliable characterisation. The tests of antioxidant properties were conducted with membrane-separated coffee extracts, isolated using a “Microdyn Nadir NP030P” type of commercial nanofiltration membrane (30% retention of NaCl; MWCO∼400). Prepared coffee permeates and retentates were stored 0÷10 days in cool/warm conditions, with/without air access and at different illumination conditions. The kinetics of content changes was evaluated according to Folin-Ciocalteu method of total phenolic/reducing content determination.

  4. PMCA activity and membrane tubulin affect deformability of erythrocytes from normal and hypertensive human subjects.

    PubMed

    Monesterolo, Noelia E; Nigra, Ayelen D; Campetelli, Alexis N; Santander, Verónica S; Rivelli, Juan F; Arce, Carlos A; Casale, Cesar H

    2015-11-01

    Our previous studies demonstrated formation of a complex between acetylated tubulin and brain plasma membrane Ca(2+)-ATPase (PMCA), and the effect of the lipid environment on structure of this complex and on PMCA activity. Deformability of erythrocytes from hypertensive human subjects was reduced by an increase in membrane tubulin content. In the present study, we examined the regulation of PMCA activity by tubulin in normotensive and hypertensive erythrocytes, and the effect of exogenously added diacylglycerol (DAG) and phosphatidic acid (PA) on erythrocyte deformability. Some of the key findings were that: (i) PMCA was associated with tubulin in normotensive and hypertensive erythrocytes, (ii) PMCA enzyme activity was directly correlated with erythrocyte deformability, and (iii) when tubulin was present in the erythrocyte membrane, treatment with DAG or PA led to increased deformability and associated PMCA activity. Taken together, our findings indicate that PMCA activity is involved in deformability of both normotensive and hypertensive erythrocytes. This rheological property of erythrocytes is affected by acetylated tubulin and its lipid environment because both regulate PMCA activity.

  5. "Active surfaces" formed by immobilization of enzymes on solid-supported polymer membranes.

    PubMed

    Draghici, Camelia; Kowal, Justyna; Darjan, Alina; Meier, Wolfgang; Palivan, Cornelia G

    2014-10-07

    In various domains ranging from catalysis to medical and environmental sciences, there is currently much focus on the design of surfaces that present active compounds at the interface with their environments. Here, we describe the design of "active surfaces" based on solid-supported monolayers of asymmetric triblock copolymers, which serve as templates for the attachment of enzymes. A group of poly(ethylene glycol)-block-poly(γ-methyl-ε-caprolactone)-block-poly[(2-dimethylamino) ethyl methacrylate] amphiphilic copolymers, with different hydrophilic and hydrophobic domains (PEG45-b-PMCLx-b-PDMAEMAy) was selected to generate solid-supported polymer membranes. The behavior of the copolymers in terms of their molecular arrangements at the air-water interface was established by a combination of Langmuir isotherms and Brewster angle microscopy. Uniform thin layers of copolymers were obtained by transferring films onto silica solid supports at optimal surface pressure. These solid-supported polymer membranes were characterized by assessing various properties, such as monolayer thickness, hydrophilic/hydrophobic balance, topography, and roughness. Laccase, used as an enzyme model, was successfully attached to copolymer membranes by stable interactions as followed by quartz crystal microbalance with dissipation measurements, and its activity was preserved, as indicated by activity assays. The interaction between the amphiphilic triblock copolymer films and immobilized enzymes represents a straightforward approach to engineer "active surfaces", with biomolecules playing the active role by their intrinsic bioactivity.

  6. Rapid test for distinguishing membrane-active antibacterial agents.

    PubMed

    Prakash Singh, Maya

    2006-10-01

    In the search for antibacterial agents with a novel mode-of-action (MOA) many targeted cellular and cell-free assays are developed and used to screen chemical and natural product libraries. Frequently, hits identified by the primary screens include compounds with nonspecific activities that can affect the integrity and function of bacterial membrane. For a rapid dereplication of membrane-active compounds, a simple method was established using a commercially available Live/Dead(R) Bacterial Viability Kit. This method utilized two fluorescent nucleic acid stains, SYTO9 (stains all cells green) and propidium iodide (stains cells with damaged membrane red) for the drug-treated bacterial cells. The cells were then either examined visually by fluorescence microscopy or their fluorescence emissions were recorded using a multi-label plate reader set to measure emissions at two different wavelengths. The ratio of green versus red was compared to a standard curve indicating the percentage of live versus dead bacteria. Nine known antibiotics and 14 lead compounds from various antibacterial screens were tested with results consistent with their MOA.

  7. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.

    PubMed

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Jaeho; Kim, Jae Il; Lee, Dong Gun

    2015-02-01

    Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane.

  8. Highly active carbonaceous nanofibers: a versatile scaffold for constructing multifunctional free-standing membranes.

    PubMed

    Liang, Hai-Wei; Zhang, Wen-Jun; Ma, Yi-Ni; Cao, Xiang; Guan, Qing-Fang; Xu, Wei-Ping; Yu, Shu-Hong

    2011-10-25

    Translating the unique characteristics of individual nanoscale components into macroscopic materials such as membranes or sheets still remains a challenge, as the engineering of these structures often compromises their intrinsic properties. Here, we demonstrate that the highly active carbonaceous nanofibers (CNFs), which are prepared through a template-directed hydrothermal carbonization process, can be used as a versatile nanoscale scaffold for constructing macroscopic multifunctional membranes. In order to demonstrate the broad applicability of the CNF scaffold, we fabricate a variety of CNF-based composite nanofibers, including CNFs-Fe(3)O(4), CNFs-TiO(2), CNFs-Ag, and CNFs-Au through various chemical routes. Importantly, all of them inherit unique dimensionality (high aspect ratio) and mechanical properties (flexibility) of the original CNF scaffolds and thus can be assembled into macroscopic free-standing membranes through a simple casting process. We also demonstrate the wide application potentials of these multifunctional composite membranes in magnetic actuation, antibiofouling filtration, and continuous-flow catalysis.

  9. Clay and pillard clay membranes: Synthesis, characterization and transport properties

    NASA Astrophysics Data System (ADS)

    Vercauteren, Sven

    In this work, the preparation and characterization of ceramic multilayer membranes with an Alsb2Osb3-pillared montmorillonite (Al-PILC) and a Laponite separating layer have been studied. Al-PILC is a pillared clay prepared by intercalation of polyoxo cations of aluminium between the montmorillonite clay sheets, followed by a thermal treatment (400sp°C) to obtain rigid oxide pillars. The free spacing between the clay plates is about 0.8 nm. Laponite is a synthetic clay with a pore structure formed by the stacking of very small clay plates. To deposit an Al-PILC top layer on a macro- or mesoporous aluminiumoxide support membrane, two preparation routes were considered. According to the standard preparation route of a pillared clay, the easiest way is to use a suspension of clay mixed with the pillaring solution in which the support membrane is dipped. However, it is not possible to deposit uniform and crack-free top layers in this way because of the formation of unstable suspensions. A second preparation route is based on an indirect pillaring procedure. By dipping a support membrane in a stable clay suspension, a thin clay film is deposited in a first step. Pillaring is achieved via immersion of the supported clay film in the pillaring solution in a second step. After a washing procedure, the membrane is dried and calcined at 400sp°C. Laponite membranes were simply prepared by dipping a support membrane in a suspension of this synthetic clay in water. Afterwards a drying at room temperature and a calcination at 400 ar 500sp°C is performed. Both membrane types were tested for gas separation and pervaporation purposes. Transport of permanent gases (He, N2) occurs by means of Knudsen diffusion. Diffusion is kinetically controlled and for a binary mixture, the maximum separation factor is determined by the difference in molecular weight of both components. From pervaporation experiments with water/alcohol mixtures it was found that Al-PILC membranes can be used for

  10. Variation of membrane properties in hair cells isolated from the turtle cochlea.

    PubMed Central

    Art, J J; Fettiplace, R

    1987-01-01

    1. Hair cells were enzymatically isolated from identified regions of the turtle basilar papilla and studied with the patch-electrode technique. The experimental aim was to relate the resonance properties seen during current injection to the membrane currents measured in the same cell under whole-cell voltage clamp. 2. Solitary hair cells had resting potentials of about -50 mV, and produced a damped oscillation in membrane potential at the onset and termination of a small current step; the resonant frequency varied from 9 to 350 Hz between cells, and was correlated with the region of papilla from which a cell had been isolated. The inferred frequency map was consistent with the tonotopic arrangement described previously in the intact papilla. 3. Depolarizations from the resting potential under voltage clamp activated a large net outward current with a steep voltage dependence, and the steady-state current-voltage relationship was strongly rectified about the resting potential. Input resistances tended to be smaller in cells with higher resonant frequencies, although there was no concurrent variation in membrane area as inferred from the cell capacitance. 4. The kinetics of the outward current evoked by a small depolarizing step depended upon the resonant frequency, fo, of the hair cell, and were slower in low-frequency cells. On repolarization to the resting potential the current decayed exponentially with a time constant that changed from 150 ms in the lowest-frequency cell to less than 1 ms in the highest-frequency one. The time constant was approximately proportional to 1/f0(2). 5. Following repolarization to different membrane potentials, the tail current was found to reverse around -80 mV, indicating that the outward current was due mainly to K+. 6. The outward current was abolished by extracellular application of 25 mM-tetraethylammonium chloride (TEA), or on exchange of Cs+ for K+ in the intracellular medium filling the recording electrode, each experiment

  11. Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes

    PubMed Central

    1980-01-01

    Membrane adhesions between the flagella of mating-type "plus" and "minus" gametes of Chlamydomonas reinhardi are shown to stimulate a rapid change in the ultrastructure of the flagellar tips, designated as flagellar tip activation (FTA). A dense substance, termed fibrous tip material (FTM), accumulates between the flagellar membrane and the nine single A microtubules of the tip. The A microtubules then elongate, growing into the distal region of the tip, increasing tip length by 30%. This study describes FTA kinetics during normal and mutant matings, presents experiments designed to probe its role in the mating reaction, and offers the following conclusions: (a) FTA is elicited by agents that cross-link flagellar membrane components (including natural sexual agglutinins, antiflagellar antisera, and concanavalin A) but not by flagellar adherence to polylysine-coated films. (b) FTA is reversed by flagellar disadhesion. (c) Gametes can undergo repeated cycles of FTA during successive rounds of adhesion/disadhesion. (d) FTA, flagellar tipping, and sexual signaling are simultaneously blocked by colchicine and by vinblastine, suggesting that tubulinlike molecules, perhaps exposed at the membrane surface, are involved in all three responses. (e) FTA is not blocked by short exposure to chymotrypsin, by cytochalasins B and D, nor by concanavalin A, even though all block cell fusion; the response is therefore autonomous and experimentally dissociable from later stages in the mating reaction. (f) Under no experimental conditions is mating-structure activation observed to occur unless FTA also occurs. This study concludes that FTA is a necessary event in the sexual signaling sequence, and presents a testable working model for its mechanism. PMID:7358792

  12. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].

    PubMed

    Tang, Huan-Wei; Zhang, Li-Ping; Li, Shuai; Zhao, Guang-Jie; Qin, Zhu; Sun, Su-Qin

    2010-03-01

    In the present paper, the functional groups of PES/micro-nano cellulose composite membrane materials were characterized by Fourier transform infrared spectroscopy (FTIR). Also, changes in crystallinity in composite membrane materials were analyzed using X-ray diffraction (XRD). The effects of micro-nano cellulose content on hydrophilic property of composite membrane material were studied by measuring hydrophilic angle. The images of support layer structure of pure PES membrane material and composite membrane material were showed with scanning electron microscope (SEM). These results indicated that in the infrared spectrogram, the composite membrane material had characteristic peaks of both PES and micro-nano cellulose without appearance of other new characteristics peaks. It revealed that there were no new functional groups in the composite membrane material, and the level of molecular compatibility was achieved, which was based on the existence of inter-molecular hydrogen bond association between PES and micro-nano cellulose. Due to the existence of micro-nano cellulose, the crystallinity of composite membrane material was increased from 37.7% to 47.9%. The more the increase in micro-nano cellulose mass fraction, the better the van de Waal force and hydrogen bond force between composite membrane material and water were enhanced. The hydrophilic angle of composite membrane material was decreased from 55.8 degrees to 45.8 degrees and the surface energy was raised from 113.7 to 123.5 mN x m(-2). Consequently, the hydrophilic property of composite membrane material was improved. The number of pores in the support layer of composite membrane material was lager than that of pure PES membrane. Apparently, pores were more uniformly distributed.

  13. Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder.

    PubMed Central

    Lewis, S A; Wills, N K

    1983-01-01

    Previous studies have shown that aldosterone stimulates the rate of Na+ transport across the rabbit urinary bladder epithelium by increasing the apical membrane permeability to Na+. Paradoxically, ion-sensitive and conventional micro-electrode measurements demonstrated that intracellular Na+ activity aiNa+ was essentially unchanged by aldosterone, i.e. aiNa+ was constant regardless of the rate of Na+ transport. The present study was designed to resolve this apparent contradiction. The effects of elevated, endogenous aldosterone levels produced by low-Na+ diet (Lewis & Diamond, 1976) on urinary bladder Na+ transport were investigated in vitro using Ussing-type chambers and intracellular conventional and ion-sensitive microelectrodes. Apical membrane selectivity and kinetics of the Na+ pump were assessed as a function of hormone stimulation. The aldosterone-stimulated increase in Na+ transport was accounted for by increases in both the relative selective permeability of the apical membrane to Na+ and an increase in its absolute Na+ permeability. The kinetics of the Na+ pump were evaluated electrically by loading the cells with Na+ (monitored with Na+-sensitive micro-electrodes) or alternatively by manipulating serosal solution K+ concentration and measuring changes in the basolateral membrane electromotive forces and resistance. From these measurements the current generated by the pump was calculated as a function of intracellular Na+ or extracellular K+. The kinetics of the pump were not altered by aldosterone. A model of highly co-operative binding estimated Km for Na+ as 14.2 mM and 2.3 mM for K+. Hill coefficients for these ions were 2.8 and 1.8, respectively, consistent with a pump stoichiometry of 3 Na+ to 2 K+. The kinetic properties of the Na-K pump indicate that physiological levels of aiNa+ are poised at the foot of a step kinetic curve which energetically favours Na+ extrusion. PMID:6312027

  14. Mechanically enhanced PES electrospun nanofiber membranes (ENMs) for microfiltration: The effects of ENM properties on membrane performance.

    PubMed

    Bae, Jiyeol; Baek, Inchan; Choi, Heechul

    2016-11-15

    The application of electrospun nanofiber membranes (ENMs) as microfilters for the process of water purification requires the substrate to possess suitable strength, permeability, and a smooth surface. Therefore, the fiber homogeneity, inter-fiber adhesion, and surface roughness of the ENMs must be carefully controlled. Concurrently, an understanding of the ENMs' rejection mechanism for contaminants is necessary for the effective application of ENMs. In this study, we demonstrate the fabrication of polyethersulfone (PES) ENMs, which are useful for water purification as water treatment membranes. An optimum fabrication condition that can significantly improve the mechanical property and surface roughness of the PES membrane is also illustrated. This technique induces the solvent remaining on the fiber's surface after the electrospinning process, and the mechanical properties and surface roughness of the membrane are improved by the solvent-induced fusion of the fiber. The fabricated PES ENMs also show higher clean water productivity. Additionally, we show that a particulate contaminant in water is mainly rejected on the ENM surface by using a water filtration test. Based on our conclusions, we suggest the appropriate ENM regeneration method and confirm that the fabricated ENMs show excellent regeneration ability.

  15. Tailoring the properties of asymmetric cellulose acetate membranes by gas plasma etching.

    PubMed

    Olde Riekerink, M B; Engbers, G H M; Wessling, M; Feijen, J

    2002-01-15

    Cellulose triacetate (CTA) ultrafilters and cellulose acetate blend (CAB) desalination membranes were treated with a radiofrequency gas plasma (tetrafluoromethane (CF(4)) or carbon dioxide (CO(2)), 47-49 W, 0.04-0.08 mbar). Treatment times were varied between 15 s and 120 min. The plasma-treated top layer of the membranes was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements to obtain information about surface structure, chemistry, and wettability, respectively. The membrane properties (e.g., permeability, selectivity, fouling) were studied by waterflux measurements, molecular weight cutoff measurements, and fouling experiments with bovine serum albumin. CO(2) plasma treatment resulted in gradual etching of the membrane's dense top layer. Permeation and selectivity changed significantly for treatment times of 0-15 min for CTA and 5-60 min for CAB membranes. Moreover, CTA membranes were hydrophilized during CO(2) plasma treatment whereas CF(4) plasma treatment led to hydrophobic surfaces due to strong fluorination of the top layer. This study shows that gas plasma etching can tailor the properties of asymmetric cellulose acetate membranes by simultaneously modifying the chemistry and structure of the top layer. The low fouling properties of CTA membranes were thereby largely maintained.

  16. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  17. Glucose-induced activation of the plasma membrane H(+)-ATPase in Fusarium oxysporum.

    PubMed

    Brandão, R L; Castro, I M; Passos, J B; Nicoli, J R; Thevelein, J M

    1992-08-01

    Addition of glucose and other sugars to derepressed cells of the fungus Fusarium oxysporum var. lini triggered activation of the plasma membrane H(+)-ATPase within 5 min. Glucose was the best activator while galactose and lactose had a lesser effect. The activation was not prevented by previous addition of cycloheximide and it was fully reversible when the glucose was removed. The activation process in vivo also caused changes in the kinetic properties of the enzyme. The non-activated enzyme had an apparent Km of about 3.2 mM for ATP whereas the activated enzyme showed an apparent Km of 0.26 mM. In addition, the pH optimum of the H(+)-ATPase changed from 6.0 to 7.5 upon activation. The activated enzyme was more sensitive to inhibition by vanadate. When F. oxysporum was cultivated in media containing glucose as the major carbon source, enhanced H(+)-ATPase activity was largely confined to the period corresponding to the lag phase, i.e. just before the start of acidification of the medium. This suggests that the activation process might play a role in the onset of extracellular acidification. Addition of glucose to F. oxysporum var. lini cells also caused an increase in the cAMP level. No reliable increase could be demonstrated for the other sugars. Addition of proton ionophores such as DNP and CCCP at pH 5.0 caused both a large increase in the intracellular level of cAMP and in the activity of the plasma membrane H(+)-ATPase. Inhibition of the DNP-induced increase in the cAMP level by acridine orange also resulted in inhibition of the activation of plasma membrane H(+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Laurdan and Di-4-ANEPPDHQ probe different properties of the membrane

    NASA Astrophysics Data System (ADS)

    Amaro, Mariana; Reina, Francesco; Hof, Martin; Eggeling, Christian; Sezgin, Erdinc

    2017-04-01

    Lipid packing is a crucial feature of cellular membranes. Quantitative analysis of membrane lipid packing can be achieved using polarity sensitive probes whose emission spectrum depends on the lipid packing. However, detailed insights into the exact mechanisms that cause the changes in the spectra are necessary to interpret experimental fluorescence emission data correctly. Here, we analysed frequently used polarity sensitive probes, Laurdan and di-4-ANEPPDHQ, to test whether the underlying physical mechanisms of their spectral changes are the same and, thus, whether they report on the same physico-chemical properties of the cell membrane. Steady-state spectra as well as time-resolved emission spectra of the probes in solvents and model membranes revealed that they probe different properties of the lipid membrane. Our findings are important for the application of these dyes in cell biology.

  19. Study on the effects of nylon-chitosan-blended membranes on the spheroid-forming activity of human melanocytes.

    PubMed

    Lin, Sung-Jan; Hsiao, Wen-Chu; Jee, Shiou-Hwa; Yu, Hsin-Su; Tsai, Tsen-Fang; Lai, Juin-Yih; Young, Tai-Horng

    2006-10-01

    Though reported limitedly in tissue engineering, modification of cellular functions can be achieved by culturing them into multicellular spheroids. We have shown melanocytes form spheroids on chitosan surface. However, how biomaterials promote spheroid formation has never been systemically investigated. In this work, nylon, which inhibits melanocyte spheroid formation, and chitosan, which promotes melanocyte spheroid formation, are used to prepare nylon/chitosan-blended membranes. Membranes composed of pure nylon, pure chitosan and various ratios of nylon and chitosan are employed to examine their effects on spheroid formation. Melanocytes show better adhesion to nylon membranes than that to chitosan membranes. In blended membranes, as more nylon is incorporated, cell adhesion increases and the trend for spheroid formation decreases. Melanocytes can only form spheroids on membranes with poorer cell adhesion. Examining the surface of the blended membranes shows phase separation of nylon and chitosan. As nylon content increases, the nylon phase on the membrane surface increases and thereby enhances cell adhesion. The opposite trend for cell adhesion and spheroid formation substantiates our hypothesis of spheroid formation on biomaterials: a balance between cell-substrate interaction and cell-cell interaction. The decrease in cell-substrate interaction tilts the balance to a state more favorable for spheroid formation. Our work can serve as a model to investigate the relative strengths of cell-cell and cell-substrate interactions and also pave way to design blended membranes with desired physical properties while preserving the spheroid-forming activity.

  20. On Physical Properties of Tetraether Lipid Membranes: Effects of Cyclopentane Rings

    PubMed Central

    Chong, Parkson Lee-Gau; Ayesa, Umme; Prakash Daswani, Varsha; Hur, Ellah Chay

    2012-01-01

    This paper reviews the recent findings related to the physical properties of tetraether lipid membranes, with special attention to the effects of the number, position, and configuration of cyclopentane rings on membrane properties. We discuss the findings obtained from liposomes and monolayers, composed of naturally occurring archaeal tetraether lipids and synthetic tetraethers as well as the results from computer simulations. It appears that the number, position, and stereochemistry of cyclopentane rings in the dibiphytanyl chains of tetraether lipids have significant influence on packing tightness, lipid conformation, membrane thickness and organization, and headgroup hydration/orientation. PMID:23028246

  1. Fundamental Studies of Assembly and Mechanical Properties of Lipid Bilayer Membranes and Unilamellar Vesicles

    NASA Astrophysics Data System (ADS)

    Wang, Xi

    This dissertation work focuses on: (i) obtaining a phospholipid bilayer membrane (LBM)/conducting electrode system with low defect density and optimized rigidity; (ii) investigating vesicle stability and mechanical properties. LBM is a simplified yet representative cell membrane model. LBMs assembled on conductive surfaces can probe protein-LBM interactions activities electrochemically. Sterically stabilized vesicles could be used as cell models or for drug delivery. The main challenges for LBM assembly on gold are vesicles do not spontaneously rupture to form LBMs on gold and the roughness of the gold substrate has considerable influence on molecular film defect density. In this study, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles were functionalized with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine- N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio)propionate] (DSPE-PEG-PDP) to yield stable LBMs on gold without surface modification. A template-stripping method was used to obtain atomically flat and pristine gold surfaces. The critical force to initiate vesicle rupture decreases with increasing DSPE-PEG-PDP concentration, indicating that gold-thiolate bonding between DSPE-PEG-PDP and gold substrates promotes LBM formation. Mechanical properties of LBMs and vesicles were investigated as a function of DSPE-PEG-PDP concentration via Atomic Force Microscopy. The elastic moduli of LBMs were determined with DSPE-PEG-PDP concentration ranging from 0mol% to 24mol% and were found to depend on PEG chain conformation. Incorporating DSPE-PEG-PDP molecules with PEG in mushroom conformation results in a decrease of LBM rigidity, while incorporating PEG in brush conformation leads to LBM stiffening. Contrarily, mechanical properties of functionalized vesicles did not vary significantly by varying DSPE-PEG-PDP concentration. LBM with tunable rigidity by adjusting DSPE-PEG-PDP concentration provides a versatile cell membrane model for studying protein or

  2. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity[S

    PubMed Central

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-01-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  3. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  4. Ligand structure and mechanical properties of single-nanoparticle thick membranes

    SciTech Connect

    Salerno, Kenneth Michael; Bolintineanu, Dan S.; Lane, J. Matthew D.; Grest, Gary S.

    2015-06-16

    We believe that the high mechanical stiffness of single-nanoparticle-thick membranes is the result of the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with a nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Additionally, the particular end group (COOH or CH3) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.

  5. Ligand structure and mechanical properties of single-nanoparticle thick membranes

    DOE PAGES

    Salerno, Kenneth Michael; Bolintineanu, Dan S.; Lane, J. Matthew D.; ...

    2015-06-16

    We believe that the high mechanical stiffness of single-nanoparticle-thick membranes is the result of the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with amore » nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Additionally, the particular end group (COOH or CH3) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.« less

  6. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering.

    PubMed

    Pu, Juan; Komvopoulos, Kyriakos

    2014-06-01

    Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications.

  7. Processing, Properties and Morphology of Optical Limiting Silk Membranes

    DTIC Science & Technology

    2007-07-11

    films of regenerated B. Mori silk doped with GFP Cocoons were degummed to remove the glue-like sericin proteins. Degumming was accomplished by boiling...just before spinning and rinsed with deionized water. The membrane was removed from the gland and the sericin was washed from the surface of the

  8. [Effect of a membrane modulator from the 3-hydroxypyridine class on the pharmacological activity of a number of psychotropic preparations].

    PubMed

    Smirnov, L D; Voronina, T A; Diumaev, K M

    1985-05-01

    Influence of membrane-active derivative of 3-hydroxypyridine on psychotropic activity of drugs with different chemical structure and type of action--neuroleptics (chlorpromazine, trifluoperazine, reserpine), tranquillizers (diazepam, phenazepam, calcium valproate), hypnotics (Hexobarbital), was studied in the experiment on animals. Application of psychotropic drugs after preliminary 3-hydroxypyridine administration was established to induce a considerable increase of their pharmacological activity--anxiolytic, sedative and hypnotic. Mechanism of action of 3-hydroxypyridine on pharmacological effects of psychotropic drugs is supposed to be caused by its membrane-modulating action, precisely by its influence on physical-chemical properties and phospholipid composition of synaptic biomembranes.

  9. An activation-collision mechanism for cholesterol transfer between membranes.

    PubMed

    Steck, T L; Kezdy, F J; Lange, Y

    1988-09-15

    We report the results of experiments which show that cholesterol transfer between membranes cannot proceed by aqueous diffusion, as widely held, but must involve a more complex mechanism. (a) The rate of transfer of [3H]cholesterol from red blood cells was found to vary inversely with the size of the acceptor particle (ghosts, vesicles of ghosts, liposomes, and plasma lipoproteins). (b) The transfer of [3H]cholesterol from red blood cells to ghosts was accelerated by the presence of plasma, even though the plasma competed with the ghosts as an acceptor. (c) The rate of transfer of [3H]cholesterol from red blood cells to ghosts decreased to zero with increasing dilution but was not simply second-order. (d) The cholesterol in retinal rod disc membranes is not at equilibrium with plasma lipoproteins in that disc cholesterol increased when the homogenates were incubated in vitro with plasma. (e) The kinetics of cholesterol transfer cannot be limited by unstirred layer effects since the transfer of lysolecithin in the same system was faster than that of cholesterol by 3 orders of magnitude. The simplest model compatible with all the data suggests a two-step pathway involving a first-order followed by a second-order process. The first step could be a unimolecular activation event, perhaps the movement of the sterol in the donor particle to a more exposed (hydrated) position. In the second step, the activated sterol would be transferred during transient collisions between donor and acceptor particles. When collision is not rate-limiting, the overall process would appear to be simply first-order, hence kinetically indistinguishable from the aqueous diffusion mechanism. The activation-collision model thus not only rationalizes our data but is also consistent with the simpler kinetics previously reported for the transfer of both membrane phospholipids and sterols.

  10. Optically active polyelectrolyte multilayers as membranes for chiral separations.

    PubMed

    Rmaile, Hassan H; Schlenoff, Joseph B

    2003-06-04

    Ultrathin films of chiral polyelectrolyte complex, prepared by the multilayering process, exhibit selectivity in the membrane separations of optically active compounds, such as l- and d-ascorbic acid. The flux through these polyelectrolyte multilayers, PEMUs, is exceptionally high and may be controlled by the concentration of salt present in the permeating solutions. Both in-situ ATR-FTIR and chiral capillary electrochromatography indicate that flux selectivity is mainly kinetically controlled, stemming from a difference in diffusion rates of various enantiomers through PEMUs, rather than a difference in partitioning.

