Science.gov

Sample records for active metabolic rates

  1. Simultaneous water activation and glucose metabolic rate imaging with PET

    NASA Astrophysics Data System (ADS)

    Verhaeghe, Jeroen; Reader, Andrew J.

    2013-02-01

    A novel imaging and signal separation strategy is proposed to be able to separate [18F]FDG and multiple [15O]H2O signals from a simultaneously acquired dynamic PET acquisition of the two tracers. The technique is based on the fact that the dynamics of the two tracers are very distinct. By adopting an appropriate bolus injection strategy and by defining tailored sets of basis functions that model either the FDG or water component, it is possible to separate the FDG and water signal. The basis functions are inspired from the spectral analysis description of dynamic PET studies and are defined as the convolution of estimated generating functions (GFs) with a set of decaying exponential functions. The GFs are estimated from the overall measured head curve, while the decaying exponential functions are pre-determined. In this work, the time activity curves (TACs) are modelled post-reconstruction but the model can be incorporated in a global 4D reconstruction strategy. Extensive PET simulation studies are performed considering single [18F]FDG and 6 [15O]H2O bolus injections for a total acquisition time of 75 min. The proposed method is evaluated at multiple noise levels and different parameters were estimated such as [18F]FDG uptake and blood flow estimated from the [15O]H2O component, requiring a full dynamic analysis of the two components, static images of [18F]FDG and the water components as well as [15O]H2O activation. It is shown that the resulting images and parametric values in ROIs are comparable to images obtained from separate imaging, illustrating the feasibility of simultaneous imaging of [18F]FDG and [15O]H2O components. For more information on this article, see medicalphysicsweb.org

  2. Timing and Variability of Galactose Metabolic Gene Activation Depend on the Rate of Environmental Change

    PubMed Central

    Ma, Bo; Ott, William; Josić, Krešimir; Bennett, Matthew R.

    2015-01-01

    Modulation of gene network activity allows cells to respond to changes in environmental conditions. For example, the galactose utilization network in Saccharomyces cerevisiae is activated by the presence of galactose but repressed by glucose. If both sugars are present, the yeast will first metabolize glucose, depleting it from the extracellular environment. Upon depletion of glucose, the genes encoding galactose metabolic proteins will activate. Here, we show that the rate at which glucose levels are depleted determines the timing and variability of galactose gene activation. Paradoxically, we find that Gal1p, an enzyme needed for galactose metabolism, accumulates more quickly if glucose is depleted slowly rather than taken away quickly. Furthermore, the variability of induction times in individual cells depends non-monotonically on the rate of glucose depletion and exhibits a minimum at intermediate depletion rates. Our mathematical modeling suggests that the dynamics of the metabolic transition from glucose to galactose are responsible for the variability in galactose gene activation. These findings demonstrate that environmental dynamics can determine the phenotypic outcome at both the single-cell and population levels. PMID:26200924

  3. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel

    PubMed Central

    Huestis, Diana L.; Yaro, Alpha S.; Traoré, Adama I.; Dieter, Kathryne L.; Nwagbara, Juliette I.; Bowie, Aleah C.; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2012-01-01

    SUMMARY Malaria in Africa is vectored primarily by the Anopheles gambiae complex. Although the mechanisms of population persistence during the dry season are not yet known, targeting dry season mosquitoes could provide opportunities for vector control. In the Sahel, it appears likely that M-form A. gambiae survive by aestivation (entering a dormant state). To assess the role of eco-physiological changes associated with dry season survival, we measured body size, flight activity and metabolic rate of wild-caught mosquitoes throughout 1 year in a Sahelian locality, far from permanent water sources, and at a riparian location adjacent to the Niger River. We found significant seasonal variation in body size at both the Sahelian and riparian sites, although the magnitude of the variation was greater in the Sahel. For flight activity, significant seasonality was only observed in the Sahel, with increased flight activity in the wet season when compared with that just prior to and throughout the dry season. Whole-organism metabolic rate was affected by numerous biotic and abiotic factors, and a significant seasonal component was found at both locations. However, assay temperature accounted completely for seasonality at the riparian location, while significant seasonal variation remained after accounting for all measured variables in the Sahel. Interestingly, we did not find that mean metabolic rate was lowest during the dry season at either location, contrary to our expectation that mosquitoes would conserve energy and increase longevity by reducing metabolism during this time. These results indicate that mosquitoes may use mechanisms besides reduced metabolic rate to enable survival during the Sahelian dry season. PMID:22623189

  4. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  5. Variation in energy expenditure among black-legged kittiwakes: effects of activity-specific metabolic rates and activity budgets.

    PubMed

    Jodice, P G R; Roby, D D; Suryan, R M; Irons, D B; Kaufman, A M; Turco, K R; Visser, G H

    2003-01-01

    We sought to determine the effect of variation in time-activity budgets (TABs) and foraging behavior on energy expenditure rates of parent black-legged kittiwakes (Rissa tridactyla). We quantified TABs using direct observations of radio-tagged adults and simultaneously measured field metabolic rates (FMR) of these same individuals (n=20) using the doubly labeled water technique. Estimated metabolic rates of kittiwakes attending their brood at the nest or loafing near the colony were similar (ca. 1.3 x basal metabolic rate [BMR]), although loafing during foraging trips was more costly (2.9 x BMR). Metabolic rates during commuting flight (7.3 x BMR) and prey-searching flight (6.2 x BMR) were similar, while metabolic rates during plunge diving were much higher (ca. 47 x BMR). The proportion of the measurement interval spent foraging had a positive effect on FMR (R2=0.68), while the combined proportion of time engaged in nest attendance and loafing near the colony had a negative effect on FMR (R2=0.72). Thus, more than two-thirds of the variation in kittiwake FMR could be explained by the allocation of time among various activities. The high energetic cost of plunge diving relative to straight flight and searching flight suggests that kittiwakes can optimize their foraging strategy under conditions of low food availability by commuting long distances to feed in areas where gross foraging efficiency is high. PMID:12905124

  6. Variation in energy expenditure among black-legged kittiwakes: Effects of activity-specific metabolic rates and activity budgets

    USGS Publications Warehouse

    Jodice, P.G.R.; Roby, D.D.; Suryan, R.M.; Irons, D.B.; Kaufman, A.M.; Turco, K.R.; Visser, G.H.

    2003-01-01

    We sought to determine the effect of variation in time-activity budgets (TABs) and foraging behavior on energy expenditure rates of parent black-legged kittiwakes (Rissa tridactyla). We quantified TABs using direct observations of radio-tagged adults and simultaneously measured field metabolic rates (FMR) of these same individuals (n = 20) using the doubly labeled water technique. Estimated metabolic rates of kittiwakes attending their brood at the nest or loafing near the colony were similar (ca. 1.3 x basal metabolic rate [BMR]), although loafing during foraging trips was more costly (2.9 x BMR). Metabolic rates during commuting flight (7.3 x BMR) and prey-searching flight (6.2 x BMR) were similar, while metabolic rates during plunge diving were much higher (ca. 47 x BMR). The proportion of the measurement interval spent foraging had a positive effect on FMR (R2 = 0.68), while the combined proportion of time engaged in nest attendance and loafing near the colony had a negative effect on FMR (R2 = 0.72). Thus, more than two-thirds of the variation in kittiwake FMR could be explained by the allocation of time among various activities. The high energetic cost of plunge diving relative to straight flight and searching flight suggests that kittiwakes can optimize their foraging strategy under conditions of low food availability by commuting long distances to feed in areas where gross foraging efficiency is high.

  7. Scaling metabolic rate fluctuations.

    PubMed

    Labra, Fabio A; Marquet, Pablo A; Bozinovic, Francisco

    2007-06-26

    Complex ecological and economic systems show fluctuations in macroscopic quantities such as exchange rates, size of companies or populations that follow non-Gaussian tent-shaped probability distributions of growth rates with power-law decay, which suggests that fluctuations in complex systems may be governed by universal mechanisms, independent of particular details and idiosyncrasies. We propose here that metabolic rate within individual organisms may be considered as an example of an emergent property of a complex system and test the hypothesis that the probability distribution of fluctuations in the metabolic rate of individuals has a "universal" form regardless of body size or taxonomic affiliation. We examined data from 71 individuals belonging to 25 vertebrate species (birds, mammals, and lizards). We report three main results. First, for all these individuals and species, the distribution of metabolic rate fluctuations follows a tent-shaped distribution with power-law decay. Second, the standard deviation of metabolic rate fluctuations decays as a power-law function of both average metabolic rate and body mass, with exponents -0.352 and -1/4 respectively. Finally, we find that the distributions of metabolic rate fluctuations for different organisms can all be rescaled to a single parent distribution, supporting the existence of general principles underlying the structure and functioning of individual organisms. PMID:17578913

  8. Familial resemblance of body composition, physical activity, and resting metabolic rate in pre-school children

    PubMed Central

    Djafarian, Kurosh; Speakman, John R; Stewart, Joanne; M Jackson, Diane

    2013-01-01

    Background: Although parental obesity is a well-established predisposing factor for the development of obesity, associations between regional body compositions, resting metabolic rates (RMR), and physical activity (PA) of parents and their pre-school children remain unknown. The objective of this study was to investigate parent-child correlations for total and regional body compositions, resting energy expenditures, and physical activity. Methods: Participants were 89 children aged 2-6 years and their parents, consisting of 61 families. Resting metabolic rate was assessed using indirect calorimetry. Total and regional body compositions were measured by both dual energy X-ray absorptiometry (DXA) and deuterium dilution. Physical activity was assessed by an accelerometer. Results: There was a significant parent-offspring regression for total fat free mass (FFM) between children and their mothers (P=0.02), fathers (P=0.02), and mid-parent (average of father and mother value) (P=0.002) when measured by DXA. The same was true for fat mass (FM) between children and mothers (P<0.01), fathers (P=0.02), and mid-parent (P=0.001). There was no significant association between children and parents for physical activity during the entire week, weekend, weekdays, and different parts of days, except for morning activity, which was positively related to the mothers’ morning activities (P<0.01) and mid-parent (P=0.009). No association was found between RMR of children and parents before and after correction for FFM and FM. Conclusion: These data suggest a familial resemblance for total body composition between children and their parents. Our data showed no familial resemblance for PA and RMR between children and their parents. PMID:26989715

  9. Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

    2010-01-01

    During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

  10. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    PubMed

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate. PMID:26161636

  11. Differences in resting metabolic rate and physical activity patterns in lean and overweight/obese pregnant women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy requirements vary during pregnancy due to changes in physical activity (PA) and maternal fat stores. This study measured resting metabolic rate (RMR) and PA patterns in healthy lean and overweight/obese (OW) pregnant women. RMR was measured using indirect calorimetry (MOXUS), activity pattern...

  12. Comparison between measured and predicted resting metabolic rate in moderately active adolescents.

    PubMed

    De Lorenzo A; Bertini, I; Puijia, A; Testolin, G; Testolin, C

    1999-09-01

    The aim of this study was to check the validity of predictive equations for the calculation of resting metabolic rate (RMR) in moderately active adolescents. The RMR was measured in a sample of 25 healthy 15.5-18.2-year-old boys practicing soccer. The RMR was assessed by indirect calorimetry for 30 min following an overnight fast. Body composition was estimated from skinfold thickness measurements. Among the available equations to predict RMR, we decided to use those a of Molnar et al., Harris-Benedict, Schofield, and Cunningham. Measured and predicted values were compared by means of a one-way ANOVA. Also the Bland-Altman test was performed in order to evaluate the accuracy of the prediction equations compared to the measured value. The measured RMR was found to be 1834 +/- 160 kcal/day (mean +/- SD), while the Molnar et al., Schofield, Harris-Benedict, and Cunningham predicted values were 1707 +/- 78, 1866 +/- 89, 1779 +/- 84 and 1830 +/- 87 kcal/day, respectively. On average, compared to the measured values only the Molnar et al. equation differed significantly. On an individual basis, all the equations demonstrated considerable variability between measured and predicted RMRs. The predicted values also differed significantly. As regards the moderately active subjects (16-18 years old), we recommend the use of the Schofield equation, based on simple anthropometric parameters and also that of Cunningham, even if the estimation or measurement of fat-free mass may be cumbersome for everyday pediatric use. PMID:10664318

  13. Low resting metabolic rate in exercise-associated amenorrhea is not due to a reduced proportion of highly active metabolic tissue compartments.

    PubMed

    Koehler, Karsten; Williams, Nancy I; Mallinson, Rebecca J; Southmayd, Emily A; Allaway, Heather C M; De Souza, Mary Jane

    2016-08-01

    Exercising women with menstrual disturbances frequently display a low resting metabolic rate (RMR) when RMR is expressed relative to body size or lean mass. However, normalizing RMR for body size or lean mass does not account for potential differences in the size of tissue compartments with varying metabolic activities. To explore whether the apparent RMR suppression in women with exercise-associated amenorrhea is a consequence of a lower proportion of highly active metabolic tissue compartments or the result of metabolic adaptations related to energy conservation at the tissue level, RMR and metabolic tissue compartments were compared among exercising women with amenorrhea (AMEN; n = 42) and exercising women with eumenorrheic, ovulatory menstrual cycles (OV; n = 37). RMR was measured using indirect calorimetry and predicted from the size of metabolic tissue compartments as measured by dual-energy X-ray absorptiometry (DEXA). Measured RMR was lower than DEXA-predicted RMR in AMEN (1,215 ± 31 vs. 1,327 ± 18 kcal/day, P < 0.001) but not in OV (1,284 ± 24 vs. 1,252 ± 17, P = 0.16), resulting in a lower ratio of measured to DEXA-predicted RMR in AMEN (91 ± 2%) vs. OV (103 ± 2%, P < 0.001). AMEN displayed proportionally more residual mass (P < 0.001) and less adipose tissue (P = 0.003) compared with OV. A lower ratio of measured to DXA-predicted RMR was associated with lower serum total triiodothyronine (ρ = 0.38, P < 0.001) and leptin (ρ = 0.32, P = 0.004). Our findings suggest that RMR suppression in this population is not the result of a reduced size of highly active metabolic tissue compartments but is due to metabolic and endocrine adaptations at the tissue level that are indicative of energy conservation. PMID:27382033

  14. Ventilation rates and activity levels of juvenile jumbo squid under metabolic suppression in the oxygen minimum zone.

    PubMed

    Trübenbach, Katja; Pegado, Maria R; Seibel, Brad A; Rosa, Rui

    2013-02-01

    The Humboldt (jumbo) squid, Dosidicus gigas, is a part-time resident of the permanent oxygen minimum zone (OMZ) in the Eastern Tropical Pacific and, thereby, it encounters oxygen levels below its critical oxygen partial pressure. To better understand the ventilatory mechanisms that accompany the process of metabolic suppression in these top oceanic predators, we exposed juvenile D. gigas to the oxygen levels found in the OMZ (1% O(2), 1 kPa, 10 °C) and measured metabolic rate, activity cycling patterns, swimming mode, escape jet (burst) frequency, mantle contraction frequency and strength, stroke volume and oxygen extraction efficiency. In normoxia, metabolic rate varied between 14 and 29 μmol O(2) g(-1) wet mass h(-1), depending on the level of activity. The mantle contraction frequency and strength were linearly correlated and increased significantly with activity level. Additionally, an increase in stroke volume and ventilatory volume per minute was observed, followed by a mantle hyperinflation process during high activity periods. Squid metabolic rate dropped more than 75% during exposure to hypoxia. Maximum metabolic rate was not achieved under such conditions and the metabolic scope was significantly decreased. Hypoxia changed the relationship between mantle contraction strength and frequency from linear to polynomial with increasing activity, indicating that, under hypoxic conditions, the jumbo squid primarily increases the strength of mantle contraction and does not regulate its frequency. Under hypoxia, jumbo squid also showed a larger inflation period (reduced contraction frequency) and decreased relaxed mantle diameter (shortened diffusion pathway), which optimize oxygen extraction efficiency (up to 82%/34%, without/with consideration of 60% potential skin respiration). Additionally, they breathe 'deeply', with more powerful contractions and enhanced stroke volume. This deep-breathing behavior allows them to display a stable ventilatory volume per

  15. Toxic Effects of Linear Alkylbenzene Sulfonate on Metabolic Activity, Growth Rate, and Microcolony Formation of Nitrosomonas and Nitrosospira Strains

    PubMed Central

    Brandt, Kristian K.; Hesselso/e, Martin; Roslev, Peter; Henriksen, Kaj; So/rensen, Jan

    2001-01-01

    Strong inhibitory effects of the anionic surfactant linear alkylbenzene sulfonate (LAS) on four strains of autotrophic ammonia-oxidizing bacteria (AOB) are reported. Two Nitrosospira strains were considerably more sensitive to LAS than two Nitrosomonas strains were. Interestingly, the two Nitrosospira strains showed a weak capacity to remove LAS from the medium. This could not be attributed to adsorption or any other known physical or chemical process, suggesting that biodegradation of LAS took place. In each strain, the metabolic activity (50% effective concentration [EC50], 6 to 38 mg liter−1) was affected much less by LAS than the growth rate and viability (EC50, 3 to 14 mg liter−1) were. However, at LAS levels that inhibited growth, metabolic activity took place only for 1 to 5 days, after which metabolic activity also ceased. The potential for adaptation to LAS exposure was investigated with Nitrosomonas europaea grown at a sublethal LAS level (10 mg liter−1); compared to control cells, preexposed cells showed severely affected cell functions (cessation of growth, loss of viability, and reduced NH4+ oxidation activity), demonstrating that long-term incubation at sublethal LAS levels was also detrimental. Our data strongly suggest that AOB are more sensitive to LAS than most heterotrophic bacteria are, and we hypothesize that thermodynamic constraints make AOB more susceptible to surfactant-induced stress than heterotrophic bacteria are. We further suggest that AOB may comprise a sensitive indicator group which can be used to determine the impact of LAS on microbial communities. PMID:11375155

  16. The interactions between temperature and activity levels in driving metabolic rate: theory, with empirical validation from contrasting ectotherms.

    PubMed

    Halsey, L G; Matthews, P G D; Rezende, E L; Chauvaud, L; Robson, A A

    2015-04-01

    The rate of change in resting metabolic rate (RMR) as a result of a temperature increase of 10 °C is termed the temperature coefficient (Q10), which is often used to predict how an organism's total MR will change with temperature. However, this method neglects a potentially key component of MR; changes in activity level (and thus activity MR; AMR) with temperature may significantly alter the relationship between MR and temperature. The present study seeks to describe how thermal effects on total MR estimated from RMR-temperature measurements can be misleading when the contribution of activity to total MR is neglected. A simple conceptual framework illustrates that since the relationship between activity levels and temperature can be different to the relationship between RMR and temperature, a consistent relationship between RMR and total MR cannot be assumed. Thus the thermal effect on total MR can be considerably different to the thermal effect on RMR. Simultaneously measured MR and activity from three ectotherm species with differing behavioural and physiological ecologies were used to empirically examine how changes in temperature drive changes in RMR, activity level, AMR and the Q10 of MR. These species exhibited varied activity- and MR-temperature relationships, underlining the difficulty in predicting thermal influences on activity levels and total MR. These data support a model showing that thermal effects on total MR will deviate from predictions based solely on RMR; this deviation will depend upon the difference in Q10 between AMR and RMR, and the relative contribution of AMR to total MR. To develop mechanistic, predictive models for species' metabolic responses to temperature changes, empirical information about the relationships between activity levels, MR and temperature, such as reported here, is required. This will supersede predictions based on RMR alone. PMID:25575673

  17. Metabolic rate meter and method

    NASA Technical Reports Server (NTRS)

    Taylor, T. I.; Ruderman, I. W. (Inventor)

    1968-01-01

    A method is described for measuring the dynamic metabolic rate of a human or animal. The ratio of the exhaled carbon dioxide to a known amount of C(13)02 introduced into the exhalation is determined by mass spectrometry. This provides an instantaneous measurement of the carbon dioxide generated.

  18. Metabolic rates, enzyme activities and chemical compositions of some deep-sea pelagic worms, particularly Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida; Polychaeta)

    NASA Astrophysics Data System (ADS)

    Thuesen, Erik V.; Childress, James J.

    1993-05-01

    Investigations of metabolic rate, enzyme activity and chemical composition were undertaken on two abundant deep-sea pelagic worms: Nectonemertes mirabilis (Nemertea; Hoplonemertinea) and Poeobius meseres (Annelida; Polychaeta). Six other species of worms ( Pelagonemertes brinkmanni (Nemertea) and the following polychaetes: Pelagobia species A, Tomopteris nisseni, Tomopteris pacifica, Tomopteris species A, and Traviopsis lobifera) were captured in smaller numbers and used for comparison in the physiological and biochemical measurements. Polychaete worms had the highest oxygen consumption rates and, along with N. mirabilis, displayed significant size effects on metabolic rate. Poeobius meseres had the lowest rates of oxygen consumption and displayed no significant relationship of oxygen consumption rate to wet weight. No significant effect of size on the activities of citrate synthase, lactate dehydrogenase or pyruvate kinase was observed in P. meseres or N. mirabilis. Lipid content was higher than protein content for all the worms in this study. Carbohydrate was of little significance in these worms and was usually <0.01% of the total weight. Citrate synthase activities of pelagic worms showed excellent correlation with metabolic rates. It appears that polychaete worms as a group have higher metabolic rates than bathypelagic shrimps, copepods and fishes, and may be the animals with the highest metabolic rates in the bathypelagic regions of the world's oceans.

  19. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate.

    PubMed

    Li, Hsin-Fen; Knutson, Barbara L; Nokes, Sue E; Lynn, Bert C; Flythe, Michael D

    2012-02-01

    Clostridium thermocellum has the ability to catabolize cellulosic biomass into ethanol, but acetic acid, lactic acid, carbon dioxide, and hydrogen gas (H(2)) are also produced. The effect of hydrogenase inhibitors (H(2), carbon monoxide (CO), and methyl viologen) on product selectivity was investigated. The anticipated effect of these hydrogenase inhibitors was to decrease acetate production. However, shifts to ethanol and lactate production are also observed as a function of cultivation conditions. When the sparge gas of cellobiose-limited chemostat cultures was switched from N(2) to H(2), acetate declined, and ethanol production increased 350%. In resting cell suspensions, lactate increased when H(2) or CO was the inhibitor or when the cells were held at elevated hyperbaric pressure (6.8 atm). In contrast, methyl-viologen-treated resting cells produced twice as much ethanol as the other treatments. The relationship of chemostat physiology to methyl viologen inhibition was revealed by glucose transport experiments, in which methyl viologen decreased the rate of glucose transport by 90%. C. thermocellum produces NAD(+) from NADH by H(2), lactate, and ethanol production. When the hydrogenases were inhibited, the latter two products increased. However, excess substrate availability causes fructose 1,6-diphosphate, the glycolytic intermediate that triggers lactate production, to increase. Compensatory ethanol production was observed when the chemostat fluid dilution rate or methyl viologen decreased substrate transport. This research highlights the complex effects of high concentrations of dissolved gases in fermentation, which are increasingly envisioned in microbial applications of H(2) production for the conversion of synthetic gases to chemicals. PMID:22218768

  20. Associations between Resting, Activity, and Daily Metabolic Rate in Free-Living Endotherms: No Universal Rule in Birds and Mammals.

    PubMed

    Portugal, Steven J; Green, Jonathan A; Halsey, Lewis G; Arnold, Walter; Careau, Vincent; Dann, Peter; Frappell, Peter B; Grémillet, David; Handrich, Yves; Martin, Graham R; Ruf, Thomas; Guillemette, Magella M; Butler, Patrick J

    2016-01-01

    Energy management models provide theories and predictions for how animals manage their energy budgets within their energetic constraints, in terms of their resting metabolic rate (RMR) and daily energy expenditure (DEE). Thus, uncovering what associations exist between DEE and RMR is key to testing these models. Accordingly, there is considerable interest in the relationship between DEE and RMR at both inter- and intraspecific levels. Interpretation of the evidence for particular energy management models is enhanced by also considering the energy spent specifically on costly activities (activity energy expenditure [AEE] = DEE - RMR). However, to date there have been few intraspecific studies investigating such patterns. Our aim was to determine whether there is a generality of intraspecific relationships among RMR, DEE, and AEE using long-term data sets for bird and mammal species. For mammals, we use minimum heart rate (fH), mean fH, and activity fH as qualitative proxies for RMR, DEE, and AEE, respectively. For the birds, we take advantage of calibration equations to convert fH into rate of oxygen consumption in order to provide quantitative proxies for RMR, DEE, and AEE. For all 11 species, the DEE proxy was significantly positively correlated with the RMR proxy. There was also evidence of a significant positive correlation between AEE and RMR in all four mammal species but only in some of the bird species. Our results indicate there is no universal rule for birds and mammals governing the relationships among RMR, AEE, and DEE. Furthermore, they suggest that birds tend to have a different strategy for managing their energy budgets from those of mammals and that there are also differences in strategy between bird species. Future work in laboratory settings or highly controlled field settings can tease out the environmental and physiological processes contributing to variation in energy management strategies exhibited by different species. PMID:27153134

  1. Prediction of Muscle Energy States at Low Metabolic Rates Requires Feedback Control of Mitochondrial Respiratory Chain Activity by Inorganic Phosphate

    PubMed Central

    Schmitz, Joep P. J.; Jeneson, Jeroen A. L.; van Oorschot, Joep W. M.; Prompers, Jeanine J.; Nicolay, Klaas; Hilbers, Peter A. J.; van Riel, Natal A. W.

    2012-01-01

    The regulation of the 100-fold dynamic range of mitochondrial ATP synthesis flux in skeletal muscle was investigated. Hypotheses of key control mechanisms were included in a biophysical model of oxidative phosphorylation and tested against metabolite dynamics recorded by 31P nuclear magnetic resonance spectroscopy (31P MRS). Simulations of the initial model featuring only ADP and Pi feedback control of flux failed in reproducing the experimentally sampled relation between myoplasmic free energy of ATP hydrolysis (ΔGp = ΔGpo′+RT ln ([ADP][Pi]/[ATP]) and the rate of mitochondrial ATP synthesis at low fluxes (<0.2 mM/s). Model analyses including Monte Carlo simulation approaches and metabolic control analysis (MCA) showed that this problem could not be amended by model re-parameterization, but instead required reformulation of ADP and Pi feedback control or introduction of additional control mechanisms (feed forward activation), specifically at respiratory Complex III. Both hypotheses were implemented and tested against time course data of phosphocreatine (PCr), Pi and ATP dynamics during post-exercise recovery and validation data obtained by 31P MRS of sedentary subjects and track athletes. The results rejected the hypothesis of regulation by feed forward activation. Instead, it was concluded that feedback control of respiratory chain complexes by inorganic phosphate is essential to explain the regulation of mitochondrial ATP synthesis flux in skeletal muscle throughout its full dynamic range. PMID:22470528

  2. Effect of calorie restriction on spontaneous physical activity and body mass in mice divergently selected for basal metabolic rate (BMR).

    PubMed

    Brzęk, Paweł; Gębczyński, Andrzej K; Książek, Aneta; Konarzewski, Marek

    2016-07-01

    Spontaneous physical activity (SPA) represents an important component of daily energy expenditures in animals and humans. Intra-specific variation in SPA may be related to the susceptibility to metabolic disease or obesity. In particular, reduced SPA under conditions of limited food availability may conserve energy and prevent loss of body and fat mass ('thrifty genotype hypothesis'). However, both SPA and its changes during food restriction show wide inter-individual variations. We studied the effect of 30% caloric restriction (CR) on SPA in laboratory mice divergently selected for high (H-BMR) and low (L-BMR) basal metabolic rate. Selection increased SPA in the H-BMR line but did not change it in the L-BMR mice. This effect reflected changes in SPA intensity but not SPA duration. CR increased SPA intensity more strongly in the L-BMR line than in the H-BMR line and significantly modified the temporal variation of SPA. However, the initial between-line differences in SPA were not affected by CR. Loss of body mass during CR did not differ between both lines. Our results show that the H-BMR mice can maintain their genetically determined high SPA under conditions of reduced food intake without sacrificing their body mass. We hypothesize that this pattern may reflect the higher flexibility in the energy budget in the H-BMR line, as we showed previously that mice from this line reduced their BMR during CR. These energy savings may allow for the maintenance of elevated SPA in spite of reduced food intake. We conclude that the effect of CR on SPA is in large part determined by the initial level of BMR, whose variation may account for the lack of universal pattern of behavioural responses to CR. PMID:27090226

  3. Embryonic Development and Rates of Metabolic Activity in Early and Late Hatching Eggs of the Major Malaria Vector Anopheles gambiae

    PubMed Central

    Kaiser, Maria L.; Duncan, Frances D.; Brooke, Basil D.

    2014-01-01

    Anopheles gambiae eggs generally hatch at the completion of embryo development; two-three days post oviposition. However, staggered or delayed hatching has been observed whereby a single batch of eggs shows marked variation in time-to-hatch, with some eggs hatching 18 days post oviposition or later. The mechanism enabling delayed hatch has not been clearly elucidated but is likely mediated by environmental and genetic factors that either induce diapause or slow embryo development. This study aimed to compare metabolic activity and embryonic development between eggs collected from sub-colonies of the baseline Anopheles gambiae GAH colony previously selected for early or late time-to-hatch. Egg batches from early and late hatch sub-colonies as well as from the baseline colony were monitored for hatching. For both time-to-hatch selected sub-colonies and the baseline colony the majority of eggs hatched on day two post oviposition. Nevertheless, eggs produced by the late hatch sub-colony showed a significantly longer mean time to hatch than those produced by the early hatch sub-colony. The overall proportions that hatched were similar for all egg batches. CO2 output between eggs from early and late hatch sub-colonies showed significant differences only at 3 and 7 days post oviposition where eggs from the early hatch and the late hatch sub-colony were more metabolically active, respectively. No qualitative differences were observed in embryo development between the sub-colonies. It is concluded that all viable embryos develop to maturity at the same rate and that a small proportion then enter a state of diapause enabling them to hatch later. As it has previously been shown that it is possible to at least partially select for late hatch, this characteristic is likely to involve genetic as well as environmental factors. Delayed hatching in An. gambiae is likely an adaptation to maximise reproductive output despite the increased risk of desiccation in an unstable aquatic

  4. Limits to sustainable human metabolic rate.

    PubMed

    Westerterp, K R

    2001-09-01

    There is a limit to the performance of an organism set by energy intake and energy mobilization. Here, the focus is on humans with unlimited access to food and for whom physical activity can be limited by energy mobilization. The physical activity level (PAL) in the general population, calculated as doubly-labelled-water-assessed average daily metabolic rate as a multiple of basal metabolic rate, has an upper limit of 2.2-2.5. The upper limit of sustainable metabolic rate is approximately twice as high in endurance athletes, mainly because of long-term exercise training with simultaneous consumption of carbohydrate-rich food during exercise. Endurance athletes have an increased fat-free mass and can maintain energy balance at a PAL value of 4.0-5.0. High altitude limits exercise performance as a result of combined effects on nutrient supply and the capacity to process nutrients. Thus, trained subjects climbing Mount Everest reached PAL values of 2.0-2.7, well below the observed upper limit at sea level. PMID:11581332

  5. Effect of body mass and activity on the metabolic rate and ammonia-N excretion of the spiny lobster Sagmariasus verreauxi during ontogeny.

    PubMed

    Jensen, Mark A; Fitzgibbon, Quinn P; Carter, Chris G; Adams, Louise R

    2013-09-01

    Intraspecific analyses of the relationship between metabolic rate and mass have rarely been considered during complete ontogeny. Spiny lobsters are fascinating candidates to examine metabolic changes during ontogeny because their life cycle includes an extended planktonic, nektonic, and benthic life stages. The effect of body mass on metabolic rates, aerobic scope, and ammonia-N excretion of Sagmariasus verreauxi juveniles were examined to determine energetic demands through juvenile development. Mass-independent routine oxygen consumption increased allometrically during juvenile development with a mass scaling exponent of 0.83. The mass scaling exponent of active metabolism (0.81) was reduced compared to standard metabolism (0.91) of juvenile lobsters. The aerobic scope of juvenile lobsters decreased with larger body mass. To examine if the mass scaling exponent varies with ontogeny, we compared our data with previous measurements made with larvae of the same species. Comparison between mass scaling exponents showed they were higher for phyllosoma (0.97) compared to juvenile (0.83) development. Higher scaling exponents for phyllosoma may be attributed to increased growth rates of phyllosoma compared to juveniles, which increase oxygen consumption due to the higher energy cost of growth. The mass scaling exponent for complete ontogeny (0.91) of S. verreauxi was larger than the commonly cited 0.67 (1/3) and 0.75 (3/4) mass scaling exponents, indicating that species-specific differences can be a large factor affecting allometric relationships of animals. PMID:23756212

  6. Viscosity dictates metabolic activity of Vibrio ruber

    PubMed Central

    Borić, Maja; Danevčič, Tjaša; Stopar, David

    2012-01-01

    Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase (GPD) increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment. PMID:22826705

  7. Personality, Metabolic Rate and Aerobic Capacity

    PubMed Central

    Terracciano, Antonio; Schrack, Jennifer A.; Sutin, Angelina R.; Chan, Wayne; Simonsick, Eleanor M.; Ferrucci, Luigi

    2013-01-01

    Personality traits and cardiorespiratory fitness in older adults are reliable predictors of health and longevity. We examined the association between personality traits and energy expenditure at rest (basal metabolic rate) and during normal and maximal sustained walking. Personality traits and oxygen (VO2) consumption were assessed in 642 participants from the Baltimore Longitudinal Study of Aging. Results indicate that personality traits were mostly unrelated to resting metabolic rate and energy expenditure at normal walking pace. However, those who scored lower on neuroticism (r =  −0.12) and higher on extraversion (r = 0.11), openness (r = 0.13), and conscientiousness (r = 0.09) had significantly higher energy expenditure at peak walking pace. In addition to greater aerobic capacity, individuals with a more resilient personality profile walked faster and were more efficient in that they required less energy per meter walked. The associations between personality and energy expenditure were not moderated by age or sex, but were in part explained by the proportion of fat mass. In conclusion, differences in personality may matter the most during more challenging activities that require cardiorespiratory fitness. These findings suggest potential pathways that link personality to health outcomes, such as obesity and longevity. PMID:23372763

  8. Activation of aerobic metabolism by Amaranth oil improves heart rate variability both in athletes and patients with type 2 diabetes mellitus.

    PubMed

    Yelisyeyeva, Olha; Semen, Khrystyna; Zarkovic, Neven; Kaminskyy, Danylo; Lutsyk, Olexander; Rybalchenko, Volodymyr

    2012-05-01

    The aim of present research was to study the effects of Amaranth oil (AmO) supplementation on aerobic metabolism and heart rate variability (HRV) in type 2 diabetes mellitus patients and in athletes. Several parameters of aerobic metabolism and HRV were assessed. Supplementation with AmO caused mild pro-oxidant activity resulting in improved uptake of oxidative destruction products and modulation of catalase and SOD activity with subsequent development of an antioxidant effect. These findings were very distinct in athletes but less pronounced in diabetics. Redistribution of haemoglobin ligands in athletes indicates involvement of haemoproteins in free radical reactions during AmO supplementation. Improvement in HRV by daily consumption of AmO as observed in both study groups suggested increased production of endogenous oxygen and enhancement of the cardio-respiratory function. The advantage of activation of aerobic metabolism in OS-related disorders resulting in improved self-organization of the living system and hormetic reaction mechanisms are discussed. PMID:22393897

  9. Antioxidants, metabolic rate and aging in Drosophila

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Fleming, J.; Economos, A. C.

    1982-01-01

    The metabolic rate-of-living theory of aging was investigated by determining the effect of several life-prolonging antioxidants on the metabolic rate and life span of Drosophila. The respiration rate of groups of continuously agitated flies was determined in a Gilson respirometer. Vitamin E, 2,4-dinitrophenol, nordihydroguaiaretic acid, and thiazolidine carboxylic acid were employed as antioxidants. Results show that all of these antioxidants reduced the oxygen consumption rate and increased the mean life span, and a significant negative linear correlation was found between the mean life span and the metabolic rate. It is concluded that these findings indicate that some antioxidants may inhibit respiration rate in addition to their protective effect against free radical-induced cellular damage.

  10. Metabolic rates of giant pandas inform conservation strategies.

    PubMed

    Fei, Yuxiang; Hou, Rong; Spotila, James R; Paladino, Frank V; Qi, Dunwu; Zhang, Zhihe

    2016-01-01

    The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction. PMID:27264109

  11. Metabolic rates of giant pandas inform conservation strategies

    PubMed Central

    Fei, Yuxiang; Hou, Rong; Spotila, James R.; Paladino, Frank V.; Qi, Dunwu; Zhang, Zhihe

    2016-01-01

    The giant panda is an icon of conservation and survived a large-scale bamboo die off in the 1980s in China. Captive breeding programs have produced a large population in zoos and efforts continue to reintroduce those animals into the wild. However, we lack sufficient knowledge of their physiological ecology to determine requirements for survival now and in the face of climate change. We measured resting and active metabolic rates of giant pandas in order to determine if current bamboo resources were sufficient for adding additional animals to populations in natural reserves. Resting metabolic rates were somewhat below average for a panda sized mammal and active metabolic rates were in the normal range. Pandas do not have exceptionally low metabolic rates. Nevertheless, there is enough bamboo in natural reserves to support both natural populations and large numbers of reintroduced pandas. Bamboo will not be the limiting factor in successful reintroduction. PMID:27264109

  12. Is metabolic rate a universal 'pacemaker' for biological processes?

    PubMed

    Glazier, Douglas S

    2015-05-01

    A common, long-held belief is that metabolic rate drives the rates of various biological, ecological and evolutionary processes. Although this metabolic pacemaker view (as assumed by the recent, influential 'metabolic theory of ecology') may be true in at least some situations (e.g. those involving moderate temperature effects or physiological processes closely linked to metabolism, such as heartbeat and breathing rate), it suffers from several major limitations, including: (i) it is supported chiefly by indirect, correlational evidence (e.g. similarities between the body-size and temperature scaling of metabolic rate and that of other biological processes, which are not always observed) - direct, mechanistic or experimental support is scarce and much needed; (ii) it is contradicted by abundant evidence showing that various intrinsic and extrinsic factors (e.g. hormonal action and temperature changes) can dissociate the rates of metabolism, growth, development and other biological processes; (iii) there are many examples where metabolic rate appears to respond to, rather than drive the rates of various other biological processes (e.g. ontogenetic growth, food intake and locomotor activity); (iv) there are additional examples where metabolic rate appears to be unrelated to the rate of a biological process (e.g. ageing, circadian rhythms, and molecular evolution); and (v) the theoretical foundation for the metabolic pacemaker view focuses only on the energetic control of biological processes, while ignoring the importance of informational control, as mediated by various genetic, cellular, and neuroendocrine regulatory systems. I argue that a comprehensive understanding of the pace of life must include how biological activities depend on both energy and information and their environmentally sensitive interaction. This conclusion is supported by extensive evidence showing that hormones and other regulatory factors and signalling systems coordinate the processes of

  13. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates.

    PubMed

    Williams, Caroline M; Szejner-Sigal, Andre; Morgan, Theodore J; Edison, Arthur S; Allison, David B; Hahn, Daniel A

    2016-07-01

    Metabolic cold adaptation is a pattern where ectotherms from cold, high-latitude, or -altitude habitats have higher metabolic rates than ectotherms from warmer habitats. When found, metabolic cold adaptation is often attributed to countergradient selection, wherein short, cool growing seasons select for a compensatory increase in growth rates and development times of ectotherms. Yet, ectotherms in high-latitude and -altitude environments face many challenges in addition to thermal and time constraints on lifecycles. In addition to short, cool growing seasons, high-latitude and - altitude environments are characterized by regular exposure to extreme low temperatures, which cause ectotherms to enter a transient state of immobility termed chill coma. The ability to resume activity quickly after chill coma increases with latitude and altitude in patterns consistent with local adaptation to cold conditions. We show that artificial selection for fast and slow chill coma recovery among lines of the fly Drosophila melanogaster also affects rates of respiratory metabolism. Cold-hardy fly lines, with fast recovery from chill coma, had higher respiratory metabolic rates than control lines, with cold-susceptible slow-recovering lines having the lowest metabolic rates. Fast chill coma recovery was also associated with higher respiratory metabolism in a set of lines derived from a natural population. Although their metabolic rates were higher than control lines, fast-recovering cold-hardy lines did not have faster growth rates or development times than control lines. This suggests that raised metabolic rates in high-latitude and -altitude species may be driven by adaptation to extreme low temperatures, illustrating the importance of moving "Beyond the Mean". PMID:27103615

  14. Constraint-Free Measurement of Metabolic Rate

    NASA Technical Reports Server (NTRS)

    Koester, K. L.

    1982-01-01

    By using hardware and software originally developed for manned spacecraft, metabolism is now measured while subject wears a loose-fitting mask. This more comfortable, less-restrictive measurement technique uses speed, accuracy and control capabilities of a microcomputer. Because mask imposes minimum interference to subject undergoing testing, it can be used to measure respiratory responses to such activities as treadmill exercise. Mask can be worn for long periods with little discomfort.

  15. Quiescent Fibroblasts Exhibit High Metabolic Activity

    PubMed Central

    Lemons, Johanna M. S.; Feng, Xiao-Jiang; Bennett, Bryson D.; Legesse-Miller, Aster; Johnson, Elizabeth L.; Raitman, Irene; Pollina, Elizabeth A.; Rabitz, Herschel A.; Rabinowitz, Joshua D.; Coller, Hilary A.

    2010-01-01

    Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. PMID:21049082

  16. Fluctuating selection on basal metabolic rate.

    PubMed

    Nilsson, Johan F; Nilsson, Jan-Åke

    2016-02-01

    BMR (Basal metabolic rate) is an important trait in animal life history as it represents a significant part of animal energy budgets. BMR has also been shown to be positively related to sustainable work rate and maximal thermoregulatory capacity. To this date, most of the studies have focused on the causes of interspecific and intraspecific variation in BMR, and fairly little is known about the fitness consequences of different metabolic strategies. In this study, we show that winter BMR affects local survival in a population of wild blue tits (Cyanistes caeruleus), but that the selection direction differs between years. We argue that this fluctuating selection is probably a consequence of varying winter climate with a positive relation between survival and BMR during cold and harsh conditions, but a negative relation during mild winters. This fluctuating selection can not only explain the pronounced variation in BMR in wild populations, but will also give us new insights into how energy turnover rates can shape the life-history strategies of animals. Furthermore, the study shows that the process of global warming may cause directional selection for a general reduction in BMR, affecting the general life-history strategy on the population level. PMID:26839687

  17. Metabolic Activity - Skylab Experiment M171

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Metabolic Activity experiment (M171), a medical evaluation facility designed to measure astronauts' metabolic changes while on long-term space missions. The experiment obtained information on astronauts' physiological capabilities and limitations and provided data useful in the design of future spacecraft and work programs. Physiological responses to physical activity was deduced by analyzing inhaled and exhaled air, pulse rate, blood pressure, and other selected variables of the crew while they performed controlled amounts of physical work with a bicycle ergometer. The Marshall Space Flight Center had program responsibility for the development of Skylab hardware and experiments.

  18. Culture perfusion schedules influence the metabolic activity and granulocyte-macrophage colony-stimulating factor production rates of human bone marrow stromal cells.

    PubMed

    Caldwell, J; Palsson, B O; Locey, B; Emerson, S G

    1991-05-01

    The metabolic function and GM-CSF production rates of adherent human bone marrow stromal cells were investigated as functions of medium and serum feeding rates. A range of medium exchange schedules was studied, ranging from a typical Dexter culture protocol of one weekly medium exchange to a full media exchange daily, which more closely approximates what bone marrow cells experience in situ. Glucose consumption was found to be significantly higher at full daily exchange rate than at any other exchange schedule examined. However, the lactate yield on glucose was a constant, at 1.8 mol/mol, under all conditions considered. Differential serum vs. medium exchange experiment showed that both serum supply and medium nutrients were responsible for the altered behavior at high exchange rates. Glutamine consumption was found to be insignificant under all culture conditions examined. A change in exchange schedule from 50% daily medium exchange to full daily medium exchange after 14 days of culture was found to result in a transient production of GM-CSF and a change in metabolic behavior to resemble that of cultures which had full daily exchange from day one. These results suggest that both stromal cell metabolism and GM-CSF production are sensitive to medium exchange schedules. Taken together, the data presented indicate that attempts to model the function of human bone marrow in vitro may be well served by beginning with medium exchange schedules that more closely mimic the in vivo physiologic state of bone marrow. PMID:2040665

  19. Field Metabolic Rate Is Dependent on Time-Activity Budget in Ring-Billed Gulls (Larus delawarensis) Breeding in an Anthropogenic Environment.

    PubMed

    Marteinson, Sarah C; Giroux, Jean-François; Hélie, Jean-François; Gentes, Marie-Line; Verreault, Jonathan

    2015-01-01

    Environmental and behavioral factors have long been assumed to affect variation in avian field metabolic rate (FMR). However, due to the difficulties in measuring continuous behavior of birds over prolonged periods of time, complete time-activity budgets have rarely been examined in relation to FMR. Our objective was to determine the effect of activity (measured by detailed time-activity budgets) and a series of extrinsic and intrinsic factors on FMR of the omnivorous ring-billed gull (Larus delawarensis). The experiment was conducted during the incubation period when both members of the pair alternate between attending the nest-site and leaving the colony to forage in aquatic and anthropogenic environments (city, agricultural). FMR was determined using the doubly labeled water method. Time-activity budgets were extrapolated from spatio-temporal data (2-5 days) obtained from bird-borne GPS data loggers. Gulls had low FMRs compared to those predicted by allometric equations based on recorded FMRs from several seabird species. Gulls proportioned their time mainly to nest-site attendance (71% of total tracking time), which reduced FMR/g body mass, and was the best variable explaining energy expenditure. The next best variable was the duration of foraging trips, which increased FMR/g; FMR/g was also elevated by the proportion of time spent foraging or flying (17% and 8% of tracking time respectively). Most environmental variables measured did not impact FMR/g, however, the percent of time birds were subjected to temperatures below their lower critical temperature increased FMR. Time-activity budgets varied between the sexes, and with temperature and capture date suggesting that these variables indirectly affected FMR/g. The gulls foraged preferentially in anthropogenic-related habitats, which may have contributed to their low FMR/g due to the high availability of protein- and lipid-rich foods. This study demonstrates that activities were the best predictors of FMR/g in

  20. Field Metabolic Rate Is Dependent on Time-Activity Budget in Ring-Billed Gulls (Larus delawarensis) Breeding in an Anthropogenic Environment

    PubMed Central

    Marteinson, Sarah C.; Giroux, Jean-François; Hélie, Jean-François; Gentes, Marie-Line; Verreault, Jonathan

    2015-01-01

    Environmental and behavioral factors have long been assumed to affect variation in avian field metabolic rate (FMR). However, due to the difficulties in measuring continuous behavior of birds over prolonged periods of time, complete time-activity budgets have rarely been examined in relation to FMR. Our objective was to determine the effect of activity (measured by detailed time-activity budgets) and a series of extrinsic and intrinsic factors on FMR of the omnivorous ring-billed gull (Larus delawarensis). The experiment was conducted during the incubation period when both members of the pair alternate between attending the nest-site and leaving the colony to forage in aquatic and anthropogenic environments (city, agricultural). FMR was determined using the doubly labeled water method. Time-activity budgets were extrapolated from spatio-temporal data (2-5 days) obtained from bird-borne GPS data loggers. Gulls had low FMRs compared to those predicted by allometric equations based on recorded FMRs from several seabird species. Gulls proportioned their time mainly to nest-site attendance (71% of total tracking time), which reduced FMR/g body mass, and was the best variable explaining energy expenditure. The next best variable was the duration of foraging trips, which increased FMR/g; FMR/g was also elevated by the proportion of time spent foraging or flying (17% and 8% of tracking time respectively). Most environmental variables measured did not impact FMR/g, however, the percent of time birds were subjected to temperatures below their lower critical temperature increased FMR. Time-activity budgets varied between the sexes, and with temperature and capture date suggesting that these variables indirectly affected FMR/g. The gulls foraged preferentially in anthropogenic-related habitats, which may have contributed to their low FMR/g due to the high availability of protein- and lipid-rich foods. This study demonstrates that activities were the best predictors of FMR/g in

  1. Apollo experience report: Assessment of metabolic expenditures. [extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Hawkins, W. R.; Humbert, G. F.; Nelson, L. J.; Vogel, S. J.; Kuznetz, L. H.

    1975-01-01

    A significant effort was made to assess the metabolic expenditure for extravehicular activity on the lunar surface. After evaluation of the real-time data available to the flight controller during extravehicular activity, three independent methods of metabolic assessment were chosen based on the relationship between heart rate and metabolic production, between oxygen consumption and metabolic production, and between the thermodynamics of the liquid-cooled garment and metabolic production. The metabolic assessment procedure is analyzed and discussed. Real-time use of this information by the Apollo flight surgeon is discussed. Results and analyses of the Apollo missions and comments concerning future applications are included.

  2. Metabolically consistent breathing rates for use in dose assessments

    SciTech Connect

    Layton, D.W. )

    1993-01-01

    Assessments of doses resulting from exposures to airborne gases and particles are based almost exclusively on inhalation rates that are inconsistent with the quantities of oxygen needed to metabolize dietary intakes of fats, carbohydrates, and protein. This inconsistency leads to erroneous estimates of inhalation exposures and can distort the relative importance of inhalation and ingestion-based exposures to environmental contaminants that are present in foods, air, and water. As a means of dealing with this problem, a new methodology for estimating breathing rates is presented that is based on the oxygen uptake associated with energy expenditures and a ventilatory equivalent that relates minute volume to oxygen uptake. Three alternative energy-based approaches for estimating daily inhalation rates are examined: (1) average daily intakes of food energy from dietary surveys, adjusted for under reporting of foods; (2) average daily energy expenditure calculated from ratios of total daily expenditure to basal metabolism; and (3) daily energy expenditures determined from a time-activity survey. Under the first two approaches, inhalation rates for adult females in different age cohorts ranged from 9.7 to 11 m3 d-1, whereas for adult males the range was 13 to 17 m3 d-1. Inhalation rates for adults determined from activity patterns were higher (i.e., 13 to 18 m3 d-1), however, those rates were shown to be quite sensitive to the energy expenditures used to represent light and sedentary activities. In contrast to the above estimates, the ICRP 23 reference values for adult females and males are 21 and 23 m3 d-1 (Snyder et al. 1975). Finally, the paper provides a technique for determining the short-term breathing rates of individuals based on their basal metabolic rate and level of physical activity.

  3. Combining Disparate Measures of Metabolic Rate During Simulated Spacewalks

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Kuznetz, Larry; Nguyen, Dan

    2009-01-01

    Scientists from NASA's Extravehicular Activities (EVA) Physiology Systems and Performance Project help design space suits for future missions, during which astronauts are expected to perform EVA activities on the Lunar or Martian surface. During an EVA, an astronaut s integrated metabolic rate is used to predict how much longer the activity can continue and still provide a safe margin of remaining consumables. For EVAs in the Apollo era, NASA physicians monitored live data feeds of heart rate, O2 consumption, and liquid cooled garment (LCG) temperatures, which were subjectively combined or compared to produce an estimate of metabolic rate. But these multiple data feeds sometimes provided conflicting estimates of metabolic rate, making real-time calculations of remaining time difficult for physician/monitors. Currently, designs planned for the Constellation Program EVAs utilize an automated, but largely heuristic methodology for incorporating the above three measurements, plus an additional one - CO2 production, ignoring data that appears in conflict; however a more rigorous model-based approach is desirable. In this study, we show how principal axis factor analysis, in combination with OLS regression and LOWESS smoothing can be used to estimate metabolic rate as a data-driven weighted average of heart rate, O2 consumption, LCG temperature data, and CO2 production. Preliminary results suggest less sensitivity to occasional spikes in observed data feeds, and reasonable within-subject reproducibility when applied to subsequent tasks. These methods do not require physician monitoring and as such can be automated in the electronic components of future space suits. With additional validation, our models show promise for increasing astronaut safety, while reducing the need for and potential errors associated with human monitoring of multiple systems.

  4. No reduction of metabolic rate in food restricted Caenorhabditis elegans.

    PubMed

    Houthoofd, Koen; Braeckman, Bart P; Lenaerts, Isabelle; Brys, Kristel; De Vreese, Annemie; Van Eygen, Sylvie; Vanfleteren, Jacques R

    2002-12-01

    Dietary restriction (DR) is the most consistent means of extending life span throughout the animal kingdom. Multiple mechanisms by which DR may act have been proposed but none are clearly predominant. We asked whether metabolic rate and stress resistance is altered in Caenorhabditis elegans in response to DR. DR was imposed in two complementary ways: by growing wild-type worms in liquid medium supplemented with reduced concentrations of bacteria and by using eat-2 mutants, which have a feeding defect. Metabolic rate was not reduced when we fed wild-type worms reduced food and was up-regulated in the eat-2 mutants in liquid culture, as assessed by oxygen consumption rate and heat production. The specific activity levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase showed small increases when we reduced food in wild-type worms, but restricted worms acquired no elevated protection against paraquat and hydrogen peroxide. eat-2 mutants showed elevated specific activities of SOD and catalase relative to wild type in liquid culture. These results indicate that the effects imparted by DR and the eat-2 mutation are not identical, and they contradict, at least in C. elegans, the widespread belief that CR acts by lowering the rate of metabolism. PMID:12559405

  5. Metabolic assessments during extra-vehicular activity

    NASA Astrophysics Data System (ADS)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  6. Metabolomics of aerobic metabolism in mice selected for increased maximal metabolic rate

    PubMed Central

    Wone, Bernard; Donovan, Edward R.; Hayes, Jack P.

    2014-01-01

    Maximal aerobic metabolic rate (MMR) is an important physiological and ecological variable that sets an upper limit to sustained, vigorous activity. How the oxygen cascade from the external environment to the mitochondria may affect MMR has been the subject of much interest, but little is known about the metabolic profiles that underpin variation in MMR. We tested how seven generations of artificial selection for high mass-independent MMR affected metabolite profiles of two skeletal muscles (gastrocnemius and plantaris) and the liver. MMR was 12.3% higher in mass selected for high MMR than in controls. Basal metabolic rate was 3.5% higher in selected mice than in controls. Artificial selection did not lead to detectable changes in the metabolic profiles from plantaris muscle, but in the liver amino acids and tricarboxylic acid cycle (TCA cycle) metabolites were lower in high-MMR mice than in controls. In gastrocnemius, amino acids and TCA cycle metabolites were higher in high-MMR mice than in controls, indicating elevated amino acid and energy metabolism. Moreover, in gastrocnemius free fatty acids and triacylglycerol fatty acids were lower in high-MMR mice than in controls. Because selection for high MMR was associated with changes in the resting metabolic profile of both liver and gastrocnemius, the result suggests a possible mechanistic link between resting metabolism and MMR. In addition, it is well established that diet and exercise affect the composition of fatty acids in muscle. The differences that we found between control lines and lines selected for high MMR demonstrate that the composition of fatty acids in muscle is also affected by genetic factors. PMID:21982590

  7. Can you boost your metabolism?

    MedlinePlus

    Resting metabolism rate (RMR); Total daily energy expenditure (TDEE); Non-exercise activity thermogenesis (NEAT); Weight loss - metabolism; Overweight - metabolism; Obesity - metabolism; Diet - metabolism

  8. Metabolic activity of subsurface life in deep-sea sediments.

    PubMed

    D'Hondt, Steven; Rutherford, Scott; Spivack, Arthur J

    2002-03-15

    Global maps of sulfate and methane in marine sediments reveal two provinces of subsurface metabolic activity: a sulfate-rich open-ocean province, and an ocean-margin province where sulfate is limited to shallow sediments. Methane is produced in both regions but is abundant only in sulfate-depleted sediments. Metabolic activity is greatest in narrow zones of sulfate-reducing methane oxidation along ocean margins. The metabolic rates of subseafloor life are orders of magnitude lower than those of life on Earth's surface. Most microorganisms in subseafloor sediments are either inactive or adapted for extraordinarily low metabolic activity. PMID:11896277

  9. Auxin metabolism rates and implications for plant development.

    PubMed

    Kramer, Eric M; Ackelsberg, Ethan M

    2015-01-01

    Studies of auxin metabolism rarely express their results as a metabolic rate, although the data obtained would often permit such a calculation to be made. We analyze data from 31 previously published papers to quantify the rates of auxin biosynthesis, conjugation, conjugate hydrolysis, and catabolism in seed plants. Most metabolic pathways have rates in the range 10 nM/h-1 μM/h, with the exception of auxin conjugation, which has rates as high as ~100 μM/h. The high rates of conjugation suggest that auxin metabolic sinks may be very small, perhaps as small as a single cell. By contrast, the relatively low rate of auxin biosynthesis requires plants to conserve and recycle auxin during long-distance transport. The consequences for plant development are discussed. PMID:25852709

  10. Auxin metabolism rates and implications for plant development

    PubMed Central

    Kramer, Eric M.; Ackelsberg, Ethan M.

    2015-01-01

    Studies of auxin metabolism rarely express their results as a metabolic rate, although the data obtained would often permit such a calculation to be made. We analyze data from 31 previously published papers to quantify the rates of auxin biosynthesis, conjugation, conjugate hydrolysis, and catabolism in seed plants. Most metabolic pathways have rates in the range 10 nM/h–1 μM/h, with the exception of auxin conjugation, which has rates as high as ~100 μM/h. The high rates of conjugation suggest that auxin metabolic sinks may be very small, perhaps as small as a single cell. By contrast, the relatively low rate of auxin biosynthesis requires plants to conserve and recycle auxin during long-distance transport. The consequences for plant development are discussed. PMID:25852709

  11. Leptin expression affects metabolic rate in zebrafish embryos (D. rerio)

    PubMed Central

    Dalman, Mark R.; Liu, Qin; King, Mason D.; Bagatto, Brian; Londraville, Richard L.

    2013-01-01

    We used antisense morpholino oligonucleotide technology to knockdown leptin-(A) gene expression in developing zebrafish embryos and measured its effects on metabolic rate and cardiovascular function. Using two indicators of metabolic rate, oxygen consumption was significantly lower in leptin morphants early in development [<48 hours post-fertilization (hpf)], while acid production was significantly lower in morphants later in development (>48 hpf). Oxygen utilization rates in <48 hpf embryos and acid production in 72 hpf embryos could be rescued to that of wildtype embryos by recombinant leptin coinjected with antisense morpholino. Leptin is established to influence metabolic rate in mammals, and these data suggest leptin signaling also influences metabolic rate in fishes. PMID:23847542

  12. Gravity, body mass and composition, and metabolic rate

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.

    1984-01-01

    The scale effects of increased gravitational loading by chronic centrifugation on metabolic rate and body composition in metabolically mature mammals were investigated. Individual oxygen consumption rates in groups of 12 each, 8-month-old, hamster, rats, guinea pigs, and rabbits were measured at weekly intervals at 1.0 g, then 2.0 g for 6 weeks. Metabolic rate was increased significantly in all species, and stabilized after 2 weeks at 2.0 g. Statistical analysis of the data revealed that the larger the animal the greater was the increase in mass-specific metabolic rate, or metabolic intensity, over the 1.0 g value for the same animal, with the result that the interspecies allometric scaling relationship between metabolic rate and total body mass is different at 2.0 g compared 10 1.0 g. Analysis of covariance shows that the postioning constant at 2.0 g is increased by 17% at 2.0 g at the P .001 level, and the exponent is increased by 8% at the P = 0.008 level. Thus, the hypothesis that augmented gravitational loading should shift the allometric relationship between metabolic rate and body size by an increase in both parameters is supported.

  13. Variability of Lekanesphaera monodi metabolic rates with habitat trophic status

    NASA Astrophysics Data System (ADS)

    Vignes, Fabio; Fedele, Marialaura; Pinna, Maurizio; Mancinelli, Giorgio; Basset, Alberto

    2012-05-01

    Regulation of metabolism is a common strategy used by individuals to respond to a changing environment. The mechanisms underlying the variability of metabolic rates in macroinvertebrates are of primary importance in studying benthic-pelagic energy transfer in transitional water ecosystems. Lekanesphaera monodi is an isopod endemic to transitional water ecosystems that can modify its metabolic rate in response to environmental changes. Therefore it is a useful model in studying the influence of environmental factors on metabolism. This study focused on the interpopulation variability of standard metabolic rates (SMR) in L. monodi populations sampled in three transitional water ecosystems differing in their trophic status. The standard metabolic rates of L. monodi individuals across the same range of body size spectra were inferred from oxygen consumption measurements in a flow-through respirometer in the three populations and a body condition index was assessed for each population. Habitat trophic status was evaluated by monthly measurement of the basic physical-chemical parameters of the water column in the ecosystems for one year. Standard metabolic rates showed high variability, ranging from 0.27 to 10.14 J d-1. Body size accounted for more than 38% of total variability. In terms of trophic status, individuals from the eutrophic ecosystem had significantly higher standard metabolic rates than individuals from the other ecosystems (SMR = 2.3 J d-1 in Spunderati Sud vs. 1.36 J d-1 in Alimini and 0.69 J d-1 in Acquatina). The body conditions index was also higher in the population from the eutrophic ecosystem. Results show that standard metabolic rates and growth rates are directly related to habitat productivity in accordance with the expectations of the food habits hypothesis. A possible extension of this hypothesis to benthic invertebrates is proposed.

  14. Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi).

    PubMed

    Terblanche, John S; Klok, C Jaco; Marais, Elrike; Chown, Steven L

    2004-07-01

    Metabolic rate estimates as well as a measure of their repeatability and response to laboratory acclimation are provided for the amblypygid Damon annulatipes (Wood). This species (mean +/- S.E. mass: 640+/-66 mg) shows continuous gas exchange, as might be expected from its possession of book lungs, and at 21 degrees C has a metabolic rate of 30.22+/-2.87 microl CO2 h(-1) (approximately 229.6+/-21.8 microW, R.Q. = 0.72). The intraclass correlation coefficient (r=0.74-0.89) indicated substantial repeatability in metabolic rate which did not change with laboratory acclimation over a period of 2 weeks. By contrast, absolute metabolic rate declined by c. 16-33%, although this was not a consequence of changes in mass (which were non-significant over the same period). Rather, it appears that a reduction in overall stress or activity in the laboratory might have been responsible for the decline in mass-independent metabolic rate. At the intraspecific level, metabolic rate scaled as microW = 342 M(0.857), where mass is in grams. Metabolic rates of this species are in keeping with its sedentary behaviour such that for a given body size they are lower than those of most arthropods (spiders and insects), higher than the very sedentary ticks, and equivalent to scorpions. These findings have implications for the understanding of the evolution of metabolic rates in arthropods. PMID:15234624

  15. Measurement of Metabolic Rate in Drosophila using Respirometry

    PubMed Central

    Yatsenko, Andriy S.; Marrone, April K.; Kucherenko, Mariya M.; Shcherbata, Halyna R.

    2014-01-01

    Metabolic disorders are a frequent problem affecting human health. Therefore, understanding the mechanisms that regulate metabolism is a crucial scientific task. Many disease causing genes in humans have a fly homologue, making Drosophila a good model to study signaling pathways involved in the development of different disorders. Additionally, the tractability of Drosophila simplifies genetic screens to aid in identifying novel therapeutic targets that may regulate metabolism. In order to perform such a screen a simple and fast method to identify changes in the metabolic state of flies is necessary. In general, carbon dioxide production is a good indicator of substrate oxidation and energy expenditure providing information about metabolic state. In this protocol we introduce a simple method to measure CO2 output from flies. This technique can potentially aid in the identification of genetic perturbations affecting metabolic rate. PMID:24998593

  16. Warming reduces metabolic rate in marine snails: adaptation to fluctuating high temperatures challenges the metabolic theory of ecology

    PubMed Central

    Marshall, David J.; McQuaid, Christopher D.

    2011-01-01

    The universal temperature-dependence model (UTD) of the metabolic theory of ecology (MTE) proposes that temperature controls mass-scaled, whole-animal resting metabolic rate according to the first principles of physics (Boltzmann kinetics). Controversy surrounds the model's implication of a mechanistic basis for metabolism that excludes the effects of adaptive regulation, and it is unclear how this would apply to organisms that live in fringe environments and typically show considerable metabolic adaptation. We explored thermal scaling of metabolism in a rocky-shore eulittoral-fringe snail (Echinolittorina malaccana) that experiences constrained energy gain and fluctuating high temperatures (between 25°C and approximately 50°C) during prolonged emersion (weeks). In contrast to the prediction of the UTD model, metabolic rate was often negatively related to temperature over a benign range (30–40°C), the relationship depending on (i) the temperature range, (ii) the degree of metabolic depression (related to the quiescent period), and (iii) whether snails were isolated within their shells. Apparent activation energies (E) varied between 0.05 and −0.43 eV, deviating excessively from the UTD's predicted range of between 0.6 and 0.7 eV. The lowering of metabolism when heated should improve energy conservation in a high-temperature environment and challenges both the theory's generality and its mechanistic basis. PMID:20685714

  17. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities.

    PubMed

    Seibel, Brad A; Drazen, Jeffrey C

    2007-11-29

    The rates of metabolism in animals vary tremendously throughout the biosphere. The origins of this variation are a matter of active debate with some scientists highlighting the importance of anatomical or environmental constraints, while others emphasize the diversity of ecological roles that organisms play and the associated energy demands. Here, we analyse metabolic rates in diverse marine taxa, with special emphasis on patterns of metabolic rate across a depth gradient, in an effort to understand the extent and underlying causes of variation. The conclusion from this analysis is that low rates of metabolism, in the deep sea and elsewhere, do not result from resource (e.g. food or oxygen) limitation or from temperature or pressure constraint. While metabolic rates do decline strongly with depth in several important animal groups, for others metabolism in abyssal species proceeds as fast as in ecologically similar shallow-water species at equivalent temperatures. Rather, high metabolic demand follows strong selection for locomotory capacity among visual predators inhabiting well-lit oceanic waters. Relaxation of this selection where visual predation is limited provides an opportunity for reduced energy expenditure. Large-scale metabolic variation in the ocean results from interspecific differences in ecological energy demand. PMID:17510016

  18. Routine Metabolic Rate of Channel Catfish Ictalurus punctatus Fry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel catfish eggs are typically incubated at high density and are often subjected to sub-optimum dissolved oxygen (DO) concentrations while in the hatchery. Since DO plays an important role in the development, hatch rate, and growth of catfish eggs and fry, we measured routine metabolic rate of ...