  11. Modification of Thin Film Composite (TFC) Membrane by Incorporation with Copper Nanoparticles (Cu-NPs) for Antibacterial Properties

    NASA Astrophysics Data System (ADS)

    Zhong, Chen

    Membrane biofouling has been a challenging problem restricting the application of reverse osmosis (RO) desalination process. Copper is known for its antimicrobial properties and is easily available with low cost. In this paper, copper nanoparticles (Cu-NPs) with a mean diameter of 15nm were synthesized by the reduction of copper (II) chloride with sodium borohydride (NaBH4), using cetyl trimethylammonium bromide ((C16H33)N(CH3) 3Br, CTAB) as a capping agent. After purification of Cu-NPs by dialysis, the particles were successfully immobilized onto the surface of thin film composite (TFC) membranes via either electrostatic interactions or by covalent bonding with cysteamine as a linker. The electrostatic method was simply to immerse the newly made TFC membranes to the Cu-NPs suspension. Since the CTAB had formed cationic bilayer outside the Cu-NPs, the Cu-NPs was not only adsorbed on the membranes but also attached to the surface because of the electrostatic effect with the negatively charged membrane surface. The covalent bonding method utilized cysteamine (C4H12N2S 2) to activate the thin film layer with thiol functional groups first and then incorporated the metallic copper nanoparticles to form the stable covalent chemical bonding in between. The resulting membranes by these two methods were labeled as TFC-CuNPs and TFC-S-CuNPs, respectively, in this study. Scanning electron microscopy (SEM) imaging and associated energy-dispersive X-ray spectroscopy (EDS) showed that large amounts of Cu-NPs existed on both types of membranes. Surface hydrophilicity of the membranes was enhanced by the presence of Cu-NPs, as indicated by the measured contact angle of 63.25 +/- 0.75 for TFC, 38.63 +/- 2.16 for TFC-CuNPs, and 58.00 +/- 3.39 for TFC-S-CuNPs. Consistently, the water flux obtained from the RO desalination system was increased from 47.07 +/- 0.84 for TFC, 49.10 +/- 0.22 for TFC-CuNPs, and 69.13 +/- 1.43 for TFC-S-CuNPs, with this increase in hydrophilicity. The salt

  12. Selective flow-induced vesicle rupture to sort by membrane mechanical properties

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria

    2015-08-01

    Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells.

  13. Hydrodynamic collective effects of active proteins in biological membranes

    NASA Astrophysics Data System (ADS)

    Koyano, Yuki; Kitahata, Hiroyuki; Mikhailov, Alexander S.

    2016-08-01

    Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015), 10.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  14. Neuronal activity-dependent membrane traffic at the neuromuscular junction

    PubMed Central

    Miana-Mena, Francisco Javier; Roux, Sylvie; Benichou, Jean-Claude; Osta, Rosario; Brûlet, Philippe

    2002-01-01

    During development and also in adulthood, synaptic connections are modulated by neuronal activity. To follow such modifications in vivo, new genetic tools are designed. The nontoxic C-terminal fragment of tetanus toxin (TTC) fused to a reporter gene such as LacZ retains the retrograde and transsynaptic transport abilities of the holotoxin itself. In this work, the hybrid protein is injected intramuscularly to analyze in vivo the mechanisms of intracellular and transneuronal traffics at the neuromuscular junction (NMJ). Traffic on both sides of the synapse are strongly dependent on presynaptic neural cell activity. In muscle, a directional membrane traffic concentrates β-galactosidase-TTC hybrid protein into the NMJ postsynaptic side. In neurons, the probe is sorted across the cell to dendrites and subsequently to an interconnected neuron. Such fusion protein, sensitive to presynaptic neuronal activity, would be extremely useful to analyze morphological changes and plasticity at the NMJ. PMID:11880654

  15. Dramatic nano-fluidic properties of carbon nanotube membranes as a platform for protein channel mimetics

    NASA Astrophysics Data System (ADS)

    Hinds, Bruce

    2013-03-01

    Carbon nanotubes have three key attributes that make them of great interest for novel membrane applications: 1) atomically flat graphite surface allows for ideal fluid slip boundary conditions and extremely fast flow rates 2) the cutting process to open CNTs inherently places functional chemistry at CNT core entrance for chemical selectivity and 3) CNT are electrically conductive allowing for electrochemical reactions and application of electric fields gradients at CNT tips. Pressure driven flux of a variety of solvents (H2O, hexane, decane ethanol, methanol) are 4-5 orders of magnitude higher than conventional Newtonian flow [Nature 2005, 438, 44] due to atomically flat graphite planes inducing nearly ideal slip conditions. However this is eliminated with selective chemical functionalization [ACS Nano 2011 5(5) 3867-3877] needed to give chemical selectivity. These unique properties allow us to explore the hypothesis of producing ``Gatekeeper'' membranes that mimic natural protein channels to actively pump through rapid nm-scale channels. With anionic tip functionality strong electroosmotic flow is induced by unimpeded cation flow with similar 10,000 fold enhancements [Nature Nano 2012 7(2) 133-39]. With enhanced power efficiency, carbon nanotube membranes were employed as the active element of a switchable transdermal drug delivery device that can facilitate more effective treatments of drug abuse and addiction. Recently methods to deposit Pt monolayers on CNT surface have been developed making for highly efficient catalytic platforms. Discussed are other applications of CNT protein channel mimetics, for large area robust engineering platforms, including water purification, flow battery energy storage, and biochemical/biomass separations. DOE EPSCoR (DE-FG02-07ER46375) and DARPA, W911NF-09-1-0267

  16. Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents.

    PubMed

    Hovakeemian, Sara G; Liu, Runhui; Gellman, Samuel H; Heerklotz, Heiko

    2015-09-14

    Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity correlates with the permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer's MIC, 3 μg mL(-1). At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane

  17. Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents

    PubMed Central

    Hovakeemian, Sara G.; Liu, Runhui; Gellman, Samuel H.; Heerklotz, Heiko

    2015-01-01

    Most antimicrobial peptides act upon target microorganisms by permeabilizing their membranes. The mode of action is often assessed by vesicle leakage experiments that use model membranes, with the assumption that biological activity arises from permeabilization of the lipid bilayer. The current work aims to extend the interpretation of vesicle leakage results and examine the correlation between vesicle leakage and antimicrobial activity. To this end, we used a lifetime-based leakage assay with calcein-loaded vesicles to study the membrane permeabilizing properties of a novel antifungal polymer poly-NM, two of its analogs, and a series of detergents. In conjunction, the biological activities of these compounds against Candida albicans were assessed and correlated with data from vesicle leakage. Poly-NM induces all-or-none leakage in polar yeast lipid vesicles at the polymer’s MIC, 3 μg/mL. At this and higher concentrations, complete leakage after an initial lag time was observed. Concerted activity tests imply that this polymer acts independently of the detergent octyl glucoside (OG) for both vesicle leakage and activity against C. albicans spheroplasts. In addition, Poly-NM was found to have negligible activity against zwitterionic vesicles and red blood cells. Our results provide a consistent, detailed picture of the mode of action of Poly-NM: this polymer induces membrane leakage by electrostatic lipid clustering. In contrast, Poly-MM:CO, a nylon-3 polymer comprised of both cationic and hydrophobic segments, seems to act by a different mechanism that involves membrane asymmetry stress. Vesicle leakage for this polymer is transient (limited to <100%) and graded, non-specific among zwitterionic and polar yeast lipid vesicles, additive with detergent action, and correlates poorly with biological activity. Based on these results, we conclude that comprehensive leakage experiments can provide a detailed description of the mode of action of membrane permeabilizing

  18. Membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers: selectivity against model bacterial and mammalian membranes.

    PubMed

    Wang, Ying; Tang, Yanli; Zhou, Zhijun; Ji, Eunkyung; Lopez, Gabriel P; Chi, Eva Y; Schanze, Kirk S; Whitten, David G

    2010-08-03

    Poly(phenylene ethyneylene) (PPE)-based cationic conjugated polyelectrolytes (CPEs) and cationic phenylene ethynylene oligomers (OPEs) exhibit broad-spectrum antimicrobial activity, and their main target is believed to be the cell membrane. To understand better how these antimicrobial molecules interact with membranes, a series of PPE-based CPEs and OPEs with different side chains were studied. Large unilamellar vesicles with lipid compositions mimicking those of mammalian or bacterial membranes were used as model membranes. Among the CPEs and OPEs tested, the anionic CPE, PPE-SO(3)(2-) and the smallest cationic OPE-1 are inactive against all vesicles. Other cationic CPEs and OPEs show significant membrane perturbation ability against bacterial membrane mimics but are inactive against a mammalian cell membrane mimic with the exception of PPE-DABCO and two end-only-functionalized OPEs, which also disrupted a mammalian cell membrane mimic. The results suggest that the phospholipid composition of vesicles dominates the interaction of CPE and OPE with lipid membranes.

  19. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    PubMed

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering.

  20. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties

    DOEpatents

    Mackay, Richard; Sammells, Anthony F.

    2000-01-01

    Ceramics of the composition: Ln.sub.x Sr.sub.2-x-y Ca.sub.y B.sub.z M.sub.2-z O.sub.5+.delta. where Ln is an element selected from the fblock lanthanide elements and yttrium or mixtures thereof; B is an element selected from Al, Ga, In or mixtures thereof; M is a d-block transition element of mixtures thereof; 0.01.ltoreq.x.ltoreq.1.0; 0.01.ltoreq.y.ltoreq.0.7; 0.01.ltoreq.z.ltoreq.1.0 and .delta. is a number that varies to maintain charge neutrality are provided. These ceramics are useful in ceramic membranes and exhibit high ionic conductivity, high chemical stability under catalytic membrane reactor conditions and low coefficients of expansion. The materials of the invention are particularly useful in producing synthesis gas.

  1. Biomolecular simulations of membranes: Physical properties from different force fields

    NASA Astrophysics Data System (ADS)

    Siu, Shirley W. I.; Vácha, Robert; Jungwirth, Pavel; Böckmann, Rainer A.

    2008-03-01

    Phospholipid force fields are of ample importance for the simulation of artificial bilayers, membranes, and also for the simulation of integral membrane proteins. Here, we compare the two most applied atomic force fields for phospholipids, the all-atom CHARMM27 and the united atom Berger force field, with a newly developed all-atom generalized AMBER force field (GAFF) for dioleoylphosphatidylcholine molecules. Only the latter displays the experimentally observed difference in the order of the C2 atom between the two acyl chains. The interfacial water dynamics is smoothly increased between the lipid carbonyl region and the bulk water phase for all force fields; however, the water order and with it the electrostatic potential across the bilayer showed distinct differences between the force fields. Both Berger and GAFF underestimate the lipid self-diffusion. GAFF offers a consistent force field for the atomic scale simulation of biomembranes.

  2. Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application.

    PubMed

    Meng, Xin; Tian, Feng; Yang, Jian; He, Chun-Nian; Xing, Nan; Li, Fan

    2010-05-01

    This study investigated the characteristics and drug release properties of membranes of chitosan and alginate prepared via a casting/solvent evaporation technique. Membranes of chitosan and alginate with silver sulfadiazine as model drug incorporated in different concentrations and different membrane compositions were obtained. The polyblend solution viscosity reached to the highest at the composition polyblends of (1:1). This chitosan/alginate membranes showed pH- and ionic strength-dependent water uptake properties and had the WVTR rang from 442 to 618 g/m(2)/day. The maximum value of the dry membrane of breaking strength was 52.16 MPa and the maximum value of the wet membrane breaking elongation was 46.28%. The results of controlled release studies showed that the silver sulfadiazine release rate was the fastest when the alginate content was 50%. On the basis of the requisite physical properties, the chitosan-alginate PEC membrane can be considered for potential wound dressing or controlled release application.

  3. Relationship of air sampling rates of semipermeable membrane devices with the properties of organochlorine pesticides.

    PubMed

    Zhu, Xiuhua; Ding, Guanghui; Levy, Walkiria; Jakobi, Gert; Schramm, Karl-Werner

    2011-06-01

    The organochlorine pesticides (OCP) in Eastern-Barvaria at Haidel 1160 m a.s.l. were monitored with a low volume active air sampler and semi-permeable membrane devices (SPMD). The air sampling rates (Rair) of SPMD for OCP were calculated. Quantitative structure-property relationship (QSPR) models of Rair of SPMD were developed for OCP with partial least square (PLS) regression. Quantum chemical descriptors computed by semi-empirical PM6 method were used as predictor variables. The cumulative variance of the dependent variable explained by the PLS components and determined by cross-validation (Q(2)cum), for the optimal models, is 0.637, indicating that the model has good predictive ability and robustness, and could be used to estimate Rair values of OCP. The main factors governing Rair of OCP are intermolecular interactions and the energy required for cave-forming in dissolution of OCP into triolein of SPMD.

  4. Influence of COD:N ratio on sludge properties and their role in membrane fouling of a submerged membrane bioreactor.

    PubMed

    Hao, L; Liss, S N; Liao, B Q

    2016-02-01

    The effect of COD:N ratio on sludge properties and their role in membrane fouling were examined using a well-controlled aerobic membrane bioreactor receiving a synthetic high strength wastewater containing glucose. Membrane performance was improved with an increase in the COD/N ratio (100:5-100:1.8) (i.e. reduced N dosage). Surface analysis of sludge by X-ray photoelectron spectroscopy (XPS) indicates significant differences in surface concentrations of elements C, O and N that were observed under different COD/N ratios, implying changes in the composition of extracellular polymeric substances (EPS). Fourier transform-infrared spectroscopy (FTIR) revealed a unique characteristic peak (CO bonds) at 1735 cm(-1) under nitrogen limitation conditions. Total EPS decreased with an increase in COD/N ratio, corresponding to a decrease in the proteins (PN) to carbohydrates (CH) ratio in EPS. There were no significant differences in the total soluble microbial products (SMPs) but the ratio of PN/CH in SMPs decreased with an increase in COD/N ratios. The results suggest that EPS and SMP composition and the presence of a small quantity of filamentous microorganisms played an important role in controlling membrane fouling.

  5. Thinking in Terms of Structure-Activity-Relationships (T-SAR): A Tool to Better Understand Nanofiltration Membranes

    PubMed Central

    Fernández, José F.; Jastorff, Bernd; Störmann, Reinhold; Stolte, Stefan; Thöming, Jorg

    2011-01-01

    A frontier to be conquered in the field of membrane technology is related to the very limited scientific base for the rational and task-specific design of membranes. This is especially true for nanofiltration membranes with properties that are based on several solute-membrane interaction mechanisms. “Thinking in terms of Structure-Activity-Relationships” (T-SAR) is a methodology which applies a systematic analysis of a chemical entity based on its structural formula. However, the analysis become more complex with increasing size of the molecules considered. In this study, T-SAR was combined with classical membrane characterization methods, resulting in a new methodology which allowed us not only to explain membrane characteristics, but also provides evidence for the importance of the chemical structure for separation performance. We demonstrate an application of the combined approach and its potential to discover stereochemistry, molecular interaction potentials, and reactivity of two FilmTec nanofiltration membranes (NF-90 and NF-270). Based on these results, it was possible to predict both properties and performance in the recovery of hydrophobic ionic liquids from aqueous solution. PMID:24957730

  6. Influence of decavanadate on rat synaptic plasma membrane ATPases activity.

    PubMed

    Krstić, Danijela; Colović, Mirjana; Bosnjaković-Pavlović, Nada; Spasojević-De Bire, Anne; Vasić, Vesna

    2009-09-01

    The in vitro influence of decameric vanadate species on Na+/K+-ATPase, plasma membrane Ca2+-ATPase (PMCA)-calcium pump and ecto-ATPase activity, using rat synaptic plasma membrane (SPM) as model system was investigated, whereas the commercial porcine cerebral cortex Na+/K+-ATPase served as a reference. The thermal behaviour of the synthesized decavanadate (V10) has been studied by differential scanning calorimetry and thermogravimetric analysis, while the type of polyvanadate anion was identified using the IR spectroscopy. The concentration-dependent responses to V10 of all enzymes were obtained. The half-maximum inhibitory concentration (IC50) of the enzyme activity was achieved at (4.74 +/- 1.15) x 10(-7) mol/l for SPM Na+/K+-ATPase, (1.30 +/- 0.10) x 10(-6) mol/l for commercial Na+/K+-ATPase and (3.13 +/- 1.70) x 10(-8) mol/l for Ca2+-ATPase, while ecto-ATPase is significantly less sensitive toward V10 (IC50 = (1.05 +/- 0.10) x 10(-4) mol/l) than investigated P-type ATPases. Kinetic analysis showed that V10 inhibited Na+/K+-ATPase by reducing the maximum enzymatic velocity and apparent affinity for ATP (increasing K(m) value), implying a mixed mode of interaction between V10 and P-type ATPases.

  7. Anti-biofouling property of vanillin on Aeromonas hydrophila initial biofilm on various membrane surfaces.

    PubMed

    Ponnusamy, K; Kappachery, S; Thekeettle, M; Song, J H; Kweon, J H

    2013-09-01

    Biofouling is a serious problem on filter membranes of water purification systems due to formation of bacterial biofilms, which can be detrimental to the membrane performance. Biofouling occurs on membrane surface and therefore greatly influences the physical and chemical aspects of the surface. Several membranes including microfiltration, ultrafiltration, and reverse osmosis (RO) membranes were used to learn about the anti-biofouling properties of vanillin affecting the membrane performances. Vanillin has been recognized as a potential quorum quenching compound for Aeromonas hydrophila biofilms. The initial attachment and dynamics of biofilm growth were monitored using scanning electron microscopy and confocal laser scanning microscopy. Biofilm quantities were measured using a plate count method and total protein determinations. Vanillin addition was effective in the prevention of biofilm formation on the tested membrane surfaces. Among the membranes, RO membranes made with cellulose acetate showed the most substantial reduction of biofilm formation by addition of vanillin. The biofilm reduction was confirmed by the results of surface coverage, biomass and protein accumulation. The HPLC spectrum of the spent culture with vanillin addition showed that vanillin may interfere with quorum sensing molecules and thus prevent the formation of the biofilms.

  8. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues.

    PubMed

    Jamasbi, Elaheh; Mularski, Anna; Separovic, Frances

    2016-01-01

    Melittin is a 26 residue peptide and the major component of bee (Apis mellifera) venom. Although melittin has both anticancer and antimicrobial properties, utilization has been limited due to its high lytic activity against eukaryotic cells. The mechanism of this lytic activity remains unclear but several mechanisms have been proposed, including pore formation or a detergent like mechanism, which result in lysis of cell membranes. Several analogues of melittin have been synthesized to further understand the role of specific residues in its antimicrobial and lytic activity. Melittin analogues that have a proline residue substituted for an alanine, lysine or cysteine have been studied with both model membrane systems and living cells. These studies have revealed that the proline residue plays a critical role in antimicrobial activity and cytotoxicity. Analogues lacking the proline residue and dimers of these analogues displayed decreased cytotoxicity and minimum inhibition concentrations. Several mutant studies have shown that, when key substitutions are made, the resultant peptides have more activity in terms of pore formation than the native melittin. Designing analogues that retain antimicrobial and anticancer activity while minimizing haemolytic activity will be a promising way to utilize melittin as a potential therapeutic agent.

  9. Membrane-pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes.

    PubMed Central

    Gil, Z; Magleby, K L; Silberberg, S D

    1999-01-01

    To investigate the mechanism for the delayed activation by voltage of the predominant mechanosensitive (MS) channel in Xenopus oocytes, currents were recorded from on-cell and excised patches of membrane with the patch clamp technique and from intact oocytes with the two-electrode voltage clamp technique. MS channels could be activated by stretch in inside-out, on-cell, and outside-out patch configurations, using pipettes formed of either borosilicate or soft glass. In inside-out patches formed with borosilicate glass pipettes, depolarizing voltage steps activated MS channels in a cooperative manner after delays of seconds. This voltage-dependent activation was not observed for outside-out patches. Voltage-dependent activation was also not observed when the borosilicate pipettes were either replaced with soft glass pipettes or coated with soft glass. When depolarizing voltage steps were applied to the whole oocyte with a two-electrode voltage clamp, currents that could be attributed to MS channels were not observed. Yet the same depolarizing steps activated MS channels in on-cell patches formed with borosilicate pipettes on the same oocyte. These observations suggest that the delayed cooperative activation of MS channels by depolarization is not an intrinsic property of the channels, but requires interaction between the membrane and patch pipette. PMID:10354436

  10. Properties of Membranes Derived from the Total Lipids Extracted from the Human Lens Cortex and Nucleus

    PubMed Central

    Mainali, Laxman; Raguz, Marija; O’Brien, William J.; Subczynski, Witold K.

    2013-01-01

    Human lens lipid membranes prepared using a rapid solvent exchange method from the total lipids extracted from the clear lens cortex and nucleus of 41- to 60-year-old donors were investigated using electron paramagnetic resonance spin-labeling. Profiles of the phospholipid alkyl-chain order, fluidity, oxygen transport parameter, and hydrophobicity were assessed across coexisting membrane domains. Membranes prepared from the lens cortex and nucleus were found to contain two distinct lipid environments, the bulk phospholipid-cholesterol domain and the cholesterol bilayer domain (CBD). The alkyl chains of phospholipids were strongly ordered at all depths, indicating that the amplitude of the wobbling motion of alkyl chains was small. However, profiles of the membrane fluidity, which explicitly contain time (expressed as the spin-lattice relaxation rate) and depend on the rotational motion of spin labels, show relatively high fluidity of alkyl chains close to the membrane center. Profiles of the oxygen transport parameter and hydrophobicity have a rectangular shape and also indicate a high fluidity and hydrophobicity of the membrane center. The amount of CBD was greater in nuclear membranes than in cortical membranes. The presence of the CBD in lens lipid membranes, which at 37°C showed a permeability coefficient for oxygen about 60% smaller than across a water layer of the same thickness, would be expected to raise the barrier for oxygen transport across the fiber cell membrane. Properties of human membranes are compared with those obtained for membranes made of lipids extracted from cortex and nucleus of porcine and bovine eye lenses. PMID:23438364

  11. Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities.

    PubMed

    Goei, Ronn; Lim, Teik-Thye

    2014-08-01

    Ag-decorated TiO2 (Ag-TiO2) photocatalytic membranes have been fabricated by using Pluronic P-123 as a pore-forming and structure-directing agent. Six different hierarchical architectures were obtained by multilayer coating of different Ag-TiO2 sols. The porous structure of the resulting layers could be fine-tuned by altering the amounts of P-123 and AgNO3 added during the preparation of TiO2 sols. Physico-chemical and morphological properties of different Ag-TiO2 layers were thoroughly investigated. Ag nanoparticles were successfully incorporated into the TiO2 matrix. The Ag-TiO2 membranes possessed multi-functionality of membrane retention, Ag-enhanced TiO2 photocatalytic activity and anti-bacterial action. They were evaluated through experiments using a batch reactor and a photocatalytic membrane reactor (PMR). The best performing membrane was able to remove up to 1007 mg m(-2) h(-1) of Rhodamine B in the PMR. Two phenomena (photocatalytic degradation and adsorptive-membrane retention) that were responsible for the RhB removal were evaluated. In the batch reactor operated in dark, the membranes were able to remove greater than 5-logs of Escherichia coli. The membrane with the highest percentage of Ag incorporated was able to remove close to 7-logs of E. coli when operated in the PMR.

  12. Differential membrane association properties and regulation of class I and class II Arfs.

    PubMed

    Duijsings, Daniël; Lanke, Kjerstin H W; van Dooren, Sander H J; van Dommelen, Michiel M T; Wetzels, Roy; de Mattia, Fabrizio; Wessels, Els; van Kuppeveld, Frank J M

    2009-03-01

    ADP-ribosylation factor (Arf) proteins are small guanosine triphosphatases (GTPases) that act as major regulators of intracellular vesicular trafficking and secretory organelle pathway integrity. Like all small monomeric GTPases, Arf proteins cycle between a GDP-bound and a GTP-bound state, and this cycling is catalysed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins. While the class I Arfs, especially Arf1, have been studied extensively, little is known as yet about the function and regulation of class II Arfs, Arf4 and Arf5. In this study, we show that Arf proteins show class-specific dynamic behaviour. Moreover, unlike class I Arfs, membrane association of class II Arfs is resistant to inhibition of large Arf GEFs by Brefeldin A. Through the construction of Arf chimeric proteins, evidence is provided that the N-terminal amphipathic helix and a class-specific residue in the conserved interswitch domain determine the membrane-binding properties of class I and class II Arf proteins. Our results show that fundamental differences exist in behaviour and regulation of these small GTPases.

  13. Effects of hydrostatic pressure on lipid bilayer membranes. I. Influence on membrane thickness and activation volumes of lipophilic ion transport.

    PubMed Central

    Benz, R; Conti, F

    1986-01-01

    Measurements of membrane capacitance, Cm, were performed on lipid bilayers of different lipidic composition (diphytanoyl phosphatidylcholine PPhPC, dioleoyl phosphatidylcholine DOPE, glycerylmonooleate GMO) and containing n-decane as solvent. In the same membranes, the absorption of the lipophilic ions dipicrylamine (DPA-) and tetraphenylborate (TPhB-), and the kinetics of their translocation between the two membrane faces have been studied. The data were obtained from charge pulse relaxation measurements. Upon increasing pressure the specific capacity Cm increased in a fully reversible and reproducible way reflecting a thinning of the membrane that is attributed to extrusion of n-decane from the black membrane area. High pressure decreased the rate constant, ki, for lipophilic ion translocation. After correcting for changes in the height of the energy barrier for translocation due to membrane thinning the pressure dependence of ki yields an apparent activation volume for translocation of approximately 14 cm3/mol both for DPA- and TPhB-. Changes in lipophilic ion absorption following a step of pressure developed with a rather slow time course due to diffusion limitations in solution. The stationary concentration of membrane absorbed lipophilic ions increased with pressure according to an apparent volume of absorption of about -10 cm3/mol. The relevance of the results for the interpretation of the effects of pressure on nerve membrane physiology is discussed. Images FIGURE 1 PMID:3730509

  14. The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity.

    PubMed

    Cebrián, Rubén; Martínez-Bueno, Manuel; Valdivia, Eva; Albert, Armando; Maqueda, Mercedes; Sánchez-Barrena, María José

    2015-05-01

    The molecular mechanism underlining the antibacterial activity of the bacteriocin AS-48 is not known, and two different and opposite alternatives have been proposed. Available data suggested that the interaction of positively charged amino acids of AS-48 with the membrane would produce membrane destabilization and disruption. Alternatively, it has been proposed that AS-48 activity could rely on the effective insertion of the bacteriocin into the membrane. The biological and structural properties of the AS-48G13K/L40K double mutant were investigated to shed light on this subject. Compared with the wild type, the mutant protein suffered an important reduction in the antibacterial activity. Biochemical and structural studies of AS-48G13K/L40K mutant suggest the basis of its decreased antimicrobial activity. Lipid cosedimentation assays showed that the membrane affinity of AS-48G13K/L40K is 12-fold lower than that observed for the wild type. L40K mutation is responsible for this reduced membrane affinity and thus, hydrophobic interactions are involved in membrane association. Furthermore, the high-resolution crystal structure of AS-48G13K/L40K, together with the study of its dimeric character in solution showed that G13K stabilizes the inactive water-soluble dimer, which displays a reduced dipole moment. Our data suggest that the cumulative effect of these three affected properties reduces AS-48 activity, and point out that the bactericidal effect is achieved by the electrostatically driven approach of the inactive water-soluble dimer towards the membrane, followed by the dissociation and insertion of the protein into the lipid bilayer.

  15. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development.

    PubMed

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-02-01

    Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit.

  16. In vitro antioxidant properties of chicken skin enzymatic protein hydrolysates and membrane fractions.

    PubMed

    Onuh, John O; Girgih, Abraham T; Aluko, Rotimi E; Aliani, Michel

    2014-05-01

    Chicken thigh and breast skin proteins were hydrolysed using alcalase or a combination of pepsin and pancreatin (PP), each at concentrations of 1-4%. The chicken skin protein hydrolysates (CSPHs) were then fractionated by membrane ultrafiltration into different molecular weight peptides (<1, 1-3, 3-5 and 5-10kDa) and analysed for antioxidant properties. Results showed that the CSPHs had a significantly (p<0.05) lower scavenging activity against DPPH radicals when compared to reduced glutathione. The chicken breast skin hydrolysates had significantly higher DPPH scavenging activity than the chicken thigh skin hydrolysates. DPPH scavenging and metal ion chelation increased significantly (p<0.05) from 29-40% to 86-89%, respectively with increasing proteolytic enzyme concentration. In contrast, the antioxidant properties decreased as peptide size increased. We conclude that CSPHs and their peptide fractions may be used as ingredients in the formulation of functional foods and nutraceuticals for the control and management of oxidative stress-related diseases.

  17. Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer.