  19. Speeding up Growth: Selection for Mass-Independent Maximal Metabolic Rate Alters Growth Rates.

    PubMed

    Downs, Cynthia J; Brown, Jessi L; Wone, Bernard W M; Donovan, Edward R; Hayes, Jack P

    2016-03-01

    Investigations into relationships between life-history traits, such as growth rate and energy metabolism, typically focus on basal metabolic rate (BMR). In contrast, investigators rarely examine maximal metabolic rate (MMR) as a relevant metric of energy metabolism, even though it indicates the maximal capacity to metabolize energy aerobically, and hence it might also be important in trade-offs. We studied the relationship between energy metabolism and growth in mice (Mus musculus domesticus Linnaeus) selected for high mass-independent metabolic rates. Selection for high mass-independent MMR increased maximal growth rate, increased body mass at 20 weeks of age, and generally altered growth patterns in both male and female mice. In contrast, there was little evidence that the correlated response in mass-adjusted BMR altered growth patterns. The relationship between mass-adjusted MMR and growth rate indicates that MMR is an important mediator of life histories. Studies investigating associations between energy metabolism and life histories should consider MMR because it is potentially as important in understanding life history as BMR. PMID:26913943

  20. Selection of quiescent Escherichia coli with high metabolic activity.

    PubMed

    Sonderegger, Marco; Schümperli, Michael; Sauer, Uwe

    2005-01-01

    Sustained metabolic activity in non-growing, quiescent cells can increase the operational life-span of bio-processes and improve process economics by decoupling production from cell growth. Because of the ill-defined molecular nature of this phenotype, we developed selection protocols for the evolution of quiescent Escherichia coli mutants that exhibit high metabolic activity in ammonium starvation-induced stationary phase. The best enrichment procedures were continuously or discontinuously fed ammonium-limited chemostat cultures with a very low dilution rate of 0.03 h(-1). After 40 generations of selection, improved mutants with up to doubled catabolic rates in stationary phase were isolated. The metabolically most active clones were identified by screening for high specific glucose uptake rates during ammonium starvation-induced stationary phase in deep-well microtiter plates. PMID:15721805

  1. Elevated plasma corticosterone increases metabolic rate in a terrestrial salamander.

    PubMed

    Wack, Corina L; DuRant, Sarah E; Hopkins, William A; Lovern, Matthew B; Feldhoff, Richard C; Woodley, Sarah K

    2012-02-01

    Plasma glucocorticoid hormones (GCs) increase intermediary metabolism, which may be reflected in whole-animal metabolic rate. Studies in fish, birds, and reptiles have shown that GCs may alter whole-animal energy expenditure, but results are conflicting and often involve GC levels that are not physiologically relevant. A previous study in red-legged salamanders found that male courtship pheromone increased plasma corticosterone (CORT; the primary GC in amphibians) concentrations in males, which could elevate metabolic processes to sustain courtship behaviors. To understand the possible metabolic effect of elevated plasma CORT, we measured the effects of male courtship pheromone and exogenous application of CORT on oxygen consumption in male red-legged salamanders (Plethodon shermani). Exogenous application of CORT elevated plasma CORT to physiologically relevant levels. Compared to treatment with male courtship pheromone and vehicle, treatment with CORT increased oxygen consumption rates for several hours after treatment, resulting in 12% more oxygen consumed (equivalent to 0.33 J) during our first 2h sampling period. Contrary to our previous work, treatment with pheromone did not increase plasma CORT, perhaps because subjects used in this study were not in breeding condition. Pheromone application did not affect respiration rates. Our study is one of the few to evaluate the influence of physiologically relevant elevations in CORT on whole-animal metabolism in vertebrates, and the first to show that elevated plasma CORT increases metabolism in an amphibian. PMID:22047668

  2. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. ); Gillin, J.C. )

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  3. Industry as a metabolic activity.

    PubMed

    Smart, B

    1992-02-01

    The concept of "industrial economic metabolism" can provide a bridge to better understanding between environmentalists and industry. In nature each individual or species reacts to natural stimuli, competing with others for resources, extending its domain until it loses comparative advantage and comes to equilibrium with an adjacent competitor. Those species that succeed over time flourish; those that do not, diminish or disappear. Nature's rule book has no moral or ethical ingredient beyond self-interest. Corporate metabolisms are remarkably similar to those of nature. They too react to stimuli, collect and use resources, and grow or perish based on how effectively they compete. Corporate management recognizes and responds naturally and efficiently to cost and price signals. Through them it selects resources and converts them into useful products. The efficiency with which this is done is measured by profit, the lifeblood of the corporation and its means of growth. Profit thus provides a discipline on corporate behavior, encouraging efficient performers, and, by its absence, weeding out others. Unfettered by influences other than economics, the path to corporate success is unlikely to be a compassionate one. The dilemma of the manager is that to do what is socially "right" often conflicts with what must be done to survive and prosper. Fortunately, corporations' behavior can be altered by society when their purely economic role comes into conflict with other human values. The environment and the economy are not separate systems but intertwined to form a complex natural and social setting. The human-designed economic system depends on natural resource inputs, and in turn its metabolic wastes can overload the ecological system, threatening the long-term survivability of both. Increasing concern for the environment now gives the farsighted manager new latitude. There are competitive benefits in some pollution prevention. But there are not sufficiently strong forces to

  4. Antidepressants Alter Cerebrovascular Permeability and Metabolic Rate in Primates

    NASA Astrophysics Data System (ADS)

    Preskorn, Sheldon H.; Raichle, Marcus E.; Hartman, Boyd K.

    1982-07-01

    External detection of the annihilation radiation produced by water labeled with oxygen-15 was used to measure cerebrovascular permeability and cerebral blood flow in six rhesus monkeys. Use of oxygen-15 also permitted assessment of cerebral metabolic rate in two of the monkeys. Amitriptyline produced a dose-dependent, reversible increase in permeability at plasma drug concentrations which are therapeutic for depressed patients. At the same concentrations the drug also produced a 20 to 30 percent reduction in cerebral metabolic rate. At higher doses normal autoregulation of cerebral blood flow was suspended, but responsivity to arterial carbon dioxide was normal.

  5. Increased Heart Rate Variability but Normal Resting Metabolic Rate in Hypocretin/Orexin-Deficient Human Narcolepsy

    PubMed Central

    Fronczek, Rolf; Overeem, Sebastiaan; Reijntjes, Robert; Lammers, Gert Jan; van Dijk, J. Gert; Pijl, Hanno

    2008-01-01

    Study Objectives: We investigated autonomic balance and resting metabolic rate to explore their possible involvement in obesity in hypocretin/orexin-deficient narcoleptic subjects. Methods: Resting metabolic rate (using indirect calorimetry) and variability in heart rate and blood pressure were determined in the fasted resting state. Subjects included 15 untreated, hypocretin-deficient male narcoleptics and 15 male controls matched for age and body mass index. Results: Spectral power analysis revealed greater heart rate and blood pressure variability in hypocretin-deficient male narcoleptic patients (heart rate: p = 0.01; systolic blood pressure: p = 0.02; diastolic: p < 0.01). The low to high frequency ratio of heart rate power did not differ between groups (p = 0.48), nor did resting metabolic rate (controls: 1767 ± 226 kcal/24 h; patients: 1766 ± 227 kcal/24h; p = 0.99). Conclusions: Resting metabolic rate was not reduced in hypocretin-deficient narcoleptic men and therefore does not explain obesity in this group. Whether the increased heart rate and blood pressure variability—suggesting reduced sympathetic tone—is involved in this regard remains to be elucidated. Citation: Fronczek R; Overeem S; Reijntjes R; Lammers GJ; van Dijk JG; Pijl H. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy. J Clin Sleep Med 2008;4(3):248–254. PMID:18595438

  6. Racial differences in the relationship between rate of nicotine metabolism and nicotine intake from cigarette smoking.

    PubMed

    Ross, Kathryn C; Gubner, Noah R; Tyndale, Rachel F; Hawk, Larry W; Lerman, Caryn; George, Tony P; Cinciripini, Paul; Schnoll, Robert A; Benowitz, Neal L

    2016-09-01

    Rate of nicotine metabolism has been identified as an important factor influencing nicotine intake and can be estimated using the nicotine metabolite ratio (NMR), a validated biomarker of CYP2A6 enzyme activity. Individuals who metabolize nicotine faster (higher NMR) may alter their smoking behavior to titrate their nicotine intake in order to maintain similar levels of nicotine in the body compared to slower nicotine metabolizers. There are known racial differences in the rate of nicotine metabolism with African Americans on average having a slower rate of nicotine metabolism compared to Whites. The goal of this study was to determine if there are racial differences in the relationship between rate of nicotine metabolism and measures of nicotine intake assessed using multiple biomarkers of nicotine and tobacco smoke exposure. Using secondary analyses of the screening data collected in a recently completed clinical trial, treatment-seeking African American and White daily smokers (10 or more cigarettes per day) were grouped into NMR quartiles so that the races could be compared at the same NMR, even though the distribution of NMR within race differed. The results indicated that rate of nicotine metabolism was a more important factor influencing nicotine intake in White smokers. Specifically, Whites were more likely to titrate their nicotine intake based on the rate at which they metabolize nicotine. However, this relationship was not found in African Americans. Overall there was a greater step-down, linear type relationship between NMR groups and cotinine or cotinine/cigarette in African Americans, which is consistent with the idea that differences in blood cotinine levels between the African American NMR groups were primarily due to differences in CYP2A6 enzyme activity without titration of nicotine intake among faster nicotine metabolizers. PMID:27180107

  7. Carbon conversion and metabolic rate in two marine sponges.

    PubMed

    Koopmans, M; van Rijswijk, P; Martens, D; Egorova-Zachernyuk, T A; Middelburg, J J; Wijffels, R H

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a (13)C isotope pulse-chase approach. The sponges were fed (13)C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total (13)C enrichment, and fatty acid (FA) composition and (13)C enrichment. Algal biomarkers present in the sponges were highly labeled after feeding but their labeling levels decreased until none was left 10 days after enrichment. The sponge-specific FAs incorporated (13)C label already during the first day and the amount of (13)C label inside these FAs kept increasing until 3 weeks after labeling. The algal-derived carbon captured by the sponges during the 8-h feeding period was thus partly respired and partly metabolized during the weeks following. Apparently, sponges are able to capture enough food during short periods to sustain longer-term metabolism. The change of carbon metabolic rate of fatty acid synthesis due to mechanical damage of sponge tissue was studied by feeding sponges with (13)C isotope-labeled diatom (Pheaodactylum tricornutum) either after or before damaging and tracing back the (13)C content in the damaged and healthy tissue. The filtration and respiration in both sponges responded quickly to damage. The rate of respiration in H. oculata reduced immediately after damage, but returned to its initial level after 6 h. The (13)C data revealed that H. oculata has a higher metabolic rate in the tips where growth occurs compared to the rest of the tissue and that the metabolic rate is increased after damage of the tissue. For D. avara, no differences were found between damaged and non-damaged tissue. However, the filtration rate decreased directly after damage. PMID:24489407

  8. Metabolic rate, heart rate, and tailbeat frequency during sustained swimming in the leopard shark Triakis semifasciata.

    PubMed

    Scharold, J; Lai, N C; Lowell, W R; Graham, J B

    1989-01-01

    Heart rate, metabolic rate, and tailbeat frequency were simultaneously recorded from seven leopard sharks (Triakis semifasciata) during steady swimming at controlled speeds to evaluate the usefulness of heart rate as a measure of field metabolic rate. Heart rate was monitored by acoustic telemetry using a frequency modulated ECG transmitter. Metabolic rate was measured as oxygen consumption in a swimming tunnel respirometer. For instrumented sharks, mean resting oxygen consumption rate and heart rate were 105.3 +/- 35.6 (SE) mg O2.kg-1.h-1 and 36.6 +/- 1.8 (SE) beats.min-1, respectively. While swimming at the maximum sustained speed (0.84 +/- 0.03 lengths.s-1) for 30-60 min, these rates were 229.3 +/- 13.2 mg O2.kg-1.h-1 and 46.9 +/- 0.9 beats.min-1. Although a significant linear regression was obtained between metabolic rate and heart rate, a low overall correlation coefficient may result from the existence of separate individual regressions and confounding changes in stroke volume and/or arteriovenous oxygen difference. Heart rate was approximately as closely correlated with oxygen consumption rate as swimming speed was. A significant linear relationship was obtained between tailbeat frequency and swimming speed to speeds of 0.75 lengths.s-1. PMID:2776865

  9. Metabolic rate and rates of protein turnover in food-deprived cuttlefish, Sepia officinalis (Linnaeus 1758).

    PubMed

    Lamarre, Simon G; MacCormack, Tyson J; Sykes, Antonio V; Hall, Jennifer R; Speers-Roesch, Ben; Callaghan, Neal I; Driedzic, William R

    2016-06-01

    To determine the metabolic response to food deprivation, cuttlefish (Sepia officinalis) juveniles were either fed, fasted (3 to 5 days food deprivation), or starved (12 days food deprivation). Fasting resulted in a decrease in triglyceride levels in the digestive gland, and after 12 days, these lipid reserves were essentially depleted. Oxygen consumption was decreased to 53% and NH4 excretion to 36% of the fed group following 3-5 days of food deprivation. Oxygen consumption remained low in the starved group, but NH4 excretion returned to the level recorded for fed animals during starvation. The fractional rate of protein synthesis of fasting animals decreased to 25% in both mantle and gill compared with fed animals and remained low in the mantle with the onset of starvation. In gill, however, protein synthesis rate increased to a level that was 45% of the fed group during starvation. In mantle, starvation led to an increase in cathepsin A-, B-, H-, and L-like enzyme activity and a 2.3-fold increase in polyubiquitin mRNA that suggested an increase in ubiquitin-proteasome activity. In gill, there was a transient increase in the polyubiquitin transcript levels in the transition from fed through fasted to the starved state and cathepsin A-, B-, H-, and L-like activity was lower in starved compared with fed animals. The response in gill appears more complex, as they better maintain rates of protein synthesis and show no evidence of enhanced protein breakdown through recognized catabolic processes. PMID:27053650

  10. Metabolic cost of extravehicular activities

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.

    1977-01-01

    The Skylab zero-g extravehicular activity data is of particular interest when it is considered in combination with the Apollo and Gemini data. The energy cost of extravehicular activity from Gemini through Skylab is discussed.

  11. Dopamine Modulates Metabolic Rate and Temperature Sensitivity in Drosophila melanogaster

    PubMed Central

    Ueno, Taro; Tomita, Jun; Kume, Shoen; Kume, Kazuhiko

    2012-01-01

    Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shits induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine), which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation. PMID:22347491

  12. Intraspecific Scaling of the Resting and Maximum Metabolic Rates of the Crucian Carp (Carassius auratus)

    PubMed Central

    Huang, Qingda; Zhang, Yurong; Liu, Shuting; Wang, Wen; Luo, Yiping

    2013-01-01

    The question of how the scaling of metabolic rate with body mass (M) is achieved in animals is unresolved. Here, we tested the cell metabolism hypothesis and the organ size hypothesis by assessing the mass scaling of the resting metabolic rate (RMR), maximum metabolic rate (MMR), erythrocyte size, and the masses of metabolically active organs in the crucian carp (Carassius auratus). The M of the crucian carp ranged from 4.5 to 323.9 g, representing an approximately 72-fold difference. The RMR and MMR increased with M according to the allometric equations RMR = 0.212M0.776 and MMR = 0.753M0.785. The scaling exponents for RMR (br) and MMR (bm) obtained in crucian carp were close to each other. Thus, the factorial aerobic scope remained almost constant with increasing M. Although erythrocyte size was negatively correlated with both mass-specific RMR and absolute RMR adjusted to M, it and all other hematological parameters showed no significant relationship with M. These data demonstrate that the cell metabolism hypothesis does not describe metabolic scaling in the crucian carp, suggesting that erythrocyte size may not represent the general size of other cell types in this fish and the metabolic activity of cells may decrease as fish grows. The mass scaling exponents of active organs was lower than 1 while that of inactive organs was greater than 1, which suggests that the mass scaling of the RMR can be partly due to variance in the proportion of active/inactive organs in crucian carp. Furthermore, our results provide additional evidence supporting the correlation between locomotor capacity and metabolic scaling. PMID:24376588

  13. Rates of Microbial Metabolism in Deep Coastal Plain Aquifers

    PubMed Central

    Chapelle, Francis H.; Lovley, Derek R.

    1990-01-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C] acetate were 9.4 × 10−3 to 2.4 × 10−1 for the Black Creek aquifer, 1.1 × 10−2 for the Middendorf aquifer, and <7 × 10−5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10−4 to 10−6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10−4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism. PMID:16348227

  14. Rates of microbial metabolism in deep coastal plain aquifers

    USGS Publications Warehouse

    Chapelle, F.H.; Lovley, D.R.

    1990-01-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C]acetate were 9.4 x 10-3 to 2.4 x 10-1 for the Black Creek aquifer, 1.1 x 10-2 for the Middendorf aquifer, and <7 x 10-5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10-4 to 10-6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10-4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.

  15. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    PubMed Central

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question. PMID:25604947

  16. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    SciTech Connect

    Lovley, Derek R

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  17. Thyroid hormones correlate with field metabolic rate in ponies, Equus ferus caballus.

    PubMed

    Brinkmann, Lea; Gerken, Martina; Hambly, Catherine; Speakman, John R; Riek, Alexander

    2016-08-15

    During winter, free-living herbivores are often exposed to reduced energy supply at the same time that energy needs for thermoregulation increase. Several wild herbivores as well as robust horse breeds reduce their metabolism during times of low ambient temperature and food shortage. Thyroid hormones (THs) affect metabolic intensity and a positive effect of THs on basal metabolic rate (BMR) has been demonstrated in mammals and birds. As BMR and field metabolic rate (FMR) are often assumed to be intrinsically linked, THs may represent a reliable indicator for FMR. To test this hypothesis, 10 Shetland pony mares were kept under semi-extensive central European conditions. During the winter season, one group was fed 60% and one group 100% of their maintenance energy requirements. We measured FMR, locomotor activity, resting heart rate and TH levels in summer and winter. FMR, locomotor activity, resting heart rate and total T3 concentrations decreased substantially in winter compared with summer, whereas total T4 increased. Food restriction led to a reduced FMR and resting heart rate, while THs and locomotor activity were not affected. Across both seasons, FMR, resting heart rate and locomotor activity were positively correlated with total T3 but negatively and more weakly correlated with total T4. PMID:27312472

  18. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village.

    PubMed

    Huestis, Diana L; Yaro, Alpha S; Traoré, Adama I; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2011-07-15

    In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion. PMID:21697426

  19. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village

    PubMed Central

    Huestis, Diana L.; Yaro, Alpha S.; Traoré, Adama I.; Adamou, Abdoulaye; Kassogué, Yaya; Diallo, Moussa; Timbiné, Seydou; Dao, Adama; Lehmann, Tovi

    2011-01-01

    SUMMARY In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion. PMID:21697426

  20. Gigantism, temperature and metabolic rate in terrestrial poikilotherms.

    PubMed

    Makarieva, Anastassia M; Gorshkov, Victor G; Li, Bai-Lian

    2005-11-01

    The mechanisms dictating upper limits to animal body size are not well understood. We have analysed body length data for the largest representatives of 24 taxa of terrestrial poikilotherms from tropical, temperate and polar environments. We find that poikilothermic giants on land become two-three times shorter per each 10 degrees of decrease in ambient temperature. We quantify that this diminution of maximum body size accurately compensates the drop of metabolic rate dictated by lower temperature. This supports the idea that the upper limit to body size within each taxon can be set by a temperature-independent critical minimum value of mass-specific metabolic rate, a fall below which is not compatible with successful biological performance. PMID:16191647

  1. Metabolic correlates of subthalamic nucleus activity in Parkinson's disease.

    PubMed

    Lin, Tanya P; Carbon, Maren; Tang, Chengke; Mogilner, Alon Y; Sterio, Djordje; Beric, Aleksandar; Dhawan, Vijay; Eidelberg, David

    2008-05-01

    Overactivity of subthalamic nucleus (STN) neurons is a consistent feature of Parkinson's disease (PD) and is a target of therapy for this disorder. However, the relationship of STN firing rate to regional brain function is not known. We scanned 17 PD patients with (18)F-fluorodeoxyglucose (FDG) PET to measure resting glucose metabolism before the implantation of STN deep brain stimulation electrodes. Spontaneous STN firing rates were recorded during surgery and correlated with preoperative regional glucose metabolism on a voxel-by-voxel basis. We also examined the relationship between firing rate and the activity of metabolic brain networks associated with the motor and cognitive manifestations of the disease. Mean firing rates were 47.2 +/- 6.1 and 48.7 +/- 8.5 Hz for the left and right hemispheres, respectively. These measures correlated (P < 0.007) with glucose metabolism in the putamen and globus pallidus, which receive projections from this structure. Significant correlations (P < 0.0005) were also evident in the primary motor (BA4) and dorsolateral prefrontal (BA46/10) cortical areas. The activity of both the motor (P < 0.0001) and the cognitive (P < 0.006) PD-related metabolic networks was elevated in these patients. STN firing rates correlated with the activity of the former (P < 0.007) but not the latter network (P = 0.39). The findings suggest that the functional pathways associated with motor disability in PD are linked to the STN firing rate. These pathways are likely to mediate the clinical benefit that is seen following targeted STN interventions for this disease. PMID:18400841

  2. The Tacrolimus Metabolism Rate Influences Renal Function after Kidney Transplantation

    PubMed Central

    Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner

    2014-01-01

    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient’s risk management strategies. PMID:25340655

  3. The tacrolimus metabolism rate influences renal function after kidney transplantation.

    PubMed

    Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner; Reuter, Stefan; Suwelack, Barbara

    2014-01-01

    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient's risk management strategies. PMID:25340655

  4. Consequences of different growth rates in broiler breeder and layer hens on embryogenesis, metabolism and metabolic rate: A review.

    PubMed

    Buzała, M; Janicki, B; Czarnecki, R

    2015-04-01

    Intensive genetic selection of broiler breeders and layer hens for economically important production traits, which has been carried out for almost a century, resulted in considerable differences in the mechanisms of growth and development and, thus, in avian metabolism, both during embryogenesis and after hatching. Selection for meat production (broiler breeders) and eggs (layer hens) led to increased productivity but also brought about metabolic disorders. That intensive genetic selection of broiler breeders and layer hens is effective is seen, for example, in the differences in growth and development, metabolism of the yolk sac, hormones and lipids, gas exchange, and thermogenesis. Due to genetic proximity and different developmental mechanisms in broiler breeders and layer hens, avian embryos and chicks serve as excellent models for fundamental scientific research. This review paper discusses the consequences of different growth rates as a result of long-term genetic selection on embryonic development and metabolic rate of broilers and layers. The evidence presented herein indicates that it would be worth comparing these issues in a meta-analysis. PMID:25691756

  5. Metabolic rates in an anadromous clupeid, the American shad (Alosa sapidissima)

    USGS Publications Warehouse

    Leonard, J.B.K.; Norieka, J.F.; Kynard, B.; McCormick, S.D.

    1999-01-01

    To assess the energetics of migration in an anadromous fish, adult American shad (Alosa sapidissima) were swum in a large respirometer at a range of speeds (1.0-2.3 body lengths (BL) s-1, 13-24 ??C). Metabolic rate (M(O2)) was logarithmically related to swimming speed (Bl s-1; r2 = 0.41, slope = 0.23 ?? 0.037) and tailbeat frequency (beats x min-1; r2 = 0.52, slope = 0.003 ?? 0.0003). Temperature had a significant effect on metabolic rate (r2 = 0.41) with a Q10 of 2.2. Standard metabolic rate (SMR), determined directly after immobilization with the neuroblocker gallamine triethiodide, ranged from 2.2-6.2 mmolO2 kg-1 h-1 and scaled with mass (W) such that SMR = 4.0 (??0.03)W(0.695(??0.15)). Comparison of directly determined and extrapolated SMR suggests that swimming respirometry provides a good estimate of SMR in this species, given the differences in basal activity monitored by the two methods. Overall, American shad metabolic rates (M(O2) and SMR) were intermediate between salmonids and fast-swimming perciforms, including tunas, and may be a result of evolutionary adaptation to their active pelagic, schooling life history. This study demonstrates variability in metabolic strategy among anadromous fishes that may be important to understanding the relative success of different migratory species under varying environmental conditions.

  6. Uncinate Process Length in Birds Scales with Resting Metabolic Rate

    PubMed Central

    Tickle, Peter; Nudds, Robert; Codd, Jonathan

    2009-01-01

    A fundamental function of the respiratory system is the supply of oxygen to meet metabolic demand. Morphological constraints on the supply of oxygen, such as the structure of the lung, have previously been studied in birds. Recent research has shown that uncinate processes (UP) are important respiratory structures in birds, facilitating inspiratory and expiratory movements of the ribs and sternum. Uncinate process length (UPL) is important for determining the mechanical advantage for these respiratory movements. Here we report on the relationship between UPL, body size, metabolic demand and locomotor specialisation in birds. UPL was found to scale isometrically with body mass. Process length is greatest in specialist diving birds, shortest in walking birds and intermediate length in all others relative to body size. Examination of the interaction between the length of the UP and metabolic demand indicated that, relative to body size, species with high metabolic rates have corresponding elongated UP. We propose that elongated UP confer an advantage on the supply of oxygen, perhaps by improving the mechanical advantage and reducing the energetic cost of movements of the ribs and sternum. PMID:19479074

  7. Metabolic rate measurements comparing supine with upright upper-body exercises

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Greenisen, Michael C.; Loftin, Karin C.; Beene, Donya; Freeman-Perez, Sondra; Hnatt, Linda

    1993-01-01

    The ground-based study that tested the hypothesis that metabolic rates during supine and upright upper-body exercises are similar (mean value of 200 kcal/h) is presented. Six subjects each performed supine or upright exercise at three exercise stations, a hand-cycle ergometer, a rope-pull device, and a torque wrench. After a baseline measurement of the metabolic rate at rest, the metabolic rate was measured twice at each exercise station. The mean metabolic rates (kcal/h) during supine (n = 6) and upright control (n = 4) exercise stations were not significantly different except for the rope-pull station, 153.5 +/- 16.6 (supine) as compared to 247.0 +/- 21.7 (upright), p is less than 0.05. This difference may be due in part to an increased mechanical efficiency of supine exercises (15.0 +/- 0.7 percent) as compared to that of upright exercises (11.0 +/- 1.08 percent), p is less than 0.05. The net energy input was significantly smaller for the supine rope-pull exercise (64 +/- 18) as compared to upright (176 +/- 20). The relationship between best-rest exercises, metabolic rates, and the incidence of decompression sickness (DCS) should be examined to determine the true risk of DCS in spaceflight extravehicular activities.

  8. METABOLISM AND METABOLIC ACTIVATION OF CHEMICALS: IN-SILICO SIMULATION

    EPA Science Inventory

    The role of metabolism in prioritizing chemicals according to their potential adverse health effects is extremely important because innocuous parents can be transformed into toxic metabolites. This work presents the TIssue MEtabolism Simulator (TIMES) platform for simulating met...

  9. Metabolic rates and biochemical compositions of Apostichopus japonicus (Selenka) tissue during periods of inactivity

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Dong, Shuanglin; Tian, Xiangli; Wang, Fang; Gao, Qinfeng; Dong, Yunwei

    2010-03-01

    Estivation, hibernation, and starvation are indispensable inactive states of sea cucumbers Apostichopus japonicus in nature and in culture ponds. Generally, temperature is the principal factor that induces estivation or hibernation in the sea cucumber. The present study provided insight into the physiological adaptations of A. japonicus during the three types of inactivity (hibernation, estivation, and starvation) by measuring the oxygen consumption rates ( Vo2) and biochemical compositions under laboratory conditions of low (3°C), normal (17°C) and high (24°C) temperature. The results show that the characteristics of A. japonicus in dormancy (hibernation and estivation) states were quite different from higher animals, such as fishes, amphibians, reptiles, and mammals, but more closely resembled a semi-dormant state. It was observed that the shift in the A. japonicus physiological state from normal to dormancy was a chronic rather than acute process, indicated by the gradual depression of metabolic rate. While metabolic rates declined 44.9% for the estivation group and 71.7% for the hibernation group, relative to initial rates, during the 36 d culture period, metabolic rates were not maintained at constant levels during these states. The metabolic depression processes for sea cucumbers in hibernation and estivation appeared to be a passive and an active metabolic suppression, respectively. In contrast, the metabolic rates (128.90±11.70 μg/g h) of estivating sea cucumbers were notably higher (107.85±6.31 μg/g h) than in starving sea cucumbers at 17°C, which indicated that the dormancy mechanism here, as a physiological inhibition, was not as efficient as in higher animals. Finally, the principle metabolic substrate or energy source of sea cucumbers in hibernation was lipid, whereas in estivation they mainly consumed protein in the early times and both protein and lipid thereafter.

  10. Intracerebroventricular injection of murine leptin enhances the postprandial metabolic rate in the rat.

    PubMed

    Ruffin, M; Nicolaidis, S

    2000-08-18

    Energy balance is achieved by means of a concomitant control of both food intake and energy expenditure. Leptin, synthesized in the adipose tissue, acts on brain structures and lowers body weight by inhibiting food intake and in parallel by enhancing energy expenditure i.e. metabolism or one of its components. Recording distinctly these components allowed us to assess the effect of an acute intracerebroventricular injection of leptin on both feeding pattern and background metabolism (i.e. energy expenditure free from the part of locomotor activity), respiratory quotient, feeding-related metabolism and locomotor activity-related metabolism. Leptin injection to Sprague-Dawley male rats induced an inhibition of feeding that began 90 min after the treatment and lasted 1 h before to return to the control feeding pattern level. Considering this late behavioral effect, it appeared that leptin may act during the postprandial period so that we recorded the different metabolic parameters following a 3 g calibrated meal itself preceded by leptin vs. artificial cerebrospinal fluid injection. Postprandial respiratory quotient was rapidly lowered in leptin-treated animals and subsequent background metabolism increased for 6 h. Thus it appeared that leptin increased the duration of the postprandial metabolic rate via the recruitment of endogenous fat stores. Enhancement in the thermic effect of food may be the reason for feeding behavior inhibition to be delayed. PMID:10936221

  11. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones.

    PubMed

    Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra

    2014-02-15

    The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight. PMID:24198266

  12. Metabolic correlates of pallidal neuronal activity in Parkinson's disease.

    PubMed

    Eidelberg, D; Moeller, J R; Kazumata, K; Antonini, A; Sterio, D; Dhawan, V; Spetsieris, P; Alterman, R; Kelly, P J; Dogali, M; Fazzini, E; Beric, A

    1997-08-01

    We have used [18F]fluorodeoxyglucose and PET to identify specific metabolic covariance patterns associated with Parkinson's disease and related disorders previously. Nonetheless, the physiological correlates of these abnormal patterns are unknown. In this study we used PET to measure resting state glucose metabolism in 42 awake unmedicated Parkinson's disease patients prior to unilateral stereotaxic pallidotomy for relief of symptoms. Spontaneous single unit activity of the internal segment of the globus pallidus (GPi) was recorded intraoperatively in the same patients under identical conditions. The first 24 patients (Group A) were scanned on an intermediate resolution tomograph (full width at half maximum, 8 mm); the subsequent 18 patients (Group B) were scanned on a higher resolution tomograph (full width half maximum, 4.2 mm). We found significant positive correlations between GPi firing rates and thalamic glucose metabolism in both patient groups (Group A: r = 0.41, P < 0.05; Group B: r = 0.69, P < 0.005). In Group B, pixel-based analysis disclosed a significant focus of physiological-metabolic correlation involving the ventral thalamus and the GPi (statistical parametric map: P < 0.05, corrected). Regional covariance analysis demonstrated that internal pallidal neuronal activity correlated significantly (r = 0.65, P < 0.005) with the expression of a unique network characterized by covarying pallidothalamic and brainstem metabolic activity. Our findings suggest that the variability in pallidal neuronal firing rates in Parkinson's disease patients is associated with individual differences in the metabolic activity of efferent projection systems. PMID:9278625

  13. Does growth rate determine the rate of metabolism in shorebird chicks living in the Arctic?

    PubMed

    Williams, Joseph B; Tieleman, B Irene; Visser, G Henk; Ricklefs, Robert E

    2007-01-01

    We measured resting and peak metabolic rates (RMR and PMR, respectively) during development of chicks of seven species of shorebirds: least sandpiper (Calidris minutilla; adult mass 20-22 g), dunlin (Calidris alpina; 56-62 g), lesser yellowlegs (Tringa flavipes; 88-92 g), short-billed dowitcher (Limnodromus griseus; 85-112 g), lesser golden plover (Pluvialis dominicana; 150-156 g), Hudsonian godwit (Limosa haemastica; 205-274 g), and whimbrel (Numenius phaeopus; 380 g). We tested two opposing hypotheses: the growth rate-maturity hypothesis, which posits that growth rate in chicks is inversely related to functional maturity of tissues, and the fast growth rate-high metabolism hypothesis, which suggests that rapid growth is possible only with a concomitant increase in either RMR or PMR. We have found no evidence that chicks of shorebirds with fast growth rates have lower RMRs or lower PMRs, as would be predicted by the growth rate-maturity hypothesis, but our data suggested that faster-growing chest muscles resulted in increased thermogenic capacity, consistent with the fast growth-high metabolism hypothesis. The development of homeothermy in smaller species is a consequence primarily of greater metabolic intensities of heat-generating tissues. The maximum temperature gradient between a chick's body and environment that can be maintained in the absence of a net radiative load increased rapidly with body mass during development and was highest in least sandpipers and lowest among godwits. Chicks of smaller species could maintain a greater temperature gradient at a particular body mass because of their higher mass-specific maximum metabolic rates. PMID:17717813

  14. Molecular changes in mitochondrial respiratory activity and metabolic enzyme activity in muscle of four pig breeds with distinct metabolic types.

    PubMed

    Liu, Xuan; Trakooljul, Nares; Muráni, Eduard; Krischek, Carsten; Schellander, Karl; Wicke, Michael; Wimmers, Klaus; Ponsuksili, Siriluck

    2016-02-01

    Skeletal muscles are metabolically active and have market value in meat-producing farm animals. A better understanding of biological pathways affecting energy metabolism in skeletal muscle could advance the science of skeletal muscle. In this study, comparative pathway-focused gene expression profiling in conjunction with muscle fiber typing were analyzed in skeletal muscles from Duroc, Pietrain, and Duroc-Pietrain crossbred pigs. Each breed type displayed a distinct muscle fiber-type composition. Mitochondrial respiratory activity and glycolytic and oxidative enzyme activities were comparable among genotypes, except for significantly lower complex I activity in Pietrain pigs homozygous-positive for malignant hyperthermia syndrome. At the transcriptional level, lactate dehydrogenase B showed breed specificity, with significantly lower expression in Pietrain pigs homozygous-positive for malignant hyperthermia syndrome. A similar mRNA expression pattern was shown for several subunits of oxidative phosphorylation complexes, including complex I, complex II, complex IV, and ATP synthase. Significant correlations were observed between mRNA expression of genes in focused pathways and enzyme activities in a breed-dependent manner. Moreover, expression patterns of pathway-focused genes were well correlated with muscle fiber-type composition. These results stress the importance of regulation of transcriptional rate of genes related to oxidative and glycolytic pathways in the metabolic capacity of muscle fibers. Overall, the results further the breed-specific understanding of the molecular basis of metabolic enzyme activities, which directly impact meat quality. PMID:26759028

  15. Negative relationships between population density and metabolic rates are not general.

    PubMed

    Yashchenko, Varvara; Fossen, Erlend Ignacio; Kielland, Øystein Nordeide; Einum, Sigurd

    2016-07-01

    Population density has recently been suggested to be an important factor influencing metabolic rates and to represent an important 'third axis' explaining variation beyond that explained by body mass and temperature. In situations where population density influences food consumption, the immediate effect on metabolism acting through specific dynamic action (SDA), and downregulation due to fasting over longer periods, is well understood. However, according to a recent review, previous studies suggest a more general effect of population density per se, even in the absence of such effects. It has been hypothesized that this results from animals performing anticipatory responses (i.e. reduced activity) to expected declines in food availability. Here, we test the generality of this finding by measuring density effects on metabolic rates in 10 clones from two different species of the zooplankton Daphnia (Daphnia pulex Leydig and D. magna Straus). Using fluorescence-based respirometry, we obtain high-precision measures of metabolism. We also identify additional studies on this topic that were not included in the previous review, compare the results and evaluate the potential for measurement bias in all previous studies. We demonstrate significant variation in mass-specific metabolism among clones within both species. However, we find no evidence for a negative relationship between population density and mass-specific metabolism. The previously reported pattern also disappeared when we extended the set of studies analysed. We discuss potential reasons for the discrepancy among studies, including two main sources of potential bias (microbial respiration and declining oxygen consumption due to reduced oxygen availability). Only one of the previous studies gives sufficient information to conclude the absence of such biases, and consistent with our results, no effect of density on metabolism was found. We conclude that population density per se does not have a general effect

  16. Correlates of average daily metabolism of field-active zebra-tailed lizards (Callisaurus draconoides).

    PubMed

    Karasov, W H; Anderson, R A

    1998-01-01

    The extent of variation in reptile field metabolism, and its causal bases, are poorly understood. We studied the energetics of the insectivorous lizard Callisaurus draconoides at a site in the California Desert (Desert Center) and at a site at the southern tip of the Baja Peninsula (Cabo San Lucas; hereafter, Cabo). Reproducing Callisaurus were smaller at Cabo than at Desert Center. The allometry of metabolism with body mass can account for most differences in whole-animal metabolism. There was no significant effect of sex or source population on mass-adjusted metabolic rate in the laboratory (resting metabolism, measured by closed-system respirometry) or in the field (field metabolism, measured with doubly labeled water). The mass-adjusted resting metabolism and field metabolism of gravid females and the field metabolism of juvenile lizards were not significantly different from those of nonreproductive adults. Temperature had a significant effect on resting metabolism (Q10 = 2.7); fed lizards had resting metabolism that was 22% higher than that of fasted lizards; field metabolism was positively correlated with growth rate in juveniles; and field metabolism of adults increased from spring to late summer at Desert Center by 25%, probably because of longer activity period length and slightly higher activity period body temperature. We calculated from water influx and field metabolism that juveniles allocated 18% of their metabolizable energy intake to growth and that most energy deposited into eggs was transferred from energy stores rather than ingested in the weeks prior to laying. PMID:9472817

  17. Metabolic activities and probiotic potential of bifidobacteria.

    PubMed

    Russell, D A; Ross, R P; Fitzgerald, G F; Stanton, C

    2011-09-01

    It has been shown that the gut microbiota regulates fat storage in the body and that disturbances in its composition can lead to the development of certain metabolic disease states. Bifidobacteria are found among the resident microbiota in the gastrointestinal tract (GIT) and their metabolic activities have been shown to beneficially influence the human host. It has been reported that they inhibit intestinal colonisation by pathogenic microorganisms and have anti-carcinogenic, immunostimulatory, and anti-diarrhoeal properties, as well as aiding in the alleviation of lactose intolerance and ability to lower serum cholesterol levels in humans. One particular health promoting property of bifidobacteria is bioactive fatty acid production, which when ingested, may confer health benefits on the host. A bioactive fatty acid produced by bifidobacteria is conjugated linoleic acid (CLA), of which cis-9, trans-11 (c9, t11) and trans-10, cis-12 (t10, c12) CLA are the main biologically active CLA isomers. The production of CLA by Bifidobacterium can also have a positive effect on the immune system of the human host leading to numerous health benefits. This is an example of the metabolic activities of an ingested bacterium being beneficial to the host, rather than the direct interaction of the bacterium with the host. PMID:21763022

  18. Functions for diverse metabolic activities in heterochromatin.

    PubMed

    Su, Xue Bessie; Pillus, Lorraine

    2016-03-15

    Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1's functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes. PMID:26936955

  19. Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees.

    PubMed Central

    Suarez, R K; Lighton, J R; Joos, B; Roberts, S P; Harrison, J F

    1996-01-01

    Honeybees rely primarily on the oxidation of hexose sugars to provide the energy required for flight. Measurement of VCO2 (equal to VO2, because VCO2/VO2 = 1.0 during carbohydrate oxidation) during flight allowed estimation of steady-state flux rates through pathways of flight muscle energy metabolism. Comparison of Vmax values for flight muscle hexokinase, phosphofructokinase, citrate synthase, and cytochrome c oxidase with rates of carbon and O2 flux during flight reveal that these enzymes operate closer to Vmax in the flight muscles of flying honeybees than in other muscles previously studied. Possible mechanistic and evolutionary implications of these findings are discussed. PMID:8901631

  20. Mechanistic drivers of flexibility in summit metabolic rates of small birds.

    PubMed

    Swanson, David; Zhang, Yufeng; King, Marisa

    2014-01-01

    Flexible metabolic phenotypes allow animals to adjust physiology to better fit ecological or environmental demands, thereby influencing fitness. Summit metabolic rate (Msum = maximal thermogenic capacity) is one such flexible trait. Skeletal muscle and heart masses and myocyte metabolic intensity are potential drivers of Msum flexibility in birds. We examined correlations of skeletal muscle and heart masses and pectoralis muscle citrate synthase (CS) activity (an indicator of cellular metabolic intensity) with Msum in house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis) to determine whether these traits are associated with Msum variation. Pectoralis mass was positively correlated with Msum for both species, but no significant correlation remained for either species after accounting for body mass (Mb) variation. Combined flight and leg muscle masses were also not significantly correlated with Msum for either species. In contrast, heart mass was significantly positively correlated with Msum for juncos and nearly so (P = 0.054) for sparrows. Mass-specific and total pectoralis CS activities were significantly positively correlated with Msum for sparrows, but not for juncos. Thus, myocyte metabolic intensity influences Msum variation in house sparrows, although the stronger correlation of total (r = 0.495) than mass-specific (r = 0.378) CS activity with Msum suggests that both pectoralis mass and metabolic intensity impact Msum. In contrast, neither skeletal muscle masses nor pectoralis metabolic intensity varied with Msum in juncos. However, heart mass was associated with Msum variation in both species. These data suggest that drivers of metabolic flexibility are not uniform among bird species. PMID:24992186

  1. Mechanistic Drivers of Flexibility in Summit Metabolic Rates of Small Birds

    PubMed Central

    Swanson, David; Zhang, Yufeng; King, Marisa

    2014-01-01

    Flexible metabolic phenotypes allow animals to adjust physiology to better fit ecological or environmental demands, thereby influencing fitness. Summit metabolic rate (Msum = maximal thermogenic capacity) is one such flexible trait. Skeletal muscle and heart masses and myocyte metabolic intensity are potential drivers of Msum flexibility in birds. We examined correlations of skeletal muscle and heart masses and pectoralis muscle citrate synthase (CS) activity (an indicator of cellular metabolic intensity) with Msum in house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis) to determine whether these traits are associated with Msum variation. Pectoralis mass was positively correlated with Msum for both species, but no significant correlation remained for either species after accounting for body mass (Mb) variation. Combined flight and leg muscle masses were also not significantly correlated with Msum for either species. In contrast, heart mass was significantly positively correlated with Msum for juncos and nearly so (P = 0.054) for sparrows. Mass-specific and total pectoralis CS activities were significantly positively correlated with Msum for sparrows, but not for juncos. Thus, myocyte metabolic intensity influences Msum variation in house sparrows, although the stronger correlation of total (r = 0.495) than mass-specific (r = 0.378) CS activity with Msum suggests that both pectoralis mass and metabolic intensity impact Msum. In contrast, neither skeletal muscle masses nor pectoralis metabolic intensity varied with Msum in juncos. However, heart mass was associated with Msum variation in both species. These data suggest that drivers of metabolic flexibility are not uniform among bird species. PMID:24992186

  2. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  3. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose.

    PubMed

    Ackermann, R F; Lear, J L

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum. PMID:2584274

  4. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study.

    PubMed

    Vestergaard, Mark B; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik Bw

    2016-06-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  5. Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study

    PubMed Central

    Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik BW

    2015-01-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% (p<10-6), glutamate increased by 4.7% (p<10-4) and creatine and phosphocreatine decreased by 15.2% (p<10-3). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  6. Metabolic activity of microorganisms in evaporites

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.; Giver, L. J.; White, M. R.; Mancinelli, R. L.

    1994-01-01

    Crystalline salt is generally considered so hostile to most forms of life that it has been used for centuries as a preservative. Here, we present evidence that prokaryotes inhabiting a natural evaporite crust of halite and gypsum are metabolically active while inside the evaporite for at least 10 months. In situ measurements demonstrated that some of these "endoevaporitic" microorganisms (probably the cyanobacterium Synechococcus Nageli) fixed carbon and nitrogen. Denitrification was not observed. Our results quantified the slow microbial activity that can occur in salt crystals. Implications of this study include the possibility that microorganisms found in ancient evaporite deposits may have been part of an evaporite community.

  7. Energy intake and basal metabolic rate during maintenance chemotherapy.

    PubMed

    Bond, S A; Han, A M; Wootton, S A; Kohler, J A

    1992-02-01

    Energy intakes and basal metabolic rates were determined in 26 children receiving chemotherapy in remission from acute lymphoblastic leukaemia or solid tumours and 26 healthy controls matched for age and sex. Body weight and height on the two groups were comparable, although one patient was stunted (height for age) and three others wasted (weight for height). Energy intake in the patients at 7705 kJ/day (1842 kcal) and controls at 7773 kJ/day (1866 kcal)) and basal metabolic rate (BMR) in the patients at 4873 kJ/day (1172 kcal) and controls 4987 kJ/day (1196 kcal) for the two groups were not significantly different. Although the energy intake:BMR ratio for both groups was 1.59, the range of values for the patient group was large (0.96-2.73) and appeared to be greater than that observed in the control group (1.23-2.46). These results demonstrated that during this period of chemotherapy there was no evidence of raised energy expenditure at rest or reduced energy intake in the patient group. No indication of undernutrition in the patients as a group was evident, although some individuals might require further clinical nutritional assessment. PMID:1543386

  8. Energy intake and basal metabolic rate during maintenance chemotherapy.

    PubMed Central

    Bond, S A; Han, A M; Wootton, S A; Kohler, J A

    1992-01-01

    Energy intakes and basal metabolic rates were determined in 26 children receiving chemotherapy in remission from acute lymphoblastic leukaemia or solid tumours and 26 healthy controls matched for age and sex. Body weight and height on the two groups were comparable, although one patient was stunted (height for age) and three others wasted (weight for height). Energy intake in the patients at 7705 kJ/day (1842 kcal) and controls at 7773 kJ/day (1866 kcal)) and basal metabolic rate (BMR) in the patients at 4873 kJ/day (1172 kcal) and controls 4987 kJ/day (1196 kcal) for the two groups were not significantly different. Although the energy intake:BMR ratio for both groups was 1.59, the range of values for the patient group was large (0.96-2.73) and appeared to be greater than that observed in the control group (1.23-2.46). These results demonstrated that during this period of chemotherapy there was no evidence of raised energy expenditure at rest or reduced energy intake in the patient group. No indication of undernutrition in the patients as a group was evident, although some individuals might require further clinical nutritional assessment. PMID:1543386

  9. Phenomenological correlates of metabolic activity in 18 patients with chronic schizophrenia

    SciTech Connect

    Volkow, N.D.; Wolf, A.P.; Van Gelder, P.; Brodie, J.D.; Overall, J.E.; Cancro, R.; Gomez-Mont, F.

    1987-02-01

    Using (11C)-deoxy-D-glucose and positron emission tomography (PET), the authors measured brain metabolism in 18 patients with chronic schizophrenia to assess which of the metabolic measures from two test conditions was more closely related to the patients' differing clinical characteristics. The two conditions were resting and activation, and an eye tracking task was used. Patients with more negative symptoms showed lower global metabolic rates and more severe hypofrontality than did the patients with fewer negative symptoms. Differences among the patients were distinguished by the task: sicker patients failed to show a metabolic activation response. These findings suggest that cerebral metabolic patterns reflect clinical characteristics of schizophrenic patients.

  10. Winter Is Coming: Seasonal Variation in Resting Metabolic Rate of the European Badger (Meles meles)

    PubMed Central

    McClune, David W.; Kostka, Berit; Delahay, Richard J.; Montgomery, W. Ian; Marks, Nikki J.; Scantlebury, David M.

    2015-01-01

    Resting metabolic rate (RMR) is a measure of the minimum energy requirements of an animal at rest, and can give an indication of the costs of somatic maintenance. We measured RMR of free-ranging European badgers (Meles meles) to determine whether differences were related to sex, age and season. Badgers were captured in live-traps and placed individually within a metabolic chamber maintained at 20 ± 1°C. Resting metabolic rate was determined using an open-circuit respirometry system. Season was significantly correlated with RMR, but no effects of age or sex were detected. Summer RMR values were significantly higher than winter values (mass-adjusted mean ± standard error: 2366 ± 70 kJ⋅d−1; 1845 ± 109 kJ⋅d−1, respectively), with the percentage difference being 24.7%. While under the influence of anaesthesia, RMR was estimated to be 25.5% lower than the combined average value before administration, and after recovery from anaesthesia. Resting metabolic rate during the autumn and winter was not significantly different to allometric predictions of basal metabolic rate for mustelid species weighing 1 kg or greater, but badgers measured in the summer had values that were higher than predicted. Results suggest that a seasonal reduction in RMR coincides with apparent reductions in physical activity and body temperature as part of the overwintering strategy (‘winter lethargy’) in badgers. This study contributes to an expanding dataset on the ecophysiology of medium-sized carnivores, and emphasises the importance of considering season when making predictions of metabolic rate. PMID:26352150

  11. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  12. Pulmonary diffusional screening and the scaling laws of mammalian metabolic rates

    NASA Astrophysics Data System (ADS)

    Hou, Chen; Mayo, Michael

    2011-12-01

    Theoretical considerations suggest that the mammalian metabolic rate is linearly proportional to the surface areas of mitochondria, capillary, and alveolar membranes. However, the scaling exponents of these surface areas to the mammals' body mass (approximately 0.9-1) are higher than exponents of the resting metabolic rate (RMR) to body mass (approximately 0.75), although similar to the one of exercise metabolic rate (EMR); the underlying physiological cause of this mismatch remains unclear. The analysis presented here shows that discrepancies between the scaling exponents of RMR and the relevant surface areas may originate from, at least for the system of alveolar membranes in mammalian lungs, the facts that (i) not all of the surface area is involved in the gas exchange and (ii) that larger mammals host a smaller effective surface area that participates in the material exchange rate. A result of these facts is that lung surface areas unused at rest are activated under heavy breathing conditions (e.g., exercise), wherein larger mammals support larger activated surface areas that provide a higher capability to increase the gas-exchange rate, allowing for mammals to meet, for example, the high energetic demands of foraging and predation.

  13. Experimental study on trace chemical contaminant generation rates of human metabolism in spacecraft crew module

    NASA Astrophysics Data System (ADS)

    Lihua, Guo; Xinxing, He; Guoxin, Xu; Xin, Qi

    2012-12-01

    Trace chemical contaminants generated by human metabolism is a major source of contamination in spacecraft crew module. In this research, types and generation rates of pollutants from human metabolism were determined in the Chinese diets. Expired air, skin gas, and sweat of 20 subjects were analyzed at different exercise states in a simulated module. The exercise states were designed according to the basic activities in the orbit of astronauts. Qualitative and quantitative analyses of contaminants generated by human metabolic were performed with gas chromatography/mass spectrometry, gas chromatography and UV spectrophotometer. Sixteen chemical compounds from metabolic sources were found. With the increase in physical load, the concentrations of chemical compounds from human skin and expired air correspondingly increased. The species and the offgassing rates of pollutants from human metabolism are different among the Chinese, Americans and the Russians due to differences in ethnicity and dietary customs. This research provides data to aid in the design, development and operation of China's long duration space mission.

  14. Metabolic analyzer. [for measuring metabolic rate and breathing dynamics of human beings

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.; Perry, C. L. (Inventor)

    1974-01-01

    An apparatus is described for the measurement of metabolic rate and breathing dynamics in which inhaled and exhaled breath are sensed by sealed, piston-displacement type spirometers. These spirometers electrically measure the volume of inhaled and exhaled breath. A mass spectrometer analyzes simultaneously for oxygen, carbon dioxide, nitrogen and water vapor. Computation circuits are responsive to the outputs of the spirometers, mass spectrometer, temperature, pressure and timing signals and compute oxygen consumption, carbon dioxide production, minute volume and respiratory exchange ratio. A selective indicator provides for read-out of these data at predetermined cyclic intervals.

  15. Swimming performance, metabolic rates, and their correlates in the Iceland scallop Chlamys islandica.

    PubMed

    Tremblay, Isabelle; Guderley, Helga E; Frechette, Marcel

    2006-01-01

    The dramatic escape response of some scallops is modified by reproductive investment and by acclimation temperature. Despite considerable knowledge of the physiology of the escape response, functional links between escape response performance, organismal rates of oxygen uptake, and tissue metabolic capacities are little known. We measured oxygen consumption rates (standard, maximal, and aerobic scope), escape behavior (initial and repeat performance), tissue mass, condition index, protein content, and tissue metabolic capacities in the Iceland scallop Chlamys islandica to examine links between these parameters. Postexercise oxygen consumption rates were positively linked to contraction rate (repeat test) and to pyruvate kinase activity in the adductor muscle but negatively linked to digestive gland wet mass. Swimming behavior was mainly related to activity of glycolytic enzymes, and enzymatic activities were related to anatomic parameters. Scallop behavior and physiology change with size, both within our samples and on a larger scale. Small scallops showed more intense swimming activity and had higher arginine kinase activities but lower glycolytic enzyme activities in their adductor muscle than larger scallops. This corresponds to the ontogenetic change in susceptibility to predation and in habitat use observed in C. islandica. PMID:17041870

  16. Resting metabolic rate incremented by pulsating electrostatic field (PESF) therapy.

    PubMed

    De Lorenzo, A; Martinoli, R; Carbonelli, M G; Monteleone, G; Di Lorenzo, N; Di Daniele, N

    2004-10-01

    Pulsating electrostatic field (PESF) therapy was investigated to assess the possibility of increasing the resting metabolic rate (RMR) in 14 adult females. The pumping effect of positive calcium and hydrogen ions was obtained by 30 min daily exposure to negative PESF, adjusted individually between 2 and 9 kV. This treatment could result in a buffering effect on blood pH and reduction of the rouleaux formation of erythrocytes, thus ameliorating the oxygen exchange potential and the red cell circulation in the capillary system. After PESF therapy, the average RMR (measured by indirect calorimetry) of 1255 kcal was increased on average by 323 kilocalories, indicating a possible role of PESF in the obesity treatment. PMID:16295054

  17. Metabolism and water loss rate of the haematophagous insect Rhodnius prolixus: effect of starvation and temperature.

    PubMed

    Rolandi, Carmen; Iglesias, Mónica S; Schilman, Pablo E

    2014-12-15

    Haematophagous insects suffer big changes in water needs under different levels of starvation. Rhodnius prolixus is the most important haematophagous vector of Chagas disease in the north of South America and a model organism in insect physiology. Although there have been some studies on patterns of gas exchange and metabolic rates, there is little information regarding water loss in R. prolixus. We investigated whether there is any modulation of water loss and metabolic rate under different requirements for saving water. We measured simultaneously CO2 production, water emission and activity in individual insects in real time by open-flow respirometry at different temperatures (15, 25 and 35°C) and post-feeding days (0, 5, 13 and 29). We found: (1) a clear drop in metabolic rate between 5 and 13 days after feeding that cannot be explained by activity and (2) a decrease in water loss rate with increasing starvation level, by a decrease in cuticular water loss during the first 5 days after feeding and a drop in the respiratory component thereafter. We calculated the surface area of the insects and estimated cuticular permeability. In addition, we analysed the pattern of gas exchange; the change from a cyclic to a continuous pattern was affected by temperature and activity, but it was not affected by the level of starvation. Modulation of metabolic and water loss rates with temperature and starvation could help R. prolixus to be more flexible in tolerating different periods of starvation, which is adaptive in a changing environment with the uncertainty of finding a suitable host. PMID:25394633

  18. Correlation Between Ecospace and Metabolic Rate of Marine Organisms Through Geologic Time

    NASA Astrophysics Data System (ADS)

    Duong, C.; Tenorio, A.; Heim, N. A.; Payne, J.

    2015-12-01

    Marine organisms are the most abundant fossils scientists have discovered in the fossil record. Various factors affect the survival rate of individual organisms and entire genera including metabolic rate, genetic diversity, environmental availability, and ecology. We however chose to focus our attention on studying mean metabolic rates in correlation to life modes. A marine organism's life mode is determined by three criteria: tiering, motility, and feeding mechanism. We believe an organism's life mode has an effect on its survivorship, especially since ecospace is the "primary determinant of routine metabolic rate for marine organisms" (Seibel & Drazen 2007). Using the metabolic equation, we were able to plot metabolic rate changes for various life modes over time. Seibel and Drazen (2007) explain that "metabolic variation in the ocean results from interspecific differences in ecological energy demand," thus allowing us to hypothesize that with different combinations of life modes, different marine organisms will have varying metabolic rates. To further compare our data, we created a heatmap to show the change in metabolic rates over the last 540 million years. Based on the collection of data, metabolic rates of marine organisms have shown an increasing trend. When analyzing ecospaces, pelagic (living in the water column), free moving organisms have relatively high metabolic rates in comparison to other modes of tiering. In other life modes, there's a general trend of genera maintaining a stabilized and moderate metabolic rate that is neither extremely high nor low.

  19. Unidirectional steady state rates of central metabolism enzymes measured simultaneously in a living plant tissue.

    PubMed

    Roscher, A; Emsley, L; Raymond, P; Roby, C

    1998-09-25

    The unidirectional steady state reaction rates of several enzymes and metabolic fluxes of distinct processes were measured simultaneously in hypoxic maize root tips using two-dimensional phosphorus NMR exchange spectroscopy. A single spectrum monitors ATP synthesis and hydrolysis as well as the activities of four enzymes involved in key pathways of central metabolism: UDP-glucose pyrophosphorylase, phosphoglucomutase, hexose-phosphate isomerase, and enolase. The corresponding unidirectional reaction rates and net metabolic fluxes were calculated from spectral intensities. This method provides a unique picture, at enzyme resolution, of how metabolism reacts in a concerted fashion to changes in external parameters such as temperature and oxygen concentration. By increasing hypoxia via an increase in temperature, we measured the expected increase in glycolysis through enolase activity while total ATP synthesis settled. At the same time, we observed a net flux through phosphoglucomutase and UDP-glucose pyrophosphorylase toward carbohydrate synthesis. This result is discussed in relation to the current hypothesis on the turnover of cell walls and sucrose. This reaction also produces a net flux of pyrophosphate, which is needed by pyrophosphate:fructose-6-phosphate 1-phosphotransferase to work as a glycolytic enzyme. PMID:9737962

  20. Tradeoffs between metabolic rate and spiracular conductance in discontinuous gas exchange of Samia cynthia (Lepidoptera, Saturniidae).

    PubMed

    Moerbitz, Christian; Hetz, Stefan K

    2010-05-01

    The insect tracheal system is a unique respiratory system, designed for maximum oxygen delivery at high metabolic demands, e.g. during activity and at high ambient temperatures. Therefore, large safety margins are required for tracheal and spiracular conductance. Spiracles are the entry to the tracheal system and play an important role in controlling discontinuous gas exchange (DGC) between tracheal system and atmosphere in moth pupae. We investigated the effect of modulated metabolic rate (by changing ambient temperature) and modulated spiracular conductance (by blocking all except one spiracles) on gas exchange patterns in Samia pupae. Both, spiracle blocking and metabolic rates, affected respiratory behavior in Samia cynthia pupae. While animals showed discontinuous gas exchange cycles at lower temperatures with unblocked spiracles, the respiratory patterns were cyclic at higher temperatures, with partly blocked spiracles or a combination of these two factors. The threshold for the transition from a discontinuous (DGC) to a cyclic gas exchange ((cyc)GE) was significantly higher in animals with unblocked spiracles (18.7 nmol g(-1) min(-1) vs. 7.9 nmol g(-1) min(-1)). These findings indicate an important influence of spiracle conductance on the DGC, which may occur mostly in insects showing high spiracular conductances and low metabolic rates. PMID:19682454

  1. Evolutionary Rate Heterogeneity of Primary and Secondary Metabolic Pathway Genes in Arabidopsis thaliana

    PubMed Central

    Mukherjee, Dola; Mukherjee, Ashutosh; Ghosh, Tapash Chandra

    2016-01-01

    Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex metabolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway genes is a prerequisite. In this study, evolutionary rate variation of primary and secondary metabolic pathway genes has been analyzed in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary dynamics of plant metabolism. PMID:26556590

  2. Selective metabolic activation of the hippocampus during lidocaine-induced pre-seizure activity.

    PubMed

    Ingvar, M; Shapiro, H M

    1981-01-01

    Neurophysiologic studies indicate that local anesthetic-induced seizures are generated in subcortical brain structures. The authors utilized a quantitative autoradiographic technique to measure cerebral metabolism during lidocaine-induced seizure activity in rats anesthetized with nitrous oxide. Local cerebral metabolic rate for glucose (l-CMRg) was determined when lidocaine infusion resulted in sustained electroencephalographic patterns consisting of approximately 100--125-mu volt discharges with a frequency of about 9 Hz, lasting 1-2 sec, and superimposed upon almost isoelectric periods lasting 1-3 sec. Significant reductions in 1-CMRg (30-70 per cent decreases) occurred in 19 of 26 regions surveyed. All areas of cerebral cortex had decreased glucose uptake following lidocaine administration. The hippocampus developed a striking increase in 1-CMRg of 237 per cent, while the amygdala and other related nuclei sustained metabolic rates similar to those present before lidocaine was given. This study demonstrates a coupling of metabolic activity with functional activity in subcortical structures recognized to be involved in the generation of local anesthetic seizure activity. Additionally, it reveals a heterogeneous response of cerebral metabolism to lidocaine infusion in the presence of subcortically localized seizures. PMID:7457980

  3. Metabolically active Crenarchaeota in Altamira Cave.

    PubMed

    Gonzalez, Juan M; Portillo, M Carmen; Saiz-Jimenez, Cesareo

    2006-01-01

    Altamira Cave contains valuable paleolithic paintings dating back to 15,000 years. The conservation of these unique paintings is attracting increasing interest, and so, understanding microbial proliferation in Altamira Cave represents a prioritary objective. Here, we show for the first time that members of the Crenarchaeota were metabolically active components of developing microbial communities. RNA was extracted directly from the studied environment, and a number of 16S rRNA gene sequences belonging to the low-temperature Crenarchaeota were detected. Although low-temperature Crenarchaeota detected in a variety of ecosystems by using molecular techniques remain uncultured, this RNA-based study confirms an active participation of the Crenarchaeota in cave biogeochemical cycles. PMID:16292522

  4. Metabolic rate, latitude and thermal stability of roosts, but not phylogeny, affect rewarming rates of bats.

    PubMed

    Menzies, Allyson K; Webber, Quinn M R; Baloun, Dylan E; McGuire, Liam P; Muise, Kristina A; Coté, Damien; Tinkler, Samantha; Willis, Craig K R

    2016-10-01

    Torpor is an adaptation that allows many endotherms to save energy by abandoning the energetic cost of maintaining elevated body temperatures. Although torpor reduces energy consumption, the metabolic heat production required to arouse from torpor is energetically expensive and can impact the overall cost of torpor. The rate at which rewarming occurs can impact the cost of arousal, therefore, factors influencing rewarming rates of heterothermic endotherms could have influenced the evolution of rewarming rates and overall energetic costs of arousal from torpor. Bats are a useful taxon for studies of ecological and behavioral correlates of rewarming rate because of the widespread expression of heterothermy and ecological diversity across the >1200 known species. We used a comparative analysis of 45 bat species to test the hypothesis that ecological, behavioral, and physiological factors affect rewarming rates. We used basal metabolic rate (BMR) as an index of thermogenic capacity, and local climate (i.e., latitude of geographic range), roost stability and maximum colony size as ecological and behavioral predictors of rewarming rate. After controlling for phylogeny, high BMR was associated with rapid rewarming while species that live at higher absolute latitudes and in less thermally stable roosts also rewarmed most rapidly. These patterns suggests that some bat species rely on passive rewarming and social thermoregulation to reduce costs of rewarming, while others might rely on thermogenic capacity to maintain rapid rewarming rates in order to reduce energetic costs of arousal. Our results highlight species-specific traits associated with maintaining positive energy balance in a wide range of climates, while also providing insight into possible mechanisms underlying the evolution of heterothermy in endotherms. PMID:27317837

  5. Accelerometry estimates field metabolic rate in giant Australian cuttlefish Sepia apama during breeding.

    PubMed

    Payne, Nicholas L; Gillanders, Bronwyn M; Seymour, Roger S; Webber, Dale M; Snelling, Edward P; Semmens, Jayson M

    2011-03-01

    1. Estimating the metabolic rate of animals in nature is central to understanding the physiological, behavioural and evolutionary ecology of animals. Doubly labelled water and heart-rate methods are the most commonly used approaches, but both have limitations that preclude their application to some systems. 2. Accelerometry has emerged as a powerful tool for estimating energy expenditure in a range of animals, but is yet to be used to estimate field metabolic rate in aquatic taxa. We combined two-dimensional accelerometry and swim-tunnel respirometry to estimate patterns of energy expenditure in giant Australian cuttlefish Sepia apama during breeding. 3. Both oxygen consumption rate (Vo2) and swimming speed showed strong positive associations with body acceleration, with coefficients of determination comparable to those using similar accelerometers on terrestrial vertebrates. Despite increased activity during the day, field metabolic rate rarely approached Vo2, and night-time Vo2 was similar to that at rest. 4. These results are consistent with the life-history strategy of this species, which has a poor capacity to exercise anaerobically, and a mating strategy that is visually based. With the logistical difficulties associated with observation in aquatic environments, accelerometry is likely to prove a valuable tool for estimating energy expenditure in aquatic animals. PMID:20880022

  6. Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax.

    PubMed

    Shillington, Cara

    2005-12-01

    Intra-specific variation in life history and mating strategies can lead to differences in energy allocation and expenditure in males and females. This may, in turn, explain large-scale evolutionary patterns. In this study, I investigated the effects of body mass, temperature and sex on resting metabolic rates (RMRs) in sexually mature male and female tarantulas (Aphonopelma anax (Chamberlin)), a species that exhibits extreme inter-sexual differences in life history after reaching sexual maturity. RMRs were measured as rates of CO(2) production in an open-flow respirometry system at 20, 25, 30 and 35 degrees C. These temperatures are typical to what this species experiences under natural conditions. In addition, a respiratory quotient (RQ) of 0.92 was calculated from rates of CO(2) production and O(2) consumption in a closed, constant-volume respirometry system. As expected, RMRs increased with increasing temperature and body mass. However, after adjusting for the influence of body mass, males had substantially higher metabolic rates than females at each temperature. This higher metabolic rate is proposed as an adaptive strategy to support higher energetic demands for males during their active, locomotory search for females during the mating season. PMID:16314133

  7. Metabolic and renal clearance rates of purified human chorionic gonadotropin.

    PubMed Central

    Wehmann, R E; Nisula, B C

    1981-01-01

    The metabolic clearance rate (MCR) and renal clearance rate (RCR) of human chorionic gonadotropin (hCG) were measured in healthy young men and women using techniques of continuous intravenous infusion and rapid intravenous injection of unlabeled, highly purified hCG. Seven subjects received 4 d of infusion at a rate of 0.2 microgram/min, followed by an additional 4 d of infusion at 0.8 microgram/min. Mean serum levels of hCG established at these rates of infusion were 61.1 +/- 3.3 and 237 +/- 16 ng/ml, respectively (mean +/- SEM). The MCR determined at the low infusion rate was not significantly different from that determined at the higher infusion rate (1.83 +/- 0.09 vs. 1.95 +/- 0.14 ml/min per m2). The mean MCR for all subjects was 1.88 +/- 0.08 ml/min per m2. The MCR was not significantly different between men amd women (2.04 +/- 0.13 vs. 1.76 +/- 0.07 ml/min per m2). The RCR also did not vary between low and high infusion rates (0.40 +/- 0.03 vs. 0.40 +/- 0.04 ml/min per m2). The mean RCR for all subjects was 0.40 +/- 0.02 ml/min per m2. There was no difference in RCR between men and women (0.42 +/- 0.05 vs. 0.39 +/- 0.03 ml/min per m2). Six subjects were given 1.0 mg of highly purified hCG by rapid intravenous injection. Initial serum levels of hCG were 300-400 ng/ml, and the subsequent disappearance curve was multiexponential over 8-10 d. The disappearance curve of hCG in each subject was fitted to a biexponential equation. The rapid component t1/2 was 5.97 +/- 0.63 h and the slow component t1/2 was 35.6 +/- 8.0 h. We conclude that the MCR of purified hCG in man is about 2 ml/min per m2 and the RCR is 0.4 ml/min per m2; these parameters are concentration independent and do not differ significantly between healthy young men and women. PMID:7251859

  8. Mammalian metabolic rates in the hottest fish on earth

    PubMed Central

    Wood, Chris M.; Brix, Kevin V.; De Boeck, Gudrun; Bergman, Harold L.; Bianchini, Adalto; Bianchini, Lucas F.; Maina, John N.; Johannsson, Ora E.; Kavembe, Geraldine D.; Papah, Michael B.; Letura, Kisipan M.; Ojoo, Rodi O.