    PubMed

    Shen, Xiang; Zhao, Yiping; Feng, Xia; Bi, Sixin; Ding, Wenbin; Chen, Li

    2013-01-01

    Biofouling resulting from the attachment of microorganisms communities to the membrane surface is the major obstacle for the widespread application of membrane technology. This work develops a feasible approach to prepare an anti-biofouling poly(vinylidene fluoride) (PVDF) membrane. A copolymer that possessed oppositely charged groups was first synthesized via radical copolymerization with methyl methacrylate, 2-methacryloxy ethyltrimethyl ammonium chloride and 2-acrylamide-2-methyl propane sulphonic acid as monomers. The copolymer was blended with the PVDF powder to prepare the antifouling membrane via the immersed phase inversion method. The antifouling properties of the modified PVDF membrane were studied by X-ray photoelectron spectroscopy, field emission scanning electron microscopy, water contact angle measurement, zeta-potential measurement, protein adsorption, microbial adhesion and filtration experiments. The modified PVDF membrane showed limited adsorption and adhesion of protein bovine serum albumin and microbes (Escherichia coli and Saccharomyces cerevisiae) with increasing copolymer concentration in the casting solution. The modified PVDF membrane exhibited excellent antibiofouling properties.

  18. Microwave tunable dielectric properties of multilayer CNT membranes for smart applications

    NASA Astrophysics Data System (ADS)

    Liu, L.; Yang, Z. H.; Kong, L. B.; Yin, W. Y.; Wang, S.

    2012-09-01

    Multilayer multiwall carbon nanotube (MWCNT) silicone composite membranes with thickness greater than 10 μm were prepared with a spin-coating method. Dielectric permittivity and tunability of the circular membranes were measured from 0.1 to 7 GHz by using a single-port coaxial line method. The frequency and bias voltage dependent dielectric properties were interpreted based on percolation theory. The MWCNT membranes could be potentially used to develop smart components and structures working at radio wave or microwave frequencies.

  19. Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties.

    PubMed

    Sawaya, B P; Briggs, J P; Schnermann, J

    1995-08-01

    Amphotericin B (AmB) has been in clinical use for more than 30 yr but has remained the most effective drug for treatment of serious fungal infections. Its use has increased in recent years, as the result of increases in aggressive intensive care support and increased numbers of immunocompromised patients. Nephrotoxic manifestations are common, and this is the major factor limiting the clinical use of the drug. A number of recent studies have contributed to a better understanding of the mechanism by which AmB exerts its nephrotoxic effect. AmB alters cell membrane permeability and probably as a consequence alters tubular and vascular smooth muscle cell function, leading to various tubular transport defects and vasoconstriction. Decreased RBF appears to play a major role in AmB-induced reduction GFR, and recurrent ischemia may be the basis of permanent structural nephrotoxic effects. Salt loading is the only measure proven by controlled prospective study to ameliorate AmB nephrotoxicity in humans. Liposomal AmB and the formulation of an emulsion of AmB in lipid may provide a protective effect based on altering the affinity of AmB for mammalian cell membranes, while preserving high efficacy against fungal cells. However, further studies are needed to evaluate the efficacy and safety of these new AmB formulations.

  20. Structure and acoustic properties of hydrated nafion membranes.

    PubMed

    Plazanet, M; Bartolini, P; Torre, R; Petrillo, C; Sacchetti, F

    2009-07-30

    The propagation of acoustic waves in water-hydrated Nafion membrane has been monitored using heterodyne-detected transient grating spectroscopy. At room temperature, upon increasing the water content, the speed of sound drops to a value lower than the respective velocities of sound in pure Nafion and pure water. This counterintuitive effect can be explained by a simple calculation of the sound velocity in an effective medium made of water and Nafion polymer. Upon cooling, a phase separation occurs in the sample, and the formation of ice is observed (M. Pineri et al. J. Power Sources 2007, 172, 587-596). This phase transition is characterized via a second acoustic wave observed in the signal. Sound propagation and X-ray diffraction confirm the formation of crystalline ice on the membrane surface, that reversibly melts upon heating. The amount of ice that forms in the sample is monitored as a function of temperature and represents an order parameter for the transition. This parameter follows a power law with an exponent of 0.5, indicating the critical nature of the observed process.

  1. Effect of lipid peroxidation on membrane-bound Ca2+-ATPase activity of the intestinal brush-border membranes.

    PubMed

    Ohta, A; Mohri, T; Ohyashiki, T

    1989-09-04

    We have studied lipid peroxidation and Ca2+-ATPase activity of the porcine intestinal brush-border membranes using a oxygen-radical-generating system consisting of dithiothreitol (DTT)/Fe2+ and tert-butyl hydroperoxide (t-BuOOH). The rates of lipid peroxidation were measured by formation of thiobarbituric acid-reactive substances (TBAR) and conjugated diene. Incubation of the membranes with DTT/Fe2+ in the absence and presence of t-BuOOH resulted in a slight (about 20%) and a marked (about 50%) inhibition of Ca2+-ATPase activity, respectively. The degree of inhibition was dependent on the hydroperoxide concentration. Addition of thiourea effectively protected Ca2+-ATPase activity but catalase and superoxide dismutase showed a slight and no effect on protection of the ATPase activity, respectively. Results of kinetic studies on the ATPase activity with varying ATP and Ca2+ concentrations revealed that the decrease in the enzyme activity by treatment with these oxidizing agents is mainly due to decrease of the Vmax value. Modification of SH groups in the membrane proteins by thiol group reagents such as N-ethylmaleimide, monoiodoacetate and monoiodacetamide did not induce the inhibition of Ca2+-ATPase activity. From these results, it is suggested that inhibition of the ATPase activity of the membranes by treatment with DTT/Fe2+ in the presence and absence of t-BuOOH is dependent on lipid peroxidation and that oxidative modification of SH groups may not be directly involved to the loss of the ATPase activity. In addition, results of the fluorescence anisotropy measurements of pyrene-labeled membranes suggested that change in the Ca2+-ATPase activity is partly related to a decrease in the membrane lipid fluidity.

  2. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  3. Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes.

    SciTech Connect

    Salerno, Kenneth Michael; Grest, Gary S.

    2015-04-30

    In this study, the properties of mechanically stable single-nanoparticle (NP)-thick membranes have largely been studied at room temperature. How these membranes soften as nanoparticle ligands disorder with increasing temperature is unknown. Molecular dynamics simulations are used to probe the temperature dependence of the mechanical and nanostructural properties of nanoparticle membranes made of 6 nm diameter Au nanoparticles coated with dodecanethiol ligands and terminated with either methyl (CH3) or carboxyl (COOH) terminal groups. For methyl-terminated ligands, interactions along the alkane chain provide mechanical stiffness, with a Young's modulus of 1.7 GPa at 300 K. For carboxyl-terminated chains, end-group interactions are significant, producing stiffer membranes at all temperatures, with a Young's modulus of 3.8 GPa at 300 K. For both end-group types, membrane stiffness is reduced to zero at about 400 K. Ligand structure and mechanical properties of membranes at 300 K that have been annealed at 400 K are comparable to samples that do not undergo thermal annealing.

  4. Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes.

    DOE PAGES

    Salerno, Kenneth Michael; Grest, Gary S.

    2015-04-30

    In this study, the properties of mechanically stable single-nanoparticle (NP)-thick membranes have largely been studied at room temperature. How these membranes soften as nanoparticle ligands disorder with increasing temperature is unknown. Molecular dynamics simulations are used to probe the temperature dependence of the mechanical and nanostructural properties of nanoparticle membranes made of 6 nm diameter Au nanoparticles coated with dodecanethiol ligands and terminated with either methyl (CH3) or carboxyl (COOH) terminal groups. For methyl-terminated ligands, interactions along the alkane chain provide mechanical stiffness, with a Young's modulus of 1.7 GPa at 300 K. For carboxyl-terminated chains, end-group interactions are significant,more » producing stiffer membranes at all temperatures, with a Young's modulus of 3.8 GPa at 300 K. For both end-group types, membrane stiffness is reduced to zero at about 400 K. Ligand structure and mechanical properties of membranes at 300 K that have been annealed at 400 K are comparable to samples that do not undergo thermal annealing.« less

  5. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    PubMed

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering.

  6. Red Blood Cell Susceptibility to Pneumolysin: CORRELATION WITH MEMBRANE BIOCHEMICAL AND PHYSICAL PROPERTIES.

    PubMed

    Bokori-Brown, Monika; Petrov, Peter G; Khafaji, Mawya A; Mughal, Muhammad K; Naylor, Claire E; Shore, Angela C; Gooding, Kim M; Casanova, Francesco; Mitchell, Tim J; Titball, Richard W; Winlove, C Peter

    2016-05-06

    This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell.

  7. Shielding membrane surface carboxyl groups by covalent-binding graphene oxide to improve anti-fouling property and the simultaneous promotion of flux.

    PubMed

    Han, Jing-Long; Xia, Xue; Tao, Yu; Yun, Hui; Hou, Ya-Nan; Zhao, Chang-Wei; Luo, Qin; Cheng, Hao-Yi; Wang, Ai-Jie

    2016-10-01

    Graphene oxide (GO) is an excellent material for membrane surface modification. However, little is known about how and to what extent surface functional groups change after GO modification influence membrane anti-fouling properties. Carboxyl is an inherent functional group on polyamide or other similar membranes. Multivalent cations in wastewater secondary effluent can bridge with carboxyls on membrane surfaces and organic foulants, resulting in serious membrane fouling. In this study, carboxyls of a polydopamine (pDA)/1,3,5-benzenetricarbonyl trichloride (TMC) active layer are shielded by covalently-bound GO. The process is mediated by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS). For GO containing low quantities of carboxyls, X-ray photoelectron spectroscopy (XPS) and zeta potential analyzer test results reveal that the carboxyl density decreased by 52.3% compare to the pDA/TMC membrane after GO modification. Fouling experiments shows that the flux only slightly declines in the GO functionalized membrane (19.0%), compared with the pDA/TMC membrane (36.0%) after fouling. In addition, during GO modification process the pDA/TMC active layer also become harder and thinner with the aid of EDC/NHS. So the pure water permeability increases from 56.3 ± 18.2 to 103.7 ± 12.0 LMH/MPa. Our results provide new insights for membrane modification work in water treatment and other related fields.

  8. Relationship between erythrocyte membrane phase properties and susceptibility to secretory phospholipase A2.

    PubMed

    Best, Katrina B; Ohran, Allison J; Hawes, Andrea C; Hazlett, Theodore L; Gratton, Enrico; Judd, Allan M; Bell, John D

    2002-11-26

    Normally, cell membranes resist hydrolysis by secretory phospholipase A(2). However, upon elevation of intracellular calcium, the cells become susceptible. Previous investigations demonstrated a possible relationship between changes in lipid order caused by increased calcium and susceptibility to phospholipase A(2). To further explore this relationship, we used temperature as an experimental means of manipulating membrane physical properties. We then compared the response of human erythrocytes to calcium ionophore at various temperatures in the range of 20-50 degrees C using fluorescence spectroscopy and two-photon fluorescence microscopy. The steady state fluorescence emission of the environment-sensitive probe, laurdan, revealed that erythrocyte membrane order decreases systematically with temperature throughout this range, especially between 28 and 45 degrees C. Furthermore, the ability of calcium ionophore to induce increased membrane order and susceptibility to phospholipase A(2) depended similarly on temperature. Both responses to calcium influx were enhanced as membrane fluidity increased. Analysis of the spatial distribution of laurdan fluorescence at several temperatures indicated that the ordering effect of intracellular calcium on fluid membranes generates an increase in the number of fluid-solid boundaries. Hydrolysis of the membrane appeared to progress outward from these boundaries. We conclude that phospholipase A(2) prefers to hydrolyze lipids in fluid regions of human erythrocyte membranes, but primarily when those regions coexist with domains of ordered lipids.

  9. Salt transport properties of model reverse osmosis membranes using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Feldman, Kathleen; Chan, Edwin; Stafford, Gery; Stafford, Christopher

    With the increasing shortage of clean water, efficient purification technologies including membrane separations are becoming critical. The main requirement of reverse osmosis in particular is to maximize water permeability while minimizing salt permeability. Such performance optimization has typically taken place through trial and error approaches. In this work, key salt transport metrics are instead measured in model reverse osmosis membranes using electrochemical impedance spectroscopy (EIS). As shown previously, EIS can provide both the membrane resistance Rm and membrane capacitance Cm, with Rm directly related to salt permeability. The membranes are fabricated in a molecular layer by layer approach, which allows for control over such parameters as thickness, surface and bulk chemistry, and network geometry/connectivity. Rm, and therefore salt permeability, follows the expected trends with thickness and membrane area but shows unusual behavior when the network geometry is systematically varied. By connecting intrinsic material properties such as the salt permeability with macroscopic performance measures we can begin to establish design rules for improving membrane efficiency and facilitate the creation of next-generation separation membranes.

  10. Distribution and Intrinsic Membrane Properties of Basal Forebrain GABAergic and Parvalbumin Neurons in the Mouse

    PubMed Central

    McKenna, James T.; Yang, Chun; Franciosi, Serena; Winston, Stuart; Abarr, Kathleen K.; Rigby, Matthew S.; Yanagawa, Yuchio; McCarley, Robert W.; Brown, Ritchie E.

    2013-01-01

    The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium-binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67-GFP knock-in mice) or PV+ neurons (PV-Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67-GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium-sized (15–20 μm) GFP+ neurons. Most medium and large-sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast-firing and spontaneously active in vitro. They exhibited prominent hyperpolarization-activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV-Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. PMID:23254904

  11. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties.

    PubMed

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-02-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation.

  12. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties

    PubMed Central

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-01-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation. PMID:26166926

  13. Biologically Inspired Photocatalytically Active Membranes for Water Treatment

    NASA Astrophysics Data System (ADS)

    Kinsinger, Nichola M.

    There is an alarming increase of a variety of new chemicals that are now being discharged into the wastewater system causing increased concern for public health and safety because many are not removed by typical wastewater treatment practices. Titanium Dioxide (TiO2) is a heterogeneous photocatalytic material that rapidly and completely mineralizing organics without harmful byproducts. TiO2 is synthesized by various methods, which lack the necessary control of crystal size, phase, and morphological features that yield optimized semiconductor materials. Mineralizing organisms demonstrate how nature can produce elegant structures at room temperature through controlled organic-mineral interactions. Here, we utilize biologically-inspired scaffolds to template the nucleation and growth of inorganic materials such as TiO2, which aid in controlling the size and phase of these particles and ultimately, their properties. Nanosized rutile and anatase particles were synthesized under solution conditions at relatively low temperatures and mild pH conditions. The effects of reaction conditions on phase and grain size were investigated and discussed from coordination chemistry and coarsening mechanisms. Photocatalytic characterization of TiO2 phase mixtures was performed to investigate their synergistic effect. The suspension conditions of these catalytic nanomaterials were modulated to optimize the degradation rate of organic analytes. Through the addition of an organic scaffold during the synthesis reaction, a mechanically robust (elastic) composite material containing TiO2 nanoparticles was produced. This composite was subsequently heat-treated to produce a porous, high surface area TiO2 nanoparticulate membrane. Processing conditions were investigated to characterize the growth and phase transformation of TiO2, which ultimately impacts photocatalytic performance. These bulk porous TiO2 structures can be fabricated and tailored to act as stand-alone photocatalytic membranes

  14. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  15. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane

    NASA Astrophysics Data System (ADS)

    Ariono, D.; Khoiruddin; Subagjo; Wenten, I. G.

    2017-02-01

    Generally, commercially available ion-exchange membrane (IEM) can be classified into homogeneous and heterogeneous membranes. The classification is based on degree of heterogeneity in membrane structure. It is well known that the heterogeneity greatly affects the properties of IEM, such as conductivity, permselectivity, chemical and mechanical stability. The heterogeneity also influences ionic and electrical current transfer behavior of IEM-based processes during their operation. Therefore, understanding the role of heterogeneity in IEM properties is important to provide preliminary information on their operability and applicability. In this paper, the heterogeneity and its effect on IEM properties are reviewed. Some models for describing the heterogeneity of IEM and methods for characterizing the degree of heterogeneity are discussed. In addition, the influence of heterogeneity on the performance of IEM-based processes and their electrochemical behavior are described.

  16. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H+-ATPase

    PubMed Central

    De Michelis, Maria Ida; Pugliarello, Maria Chiara; Rasi-Caldogno, Franca

    1989-01-01

    The characteristics of fusicoccin binding were investigated in microsomes from 24-h-old radish (Raphanus sativus L.) seedlings. The time course of fusicoccin binding depended on fusicoccin concentration: equilibrium was reached much faster at 10 nanomolar fusicoccin than at 0.3 nanomolar fusicoccin. Scatchard analysis of equilibrium binding as a function of fusicoccin concentration indicated a single class of receptor sites with a Kd of 1.8 nanomolar and a site density of 6.3 picomoles per milligram protein. Similar values (Kd 1.7 nanomolar and site density 7 picomoles per milligram protein) were obtained from the analysis of the dependence of equilibrium binding on membrane concentration at fixed fusicoccin concentrations. Fusicoccin binding comigrated with the plasma membrane H+-ATPase in an equilibrium sucrose density gradient: both activities formed a sharp peak (1.18 grams per milliliter) clearly distinct from that of markers of other membranes which all peaked at lower densities. The saturation profiles of fusicoccin binding and of fusicoccin-induced activation of the plasma membrane H+-ATPase, measured under identical conditions, were similar, supporting the view that fusicoccin-induced activation of the plasma membrane H+-ATPase is mediated by fusicoccin binding to its plasma membrane receptor. PMID:16666723

  17. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1990-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  18. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, H.K.; Wamser, C.C.

    1990-04-17

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membranes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanine derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  19. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  20. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  1. Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers.

    PubMed Central

    Dai, J.; Sheetz, M. P.

    1995-01-01

    Many cell phenomena involve major morphological changes, particularly in mitosis and the process of cell migration. For cells or neuronal growth cones to migrate, they must extend the leading edge of the plasma membrane as a lamellipodium or filopodium. During extension of filopodia, membrane must move across the surface creating shear and flow. Intracellular biochemical processes driving extension must work against the membrane mechanical properties, but the forces required to extend growth cones have not been measured. In this paper, laser optical tweezers and a nanometer-level analysis system were used to measure the neuronal growth cone membrane mechanical properties through the extension of filopodia-like tethers with IgG-coated beads. Although the probability of a bead attaching to the membrane was constant irrespective of treatment; the probability of forming a tether with a constant force increased dramatically with cytochalasin B or D and dimethylsulfoxide (DMSO). These are treatments that alter the organization of the actin cytoskeleton. The force required to hold a tether at zero velocity (F0) was greater than forces generated by single molecular motors, kinesin and myosin; and F0 decreased with cytochalasin B or D and DMSO in correlation with the changes in the probability of tether formation. The force of the tether on the bead increased linearly with the velocity of tether elongation. From the dependency of tether force on velocity of tether formation, we calculated a parameter related to membrane viscosity, which decreased with cytochalasin B or D, ATP depletion, nocodazole, and DMSO. These results indicate that the actin cytoskeleton affects the membrane mechanical properties, including the force required for membrane extension and the viscoelastic behavior. Images FIGURE 4 PMID:7756561

  2. Fouling and its reversibility in relation to flow properties and module design in aerated hollow fibre modules for membrane bioreactors.

    PubMed

    Pollet, S; Guigui, C; Cabassud, C

    2008-01-01

    Nowadays, most membrane bioreactors are using membranes submerged in the biomass and aeration in the concentrate compartment to limit or to control fouling. An important issue for the design of modules or membrane bundles in MBRs is to understand how the air/liquid flow is behaving and influencing fouling and its reversibility in relationship to the module properties. This paper focuses on an innovative and very specific process, in which HF membranes are put in a cartridge outside the activated sludge tank and a recycling loop is associated to the cartridge in order to decrease concentration of foulant species at the membrane surface and mass transfer resistance. Recycling operates with a very low liquid velocity in the module (a few cm.s(-1)) which constitutes a specificity of this process in terms of filtration operation. The aim of this study is to characterise two-phase flow and its effects on fouling and fouling reversibility at the scale of a semi-industrial bundle of outside/in hollow fibres, and as a function of bundle properties (packing density, fibre diameter), using specific methods to characterise the flow and fouling effects. Two modules were used showing a different packing density. Filtration was operated at constant permeate flux with clay suspension at 0.65 g.l(-1) in the same hydrodynamic conditions. Fouling kinetics and irreversibility were characterised by an adapted step method, and gas and liquid flows were characterised at global scale by residence time distribution analyses and gas hold-up. Fouling velocities are clearly influenced by gas velocity. The proportion of dead to total volume in the module is mainly affected by the liquid flow velocity and module design. The module with the higher fibre diameter and the lower packing density showed better performances in terms of fouling which was correlated with better flow properties.

  3. Membrane lipid physical state and modulation of the Na+,Mg2+-ATPase activity in Acholeplasma laidlawii B.

    PubMed Central

    Silvius, J R; McElhaney, R N

    1980-01-01

    Careful analysis of the Arrhenius plot of the Na+,Mg2+-ATPase (ATP pyrophosphohydrolase, EC 3.6.1.8) activity in Acholeplasma laidlawii B membranes of varying fatty acid composition has been combined with differential thermal analysis of the membrane lipid phase transitions to evaluate the effects of membrane lipid properties on the enzyme activity. Our results indicate that the enzyme is active only in association with liquid-crystalline lipids, exhibiting a significant heat capacity of activation, delta Cp++, for the ATP hydrolytic reaction in this case. Quantitative analyses of Arrhenius plots for the enzyme activity in membranes whose lipids exhibit a gel-to-liquid-crystalline phase transition in the physiological temperature range suggest that the ATPase is inactivated when its boundary lipids undergo a phase transition that is driven by the bulk lipid phase transition but is less cooperative than the latter. Our results suggest that the familiar "biphasic linear" Arrhenius plots obtained for many membrane enzymes may in fact have a more complex shape, analysis of which can furnish useful information regarding the behavior of the enzyme molecule. Images PMID:6445554

  4. Identification and properties of an ATPase in vacuolar membranes of Neurospora crassa.

    PubMed Central

    Bowman, E J; Bowman, B J

    1982-01-01

    Using a vacuolar preparation virtually free of contamination by other organelles, we isolated vacuolar membranes and demonstrated that they contain an ATPase. Sucrose density gradient profiles of vacuolar membranes show a single peak of ATPase activity at a density of 1.11 g/cm3. Comparison of this enzyme with the two well-studied proton-pumping ATPases of Neurospora plasma membranes and mitochondria shows that it is clearly distinct. The vacuolar membrane ATPase is insensitive to the inhibitors oligomycin, azide, and vanadate, but sensitive to N,N'-dicyclohexylcarbodiimide (Ki = 2 microM). It has a pH optimum of 7.5, requires a divalent cation (Mg2+ or Mn2+) for activity, and is remarkably unaffected (+/- 20%) by a number of monovalent cations, anions, and buffers. In its substrate affinity (Km for ATP = 0.2 mM), substrate preference (ATP greater than GTP, ITP greater than UTP greater than CTP), and loss of activity with repeated 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid washes, the vacuolar membrane ATPase resembles the F1F0 type of ATPase found in mitochondria and differs from the integral membrane type of ATPase in plasma membranes. PMID:6213602

  5. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    PubMed

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  6. Physical chemistry and membrane properties of two phosphatidylinositol bisphosphate isomers†

    PubMed Central

    Wang, Yu-Hsiu; Radhakrishnan, Ravi; Janmey, Paul A.

    2015-01-01

    The most highly charged phospholipids, polyphosphoinositides, are often involved in signaling pathways that originate at cell-cell and cell-matrix contacts, and different isomers of polyphosphoinositides have distinct biological functions that cannot be explained by separate highly specific protein ligand binding sites [Lemmon, Nature Reviews Molecular and Cell Biology, 2008, 9 99–111]. PtdIns(3,5)P2 is a low abundance phosphoinositide localized to cytoplasmic-facing membrane surfaces, with relatively few known ligands, yet PtdIns(3,5)P2 plays a key role in controlling membrane trafficking events and cellular stress responses that cannot be duplicated by other phosphoinositides [Dove et al., Nature, 1997, 390, 187–192; Michell, FEBS Journal, 2013, 280, 6281–6294]. Here we show that PtdIns(3,5)P2 is structurally distinct from PtdIns(4,5)P2 and other more common phospholipids, with unique physical chemistry. Using multiscale molecular dynamics techniques on the quantum level, single molecule, and in bilayer settings, we found that the negative charge of PtdIns(3,5)P2 is spread over a larger area, compared to PtdIns(4,5)P2, leading to a decreased ability to bind divalent ions. Additionally, our results match well with experimental data characterizing the cluster forming potential of these isomers in the presence of Ca2+ [Wang et al., Journal of the American Chemical Society, 2012, 134, 3387–3395; van den Bogaart et al., Nature, 2011, 479, 552–555]. Our results demonstrate that the different cellular roles of PtdIns(4,5)P2 and PtdIns(3,5)P2 in vivo are not simply determined by their localization by enzymes that produce or degrade them, but also by their molecular size, ability to chelate ions, and the partial dehydration of those ions, which might affect the ability of PtdIns(3,5)P2 and PtdIns(4,5)P2 to form phosphoinositide-rich clusters in vitro and in vivo. PMID:25901568

  7. Physical chemistry and membrane properties of two phosphatidylinositol bisphosphate isomers.

    PubMed

    Slochower, David R; Wang, Yu-Hsiu; Radhakrishnan, Ravi; Janmey, Paul A

    2015-05-21

    The most highly charged phospholipids, polyphosphoinositides, are often involved in signaling pathways that originate at cell-cell and cell-matrix contacts, and different isomers of polyphosphoinositides have distinct biological functions that cannot be explained by separate highly specific protein ligand binding sites [Lemmon, Nat. Rev. Mol. Cell Biol., 2008, 9, 99-111]. PtdIns(3,5)P2 is a low abundance phosphoinositide localized to cytoplasmic-facing membrane surfaces, with relatively few known ligands, yet PtdIns(3,5)P2 plays a key role in controlling membrane trafficking events and cellular stress responses that cannot be duplicated by other phosphoinositides [Dove et al., Nature, 1997, 390, 187-192; Michell, FEBS J., 2013, 280, 6281-6294]. Here we show that PtdIns(3,5)P2 is structurally distinct from PtdIns(4,5)P2 and other more common phospholipids, with unique physical chemistry. Using multiscale molecular dynamics techniques on the quantum level, single molecule, and in bilayer settings, we found that the negative charge of PtdIns(3,5)P2 is spread over a larger area, compared to PtdIns(4,5)P2, leading to a decreased ability to bind divalent ions. Additionally, our results match well with experimental data characterizing the cluster forming potential of these isomers in the presence of Ca(2+) [Wang et al., J. Am. Chem. Soc., 2012, 134, 3387-3395; van den Bogaart et al., Nature, 2011, 479, 552-555]. Our results demonstrate that the different cellular roles of PtdIns(4,5)P2 and PtdIns(3,5)P2in vivo are not simply determined by their localization by enzymes that produce or degrade them, but also by their molecular size, ability to chelate ions, and the partial dehydration of those ions, which might affect the ability of PtdIns(3,5)P2 and PtdIns(4,5)P2 to form phosphoinositide-rich clusters in vitro and in vivo.

  8. Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration.

    PubMed

    Zhang, Chunfang; Wei, Kaifang; Zhang, Wenhai; Bai, Yunxiang; Sun, Yuping; Gu, Jin

    2017-03-29

    Graphene oxide quantum dots (GOQDs), novel carbon-based nanomaterials, have attracted tremendous research interest due to their unique properties associated with both graphene and quantum dots. In the present study, thin film nanocomposite (TFN) membranes comprising GOQDs dispersed within a tannic acid (TA) film were fabricated by an interfacial polymerization reaction for low-pressure nanofiltration (NF). The resultant TA/GOQDs TFN membranes had measurably smoother and more hydrophilic, negatively charged surfaces compared to the similarly formed TA thin film composite (TFC) membrane. Owing to the loose active layer structure and the combination of Donnan exclusion and steric hindrance, the TA/GOQDs TFN membrane showed a pure water flux up to 23.33 L/m(2)·h (0.2 MPa), which was 1.5 times more than that of pristine TA TFC membrane, while high dye rejection to Congo red (99.8%) and methylene blue (97.6%) was kept. In addition, the TA/GOQDs TFN membrane presented better antifouling properties, which was ascribed to the favorable changes in membrane hydrophilicity, ζ-potential, and surface roughness. These results indicated the great potential of such membranes in wastewater treatment, separation, and purification in many industrial fields.