    2016-01-01

    The Magadi tilapia, Alcolapia grahami, a small cichlid fish of Lake Magadi, Kenya lives in one of the most challenging aquatic environments on earth, characterized by very high alkalinity, unusual water chemistry, and extreme O2, ROS, and temperature regimes. In contrast to most fishes which live at temperatures substantially lower than the 36–40 °C of mammals and birds, an isolated population (South West Hot Springs, SWHS) of Magadi tilapia thrives in fast-flowing hotsprings with daytime highs of 43 °C and night-time lows of 32 °C. Another population (Fish Springs Lagoon, FSL) lives in a lagoon with fairly stable daily temperatures (33–36 °C). The upper critical temperatures (Ctmax) of both populations are very high; moreover the SWHS tilapia exhibit the highest Ctmax (45.6 °C) ever recorded for a fish. Routine rates of O2 consumption (MO2) measured on site, together with MO2 and swimming performance at 25, 32, and 39 °C in the laboratory, showed that the SWHS tilapia exhibited the greatest metabolic performance ever recorded in a fish. These rates were in the basal range of a small mammal of comparable size, and were all far higher than in the FSL fish. The SWHS tilapia represents a bellwether organism for global warming. PMID:27257105

  9. Metabolic rate and thermal insulation in albino and hairless mice

    PubMed Central

    Mount, L. E.

    1971-01-01

    1. Rates of oxygen consumption of albino and hairless mice were measured in a metabolism chamber during periods of approximately 5 or 24 hr. Rectal temperature was measured before and after each period. The chamber temperatures used were 22, 30 and 32° C for both albino and hairless, and in addition 34 and 36° C for the hairless mice. 2. The mean age and body weight of the albino mice were 102 days and 34·6 g; the corresponding values for the hairless mice were 87 days and 32·8 g. 3. The mean minimum rates of oxygen consumption (ml./kg.min) were 31·0 for the albino and 38·8 for the hairless mouse; the corresponding estimated critical temperatures were in the ranges 30-32° C for the albino mouse and 32-34° C for the hairless mouse. 4. The mean values for core-ambient thermal insulation (° C.m2.hr/kcal) were 0·418 and 0·328 for the albino mouse, and 0·275 and 0·221 for the hairless mouse, at 22 and 30° C respectively in each case. PMID:5097602

  10. Mammalian metabolic rates in the hottest fish on earth.

    PubMed

    Wood, Chris M; Brix, Kevin V; De Boeck, Gudrun; Bergman, Harold L; Bianchini, Adalto; Bianchini, Lucas F; Maina, John N; Johannsson, Ora E; Kavembe, Geraldine D; Papah, Michael B; Letura, Kisipan M; Ojoo, Rodi O

    2016-01-01

    The Magadi tilapia, Alcolapia grahami, a small cichlid fish of Lake Magadi, Kenya lives in one of the most challenging aquatic environments on earth, characterized by very high alkalinity, unusual water chemistry, and extreme O2, ROS, and temperature regimes. In contrast to most fishes which live at temperatures substantially lower than the 36-40 °C of mammals and birds, an isolated population (South West Hot Springs, SWHS) of Magadi tilapia thrives in fast-flowing hotsprings with daytime highs of 43 °C and night-time lows of 32 °C. Another population (Fish Springs Lagoon, FSL) lives in a lagoon with fairly stable daily temperatures (33-36 °C). The upper critical temperatures (Ctmax) of both populations are very high; moreover the SWHS tilapia exhibit the highest Ctmax (45.6 °C) ever recorded for a fish. Routine rates of O2 consumption (MO2) measured on site, together with MO2 and swimming performance at 25, 32, and 39 °C in the laboratory, showed that the SWHS tilapia exhibited the greatest metabolic performance ever recorded in a fish. These rates were in the basal range of a small mammal of comparable size, and were all far higher than in the FSL fish. The SWHS tilapia represents a bellwether organism for global warming. PMID:27257105

  11. Gravity, Body Mass and Composition, and Metabolic Rate

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.

    1985-01-01

    Metabolic rate and body composition as a function of sex and age were defined in 5 species of common laboratory mammals, the mouse, hamster, rat, guinea pig and rabbit. Oxygen consumption and carbon dioxide production rates were measured individually in 6 male and 6 female animals for each of 8 age cohorts ranging from 1 month to 2 years, and for each of the species. From the results it is evident that among these small mammals there is no indication of scaling of muscularity to body size, despite the 100-fold difference in body mass represented by the skeletal musculature seems to reach a pronounced peak value at age 2 to 3 months and then declines, the fraction of the fat-free body represented by other body components in older animals must increase complementarily. Under normal gravity conditions muscularity in small laboratory mammals displays large, systematic variation as a function both of species and age. This variation must be considered when such animals are subjects of experiments to study the effects of altered gravitational loading on the skeletal musculature of the mammal.

  12. Energy utilization rates during shuttle extravehicular activities.

    PubMed

    Waligora, J M; Kumar, K V

    1995-01-01

    The work rates or energy utilization rates during EVA are major factors in sizing of life support systems. These rates also provide a measure of ease of EVA and its cost in crew fatigue. From the first Shuttle EVA on the STS-6 mission in 1983, we have conducted 59 man-EVA and 341 man-hours of EVA. Energy utilization rates have been measured on each of these EVA. Metabolic rate was measured during each EVA using oxygen utilization corrected for suit leakage. From 1981-1987, these data were available for average data over the EVA or over large segments of the EVA. Since 1987, EVA oxygen utilization data were available at 2-minute intervals. The average metabolic rate on Shuttle EVA (194 kcal/hr.) has been significantly lower than metabolic rates during Apollo and Skylab missions. Peak rates have been below design levels, infrequent, and of short duration. The data suggest that the energy cost of tasks may be inversely related to the degree of training for the task. The data provide insight on the safety margins provided by life support designs and on the energy cost of Station construction EVA. PMID:11540993

  13. Physical Activity, Body Composition and Metabolic Syndrome in Young Adults

    PubMed Central

    Salonen, Minna K.; Wasenius, Niko; Kajantie, Eero; Lano, Aulikki; Lahti, Jari; Heinonen, Kati; Räikkönen, Katri; Eriksson, Johan G.

    2015-01-01

    Objective Low physical activity (PA) is a major risk factor for cardiovascular and metabolic disorders in all age groups. We measured intensity and volume of PA and examined the associations between PA and the metabolic syndrome (MS), its components and body composition among young Finnish adults. Research Design and Methods The study comprises 991 men and women born 1985-86, who participated in a clinical study during the years 2009-11 which included assessments of metabolism, body composition and PA. Objectively measured (SenseWear Armband) five-day PA data was available from 737 participants and was expressed in metabolic equivalents of task (MET). Results The prevalence of MS ranged between 8-10%. Higher total mean volume (MET-hours) or intensity (MET) were negatively associated with the risk of MS and separate components of MS, while the time spent at sedentary level of PA was positively associated with MS. Conclusions MS was prevalent in approximately every tenth of the young adults at the age of 24 years. Higher total mean intensity and volume rates as well as longer duration spent at moderate and vigorous PA level had a beneficial impact on the risk of MS. Longer time spent at the sedentary level of PA increased the risk of MS. PMID:25992848

  14. Predicting the extent of metabolism using in vitro permeability rate measurements and in silico permeability rate predictions

    PubMed Central

    Hosey, Chelsea M; Benet, Leslie Z

    2015-01-01

    The Biopharmaceutics Drug Disposition Classification System (BDDCS) can be utilized to predict drug disposition, including interactions with other drugs and transporter or metabolizing enzyme effects based on the extent of metabolism and solubility of a drug. However, defining the extent of metabolism relies upon clinical data. Drugs exhibiting high passive intestinal permeability rates are extensively metabolized. Therefore, we aimed to determine if in vitro measures of permeability rate or in silico permeability rate predictions could predict the extent of metabolism, to determine a reference compound representing the permeability rate above which compounds would be expected to be extensively metabolized, and to predict the major route of elimination of compounds in a two-tier approach utilizing permeability rate and a previously published model predicting the major route of elimination of parent drug. Twenty-two in vitro permeability rate measurement data sets in Caco-2 and MDCK cell lines and PAMPA were collected from the literature, while in silico permeability rate predictions were calculated using ADMET Predictor™ or VolSurf+. The potential for permeability rate to differentiate between extensively and poorly metabolized compounds was analyzed with receiver operating characteristic curves. Compounds that yielded the highest sensitivity-specificity average were selected as permeability rate reference standards. The major route of elimination of poorly permeable drugs was predicted by our previously published model and the accuracies and predictive values were calculated. The areas under the receiver operating curves were >0.90 for in vitro measures of permeability rate and >0.80 for the VolSurf+ model of permeability rate, indicating they were able to predict the extent of metabolism of compounds. Labetalol and zidovudine predicted greater than 80% of extensively metabolized drugs correctly and greater than 80% of poorly metabolized drugs correctly in Caco

  15. Resting metabolic rate and postprandial thermogenesis in vegetarians and nonvegetarians.

    PubMed

    Poehlman, E T; Arciero, P J; Melby, C L; Badylak, S F

    1988-08-01

    Resting metabolic rate (RMR), thermic effect of a meal (TEM), and associated hormonal changes were studied in vegetarians and nonvegetarians. RMR was established by indirect calorimetry in 12 male vegetarians (VEG) and 11 nonvegetarians (NVEG) of similar body fat and aerobic fitness. Subjects ingested a liquid meal and TEM was measured for 180 min postprandially. Plasma concentrations of glucose, insulin and thyroid hormones (T3 and T4) were determined before and after meal ingestion. Absolute RMR was comparable between VEG and NVEG. However, TEM was lower (p less than 0.01) in VEG (55.8 +/- 3.3 kcal/180 min) vs NVEG (76.4 +/- 3.6). Plasma levels of glucose and insulin were similar between the two groups whereas plasma T3 was slightly but nonsignificantly lower in vegetarians. A vegetarian diet may decrease the postprandial thermic response; this does not support the supposition that an elevated TEM is a factor contributing to the lower body weight in vegetarians than in omnivores. PMID:3044062

  16. Reduced Resting Metabolic Rate in Adults with Hemiparetic Chronic Stroke

    PubMed Central

    Serra, Monica C; Hafer-Macko, Charlene E; Ryan, Alice S

    2016-01-01

    Objective Resting metabolic rate (RMR) is the component of energy expenditure that explains the largest proportion of total daily energy requirements. Since RMR is determined largely by fat-free mass and a low RMR predicts weight gain in healthy adults, identifying the role of muscle atrophy following stroke on RMR may help identify ways to mitigate the development of obesity post-stroke. Methods Thirty-nine stroke survivors with chronic hemiparesis (mean ± SEM: age: 61 ± 1 years, latency from stroke: 107 ± 40 months, BMI: 31 ± 3 kg/m2) underwent DXA scans for measurement of body composition, including total, paretic, and non-paretic leg lean mass and fasted, 30-min indirect calorimetry for measurement of RMR. Result Predicted RMR was calculated by the Mifflin-St Jeor equation, which considers weight, height, and age for both men and women. RMR was 14% lower than predicted (1438 ± 45 vs. 1669 ± 38 kcals/24 hrs; P<0.01). Total (r=0.73, P<0.01), paretic (r=0.72, P<0.01) and non-paretic (r=0.67, P<0.01) leg lean mass predicted RMR. Conclusion These data indicate that muscle atrophy post stroke may lead to a reduced RMR. This substantiates the need to attenuate the loss of lean mass after a stroke to prevent declines in RMR and possible weight gain common post-stroke. PMID:26973796

  17. Scaling of standard metabolic rate in estuarine crocodiles Crocodylus porosus.

    PubMed

    Seymour, Roger S; Gienger, C M; Brien, Matthew L; Tracy, Christopher R; Charlie Manolis, S; Webb, Grahame J W; Christian, Keith A

    2013-05-01

    Standard metabolic rate (SMR, ml O2 min(-1)) of captive Crocodylus porosus at 30 °C scales with body mass (kg) according to the equation, SMR = 1.01 M(0.829), in animals ranging in body mass of 3.3 orders of magnitude (0.19-389 kg). The exponent is significantly higher than 0.75, so does not conform to quarter-power scaling theory, but rather is likely an emergent property with no single explanation. SMR at 1 kg body mass is similar to the literature for C. porosus and for alligators. The high exponent is not related to feeding, growth, or obesity of captive animals. The log-transformed data appear slightly curved, mainly because SMR is somewhat low in many of the largest animals (291-389 kg). A 3-parameter model is scarcely different from the linear one, but reveals a declining exponent between 0.862 and 0.798. A non-linear model on arithmetic axes overestimates SMR in 70% of the smallest animals and does not satisfactorily represent the data. PMID:23233168

  18. Resting Metabolic Rate Analysis in Chronic Hemiparesis Patients

    PubMed Central

    de Sant’Anna, Mauricio; Eboli, Leonardo Coelho; Silva, Julio Guilherme; dos Santos, Alan Gomes; Lourenço, Michele; Moreno, Adalgiza Mafra; de Freitas, Gabriel Rodriguez; Orsini, Marco

    2014-01-01

    The objective of the present study was to compare resting metabolic rate (RMR) of chronic hemiparetic patients to sedentary health individuals. The sample was composed of 16 individuals, that were divided into two groups. The first group had eight hemiparetic patients and the second group was formed by eight sedentary individuals. To access and analyze the gases information a VO2000 analyzer was used. The following variables were measured: VO2, VCO2, VE, QR, grams of fat (GrFAT), grams of carbohydrate. RMR was calculated based on Weir’s equation. There was a significant shift on ventilation variables: VE (P<0.0003), VO2 (P<0.0004) and VCO2 (P<0.0001) on hemiparetic individuals group when compared to control group. When the energetic substrate used behavior is observed, it shows that fat consumption (represented by GrFAT) is higher on the hemiparetic group when compared to controls (P<0.0001) significant differences were observed for RMR between groups (P<0.0001). RMR showed a correlation to VO2 on the hemiparetic group (r=0.9277, P=0.0022). To sum up, it was observed through the results that individuals with hemiparesis as a sequel of stroke showed a RMR larger than normal individuals. PMID:25568736

  19. Resting metabolic rate analysis in chronic hemiparesis patients.

    PubMed

    de Sant'Anna, Mauricio; Eboli, Leonardo Coelho; Silva, Julio Guilherme; Dos Santos, Alan Gomes; Lourenço, Michele; Moreno, Adalgiza Mafra; de Freitas, Gabriel Rodriguez; Orsini, Marco

    2014-10-23

    The objective of the present study was to compare resting metabolic rate (RMR) of chronic hemiparetic patients to sedentary health individuals. The sample was composed of 16 individuals, that were divided into two groups. The first group had eight hemiparetic patients and the second group was formed by eight sedentary individuals. To access and analyze the gases information a VO2000 analyzer was used. The following variables were measured: VO2, VCO2, VE, QR, grams of fat (GrFAT), grams of carbohydrate. RMR was calculated based on Weir's equation. There was a significant shift on ventilation variables: VE (P<0.0003), VO2 (P<0.0004) and VCO2 (P<0.0001) on hemiparetic individuals group when compared to control group. When the energetic substrate used behavior is observed, it shows that fat consumption (represented by GrFAT) is higher on the hemiparetic group when compared to controls (P<0.0001) significant differences were observed for RMR between groups (P<0.0001). RMR showed a correlation to VO2 on the hemiparetic group (r=0.9277, P=0.0022). To sum up, it was observed through the results that individuals with hemiparesis as a sequel of stroke showed a RMR larger than normal individuals. PMID:25568736

  20. Body Composition and Basal Metabolic Rate in Women with Type 2 Diabetes Mellitus

    PubMed Central

    de Figueiredo Ferreira, Marina; Detrano, Filipe; Coelho, Gabriela Morgado de Oliveira; Barros, Maria Elisa; Serrão Lanzillotti, Regina; Firmino Nogueira Neto, José; Portella, Emilson Souza; Serrão Lanzillotti, Haydée; Soares, Eliane de Abreu

    2014-01-01

    Objective. The aim of this study was to determine which of the seven selected equations used to predict basal metabolic rate most accurately estimated the measured basal metabolic rate. Methods. Twenty-eight adult women with type 2 diabetes mellitus participated in this cross-sectional study. Anthropometric and biochemical variables were measured as well as body composition (by absorptiometry dual X-ray emission) and basal metabolic rate (by indirect calorimetry); basal metabolic rate was also estimated by prediction equations. Results. There was a significant difference between the measured and the estimated basal metabolic rate determined by the FAO/WHO/UNU (Pvalue < 0.021) and Huang et al. (Pvalue ≤ 0.005) equations. Conclusion. The calculations using Owen et al's. equation were the closest to the measured basal metabolic rate. PMID:25436144

  1. Low global sensitivity of metabolic rate to temperature in calcified marine invertebrates.

    PubMed

    Watson, Sue-Ann; Morley, Simon A; Bates, Amanda E; Clark, Melody S; Day, Robert W; Lamare, Miles; Martin, Stephanie M; Southgate, Paul C; Tan, Koh Siang; Tyler, Paul A; Peck, Lloyd S

    2014-01-01

    Metabolic rate is a key component of energy budgets that scales with body size and varies with large-scale environmental geographical patterns. Here we conduct an analysis of standard metabolic rates (SMR) of marine ectotherms across a 70° latitudinal gradient in both hemispheres that spanned collection temperatures of 0-30 °C. To account for latitudinal differences in the size and skeletal composition between species, SMR was mass normalized to that of a standard-sized (223 mg) ash-free dry mass individual. SMR was measured for 17 species of calcified invertebrates (bivalves, gastropods, urchins and brachiopods), using a single consistent methodology, including 11 species whose SMR was described for the first time. SMR of 15 out of 17 species had a mass-scaling exponent between 2/3 and 1, with no greater support for a 3/4 rather than a 2/3 scaling exponent. After accounting for taxonomy and variability in parameter estimates among species using variance-weighted linear mixed effects modelling, temperature sensitivity of SMR had an activation energy (Ea) of 0.16 for both Northern and Southern Hemisphere species which was lower than predicted under the metabolic theory of ecology (Ea 0.2-1.2 eV). Northern Hemisphere species, however, had a higher SMR at each habitat temperature, but a lower mass-scaling exponent relative to SMR. Evolutionary trade-offs that may be driving differences in metabolic rate (such as metabolic cold adaptation of Northern Hemisphere species) will have important impacts on species abilities to respond to changing environments. PMID:24036933

  2. Sleep slow-wave activity regulates cerebral glycolytic metabolism.

    PubMed

    Wisor, Jonathan P; Rempe, Michael J; Schmidt, Michelle A; Moore, Michele E; Clegern, William C

    2013-08-01

    Non-rapid eye movement sleep (NREMS) onset is characterized by a reduction in cerebral metabolism and an increase in slow waves, 1-4-Hz oscillations between relatively depolarized and hyperpolarized states in the cerebral cortex. The metabolic consequences of slow-wave activity (SWA) at the cellular level remain uncertain. We sought to determine whether SWA modulates the rate of glycolysis within the cerebral cortex. The real-time measurement of lactate concentration in the mouse cerebral cortex demonstrates that it increases during enforced wakefulness. In spontaneous sleep/wake cycles, lactate concentration builds during wakefulness and rapid eye movement sleep and declines during NREMS. The rate at which lactate concentration declines during NREMS is proportional to the magnitude of electroencephalographic (EEG) activity at frequencies of <10 Hz. The induction of 1-Hz oscillations, but not 10-Hz oscillations, in the electroencephalogram by optogenetic stimulation of cortical pyramidal cells during wakefulness triggers a decline in lactate concentration. We conclude that cerebral SWA promotes a decline in the rate of glycolysis in the cerebral cortex. These results demonstrate a cellular energetic function for sleep SWA, which may contribute to its restorative effects on brain function. PMID:22767634

  3. Metabolic clearance of biologically active luteinizing hormone in man.

    PubMed Central

    Veldhuis, J D; Fraioli, F; Rogol, A D; Dufau, M L

    1986-01-01

    The plasma metabolic clearance of biologically active luteinizing hormone (bioactive LH) was studied using the rat interstitial cell testosterone (RICT) bioassay in six hypogonadotropic men after single bolus injection of highly purified human LH and during continuous steady-state infusions of three graded doses of LH. The LH bolus disappearance curves provided estimates of metabolic clearance rates (MCR) of 24.1 +/- 4.7 (+/- SD) ml/min for bioactive LH vs. 56.2 +/- 12 ml/min for immunoactive LH in the same men (P = 0.03). A lower MCR of bioactive LH compared with immunoactive LH was also observed during continuous infusions of physiological doses of LH; for example, the mean steady-state MCRs for bioactive and immunoactive LH were, respectively, 26.1 +/- 3.1 and 34.2 +/- 3.2 ml/min (P = 0.02). Moreover, the stepped-dose infusion regimens permitted us to demonstrate that increasing doses of pure human LH resulted in progressive and parallel decreases in the apparent MCRs of both bioactive and immunoactive LH. Based on the respective steady-state MCRs calculated at physiological plasma concentrations of immunoactive and bioactive LH, we estimate a mean endogenous production rate for bioactive hormone of 1,937 IU/24 h, and for immunoactive LH of 589 IU/24 h in normal men. These results indicate that previous estimates of LH production rates from immunoassay data alone markedly underestimate the quantity of biologically active hormone secreted in man. PMID:3958184

  4. The role of nest surface temperatures and the brain in influencing ant metabolic rates.

    PubMed

    Andrew, Nigel R; Ghaedi, Behnaz; Groenewald, Berlizé

    2016-08-01

    Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44°C to 62°C at 0.25°C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments ('headedness'). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2°C: Living 50.1±1.8°C). Throughout the temperature ramping process, 'headedness' had a significant effect on metabolic rate in total (Decapitated V̇CO2 140±30µlCO2mg(-1)min(-1): Living V̇CO2 250±50 CO2mg(-1)min(-1)), as well as at temperatures below and above CTmax. At high temperatures (>44°C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25-35°C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels. PMID:27503725

  5. Metabolism correlates with variation in post-natal growth rate among songbirds at three latitudes

    USGS Publications Warehouse

    Ton, Riccardo; Martin, Thomas E.

    2015-01-01

    4. Our results suggest that variation in metabolic rates has an important influence on broad patterns of avian growth rates at a global scale. We suggest further studies that address the ecological and physiological costs and consequences of variation in metabolism and growth rates.

  6. Metabolic Activity of Bacteria at High Pressure

    NASA Astrophysics Data System (ADS)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    a depth of marine sediment of 500 m, or even beneath a water column of 6 km in surface sediments. This suggests that the metabolic activity of surface microorganisms that receive nutrients through sea water percolation into the deeper parts of the sediment, or that sink with the sediment, may represent a significant fraction of the total activity observed in subsurface environments. The present results indicate also that cells in stationary phase at HHP, which preclude growth, can still have a short-term metabolic activity independent of the growth-related activity. Consequently, surface microorganisms have the ability to impact significantly and rapidly on biogeochemical cycles in deep environments.

  7. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart

    SciTech Connect

    Krivokapich, J.; Huang, S.C.; Selin, C.E.; Phelps, M.E.

    1987-04-01

    The isolated arterial perfused rabbit interventricular septum was used to measure myocardial metabolic rate for glucose (MMRGlc) and rate constants and lumped constant (LC) for the glucose analogue (/sup 18/F)fluorodeoxyglucose (FDG) using a tracer kinetic model. FDG was delivered by constant infusion during coincidence counting of tissue /sup 18/F radioactivity. The MMRGlc was measured by the Fick method. Control septa were paced at 72 beats/min and perfused at 1.5 ml/min with oxygenated perfusate containing 5.6 mM glucose and 5 mU/ml insulin. The following conditions were tested: 3.0 and 4.5 ml/min; insulin increased to 25 mU/ml; insulin omitted; 2.8 mM and 11.2 mM glucose; 144 beats/min and 96 paired stimuli/min; and anoxia. Under all conditions studied the phosphorylation (hexokinase) reaction was rate limiting relative to transport. Compared with control conditions, the phosphorylation rate constant was significantly increased with 2.8 mM glucose as well as in anoxia. With 4.5 ml/min and 11.2 mM glucose, conditions that should increase glucose flux into tissue without increasing demand, the phosphorylation rate constant decreased significantly. With 11.2 mM glucose, 96 paired stimuli/min, and anoxia without insulin, a significant increase in the hydrolysis rate of FDG 6-phosphate was observed and suggests that hydrolysis is also an important mechanism for regulating the MMRGlc. Increased transport rate constants were observed with increased flow rates, 96 paired stimuli/min, and anoxia at 96 beats/min. The LC was not significantly different from control in 11 of 14 conditions studied. Therefore, under most conditions in average LC can be used to calculate MMRGlc estimates.

  8. [Study on in vitro metabolic rate and metabolites or 9-dehydro-17-dehydro-andrographolide].

    PubMed

    Shao, Jun; Chen, Wei-kang; Zheng, Dong-kun; Ma, Shuang-cheng; Luo, Yue-hua

    2015-03-01

    To investigate the metabolic rate and metabolites of 9-dehydro-17-dehydro-andrographolide, which is the main active ingredient in Xiyanping injection, by using the in vitro rat liver microsome incubation system. 9-dehydro-17-dehydro-andrographolide was incubated together with liver microsome mixed with NADPH. Its metabolic rate was studied by determining its residual concentrations with the UHPLC-MS/MS method; Its metabolites were identified by the UPLC-TOF-MS(E) method. The results showed that 9-dehydro-17-dehydro-andrographolide was metabolized faster than rat liver microsomes mixed with coenzymes, with t½ and CL of (19.7 ± 0.5) min and (35.1 ± 0.8) mL x min(-1) x g(-1) (protein), respectively. Based on the high resolution mass spectrum data and information from literatures, altogether nine metabolites of 9-dehydro-17-dehydro-andrographolide were identified in the incubation system, particularly hydroxylated and dehydrogenized products. The results of identification would provide a basis for screening out more active andrographolide derivatives. PMID:26087565

  9. Expensive Brains: “Brainy” Rodents have Higher Metabolic Rate

    PubMed Central

    Sobrero, Raúl; May-Collado, Laura J.; Agnarsson, Ingi; Hernández, Cristián E.

    2011-01-01

    Brains are the centers of the nervous system of animals, controlling the organ systems of the body and coordinating responses to changes in the ecological and social environment. The evolution of traits that correlate with cognitive ability, such as relative brain size is thus of broad interest. Brain mass relative to body mass (BM) varies among mammals, and diverse factors have been proposed to explain this variation. A recent study provided evidence that energetics play an important role in brain evolution (Isler and van Schaik, 2006). Using composite phylogenies and data drawn from multiple sources, these authors showed that basal metabolic rate (BMR) correlates with brain mass across mammals. However, no such relationship was found within rodents. Here we re-examined the relationship between BMR and brain mass within Rodentia using a novel species-level phylogeny. Our results are sensitive to parameter evaluation; in particular how species mass is estimated. We detect no pattern when applying an approach used by previous studies, where each species BM is represented by two different numbers, one being the individual that happened to be used for BMR estimates of that species. However, this approach may compromise the analysis. When using a single value of BM for each species, whether representing a single individual, or available species mean, our findings provide evidence that brain mass (independent of BM) and BMR are correlated. These findings are thus consistent with the hypothesis that large brains evolve when the payoff for increased brain mass is greater than the energetic cost they incur. PMID:21811456

  10. A study of estrogen metabolic clearance rates and transfer factors

    PubMed Central

    Hembree, W. C.; Bardin, C. W.; Lipsett, M. B.

    1969-01-01

    We have attempted to measure the metabolic clearance rates (MCR) and the transfer factors of estradiol (E2) and estrone (E1) during 2-hr and 12-hr infusions. When estradiol-3H was infused for 2 hr, apparent equilibrium was reached at 70 min; the 12-hr infusions showed that plasma estradiol-3H levels increased slowly throughout the infusion. When estrone-3H was infused, constancy of estrone-3H levels was not attained in either the 2-hr infusions or in the two 12-hr infusions. The tritium level in the metabolite of the infused estrogen did not become constant in 50% of the short infusions and increased during all the long infusions. Thus, the conversion ratios CE1E2 and CE2E1 continually changed and transfer factors could not be calculated. The apparent “MCR'S” calculated on the basis of the 2-hr studies expressed as liters/24 hr per m2 ±SD were: “MCRE1” (women) 980 ±94, (men) 1170 ±95; “MCRE2” (women) 615 ±17, (men) 830 ±30. The estradiol “MCR's” differed significantly between men and women. “MCRE2” was the same using either estradiol-14C or -3H and was unchanged by the infusion of 170 μg of estradiol daily. Postmenopausal women had estrogen “MCR's” in the same range as premenopausal women. Excess glucocorticoids increased the “MCRE2.” PMID:5822587

  11. The scaling of maximum and basal metabolic rates of mammals and birds

    NASA Astrophysics Data System (ADS)

    Barbosa, Lauro A.; Garcia, Guilherme J. M.; da Silva, Jafferson K. L.

    2006-01-01

    Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here, we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as M, maximum heart rate as M, and muscular capillary density as M, in agreement with data.

  12. Impact of a Metabolic Screening Bundle on Rates of Screening for Metabolic Syndrome in a Psychiatry Resident Outpatient Clinic

    ERIC Educational Resources Information Center

    Wiechers, Ilse R.; Viron, Mark; Stoklosa, Joseph; Freudenreich, Oliver; Henderson, David C.; Weiss, Anthony

    2012-01-01

    Objective: Although it is widely acknowledged that second-generation antipsychotics are associated with cardiometabolic side effects, rates of metabolic screening have remained low. The authors created a quality-improvement (QI) intervention in an academic medical center outpatient psychiatry resident clinic with the aim of improving rates of…

  13. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds

    PubMed Central

    Elliott, Kyle H.; Welcker, Jorg; Gaston, Anthony J.; Hatch, Scott A.; Palace, Vince; Hare, James F.; Speakman, John R.; Anderson, W. Gary

    2013-01-01

    Summary Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR) in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR) in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia). Because BMR and daily energy expenditure (DEE) are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR). RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species. PMID:23789108

  14. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis.

    PubMed

    Kasischke, Karl A; Vishwasrao, Harshad D; Fisher, Patricia J; Zipfel, Warren R; Webb, Watt W

    2004-07-01

    We have found that two-photon fluorescence imaging of nicotinamide adenine dinucleotide (NADH) provides the sensitivity and spatial three-dimensional resolution to resolve metabolic signatures in processes of astrocytes and neurons deep in highly scattering brain tissue slices. This functional imaging reveals spatiotemporal partitioning of glycolytic and oxidative metabolism between astrocytes and neurons during focal neural activity that establishes a unifying hypothesis for neurometabolic coupling in which early oxidative metabolism in neurons is eventually sustained by late activation of the astrocyte-neuron lactate shuttle. Our model integrates existing views of brain energy metabolism and is in accord with known macroscopic physiological changes in vivo. PMID:15232110

  15. Evidence for metabolic activity of airborne bacteria

    NASA Technical Reports Server (NTRS)

    Chatigny, M. A.; Wolochow, H.

    1974-01-01

    Aerosols of the bacterium Serratia marcescens, and of uniformly labeled C-14 glucose were produced simultaneously and mixed in tubing leading to an aerosol chamber. During a subsequent period of about 5 hrs, carbon dioxide was produced metabolically within the chamber, and labeled material incorporated within the suspended particles first increased then decreased. This constitutes the first direct evidence of microbial metabolism of bacteria suspended in the air.

  16. Test-retest studies of glucose metabolic rate with F-18-deoxyglucose

    SciTech Connect

    Brooks, R.A.; Di Chiro, G.; Zukerberg, B.; Bairamian, D.; Larson, S.

    1985-05-01

    In studies using F-18-deoxyglucose (FDG), one often wants to compare metabolic rates following stimulation (drug or motor-sensory) with the baseline values. However because of repeatability problems, with baseline variations of 25% in the same individual being not uncommon, the global effect of the stimulation may be difficult to see. One approach to this problem is to perform the two studies close together on the same day. With the 110 minute half-life of F-18, this means that one must take into account the residual activity from the first phase when calculating metabolic rates for the second phase. The authors performed test-retest baseline studies on three subjects, with a one hour interval between injections. To help reduce the effect of residual activity, they gave only 2 mCi in the first injection in two cases, and only 1 mCi in the other case, out of a total injected dose of 5 mCi. The use of only 1 mCi is possible because of the high sensitivity of the Neuro-PET scanner that was used for these studies. A correction for residual activity was included in the phase 2 calculation, which takes into account both the washout of free FDG from the tissue, and the dephosphorylation of trapped FDG. The authors found agreement of about 5% between the phases, for comparable areas of the brain. Better results may be achieved by increasing the time interval between studies.

  17. Estimating resting metabolic rate by biologging core and subcutaneous temperature in a mammal.

    PubMed

    Rey, Benjamin; Halsey, Lewis G; Hetem, Robyn S; Fuller, Andrea; Mitchell, Duncan; Rouanet, Jean-Louis

    2015-05-01

    Tri-axial accelerometry has been used to continuously and remotely assess field metabolic rates in free-living endotherms. However, in cold environments, the use of accelerometry may underestimate resting metabolic rate because cold-induced stimulation of metabolic rate causes no measurable acceleration. To overcome this problem, we investigated if logging the difference between core and subcutaneous temperatures (ΔTc-s) could reveal the metabolic costs associated with cold exposure. Using implanted temperature data loggers, we recorded core and subcutaneous temperatures continuously in eight captive rabbits (Oryctolagus cuniculus) and concurrently measured their resting metabolic rate by indirect calorimetry, at ambient temperatures ranging from -7 to +25°C. ΔTc-s showed no circadian fluctuations in warm (+23°C) or cold (+5°C) environments implying that the ΔTc-s was not affected by an endogenous circadian rhythm in our laboratory conditions. ΔTc-s correlated well with resting metabolic rate (R(2)=0.77) across all ambient temperatures except above the upper limit of the thermoneutral zone (+25°C). Determining ΔTc-s could therefore provide a complementary approach for better estimating resting metabolic rate of animals within and below their thermoneutral zone. Combining data from accelerometers with such measures of body temperature could improve estimates of the overall field metabolic rate of free-living endotherms. PMID:25636902

  18. Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea.

    PubMed

    Hughes, Sarah Jane Murty; Ruhl, Henry A; Hawkins, Lawrence E; Hauton, Chris; Boorman, Ben; Billett, David S M

    2011-08-01

    Echinoderms are important components of deep-sea communities because of their abundance and the fact that their activities contribute to carbon cycling. Estimating the echinoderm contribution to food webs and carbon cycling is important to our understanding of the functioning of the deep-sea environment and how this may alter in the future as climatic changes take place. Metabolic rate data from deep-sea echinoderm species are, however, scarce. To obtain such data from abyssal echinoderms, a novel in situ respirometer system, the benthic incubation chamber system (BICS), was deployed by remotely operated vehicle (ROV) at depths ranging from 2200 to 3600 m. Oxygen consumption rates were obtained in situ from four species of abyssal echinoderm (Ophiuroidea and Holothuroidea). The design and operation of two versions of BICS are presented here, together with the in situ respirometry measurements. These results were then incorporated into a larger echinoderm metabolic rate data set, which included the metabolic rates of 84 echinoderm species from all five classes (Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea). The allometric scaling relationships between metabolic rate and body mass derived in this study for each echinoderm class were found to vary. Analysis of the data set indicated no change in echinoderm metabolic rate with depth (by class or phylum). The allometric scaling relationships presented here provide updated information for mass-dependent deep-sea echinoderm metabolic rate for use in ecosystem models, which will contribute to the study of both shallow water and deep-sea ecosystem functioning and biogeochemistry. PMID:21753044

  19. Metabolic rate and prehibernation fattening in free-living arctic ground squirrels.

    PubMed

    Sheriff, Michael J; Fridinger, Robert W; Tøien, Øivind; Barnes, Brian M; Buck, C Loren

    2013-01-01

    Hibernating mammals become sequestered and cease foraging during prolonged seasonal periods of reduced or unpredictable food availability and instead rely on cached food and/or endogenous reserves of fat and protein accumulated during the previous active season. The gain in weight is due to increased food consumption, but it also has been hypothesized that hibernators maximize rates of fattening by decreasing costs of maintenance before weight gain, reflected in reduced resting metabolic rate (RMR). We recorded repeated measures of total body, lean, and fat mass in individual adult male and female arctic ground squirrels across their active season and found that squirrels increased body mass by 42% (males) and 62% (females). This gain was achieved through a 17% increase in lean mass and a 7-8-fold increase in fat mass; however, mass gain was not linear and patterns differed between sexes. Contrary to our hypothesis, decreases in RMR were not associated with rapid mass gain. We found RMR of males increased (whole-animal RMR or lean-mass-specific RMR) or remained constant (mass-specific RMR) for most of the active season and decreased only after the majority of mass had been gained. In females, although RMR (whole-animal, mass-specific, and lean-mass RMR) generally decreased across the active season, the greatest decrease occurred late in the active season after the majority of mass had been gained. In conclusion, arctic ground squirrels do not trade off metabolism to facilitate rates of weight gain before hibernation, but they do use energy sparing strategies before hibernation that help maintain peak mass. PMID:23995482

  20. Variation of foraging rate and wing loading, but not resting metabolic rate scaling, of insect pollinators

    NASA Astrophysics Data System (ADS)

    Terblanche, John S.; Anderson, Bruce

    2010-08-01

    Morphological, physiological and behavioural variation with body size (i.e. scaling) may affect costs of living in a particular environment for insects and, ultimately, pollination or foraging success. However, few studies have directly assessed the scaling of these traits at the species level. Using two similar-sized pollinator species (the hawkmoth Macroglossum trochilus and the fly Moegistorhynchus longirostrus), we compare intraspecific scaling relationships of resting metabolic rate (RMR), foraging rate (FR) and wing loading (WL) to address this paucity of data. Scaling of RMR was similar for both taxa although the intercepts for the relationships differed. However, these two species showed variation in WL scaling relationships and fundamentally different FR scaling. For M. longirostrus, FR scaling was positive but non-significantly related to body mass while for M. trochilus FR scaling was negative. This suggests that variation in FR and WL, but not RMR scaling, among these flies and hawkmoths may impose significant energetic costs which could affect animal-plant interactions in the wild.

  1. Ontogeny of Metabolic Rate and Red Blood Cell Size in Eyelid Geckos: Species Follow Different Paths

    PubMed Central

    Starostová, Zuzana; Konarzewski, Marek; Kozłowski, Jan; Kratochvíl, Lukáš

    2013-01-01

    While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC) size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae) with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass. PMID:23705003

  2. Physiological Status Drives Metabolic Rate in Mediterranean Geckos Infected with Pentastomes

    PubMed Central

    Caballero, Isabel C.; Sakla, Andrew J.; Detwiler, Jillian T.; Le Gall, Marion; Behmer, Spencer T.; Criscione, Charles D.

    2015-01-01

    Negative effects of parasites on their hosts are well documented, but the proximate mechanisms by which parasites reduce their host’s fitness are poorly understood. For example, it has been suggested that parasites might be energetically demanding. However, a recent meta-analysis suggests that they have statistically insignificant effects on host resting metabolic rate (RMR). It is possible, though, that energetic costs associated with parasites are only manifested during and/or following periods of activity. Here, we measured CO2 production (a surrogate for metabolism) in Mediterranean geckos (Hemidactylus turcicus) infected with a lung parasite, the pentastome Raillietiella indica, under two physiological conditions: rested and recently active. In rested geckos, there was a negative, but non-significant association between the number of pentastomes (i.e., infection intensity) and CO2 production. In recently active geckos (chased for 3 minutes), we recorded CO2 production from its maximum value until it declined to a stationary phase. We analyzed this decline as a 3 phase function (initial decline, secondary decline, stationary). Geckos that were recently active showed, in the secondary phase, a significant decrease in CO2 production as pentastome intensity increased. Moreover, duration of the secondary phase showed a significant positive association with the number of pentastomes. These results suggest that the intensity of pentastome load exerts a weak effect on the metabolism of resting geckos, but a strong physiological effect on geckos that have recently been active; we speculate this occurs via mechanical constraints on breathing. Our results provide a potential mechanism by which pentastomes can reduce gecko fitness. PMID:26657838

  3. Physiological Status Drives Metabolic Rate in Mediterranean Geckos Infected with Pentastomes.

    PubMed

    Caballero, Isabel C; Sakla, Andrew J; Detwiler, Jillian T; Le Gall, Marion; Behmer, Spencer T; Criscione, Charles D

    2015-01-01

    Negative effects of parasites on their hosts are well documented, but the proximate mechanisms by which parasites reduce their host's fitness are poorly understood. For example, it has been suggested that parasites might be energetically demanding. However, a recent meta-analysis suggests that they have statistically insignificant effects on host resting metabolic rate (RMR). It is possible, though, that energetic costs associated with parasites are only manifested during and/or following periods of activity. Here, we measured CO2 production (a surrogate for metabolism) in Mediterranean geckos (Hemidactylus turcicus) infected with a lung parasite, the pentastome Raillietiella indica, under two physiological conditions: rested and recently active. In rested geckos, there was a negative, but non-significant association between the number of pentastomes (i.e., infection intensity) and CO2 production. In recently active geckos (chased for 3 minutes), we recorded CO2 production from its maximum value until it declined to a stationary phase. We analyzed this decline as a 3 phase function (initial decline, secondary decline, stationary). Geckos that were recently active showed, in the secondary phase, a significant decrease in CO2 production as pentastome intensity increased. Moreover, duration of the secondary phase showed a significant positive association with the number of pentastomes. These results suggest that the intensity of pentastome load exerts a weak effect on the metabolism of resting geckos, but a strong physiological effect on geckos that have recently been active; we speculate this occurs via mechanical constraints on breathing. Our results provide a potential mechanism by which pentastomes can reduce gecko fitness. PMID:26657838

  4. Mass-Specific Metabolic Rate and Sperm Competition Determine Sperm Size in Marsupial Mammals

    PubMed Central

    Tourmente, Maximiliano; Gomendio, Montserrat; Roldan, Eduardo R. S.

    2011-01-01

    Two complementary hypotheses have been proposed to explain variation in sperm size. The first proposes that post-copulatory sexual selection favors an increase in sperm size because it enhances sperm swimming speed, which is an important determinant of fertilization success in competitive contexts. The second hypothesis proposes that mass-specific metabolic rate acts as a constraint, because large animals with low mass-specific metabolic rates will not be able to process resources at the rates needed to produce large sperm. This constraint is expected to be particularly pronounced among mammals, given that this group contains some of the largest species on Earth. We tested these hypotheses among marsupials, a group in which mass-specific metabolic rates are roughly 30% lower than those of eutherian mammals of similar size, leading to the expectation that metabolic rate should be a major constraint. Our findings support both hypotheses because levels of sperm competition are associated with increases in sperm size, but low mass-specific metabolic rate constrains sperm size among large species. We also found that the relationship between sperm size and mass-specific metabolic rate is steeper among marsupials and shallower among eutherian mammals. This finding has two implications: marsupials respond to changes in mass-specific metabolic rate by modifying sperm length to a greater extent, suggesting that they are more constrained by metabolic rate. In addition, for any given mass-specific metabolic rate, marsupials produce longer sperm. We suggest that this is the consequence of marsupials diverting resources away from sperm numbers and into sperm size, due to their efficient sperm transport along the female tract and the existence of mechanisms to protect sperm. PMID:21731682

  5. Bioirrigation impacts on sediment respiration and microbial metabolic activity

    NASA Astrophysics Data System (ADS)

    Baranov, V. A.; Lewandowski, J.; Romeijn, P.; Krause, S.

    2015-12-01

    Some bioturbators build tubes in the sediment and pump water through their burrows (ventilation). Oxygen is transferred through the burrow walls in the adjacent sediment (bioirrigation). Bioirrigation is playing a pivotal role in the mediation of biogeochemical processes in lake sediments and has the potential to enhance nutrient cycling. The present study investigates the impact of bioirrigation on lake sediment metabolism, respiration rates and in particular, the biogeochemical impacts of bioirrigation intensity as a function of organism density. We therefore apply the bioreactive Resazurin/Resorufin smart tracer system for quantifying the impact of different densities of Chironomidae (Diptera) larvae (0-2112 larvae/m2) on lake sediment respiration in a microcosm experiment. Tracer decay has been found to be proportional to the amount of the aerobic respiration at the sediment-water interface. Tracer transformation was in good agreement with Chironomidae density (correlation, r=0.9). Tracer transformation rates (and sediment respiration) were found to be correlated to Chironomidae density, with highest transformation rates observed in the microcosms with highest density of 2112 larvae/m2. This relationship was not linear though, with sediment respiration rates at the highest larvae densities declining from the linear trend predicted from lower and intermediate larvae density-respiration relationships. We interpret this effect as a density dependent suppression of the Chironomid's metabolic activity. The observations of this study have implications for eutrophied lakes with high densities of bioirrigators. Despite high density of bioirrigirrigating benthos, mineralization of the organic matter in such habitats would likely be lower than in lakes with intermediate densities of the bioturbators.

  6. Metabolic Equivalent in Adolescents, Active Adults and Pregnant Women

    PubMed Central

    Melzer, Katarina; Heydenreich, Juliane; Schutz, Yves; Renaud, Anne; Kayser, Bengt; Mäder, Urs

    2016-01-01

    Metabolic Equivalent” (MET) represents a standard amount of oxygen consumed by the body under resting conditions, and is defined as 3.5 mL O2/kg × min or ~1 kcal/kg × h. It is used to express the energy cost of physical activity in multiples of MET. However, universal application of the 1-MET standard was questioned in previous studies, because it does not apply well to all individuals. Height, weight and resting metabolic rate (RMR, measured by indirect calorimetry) were measured in adolescent males (n = 50) and females (n = 50), women during pregnancy (gestation week 35–41, n = 46), women 24–53 weeks postpartum (n = 27), and active men (n = 30), and were compared to values predicted by the 1-MET standard. The RMR of adolescent males (1.28 kcal/kg × h) was significantly higher than that of adolescent females (1.11 kcal/kg × h), with or without the effects of puberty stage and physical activity levels. The RMR of the pregnant and post-pregnant subjects were not significantly different. The RMR of the active normal weight (0.92 kcal/kg × h) and overweight (0.89 kcal/kg × h) adult males were significantly lower than the 1-MET value. It follows that the 1-MET standard is inadequate for use not only in adult men and women, but also in adolescents and physically active men. It is therefore recommended that practitioners estimate RMR with equations taking into account individual characteristics, such as sex, age and Body Mass Index, and not rely on the 1-MET standard. PMID:27447667

  7. Metabolic Equivalent in Adolescents, Active Adults and Pregnant Women.

    PubMed

    Melzer, Katarina; Heydenreich, Juliane; Schutz, Yves; Renaud, Anne; Kayser, Bengt; Mäder, Urs

    2016-01-01

    "Metabolic Equivalent" (MET) represents a standard amount of oxygen consumed by the body under resting conditions, and is defined as 3.5 mL O₂/kg × min or ~1 kcal/kg × h. It is used to express the energy cost of physical activity in multiples of MET. However, universal application of the 1-MET standard was questioned in previous studies, because it does not apply well to all individuals. Height, weight and resting metabolic rate (RMR, measured by indirect calorimetry) were measured in adolescent males (n = 50) and females (n = 50), women during pregnancy (gestation week 35-41, n = 46), women 24-53 weeks postpartum (n = 27), and active men (n = 30), and were compared to values predicted by the 1-MET standard. The RMR of adolescent males (1.28 kcal/kg × h) was significantly higher than that of adolescent females (1.11 kcal/kg × h), with or without the effects of puberty stage and physical activity levels. The RMR of the pregnant and post-pregnant subjects were not significantly different. The RMR of the active normal weight (0.92 kcal/kg × h) and overweight (0.89 kcal/kg × h) adult males were significantly lower than the 1-MET value. It follows that the 1-MET standard is inadequate for use not only in adult men and women, but also in adolescents and physically active men. It is therefore recommended that practitioners estimate RMR with equations taking into account individual characteristics, such as sex, age and Body Mass Index, and not rely on the 1-MET standard. PMID:27447667

  8. Reduction of Energetic Demands through Modification of Body Size and Routine Metabolic Rates in Extremophile Fish.

    PubMed

    Passow, Courtney N; Greenway, Ryan; Arias-Rodriguez, Lenin; Jeyasingh, Punidan D; Tobler, Michael

    2015-01-01

    Variation in energy availability or maintenance costs in extreme environments can exert selection for efficient energy use, and reductions in organismal energy demand can be achieved in two ways: reducing body mass or metabolic suppression. Whether long-term exposure to extreme environmental conditions drives adaptive shifts in body mass or metabolic rates remains an open question. We studied body size variation and variation in routine metabolic rates in locally adapted populations of extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulfide-rich springs and caves. We quantified size distributions and routine metabolic rates in wild-caught individuals from four habitat types. Compared with ancestral populations in nonsulfidic surface habitats, extremophile populations were characterized by significant reductions in body size. Despite elevated metabolic rates in cave fish, the body size reduction precipitated in significantly reduced energy demands in all extremophile populations. Laboratory experiments on common garden-raised fish indicated that elevated routine metabolic rates in cave fish likely have a genetic basis. The results of this study indicate that adaptation to extreme environments directly impacts energy metabolism, with fish living in cave and sulfide spring environments expending less energy overall during routine metabolism. PMID:26052634

  9. Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (External Review Draft)

    EPA Science Inventory

    EPA has released a draft report entitled, Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates, for independent external peer review and public comment. NCEA published the Exposure Factors Handbook in 1997. This comprehens...

  10. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers

    SciTech Connect

    Miletto, M.; Williams, K.H.; N'Guessan, A.L.; Lovley, D.R.

    2011-04-01

    Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations, and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to

  11. Molecular Analysis of the Metabolic Rates of Discrete Subsurface Populations of Sulfate Reducers▿

    PubMed Central

    Miletto, M.; Williams, K. H.; N'Guessan, A. L.; Lovley, D. R.

    2011-01-01

    Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that the transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate-reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi)sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi)sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to

  12. Designing safer chemicals: predicting the rates of metabolism of halogenated alkanes.

    PubMed Central

    Yin, H; Anders, M W; Korzekwa, K R; Higgins, L; Thummel, K E; Kharasch, E D; Jones, J P

    1995-01-01

    A computational model is presented that can be used as a tool in the design of safer chemicals. This model predicts the rate of hydrogen-atom abstraction by cytochrome P450 enzymes. Excellent correlations between biotransformation rates and the calculated activation energies (delta Hact) of the cytochrome P450-mediated hydrogen-atom abstractions were obtained for the in vitro biotransformation of six halogenated alkanes (1-fluoro-1,1,2,2-tetrachloroethane, 1,1-difluoro-1,2,2-trichloroethane, 1,1,1-trifluro-2,2-dichloroethane, 1,1,1,2-tetrafluoro-2-chloroethane, 1,1,1,2,2,-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane) with both rat and human enzyme preparations: In(rate, rat liver microsomes) = 44.99 - 1.79(delta Hact), r2 = 0.86; In(rate, human CYP2E1) = 46.99 - 1.77(delta Hact), r2 = 0.97 (rates are in nmol of product per min per nmol of cytochrome P450 and energies are in kcal/mol). Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro metabolism by humans: In[F(-)]peak plasma = 42.87 - 1.57(delta Hact), r2 = 0.86. To our knowledge, these are the first in vivo human metabolic rates to be quantitatively predicted. Furthermore, this is one of the first examples where computational predictions and in vivo and in vitro data have been shown to agree in any species. The model presented herein provides an archetype for the methodology that may be used in the future design of safer chemicals, particularly hydrochlorofluorocarbons and inhalation anesthetics. PMID:7479940

  13. Obesity, Metabolic Syndrome, and Physical Activity.

    ERIC Educational Resources Information Center

    Yeater, Rachel

    2000-01-01

    Discusses the scope of the problem of obesity in the United States, noting the health risks associated with being overweight or obese (e.g., gallstones, osteoarthritis, sleep apnea, and colon cancer); discussing the association of type-II diabetes mellitus with obesity; examining the effects of exercise on metabolic disease; and looking at…

  14. Asian small-clawed otters (Amblonyx cinerea): resting and swimming metabolic rates.

    PubMed

    Borgwardt, N; Culik, B M

    1999-03-01

    Open-flow oxygen and carbon dioxide respirometry was used in Neumünster Zoo (Germany) to examine the energy requirements of six Asian small-clawed otters (Amblonyx cinerea) at rest and swimming voluntarily under water. Our aim was to compare their energy requirements with those of other warm-blooded species to elucidate scale effects and to test whether the least aquatic of the three otter species differs markedly from these and its larger relatives. While at rest on land (16 degrees C, n = 26), otters (n = 6, mean body mass 3.1 +/- 0.4 kg) had a respiratory quotient of 0.77 and a resting metabolic rate of 5.0 +/- 0.8 Wkg-1(SD). This increased to 9.1 +/- 0.8 Wkg-1 during rest in water (11-15 degrees C, n = 4) and to 17.6 +/- 1.4 Wkg-1 during foraging and feeding activities in a channel (12 degrees C, n = 5). While swimming under water (n = 620 measurements) in an 11-m long channel, otters preferred a speed range between 0.7 ms-1 and 1.2 ms-1. Transport costs were minimal at 1 ms-1 and amounted to 1.47 +/- 0.24 JN-1 m-1 (n = 213). Metabolic rates of small-clawed otters in air were similar to those of larger otter species, and about double those of terrestrial mammals of comparable size. In water, metabolic rates during rest and swimming were larger than those extrapolated from larger otter species and submerged swimming homeotherms. This is attributed to high thermoregulatory costs, and high body drag at low Reynolds numbers. PMID:10227184

  15. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    SciTech Connect

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  16. Superoxide dismutase: correlation with life-span and specific metabolic rate in primate species.

    PubMed Central

    Tolmasoff, J M; Ono, T; Cutler, R G

    1980-01-01

    Much evidence now suggests that superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) may be a major intracellular protective enzyme against oxygen toxicity by catalyzing the removal of the superoxide radical. We examined the possible role this enzyme may have in determining the life-span of primate species. Superoxide dismutase specific activity levels were measured in cytoplasmic fractions of liver, brain, and heart of 2 rodent and 12 primate species. These species had maximum life-span potentials ranging from 3.5 to 95 years. Liver, brain, and heart had similar specific activity levels for a given species, but the levels for different species varied over 2-fold, with man having the highest level. No general correlation was found in the levels with life-span. However, the ratio of superoxide dismutase specific activity to specific metabolic rate of the tissue or of the whole adult organism was found to increase with increasing maximum lifespan potential for all the species. This correlation suggests that longer-lived species have a higher degree of protection against by-products of oxygen metabolism. PMID:6771758

  17. The absorption and metabolism of a single L-menthol oral versus skin administration: Effects on thermogenesis and metabolic rate.

    PubMed

    Valente, Angelica; Carrillo, Andres E; Tzatzarakis, Manolis N; Vakonaki, Elena; Tsatsakis, Aristidis M; Kenny, Glen P; Koutedakis, Yiannis; Jamurtas, Athanasios Z; Flouris, Andreas D

    2015-12-01

    We investigated the absorption and metabolism pharmacokinetics of a single L-menthol oral versus skin administration and the effects on human thermogenesis and metabolic rate. Twenty healthy adults were randomly distributed into oral (capsule) and skin (gel) groups and treated with 10 mg kg(-1) L-menthol (ORALMENT; SKINMENT) or control (lactose capsule: ORALCON; water application: SKINCON) in a random order on two different days. Levels of serum L-menthol increased similarly in ORALMENT and SKINMENT (p > 0.05). L-menthol glucuronidation was greater in ORALMENT than SKINMENT (p < 0.05). Cutaneous vasoconstriction, rectal temperature and body heat storage showed greater increase following SKINMENT compared to ORALMENT and control conditions (p < 0.05). Metabolic rate increased from baseline by 18% in SKINMENT and 10% in ORALMENT and respiratory exchange ratio decreased more in ORALMENT (5.4%) than SKINMENT (4.8%) compared to control conditions (p < 0.05). Levels of plasma adiponectin and leptin as well as heart rate variability were similar to control following either treatment (p > 0.05). Participants reported no cold, shivering, discomfort, stress or skin irritation. We conclude that a single L-menthol skin administration increased thermogenesis and metabolic rate in humans. These effects are minor following L-menthol oral administration probably due to faster glucuronidation and greater blood menthol glucuronide levels. PMID:26429629

  18. Vinpocetine modulates metabolic activity and function during retinal ischemia.

    PubMed

    Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L

    2015-05-01

    Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. PMID:25696811

  19. Chemoprotective activity of boldine: modulation of drug-metabolizing enzymes.

    PubMed

    Kubínová, R; Machala, M; Minksová, K; Neca, J; Suchý, V

    2001-03-01

    Possible chemoprotective effects of the naturally occurring alkaloid boldine, a major alkaloid of boldo (Peumus boldus Mol.) leaves and bark, including in vitro modulations of drug-metabolizing enzymes in mouse hepatoma Hepa-1 cell line and mouse hepatic microsomes, were investigated. Boldine manifested inhibition activity on hepatic microsomal CYP1A-dependent 7-ethoxyresorufin O-deethylase and CYP3A-dependent testosterone 6 beta-hydroxylase activities and stimulated glutathione S-transferase activity in Hepa-1 cells. In addition to the known antioxidant activity, boldine could decrease the metabolic activation of other xenobiotics including chemical mutagens. PMID:11265593

  20. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities

    USGS Publications Warehouse

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.

    2016-01-01

    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  1. Metabolic activity, experiment M171. [space flight effects on human metabolism

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  2. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    SciTech Connect

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. )

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  3. Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers.

    PubMed

    McFarlane, S Eryn; Sirkiä, Päivi M; Ålund, Murielle; Qvarnström, Anna

    2016-01-01

    Studies of ecological speciation are often biased towards extrinsic sources of selection against hybrids, resulting from intermediate hybrid morphology, but the knowledge of how genetic incompatibilities accumulate over time under natural conditions is limited. Here we focus on a physiological trait, metabolic rate, which is central to life history strategies and thermoregulation but is also likely to be sensitive to mismatched mitonuclear interactions. We measured the resting metabolic rate of male collared, and pied flycatchers as well as of naturally occurring F1 hybrid males, in a recent hybrid zone. We found that hybrid males had a higher rather than intermediate metabolic rate, which is indicative of hybrid physiological dysfunction. Fitness costs associated with elevated metabolic rate are typically environmentally dependent and exaggerated under harsh conditions. By focusing on male hybrid dysfunction in an eco-physiological trait, our results contribute to the general understanding of how combined extrinsic and intrinsic sources of hybrid dysfunction build up under natural conditions. PMID:27583553

  4. Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum

    PubMed Central

    Makarieva, Anastassia M.; Gorshkov, Victor G.; Li, Bai-Lian; Chown, Steven L.; Reich, Peter B.; Gavrilov, Valery M.

    2008-01-01

    A fundamental but unanswered biological question asks how much energy, on average, Earth's different life forms spend per unit mass per unit time to remain alive. Here, using the largest database to date, for 3,006 species that includes most of the range of biological diversity on the planet—from bacteria to elephants, and algae to sapling trees—we show that metabolism displays a striking degree of homeostasis across all of life. We demonstrate that, despite the enormous biochemical, physiological, and ecological differences between the surveyed species that vary over 1020-fold in body mass, mean metabolic rates of major taxonomic groups displayed at physiological rest converge on a narrow range from 0.3 to 9 W kg−1. This 30-fold variation among life's disparate forms represents a remarkably small range compared with the 4,000- to 65,000-fold difference between the mean metabolic rates of the smallest and largest organisms that would be observed if life as a whole conformed to universal quarter-power or third-power allometric scaling laws. The observed broad convergence on a narrow range of basal metabolic rates suggests that organismal designs that fit in this physiological window have been favored by natural selection across all of life's major kingdoms, and that this range might therefore be considered as optimal for living matter as a whole. PMID:18952839

  5. Biphasic Effect of Melanocortin Agonists on Metabolic Rate and Body Temperature

    PubMed Central

    Lute, Beth; Jou, William; Lateef, Dalya M.; Goldgof, Margalit; Xiao, Cuiying; Piñol, Ramón A.; Kravitz, Alexxai V.; Miller, Nicole R.; Huang, Yuning George; Girardet, Clemence; Butler, Andrew A.; Gavrilova, Oksana; Reitman, Marc L.

    2014-01-01

    Summary The melanocortin system regulates metabolic homeostasis and inflammation. Melanocortin agonists have contradictorily been reported to both increase and decrease metabolic rate and body temperature. We find two distinct physiologic responses occurring at similar doses. Intraperitoneal administration of the nonselective melanocortin agonist MTII causes a melanocortin-4 receptor (Mc4r) mediated hypermetabolism/hyperthermia. This is preceded by a profound, transient hypometabolism/hypothermia that is preserved in mice lacking any one of Mc1r, Mc3r, Mc4r, or Mc5r. Three other melanocortin agonists also caused hypothermia, which is actively achieved via seeking a cool environment, vasodilation, and inhibition of brown adipose tissue thermogenesis. These results suggest that the hypometabolic/hypothermic effect of MTII is not due to a failure of thermoregulation. The hypometabolism/hypothermia was prevented by dopamine antagonists and MTII selectively activated arcuate nucleus dopaminergic neurons; these neurons may contribute to the hypometabolism/hypothermia. We propose that the hypometabolism/hypothermia is a regulated response, potentially beneficial during extreme physiologic stress. PMID:24981835

  6. Effect of oil and oil dispersant mixtures on the basal metabolic rate of ducks

    SciTech Connect

    Lambert, G.; Peakall, D.B.; Philogene, B.J.R.; Engelhardt, F.R.

    1982-11-01

    Wild strain adult mallards (Anas platrhynchos) were exposed to either Prudhoe Bay crude oil, Corexit 9527 dispersant or the crude oil + dispersant. Results show that the degree of oiling to which the ducks were exposed caused a modest but significant increase in the metabolic rate. Under the experimental conditions (one-hour exposure, small volume swimming tanks, measuring of metabolism after the removal of the bird from the water), the dispersant (at 30:1 ratio) does not appreciably increase the effects caused by the crude oil on the metabolic rate, although it seems to increase the damage to plumage which leads to progressive waterlogging. (JMT)

  7. Biopotency in vitro and metabolic clearance rates of five pituitary preparations of follicle stimulating hormone.

    PubMed

    Phillips, D J; Hudson, N L; Lun, S; Condell, L A; McNatty, K P

    1993-01-01

    Five pituitary preparations of follicle stimulating hormone (FSH), namely NIDDK-oFSH-17, Bioscan oFSH, Ovagen, Folltropin-V and F.S.H.-P., were examined for biological activity in terms of their potency in an in vitro bioassay, receptor assay and heterologous radioimmunoassay and in terms of their metabolic clearance rates. In the three assays, Bioscan oFSH was the most potent (P < 0.05) (3- to 5-fold the potency of NIDDK-oFSH-17), with Ovagen being 25-50% the potency of the NIDDK standard (P < 0.05). Folltropin-V and F.S.H.-P. had the lowest potencies in all three assays. For each preparation, the ratio of activities between the assays was not consistent, suggesting that the preparations behaved differently in each assay. In 9 of 10 cases, potency estimates in the heterologous radioimmunoassay were greater than those in the in vitro bioassay or receptor assay. Polyacrylamide gel electrophoresis of the preparations showed banding consistent with the molecular weight of FSH, but also indicated that the preparations were contaminated with other proteins to varying extents. The half-lives of these preparations when injected into the bloodstream of mature female mice were 28.0, 8.6, 13.4, 11.6 and 17.4 min for NIDDK-oFSH-17, Bioscan oFSH, Ovagen, Folltropin-V and F.S.H.-P. respectively. The slopes of the decay rates were significantly different from each other (P < 0.05) except between Ovagen and Folltropin-V. The results of these studies show that a number of widely available FSH preparations have differing biopotencies. Moreover, the biopotency of a preparation in vitro is not related to its metabolic clearance rate, and not all FSH preparations behave identically in different assays. Measures of biopotency in vitro combined with those of metabolic clearance rate may provide useful information on the properties of FSH preparations used for research purposes and for superovulation of farmed livestock. PMID:8265802

  8. The relationship between body mass and field metabolic rate among individual birds and mammals.

    PubMed

    Hudson, Lawrence N; Isaac, Nick J B; Reuman, Daniel C

    2013-09-01

    1. The power-law dependence of metabolic rate on body mass has major implications at every level of ecological organization. However, the overwhelming majority of studies examining this relationship have used basal or resting metabolic rates, and/or have used data consisting of species-averaged masses and metabolic rates. Field metabolic rates are more ecologically relevant and are probably more directly subject to natural selection than basal rates. Individual rates might be more important than species-average rates in determining the outcome of ecological interactions, and hence selection. 2. We here provide the first comprehensive database of published field metabolic rates and body masses of individual birds and mammals, containing measurements of 1498 animals of 133 species in 28 orders. We used linear mixed-effects models to answer questions about the body mass scaling of metabolic rate and its taxonomic universality/heterogeneity that have become classic areas of controversy. Our statistical approach allows mean scaling exponents and taxonomic heterogeneity in scaling to be analysed in a unified way while simultaneously accounting for nonindependence in the data due to shared evolutionary history of related species. 3. The mean power-law scaling exponents of metabolic rate vs. body mass relationships were 0.71 [95% confidence intervals (CI) 0.625-0.795] for birds and 0.64 (95% CI 0.564-0.716) for mammals. However, these central tendencies obscured meaningful taxonomic heterogeneity in scaling exponents. The primary taxonomic level at which heterogeneity occurred was the order level. Substantial heterogeneity also occurred at the species level, a fact that cannot be revealed by species-averaged data sets used in prior work. Variability in scaling exponents at both order and species levels was comparable to or exceeded the differences 3/4-2/3 = 1/12 and 0.71-0.64. 4. Results are interpreted in the light of a variety of existing theories. In particular, results

  9. At the heart of aging: is it metabolic rate or stability?

    PubMed

    Olshansky, S Jay; Rattan, Suresh I S

    2005-01-01

    Foundational changes in science are rare, but in the field of biogerontology there is a new theory of aging that may shake things up. The conventional wisdom about duration of life is based on an old idea known as the "rate of living" theory, which suggests that aging is caused by the loss of some vital substance. The modern version of this theory is that duration of life is influenced by the relative speed of a species' resting metabolism. However, empirical evidence does not consistently support this hypothesis. In an article published recently by mathematician/biologist Lloyd Demetrius, it is suggested that the most important factor involved in duration of life is not metabolic rate or oxidative stress, but metabolic stability. If Demetrius is correct, his theory will have important implications for intervention research. For example, if the metabolic rate/oxidative stress theory is correct, efforts to intervene in the aging process should be directed at finding ways to reduce metabolic rate, lessen the production of reactive oxygen species (ROS), improve antioxidant defenses, or increase the quantity of antioxidants. If the metabolic stability hypothesis is correct, efforts to intervene in the aging process should be directed at finding ways to increase the stability of the steady state values of ROS, increase the robustness of metabolic networks, or improve the stability of antioxidant enzymes. For now there is reason to believe that Demetrius' theory deserves further consideration - whether it meets the test of a paradigm shift has yet to be determined. PMID:16333763

  10. Temperature, field activity and post-feeding metabolic response in the Asian house gecko, Hemidactylus frenatus.

    PubMed

    Lei, Juan; Booth, David T

    2014-10-01

    Temperature has significant effects on physiological activities and geographical distribution of ectotherms. The Asian house gecko Hemidactylus frenatus has become one of the most widely distributed reptiles in the world and is an invasive species in Australia. Since being introduced into northern Australia, Asian house geckos have spread rapidly and expanded into south-east Queensland and northern New South Wales. Despite their rapid spread, there have been few studies that address thermal adaptability of this species. In order to understand how temperature might limit the distribution and feeding behavior of H. frenatus we observed gecko foraging activities in the wild over the winter period, measured the temperature at which voluntary feeding ceases, and assessed the effect of temperature (30, 25, 20, and 18 °C) on post-feeding metabolic rate. Resting metabolic rate and post-feeding peak in metabolic rate decreased with low temperature, while the duration of elevated metabolic rate after feeding increased at lower temperature. The SDA coefficient (a ratio of the energy expended due to the post-feeding rise in metabolic rate to the energy contained within the meal) did not change systematically with ambient temperature. Field observations and voluntary feeding experiments showed that H. frenatus stop feeding when ambient temperature drops below 17 °C, so that persistent night time temperatures below 17 °C may be limiting the distribution of this species. PMID:25436968

  11. Mechanical and metabolic reflex activation of the sympathetic nervous system in younger adults with metabolic syndrome

    PubMed Central

    Limberg, Jacqueline; Morgan, Barbara; Schrage, William

    2014-01-01

    Aim Based on reports of exaggerated blood pressure responses to whole-body exercise in patients with metabolic syndrome (MetSyn), we tested the hypothesis that MetSyn adults would exhibit augmented sympathetic and pressor responses to mechanoreflex and metaboreflex activation when compared with healthy, age-matched control subjects. Methods We studied 12 adults with MetSyn (34±3 years) and 12 healthy control subjects (34±3 years). Heart rate (HR; ECG), blood pressure (BP; finger photoplethysmography), and MSNA (microneurography of the peroneal nerve) were measured during: (1) Static handgrip exercise at 15% of maximal voluntary contraction (MVC), and (2) Static handgrip exercise at 30% MVC to fatigue, followed by post-exercise ischemia (PEI). Increases in MSNA, HR, and BP were assessed. Results During static exercise at both 15 and 30% MVC, increases in MSNA, HR, and BP were not different between groups. MSNA remained significantly elevated from baseline during PEI and responses were not different between groups. Conclusion Sympathetic and pressor responses to mechanoreflex and metaboreflex activation are not augmented in younger adults with MetSyn. PMID:24680829

  12. Anatomical Grading for Metabolic Activity of Brown Adipose Tissue

    PubMed Central

    Becker, Anton S.; Nagel, Hannes W.; Wolfrum, Christian; Burger, Irene A.