  9. Structure changes and water filtration properties of electrospun polyamide nanofibre membranes.

    PubMed

    Daels, N; Harinck, L; Goethals, A; De Clerck, K; Van Hulle, S W H

    2016-01-01

    Nanofibre membranes are studied extensively in water treatment. Inappropriate storage, however, could alter their performance, e.g. regarding water filtration. This shows the need for investigating this effect in more detail so as to offer a solution for long-term behaviour and stability. In this study, polyamide nanofibre membranes were treated under different conditions, simulating the diverse storage conditions and to simulate their use in water filtration systems. Under all these different settings, nanofibre properties (scanning electron microscope pictures, dimensional changes, tensile strength) and water filtration performance (clean water permeability (CWP), bacterial removal) were investigated. The results demonstrate that, as soon as the dimensional change of a membrane is >2%, the CWP, tensile strength and bacterial removal significantly decrease. These dimensional changes occurred when the membrane became dry after it had been in contact with water. As such, it is important to keep the membrane either in dry or in wet conditions to store its unique properties. When heat-treated, the membrane had a higher tensile strength and kept its morphology and characteristics better during storage.

  10. Conduction velocities and membrane properties of different classes of rat septohippocampal neurons recorded in vitro

    PubMed Central

    Jones, Gareth A; Norris, Sarah K; Henderson, Zaineb

    1999-01-01

    The membrane properties and conduction velocities of antidromically activated medial septum-diagonal band (MS-DB) neurons were examined using whole-cell recordings in a longitudinally cut rat brain slice preparation containing the MS-DB and the dorsal fornix. MS-DB neurons were divided into three groups according to their action potential characteristics and firing properties. Slow firing neurons displayed a broad action potential followed by a prominent after-hyperpolarization. Burst firing neurons, when depolarized from hyperpolarized holding potentials, exhibited a high-frequency burst of spikes on the crest of a slow depolarizing potential. Fast firing neurons did not fire bursts of spikes when depolarized from hyperpolarized holding potentials. Eighteen MS-DB neurons were identified as septohippocampal by antidromic activation. Of the septohippocampal neurons, four were slow firing neurons, five were burst firing neurons and nine were fast firing neurons. The mean axon conduction velocities of these neurons fell into two significant groups, termed slow conducting and fast conducting. Slow firing septohippocampal neurons had significantly slower conduction velocities than either fast firing or burst firing neurons (P < 0.05), being 0.7 ± 0.5 ms−1 for slow firing neurons and 2.9 ± 2.0 and 2.0 ± 1.4 ms−1 for burst firing and fast firing neurons, respectively. On the basis of previous evidence which has linked firing properties with the neurochemical identities of the neurons, we propose that the slow firing septohippocampal neurons are cholinergic whereas the burst firing and fast firing septohippocampal neurons are GABAergic. PMID:10358125

  11. LPS-Induced Macrophage Activation and Plasma Membrane Fluidity Changes are Inhibited Under Oxidative Stress.

    PubMed

    de la Haba, Carlos; Morros, Antoni; Martínez, Paz; Palacio, José R

    2016-12-01

    Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.

  12. Pneumolysin activates macrophage lysosomal membrane permeabilization and executes apoptosis by distinct mechanisms without membrane pore formation.

    PubMed

    Bewley, Martin A; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M; Read, Robert C; Mitchell, Timothy J; Whyte, Moira K B; Dockrell, David H

    2014-10-07

    Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY's ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. Importance: Streptococcus

  13. Composite Nafion/sulfonated zirconia membranes: effect of the filler surface properties on proton transport characteristics

    PubMed Central

    D’Epifanio, Alessandra; Navarra, Maria Assunta; Weise, F. Christoph; Mecheri, Barbara; Farrington, Jaime; Licoccia, Silvia; Greenbaum, Steve

    2009-01-01

    Due to their strong acidity and water affinity, sulfated zirconia nanoparticles were evaluated as inorganic additives in the formation of composite Nafion-based membranes. Two types of sulfated zirconia were obtained according to the preparation experimental conditions. Sulfated zirconia-doped Nafion membranes were prepared by a casting procedure. The properties of the composite membranes were compared with those of an unfilled Nafion membrane obtained by the same preparation method. The water uptake, measured at room temperature in a wide relative humidity range, was higher for the composite membranes, this confirming the hydrophilic nature of the selected additives. The membrane doped by zirconia particles having the highest sulphate group concentration showed the highest water diffusion coefficient in the whole range of temperature and relative humidity investigated due to the presence of SO42− providing extra acid sites for water diffusion. The proton diffusivity calculated from impedance spectroscopy measurements was compared with water self diffusion coefficients measured by NMR Spectroscopy. The difference between proton and water diffusivity became significant only at high humidification levels, highlighting the role of water in the intermolecular proton transfer mechanism. Finally, great improvements were found when using the composite membrane as electrolyte in a fuel cell working at very low relative humidity. PMID:20209115

  14. Phase coexistence in a triolein-phosphatidylcholine system. Implications for lysosomal membrane properties.

    PubMed

    Pakkanen, Kirsi I; Duelund, Lars; Vuento, Matti; Ipsen, John Hjort

    2010-02-01

    The effects of tri- and monoglycerides on phospholipid (POPC) membranes were studied using spectroscopical methods. Triolein was found to form two types of POPC-rich membranes, both with POPC or as a three-component system with monopalmitin. These two membrane types were determined as co-existing phases based on their spontaneous and stable separation and named heavy and light phase according to their sedimentation behaviour. Marked differences were seen in the physical properties of these phases, even though only minor compositional variation was detected. The light, less polar phase was found to be less ordered and more fluid and seemed to allow significantly lower amount of water penetration into the membrane-water interface than pure POPC membrane. The heavy phase, apart from their slightly altered water penetration, resembled more a pure POPC membrane. As triglycerides are present in lysosomal membranes, the present results can be seen as an implication for polarity-based water permeability barrier possibly contributing to the integrity of lysosomes.

  15. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen-bromine cell environment

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    1987-01-01

    The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.

  16. Pre- and postnatal differences in membrane, action potential, and ion channel properties of rostral nucleus of the solitary tract neurons

    PubMed Central

    Suwabe, Takeshi; Mistretta, Charlotte M.; Krull, Catherine

    2011-01-01

    There is little known about the prenatal development of the rostral nucleus of the solitary tract (rNST) neurons in rodents or the factors that influence circuit formation. With morphological and electrophysiological techniques in vitro, we investigated differences in the biophysical properties of rNST neurons in pre- and postnatal rats from embryonic day 14 (E14) through postnatal day 20. Developmental changes in passive membrane and action potential (AP) properties and the emergence and maturation of ion channels important in neuron function were characterized. Morphological maturation of rNST neurons parallels changes in passive membrane properties. Mean soma size, dendritic branch points, neurite endings, and neurite length all increase prenatally. whereas neuron resting membrane potential, input resistance, and time constant decrease. Dendritic spines, on the other hand, develop after birth. AP discharge patterns alter in pre- and postnatal stages. At E14, neurons generated a single TTX-sensitive, voltage-gated Na+ AP when depolarized; a higher discharge rate appeared at older stages. AP amplitude, half-width, and rise and fall times all change during development. Responses to current injection revealed a number of voltage-gated conductances in embryonic rNST, including a hyperpolarization-activated inward current and a low-threshold Ca2+ current that initiated Ca2+ spikes. A hyperpolarization-activated, transient outward potassium current was also present in the developing neurons. Although the properties of these channels change during development, they are present before synapses form and therefore, can contribute to initial establishment of neural circuits, as well as to the changing electrophysiological properties in developing rNST neurons. PMID:21865434

  17. Blood Cell Separation Device Using Serially Connected Membrane Filters for Adapting to Blood Flow Properties

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Kato, Daiki; Koga, Hiroyuki; Morimoto, Kenichi; Fukuda, Makoto; Kinoshita, Yoshiharu; Yoshida, Hiroshi; Konishi, Satoshi

    This paper proposes a cooperative operation of serially connected membrane filters toward adaptive blood cell separation system in order to overcome a restriction of a single membrane filter. Serially connected membrane filters allow that downstream filters extract blood plasma from residual blood at upstream filters. Consequently, it becomes possible to adapt filtering characteristics to changing properties of blood. We focus on trans-membrane pressure difference in order to prevent hemolysis. Our strategy can be realized as a miniaturized PDMS fluidic chip. Our laboratory experiment using a prototype shows that plasma extraction efficiency is improved from 34% to 75%. Toward an integrated system, this paper also demonstrates multiple filters are successfully integrated into a PDMS fluidic chip.

  18. Design and properties of functional hybrid organic-inorganic membranes for fuel cells.

    PubMed

    Laberty-Robert, C; Vallé, K; Pereira, F; Sanchez, C

    2011-02-01

    This critical review presents a discussion on the major advances in the field of organic-inorganic hybrid membranes for fuel cells application. The hybrid organic-inorganic approach, when the organic part is not conductive, reproduces to some extent the behavior of Nafion where discrete hydrophilic and hydrophilic domains are homogeneously distributed. A large variety of proton conducting or non conducting polymers can be combined with various functionalized, inorganic mesostructured particles or an inorganic network in order to achieve high proton conductivity, and good mechanical and chemical properties. The tuning of the interface between these two components and the control over chemical and processing conditions are the key parameters in fabricating these hybrid organic-inorganic membranes with a high degree of reproducibility. This dynamic coupling between chemistry and processing requires the extensive use and development of complementary ex situ measurements with in situ characterization techniques, following in real time the molecular precursor solutions to the formation of the final hybrid organic-inorganic membranes. These membranes combine the intrinsic physical and chemical properties of both the inorganic and organic components. The development of the sol-gel chemistry allows a fine tuning of the inorganic network, which exhibits acid-based functionalized pores (-SO(3)H, -PO(3)H(2), -COOH), tunable pore size and connectivity, high surface area and accessibility. As such, these hybrid membranes containing inorganic materials are a promising family for controlling conductivity, mechanical and chemical properties (349 references).

  19. Carbonic anhydrase activity in Arabidopsis thaliana thylakoid membrane and fragments enriched with PSI or PSII.

    PubMed

    Ignatova, Lyudmila K; Rudenko, Natalia N; Mudrik, Vilen A; Fedorchuk, Tat'yana P; Ivanov, Boris N

    2011-12-01

    The procedure of isolating the thylakoids and the thylakoid membrane fragments enriched with either photosystem I or photosystem II (PSI- and PSII-membranes) from Arabidopsis thaliana leaves was developed. It differed from the one used with pea and spinach in durations of detergent treatment and centrifugation, and in concentrations of detergent and Mg(2+) in the media. Both the thylakoid and the fragments preserved carbonic anhydrase (CA) activities. Using nondenaturing electrophoresis followed by detection of CA activity in the gel stained with bromo thymol blue, one low molecular mass carrier of CA activity was found in the PSI-membranes, and two carriers, a low molecular mass one and a high molecular mass one, were found in the PSII-membranes. The proteins in the PSII-membranes differed in their sensitivity to acetazolamide (AA), a specific CA inhibitor. AA at 5 × 10(-7) M inhibited the CA activity of the high molecular mass protein but stimulated the activity of the low molecular mass carrier in the PSII-membranes. At the same concentration, AA moderately inhibited, by 30%, the CA activity of PSI-membranes. CA activity of the PSII-membranes was almost completely suppressed by the lipophilic CA inhibitor, ethoxyzolamide at 10(-9) M, whereas CA activity of the PSI-membranes was inhibited by this inhibitor even at 5 × 10(-7) M just the same as for AA. The observed distribution of CA activity in the thylakoid membranes from A. thaliana was close to the one found in the membranes of pea, evidencing the general pattern of CA activity in the thylakoid membranes of C3-plants.

  20. Correlations between trans-membrane pressure (TMP) and sludge properties in submerged membrane electro-bioreactor (SMEBR) and conventional membrane bioreactor (MBR).

    PubMed

    Hasan, Shadi W; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2012-09-01

    The influence of sludge properties in SMEBR and conventional MBR pilot systems on membrane fouling was investigated. Generated data were analyzed using statistical analysis Pearson's product momentum correlation coefficient (r(p)). Analysis showed that TMP had strong direct (r(p)=0.9182) and inverse (r(p)=-0.9205) correlations to mean particle size diameter in MBR and SMEBR, respectively. TMP in SMEBR had a strong direct correlation to the sludge mixed liquor suspended solids concentration (MLSS) (r(p)=0.7757) while a weak direct correlation (r(p)=0.1940) was observed in MBR. SMEBR showed a moderate inverse correlation (r(p)=-0.6118) between TMP and soluble carbohydrates (EPS(c)) and a very weak direct correlation (r(p)=0.3448) to soluble proteins (EPS(p)). Conversely, EPS(p) in MBR had more significant impact (r(p)=0.4856) on membrane fouling than EPS(c) (r(p)=0.3051). The results provide insight into optimization of operational conditions in SMEBR system to overcome membrane fouling.

  1. Changes in macrophage membrane properties during early Leishmania amazonensis infection differ from those observed during established infection and are partially explained by phagocytosis.

    PubMed

    Quintana, Eduardo; Torres, Yolima; Alvarez, Claudia; Rojas, Angela; Forero, María Elisa; Camacho, Marcela

    2010-03-01

    Understanding the impact of intracellular pathogens on the behavior of their host cells is key to designing new interventions. We are interested in how Leishmania alters the electrical function of the plasma membrane of the macrophage it infects. The specific question addressed here is the impact of Leishmania infection on macrophage membrane properties during the first 12h post-infection. A decrease of 29% in macrophage membrane capacitance at 3h post-infection indicates that the phagolysosome membrane is donated on entry by the macrophage plasma membrane. Macrophage membrane potential depolarized during the first 12h post-infection, which associated with a decreased inward potassium current density, changed in inward rectifier conductance and increased outward potassium current density. Decreased membrane capacitance and membrane potential, with no changes in ion current density, were found in macrophages after phagocytosis of latex beads. Therefore we suggest that the macrophage membrane changes observed during early Leishmania infection appear to be associated with the phagocytic and activation processes.

  2. Enzymatically active high-flux selectively gas-permeable membranes

    SciTech Connect

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  3. Activation of a heat-stable cytolytic protein associated with the surface membrane of Naegleria fowleri.

    PubMed Central

    Lowrey, D M; McLaughlin, J

    1985-01-01

    Surface membrane-enriched fractions of Naegleria fowleri obtained after isopycnic centrifugation experiments contain a potent cytolytic activity as determined by hemolysis and 51Cr release assays. This surface membrane cytolysin was unaffected by a treatment at 75 degrees C for 30 min and accounted for 70 to 90% of cytolysis by whole-cell lysates of amoebae. This heat resistance as well as intimate membrane association distinguished the surface membrane cytolytic activity from a second heat-labile cytolytic activity which appears to be latent within lysosomes. The surface membrane cytolysin was found to be specifically activated by diluted samples of lysosomal fractions. The possible role of this surface membrane cytotoxin in the pathogenicity of N. fowleri is discussed. PMID:4055029

  4. Isolation, Characterization and Biological Properties of Membrane Vesicles Produced by the Swine Pathogen Streptococcus suis

    PubMed Central

    Haas, Bruno; Grenier, Daniel

    2015-01-01

    Streptococcus suis, more particularly serotype 2, is a major swine pathogen and an emerging zoonotic agent worldwide that mainly causes meningitis, septicemia, endocarditis, and pneumonia. Although several potential virulence factors produced by S. suis have been identified in the last decade, the pathogenesis of S. suis infections is still not fully understood. In the present study, we showed that S. suis produces membrane vesicles (MVs) that range in diameter from 13 to 130 nm and that appear to be coated by capsular material. A proteomic analysis of the MVs revealed that they contain 46 proteins, 9 of which are considered as proven or suspected virulence factors. Biological assays confirmed that S. suis MVs possess active subtilisin-like protease (SspA) and DNase (SsnA). S. suis MVs degraded neutrophil extracellular traps, a property that may contribute to the ability of the bacterium to escape the host defense response. MVs also activated the nuclear factor-kappa B (NF-κB) signaling pathway in both monocytes and macrophages, inducing the secretion of pro-inflammatory cytokines, which may in turn contribute to increase the permeability of the blood brain barrier. The present study brought evidence that S. suis MVs may play a role as a virulence factor in the pathogenesis of S. suis infections, and given their composition be an excellent candidate for vaccine development. PMID:26110524

  5. BIOPHYSICAL PROPERTIES OF SUBTHRESHOLD RESONANCE OSCILLATIONS AND SUBTHRESHOLD MEMBRANE OSCILLATIONS IN NEURONS

    PubMed Central

    V-GHAFFARI, BABAK; KOUHNAVARD, M.; KITAJIMA, T.

    2017-01-01

    Subthreshold-level activities in neurons play a crucial role in neuronal oscillations. These small-amplitude oscillations have been suggested to be involved in synaptic plasticity and in determining the frequency of network oscillations. Subthreshold membrane oscillations (STOs) and subthreshold resonance oscillations (SROs) are the main constituents of subthreshold-level activities in neurons. In this study, a general theoretical framework for analyzing the mechanisms underlying STOs and SROs in neurons is presented. Results showed that the resting membrane potential and the hyperpolarization-activated potassium channel (h-channel) affect the subthreshold-level activities in stellate cells. The contribution of h-channel on resonance is attributed to its large time constant, which produces the time lag between Ih and the membrane potential. Conversely, the persistent sodium channels (Nap-channels) only play an amplifying role in these neurons. PMID:28356608

  6. Structure and properties of PVDF membrane with PES-C addition via thermally induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Lishun; Sun, Junfen

    2014-12-01

    Polyvinylidene fluoride (PVDF) membrane and PVDF membrane with phenolphthalein polyethersulfone (PES-C) addition were prepared via thermally induced phase separation (TIPS) method by using diphenyl carbonate (DPC) and dimethyl acetamide (DMAc) as mixed diluents. The effects of coagulation temperature and pre-evaporation time on structure and properties of membranes were studied. The changes of sewage flux in MBR and the attenuation coefficient of sewage flux were investigated. The resistance distributions of PVDF and PVDF/PES-C membranes were compared by resistance analysis. Membrane composition and structure were characterized by ATR-FTIR, TGA, SEM and AFM. The foulant on membranes was analyzed by FTIR. The contact angle of PVDF/PES-C membrane was lower than that of PVDF membrane. A thinner skin layer and a porous cellular support layer formed in PVDF/PES-C membrane and resulted in a higher porosity and pure water flux. The pure water flux and porosity of PVDF/PES-C membrane increased with rising coagulation temperature and decreased with extending pre-evaporation time. The flux attenuation coefficient, the cake layer resistance and internal fouling resistance of PVDF/PES-C membrane in MBR were smaller than those of PVDF membrane in MBR. The FTIR spectrum of foulant on membrane indicated that the foulant on PVDF/PES-C membrane was mostly composed of protein and polysaccharide, while the foulant on pure PVDF membrane included biopolymer clusters besides protein and polysaccharide.

  7. Membrane-associated forms of peptidylglycine alpha-amidating monooxygenase activity in rat pituitary. Tissue specificity.

    PubMed

    May, V; Cullen, E I; Braas, K M; Eipper, B A

    1988-06-05

    Membrane-associated peptidylglycine alpha-amidating monooxygenase (PAM) activity was investigated in rat anterior and neurointermediate pituitary tissues and in pituitary AtT-20/D-16v and GH3 cell lines. A substantial fraction of total pituitary PAM activity was found to be membrane-associated. Triton X-100, N-octyl-beta-D-glucopyranoside, and Zwittergent were effective in solubilizing PAM activity from crude pituitary membranes. The distribution of enzyme activity between soluble and membrane-associated forms was tissue-specific. In the anterior pituitary lobe and pituitary cell lines, 40-60% of total PAM activity was membrane-associated while only 10% of the alpha-amidating activity in the neurointermediate lobe was membrane-associated. Soluble and membrane-associated forms of PAM shared nearly identical characteristics with respect to copper and ascorbate requirements, pH optima, and Km values. Upon subcellular fractionation of anterior and neurointermediate pituitary lobe homogenates on Percoll gradients, 12-18% of total PAM activity was found in the rough endoplasmic reticulum/Golgi fractions and 42-60% was localized to secretory granule fractions. For both tissues, membrane-associated PAM activity was enriched in the rough endoplasmic reticulum/Golgi pool, whereas most of the secretory granule-associated enzyme activity was soluble.

  8. Membrane Cholesterol Removal Changes Mechanical Properties of Cells and Induces Secretion of a Specific Pool of Lysosomes

    PubMed Central

    Roma, Paula Magda S.; Alves, Ana Paula; Rocha, Carolina D.; Valverde, Thalita M.; Aguiar, Pedro Henrique N.; Almeida, Fernando P.; Guimarães, Allan J.; Guatimosim, Cristina; Silva, Aristóbolo M.; Fernandes, Maria C.; Andrews, Norma W.; Viana, Nathan B.; Mesquita, Oscar N.; Agero, Ubirajara; Andrade, Luciana O.

    2013-01-01

    In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MβCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MβCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MβCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal. PMID:24376622

  9. A Microfluidic Study of Megakaryocytes Membrane Transport Properties to Water and Dimethyl Sulfoxide at Suprazero and Subzero Temperatures

    PubMed Central

    Sun, Sijie; Shu, Zhiquan; Ding, Weiping; Reems, Jo-Anna

    2011-01-01

    Megakaryocytes (MKs) are the precursor cells of platelets. Cryopreservation of MKs is critical for facilitating research investigations about the biology of this important cell and may help for scaling-up ex-vivo production of platelets from MKs for clinical transfusion. Determining membrane transport properties of MKs to water and cryoprotectant agents (CPAs) is essential for developing optimal conditions for cryopreserving MKs. To obtain these unknown parameters, membrane transport properties of the human UT-7/TPO megakaryocytic cell line were investigated using a microfluidic perfusion system. UT-7/TPO cells were immobilized in a microfluidic system on poly-D-lysine-coated glass substrate and perfused with various hyper-osmotic salt and CPA solutions at suprazero and subzero temperatures. The kinetics of cell volume changes under various extracellular conditions were monitored by a video camera and the information was processed and analyzed using the Kedem–Katchalsky model to determine the membrane transport properties. The osmotically inactive cell volume (Vb=0.15), the permeability coefficient to water (Lp) at 37°C, 22°C, 12°C, 0°C, −5°C, −10°C, and −20°C, and dimethyl sulfoxide (DMSO; Ps) at 22, 12, 0, −10, −20, as well as associated activation energies of water and DMSO at different temperature regions were obtained. We found that MKs have relatively higher membrane permeability to water (Lp=2.62 μm/min/atm at 22°C) and DMSO (Ps=1.8×10−3 cm/min at 22°C) than most other common mammalian cell types, such as lymphocytes (Lp=0.46 μm/min/atm at 25°C). This information could suggest a higher optimal cooling rate for MKs cryopreservation. The discontinuity effect was also found on activation energy at 0°C–12°C in the Arrhenius plots of membrane permeability by evaluating the slope of linear regression at each temperature region. This phenomenon may imply the occurrence of cell membrane lipid phase transition. PMID:22232706

  10. Detergent disruption of bacterial inner membranes and recovery of protein translocation activity

    SciTech Connect

    Cunningham, K.; Wickner, W.T. )

    1989-11-01

    Isolation of the integral membrane components of protein translocation requires methods for fractionation and functional reconstitution. The authors treated inner-membrane vesicles of Escherichia coli with mixtures of octyl {beta}-D-glucoside, phospholipids, and an integral membrane carrier protein under conditions that extract most of the membrane proteins into micellar solution. Upon dialysis, proteoliposomes were reconstituted that supported translocation of radiochemically pure ({sup 35}S)pro-OmpA (the precursor of outer membrane protein A). Translocation into these proteoliposomes required ATP hydrolysis and membrane proteins, indicating that the reaction is that of the inner membrane. The suspension of membranes in detergent was separated into supernatant and pellet fractions by ultracentrifugation. After reconstitution, translocation activity was observed in both fractions, but processing by leader peptidase of translocated pro-OmpA to OmpA was not detectable in the reconstituted pellet fraction. Processing activity was restored by addition of pure leader peptidase as long as this enzyme was added before detergent removal, indicating that the translocation activity is not associated with detergent-resistant membrane vesicles. These results show that protein translocation activity can be recovered from detergent-disrupted membrane vesicles, providing a first step towards the goal of isolating the solubilized components.

  11. Influence of collagen source on fibrillar architecture and properties of vitrified collagen membranes.

    PubMed

    Majumdar, Shoumyo; Guo, Qiongyu; Garza-Madrid, Marcos; Calderon-Colon, Xiomara; Duan, Derek; Carbajal, Priscilla; Schein, Oliver; Trexler, Morgana; Elisseeff, Jennifer

    2016-02-01

    Collagen vitrigel membranes are transparent biomaterials characterized by a densely organized, fibrillar nanostructure that show promise in the treatment of corneal injury and disease. In this study, the influence of different type I collagen sources and processing techniques, including acid-solubilized collagen from bovine dermis (Bov), pepsin-solubilized collagen from human fibroblast cell culture (HuCC), and ficin-solubilized collagen from recombinant human collagen expressed in tobacco leaves (rH), on the properties of the vitrigel membranes was evaluated. Postvitrification carbodiimide crosslinking (CX) was also carried out on the vitrigels from each collagen source, forming crosslinked counterparts BovXL, HuCCXL, and rHXL, respectively. Collagen membrane ultrastructure and biomaterial properties were found to rely heavily on both collagen source and crosslinking. Bov and HuCC samples showed a random fibrillar organization of collagen, whereas rH vitrigels showed remarkable regional fibril alignment. After CX, light transmission was enhanced in all groups. Denaturation temperatures after CX increased in all membranes, of which the highest increase was seen in rH (14.71°C), suggesting improved thermal stability of the collagen fibrils in the membranes. Noncrosslinked rH vitrigels may be reinforced through CX to reach levels of mechanical strength and thermal stability comparable to Bov.

  12. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes.

    PubMed

    Mojumdar, E H; Kariman, Z; van Kerckhove, L; Gooris, G S; Bouwstra, J A

    2014-10-01

    The skin barrier function is provided by the stratum corneum (SC). The lipids in the SC are composed of three lipid classes: ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) which form two crystalline lamellar structures. In the present study, we investigate the effect of CER chain length distribution on the barrier properties of model lipid membranes mimicking the lipid composition and organization of SC. The membranes were prepared with either isolated pig CERs (PCERs) or synthetic CERs. While PCERs have a wide chain length distribution, the synthetic CERs are quite uniform in chain length. The barrier properties were examined by means of permeation studies using hydrocortisone as a model drug. Our studies revealed a reduced barrier in lipid membranes prepared with PCERs compared to synthetic CERs. Additional studies revealed that a wider chain length distribution of PCERs results in an enhanced hexagonal packing and increased conformational disordering of the lipid tails compared to synthetic CERs, while the lamellar phases did not change. This demonstrates that the chain length distribution affects the lipid barrier by reducing the lipid ordering and density within the lipid lamellae. In subsequent studies, the effect of increased levels of FFAs or CERs with a long acyl chain in the PCERs membranes was also studied. These changes in lipid composition enhanced the level of orthorhombic packing, reduced the conformational disordering and increased the barrier of the lipid membranes. In conclusion, the CER chain length distribution is an important key factor for maintaining a proper barrier.

  13. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  14. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  15. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation.

    PubMed

    Fuoco, Alessio; Khdhayyer, Muhanned R; Attfield, Martin P; Esposito, Elisa; Jansen, Johannes C; Budd, Peter M

    2017-02-11

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H₂, O₂, N₂, CH₄, CO₂ were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability.

  16. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation

    PubMed Central

    Fuoco, Alessio; Khdhayyer, Muhanned R.; Attfield, Martin P.; Esposito, Elisa; Jansen, Johannes C.; Budd, Peter M.

    2017-01-01

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability. PMID:28208658

  17. Myomaker: A membrane activator of myoblast fusion and muscle formation

    PubMed Central

    Millay, Douglas P.; O’Rourke, Jason R.; Sutherland, Lillian B.; Bezprozvannaya, Svetlana; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.