    2016-01-01

    Background Recent advances in obesity research suggest that BAT activity, or absence thereof, may be an important factor in the growing epidemic of obesity and its manifold complications. It is thus important to assess larger populations for BAT-activating and deactivating factors. 18FDG-PET/CT is the standard method to detect and quantify metabolic BAT activity, however, the manual measurement is not suitable for large studies due to its time-consuming nature and poor reproducibility across different software and devices. Methodology/Main Findings In a retrospective study, 1060 consecutive scans of 1031 patients receiving a diagnostic 18FDG-PET/CT were examined for the presence of active BAT. Patients were classified according to a 3-tier system (supraclavicular, mediastinal, infradiaphragmatic) depending on the anatomical location of their active BAT depots, with the most caudal location being the decisive factor. The metabolic parameters (maximum activity, total volume and total glycolysis) were measured on a standard PET/CT workstation. Mean age of the population was 60±14.6y. 41.61% of patients were female. Metabolically active BAT was found in 53 patients (5.1%). Female, younger and leaner patients tended to have more active BAT, higher metabolic activity and more caudally active BAT. In total, 15 patients showed only supraclavicular, 27 additional mediastinal, and 11 infradiaphragmal activity. Interestingly, the activation of BAT always followed a cranio-caudal gradient. This anatomical pattern correlated with age and BMI as well as with all metabolic parameters, including maximum and total glycolysis (p<0.001). Conclusion Based on our data we propose a simple method to grade or quantify the degree of BAT amount/activity in patients based on the most caudally activated depot. As new modalities for BAT visualization may arise in the future, this system would allow direct comparability with other modalities, in contrary to the PET-metrics, which are

  13. Preferred Barefoot Step Frequency is Influenced by Factors Beyond Minimizing Metabolic Rate

    NASA Astrophysics Data System (ADS)

    Yandell, Matthew B.; Zelik, Karl E.

    2016-03-01

    Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency. We found that subjects increased their preferred frequency when walking barefoot at 1.4 m/s (~123 vs. ~117 steps/min shod, P = 2e-5). However, average barefoot walking metabolic rates at the preferred barefoot and shod step frequencies were not significantly different (P = 0.40). Instead, we observed subject-specific trends: five subjects consistently reduced (‑8% average), and three subjects consistently increased (+10% average) their metabolic rate at preferred barefoot vs. preferred shod frequency. Thus, it does not appear that people ubiquitously select a barefoot step frequency that minimizes metabolic rate. We concluded that preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate, such as shoe properties and/or perceived comfort. Our results highlight the subject-specific nature of locomotor adaptations and how averaging data across subjects may obscure meaningful trends. Alternative experimental designs may be needed to better understand individual adaptations.

  14. Preferred Barefoot Step Frequency is Influenced by Factors Beyond Minimizing Metabolic Rate

    PubMed Central

    Yandell, Matthew B.; Zelik, Karl E.

    2016-01-01

    Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency. We found that subjects increased their preferred frequency when walking barefoot at 1.4 m/s (~123 vs. ~117 steps/min shod, P = 2e-5). However, average barefoot walking metabolic rates at the preferred barefoot and shod step frequencies were not significantly different (P = 0.40). Instead, we observed subject-specific trends: five subjects consistently reduced (−8% average), and three subjects consistently increased (+10% average) their metabolic rate at preferred barefoot vs. preferred shod frequency. Thus, it does not appear that people ubiquitously select a barefoot step frequency that minimizes metabolic rate. We concluded that preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate, such as shoe properties and/or perceived comfort. Our results highlight the subject-specific nature of locomotor adaptations and how averaging data across subjects may obscure meaningful trends. Alternative experimental designs may be needed to better understand individual adaptations. PMID:26988124

  15. Sequential activation of metabolic pathways: a dynamic optimization approach.

    PubMed

    Oyarzún, Diego A; Ingalls, Brian P; Middleton, Richard H; Kalamatianos, Dimitrios

    2009-11-01

    The regulation of cellular metabolism facilitates robust cellular operation in the face of changing external conditions. The cellular response to this varying environment may include the activation or inactivation of appropriate metabolic pathways. Experimental and numerical observations of sequential timing in pathway activation have been reported in the literature. It has been argued that such patterns can be rationalized by means of an underlying optimal metabolic design. In this paper we pose a dynamic optimization problem that accounts for time-resource minimization in pathway activation under constrained total enzyme abundance. The optimized variables are time-dependent enzyme concentrations that drive the pathway to a steady state characterized by a prescribed metabolic flux. The problem formulation addresses unbranched pathways with irreversible kinetics. Neither specific reaction kinetics nor fixed pathway length are assumed.In the optimal solution, each enzyme follows a switching profile between zero and maximum concentration, following a temporal sequence that matches the pathway topology. This result provides an analytic justification of the sequential activation previously described in the literature. In contrast with the existent numerical approaches, the activation sequence is proven to be optimal for a generic class of monomolecular kinetics. This class includes, but is not limited to, Mass Action, Michaelis-Menten, Hill, and some Power-law models. This suggests that sequential enzyme expression may be a common feature of metabolic regulation, as it is a robust property of optimal pathway activation. PMID:19412635

  16. A decreased metabolic clearance rate of aldosterone in benign essential hypertension

    PubMed Central

    Nowaczynski, W.; Kuchel, O.; Genest, J.

    1971-01-01

    Aldosterone secretion rate, metabolic clearance rate, and/or plasma concentration were determined in 16 patients with benign, uncomplicated essential hypertension and compared with those of control subjects. The mean metabolic clearance rate of aldosterone in 10 patients was significantly (P < 0.001) lower (mean 867 liters of plasma/day per m2 ±270 SD) than in a group of 7 healthy subjects (mean 1480 liters/day per m2 ±265 SD). Secretion rates in 13 patients (including the 10 already mentioned) tended to be low (83 ±43 vs. 109 ±54 μg/day) and plasma concentrations tended to be high (13.6 ±4.6 vs. 7.5 ±4.8 ng/100 ml), but neither of these differences was statistically significant. The lower metabolic clearance rate could account for elevated plasma concentrations of aldosterone even when the secretion rate is normal or low. Measurement of secretion rate or urinary excretion only is therefore insufficient to establish the presence and/or mode of evolution of hyperaldosteronism. Failure of the aldosterone secretion to adapt fully to a decreased aldosterone metabolic clearance rate (MCR) could explain the state of relative hyperaldosteronism in patients with benign essential hypertension, even when the secretion rate and the urinary excretion rate are in the normal range. PMID:5116208

  17. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    PubMed Central

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  18. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

    PubMed

    Williams, Caroline M; McCue, Marshall D; Sunny, Nishanth E; Szejner-Sigal, Andre; Morgan, Theodore J; Allison, David B; Hahn, Daniel A

    2016-09-14

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  19. Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: implications in a thermally extreme future.

    PubMed

    Sandblom, Erik; Gräns, Albin; Axelsson, Michael; Seth, Henrik

    2014-11-01

    Temperature acclimation may offset the increased energy expenditure (standard metabolic rate, SMR) and reduced scope for activity (aerobic scope, AS) predicted to occur with local and global warming in fishes and other ectotherms. Yet, the time course and mechanisms of this process is little understood. Acclimation dynamics of SMR, maximum metabolic rate, AS and the specific dynamic action of feeding (SDA) were determined in shorthorn sculpin (Myoxocephalus scorpius) after transfer from 10°C to 16°C. SMR increased in the first week by 82% reducing AS to 55% of initial values, while peak postprandial metabolism was initially greater. This meant that the estimated AS during peak SDA approached zero, constraining digestion and leaving little room for additional aerobic processes. After eight weeks at 16°C, SMR was restored, while AS and the estimated AS during peak SDA recovered partly. Collectively, this demonstrated a considerable capacity for metabolic thermal compensation, which should be better incorporated into future models on organismal responses to climate change. A mathematical model based on the empirical data suggested that phenotypes with fast acclimation rates may be favoured by natural selection as the accumulated energetic cost of a slow acclimation rate increases in a warmer future with exacerbated thermal variations. PMID:25232133

  20. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming

    PubMed Central

    Li, Heng-Hong; Wang, Yi-wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D.; Fornace, Albert J.

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures. PMID:26078715

  1. The metabolic clearance rate of corticosterone in lean and obese male Zucker rats

    SciTech Connect

    White, B.D.; Corll, C.B.; Porter, J.R.

    1989-06-01

    The obese Zucker rat is an animal model of human juvenile-onset obesity. These rats exhibit numerous endocrine and metabolic abnormalities. Adrenalectomy of obese rats has been shown to reduce or reverse several of these abnormalities, thereby implying that corticosterone may contribute to the expression of obesity in this animal. Furthermore, it has been shown that the circadian rhythm of plasma corticosterone is disturbed in obese Zucker rats resulting in elevated morning plasma corticosterone concentrations in obese rats as compared to lean rats. In a effort to better elucidate the mechanism of the elevated morning levels of plasma corticosterone, the metabolic clearance rate of corticosterone was determined in the morning for lean and obese male Zucker rats (12 to 20 weeks). Additionally, the biliary and urinary excretion of labeled corticosterone and/or its metabolites were determined. The metabolic clearance rate of corticosterone was significantly greater in obese rats than in their lean counterparts. Both the metabolic clearance rate and the volume of compartments significantly correlated with body weight. No correlation was found between body weight and the elimination rate constant. The increased metabolic clearance rate of obese rats appeared to be due to an increase in the physiologic distribution of corticosterone and not to an alteration in the enzymes responsible for corticosterone metabolism. It appears that the metabolic clearance rate of corticosterone in obese Zucker rats does not contribute to elevated morning concentrations of plasma corticosterone previously observed in these animals. It suggests that the adrenal corticosterone secretion rate must actually be greater than one would expect from the plasma corticosterone concentrations alone.

  2. Physical Activity, Metabolic Syndrome, and Overweight in Rural Youth

    ERIC Educational Resources Information Center

    Moore, Justin B.; Davis, Catherine L.; Baxter, Suzanne Domel; Lewis, Richard D.; Yin, Zenong

    2008-01-01

    Background: Research suggests significant health differences between rural dwelling youth and their urban counterparts with relation to cardiovascular risk factors. This study was conducted to (1) determine relationships between physical activity and markers of metabolic syndrome, and (2) to explore factors relating to physical activity in a…

  3. Scaling of metabolic rate on body mass in small laboratory mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Smith, A. H.

    1980-01-01

    The scaling of metabolic heat production rate on body mass is investigated for five species of small laboratory mammal in order to define selection of animals of metabolic rates and size range appropriate for the measurement of changes in the scaling relationship upon exposure to weightlessness in Shuttle/Spacelab experiment. Metabolic rates were measured according to oxygen consumption and carbon dioxide production for individual male and female Swiss-Webster mice, Syrian hamsters, Simonsen albino rats, Hartley guinea pigs and New Zealand white rabbits, which range in mass from 0.05 to 5 kg mature body size, at ages of 1, 2, 3, 5, 8, 12, 18 and 24 months. The metabolic intensity, defined as the heat produced per hour per kg body mass, is found to decrease dramatically with age until the animals are 6 to 8 months old, with little or no sex difference. When plotted on a logarithmic graph, the relation of metabolic rate to total body mass is found to obey a power law of index 0.676, which differs significantly from the classical value of 0.75. When the values for the mice are removed, however, an index of 0.749 is obtained. It is thus proposed that six male animals, 8 months of age, of each of the four remaining species be used to study the effects of gravitational loading on the metabolic energy requirements of terrestrial animals.

  4. Comparison of Genus and Species-Level Compilations of Metabolic Rate through Time

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Heim, N. A.; Payne, J.

    2014-12-01

    Metabolism is the basis of fundamental principles of biology and sustains life through vital processes such as growth and reproduction. Brown et al. (2004) showed that metabolism is central to our understanding of patterns and dynamics at all levels of biological organization. Often, paleontologists use the holotypes of type species to represent genera in global analyses, but they rarely test how representative the type species are of the genus of a whole. Through my analyses, I compared genus and species-level compilations through time by comparing the mean metabolic rate of each genus to the metabolic rate of the type species to see if using this representative provided effective data when conducting genus-level analyses. To achieve these objectives, I used sizes collected from Catalogue of Ostracoda and Treatise on Invertebrate Paleontology. The range of the type species' metabolic rate varied, but there is no systematic bias towards higher or lower metabolic rates. Therefore, using type species in genus-level analyses is effective when looking for general trends, but the absolute values based on the holotype of type species have some bias to them and are not as accurate.

  5. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    PubMed

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant. PMID:26783001

  6. Rapid calculation of functional maps of glucose metabolic rate and individual model rate parameters from serial 2-FDG images

    SciTech Connect

    Koeppe, R.A.; Holden, J.E.; Hutchins, G.D.

    1985-05-01

    The authors have developed a method for the rapid pixel-by-pixel estimation of glucose metabolic rate from a dynamic sequence of PCT images acquired over 40 minutes following venous bolus injection of 2-deoxy-2-fluoro-D-glucose (2-FDG). The calculations are based on the conventional four parameter model. The dephosphorylation rate (k/sub 4/) cannot be reliably estimated from only 40 minutes of data; however, neglecting dephosphorylation can nonetheless introduce significant biases into the parameter estimation processes. In the authors' method, the rate is constrained to fall within a small range about a presumed value. Computer simulation studies show that this constraint greatly reduces the systematic biases in the other three fitted parameters and in the metabolic rate that arise from the assumption of no dephosphorylation. The parameter estimation scheme used is formally identical to one originally developed for dynamic methods of cerebral blood flow estimation. Estimation of metabolic rate and the individual model rate parameters k/sub 1/, k/sub 2/, and k/sub 3/, can be carried out for each pixel sequence of a 100 x 100 pixel image in less than two minutes on our PDP 11/60 minicomputer with floating point processor. While the maps of k/sub 2/ amd k/sub 3/ are quite noisy, accurate estimates of average values can be attained for regions of a few cm/sup 2/. The maps of metabolic rate offer many advantages in addition to that of direct visualization. These include improved statistical precision and the avoidance of averaging failure in the fitting of heterogeneous regions.

  7. Complete Sucrose Metabolism Requires Fructose Phosphotransferase Activity in Corynebacterium glutamicum To Ensure Phosphorylation of Liberated Fructose

    PubMed Central

    Dominguez, H.; Lindley, N. D.

    1996-01-01

    Sucrose uptake by Corynebacterium glutamicum involves a phosphoenolpyruvate-dependent sucrose phosphotransferase (PTS), but in the absence of fructokinase, further metabolism of the liberated fructose requires efflux of the fructose and reassimilation via the fructose PTS. Mutant strains lacking detectable fructose-transporting PTS activity accumulated fructose extracellularly but consumed sucrose at rates comparable to those of the wild-type strain. PMID:16535429

  8. Effects of starvation and molting on the metabolic rate of the bed bug (Cimex lectularius L.).

    PubMed

    DeVries, Zachary C; Kells, Stephen A; Appel, Arthur G

    2015-01-01

    The bed bug (Cimex lectularius L.) is a common hematophagous pest in the urban environment and is capable of surviving extended periods of starvation. However, the relationship between starvation and metabolism in bed bugs is not well understood. To better understand this relationship, we measured the metabolism of all life stages for >900 h after feeding (starvation) using closed-system respirometry. Measurements were made around molting for the immature life stages, which occurs only after a blood meal. In addition, both mated and unmated adults were measured. Starvation and molting had significant effects on the metabolism of the bed bug. Mass-specific metabolic rate (V(O2); mL g(-1) h(-1)) declined in a curvilinear fashion with the period of starvation for adults and with the postmolting period for immature bed bugs (used to standardize all immature life stages). A standard curve was developed to depict the generalized pattern of metabolic decline observed in all life stages that molted. Individual metabolic comparisons among life stages that molted revealed some differences in metabolic rate between unmated males and females. In addition, the mass scaling coefficient was found to decline with starvation time (postmolting time) for all life stages that molted. In most life stages, the ratio of V(CO2) to V(O2) (respiratory exchange ratio) declined over time, indicating a change in metabolic substrate with starvation. Finally, daily percent loss in body mass declined in a pattern similar to that of V(O2). The observed patterns in metabolic decline are evaluated in relation to the life history of bed bugs. In addition, the evolutionary development of these patterns is discussed. The metabolic pattern after feeding was also found to share several similarities with that of other ectothermic species. PMID:25590593

  9. Physiological underpinnings associated with differences in pace of life and metabolic rate in north temperate and neotropical birds.

    PubMed

    Jimenez, Ana Gabriela; Cooper-Mullin, Clara; Calhoon, Elisabeth A; Williams, Joseph B

    2014-07-01

    Animal life-history traits fall within limited ecological space with animals that have high reproductive rates having short lives, a continuum referred to as a "slow-fast" life-history axis. Animals of the same body mass at the slow end of the life-history continuum are characterized by low annual reproductive output and low mortality rate, such as is found in many tropical birds, whereas at the fast end, rates of reproduction and mortality are high, as in temperate birds. These differences in life-history traits are thought to result from trade-offs between investment in reproduction or self-maintenance as mediated by the biotic and abiotic environment. Thus, tropical and temperate birds provide a unique system to examine physiological consequences of life-history trade-offs at opposing ends of the "pace of life" spectrum. We have explored the implications of these trade-offs at several levels of physiological organization including whole-animal, organ systems, and cells. Tropical birds tend to have higher survival, slower growth, lower rates of whole-animal basal metabolic rate and peak metabolic rate, and smaller metabolically active organs compared with temperate birds. At the cellular level, primary dermal fibroblasts from tropical birds tend to have lower cellular metabolic rates and appear to be more resistant to oxidative cell stress than those of temperate birds. However, at the subcellular level, lipid peroxidation rates, a measure of the ability of lipid molecules within the cell membranes to thwart the propagation of oxidative damage, appear not to be different between tropical and temperate species. Nevertheless, lipids in mitochondrial membranes of tropical birds tend to have increased concentrations of plasmalogens (phospholipids with antioxidant properties), and decreased concentrations of cardiolipin (a complex phospholipid in the electron transport chain) compared with temperate birds. PMID:24671698

  10. Interplay between metabolic rate and diet quality in the South American fox, Pseudalopex culpaeus.

    PubMed

    Silva, Sergio I; Jaksic, Fabian M; Bozinovic, Francisco

    2004-01-01

    We studied the metabolic costs associated with the ingestion of peppertree fruits (Schinus molle) in the culpeo fox, Pseudalopex culpaeus, the second largest canid in South America. Throughout its range of distribution, this fox feeds on rodents and other small vertebrates, and also on peppertree fruits, which represent 98% of total fruits consumed in semiarid Chile. Peppertree contains a high diversity of phytochemicals. Foxes feeding on diets containing rats and peppertree fruits (mixed diets) exhibited a 98.9% increase in basal rate of metabolism when compared to rat-acclimated foxes. Thus, acute ingestion of chemically defended fruits has an energetic cost for the fox, reflected in higher values of basal metabolism. Increased metabolic rates may be associated with increased protein synthesis for detoxification and for tissue repair, including the production of biotransformation enzymes. PMID:14720588

  11. Role of insulin in the intermediary metabolism of the activated thymic-derived lymphocyte.

    PubMed Central

    Helderman, J H

    1981-01-01

    The hypothesis that a role for insulin in the metabolism of T cells would be evident after cell activation when receptors appear was tested to validate the T cell model and to analyze the mechanism by which insulin may function in immunoregulation. Measuring the flux rates of 3-O-[methyl-3H]-D-glucose and aminoisobutyric acid, alpha-[1-14C], lactate production and oxidation, and glucose oxidation from carbon 1- and carbon 6-labeled substrates, it was determined that (a) mitogens such as phytohemagglutinin enhance basal T lymphocyte intermediary metabolism, (b) physiologic concentrations of insulin have no impact on the metabolism of unstimulated, cultured, receptor-negative lymphocytes, and (c) insulin provided to receptor bearing lymphocytes augments intermediary metabolism above mitogen stimulated levels. The importance of the pentose phosphate shunt pathway for energy metabolism in the stimulated lymphocyte was confirmed. These studies demonstrate that insulin has a classical physiologic role to play in the activated lymphocyte further validating the use of this cell to examine potential receptor defects in disorders of carbohydrate metabolism. By enhancing energy metabolism of stimulated lymphocytes, insulin serves biologic economy and thus may perform its immunoregulatory role. PMID:6787080

  12. Age differences in intercorrelations between regional cerebral metabolic rates for glucose

    SciTech Connect

    Horwitz, B.; Duara, R.; Rapoport, S.I.

    1986-01-01

    Patterns of cerebral metabolic intercorrelations were compared in the resting state in 15 healthy young men (ages 20 to 32 years) and 15 healthy elderly men (ages 64 to 83 years). Controlling for whole-brain glucose metabolism, partial correlation coefficients were determined between pairs of regional cerebral metabolic rates for glucose determined by positron emission tomography using (18F)fluorodeoxyglucose and obtained in 59 brain regions. Compared with the young men, the elderly men had fewer statistically significant correlations, with the most notable reductions observed between the parietal lobe regions, and between the parietal and frontal lobe regions. These results suggest that cerebral functional interactions are reduced in healthy elderly men.

  13. Pregnancy limits lung function during exercise and depresses metabolic rate in the skink Tiliqua nigrolutea.

    PubMed

    Munns, Suzanne L; Edwards, Ashley; Nicol, Stewart; Frappell, Peter B

    2015-03-01

    High gestational loads have been associated with a range of ecological costs, such as decreased locomotor ability; however, the physiological mechanisms that underpin these changes are poorly understood. In this study, breathing patterns, metabolic rates, lung volume and lung diffusing capacity were measured at rest and during exercise in the pregnant skink Tiliqua nigrolutea. Breathing patterns were largely unaffected by gestation; however, decreases in metabolic rate (rate of oxygen consumption) in the late stages of pregnancy induced a relative hyperventilation. The reductions in metabolic rate during late pregnancy prevent the calculation of the maintenance cost of pregnancy based on post-partum and neonatal metabolic rates. Despite the high relative litter mass of 38.9±5.3%, lung diffusing capacity was maintained during all stages of pregnancy, suggesting that alterations in diffusion at the alveolar capillary membrane were not responsible for the relative hyperventilation. Lung volume was increased during pregnancy compared with non-pregnant females, but lung volume was significantly lower during pregnancy compared with post-partum lung volume. Pregnant females were unable to produce the same metabolic and ventilatory changes induced by exercise in non-pregnant females. This lack of ability to respond to increased respiratory drive during exercise may underpin the locomotor impairment measured during gestation in previous studies. PMID:25788728

  14. Dissolved Organic Nitrogen Inputs from Wastewater Treatment Plant Effluents Increase Responses of Planktonic Metabolic Rates to Warming.

    PubMed

    Vaquer-Sunyer, Raquel; Conley, Daniel J; Muthusamy, Saraladevi; Lindh, Markus V; Pinhassi, Jarone; Kritzberg, Emma S

    2015-10-01

    Increased anthropogenic pressures on coastal marine ecosystems in the last century are threatening their biodiversity and functioning. Global warming and increases in nutrient loadings are two major stressors affecting these systems. Global warming is expected to increase both atmospheric and water temperatures and increase precipitation and terrestrial runoff, further increasing organic matter and nutrient inputs to coastal areas. Dissolved organic nitrogen (DON) concentrations frequently exceed those of dissolved inorganic nitrogen in aquatic systems. Many components of the DON pool have been shown to supply nitrogen nutrition to phytoplankton and bacteria. Predictions of how global warming and eutrophication will affect metabolic rates and dissolved oxygen dynamics in the future are needed to elucidate their impacts on biodiversity and ecosystem functioning. Here, we experimentally determine the effects of simultaneous DON additions and warming on planktonic community metabolism in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. Both bacterioplankton community composition and metabolic rates changed in relation to temperature. DON additions from wastewater treatment plant effluents significantly increased the activation energies for community respiration and gross primary production. Activation energies for community respiration were higher than those for gross primary production. Results support the prediction that warming of the Baltic Sea will enhance planktonic respiration rates faster than it will for planktonic primary production. Higher increases in respiration rates than in production may lead to the depletion of the oxygen pool, further aggravating hypoxia in the Baltic Sea. PMID:26356812

  15. Active and Inactive Metabolic Pathways in Tumor Spheroids: Determination by GC-MS

    PubMed Central

    Hunnewell, Michael; Forbes, Neil S.

    2016-01-01

    Active metabolic pathways in three-dimensional cancer-cell cultures are potential chemotherapeutic targets that would be effective throughout tumors. Chaotic vasculature creates cellular regions in tumors with distinct metabolic behavior that are only present in aggregate cell masses. To quantify cancer cell metabolism, transformed mouse fibroblasts were grown as spheroids and fed isotopically labeled culture medium. Metabolite uptake and production rates were measured as functions of time. Gas chromatography - mass spectrometry was used quantify the extent of labeling on amino acids present in cytoplasmic extracts. The labeling pattern identified several active and inactive metabolic pathways: glutaminolysis was found to be active, and malic enzyme and gluconeogenesis were inactive. Transformed cells in spheroids were also found to actively synthesize serine, cysteine, alanine, aspartate, glutamate, and proline; and not synthesize glutamine. The activities of these pathways suggest that cancer cells consume glutamine for biosynthesis and not to provide cellular energy. Determining active metabolic pathways indicates how cells direct carbon flow and may lead to the discovery of novel molecular targets for anti-cancer therapy. PMID:20014107

  16. Influence of tacrolimus metabolism rate on BKV infection after kidney transplantation

    PubMed Central

    Thölking, Gerold; Schmidt, Christina; Koch, Raphael; Schuette-Nuetgen, Katharina; Pabst, Dirk; Wolters, Heiner; Kabar, Iyad; Hüsing, Anna; Pavenstädt, Hermann; Reuter, Stefan; Suwelack, Barbara

    2016-01-01

    Immunosuppression is the major risk factor for BK virus nephropathy (BKVN) after renal transplantation (RTx). As the individual tacrolimus (Tac) metabolism rate correlates with Tac side effects, we hypothesized that Tac metabolism might also influence the BKV infection risk. In this case-control study RTx patients with BK viremia within 4 years after RTx (BKV group) were compared with a BKV negative control group. The Tac metabolism rate expressed as the blood concentration normalized by the daily dose (C/D ratio) was applied to assess the Tac metabolism rate. BK viremia was detected in 86 patients after a median time of 6 (0–36) months after RTx. BKV positive patients showed lower Tac C/D ratios at 1, 3 and 6 months after RTx and were classified as fast Tac metabolizers. 8 of 86 patients with BK viremia had histologically proven BKN and a higher median maximum viral load than BKV patients without BKN (441,000 vs. 18,572 copies/mL). We conclude from our data that fast Tac metabolism (C/D ratio <1.05) is associated with BK viremia after RTx. Calculation of the Tac C/D ratio early after RTx, may assist transplant clinicians to identify patients at risk and to choose the optimal immunosuppressive regimen. PMID:27573493

  17. Influence of tacrolimus metabolism rate on BKV infection after kidney transplantation.

    PubMed

    Thölking, Gerold; Schmidt, Christina; Koch, Raphael; Schuette-Nuetgen, Katharina; Pabst, Dirk; Wolters, Heiner; Kabar, Iyad; Hüsing, Anna; Pavenstädt, Hermann; Reuter, Stefan; Suwelack, Barbara

    2016-01-01

    Immunosuppression is the major risk factor for BK virus nephropathy (BKVN) after renal transplantation (RTx). As the individual tacrolimus (Tac) metabolism rate correlates with Tac side effects, we hypothesized that Tac metabolism might also influence the BKV infection risk. In this case-control study RTx patients with BK viremia within 4 years after RTx (BKV group) were compared with a BKV negative control group. The Tac metabolism rate expressed as the blood concentration normalized by the daily dose (C/D ratio) was applied to assess the Tac metabolism rate. BK viremia was detected in 86 patients after a median time of 6 (0-36) months after RTx. BKV positive patients showed lower Tac C/D ratios at 1, 3 and 6 months after RTx and were classified as fast Tac metabolizers. 8 of 86 patients with BK viremia had histologically proven BKN and a higher median maximum viral load than BKV patients without BKN (441,000 vs. 18,572 copies/mL). We conclude from our data that fast Tac metabolism (C/D ratio <1.05) is associated with BK viremia after RTx. Calculation of the Tac C/D ratio early after RTx, may assist transplant clinicians to identify patients at risk and to choose the optimal immunosuppressive regimen. PMID:27573493

  18. Metabolic alterations induced in cultured skeletal muscle by stretch-relaxation activity

    NASA Technical Reports Server (NTRS)

    Hatfaludy, Sophia; Shansky, Janet; Vandenburgh, Herman H.

    1989-01-01

    Muscle cells differentiated in vitro are repetitively stretched and relaxed in order to determine the presence of short- and long-term alterations occurring in glucose uptake and lactate efflux that are similar to the metabolic alterations occurring in stimulated organ-cultured muscle and in vivo skeletal muscle during the active state. It is observed that whereas mechanical stimulation increases these metabolic parameters within 4-6 h of starting activity, unstimulated basal rates in control cultures also increase during this period of time, and by 8 h, their rates have reached or exceeded the rates in continuously stimulated cells. Measurements of these parameters in media of different compositions show that activity-induced long-term alterations in the parameters occur independently of growth factors in serium and embryo extracts.

  19. Metabolic activation of efferent pathways from the rat area postrema.

    PubMed

    Gross, P M; Wainman, D S; Shaver, S W; Wall, K M; Ferguson, A V

    1990-03-01

    We used the quantitative [14C]deoxyglucose method and autoradiography to evaluate metabolic activity in 47 individual cerebral structures or subregions that are part of neural pathways emanating from the brain stem circumventricular organ, area postrema. Electrical stimulation of the dorsocentral area postrema in halothane-ventilated rats produced hypotension and increased glucose metabolism by several structures within the ascending trajectories of efferent neural projections from the nucleus. Structures in the caudal medulla oblongata, including three subnuclei of the nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and nucleus ambiguus-A1 noradrenergic region, had increases of metabolism during stimulation of 32-62%. Pontine activation occurred specifically in the locus coeruleus and lateral parabrachial nuclei (increases of 24-36%). Magnocellular and parvocellular subdivisions of the hypothalamic paraventricular nucleus, supraoptic and suprachiasmatic nuclei, and median eminence showed increases in metabolism of 22-34%. An 89% elevation of glucose metabolism by the pituitary neural lobe resulted. The findings are evidence for functional activation of specific structures within ascending neural pathways from area postrema to forebrain mechanisms regulating blood pressure and fluid balance. PMID:2316724

  20. Copper oxide nanoparticles inhibit the metabolic activity of Saccharomyces cerevisiae.

    PubMed

    Mashock, Michael J; Kappell, Anthony D; Hallaj, Nadia; Hristova, Krassimira R

    2016-01-01

    Copper oxide nanoparticles (CuO NPs) are used increasingly in industrial applications and consumer products and thus may pose risk to human and environmental health. The interaction of CuO NPs with complex media and the impact on cell metabolism when exposed to sublethal concentrations are largely unknown. In the present study, the short-term effects of 2 different sized manufactured CuO NPs on metabolic activity of Saccharomyces cerevisiae were studied. The role of released Cu(2+) during dissolution of NPs in the growth media and the CuO nanostructure were considered. Characterization showed that the 28 nm and 64 nm CuO NPs used in the present study have different primary diameter, similar hydrodynamic diameter, and significantly different concentrations of dissolved Cu(2+) ions in the growth media released from the same initial NP mass. Exposures to CuO NPs or the released Cu(2+) fraction, at doses that do not have impact on cell viability, showed significant inhibition on S. cerevisiae cellular metabolic activity. A greater CuO NP effect on the metabolic activity of S. cerevisiae growth under respiring conditions was observed. Under the tested conditions the observed metabolic inhibition from the NPs was not explained fully by the released Cu ions from the dissolving NPs. PMID:26178758

  1. Relationships Between Metabolic Rate, Muscle Electromyograms and Swim Performance of Adult Chinook Salmon

    SciTech Connect

    Geist, David R.; Brown, Richard S.; Cullinan, Valerie I.; Mesa, Matthew G.; VanderKooi, S P.; McKinstry, Craig A.