    2013-01-01

    Summary Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibers. However, the identity of myogenic proteins that directly govern this fusion process has remained elusive. Here, we discovered a muscle-specific membrane protein, named Myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is down-regulated thereafter. Over-expression of Myomaker in myoblasts dramatically enhances fusion and genetic disruption of Myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibers. Remarkably, forced expression of Myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacologic perturbation of the actin cytoskeleton abolishes the activity of Myomaker, consistent with prior studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein both necessary and sufficient for mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation. PMID:23868259

  18. Circulating polymerase chain reaction chips utilizing multiple-membrane activation

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Hao; Chen, Yi-Yu; Liao, Chia-Sheng; Hsieh, Tsung-Min; Luo, Ching-Hsing; Wu, Jiunn-Jong; Lee, Huei-Huang; Lee, Gwo-Bin

    2007-02-01

    This paper reports a new micromachined, circulating, polymerase chain reaction (PCR) chip for nucleic acid amplification. The PCR chip is comprised of a microthermal control module and a polydimethylsiloxane (PDMS)-based microfluidic control module. The microthermal control modules are formed with three individual heating and temperature-sensing sections, each modulating a specific set temperature for denaturation, annealing and extension processes, respectively. Micro-pneumatic valves and multiple-membrane activations are used to form the microfluidic control module to transport sample fluids through three reaction regions. Compared with other PCR chips, the new chip is more compact in size, requires less time for heating and cooling processes, and has the capability to randomly adjust time ratios and cycle numbers depending on the PCR process. Experimental results showed that detection genes for two pathogens, Streptococcus pyogenes (S. pyogenes, 777 bps) and Streptococcus pneumoniae (S. pneumoniae, 273 bps), can be successfully amplified using the new circulating PCR chip. The minimum number of thermal cycles to amplify the DNA-based S. pyogenes for slab gel electrophoresis is 20 cycles with an initial concentration of 42.5 pg µl-1. Experimental data also revealed that a high reproducibility up to 98% could be achieved if the initial template concentration of the S. pyogenes was higher than 4 pg µl-1. The preliminary results of the current paper were presented at the 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), Istanbul, Turkey, 22-26 January, 2006.

  19. Optimization of membrane bioreactors by the addition of powdered activated carbon.

    PubMed

    Ng, Choon Aun; Sun, Darren; Bashir, Mohammed J K; Wai, Soon Han; Wong, Ling Yong; Nisar, Humaira; Wu, Bing; Fane, Anthony G

    2013-06-01

    It was found that with replenishment, powdered activated carbon (PAC) in the membrane bioreactor (MBR) would develop biologically activated carbon (BAC) which could enhance filtration performance of a conventional MBR. This paper addresses two issues (i) effect of PAC size on MBR (BAC) performance; and (ii) effect of sludge retention time (SRT) on the MBR performance with and without PAC. To interpret the trends, particle/floc size, concentration of mixed liquor suspended solid (MLSS), total organic carbon (TOC), short-term filtration properties and transmembrane pressure (TMP) versus time are measured. The results showed improved fouling control with fine, rather than coarse, PAC provided the flux did not exceed the deposition flux for the fine PAC. Without PAC, the longer SRT operation gave lower fouling at modest fluxes. With PAC addition, the shorter SRT gave better fouling control, possibly due to greater replenishment of the fresh PAC.

  20. [The effect of limiting neuronal energy metabolism on the level of impulse activity and membrane potentials].

    PubMed

    Voronova, N V; Chumachenko, A A

    1989-01-01

    The changes of the membrane potential and the frequency of impulse activity of the crayfish stretch receptor neuron have been studied under condition of energy supply deficiency. The energetic metabolism inhibitors have been found not to exert a significant effect on the membrane potential. The activity of the glycolysis process and the Krebs cycle have different effect on the sensitivity of the generating mechanism.

  1. Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron.

    PubMed

    Fujita, Tomohiro; Fukai, Tomoki; Kitano, Katsunori

    2012-06-01

    The activity patterns of the globus pallidus (GPe) and subthalamic nucleus (STN) are closely associated with motor function and dysfunction in the basal ganglia. In the pathological state caused by dopamine depletion, the STN-GPe network exhibits rhythmic synchronous activity accompanied by rebound bursts in the STN. Therefore, the mechanism of activity transition is a key to understand basal ganglia functions. As synchronization in GPe neurons could induce pathological STN rebound bursts, it is important to study how synchrony is generated in the GPe. To clarify this issue, we applied the phase-reduction technique to a conductance-based GPe neuronal model in order to derive the phase response curve (PRC) and interaction function between coupled GPe neurons. Using the PRC and interaction function, we studied how the steady-state activity of the GPe network depends on intrinsic membrane properties, varying ionic conductances on the membrane. We noted that a change in persistent sodium current, fast delayed rectifier Kv3 potassium current, M-type potassium current and small conductance calcium-dependent potassium current influenced the PRC shape and the steady state. The effect of those currents on the PRC shape could be attributed to extension of the firing period and reduction of the phase response immediately after an action potential. In particular, the slow potassium current arising from the M-type potassium and the SK current was responsible for the reduction of the phase response. These results suggest that the membrane property modulation controls synchronization/asynchronization in the GPe and the pathological pattern of STN-GPe activity.

  2. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    PubMed

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  3. Influence of microstructure and environment on nanoparticle membrane and superlattice mechanical properties

    NASA Astrophysics Data System (ADS)

    Salerno, K. Michael

    Assembly of nanoparticles (NPs) offers a means to tailor materials, incorporating unique nanoscale electro-optical behavior with controllable, responsive mechanical properties. Encoding NPs with organic ligands provides a way to simultaneously drive assembly and control assembly properties. Atomistic molecular dynamics simulations of alkanethiol-coated gold nanoparticles are used to examine how coating chemistry, temperature, and assembly history affect the properties of two-dimensional nanoparticle membranes and three-dimensional nanoparticle superlattices. Specifically, NPs were coated with dodecanethiol and octadecanethiol ligands with COOH or CH3 end groups and assembled into two-dimensional membranes at water vapor interface. Capping ligands with hydrogen-bond forming carboxyl groups rather than methyl groups more than doubles the membrane Young's modulus from 1.5 to 3.6 GPa. The orientational order of the coating oligomers indicates that ligands strongly bundle and orient within the membrane. This effect inhibits ligand interdigitation, decreasing stiffness. Ligand structure is also highly temperature dependent, causing membranes to lose mechanical stability at about 400K. We observe that the interface asymmetry leads to a measurable stress asymmetry. Due to buckling, stresses in 2D membranes are typically quite small, however 3D superlattices can reversibly reach pressures of 8 GPa. Simulations show that at these pressures the ligand-core bond can be an important failure point, and experiments show that core sintering occurs at high pressure, creating novel 3D and quasi-2D structures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Structure/property relationships in polymer membranes for water purification and energy applications

    NASA Astrophysics Data System (ADS)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  5. The effect of phosphatidylcholine to sphingomyelin mole ratio on the dynamic properties of sheep erythrocyte membrane.

    PubMed

    Borochov, H; Zahler, P; Wilbrandt, W; Shinitzky, M

    1977-11-01

    Sheep red blood cells are shown to incorporate phosphatidylchline when incubated in human plasma in the presence of EGTA. This treatment results in up to a 5-fold increase in mol ratio of phosphatidylcholine to sphingomyelin. By replacing EGTA with Ca+ the increase of phsphatidylcholine content is completely inhibited, due to the activation of the membrane bound lecithinase which rapidly degrades the incorporated phosphatidylcholine. Analogous treatments of the isolate membranes resulted in similar phosphatidylcholine incorporation but in the presence of Ca+ a residual phosphatidylcholine uptake was still oberved. These results suggest that in the isolated membranes small amounts of phosphatidylcholine can be incorporated into an additional region which is unavailable for the membrane lecithinase. The increase in the phosphatidylcholine to sphingomyelin mol ratio in sheep red blood cells is concomitant with an increase in lipid fluidity, as well as increase in osmotic fragility9

  6. The effects of cationic contamination on the physio-chemical properties of perfluoroionomer membranes

    NASA Astrophysics Data System (ADS)

    Molter, Trent M.

    Proton Exchange Membrane (PEM) technology cannot meet fuel cell and electrolyzer durability standards for stationary and transportation applications. Cell designs are not of sufficient maturity to demonstrate more than several thousand hours of invariant performance. One of the limiting factors is the operational lifetime of membrane electrode assemblies (MEA's) because of pin-holing, dry-out, mechanical breeches, chemical attack and contamination. This program investigated the role of contamination on the degradation of perfluorinated membranes in fuel cell and electrolysis environments. Tests were conducted to develop an understanding of the effects of cationic contaminants on fundamental design parameters for these membranes including water content, ion exchange capacity, gas diffusion, ionic conductivity, and mechanical properties. Tests showed that cations rapidly transport into the membrane and disperse throughout its structure achieving high equilibrium concentrations. Ion charge density appears to govern membrane water content with small ions demonstrating the highest water content. Permeability studies showed transport in accordance with Fick's law in the following order: H2>O2>N 2>H2O. Cations negatively affect gas and water transport, with charge density affecting transport rates. Unique diffusion coefficients were calculated for each contaminating species suggesting that the contaminant is an integral participant in the transport process. AC resistance measurements showed that size of the ion charge carrier is an important factor in the conduction mechanism and that membrane area specific resistance correlates well with water content. Increases in membrane yield strength and the modulus of elasticity were demonstrated with increased contamination. Tensile tests showed that cation size plays an important role in determining the magnitude of this increase, indicating that larger ions interfere more with strain than smaller ones. Contaminants reduced

  7. In vitro evaluation of antioxidant and anti-inflammatory properties of genistein-modified hemodialysis membranes.

    PubMed

    Neelakandan, Chandrasekaran; Chang, Teng; Alexander, Thomas; Define, Linda; Evancho-Chapman, Michelle; Kyu, Thein

    2011-07-11

    Genistein-modified poly(amide):poly(vinyl pyrrolidone) (PA:PVP/G) hemodialysis membranes have been fabricated by coagulation via solvent (dimethyl sulfoxide, DMSO)/nonsolvent (water) exchange. The antioxidant and anti-inflammatory properties of the unmodified PA:PVP membranes were evaluated in vitro using human blood. It was found that these unmodified PA:PVP membranes were noncytotoxic to peripheral blood mononuclear cells (PBMC) but raised intracellular reactive oxygen species (ROS) levels. Pure genistein (in DMSO solution) was not only nontoxic to PBMC, but also suppressed the ROS levels in a manner dependent on genistein dosage. A similar dose-dependent suppression of ROS was found in genistein-modified PA (i.e., PA/G) membranes. However, the PVP addition had little or no effect in the suppression of ROS levels for the ternary PA:PVP/G system; the membrane ROS suppression was largely controlled by the genistein dosage. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin (IL-6) in whole blood were measured by ex vivo stimulation with lipopolysaccharide (LPS). The unmodified PA:PVP membranes drastically increased the level of TNF-α; however, the concentration of IL-1β and IL-6 remained almost the same. The PA/G membranes reduced the concentration of IL-1β and TNF-α even at very low genistein loadings, but it required a higher genistein loading to realize a similar effect in the case of IL-6. Of particular importance is that the genistein-modified blend membranes (PA:PVP/G) showed greater suppression of the concentrations of all three cytokines (TNF-α, IL-1β, and IL-6) in comparison with those of the PA/G membranes, signifying the role of PVP in the enhanced anti-inflammatory properties of these genistein-modified membranes. Ultraviolet-visible (UV-vis) spectroscopy was employed to quantify any genistein leaching during the in vitro testing.

  8. Thermal properties of phosphoric acid-doped polybenzimidazole membranes in water and methanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Nores-Pondal, Federico J.; Buera, M. Pilar; Corti, Horacio R.

    The thermal properties of phosphoric acid-doped poly[2-2‧-(m-phenylene)-5-5‧ bi-benzimidazole] (PBI) and poly[2,5-benzimidazole] (ABPBI) membranes, ionomeric materials with promising properties to be used as electrolytes in direct methanol and in high temperature polymer electrolyte membrane (PEM) fuel cells, were studied by means of differential scanning calorimetry (DSC) technique in the temperature range from -145 °C to 200 °C. The DSC scans of samples equilibrated in water at different relative humidities (RH) and in liquid water-methanol mixtures were analyzed in relation to glass transition, water crystallization/melting and solvent desorption in different temperature regions. The thermal relaxation observed in the very low temperature region could be ascribed to the glass transition of the H 3PO 4-H 2O mixture confined in the polymeric matrix. After cooling the samples up to -145 °C, frozen water was detected in PBI and ABPBI at different RH, although at 100% RH less amount of water had crystallized than that observed in Nafion membranes under the same conditions. Even more important is the fact that the freezing degree of water is much lower in ABPBI membranes equilibrated in liquid water-methanol mixtures than that observed for PBI and, in a previous study, for Nafion. Thus, apart from other well known properties, acid-doped ABPBI emerges as an excellent ionomer for applications in direct methanol fuel cells working in cold environments.

  9. Differential membrane fluidization by active and inactive cannabinoid analogues.

    PubMed

    Mavromoustakos, T; Papahatjis, D; Laggner, P

    2001-06-06

    The effects of the two cannabinomimetic drugs (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethyl-1-hydroxy-6H-dibenzo[b,d]pyranyl-2-(hexyl)-1,3-dithiolane (AMG-3) and its pharmacologically less active 1-methoxy analogue (AMG-18) on the thermotropic and structural properties of dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) liposomes have been studied by X-ray diffraction and differential scanning calorimetry (DSC). DSC data revealed that the incorporation of the drugs affect differently the thermotropic properties of DPPC. The presence of the more active drug distinctly broadened and attenuated both the pretransition and main phase transition of DPPC bilayers, while the inactive analogue had only minor effects. Small and wide angle X-ray diffraction data showed that the two cannabinoids have different effects on the lipid phase structures and on the hydrocarbon chain packing. The pharmacologically active analogue, AMG-3, was found to efficiently fluidize domains of the lipids in the L(beta)' gel phase, and to perturb the regular multibilayer lattice. In the liquid crystalline L(alpha) phase, AMG-3 was also found to cause irregularities in packing, suggesting that the drug induces local curvature. At the same concentration, the inactive AMG-18 had only minor structural effects on the lipids. At about 10-fold or higher concentrations, AMG-18 was found to produce similar but still less pronounced effects in comparison to those observed by AMG-3. The dose-dependent, different thermotropic and structural effects by the two cannabinoid analogues suggest that these may be related to their biological activity.

  10. Membrane Morphology Is Actively Transformed by Covalent Binding of the Protein Atg8 to PE-Lipids

    PubMed Central

    Knorr, Roland L.; Nakatogawa, Hitoshi; Ohsumi, Yoshinori; Lipowsky, Reinhard; Baumgart, Tobias; Dimova, Rumiana

    2014-01-01

    Autophagy is a cellular degradation pathway involving the shape transformation of lipid bilayers. During the onset of autophagy, the water-soluble protein Atg8 binds covalently to phosphatdylethanolamines (PEs) in the membrane in an ubiquitin-like reaction coupled to ATP hydrolysis. We reconstituted the Atg8 conjugation system in giant and nm-sized vesicles with a minimal set of enzymes and observed that formation of Atg8-PE on giant vesicles can cause substantial tubulation of membranes even in the absence of Atg12-Atg5-Atg16. Our findings show that ubiquitin-like processes can actively change properties of lipid membranes and that membrane crowding by proteins can be dynamically regulated in cells. Furthermore we provide evidence for curvature sorting of Atg8-PE. Curvature generation and sorting are directly linked to organelle shapes and, thus, to biological function. Our results suggest that a positive feedback exists between the ubiquitin-like reaction and the membrane curvature, which is important for dynamic shape changes of cell membranes, such as those involved in the formation of autophagosomes. PMID:25522362

  11. Effects of Block Length and Membrane Processing Conditions on the Morphology and Properties of Perfluorosulfonated Poly(arylene ether sulfone) Multiblock Copolymer Membranes for PEMFC.

    PubMed

    Assumma, Luca; Nguyen, Huu-Dat; Iojoiu, Cristina; Lyonnard, Sandrine; Mercier, Régis; Espuche, Eliane

    2015-07-01

    Perfluorosulfonated poly(arylene ether sulfone) multiblock copolymers have been shown to be promising as proton exchange membranes. The commonly used approach for preparation of the membrane is solvent casting; the properties of the resulting membranes are very dependent on the membrane processing conditions. In this paper, we study the effects of block length, selectivity of the solvent, and thermal treatment on the membrane properties such as morphology, water uptake, and ionic conductivity. DiMethylSulfOxide (DMSO), and DiMethylAcetamide (DMAc) were selected as casting solvents based on the Flory-Huggins parameter calculated by inversion gas chromatography (IGC). It was found that the solvent selectivity has a mild impact on the mean size of the ionic domains and the expansion upon swelling, while it dramatically affects the supramolecular ordering of the blocks. The membranes cast from DMSO exhibit more interconnected ionic clusters yielding higher conductivities and water uptake as compared to membranes cast from DMAc. A 10-fold increase in proton conductivity was achieved after thermal annealing of membranes at 150 °C, and the ionomers with longer block lengths show conductivities similar to Nafion at 80 °C and low relative humidity (30%).

  12. Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.

    PubMed

    Wang, Jingbo; Kingsbury, Ryan S; Perry, Lamar A; Coronell, Orlando

    2017-02-21

    The partition coefficient of solutes into the polyamide active layer of reverse osmosis (RO) membranes is one of the three membrane properties (together with solute diffusion coefficient and active layer thickness) that determine solute permeation. However, no well-established method exists to measure solute partition coefficients into polyamide active layers. Further, the few studies that measured partition coefficients for inorganic salts report values significantly higher than one (∼3-8), which is contrary to expectations from Donnan theory and the observed high rejection of salts. As such, we developed a benchtop method to determine solute partition coefficients into the polyamide active layers of RO membranes. The method uses a quartz crystal microbalance (QCM) to measure the change in the mass of the active layer caused by the uptake of the partitioned solutes. The method was evaluated using several inorganic salts (alkali metal salts of chloride) and a weak acid of common concern in water desalination (boric acid). All partition coefficients were found to be lower than 1, in general agreement with expectations from Donnan theory. Results reported in this study advance the fundamental understanding of contaminant transport through RO membranes, and can be used in future studies to decouple the contributions of contaminant partitioning and diffusion to contaminant permeation.

  13. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry.

    PubMed

    Xiang, Tao; Lu, Ting; Xie, Yi; Zhao, Wei-Feng; Sun, Shu-Dong; Zhao, Chang-Sheng

    2016-08-01

    The chemical compositions are very important for designing blood-contacting membranes with good antifouling property and blood compatibility. In this study, we propose a method combining ATRP and click chemistry to introduce zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA), negatively charged polymers of poly(sodium methacrylate) (PNaMAA) and/or poly(sodium p-styrene sulfonate) (PNaSS), to improve the antifouling property and blood compatibility of polysulfone (PSf) membranes. Attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy and water contact angle results confirmed the successful grafting of the functional polymers. The antifouling property and blood compatibility of the modified membranes were systematically investigated. The zwitterionic polymer (PSBMA) grafted membranes showed good resistance to protein adsorption and bacterial adhesion; the negatively charged polymer (PNaSS or PNaMAA) grafted membranes showed improved blood compatibility, especially the anticoagulant property. Moreover, the PSBMA/PNaMAA modified membrane showed both antifouling property and anticoagulant property, and exhibited a synergistic effect in inhibiting blood coagulation. The functionalization of membrane surfaces by a combination of ATRP and click chemistry is demonstrated as an effective route to improve the antifouling property and blood compatibility of membranes in blood-contact.

  14. Pressure Modulation of the Enzymatic Activity of Phospholipase A2, A Putative Membrane-Associated Pressure Sensor.

    PubMed

    Suladze, Saba; Cinar, Suleyman; Sperlich, Benjamin; Winter, Roland

    2015-10-07

    Phospholipases A2 (PLA2) catalyze the hydrolysis reaction of sn-2 fatty acids of membrane phospholipids and are also involved in receptor signaling and transcriptional pathways. Here, we used pressure modulation of the PLA2 activity and of the membrane's physical-chemical properties to reveal new mechanistic information about the membrane association and subsequent enzymatic reaction of PLA2. Although the effect of high hydrostatic pressure (HHP) on aqueous soluble and integral membrane proteins has been investigated to some extent, its effect on enzymatic reactions operating at the water/lipid interface has not been explored, yet. This study focuses on the effect of HHP on the structure, membrane binding and enzymatic activity of membrane-associated bee venom PLA2, covering a pressure range up to 2 kbar. To this end, high-pressure Fourier-transform infrared and high-pressure stopped-flow fluorescence spectroscopies were applied. The results show that PLA2 binding to model biomembranes is not significantly affected by pressure and occurs in at least two kinetically distinct steps. Followed by fast initial membrane association, structural reorganization of α-helical segments of PLA2 takes place at the lipid water interface. FRET-based activity measurements reveal that pressure has a marked inhibitory effect on the lipid hydrolysis rate, which decreases by 75% upon compression up to 2 kbar. Lipid hydrolysis under extreme environmental conditions, such as those encountered in the deep sea where pressures up to the kbar-level are encountered, is hence markedly affected by HHP, rendering PLA2, next to being a primary osmosensor, a good candidate for a sensitive pressure sensor in vivo.

  15. Facile surface glycosylation of PVDF microporous membrane via direct surface-initiated AGET ATRP and improvement of antifouling property and biocompatibility

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Meng, Jian-qiang; Kang, Yin-lin; Du, Qi-yun; Zhang, Yu-feng

    2012-01-01

    This paper describes a facile and novel approach for the surface glycosylation of poly(vinylidene difluoride) (PVDF) microporous membrane. A glycopolymer poly(D-gluconamidoethyl methacrylate) (PGAMA) was tethered onto the membrane surface via activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) directly initiated from the PVDF surface. Chemical changes of membrane surface were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It was revealed that PGAMA was successfully grafted onto the membrane surface and its grafting density can be modulated in a wide range up to 2.4 μmol/cm2. The effects of glycosylation on membrane morphology, flux and surface hydrophilicity were investigated. Field emission scanning electron microscopy (FESEM) results indicated shrinkage of the surface pore diameters and the growth of the glycopolymer layer on the membrane surface. The static water contact angle (WCA) of the membrane surface decreased from 110° to 30.4° with the increase of grafting density, indicating that the PGAMA grafts dramatically improved the surface hydrophilicity. The protein adsorption and platelets adhesion experiments indicated that the grafted PGAMA could effectively improve the membrane antifouling property and biocompatibility.

  16. Electrospun nanofiber membranes for electrically activated shape memory nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Leng, Jinsong

    2014-06-01

    A novel shape memory nanocomposite system, consisting of a thermoplastic Nafion polymer and ultrathin electrospun polyacrylonitrile (PAN)-based carbonization nanofiber membranes, is successfully synthesized. PAN-based carbonization nanofiber networks that offer responses to deformations are considered to be an excellent actuation source. Significant improvement in the electrical conductivity of carbon nanofiber membranes is found by adjusting the applied voltage power in the electrospinning PAN process varying from 7.85 to 12.30 S cm-1. The porous structure of the carbon nanofiber membranes provides a large specific surface area and interfacial contact area when combined with the polymer matrix. Shape memory Nafion nanocomposites filled with interpenetrating non-woven electrospun PAN carbonization membranes can be actuated by applying 14 V electrical voltage within 5 s. The results, as demonstrated through morphology, electrical and thermal measurements and a shape recovery test, suggest a valuable route to producing soft nanocomposites.

  17. Properties of fiber cell plasma membranes isolated from the cortex and nucleus of the porcine eye lens.

    PubMed

    Mainali, Laxman; Raguz, Marija; O'Brien, William J; Subczynski, Witold K

    2012-04-01

    The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eye lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes, because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes-namely, the domain formed by boundary lipids and the domain formed by trapped lipids-were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region.

  18. Preparation of TiO2 Nanotubes Loaded on Polyurethane Membrane and Research on Their Photocatalytic Properties.

    PubMed

    Lin, Longli; Wu, Qijun; Gong, Xun; Zhang, Yu

    2017-01-01

    To solve the problem of separation and recovery of photocatalyst in water, the modification of TiO2 was studied as well as its immobilization and photocatalytic properties. To improve surface properties, TiO2 nanotubes were synthesized by a hydrothermal method and silylated by silane coupling agents to introduce a certain functional group. Supported on polyurethane (PU) membrane, TiO2 nanotubes were prepared to produce immobilized PU/TiO2. Catalysts were characterized and identified by means of Fourier-transform infrared spectroscopy (FTIR), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), and scanning electron microscopy (SEM). Results showed that silylated TiO2 nanotubes were well grafted on the surface of the activated PU membrane. With a 300 W high pressure mercury lamp as light source, the photocatalytic activity and stability of immobilized PU/TiO2 were investigated with degrading methyl orange. It was showed that the target is degraded by immobilized PU/TiO2 with high activation and the catalytic performance is stable for a long time if catalyst is washed with ethanol.

  19. Preparation of TiO2 Nanotubes Loaded on Polyurethane Membrane and Research on Their Photocatalytic Properties

    PubMed Central

    Wu, Qijun; Zhang, Yu

    2017-01-01

    To solve the problem of separation and recovery of photocatalyst in water, the modification of TiO2 was studied as well as its immobilization and photocatalytic properties. To improve surface properties, TiO2 nanotubes were synthesized by a hydrothermal method and silylated by silane coupling agents to introduce a certain functional group. Supported on polyurethane (PU) membrane, TiO2 nanotubes were prepared to produce immobilized PU/TiO2. Catalysts were characterized and identified by means of Fourier-transform infrared spectroscopy (FTIR), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), and scanning electron microscopy (SEM). Results showed that silylated TiO2 nanotubes were well grafted on the surface of the activated PU membrane. With a 300 W high pressure mercury lamp as light source, the photocatalytic activity and stability of immobilized PU/TiO2 were investigated with degrading methyl orange. It was showed that the target is degraded by immobilized PU/TiO2 with high activation and the catalytic performance is stable for a long time if catalyst is washed with ethanol. PMID:28194295

  20. Honey: its medicinal property and antibacterial activity

    PubMed Central

    Mandal, Manisha Deb; Mandal, Shyamapada

    2011-01-01

    Indeed, medicinal importance of honey has been documented in the world's oldest medical literatures, and since the ancient times, it has been known to possess antimicrobial property as well as wound-healing activity. The healing property of honey is due to the fact that it offers antibacterial activity, maintains a moist wound condition, and its high viscosity helps to provide a protective barrier to prevent infection. Its immunomodulatory property is relevant to wound repair too. The antimicrobial activity in most honeys is due to the enzymatic production of hydrogen peroxide. However, another kind of honey, called non-peroxide honey (viz., manuka honey), displays significant antibacterial effects even when the hydrogen peroxide activity is blocked. Its mechanism may be related to the low pH level of honey and its high sugar content (high osmolarity) that is enough to hinder the growth of microbes. The medical grade honeys have potent in vitro bactericidal activity against antibiotic-resistant bacteria causing several life-threatening infections to humans. But, there is a large variation in the antimicrobial activity of some natural honeys, which is due to spatial and temporal variation in sources of nectar. Thus, identification and characterization of the active principle(s) may provide valuable information on the quality and possible therapeutic potential of honeys (against several health disorders of humans), and hence we discussed the medicinal property of honeys with emphasis on their antibacterial activities. PMID:23569748

  1. Honey: its medicinal property and antibacterial activity.

    PubMed

    Mandal, Manisha Deb; Mandal, Shyamapada

    2011-04-01

    Indeed, medicinal importance of honey has been documented in the world's oldest medical literatures, and since the ancient times, it has been known to possess antimicrobial property as well as wound-healing activity. The healing property of honey is due to the fact that it offers antibacterial activity, maintains a moist wound condition, and its high viscosity helps to provide a protective barrier to prevent infection. Its immunomodulatory property is relevant to wound repair too. The antimicrobial activity in most honeys is due to the enzymatic production of hydrogen peroxide. However, another kind of honey, called non-peroxide honey (viz., manuka honey), displays significant antibacterial effects even when the hydrogen peroxide activity is blocked. Its mechanism may be related to the low pH level of honey and its high sugar content (high osmolarity) that is enough to hinder the growth of microbes. The medical grade honeys have potent in vitro bactericidal activity against antibiotic-resistant bacteria causing several life-threatening infections to humans. But, there is a large variation in the antimicrobial activity of some natural honeys, which is due to spatial and temporal variation in sources of nectar. Thus, identification and characterization of the active principle(s) may provide valuable information on the quality and possible therapeutic potential of honeys (against several health disorders of humans), and hence we discussed the medicinal property of honeys with emphasis on their antibacterial activities.

  2. Mechanical Properties of Membrane Surface of Cultured Astrocyte Revealed by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Shiga, Hatsuki; Yamane, Yukako; Ito, Etsuro; Abe, Kazuhiro; Kawabata, Kazushige; Haga, Hisashi

    2000-06-01

    In order to examine the mechanical properties of the membrane surface of astrocytes, we observed living astrocytes by atomic force microscopy (AFM) both in contact mode and force-mapping mode. Ridge-like structures reflecting actin filaments were observed in the topographic images in contact mode, but not in force-mapping mode, using a zero-loading force. When we measured the elasticity of astrocytes, we observed that the cell membrane above the nucleus was soft and the cell membrane above the cytosol was stiff. In particular, the parts reflecting actin filaments were very stiff. This effect of actin filaments on the elasticity of astrocytes was confirmed by the loss of actin filaments after application of actin-polymerization inhibitor.

  3. Structure and properties of the outer membranes of Brucella abortus and Brucella melitensis.

    PubMed

    Moriyón, I; López-Goñi, I

    1998-03-01

    The brucellae are Gram-negative bacteria characteristically able to multiply facultatively within phagocytic cells and which cause a zoonosis of world-wide importance. This article reviews the structure and topology of the main components (lipopolysaccharide, native hapten polysaccharide, free lipids and proteins) of the outer membranes of Brucella abortus and B. melitensis, as well as some distinctive properties (permeability and interactions with cationic peptides) of these membranes. On these data, an outer membrane model is proposed in which, as compared to other Gram-negatives, there is a stronger hydrophobic anchorage for the lipopolysaccharide, free lipids, porin proteins and lipoproteins, and a reduced surface density of anionic groups, which could be partially or totally neutralized by ornithine lipids. This model accounts for the permeability of Brucella to hydrophobic permeants and for its resistance to the bactericidal oxygen-independent systems of phagocytes.

  4. Biophysical study of resin acid effects on phospholipid membrane structure and properties.

    PubMed

    Jagalski, Vivien; Barker, Robert; Topgaard, Daniel; Günther-Pomorski, Thomas; Hamberger, Björn; Cárdenas, Marité

    2016-11-01

    Hydrophobic resin acids (RAs) are synthesized by conifer trees as part of their defense mechanisms. One of the functions of RAs in plant defense is suggested to be the perturbation of the cellular membrane. However, there is a vast diversity of chemical structures within this class of molecules, and there are no clear correlations to the molecular mechanisms behind the RA's toxicity. In this study we unravel the molecular interactions of the three closely related RAs dehydroabietic acid, neoabietic acid, and the synthetic analogue dichlorodehydroabietic acid with dipalmitoylphosphatidylcholine (DPPC) model membranes and the polar lipid extract of soybeans. The complementarity of the biophysical techniques used (NMR, DLS, NR, DSC, Cryo-TEM) allowed correlating changes at the vesicle level with changes at the molecular level and the co-localization of RAs within DPPC monolayer. Effects on DPPC membranes are correlated with the physical chemical properties of the RA and their toxicity.

  5. Synthesis and characterization of polymer electrolyte membranes with controlled ion transport properties

    NASA Astrophysics Data System (ADS)

    Xu, Kui

    2011-12-01

    Ion-containing block copolymers hold promise as next-generation polymer electrolyte membrane (PEM) materials due to their capability to self-assemble into ordered nanostructures facilitating proton transport over a wide range of conditions. Ion-containing block copolymers, sulfonated poly(styrene- b-vinylidene fluoride-b-styrene), with varied degrees of sulfonation were synthesized. The synthetic strategy involved a new approach to chain-end functionalized poly(vinylidene fluoride) as a macro-initiator followed by atom transfer polymerization of styrene and sulfonation. Characterization of the polymers were extensively carried out by 1H and 19F nuclear magnetic resonance and Fouriertransform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry analysis. Tapping mode atomic force microscopy and transmission electron microscopy were applied to study the phase separation and self-assembled morphology. Strong dependence of ion exchange capacity, water absorption, morphology and proton conductivity on the degree of sulfonation has been found. It has been observed that the conductivities of the block copolymers are considerably higher than the random copolymers of polystyrene and sulfonated polystyrene possessing similar ion exchange capacities. Copolymers of vinylidene fluoride and perfluoro(4-methyl-3,6-dioxane-7-ene) sulfonyl fluoride containing amino end-groups were synthesized for the first time. The prepared aminoterminated polymers underwent cross-linking reactions with 1,3,5-benzene triisocyanate to form proton conductive networks. The chain-end crosslinked fluoropolymer membranes exhibited excellent thermal, hydrolytic and oxidative stabilities. The ion exchange capacity, water uptake, the state of absorbed water, and transport properties of the membranes were found to be highly dependent upon the chemical composition of the copolymers. The cross-linked membranes showed extremely low methanol permeability, while maintaining high proton

  6. Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors

    PubMed Central

    2016-01-01

    Graphene membranes act as highly sensitive transducers in nanoelectromechanical devices due to their ultimate thinness. Previously, the piezoresistive effect has been experimentally verified in graphene using uniaxial strain in graphene. Here, we report experimental and theoretical data on the uni- and biaxial piezoresistive properties of suspended graphene membranes applied to piezoresistive pressure sensors. A detailed model that utilizes a linearized Boltzman transport equation describes accurately the charge-carrier density and mobility in strained graphene and, hence, the gauge factor. The gauge factor is found to be practically independent of the doping concentration and crystallographic orientation of the graphene films. These investigations provide deeper insight into the piezoresistive behavior of graphene membranes. PMID:27797484

  7. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  8. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.

    PubMed

    Setzler, Brian P; Zhuang, Zhongbin; Wittkopf, Jarrid A; Yan, Yushan

    2016-12-06

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW(-1) in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  9. Quantification of Lysosomal Membrane Permeabilization by Cytosolic Cathepsin and β-N-Acetyl-Glucosaminidase Activity Measurements.

    PubMed

    Jäättelä, Marja; Nylandsted, Jesper

    2015-11-02

    Programmed cell death involving lysosomal membrane permeabilization (LMP) is an alternative cell death pathway induced under various cellular conditions and by numerous cytotoxic stimuli. The method presented here to quantify LMP takes advantage of the detergent digitonin, which creates pores in cellular membranes by replacing cholesterol. The difference in cholesterol content between the plasma membrane (high) and lysosomal membrane (low) allows titration of digitonin to a concentration that permeabilizes the plasma membrane but leaves lysosomal membranes intact. The extent of LMP is determined by measuring the cytosolic activity of lysosomal hydrolases (e.g., cysteine cathepsins) and/or β-N-acetyl-glucosaminidase in the digitonin-extracted cytoplasm and comparing it to the total cellular enzyme activity. Digitonin extraction of the cytosol can be combined with precipitation of protein and/or western blot analysis for detection of lysosomal proteins (e.g., cathepsins).

  10. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    SciTech Connect

    Gormand, F.; Pacheco, Y. ); Fonlupt, P. ); Revillard, J.P. )

    1990-01-01

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the {sup 3}Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation.

  11. Visualization of Src activity at different compartments of the plasma membrane by FRET imaging

    PubMed Central

    Seong, Jihye; Lu, Shaoying; Ouyang, Mingxing; Huang, He; Zhang, Jin; Frame, Margaret C.; Wang, Yingxiao

    2009-01-01

    Summary Membrane compartments function as segregated signaling platforms for different cellular functions. It is not clear how Src is regulated at different membrane compartments. To visualize local Src activity in live cells, a FRET-based Src biosensor was targeted in or outside of lipid rafts at the plasma membrane, via acylation or prenylation modifications on targeting tags either directly fused to the biosensor or coupled to the biosensor through an inducible heterodimerization system. In response to growth factors and pervanadate, the induction of Src activity in rafts was slower and weaker, dependent on actin and possibly its mediated transportation of Src from perinuclear regions to the plasma membrane. In contrast, the induction of Src activity in non-rafts was faster and stronger, dependent on microtubules. Hence, the Src activity is differentially regulated via cytoskeleton at different membrane compartments. PMID:19171305

  12. ALTERATIONS OF PROPERTIES OF RED BLOOD CELLS MEMBRANES PROTEINS OF DIFFERENT AGE AND SEX VOLUNTEERS.

    PubMed

    Pruidze, N; Khetsuriani, R; Sujashvili, R; Ioramashvili, I; Arabuli, M; Sanikidze, T

    2015-01-01

    Considering the age and sex-dependent trend in the manifestation of various diseases, as well as an important pathogenic role of circulatory disorders, we decided to study the age-dependent changes in the physical properties of RBCs membrane proteins (their electric charge and molecular weight) in healthy people of different sex (males and females) and age. Blood of 56 healthy volunteers (Tbilisi, Georgia) of different sex and gender was studied (the patients were divided in 8 groups (7 patients in each groups): 1 - 18-25 years old male, 2 - 18-25 years old female, 3 - 25-44 years old male, 4 - 25-44 years old female, 5 - 44-60 years old male, 6 - 44-60 years old female; 7 - 60-80 years old male, 8 - 70-80 years old female). In groups 6 and 8 were women in menopause was determined according 12 months of amenorrhea. Individuals often consume alcohol addicts, pregnant women and patients with chronic diseases were excluded from the study. The study protocol was approved by Ethical Committee of the Tbilisi State Medical University. RBCs membrane proteins have been extracted from human heparinized blood and their mobility was studied by electrophoretic method. The electrophoretic mobility of RBCs membrane proteins decreases with age of healthy volunteers, that indicates decrease of total charge of proteins, depending on the electrically charged amino acids content. In female patients the electrophoretic mobility of the RBCs membrane proteins especially intensively decreases in period of menopause. Increase of molecular weight of proteins (100-200 kDa) from RBCs' membranes of alder age group was manifested. Intensively decrease electrophoretic mobility of erythrocytes membrane proteins from female patients in period of menopause indicates on estrogen related mechanism of the regulation of membrane protein conformation and composition in females. Increased content of high molecular weight proteins in the RBCs membranes from patients of older age groups may be caused to

  13. The influence of tin compounds on the dynamic properties of liposome membranes: a study using the ESR method.

    PubMed

    Man, Dariusz; Podolak, Marian; Engel, Grzegorz

    2006-01-01

    The influence of organic and inorganic compounds of tin on the dynamic properties of liposome membranes obtained in the process of dipalmitoylphosphatidylcholine (DPPC) sonication in distilled water was investigated. This was carried out by means of the spin ESR probe method. The probes were selected in such a way as to penetrate different areas of the membrane (a TEMPO probe, 5-DOXYL stearic acid, 16-DOXYL stearic acid). Four compounds of tin were chosen: three organic ones, (CH(3))(4)Sn, (C(2)H(5))(4)Sn and (C(3)H(7))(3)SnCl, and one inorganic one, SnCl(2). The investigated compounds were added to a liposome dispersion, which was prepared prior to that. The concentration of the admixture was changed within the values from 0 to 10%-mole in proportion to DPPC. The studies indicated that the chlorides of tin display the highest activity in their interaction with liposome membranes. Since these compounds have ionic form in a water solution, the obtained result can mean that this form of admixture has a considerable influence on its activity. Furthermore, it was found that there is a slightly stronger influence of tin compounds with a longer hydrocarbon chain on changes in the probes' spectroscopic parameters.

  14. Novel Pendant Benzene Disulfonic Acid Blended SPPO Membranes for Alkali Recovery: Fabrication and Properties.

    PubMed

    Mondal, Abhishek N; Dai, Chunhua; Pan, Jiefeng; Zheng, Chunlei; Hossain, Md Masem; Khan, Muhammad Imran; Wu, Liang; Xu, Tongwen

    2015-07-29

    To reconcile the trade-off between separation performance and availability of desired material for cation exchange membranes (CEMs), we designed and successfully prepared a novel sulfonated aromatic backbone-based cation exchange precursor named sodium 4,4'-(((((3,3'-disulfo-[1,1'-biphenyl]-4,4'-diyl)bis(oxy)) bis(4,1-phenylene))bis(azanediyl))bis(methylene))bis(benzene-1,3-disulfonate) [DSBPB] from 4,4'-bis(4-aminophenoxy)-[1,1'-biphenyl]-3,3'-disulfonic acid [BAPBDS] by a three-step procedure that included sulfonation, Michael condensation followed by reduction. Prepared DSBPB was used to blend with sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) to get CEMs for alkali recovery via diffusion dialysis. Physiochemical properties and electrochemical performance of prepared membranes can be tuned by varying the dosage of DSBPB. All the thermo-mechanical properties like DMA and TGA were investigated along with water uptake (WR), ion exchange capacity (IEC), dimensional stability, etc. The effect of DSBPB was discussed in brief in connection with alkali recovery and ion conducting channels. The SPPO/DSBPB membranes possess both high water uptake as well as ion exchange capacity with high thermo-mechanical stability. At 25 °C the dialysis coefficients (UOH) appeared to be in the range of 0.0048-0.00814 m/h, whereas the separation factor (S) ranged from 12.61 to 36.88 when the membranes were tested for base recovery in Na2WO4/NaOH waste solution. Prepared membranes showed much improved DD performances compared to traditional SPPO membrane and possess the potentiality to be a promising candidate for alkali recovery via diffusion dialysis.

  15. Characterization of charge properties of an ultrafiltration membrane modified by surface grafting of poly(allylamine) hydrochloride.

    PubMed

    Dejeu, J; Lakard, B; Fievet, P; Lakard, S

    2009-05-01

    A polyethersulfone ultrafiltration membrane was functionalized by a cationic polyelectrolyte, the poly(allylamine) hydrochloride (PAH). The influence of the time of adsorption of PAH on the membrane charge properties was studied. Several characterization techniques were used to investigate the membrane modification. Tangential and transmembrane streaming potential measurements were conducted to characterize the outer and inner surfaces of the membrane, respectively. Both techniques indicated that the surface modification of the membrane was efficient. The charge of the outer surface was reversed (from negative values for the unmodified membrane to positive values for the modified membrane) and the charge of the inner surface was neutralized after adsorption of the cationic polyelectrolyte onto the pore walls. The modification of both the outer surface of the membrane and the pore walls was also put in evidence with membrane potential measurements. It was found that the charge of the PAH-modified membrane is affected by the time of immersion in PAH solution. Experimental data seem to show a fast modification of the membrane for the first 15 min; nevertheless, the modification was more pronounced after 24 h of PAH adsorption. Diffusion experiments carried out with unmodified and modified membranes for four salts (KCl, NaCl, MgCl, and CaCl(2)) showed a decrease in the salt permeability after functionalization of the membrane. The permeability decrease was greater for 2:1 salts than for 1:1 salts. This decrease was explained by electrostatic interactions.

  16. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials.

  17. Correlation of Electrical and Permeability Properties of Ion-Selective Membranes

    PubMed Central

    Krämer, H.; Meares, P.

    1969-01-01

    The linear phenomenological equations giving particle and practical fluxes of a single electrolyte across an ion-selective membrane are stated and interrelated. It is shown that the experimental measurements commonly made in biological and synthetic membrane studies may be used, with minor modification, to obtain the phenomenological transport coefficients and their concentration dependences. It is demonstrated that the electrical properties of a homogeneous membrane may be obtained as functions of the bathing solution concentration by combining fluxes measured under open and short circuit. Attention is paid to the use of radiotracers when measuring ionic fluxes. To obtain all the phenomenological coefficients at least one measurement must be made under a pressure gradient. The experimental difficulties in such measurements are discussed and the merits and demerits of various experiments considered. The problems of measuring potentials and concentrations at the low pressure face of a supported membrane make several mathematically simple approaches experimentally unattractive. The best methods appear to be either the measurement of a succession of “apparent osmotic pressures” under concentration differences sufficiently small that the membrane does not require support or the study of “reverse osmosis”. Sets of equations are given which enable the phenomenological coefficients to be evaluated from convenient experiments. With a stable homogeneous membrane nine coefficients may be obtained thus enabling either the applicability of the reciprocal relations or the applicability of linear theory under the conditions of the experiments to be tested. For a discontinuous system the six independent coefficients may be obtained from experiments in a single membrane cell. PMID:5822426

  18. Silylated mesoporous silica membranes on polymeric hollow fiber supports: synthesis and permeation properties.

    PubMed

    Kim, Hyung-Ju; Brunelli, Nicholas A; Brown, Andrew J; Jang, Kwang-Suk; Kim, Wun-gwi; Rashidi, Fereshteh; Johnson, Justin R; Koros, William J; Jones, Christopher W; Nair, Sankar

    2014-10-22

    We report the synthesis and organic/water separation properties of mesoporous silica membranes, supported on low-cost and scalable polymeric (polyamide-imide) hollow fibers, and modified by trimethylsilylation with hexamethyldisilazane. Thin (∼1 μm) defect-free membranes are prepared, with high room-temperature gas permeances (e.g., 20,000 GPU for N2). The membrane morphology is characterized by multiple techniques, including SEM, TEM, XRD, and FT-ATR spectroscopy. Silylation leads to capping of the surface silanol groups in the mesopores with trimethylsilyl groups, and does not affect the integrity of the mesoporous silica structure and the underlying hollow fiber. The silylated membranes are evaluated for pervaporative separation of ethanol (EtOH), methylethyl ketone (MEK), ethyl acetate (EA), iso-butanol (i-BuOH), and n-butanol (n-BuOH) from their dilute (5 wt %) aqueous solutions. The membranes show separation factors in the range of 4-90 and high organic fluxes in the range of 0.18-2.15 kg m(-2) h(-1) at 303 K. The intrinsic selectivities (organic/water permeability ratios) of the silylated membranes at 303 K are 0.33 (EtOH/water), 0.5 (MEK/water), 0.25 (EA/water), 1.25 (i-BuOH/water), and 1.67 (n-BuOH/water) respectively, in comparison to 0.05, 0.015, 0.005, 0.08, and 0.14 for the unmodified membranes. The silylated membranes allow upgradation of water/organics feeds to permeate streams with considerably higher organics content. The selective and high-flux separation is attributed to both the organophilic nature of the modified mesopores and the large effective pore size. Comparison with other organics/water separation membranes reveals that the present membranes show promise due to high flux, use of scalable and low-cost supports, and good separation factors that can be further enhanced by tailoring the mesopore silylation chemistry.

  19. Effects of vegetable oils on biochemical and biophysical properties of membrane retinal pigment epithelium cells.

    PubMed

    Said, Toihiri; Tremblay-Mercier, Jennifer; Berrougui, Hicham; Rat, Patrice; Khalil, Abdelouahed

    2013-10-01

    The aim of this study was to investigate the effect of vegetable oil enrichment of retinal pigment epithelial (RPE) cells on their biochemical and biophysical properties. For this, RPE cells were incubated with 4 different vegetables oils (olive oil, corn oil, argan oil, and camelina oil). The cytotoxicity of these vegetable oils was assessed in vivo on 8-week-old mice and in vitro by using the neutral red and YO-PRO-1 tests. Membrane fluidity was evaluated by fluorescence anisotropy using the fluorescent probe diphenylhexatriene, and membrane fatty acid composition was assessed by gas chromatography. None of the oils tested displayed cytotoxic effects. In vitro, omega-3 rich oils improved membrane fluidity by 47% compared with the control cells. The omega-3 PUFA content within membranes decreased by 38% to 55% when cells were incubated separately with olive oil, corn oil, or argan oil, and increased when cells were incubated with a mixture of those oils, or with camelina oil alone (50% and 103% increase, respectively). Our results show that the fatty acids in vegetable oil incorporate into retinal cells and increase the plasma membrane fluidity.

  20. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer

    PubMed Central

    Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R. Dyche; Rao, Madan; Mayor, Satyajit

    2016-01-01

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  1. Synthesis and properties of dodecyl trehaloside detergents for membrane protein studies.

    PubMed

    Tao, Houchao; Fu, Yu; Thompson, Aaron; Lee, Sung Chang; Mahoney, Nicholas; Stevens, Raymond C; Zhang, Qinghai

    2012-07-31

    Sugar-based detergents, mostly derived from maltose or glucose, prevail in the extraction, solubilization, stabilization, and crystallization of membrane proteins. Inspired by the broad use of trehalose for protecting biological macromolecules and lipid bilayer structures, we synthesized new trehaloside detergents for potential applications in membrane protein research. We devised an efficient synthesis of four dodecyl trehalosides, each with the 12-carbon alkyl chain attached to different hydroxyl groups of trehalose, thus presenting a structurally diverse but related family of detergents. The detergent physical properties, including solubility, hydrophobicity, critical micelle concentration (CMC), and size of micelles, were evaluated and compared with the most popular maltoside analogue, β-D-dodecyl maltoside (DDM), which varied from each other due to distinct molecular geometries and possible polar group interactions in resulting micelles. Crystals of 2-dodecyl trehaloside (2-DDTre) were also obtained in methanol, and the crystal packing revealed multiple H-bonded interactions among adjacent trehalose groups. The few trehaloside detergents were tested for the solubilization and stabilization of the nociceptin/orphanin FQ peptide receptor (ORL1) and MsbA, which belong to the G-protein coupled receptor (GPCR) and ATP-binding cassette transporter families, respectively. Our results demonstrated the utility of trehaloside detergents as membrane protein solubilization reagents with the optimal detergents being protein dependent. Continuing development and investigations of trehaloside detergents are attractive, given their interesting and unique chemical-physical properties and potential interactions with membrane lipids.

  2. Membrane ruffles capture C3bi-opsonized particles in activated macrophages.

    PubMed

    Patel, Prerna C; Harrison, Rene E

    2008-11-01

    A widespread belief in phagocyte biology is that FcgammaR-mediated phagocytosis utilizes membrane pseudopods, whereas Mac-1-mediated phagocytosis does not involve elaborate plasma membrane extensions. Here we report that dynamic membrane ruffles in activated macrophages promote binding of C3bi-opsonized particles. We identify these ruffles as components of the macropinocytosis machinery in both PMA- and LPS-stimulated macrophages. C3bi-particle capture is facilitated by enrichment of high-affinity Mac-1 and the integrin-regulating protein talin in membrane ruffles. Membrane ruffle formation and C3bi-particle binding are cytoskeleton dependent events, having a strong requirement for F-actin and microtubules (MTs). MT disruption blunts ruffle formation and PMA- and LPS-induced up-regulation of surface Mac-1 expression. Furthermore, the MT motor, kinesin participates in ruffle formation implicating a requirement for intracellular membrane delivery to active membrane regions during Mac-1-mediated phagocytosis. We observed colocalization of Rab11-positive vesicles with CLIP-170, a MT plus-end binding protein, at sites of particle adherence using TIRF imaging. Rab11 has been implicated in recycling endosome dynamics and mutant Rab11 expression inhibits both membrane ruffle formation and C3bi-sRBC adherence to macrophages. Collectively these findings represent a novel membrane ruffle "capture" mechanism for C3bi-particle binding during Mac-1-mediated phagocytosis. Importantly, this work also demonstrates a strong functional link between integrin activation, macropinocytosis and phagocytosis in macrophages.

  3. Conditional trimerization and lytic activity of HIV-1 gp41 variants containing the membrane-associated segments.

    PubMed

    Dai, Zhou; Tao, Yisong; Liu, Nina; Brenowitz, Michael D; Girvin, Mark E; Lai, Jonathan R

    2015-03-03

    Fusion of host and viral membranes is a critical step during infection by membrane-bound viruses. The HIV-1 glycoproteins gp120 (surface subunit) and gp41 (fusion subunit) represent the prototypic system for studying this process; in the prevailing model, the gp41 ectodomain forms a trimeric six-helix bundle that constitutes a critical intermediate and provides the energetic driving force for overcoming barriers associated with membrane fusion. However, most structural studies of gp41 variants have been performed either on ectodomain constructs lacking one or more of the membrane-associated segments (the fusion peptide, FP, the membrane-proximal external region, MPER, and the transmembrane domain, TM) or on variants consisting of these isolated segments alone without the ectodomain. Several recent reports have suggested that the HIV-1 ectodomain, as well as larger construct containing the membrane-bound segments, dissociates from a trimer to a monomer in detergent micelles. Here we compare the properties of a series of gp41 variants to delineate the roles of the ectodomain, FP, and MPER and TM, all in membrane-mimicking environments. We find that these proteins are prone to formation of a monomer in detergent micelles. In one case, we observed exclusive monomer formation at pH 4 but conditional trimerization at pH 7 even at low micromolar (∼5 μM) protein concentrations. Liposome release assays demonstrate that these gp41-related proteins have the capacity to induce content leakage but that this activity is also strongly modulated by pH with much higher activity at pH 4. Circular dichroism, nuclear magnetic resonance, and binding assays with antibodies specific to the MPER provide insight into the structural and functional roles of the FP, MPER, and TM and their effect on structure within the larger context of the fusion subunit.

  4. Saturated fatty acids induce c-Src clustering within membrane subdomains leading to JNK activation

    PubMed Central

    Holzer, Ryan G.; Park, Eek-Joong; Li, Ning; Tran, Helen; Chen, Monica; Choi, Crystal; Solinas, Giovanni; Karin, Michael

    2011-01-01

    Saturated fatty acids (FA) exert adverse health effects and are more likely to cause insulin resistance and type 2 diabetes than unsaturated FA, some of which exert protective and beneficial effects. Saturated FA, but not unsaturated FA, activate Jun N terminal kinase (JNK), which has been linked to obesity and insulin resistance in mice and men. However, it is unknown how saturated and unsaturated FA are discriminated. We now demonstrate that saturated FA activate JNK and induce insulin resistance by altering the membrane distribution of c-Src, causing it to partition into intracellular membrane subdomains where it may become activated. Conversely, unsaturated FA with known beneficial effects on glucose metabolism prevent c-Src membrane partitioning and activation, which are dependent on its myristoylation, and block JNK activation. Consumption of a diabetogenic high fat diet causes the partitioning and activation of c-Src within detergent insoluble membrane subdomains of adipocytes. PMID:21962514

  5. Properties of Fiber Cell Plasma Membranes Isolated from the Cortex and Nucleus of the Porcine Eye Lens

    PubMed Central

    Mainali, Laxman; Raguz, Marija; O’Brien, William J.; Subczynski, Witold K.

    2012-01-01

    The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eyes lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes—namely, the domain formed by boundary lipids and the domain formed by trapped lipids—were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region. PMID:22326289

  6. Preparation of a novel positively charged nanofiltration composite membrane incorporated with silver nanoparticles for pharmaceuticals and personal care product rejection and antibacterial properties.

    PubMed

    Huang, Zhong-Hua; Yin, Yan-Na; Aikebaier, Gu-li-mi-la; Zhang, Yan

    2016-01-01

    A novel positively charged N-[(2-hydroxy-3-trimethylammonium)propyl] chloride chitosan (HTCC)-Ag/polyethersulfone (PES) composite nanofiltration membrane was easily prepared by coating the active layer, HTCC, onto PES as the support through epichlorohydrin as the cross-linking reagent and nano-Ag particles as the introduced inorganic components. Scanning election microscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray diffraction were employed to characterize the morphology of the resultant membranes, of which the molecular weight cut-off was about 941 Da. At 25 °C, the pure water permeability is 16.27 L/h·m(2)·MPa. Our results showed that the rejection of pharmaceuticals and personal care products (PPCPs) followed the sequence: atenolol > carbamazepine > ibuprofen, confirming that the membranes were positively charged. The antibacterial properties of the membranes were compared to elucidate the existence of Ag nanoparticles which help to improve antibacterial activity against Gram-negative Escherichia coli (DH5α, Rosetta) and Gram-positive Bacillus subtilis. The inhibition zone diameters of HTCC-Ag/PES membranes towards E. coli DH5α, E. coli Rosetta and Bacillus subtilis were 17.77, 16.18, and 15.44 mm, respectively. It was found that HTCC-Ag/PES membrane has a better antibacterial activity against E. coli than against Bacillus subtilis, especially for E. coli DH5α.

  7. Influence of activating hormones on human platelet membrane Ca/sup 2 +/-ATPase activity

    SciTech Connect

    Resink, T.J.; Dimitrov, D.; Stucki, S.; Buehler, F.R.

    1986-07-16

    Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca/sup 2 +/-ATPase activity determined. Thrombin decreased the V/sub max/ of Ca/sup 2 +/-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca/sup 2 +/-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, while the simultaneous pretreatment with TPA and Ca/sup 2 +/-ionophore decreased Ca/sup 2 +/-ATPase activity. cAMP elevating agents prostaglandin E/sub 1/ (PGE/sub 1/) and forskolin had no influence per se on Ca/sup 2 +/-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca/sup 2 +/-ATPase system.

  8. Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers

    DOEpatents

    Lonsdale, Harold K.; Wamser, Carl C.

    1988-01-01

    The preparation of a novel class of thin film membranes by interfacial polymerization is disclosed, said membanes incorporating as part of their polymeric structure the functionality of monomeric or oligomeric precursors. Specific embodiments include porphyrin and phthalocyanime derivatives that are photochemically or electrochemically active, as well as chemically asymmetric membranes.

  9. One-way membrane trafficking of SOS in receptor-triggered Ras activation

    PubMed Central

    Christensen, Sune M.; Tu, Hsiung-Lin; Jun, Jesse E.; Alvarez, Steven; Triplet, Meredith G.; Iwig, Jeffrey S.; Yadav, Kamlesh K.; Bar-Sagi, Dafna; Roose, Jeroen P.; Groves, Jay T.

    2016-01-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane-recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2:SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted membrane experiments, these Grb2-independent interactions are sufficient to retain SOS on the membrane for many minutes, during which a single SOS molecule can processively activate thousands of Ras molecules. These observations raise questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative reconstituted SOS-deficient chicken B cell signaling systems combined with single molecule measurements in supported membranes. These studies reveal an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until it is actively removed via endocytosis. PMID:27501536

  10. Effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane of S49 lymphoma cells

    SciTech Connect

    Bode, D.C.; Molinoff, P.B.

    1988-07-26

    The effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane were examined with cultured S49 lymphoma cells. The ..beta..-adrenergic receptor-coupled adenylate cyclase system was used as a probe of the functional properties of the plasma membrane. Steady-state fluorescence anisotropy of diphenylhexatriene and the lipid composition of the plasma membrane were used as probes of the physical properties of the membrane. Cells were grown under conditions such that the concentration of ethanol in the growth medium remained stable and oxidation of ethanol to acetaldehyde was not detected. Chronic exposure of S49 cells to 50 mM ethanol or growth of cells at elevated temperature resulted in a decrease in adenylate cyclase activity. There were no changes in the density of receptors or in the affinity of ..beta..-adrenergic receptors for agonists or antagonists following chronic exposure to ethanol. The fluorescence anisotropy of diphenylhexatriene was lower in plasma membranes prepared from cells that had been treated with 50 mM ethanol than in membranes prepared from control cells. However, this change was not associated with changes in the fatty acid composition or the cholesterol to phospholipid ratio of the plasma membrane. There was a small but statistically significant decrease in the amount of phosphatidylserine and an increase in the amount of phosphatidylethanolamine. These changes cannot account for the decrease in anisotropy. In contrast to the effect of ethanol, a decrease in adenylate cyclase activity following growth of S49 cells at 40/sup 0/C was not associated with a change in anisotropy.

  11. Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge.

    PubMed

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Wang, Long-Fei; Yu, Han-Qing

    2017-04-15

    Polyvinylidene fluoride (PVDF) membrane has been widely applied in water and wastewater treatment because of its high mechanical strength, thermal stability and chemical resistance. However, the hydrophobic nature of PVDF membrane makes it readily fouled, substantially reducing water flux and overall membrane rejection ability. In this work, an in-situ blending modifier, i.e., extracellular polymeric substances (EPS) from activated sludge, was used to enhance the anti-fouling ability of PVDF membrane. Results indicate that the pure water flux of the membrane and its anti-fouling performance were substantially improved by blending 8% EPS into the membrane. By introducing EPS, the membrane hydrophilicity was increased and the cross section morphology was changed when it interacted with polyvinl pyrrolidone, resulting in the formation of large cavities below the finger-like pores. In addition, the fraction of pores with a size of 100-500 nm increased, which was also beneficial to improving membrane performance. Surface thermodynamic calculations indicate the EPS-functionalized membrane had a higher cohesion free energy, implying its good pollutant rejection and anti-fouling ability. This work provides a simple, efficient and cost-effective method to improve membrane performance and also extends the applications of EPS.

  12. Enhancement of RNA Polymerase Activity by a Factor Released by Auxin from Plasma Membrane*

    PubMed Central

    Hardin, James W.; Cherry, Joe H.; Morré, D. James; Lembi, Carole A.

    1972-01-01

    Using recently developed techniques for solubilization of RNA polymerase from soybean chromatin and isolation of plasma membrane fractions from plants we can show the presence of a transcriptional factor specifically released from the membranes by auxin, 2,4-dichlorophenoxyacetic acid. The nonauxin, 3,5-dichlorophenoxyacetic acid, does not release the factor, but subsequent exposure of the membranes to auxin results in its release. Factor activity could not be demonstrated in fractions devoid of plasma membranes. The presence of a regulatory factor for RNA polymerase associated with plant plasma membrane and specifically released by auxin provides a mechanism whereby both rapid growth responses and delayed nuclear changes could be derived from a common auxin receptor site associated with plasma membrane. Images PMID:4508307

  13. Fc gamma-receptor activity of isolated human placental syncytiotrophoblast plasma membrane.

    PubMed Central

    Brown, P J; Johnson, P M

    1981-01-01

    Fc gamma-receptor activity of isolated human placental syncytiotrophoblast microvillous plasma membrane (StMPM) vesicle preparations has been determined in an immunoradiometric assay using Sepharose-immobilized protein A to separate free 125I-labelled human IgG from membrane-bound 125I-IgG. This receptor assay has been optimalized in terms of buffer pH and molarity, and used to demonstrate that prior 60 min washing of isolated membranes in 3 M KCl to remove extrinsic membrane-bound protein substantially increases the membrane-binding capacity for IgG. Inhibition studies have determined the syncytiotrophoblast Fc gamma-receptor equilibrium constant for association (Ka) as 4.0 x 10(7) M-1 at 37 degrees and the number of available Fc gamma-receptor sites as 1.5 x 10(14) per mg membrane protein. PMID:7461733

  14. Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization.

    PubMed

    Wang, Tong; Liu, Yang; Xu, Xiao-Hui; Deng, Cai-Yun; Wu, Kong-Yan; Zhu, Ji; Fu, Xiu-Qing; He, Miao; Luo, Zhen-Ge

    2011-09-13

    Directed membrane trafficking is believed to be crucial for axon development during neuronal morphogenesis. However, the underlying mechanisms are poorly understood. Here, we report a role of Lgl1, the mammalian homolog of Drosophila tumor suppressor Lethal giant larvae, in controlling membrane trafficking underlying axonal growth. We find that Lgl1 is associated with plasmalemmal precursor vesicles and enriched in developing axons. Lgl1 upregulation promoted axonal growth, whereas downregulation attenuated it as well as directional membrane insertion. Interestingly, Lgl1 interacted with and activated Rab10, a small GTPase that mediates membrane protein trafficking, by releasing GDP dissociation inhibitor (GDI) from Rab10. Furthermore, Rab10 lies downstream of Lgl1 in axon development and directional membrane insertion. Finally, both Lgl1 and Rab10 are required for neocortical neuronal polarization in vivo. Thus, the Lgl1 regulation of Rab10 stimulates the trafficking of membrane precursor vesicles, whose fusion with the plasmalemma is crucial for axonal growth.

  15. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    PubMed

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.

  16. Membrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca2+ channels.

    PubMed

    Suh, Byung-Chang; Kim, Dong-Il; Falkenburger, Björn H; Hille, Bertil

    2012-02-21

    The β-subunits of voltage-gated Ca(2+) (Ca(V)) channels regulate the functional expression and several biophysical properties of high-voltage-activated Ca(V) channels. We find that Ca(V) β-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). When Ca(V)1.3, -2.1, or -2.2 channels are cotransfected with the β3-subunit, a cytosolic protein, they can be inhibited by activating a voltage-sensitive lipid phosphatase to deplete PIP(2). When these channels are coexpressed with a β2a-subunit, a palmitoylated peripheral membrane protein, the inhibition is much smaller. PIP(2) sensitivity could be increased by disabling the two palmitoylation sites in the β2a-subunit. To further test effects of membrane targeting of Ca(V) β-subunits on PIP(2) regulation, the N terminus of Lyn was ligated onto the cytosolic β3-subunit to confer lipidation. This chimera, like the Ca(V) β2a-subunit, displayed plasma membrane localization, slowed the inactivation of Ca(V)2.2 channels, and increased the current density. In addition, the Lyn-β3 subunit significantly decreased Ca(V) channel inhibition by PIP(2) depletion. Evidently lipidation and membrane anchoring of Ca(V) β-subunits compete with the PIP(2) regulation of high-voltage-activated Ca(V) channels. Compared with expression with Ca(V) β3-subunits alone, inhibition of Ca(V)2.2 channels by PIP(2) depletion could be significantly attenuated when β2a was coexpressed with β3. Our data suggest that the Ca(V) currents in neurons would be regulated by membrane PIP(2) to a degree that depends on their endogenous β-subunit combinations.

  17. Effects of porogen and cross-linking agents on improved properties of silica-supported macroporous chitosan membranes for enzyme immobilization.

    PubMed

    Yang, Wen-Yi; Thirumavalavan, Munusamy; Lee, Jiunn-Fwu

    2015-04-01

    A series of silica-supported macroporous chitosan membranes (CM15, CM20, and CM25) was prepared by varying the ratio of 70-230-μm-sized silica particles. These synthesized membranes were further cross-linked using different cross-linking agents for covalent immobilization of biological macromolecules especially enzymes and in this study, Bovine serum albumin and laccase. Effects of silica particle and cross-linking agents on their flow rates, surface properties, and chemical and biological properties were explored. Pore size of as-synthesized membranes was 0.1192, 0.1268, and 0.1623 μm, respectively, for CM15, CM20, and CM25. The effect of various parameters such as temperature and pH on the relative activity of both free and immobilized enzymes was studied in details. The relative enzyme activity upon immobilization was greatly enhanced several folds of its original activity. The stability of enzymes over a range of temperature and pH was significantly improved by immobilization. The optimum temperature and pH were determined to be 50 °C and pH 3, respectively, for both the free and the immobilized enzymes. The immobilized enzyme possessed good operational stability and reusability properties that support its potentiality for practical applications. Among three membranes, CM25 is confirmed to be efficient candidate due to its improved characteristics.

  18. Effect of membrane perturbants on the activity and phase distribution of inositol phosphorylceramide synthase; development of a novel assay.

    PubMed

    Aeed, Paul A; Sperry, Andrea E; Young, Casey L; Nagiec, Marek M; Elhammer, Ake P

    2004-07-06

    concentration where approximately 50% of the protein and 80% of the phospholipids are solubilized, there was no detectable loss of enzyme activity, and it was found that the detergent-treated membranes had significantly improved properties compared to crude, untreated membranes as the source of IPC synthase activity. In contrast to assays utilizing intact membranes or Triton X-100 extracts, assays using CHAPS- or tDOC-washed membranes were found to be reproducible, completely dependent on added acceptor substrate (C(6)-7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-ceramide), and >95% dependent on added donor substrate (PI). Product formation was linear with respect to both enzyme concentration and time, and transfer efficiency was improved more than 20-fold as compared to assays using crude membranes. Determination of kinetic parameters for the two IPC synthase substrates using CHAPS-washed membranes resulted in K(m) values of 3.3 and 138.0 microM for C(6)-NBD-ceramide and PI, respectively. In addition, the donor substrate, PI, was found to be inhibitory at high concentrations with an apparent K(i) of 588.2 microM.

  19. Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties.

    PubMed

    Mistry, Mayur K; Subianto, Surya; Choudhury, Namita Roy; Dutta, Naba K

    2009-08-18

    Novel supported liquid membranes (SLMs) have been developed by impregnating Nafion and Hyflon membranes with ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-BTSI). These supported liquid membranes were characterized in terms of their ionic liquid uptake behavior, leaching of ionic liquid by water, thermal stability, mechanical properties, glass transition temperature, ion exchange capacity, and proton conductivity. In general, modified membranes are more flexible than unmodified samples due to the plasticization effects of the ionic liquid. However, these supported liquid membranes exhibit a significant increase in their operational stability and proton conductivity over unmodified membranes. We also demonstrate that proton conductivity of these supported liquid membranes allows conduction of protons in anhydrous conditions with conductivity increasing with temperature. Conductivity of up to 3.58 mS cm(-1) has been achieved at 160 degrees C in dry conditions, making these materials promising for various electrochemical applications.

  20. Influence of coagulation concentration on properties of regenerated kenaf core membranes produced in NaOH/urea aqueous solution

    NASA Astrophysics Data System (ADS)

    Azahari, Nor Aziawati; Jaafar, Sharifah Nabihah Syed; Zakaria, Sarani

    2016-11-01

    Cellulose was extracted from kenaf core pulp by a series of bleaching processes and subsequently dissolved using an alkaline NaOH/urea solvent at low temperature. The produced cellulose solution was coagulated with H2SO4 at concentration from 5 to 12 wt% to produce a series of regenerated cellulose (RC) membranes. The surface morphology, structure and physical properties of the membranes were measured with variable pressure scanning electron microscope (VPSEM), X-ray diffraction (XRD), UV-vis spectrophotometer and tensile testing. The results from VPSEM revealed that the pore size of the membranes changed as a function of the concentration of H2SO4 coagulant. RC membranes coagulated with relatively dilute H2SO4 solution exhibited better mechanical properties. Thus, this work provided a promising way to prepare cellulose membranes with different pore sizes and good physical properties.

  1. Photodynamic activity of substituted zinc trisulfophthalocyanines: role of plasma membrane damage.

    PubMed

    Cauchon, Nicole; Nader, Moni; Bkaily, Ghassan; van Lier, Johan E; Hunting, Darel

    2006-01-01

    We recently reported that variations in cellular phototoxicity among a series of alkynyl-substituted zinc trisulfophthalocyanines (ZnPcS3Cn) correlates with their hydrophobicity, with the most amphiphilic derivatives showing the highest cell uptake and phototoxicity. In this study we address the role of the plasma membrane in the photodynamic response as it relates to the overall hydrophobicity of the photosensitizer. The membrane tracker dye 1-[4(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), which is incorporated into plasma membranes by endocytosis, was used to establish plasma membrane uptake by EMT-6 cells of the ZnPcS3C, by colocalization, and TMA-DPH membrane uptake rates after photodynamic therapy were used to quantify membrane damage. TMA-DPH colocalization patterns show plasma membrane uptake of the photosensitizers after short 1 h incubation periods. TMA-DPH plasma membrane uptake rates after illumination of the photosensitizer-treated cells show a parabolic relationship with photosensitizer hydrophobicity that correlates well with the phototoxicity of the ZnPcS3C,. After a 1 h incubation period, overall phototoxicity correlates closely with the postillumination rate of TMA-DPH incorporation into the cell membrane, suggesting a major role of plasma membrane damage in the overall PDT effect. In contrast, after a 24 h incubation, phototoxicity shows a stronger but imperfect correlation with total cellular photosensitizer uptake rather than TMA-DPH membrane uptake, suggesting a partial shift in the cellular damage responsible for photosensitization from the plasma membrane to intracellular targets. We conclude that plasma membrane localization of the amphiphilic ZnPcS3C6-C9 is a major factor in their overall photodynamic activity.

  2. The influence of plasma membrane electrostatic properties on the stability of cell ionic composition.

    PubMed Central

    Genet, S; Costalat, R; Burger, J

    2001-01-01

    An electro-osmotic model is developed to examine the influence of plasma membrane superficial charges on the regulation of cell ionic composition. Assuming membrane osmotic equilibrium, the ion distribution predicted by Gouy-Chapman-Grahame (GCG) theory is introduced into ion transport equations, which include a kinetic model of the Na/K-ATPase based on the stimulation of this ion pump by internal Na(+) ions. The algebro-differential equation system describing dynamics of the cell model has a unique resting state, stable with respect to finite-sized perturbations of various types. Negative charges on the membrane are found to greatly enhance relaxation toward steady state following these perturbations. We show that this heightened stability stems from electrostatic interactions at the inner membrane side that shift resting state coordinates along the sigmoidal activation curve of the sodium pump, thereby increasing the pump sensitivity to internal Na(+) fluctuations. The accuracy of electrostatic potential description with GCG theory is proved using an alternate formalism, based on irreversible thermodynamics, which shows that pressure contribution to ion potential energy is negligible in electrostatic double layers formed at the surfaces of biological membranes. We discuss implications of the results regarding a reliable operation of ionic process coupled to the transmembrane electrochemical gradient of Na(+) ions. PMID:11606261

  3. Designing a biocidal reverse osmosis membrane coating: Synthesis and biofouling properties

    SciTech Connect

    Hibbs, Michael R.; McGrath, Lucas K.; Kang, Seoktae; Adout, Atar; Altman, Susan J.; Elimelech, Menachem; Cornelius, Chris J.

    2015-12-04

    In this study, a biocidal coating was developed in order to reduce biofouling on a reverse osmosis (RO) membrane using a quaternary ammonium (QA) functionalized polymer. The synthesis of a series of polysulfone (PS) ionomers with QA groups is described, and a method for spraying these QA ionomers as an alcoholic solution, which dried into water insoluble coatings. Contact angle and streaming potential were used to analyze the coating's hydrophilicity and surface charge. Both PS-QA1 and the commercial RO membrane had an apparent contact angle of 68° that increased to 126° for PS-QA12 corresponding to alkyl chain length. A negatively charged particle-probe was used to measure coated and uncoated RO membrane interaction forces. Measured interaction forces correlated strongly with the length of alkyl chains or hydrophobicity of the coated surfaces. Uncoated RO membranes and ones coated with PS-QA were exposed to suspensions of Escherichia coli cells. All four PS-QA coatings showed significant biotoxicity and killed 100% of the E. coli cells, but uncoated RO membranes had metabolically active biofilms. However, coatings tested in a RO crossflow system showed a flux reduction that is attributed to mass transfer resistance due to excessively thick films.

  4. Designing a biocidal reverse osmosis membrane coating: Synthesis and biofouling properties

    DOE PAGES

    Hibbs, Michael R.; McGrath, Lucas K.; Kang, Seoktae; ...

    2015-12-04

    In this study, a biocidal coating was developed in order to reduce biofouling on a reverse osmosis (RO) membrane using a quaternary ammonium (QA) functionalized polymer. The synthesis of a series of polysulfone (PS) ionomers with QA groups is described, and a method for spraying these QA ionomers as an alcoholic solution, which dried into water insoluble coatings. Contact angle and streaming potential were used to analyze the coating's hydrophilicity and surface charge. Both PS-QA1 and the commercial RO membrane had an apparent contact angle of 68° that increased to 126° for PS-QA12 corresponding to alkyl chain length. A negativelymore » charged particle-probe was used to measure coated and uncoated RO membrane interaction forces. Measured interaction forces correlated strongly with the length of alkyl chains or hydrophobicity of the coated surfaces. Uncoated RO membranes and ones coated with PS-QA were exposed to suspensions of Escherichia coli cells. All four PS-QA coatings showed significant biotoxicity and killed 100% of the E. coli cells, but uncoated RO membranes had metabolically active biofilms. However, coatings tested in a RO crossflow system showed a flux reduction that is attributed to mass transfer resistance due to excessively thick films.« less

  5. Influence of membrane surface properties on the behavior of initial bacterial adhesion and biofilm development onto nanofiltration membranes.

    PubMed

    Myint, Aye Aye; Lee, Wonil; Mun, Sungmin; Ahn, Chang Hoon; Lee, Seockheon; Yoon, Jeyong

    2010-01-01

    In order to investigate biofouling problems, the fundamental behaviors of initial bacterial adhesion and biofilm development on four different nanofiltration (NF) membranes were evaluated using Pseudomonas aeruginosa PAO1 as a model bacterial strain. Initial cell adhesion was considerably higher on an aromatic polyamide-based NF membrane with a hydrophobic and rough surface, whereas cell aggregation on a polypiperazine-based NF membrane with a relatively hydrophilic and smooth surface was lower. Moreover, significant differences in the structural heterogeneity of the biofilms were observed among the four NF membranes. This study shows that the surface roughness and hydrophobicity of a membrane play an important role in determining initial cell adhesion, aggregation and favorable localization sites for colony formation. In addition, it was found that biofilm development was strongly influenced by the surface morphology of a membrane.

  6. Simian virus 40 late proteins possess lytic properties that render them capable of permeabilizing cellular membranes.

    PubMed

    Daniels, Robert; Rusan, Nasser M; Wilbuer, Anne-Kathrin; Norkin, Leonard C; Wadsworth, Patricia; Hebert, Daniel N

    2006-07-01

    Many nonenveloped viruses have evolved an infectious cycle that culminates in the lysis or permeabilization of the host to enable viral release. How these viruses initiate the lytic event is largely unknown. Here, we demonstrated that the simian virus 40 progeny accumulated at the nuclear envelope prior to the permeabilization of the nuclear, endoplasmic reticulum, and plasma membranes at a time which corresponded with the release of the progeny. The permeabilization of these cellular membranes temporally correlated with late protein expression and was not observed upon the inhibition of their synthesis. To address whether one or more of the late proteins possessed an inherent capacity to induce membrane permeabilization, we examined the permeability of Escherichia coli that separately expressed the late proteins. VP2 and VP3, but not VP1, caused the permeabilization of bacterial membranes. Additionally, VP3 expression resulted in bacterial cell lysis. These findings demonstrate that VP3 possesses an inherent lytic property that is independent of eukaryotic signaling or cell death pathways.

  7. Ultem®/ZIF-8 mixed matrix membranes for gas separation: Transport and physical properties

    DOE PAGES

    Eiras, Daniel; Labreche, Ying; Pessan, Luiz Antonio

    2016-02-19

    Mixed matrix membranes are promising options for improving gas separation processes. Zeolitic imidazolate frameworks (ZIFs) have a porous structure similar to conventional zeolites, being capable in principle of separating gases based on their differences in kinetic diameter while offering the advantage of having a partial organic character. This partial organic nature improves the compatibility between the sieve and the polymer, and a combination of the mentioned characteristics makes these hybrid materials interesting for the preparation of mixed matrix gas separation membranes. In this context the present work reports the preparation of Ultem®/ZIF-8 mixed matrix membranes and their permeabilities to puremore » CO2, N2 and CH4 gases. A significant increase in permeability with increase in CO2/N2 selectivity was observed for the mixed matrix systems as compared to the properties of the neat Ultem®. Sorption results allowed to speculate that the ZIF-8 framework is not completely stable dimensionally, what influences the separation process by allowing gases with higher kinetic diameter than its nominal aperture to be sorbed and to diffuse through the crystal. Lastly, sorption and diffusion selectivities indicate that the higher separation performance of the mixed matrix membranes is governed by the diffusion process associated with the influence of gas molecule´s geometry.« less

  8. Development and plasticity of mitochondria and electrical properties of the cell membrane in blowfly photoreceptors.

    PubMed

    Rudolf, Jerneja; Meglič, Andrej; Zupančič, Gregor; Belušič, Gregor

    2014-07-01

    Blowfly photoreceptors are highly energy demanding sensory systems. Their information processing efficiency is enabled by the high temporal resolution of the cell membrane, requiring heavy metabolic support by the mitochondria. We studied the developmental changes of the mitochondrial apparatus and electrical properties of the photoreceptor membrane in the white eyed Calliphora vicina Chalky. Using in vivo microspectrophotometry and Western blot analysis, we found an age-dependent increase in the concentration of mitochondrial pigments. The maximal change occurred during the first week. The age-related changes were smaller in dark-bred than in light-bred flies. The mitochondrial pigment content increased after the switch from dark to light rearing and decreased after the switch from light to dark rearing. The electrical parameters of the photoreceptors were investigated with intracellular recordings. The resting membrane resistance and time constant decreased significantly after eclosion. The decrease was again most significant during the first week of adult life, paralleled with changes in the Na/K pump-dependent hyperpolarizing afterpotential. We conclude that the photoreceptor mitochondria exhibit remarkable ontogenetic and phenotypic plasticity, because the quantity of mitochondrial pigments tightly follows the development of the cell membrane as well as the energy demands of the photoreceptors under different rearing conditions.

  9. Modification of trout sperm membranes associated with activation and cryopreservation. Implications for fertilizing potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract We investigated the effects of two trout sperm activation solutions on sperm physiology and membrane organization prior to and following cryopreservation using flow cytometry and investigated their impact on in vitro fertility. Cryopreservation caused greater phospholipid disorder (high pl...

  10. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes.

    PubMed

    Lu, Xinglin; Arias Chavez, Laura H; Romero-Vargas Castrillón, Santiago; Ma, Jun; Elimelech, Menachem

    2015-02-03

    In this study, we investigate the influence of surface structure on the fouling propensity of thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, we compare membranes fabricated through identical procedures except for the use of different solvents (dimethylformamide, DMF and N-methyl-2-pyrrolidinone, NMP) during phase separation. FO fouling experiments were carried out with a feed solution containing a model organic foulant. The TFC membranes fabricated using NMP (NMP-TFC) had significantly less flux decline (7.47 ± 0.15%) when compared to the membranes fabricated using DMF (DMF-TFC, 12.70 ± 2.62% flux decline). Water flux was also more easily recovered through physical cleaning for the NMP-TFC membrane. To determine the fundamental cause of these differences in fouling propensity, the active and support layers of the membranes were extensively characterized for physical and chemical characteristics relevant to fouling behavior. Polyamide surface roughness was found to dominate all other investigated factors in determining the fouling propensities of our membranes relative to each other. The high roughness polyamide surface of the DMF-TFC membrane was also rich in larger leaf-like structures, whereas the lower roughness NMP-TFC membrane polyamide layer contained more nodular and smaller features. The support layers of the two membrane types were also characterized for their morphological properties, and the relation between support layer surface structure and polyamide active layer formation was discussed. Taken together, our findings indicate that support layer structure has a significant impact on the fouling propensity of the active layer, and this impact should be considered in the design of support layer structures for TFC membranes.

  11. The caspase-3 cleavage product of the plasma membrane Ca2+-ATPase 4b is activated and appropriately targeted.

    PubMed

    Pászty, Katalin; Antalffy, Géza; Penheiter, Alan R; Homolya, László; Padányi, Rita; Iliás, Attila; Filoteo, Adelaida G; Penniston, John T; Enyedi, Agnes

    2005-11-01

    The calmodulin-activated transporter hPMCA4 (human plasma membrane Ca2+-ATPase isoform 4) is a target for cleavage by caspase-3 during apoptosis. We have demonstrated that caspase-3 generates a 120 kDa fragment of this pump which lacks the complete autoinhibitory sequence [Paszty, Verma, Padanyi, Filoteo, Penniston and Enyedi (2002) J. Biol. Chem. 277, 6822-6829]. In the present study we analysed further the characteristics of the fragment of hPMCA4b produced by caspase-3. We did this by overexpressing the caspase-3 cleavage product of hPMCA4b in COS-7 and MDCKII (Madin-Darby canine kidney II) cells. This technique made it possible to clearly define the properties of this fragment, and we showed that it is constitutively active, as it forms a phosphoenzyme intermediate and has high Ca2+ transport activity in the absence of calmodulin. When this fragment of hPMCA4b was stably expressed in MDCKII cell clones, it was targeted without degradation to the basolateral plasma membrane. In summary, our studies emphasize that the caspase-3 cleavage product of hPMCA4b is constitutively active, and that the C-terminus is not required for proper targeting of hPMCA4b to the plasma membrane. Also, for the first time, we have generated cell clones that stably express a constitutively active PMCA.

  12. The Effects of Altered Membrane Cholesterol Levels on Sodium Pump Activity in Subclinical Hypothyroidism

    PubMed Central

    2017-01-01

    Background Metabolic dysfunctions characteristic of overt hypothyroidism (OH) start at the early stage of subclinical hypothyroidism (SCH). Na+/K+-ATPase (the sodium pump) is a transmembrane enzyme that plays a vital role in cellular activities in combination with membrane lipids. We evaluated the effects of early changes in thyroid hormone and membrane cholesterol on sodium pump activity in SCH and OH patients. Methods In 32 SCH patients, 35 OH patients, and 34 euthyroid patients, sodium pump activity and cholesterol levels in red blood cell membranes were measured. Serum thyroxine (T4) and thyroid stimulating hormone (TSH) levels were measured using enzyme-linked immunosorbent assays. Differences in their mean values were analysed using post hoc analysis of variance. We assessed the dependence of the sodium pump on other metabolites by multiple regression analysis. Results Sodium pump activity and membrane cholesterol were lower in both hypothyroid groups than in control group, OH group exhibiting lower values than SCH group. In SCH group, sodium pump activity showed a significant direct dependence on membrane cholesterol with an inverse relationship with serum TSH levels. In OH group, sodium pump activity depended directly on membrane cholesterol and serum T4 levels. No dependence on serum cholesterol was observed in either case. Conclusion Despite the presence of elevated serum cholesterol in hypothyroidism, membrane cholesterol contributed significantly to maintain sodium pump activity in the cells. A critical reduction in membrane cholesterol levels heralds compromised enzyme activity, even in the early stage of hypothyroidism, and this can be predicted by elevated TSH levels alone, without any evident clinical manifestations. PMID:28256112

  13. Probing the effect of elevated cholesterol on the mechanical properties of membrane-cytoskeleton by optical tweezers

    NASA Astrophysics Data System (ADS)

    Rajkumar, Arun S.; Muley, Ajit; Chatterjee, Suvro; Jaffar Ali, B. M.

    2010-08-01

    The composition of the cell membrane and the surrounding physiological factors determine the nature and dynamics of membrane-cytoskeleton coupling. Mechanical strength of a cell is mainly derived from such coupling. In this article, we investigate the effect of extra cellular cholesterol on the membrane-cytoskelaton connectivity of single cell endothelium and consequent remodeling of its mechanical properties. Using optical tweezers as a force probe, we have measured membrane stiffness (km), membrane microviscosity (ηeff ) and the two-dimensional shear modulus (G'(f)) as a function of extracellular cholesterol in the range of 0.1mM to 6mM. We find that membrane stiffness and shear modulus are dependent on cholesterol-induced membrane-cytoskeletal organization. Further, by disrupting the membranecytoskeletal connectivity with Cytochalasin D, an actin delpolymerizing molecule, we recover pure membrane behaviour devoid of any cytoskeleton attachment. However, behaviour of ηeff was found to be unaffected by disruption of membrane-cytoskeleton organization. We infer that cholesterol is playing a distinct role in modulating membrane organization and membrane-cytoskeleton connectivity independently. We further discuss implications of our approach in characterizing cellular mechanics.

  14. [Related research on mechanical property of valve membrane in transcatheter bioprosthesis valve based on the chemical modification and cutting technology].

    PubMed

    Chen, Dakai; Li, Yu; Luo, Qiyi; Liu, Baolin; Chen, Kangmin

    2014-08-01

    The aim of this research is to investigate the preparation method of valve membrane in transcatheter bio- prosthetic valve, and to study the effect of chemical modification and cutting technology to tensile property and suture force property of valve membrane. We carried out a series of processes to perform the tests, such as firstly to test the crosslinking degree of valve membrane using ninhydrin method, then to test the tensile property and suture force property by using Instron's biomechanicAl testing equipment, and then to observe the collagen fiber orientation in valve membrane using Instron's biomechanical testing equipment and using field emission scanning electron microscopy. The study indicated that after the chemical modification, the crosslinking degree, tensile strength and suture force strength increasing rate of valve membrane were 93.78% ± 3. 2%, (8.24 ± 0.79) MPa, 102%, respectively. The valve membrane had a better biomechanical property and would be expected to become valve membrane in transcatheter bioprosthesis valve.

  15. Unique membrane properties and enhanced signal processing in human neocortical neurons.

    PubMed

    Eyal, Guy; Verhoog, Matthijs B; Testa-Silva, Guilherme; Deitcher, Yair; Lodder, Johannes C; Benavides-Piccione, Ruth; Morales, Juan; DeFelipe, Javier; de Kock, Christiaan Pj; Mansvelder, Huibert D; Segev, Idan

    2016-10-06

    The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of the human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm(2), half of the commonly accepted 'universal' value (~1 µF/cm(2)) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of Cm in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low Cm value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex.

  16. Influence of Anaerobiosis and Low Temperature on Bacillus cereus Growth, Metabolism, and Membrane Properties

    PubMed Central

    Clavel, Thierry; Clerté, Caroline; Carlin, Frédéric; Giniès, Christian; Nguyen-The, Christophe

    2012-01-01

    The impact of simultaneous anaerobiosis and low temperature on growth parameters, metabolism, and membrane properties of Bacillus cereus ATCC 14579 was studied. No growth was observed under anaerobiosis at 12°C. In bioreactors, growth rates and biomass production were drastically reduced by simultaneous anaerobiosis and low temperature (15°C). The two conditions had a synergistic effect on biomass reduction. In anaerobic cultures, fermentative metabolism was modified by low temperature, with a marked reduction in ethanol production leading to a lower ability to produce NAD+. Anaerobiosis reduced unsaturated fatty acids at both low optimal temperatures. In addition, simultaneous anaerobiosis and low temperatures markedly reduced levels of branched-chain fatty acids compared to all other conditions (accounting for 33% of total fatty acids against more 71% for low-temperature aerobiosis, optimal-temperature aerobiosis, and optimal-temperature anaerobiosis). This corresponded to high-melting-temperature lipids and to low-fluidity membranes, as indicated by differential scanning calorimetry, 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy, and infrared spectroscopy. This is in contrast to requirements for cold adaptation. A link between modification in the synthesis of metabolites of fermentative metabolism and the reduction of branched-chain fatty acids at low temperature under anaerobiosis, through a modification of the oxidizing capacity, is assumed. This link may partly explain the impact of low temperature and anaerobiosis on membrane properties and growth performance. PMID:22247126

  17. Preparation and Properties of Polysulfone-poly(ethylene glycol) graft copolymer membrane.

    PubMed

    Woo, Seung-Moon; Kim, Deuk-Ju; Nam, Sang-Yong

    2014-10-01

    In this study, Graft copolymers composed of PSf backbones and PEG side chains were synthesized to prepare gas separation membranes with enhancing permeability and selectivity on carbon dioxide separation. PSf-g-PEG copolymers were synthesized by two steps, chloromethylation and graft reactions. Grafted PEG segment of PSf was controlled by molecular weight of PEG. Thermal properties of prepared mebrane were studied by TGA and DSC. T(g) of the copolymers was decreased with increasing of molecular weight of PEG. Hydrophilicity of PSf-g-PEG copolymer membrane was measured using contact angle method, and PEG grafted polymers showed lower contact angles due to higher hydrophilicity. Gas permeation properties of CO2 and N2 gases through the membranes were measured using time-lag method. The permeability of CO2 was enhanced with PEG moiety contents and increasing of number of PEG segment. The selectivity of CO2/N2 was increased with introducing of PEG due to higher solubility with CO2 gas.

  18. Unique membrane properties and enhanced signal processing in human neocortical neurons

    PubMed Central

    Eyal, Guy; Verhoog, Matthijs B; Testa-Silva, Guilherme; Deitcher, Yair; Lodder, Johannes C; Benavides-Piccione, Ruth; Morales, Juan; DeFelipe, Javier; de Kock, Christiaan PJ; Mansvelder, Huibert D; Segev, Idan

    2016-01-01

    The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of the human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm2, half of the commonly accepted 'universal' value (~1 µF/cm2) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of Cm in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low Cm value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex. DOI: http://dx.doi.org/10.7554/eLife.16553.001 PMID:27710767

  19. A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity

    PubMed Central

    1981-01-01

    Dictyostelium discoideum plasma membranes isolated by each of three procedures bind F-actin. The interactions between these membranes and actin are examined by a novel application of falling ball viscometry. Treating the membranes as multivalent actin-binding particles analogous to divalent actin-gelation factors, we observe large increases in viscosity (actin cross-linking) when membranes of depleted actin and myosin are incubated with rabbit skeletal muscle F-actin. Pre- extraction of peripheral membrane proteins with chaotropes or the inclusion of Triton X-100 during the assay does not appreciably diminish this actin cross-linking activity. Lipid vesicles, heat- denatured membranes, proteolyzed membranes, or membranes containing endogenous actin show minimal actin cross-linking activity. Heat- denatured, but not proteolyzed, membranes regain activity when assayed in the presence of Triton X-100. Thus, integral membrane proteins appear to be responsible for some or all of the actin cross-linking activity of D. discoideum membranes. In the absence of MgATP, Triton X- 100 extraction of isolated D. discoideum membranes results in a Triton- insoluble residue composed of actin, myosin, and associated membrane proteins. The inclusion of MgATP before and during Triton extraction greatly diminishes the amount of protein in the Triton-insoluble residue without appreciably altering its composition. Our results suggest the existence of a protein complex stabilized by actin and/or myosin (membrane cytoskeleton) associated with the D. discoideum plasma membrane. PMID:6894148

  20. Role of eicosanoids in alteration of membrane electrical properties in isolated mesenteric arteries of salt-loaded, Dahl salt-sensitive rats

    PubMed Central

    Fujii, Koji; Onaka, Uran; Ohya, Yusuke; Ohmori, Susumu; Tominaga, Mitsuhiro; Abe, Isao; Takata, Yutaka; Fujishima, Masatoshi

    1997-01-01

    The role of eicosanoids in altered membrane electrical properties of Dahl salt-sensitive (DS) rats was investigated, by use of conventional microelectrodes technique, in isolated superior mesenteric arteries of DS rats and Dahl salt-resistant (DR) rats fed either a high or low salt diet.The membrane was significantly depolarized in salt-loaded DS rats compared with the other three groups. In addition, the arteries of salt-loaded DS rats exhibited spontaneous electrical activity.Spontaneous electrical activity in salt-loaded DS rats was inhibited by the following: indomethacin, a cyclo-oxygenase inhibitor; ONO-3708, a prostaglandin H2/thromboxane A2 receptor antagonist; OKY-046, a thromboxane A2 synthase inhibitor; nicardipine, a Ca2+-channel antagonist and by Ca2+-free solution. In addition, spontaneous electrical activity was enhanced by a thromboxane A2 analogue and by prostaglandin H2. Spontaneous electrical activity was unaffected by phentolamine, atropine and tetrodotoxin.Membrane potential in arteries of salt-loaded DS rats was not affected by either indomethacin or ONO-3708.Spontaneous contraction, sensitive to indomethacin, was present, and contractile sensitivity to high potassium solution was enhanced in arteries of salt-loaded DS rats.These findings suggest that eicosanoid action, together with membrane depolarization, may lead to the activation of voltage-dependent Ca2+-channels, thereby causing spontaneous electrical activity in mesenteric arteries of salt-loaded DS rats. In addition, tension data suggest that these changes in membrane properties are related to enhanced contractile activities in salt-loaded DS rats. Mechanisms of depolarization remain to be determined. PMID:9105694

  1. Effect of polymer chain length on membrane perturbation activity of cationic phenylene ethynylene oligomers and polymers.

    PubMed

    Wang, Ying; Jones, Emmalee M; Tang, Yanli; Ji, Eunkyung; Lopez, Gabriel P; Chi, Eva Y; Schanze, Kirk S; Whitten, David G

    2011-09-06

    The interactions of poly(phenylene ethynylene)- (PPE-) based cationic conjugated polyelectrolytes (CPEs) and oligo(phenylene ethynylene)s (OPEs) with different model lipid membrane systems were investigated to gain insight into the relationship between molecular structure and membrane perturbation ability. The CPE and OPE compounds exhibit broad-spectrum antimicrobial activity, and cell walls and membranes are believed to be their main targets. To better understand how the size, in terms of the number of repeat units, of the CPEs and OPEs affects their membrane disruption activities, a series of PPE-based CPEs and OPEs were synthesized and studied. A number of photophysical techniques were used to investigate the interactions of CPEs and OPEs with model membranes, including unilamellar vesicles and lipid monolayers at the air/water interface. CPE- or OPE-induced dye leakage from vesicles reveals that the CPEs and OPEs selectively perturb model bacterial membranes and that their membrane perturbation abilities are highly dependent on molecular size. Consistent with dye-leakage assay results, the CPEs and OPEs also exhibit chain-length-dependent ability to insert into 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) monolayers. Our results suggest that, for PPE-based CPE and OPE antimicrobials, chain length can be tuned to optimize their membrane perturbation ability.

  2. The effects of 7-dehydrocholesterol on the structural properties of membranes

    NASA Astrophysics Data System (ADS)

    Liu, Yingzhe; Chipot, Christophe; Shao, Xueguang; Cai, Wensheng

    2011-10-01

    Smith-Lemli-Opitz syndrome, a congenital and developmental malformation disease, is typified by abnormal accumulation of 7-dehydrocholesterol (7DHC), the immediate precursor of cholesterol (CHOL), and depletion thereof. Knowledge of the effect of 7DHC on the biological membrane is, however, still fragmentary. In this study, large-scale atomistic molecular dynamics simulations, employing two distinct force fields, have been conducted to elucidate differences in the structural properties of a hydrated dimyristoylphosphatidylcholine bilayer due to CHOL and 7DHC. The present series of results indicate that CHOL and 7DHC possess virtually the same ability to condense and order membranes. Furthermore, the condensing and ordering effects are shown to be strengthened at increasing sterol concentrations.

  3. Line active molecules promote inhomogeneous structures in membranes: theory, simulations and experiments.

    PubMed

    Palmieri, Benoit; Yamamoto, Tetsuya; Brewster, Robert C; Safran, Samuel A

    2014-06-01

    We review recent theoretical efforts that predict how line-active molecules can promote lateral heterogeneities (or domains) in model membranes. This fundamental understanding may be relevant to membrane composition in living cells, where it is thought that small domains, called lipid rafts, are necessary for the cells to be functional. The theoretical work reviewed here ranges in scale from coarse grained continuum models to nearly atomistic models. The effect of line active molecules on domain sizes and shapes in the phase separated regime or on fluctuation length scales and lifetimes in the single phase, mixed regime, of the membrane is discussed. Recent experimental studies on model membranes that include line active molecules are also presented together with some comparisons with the theoretical predictions.

  4. Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes

    NASA Astrophysics Data System (ADS)

    Mashentseva, Anastassiya; Borgekov, Daryn; Kislitsin, Sergey; Zdorovets, Maxim; Migunova, Anastassiya

    2015-12-01

    Irradiated by heavy ions nanoporous polyethylene terephthalate track-etched membranes (PET TeMs) after +15Kr84 ions bombardment (1.75 MeV/nucl with the ion fluency of 1 × 109 cm-2) and sequential etching was applied in this research as a template for development of composites with catalytically enriched properties. A highly ordered silver and gold nanotubes arrays were embedded in 100 nm pores of PET TeMs via electroless deposition technique at 4 °C during 1 h. All "as-prepared" composites were examined for catalytic activity using reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride as a common reaction to test metallic nanostructures catalysts. The effect of temperature on the catalytic activity was investigated in range of 292-313 K and activation energy were calculated. Kapp of Ag/PET composites linearly increase with an increase of the temperature thus normal Arrhenius behavior have been seen and the activation energy was calculated to be 42.13 kJ/mol. Au/PET composites exhibit not only more powerful catalytic activity but also non-linear dependence of rate constant from temperature. Kapp increased with increasing temperature throughout the 292-308 K temperature range; the reaction had an activation energy 65.32 kJ/mol. In range 311-313 K rate constant dramatically decreased and the apparent activation energy at this temperature rang was -91.44 kJ/mol due some structural changes, i.e. agglomeration of Au nanoparticles on the surface of composite.

  5. Comparison of the Mechanical Properties of Early Leukocyte- and Platelet-Rich Fibrin versus PRGF/Endoret Membranes

    PubMed Central

    Khorshidi, Hooman; Raoofi, Saeed; Bagheri, Rafat; Banihashemi, Hodasadat

    2016-01-01

    Objectives. The mechanical properties of membranes are important factors in the success of treatment and clinical handling. The goal of this study was to compare the mechanical properties of early leukocyte- and platelet-rich fibrin (L-PRF) versus PRGF/Endoret membrane. Materials and Methods. In this experimental study, membranes were obtained from 10 healthy male volunteers. After obtaining 20 cc venous blood from each volunteer, 10 cc was used to prepare early L-PRF (group 1) and the rest was used to get a membrane by PRGF-Endoret system (group 2). Tensile loads were applied to specimens using universal testing machine. Tensile strength, stiffness, and toughness of the two groups of membranes were calculated and compared by paired t-test. Results. The mean tensile strength and toughness were higher in group 1 with a significant difference (P < 0.05). The mean stiffness in group 1 was also higher but not statistically significant (P > 0.05). Conclusions. The results showed that early L-PRF membranes had stronger mechanical properties than membranes produced by PRGF-Endoret system. Early L-PRF membranes might have easier clinical handling and could be a more proper scaffold in periodontal regenerative procedures. The real results of the current L-PRF should be in fact much higher than what is reported here. PMID:26880919

  6. Effects of chemical sanitization using NaOH on the properties of polysulfone and polyethersulfone ultrafiltration membranes.

    PubMed

    Teella, Achyuta; Zydney, Andrew L; Zhou, Hongyi; Olsen, Cathryn; Robinson, Craig

    2015-01-01

    Membranes used in bioprocessing applications are typically sanitized before use to insure aseptic operation. However, there is almost no information in the literature on the effects of this preuse sanitization step on the properties of the membrane. Experiments were performed with commercially available hollow fiber polysulfone (PSf) and polyethersulfone (PES) membranes with different nominal molecular weight cutoffs. Data were obtained for the membrane hydraulic permeability, dextran retention coefficients, zeta potential (surface charge), and extent of protein adsorption both before and after sanitization with 0.5 N NaOH at 45°C for 30 min. Changes in chemical composition were examined using ATR-FT-IR and XPS. Sanitization caused a large increase in the net negative charge for all membranes. There was a small reduction in hydraulic permeability and a significant increase in dextran retention for the polyethersulfone membranes, consistent with a reduction in the effective pore size. Spectroscopic analyses suggest that this change is likely due to the base-catalyzed hydrolysis of the lactam ring in polyvinylpyrrolidone (PVP) that is typically is used as a wetting/pore-forming agent in PSf and PES membranes. Preuse sanitization also appeared to have a small effect on protein adsorption, although the extent of adsorption was quite low for both the virgin and sanitized membranes. The observed changes in membrane properties could have a significant impact on the ultrafiltration performance, demonstrating the importance of standardizing the sanitization procedures even in process development and scale-down validation studies.

  7. Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides.

    PubMed

    Wiedman, Gregory; Wimley, William C; Hristova, Kalina

    2015-04-01

    In this work, we sought to rationally design membrane-active peptides that are triggered by low pH to form macromolecular-sized pores in lipid bilayers. Such peptides could have broad utility in biotechnology and in nanomedicine as cancer therapeutics or drug delivery vehicles that promote release of macromolecules from endosomes. Our approach to rational design was to combine the properties of a pH-independent peptide, MelP5, which forms large pores allowing passage of macromolecules, with the properties of two pH-dependent membrane-active peptides, pHlip and GALA. We created two hybrid sequences, MelP5_Δ4 and MelP5_Δ6, by using the distribution of acidic residues on pHlip and GALA as a guide to insert acidic amino acids into the amphipathic helix of MelP5. We show that the new peptides bind to lipid bilayers and acquire secondary structure in a pH-dependent manner. The peptides also destabilize bilayers in a pH-dependent manner, such that lipid vesicles release the small molecules ANTS/DPX at low pH only. Thus, we were successful in designing pH-triggered pore-forming peptides. However, no macromolecular release was observed under any conditions. Therefore, we abolished the unique macromolecular poration properties of MelP5 by introducing pH sensitivity into its sequence. We conclude that the properties of pHlip, GALA, and MelP5 are additive, but only partially so. We propose that this lack of additivity is a limitation in the rational design of novel membrane-active peptides, and that high-throughput approaches to discovery will be critical for continued progress in the field.

  8. Development of a novel microperfusion chamber for determination of cell membrane transport properties.

    PubMed Central

    Gao, D Y; Benson, C T; Liu, C; McGrath, J J; Critser, E S; Critser, J K

    1996-01-01

    A novel microperfusion chamber was developed to measure kinetic cell volume changes under various extracellular conditions and to quantitatively determine cell membrane transport properties. This device eliminates modeling ambiguities and limitations inherent in the use of the microdiffusion chamber and the micropipette perfusion technique, both of which have been previously validated and are closely related optical technologies using light microscopy and image analysis. The resultant simplicity should prove to be especially valuable for study of the coupled transport of water and permeating solutes through cell membranes. Using the microperfusion chamber, water and dimethylsulfoxide (DMSO) permeability coefficients of mouse oocytes as well as the water permeability coefficient of golden hamster pancreatic islet cells were determined. In these experiments, the individual cells were held in the chamber and perfused at 22 degrees C with hyperosmotic media, with or without DMSO (1.5 M). The cell volume change was videotaped and quantified by image analysis. Based on the experimental data and irreversible thermodynamics theory for the coupled mass transfer across the cell membrane, the water permeability coefficient of the oocytes was determined to be 0.47 micron. min-1. atm-1 in the absence of DMSO and 0.65 microns. min-1. atm-1 in the presence of DMSO. The DMSO permeability coefficient of the oocyte membrane and associated membrane reflection coefficient to DMSO were determined to be 0.23 and 0.85 micron/s, respectively. These values are consistent with those determined using the micropipette perfusion and microdiffusion chamber techniques. The water permeability coefficient of the golden hamster pancreatic islet cells was determined to be 0.27 microns. min-1. atm-1, which agrees well with a value previously determined using an electronic sizing (Coulter counter) technique. The use of the microperfusion chamber has the following major advantages: 1) This method

  9. Introduction to membrane lipids.

    PubMed

    Epand, Richard M

    2015-01-01

    Biological membranes are composed largely of lipids and proteins. The most common arrangement of lipids in biological membranes is as a bilayer. This arrangement spontaneously forms a barrier for the passage of polar materials. The bilayer is thin but can have a large area in the dimension perpendicular to its thickness. The physical nature of the bilayer membrane will vary according to the conditions of the environment as well as the chemical structure of the lipid constituents of the bilayer. These physical properties determine the function of the membrane together with specific structural features of the lipids that allow them to have signaling properties. The lipids of the membrane are not uniformly distributed. There is an intrinsic asymmetry between the two monolayers that constitute the bilayer. In addition, some lipids tend to be enriched in particular regions of the membrane, termed domains. There is evidence that certain domains recruit specific proteins into that domain. This has been suggested to be important for allowing interaction among different proteins involved in certain signal transduction pathways. Membrane lipids have important roles in determining the physical properties of the membrane, in modulating the activity of membrane-bound proteins and in certain cases being specific secondary messengers that can interact with specific proteins. A large variety of lipids present in biological membranes result in them possessing many functions.

  10. Purification and functional properties of the membrane fissioning protein CtBP3/BARS.

    PubMed

    Valente, Carmen; Spanò, Stefania; Luini, Alberto; Corda, Daniela

    2005-01-01

    The fissioning protein CtBP3/BARS is a member of the CtBP transcription corepressor family of proteins. The characterization of this fissioning activity of CtBP3/BARS in both isolated Golgi membranes and in intact cells has indicated that the CtBP family includes multifunctional proteins that can act both in the nucleus and in the cytoplasm. The fissiogenic activity of CtBP3/BARS has a role in the fragmentation of the Golgi complex during mitosis and during intracellular membrane transport. This was demonstrated using a number of approaches and reagents, which are discussed in the following text, and which include recombinant proteins and mutants, antibodies, protein overexpression, RNA interference, antisense oligonucleotides, cell permeabilization, and electron miscroscopy, together with biochemical assays such as that for ADP-ribosylation.

  11. Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst

    PubMed Central

    Teodoro, Rita O; Pekkurnaz, Gulçin; Nasser, Abdullah; Higashi-Kovtun, Misao E; Balakireva, Maria; McLachlan, Ian G; Camonis, Jacques; Schwarz, Thomas L

    2013-01-01

    Remodelling neuronal connections by synaptic activity requires membrane trafficking. We present evidence for a signalling pathway by which synaptic activity and its consequent Ca2+ influx activate the small GTPase Ral and thereby recruit exocyst proteins to postsynaptic zones. In accord with the ability of the exocyst to direct delivery of post-Golgi vesicles, constitutively active Ral expressed in Drosophila muscle causes the exocyst to be concentrated in the region surrounding synaptic boutons and consequently enlarges the membrane folds of the postsynaptic plasma membrane (the subsynaptic reticulum, SSR). SSR growth requires Ral and the exocyst component Sec5 and Ral-induced enlargement of these membrane folds does not occur in sec5−/− muscles. Chronic changes in synaptic activity influence the plastic growth of this membrane in a manner consistent with activity-dependent activation of Ral. Thus, Ral regulation of the exocyst represents a control point for postsynaptic plasticity. This pathway may also function in mammals as expression of activated RalA in hippocampal neurons increases dendritic spine density in an exocyst-dependent manner and increases Sec5 in spines. PMID:23812009

  12. Propagating cell-membrane waves driven by curved activators of actin polymerization.

    PubMed

    Peleg, Barak; Disanza, Andrea; Scita, Giorgio; Gov, Nir

    2011-04-21

    Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical model which explains the formation of these waves due to the interplay between complexes that contain activators of actin polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape.

  13. Sodium pump molecular activity and membrane lipid composition in two disparate ectotherms, and comparison with endotherms.

    PubMed

    Turner, Nigel; Hulbert, A J; Else, Paul L

    2005-02-01

    Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n-3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P = 0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n-3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms.

  14. The properties of the outer membrane localized Lipid A transporter LptD

    NASA Astrophysics Data System (ADS)

    Haarmann, Raimund; Ibrahim, Mohamed; Stevanovic, Mara; Bredemeier, Rolf; Schleiff, Enrico

    2010-11-01

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  15. Developmental changes in membrane properties and postsynaptic currents of granule cells in rat dentate gyrus.

    PubMed

    Liu, Y B; Lio, P A; Pasternak, J F; Trommer, B L

    1996-08-01

    1. Whole cell patch-clamp recordings were used to study dentate gyrus granule cells in hippocampal slices from juvenile rats (postnatal days 8-32). Membrane properties were measured with the use of current-clamp recordings and were correlated with the morphology of a subgroup of neurons filled with biocytin. The components of the postsynaptic currents (PSCs) induced by medial perforant path stimulation were characterized with the use of specific receptor antagonists in voltage-clamp recordings. 2. Granule cells located in the middle third of the superior blade of stratum granulosum from the rostral third of hippocampus were divided into three groups according to their input resistance (IR). Neurons with low IR (206 +/- 182 M omega, mean +/- SD) had hyperpolarized resting membrane potentials (-82 +/- 7 mV) and high-amplitude action potentials (108 +/- 23 mV). Neurons were high IR (1,259 +/- 204 M omega) had more depolarized resting membrane potentials (-54 +/- 6 mV) and lower-amplitude action potentials (71 +/- 10 mV). Neurons with intermediate IR (619 +/- 166 M omega) also had intermediate resting membrane potentials (-63 +/- 7 mV) and action potential amplitudes (86 +/- 14 mV). Low-IR neurons became increasingly prevalent with advancing postnatal age, but neurons from each group could be found throughout the entire period under study. 3. Morphological studies of low-IR neurons revealed an extensive dendritic arborization that traversed the entire molecular layer and was characteristic of mature granule cells. High-IR cells had smaller somata and short, simple dendritic arborization that incompletely penetrated the molecular layer and were classified as immature. Intermediate-IR cells had morphological features of intermediate maturity. 4. The initial phase of the PSC evoked at -80 mV was a fast inward current that was comparable with respect to latency to peak, latency to onset, and 10-90% rise time in neurons of all maturities held at -80 mV. This current was 6

  16. Investigation of the pore structure and morphology of cellulose acetate membranes using small-angle neutron scattering. 1: Cellulose acetate active layer membranes

    SciTech Connect

    Kulkarni, S.; Krause, S. ); Wignall, G.D. . Solid State Div.); Hammouda, B. . Center for High Resolution Neutron Scattering)

    1994-11-07

    The structure of ultrathin cellulose acetate membranes, known as active layer membranes, has been investigated using small-angle neutron scattering. These membranes are known to have structural and functional similarity to the surface or skin layer in commercial reverse-osmosis (RO) membranes and hence are useful model systems for understanding the structure of the RO membrane skin layer. Active layer membranes were studied after swelling them with either D[sub 2]O or CD[sub 3]OD. The results in both cases clearly indicated the presence of very small (10--20 [angstrom]) porous structures in the membrane. The presence of such pores has been a subject of long-standing controversy in this area. The data were analyzed using a modified Debye-Bueche analysis and the resultant membrane structure was seen to agree well with structural information from electron microscopic studies. Finally, a possible explanation for the differences in scattering observed between the D[sub 2]O swollen membranes and the CD[sub 3]OD swollen membranes has been presented.

  17. Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting

    NASA Astrophysics Data System (ADS)

    Rahimpour, A.; Madaeni, S. S.; Zereshki, S.; Mansourpanah, Y.

    2009-05-01

    In this study, the poly(vinylidene fluoride) (PVDF) membrane was prepared via immersion precipitation technique and modified by UV photo-grafting of hydrophilic monomers on the top membrane surface. Acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as acrylic monomers and 2,4-phenylenediamine (PDA) and ethylene diamine (EDA) as amino monomers were used at different concentrations to modify the membrane and improve the hydrophilicity with less fouling tendency. Moreover the presence of benzophenon as photo-initiator for grafting the hydrophilic monomers onto PVDF membrane surface was elucidated. The virgin and modified PVDF membranes were characterized by contact angle, ATR-FTIR, SEM and cross-flow filtration. The contact angle measurements demonstrated that the hydrophilicities of the membranes were significantly enhanced by UV photo-grafting of hydrophilic monomers onto the membrane surface. The ATR-FTIR confirmed the occurrence of modification on PVDF membrane by UV photo-grafting. The pure water flux of membranes was declined by UV photo-grafting but the milk water permeation and protein rejection were slightly improved. Moreover the antifouling properties and flux recovery of PVDF membrane were improved by UV photo-grafting of hydrophilic monomers.

  18. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    PubMed

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  19. The higher level of complexity of K-Ras4B activation at the membrane

    PubMed Central

    Jang, Hyunbum; Banerjee, Avik; Chavan, Tanmay S.; Lu, Shaoyong; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2016-01-01

    Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5′-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released