    2003-10-01

    In 2000 Pacific Northwest National Laboratory initiated a two-year study to investigate the metabolic rate and swimming performance and to estimate the total energy used (i.e., aerobic and anaerobic) by adult spring Chinook salmon migrating upstream through a large hydropower dam on the Columbia River. The investigation involved one year of laboratory study and one year of field study at Bonneville Dam. The objectives of the laboratory study, reported here, were to (1) measure active rates of oxygen consumption of adult spring chinook salmon at three water temperatures over a range of swimming speeds; (2) estimate the Ucrit of adult spring chinook salmon; and (3) monitor EMGs of red and white muscle in the salmon over a range of swimming speeds. Future papers will report on the results of the field study. Our results indicated that the rate of oxygen consumption and red and white muscle activity in adult spring chinook salmon were strongly correlated with swimming speed over a range of fish sizes and at three different temperatures. Active oxygen consumption increased linearly with swim speed before leveling off at speeds at or above Ucrit. This pattern was similar at each water temperature and indicated that fish were approaching their maximal aerobic oxygen consumption at higher swim speeds. Modeling showed that temperature, but not size or sex, influenced the relation between V02 and swim speed, thus a V02-swim speed model based on temperature (but independent of sex and size) should be a biologically relevant way of estimating the energy use of fish in the wild.

  2. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans.

    PubMed

    Houthoofd, Koen; Braeckman, Bart P; Lenaerts, Isabelle; Brys, Kristel; De Vreese, Annemie; Van Eygen, Sylvie; Vanfleteren, Jacques R

    2002-12-01

    Culture in axenic medium causes two-fold increases in the length of development and adult life span in Caenorhabditis elegans. We asked whether axenic medium imposes dietary restriction (ADR), and causes changes in metabolic activity and stress resistance. Eat mutants, which have a reduced food intake, were studied in parallel with wild-type worms to assess potential synergistic actions of axenic culture and food restriction. We found that axenic culture enhances metabolic activity as assessed by mass-specific oxygen consumption rate and heat production. Axenic culture also caused higher activities of the antioxidant enzymes superoxide dismutase and catalase, and led to increased resistance to high temperature, which was further exacerbated by mutation in eat-2. These results show that axenic medium up-regulates a variety of somatic maintenance functions including oxidative and thermal stress resistance and that food restriction due to axenic growth and to mutation in eat-2 are very similar but not identical. PMID:12559406

  3. Decreased nicotinic receptor availability in smokers with slow rates of nicotine metabolism

    PubMed Central

    Dubroff, Jacob G.; Doot, Robert K.; Falcone, Mary; R, Robert A. Schnoll; Ray, Riju; Tyndale, Rachel F.; Brody, Arthur L.; Hou, Catherine; Schmitz, Alexander; Lerman, Caryn

    2015-01-01

    The nicotine metabolite ratio (NMR), a stable measure of hepatic nicotine metabolism via the CYP2A6 pathway and total nicotine clearance, is a predictive biomarker of response to nicotine replacement therapy, with increased quit rates in slower metabolizers. Nicotine binds directly to nicotinic acetylcholine receptors (nAChRs) to exert its psychoactive effects. This study examined the relationship between NMR and nAChR availability (α4β2* subtype) using positron emission tomography (PET) imaging of the radiotracer 2-18F-FA-85380 (2-18F-FA). Methods Twenty four smokers, 12 slow metabolizers (NMR <0.26) and 12 normal metabolizers (NMR ≥0.26), underwent 2-18F-FA-PET brain imaging following overnight nicotine abstinence (18 hours prior to scanning), using a validated bolus plus infusion protocol. Availability of nAChRs was compared between NMR groups in a priori volumes of interest (VOIs), with total distribution volume (VT/fP) being the measure of nAChR availability. Cravings to smoke were assessed prior to and following the scans. Results Thalamic nAChR α4β2* availability was significantly reduced in slow (versus normal) nicotine metabolizers (P=0.04). Slow metabolizers exhibited greater reductions in craving than normal metabolizers from pre- to post-scanning; however, craving was unrelated to availability. Conclusion The rate of nicotine metabolism is associated with thalamic nAChR availability. Additional studies could examine whether altered nAChR availability underlies differences in treatment response between slow and normal metabolizers of nicotine. PMID:26272810

  4. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis

    PubMed Central

    Knobloch, Marlen; Braun, Simon M. G.; Zurkirchen, Luis; von Schoultz, Carolin; Zamboni, Nicola; Arauzo-Bravo, Marcos J.; Kovacs, Werner J.; Karalay, Özlem; Suter, Ueli; Machado, Raquel A. C.; Roccio, Marta; Lutolf, Matthias P.; Semenkovich, Clay F.; Jessberger, Sebastian

    2013-01-01

    Mechanisms controlling the proliferative activity of neural stem and progenitor cells (NSPCs) have a pivotal role to ensure life-long neurogenesis in the mammalian brain1. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (Fasn), the key enzyme of de novo lipogenesis2, is highly active in adult NSPCs and that conditional deletion of Fasn in mouse NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene previously implicated in lipid metabolism3–5, that we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA6, which is an essential substrate for Fasn to fuel lipogenesis. Thus, we identify here a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation. PMID:23201681

  5. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions.

    PubMed

    Huete-Stauffer, Tamara Megan; Arandia-Gorostidi, Nestor; Díaz-Pérez, Laura; Morán, Xosé Anxelu G

    2015-10-01

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We used experimental incubations spanning 6ºC with bacterial physiological groups identified by flow cytometry according to membrane integrity (live), nucleic acid content (HNA and LNA) and respiratory activity (CTC+). The temperature dependence of μ at the exponential phase of growth was summarized by the activation energy (E), which was variable (-0.52 to 0.72 eV) but followed a seasonal pattern, only reaching the hypothesized value for aerobic heterotrophs of 0.65 eV during the spring bloom for the most active bacterial groups (live, HNA, CTC+). K (i.e. maximum experimental abundance) peaked at 4 × 10(6) cells mL(-1) and generally covaried with μ but, contrary to MTE predictions, it did not decrease consistently with temperature. In the case of live cells, the responses of μ and K to temperature were positively correlated and related to seasonal changes in substrate availability, indicating that the responses of bacteria to warming are far from homogeneous and poorly explained by MTE at our site. PMID:26362925

  6. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere

    PubMed Central

    Klein, Ann M.; Bohannan, Brendan J. M.; Jaffe, Daniel A.; Levin, David A.; Green, Jessica L.

    2016-01-01

    Bacterial metabolisms are responsible for critical chemical transformations in nearly all environments, including oceans, freshwater, and soil. Despite the ubiquity of bacteria in the atmosphere, little is known about the metabolic functioning of atmospheric bacterial communities. To gain a better understanding of the metabolism of bacterial communities in the atmosphere, we used a combined empirical and model-based approach to investigate the structure and composition of potentially active bacterial communities in air sampled at a high elevation research station. We found that the composition of the putatively active bacterial community (assayed via rRNA) differed significantly from the total bacterial community (assayed via rDNA). Rare taxa in the total (rDNA) community were disproportionately active relative to abundant taxa, and members of the order Rhodospirillales had the highest potential for activity. We developed theory to explore the effects of random sampling from the rRNA and rDNA communities on observed differences between the communities. We found that random sampling, particularly in cases where active taxa are rare in the rDNA community, will give rise to observed differences in community composition including the occurrence of “phantom taxa”, taxa which are detected in the rRNA community but not the rDNA community. We show that the use of comparative rRNA/rDNA techniques can reveal the structure and composition of the metabolically active portion of bacterial communities. Our observations suggest that metabolically active bacteria exist in the atmosphere and that these communities may be involved in the cycling of organic compounds in the atmosphere. PMID:27252689

  7. Metabolically Derived human ventilation rates: A revised approach based upon oxygen consumption rates (Final Report) 2009

    EPA Science Inventory

    The purpose of this report is to provide a revised approach for calculating an individual's ventilation rate directly from their oxygen consumption rate. This revised approach will be used to update the ventilation rate information in the Exposure Factors Handbook, which serve as...

  8. Does the metabolic rate-flight speed relationship vary among geometrically similar birds of different mass?

    PubMed

    Bundle, Matthew W; Hansen, Kacia S; Dial, Kenneth P

    2007-03-01

    Based on aerodynamic considerations, the energy use-flight speed relationship of all airborne animals and aircraft should be U-shaped. However, measures of the metabolic rate-flight speed relationship in birds have been available since Tucker's pioneering experiments with budgerigars nearly forty years ago, but this classic work remains the only study to have found a clearly U-shaped metabolic power curve. The available data suggests that the energetic requirements for flight within this species are unique, yet the metabolic power curve of the budgerigar is widely considered representative of birds in general. Given these conflicting results and the observation that the budgerigar's mass is less than 50% of the next smallest species to have been studied, we asked whether large and small birds have metabolic power curves of different shapes. To address this question we measured the rates of oxygen uptake and wingbeat kinematics in budgerigars and cockatiels flying within a variable-speed wind tunnel. These species are close phylogenetic relatives, have similar flight styles, wingbeat kinematics, and are geometrically similar but have body masses that differ by a factor of two. In contrast to our expectations, we found the metabolic rate-flight speed relationship of both species to be acutely U-shaped. We also found that neither budgerigars nor cockatiels used their normal intermittent flight style while wearing a respirometric mask. We conclude that species size differences alone do not explain the previously unique metabolic power curve of the budgerigar; however, due to the absence of comparable data we cannot evaluate whether the mask-related kinematic response we document influences the metabolic rate-flight speed relationship of these parrots, or whether the energetics of flight differ between this and other avian clades. PMID:17337719

  9. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study

    PubMed Central

    Vrijkotte, Tanja G. M.; van den Born, Bert-Jan H.; Hoekstra, Christine M. C. A.; Gademan, Maaike G. J.; van Eijsden, Manon; de Rooij, Susanne R.; Twickler, Marcel T. B.

    2015-01-01

    Background In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5–6 years. Methods Cross-sectional data from an apparently healthy population (within the ABCD study) were collected at age 5–6 years in 1540 children. Heart rate (HR), respiratory sinus arrhythmia (RSA; parasympathetic activity) and pre-ejection period (PEP; sympathetic activity) were assessed during rest. Metabolic components were waist-height ratio (WHtR), systolic blood pressure (SBP), fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed. Results In analysis adjusted for child’s physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01), higher SBP (p<0.001) and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01). Lower PEP was only associated with higher SBP (p <0.05). Of all children, 5.6% had 3 or more (out of 5) adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001). Conclusions This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5–6 years. PMID:26394362

  10. Inner retinal metabolic rate of oxygen by oxygen tension and blood flow imaging in rat

    PubMed Central

    Wanek, Justin; Teng, Pang-yu; Albers, John; Blair, Norman P.; Shahidi, Mahnaz

    2011-01-01

    Abstract The metabolic function of inner retinal cells relies on the availability of nutrients and oxygen that are supplied by the retinal circulation. Assessment of retinal tissue vitality and function requires knowledge of both the rate of oxygen delivery and consumption. The purpose of the current study is to report a novel technique for assessment of the inner retinal metabolic rate of oxygen (MO2) by combined measurements of retinal blood flow and vascular oxygen tension (PO2) in rat. The application of this technology has the potential to broaden knowledge of retinal oxygen dynamics and advance understanding of disease pathophysiology. PMID:21991548

  11. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients

    PubMed Central

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients. PMID:25294128

  12. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients.

    PubMed

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2015-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients. PMID:25294128

  13. Flight Modes in Migrating European Bee-Eaters: Heart Rate May Indicate Low Metabolic Rate during Soaring and Gliding

    PubMed Central

    Sapir, Nir; Wikelski, Martin; McCue, Marshall D.; Pinshow, Berry; Nathan, Ran

    2010-01-01

    Background Many avian species soar and glide over land. Evidence from large birds (mb>0.9 kg) suggests that soaring-gliding is considerably cheaper in terms of energy than flapping flight, and costs about two to three times the basal metabolic rate (BMR). Yet, soaring-gliding is considered unfavorable for small birds because migration speed in small birds during soaring-gliding is believed to be lower than that of flapping flight. Nevertheless, several small bird species routinely soar and glide. Methodology/Principal Findings To estimate the energetic cost of soaring-gliding flight in small birds, we measured heart beat frequencies of free-ranging migrating European bee-eaters (Merops apiaster, mb∼55 g) using radio telemetry, and established the relationship between heart beat frequency and metabolic rate (by indirect calorimetry) in the laboratory. Heart beat frequency during sustained soaring-gliding was 2.2 to 2.5 times lower than during flapping flight, but similar to, and not significantly different from, that measured in resting birds. We estimated that soaring-gliding metabolic rate of European bee-eaters is about twice their basal metabolic rate (BMR), which is similar to the value estimated in the black-browed albatross Thalassarche (previously Diomedea) melanophrys, mb∼4 kg). We found that soaring-gliding migration speed is not significantly different from flapping migration speed. Conclusions/Significance We found no evidence that soaring-gliding speed is slower than flapping flight in bee-eaters, contradicting earlier estimates that implied a migration speed penalty for using soaring-gliding rather than flapping flight. Moreover, we suggest that small birds soar and glide during migration, breeding, dispersal, and other stages in their annual cycle because it may entail a low energy cost of transport. We propose that the energy cost of soaring-gliding may be proportional to BMR regardless of bird size, as theoretically deduced by earlier studies

  14. High Yolk Testosterone Transfer Is Associated with an Increased Female Metabolic Rate.

    PubMed

    Tschirren, Barbara; Ziegler, Ann-Kathrin; Canale, Cindy I; Okuliarová, Monika; Zeman, Michal; Giraudeau, Mathieu

    2016-01-01

    Yolk androgens of maternal origin are important mediators of prenatal maternal effects. Although in many species short-term benefits of exposure to high yolk androgen concentrations for the offspring have been observed, females differ substantially in the amount of androgens they transfer to their eggs. It suggests that costs for the offspring or the mother constrain the evolution of maternal hormone transfer. However, to date, the nature of these costs remains poorly understood. Unlike most previous work that focused on potential costs for the offspring, we here investigated whether high yolk testosterone transfer is associated with metabolic costs (i.e., a higher metabolic rate) for the mother. We show that Japanese quail (Coturnix japonica) females that deposit higher testosterone concentrations into their eggs have a higher resting metabolic rate. Because a higher metabolic rate is often associated with a shorter life span, this relationship may explain the negative association between yolk testosterone transfer and female longevity observed in the wild. Our results suggest that metabolic costs for the mother can balance the short-term benefits of yolk testosterone exposure for the offspring, thereby contributing to the maintenance of variation in maternal yolk hormone transfer in natural populations. PMID:27617364

  15. Biogeography of Metabolically Active Microbial Populations within the Subseafloor Biosphere

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Shepard, A.; St. Peter, C.; Mills, H. J.

    2011-12-01

    Microbial life in deep marine sediments is widespread, metabolically active and diverse. Evidence of prokaryotic communities in sediments as deep as 800 m below the seafloor (mbsf) have been found. By recycling carbon and nutrients through biological and geochemical processes, the deep subsurface has the potential to remain metabolically active over geologic time scales. While a vast majority of the subsurface biosphere remains under studied, recent advances in molecular techniques and an increased focus on microbiological sampling during IODP expeditions have provided the initial steps toward better characterizations of the microbial communities. Coupling of geochemistry and RNA-based molecular analysis is essential to the description of the active microbial populations within the subsurface biosphere. Studies based on DNA may describe the taxa and metabolic pathways from the total microbial community within the sediment, whether the cells sampled were metabolically active, quiescent or dead. Due to a short lifespan within a cell, only an RNA-based analysis can be used to identify linkages between active populations and observed geochemistry. This study will coalesce and compare RNA sequence and geochemical data from Expeditions 316 (Nankai Trough), 320 (Pacific Equatorial Age Transect), 325 (Great Barrier Reef) and 329 (South Pacific Gyre) to evaluate the biogeography of microbial lineages actively altering the deep subsurface. The grouping of sediments allows for a wide range of geochemical environments to be compared, including two environments limited in organic carbon. Significant to this study is the use of similar extraction, amplification and simultaneous 454 pyrosequencing on all sediment populations allowing for robust comparisons with similar protocol strengths and biases. Initial trends support previously described reduction of diversity with increasing depth. The co-localization of active reductive and oxidative lineages suggests a potential cryptic

  16. Thermoneutral zone and scaling of metabolic rate on body mass in small mammals

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1983-01-01

    A 4-species animal model suitable for experimental study of the effect of change in gravitational loading on the scale relationship between metabolic rate and total body mass is used to study the effect of temperature on metabolic rate in six male animals, 8-10 months of age, of each of the four species in the ambient temperature range 20-36 C. The measurements taken permitted partitioning of total body heat output into sensible heat loss by radiation, conduction and convection, and into latent heat loss by evaporation of water from the body surface. It is shown that the condition of thermoneutrality is important for metabolic scale effect studies, and that the thermoneutral zone for the species considered here is a narrow one.

  17. Biochemical studies on the metabolic activation of halogenated alkanes.

    PubMed Central

    Cheeseman, K H; Albano, E F; Tomasi, A; Slater, T F

    1985-01-01

    This paper reviews recent investigations by Slater and colleagues into the metabolic activation of halogenated alkanes in general and carbon tetrachloride in particular. It is becoming increasingly accepted that free radical intermediates are involved in the toxicity of many such compounds through mechanisms including lipid peroxidation, covalent binding, and cofactor depletion. Here we describe the experimental approaches that are used to establish that halogenated alkanes are metabolized in animal tissues to reactive free radicals. Electron spin resonance spectroscopy is used to identify free-radical products, often using spin-trapping compounds. The generation of specific free radicals by radiolytic methods is useful in the determination of the precise reactivity of radical intermediates postulated to be injurious to the cell. The enzymic mechanism of the production of such free radicals and their subsequent reactions with biological molecules is studied with specific metabolic inhibitors and free-radical scavengers. These combined techniques provide considerable insight into the process of metabolic activation of halogenated compounds. It is readily apparent, for instance, that the local oxygen concentration at the site of activation is of crucial importance to the subsequent reactions; the formation of peroxy radical derivatives from the primary free-radical product is shown to be of great significance in relation to carbon tetrachloride and may be of general importance. However, while these studies have provided much information on the biochemical mechanisms of halogenated alkane toxicity, it is clear that many problems remain to be solved. PMID:3007102

  18. Heavy metal effects on the metabolic activity of Elliptio complanata: A calorimetric method

    SciTech Connect

    Cheney, M.A.; Criddle, R.S.

    1996-03-01

    The effects of short time exposure to mercury (Hg{sup 2+}), cadmium (Cd{sup 2+}), and copper (Cu{sup 2+}) ions on the metabolic activity of gill tissue from the freshwater bivalve Elliptio complanata were investigated by isothermal calorimetry and respirometry. Metabolic heat rates were altered following exposure of gill tissue to these ions over the concentration range from 10{sup {minus}6} to 10{sup {minus}3} M. The effects of metal ions on metabolic heat rates were metal ion specific and time and concentration dependent. Treatment of tissue with low concentrations of Hg{sup 2+} and Cu{sup 2+} for short times caused stimulation of metabolic heat rates. Longer exposures and higher concentrations caused inhibition. Cadmium was inhibitory under all conditions tested. Treatment of mitochrondria isolated from gill and muscle tissues showed a similar pattern of stimulation of respiratory rate at low concentration and inhibition at higher concentration. Analysis of CO{sub 2} and O{sub 2} from the headspace gasses in the calorimeter ampule showed an enhancement of respiratory quotient (RQ, i.e., R{sub CO{sub 2}}/R{sub O{sub 2}} where R = rate) following addition of 10{sup {minus}3} M Cd{sup 2+} for 30 min. The microcalorimetric method proved to be a useful technique to assess toxicity of heavy metals on the gills of a freshwater bivalve. 12 refs., 7 figs., 3 tabs.

  19. Genome Size Evolution in Relation to Leaf Strategy and Metabolic Rates Revisited

    PubMed Central

    Beaulieu, Jeremy M.; Leitch, Ilia J.; Knight, Charles A.

    2007-01-01

    Background and Aims It has been proposed that having too much DNA may carry physiological consequences for plants. The strong correlation between DNA content, cell size and cell division rate could lead to predictable morphological variation in plants, including a negative relationship with leaf mass per unit area (LMA). In addition, the possible increased demand for resources in species with high DNA content may have downstream effects on maximal metabolic efficiency, including decreased metabolic rates. Methods Tests were made for genome size-dependent variation in LMA and metabolic rates (mass-based photosynthetic rate and dark respiration rate) using our own measurements and data from a plant functional trait database (Glopnet). These associations were tested using two metrics of genome size: bulk DNA amount (2C DNA) and monoploid genome size (1Cx DNA). The data were analysed using an evolutionary framework that included a regression analysis and independent contrasts using a phylogenetic tree with estimates of molecular diversification times. A contribution index for the LMA data set was also calculated to determine which divergences have the greatest influence on the relationship between genome size and LMA. Key Results and Conclusions A significant negative association was found between bulk DNA amount and LMA in angiosperms. This was primarily a result of influential divergences that may represent early shifts in growth form. However, divergences in bulk DNA amount were positively associated with divergences in LMA, suggesting that the relationship may be indirect and mediated through other traits directly related to genome size. There was a significant negative association between genome size and metabolic rates that was driven by a basal divergence between angiosperms and gymnosperms; no significant independent contrast results were found. Therefore, it is concluded that genome size-dependent constraints acting on metabolic efficiency may not exist within

  20. A high-throughput method for quantifying metabolically active yeast cells.

    PubMed

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjaer, Alexander; Lantz, Anna Eliasson; Thykaer, Jette; Workman, Mhairi

    2015-06-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of the method in fermenters and high-throughput systems proved equivalent, displaying reduction curves that interrelated directly with CFU counts. For growth rate estimation, the methylene blue reduction test (MBRT) proved superior, since the discriminatory nature of the method allowed for the quantification of metabolically active cells only, excluding dead cells. The drop in metabolic activity associated with the diauxic shift in yeast proved more pronounced for the MBRT-derived curve compared with OD curves, consistent with a dramatic shift in the ratio between live and dead cells at this metabolic event. This method provides a tool with numerous applications, e.g. characterizing the death phase of stationary phase cultures, or in drug screens with pathogenic yeasts. PMID:25773544

  1. Metabolic activation of 2-methylfuran by rat microsomal systems

    SciTech Connect

    Ravindranath, V.; Boyd, M.R.

    1985-05-01

    2-Methylfuran (2-MF), a constituent of cigarette smoke and coffee, causes necrosis of liver, lungs, and kidneys in rodents. 2-MF is metabolically activated by mixed-function oxidases to acetylacrolein, a reactive metabolite that binds covalently to microsomal protein. The hepatic microsomal metabolism of 2-MF to reactive metabolite required the presence of NADPH and oxygen and was dependent on incubation time and substrate concentration. The microsomal metabolism of 2-MF was inducible by pretreatment of rats with phenobarbital and was inhibited by piperonyl butoxide and N-octyl imidazole, which indicates that the metabolism of 2-MF may be mediated by cytochrome P-450. Acetylacrolein was a potent inhibitor of mixed-function oxidase and completely inhibited the microsomal metabolism of 2-MF, indicating that 2-MF is a suicide substrate for the enzyme. The sulfhydryl nucleophile cysteine was a better trapping agent of the reactive metabolite of 2-MF than N-acetylcysteine or glutathione. Lysine decreased the covalent binding of 2-MF metabolites, presumably by reacting with the aldehyde group of acetylacrolein. In addition, in the presence of NADPH, 2-MF was bioactivated by both pulmonary and renal cortical microsomes to reactive metabolites that were covalently bound to microsomal proteins.

  2. Dynamic model for selective metabolic activation in chemical carcinogenesis

    SciTech Connect

    Selkirk, J.K.; MacLeod, M.C.

    1980-01-01

    Theoretical calculations predict the relative ease of formation of carbonium ions from 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene-9,10-oxide or from either of the 2 symmetrical bay regions of B(e)P, and suggest their attraction to cellular nucleophiles. When both isomers were metabolized by hamster embryo fibroblasts (HEF) and the products analyzed, the results showed that the probable reason for benzo(e)pyrene's lack of carcinogenicity was its metabolic preference to attack the molecule away from the bay-region area. Particularly striking was the absence of any evidence for the formation of a significant amount of B(e)P-9,10-dihydrodiol. This suggests a metabolic basis for the relative lack of carcinogenic and mutagenic activity of B(e)P. The reason for this is not clear but may be due to physical or chemical factors such as membrane solubility or stereochemical requirements of the active site of the enzyme. The bay-region theory of PAH carcinogenesis predicts that carbonium ion formation from 9,10-dihydro-9,10-dihydroxybenzo(e)pyrene-11, 12-oxide, if formed, would be energetically favorable. Thus, the inability of HEF and microcomes to form B(e)P-9,10-dihydrodiol, the precursor of its potentially highly reactive diol-epoxide, would explain the relative inertness of B(e)P in several biological systems. As the subtle biochemical interactions of the various carcinogen intermediates become clarified, it becomes apparent that susceptibility and resistance to malignant transformation are based on a complex set of both chemical and physical parameters. It is becoming clear that metabolism kinetics, membrane interaction, and the role of nuclear metabolism help dictate the passage of the carcinogen and its reactive intermediates into and through the metabolic machinery of the cell. (ERB)

  3. Attention Performance in Autism and Regional Brain Metabolic Rate Assessed by Positron Emission Tomography. Brief Report.

    ERIC Educational Resources Information Center

    Buchsbaum, M. S.; And Others

    1992-01-01

    This evaluation of seven high functioning adults with autism utilized positron emission tomography on a visual vigilance task. Although the subjects, as a group, did as well as normal controls on the task, there was a lack of normal hemispheric asymmetry in glucose metabolic rate. A heterogeneous etiology for autism is suggested to explain…

  4. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  5. Metabolic Rate: A Factor in Developing Obesity in Children with Down Syndrome?

    ERIC Educational Resources Information Center

    Chad, Karen; And Others

    1990-01-01

    Resting metabolic rate and its relation to selected anthropomorphic measures were determined in 11 male and 7 female noninstitutionalized children with Down Syndrome. Dietary analysis was performed to determine the children's nutritional status. Results have implications for the prevention and treatment of obesity in children with Down Syndrome.…

  6. EFFECT OF 2,4-DINITROPHENOL ON THE METABOLIC RATE OF BOBWHITE QUAIL

    EPA Science Inventory

    Bobwhite quail were exposed to 2,4-dinitrophenol (DNP) in a respirometer designed to continuously monitor exchange of O2 and C02, from which metabolic rates (MR) were estimated. fter 14-16 days of acclimation to the system (temperature 22 degrees C, light cycle 8L:14D), hens rece...

  7. Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.

    ERIC Educational Resources Information Center

    Haier, Richard J.; And Others

    1992-01-01

    A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)

  8. Alteration of basal metabolic rate in Holstein steers during fescue toxicosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The results of this study indicate that consumption of E+ tall fescue by cattle results in a reduction in basal metabolic rate. Six ruminally cannulated steers were weight-matched and pair-fed during a two period crossover experiment. Each period consisted of two temperatures (22°C and 30°C). During...

  9. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs

    SciTech Connect

    Busija, D.W.; Leffler, C.W. )

    1987-10-01

    The authors examined effects of hypothermia on cerebral metabolic rate and cerebral blood flow in anesthetized, newborn pigs (1-4 days old). Cerebral blood flow (CBF) was determined with 15-{mu}m radioactive microspheres. Regional CBF ranged from 44 to 66 ml{center dot}min{sup {minus}1}{center dot}100 g{sup {minus}1}, and cerebral metabolic rate was 1.94 {plus minus} 0.23 ml O{sub 2}{center dot}100 g{sup {minus}1}{center dot}min{sup {minus}1} during normothermia (39{degree}C). Reduction of rectal temperature to 34-35{degree}C decreased CBF and cerebral metabolic rate 40-50%. In another group of piglets, they examined responsiveness of the cerebral circulation to arterial hypercapnia during hypothermia. Although absolute values for normocapnic and hypercapnic CBF were reduced by hypothermia and absolute values for normocapnic and hypercapnic cerebrovascular resistance were increased, the percentage changes from control in these variables during hypercapnia were similar during normothermia and hypothermia. In another group of animals that were maintained normothermic and exposed to two episodes of hypercapnia, there was no attenuation of cerebrovascular dilation during the second episode. They conclude that hypothermia reduces CBF secondarily to a decrease in cerebral metabolic rate and that percent dilator responsiveness to arterial hypercapnia is unaltered when body temperature is reduced.

  10. AN IN SILICO INVESTIGATION OF THE ENANTIOSELECTIVE METABOLISM RATES OF TRIAZOLE FUGICIDES

    EPA Science Inventory

    The objective of this work is to use in silico methods such as ab initio quantum and classical force-field methods to explore and develop an understanding for the enantioselective metabolism rates experimentally observed in the triazole fungicide bromuconazole. This directed stud...

  11. Metabolic Syndrome and Short-Term Heart Rate Variability in Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Chang, Yaw-Wen; Lin, Jin-Ding; Chen, Wei-Liang; Yen, Chia-Feng; Loh, Ching-Hui; Fang, Wen-Hui; Wu, Li-Wei

    2012-01-01

    Metabolic syndrome (MetS) increases the risk of cardiovascular events. Heart rate variability (HRV) represents autonomic functioning, and reduced HRV significantly increases cardiovascular mortality. The aims of the present paper are to assess the prevalence of MetS in adults with intellectual disabilities (ID), the difference in short-term HRV…

  12. Resting Metabolic Rate is Not Reduced in Obese Adults With Down Syndrome

    ERIC Educational Resources Information Center

    Fernhall, Bo; Figueroa, Arturo; Collier, Scott; Goulopoulou, Styliani; Giannopoulou, Ifigenia; Baynard, Tracy

    2005-01-01

    Resting metabolic rate (RMR) of 22 individuals with Down syndrome was compared to that of 20 nondisabled control individuals of similar age (25.7 and 27.4 years, respectively). Using a ventilated hood system, we measured RMR in the early morning after an overnight fast. Peak aerobic capacity Volume of Oxygen (VO2 peak) and body composition were…

  13. Metabolic, autophagic, and mitophagic activities in cancer initiation and progression.

    PubMed

    Hjelmeland, Anita; Zhang, Jianhua

    2016-04-01

    Cancer is a complex disease marked by uncontrolled cell growth and invasion. These processes are driven by the accumulation of genetic and epigenetic alterations that promote cancer initiation and progression. Contributing to genome changes are the regulation of oxidative stress and reactive species-induced damage to molecules and organelles. Redox regulation, metabolic plasticity, autophagy, and mitophagy play important and interactive roles in cancer hallmarks including sustained proliferation, activated invasion, and replicative immortality. However, the impact of these processes can differ depending on the signaling pathways altered in cancer, tumor type, tumor stage, and/or the differentiation state. Here, we highlight some of the representative studies on the impact of oxidative and nitrosative activities, mitochondrial bioenergetics, metabolism, and autophagy and mitophagy in the context of tumorigenesis. We discuss the implications of these processes for cellular activities in cancer for anti-cancer-based therapeutics. PMID:27372165

  14. Evidence of Circadian Rhythm, Oxygen Regulation Capacity, Metabolic Repeatability and Positive Correlations between Forced and Spontaneous Maximal Metabolic Rates in Lake Sturgeon Acipenser fulvescens

    PubMed Central

    Svendsen, Jon C.; Genz, Janet; Anderson, W. Gary; Stol, Jennifer A.; Watkinson, Douglas A.; Enders, Eva C.

    2014-01-01

    Animal metabolic rate is variable and may be affected by endogenous and exogenous factors, but such relationships remain poorly understood in many primitive fishes, including members of the family Acipenseridae (sturgeons). Using juvenile lake sturgeon (Acipenser fulvescens), the objective of this study was to test four hypotheses: 1) A. fulvescens exhibits a circadian rhythm influencing metabolic rate and behaviour; 2) A. fulvescens has the capacity to regulate metabolic rate when exposed to environmental hypoxia; 3) measurements of forced maximum metabolic rate (MMRF) are repeatable in individual fish; and 4) MMRF correlates positively with spontaneous maximum metabolic rate (MMRS). Metabolic rates were measured using intermittent flow respirometry, and a standard chase protocol was employed to elicit MMRF. Trials lasting 24 h were used to measure standard metabolic rate (SMR) and MMRS. Repeatability and correlations between MMRF and MMRS were analyzed using residual body mass corrected values. Results revealed that A. fulvescens exhibit a circadian rhythm in metabolic rate, with metabolism peaking at dawn. SMR was unaffected by hypoxia (30% air saturation (O2sat)), demonstrating oxygen regulation. In contrast, MMRF was affected by hypoxia and decreased across the range from 100% O2sat to 70% O2sat. MMRF was repeatable in individual fish, and MMRF correlated positively with MMRS, but the relationships between MMRF and MMRS were only revealed in fish exposed to hypoxia or 24 h constant light (i.e. environmental stressor). Our study provides evidence that the physiology of A. fulvescens is influenced by a circadian rhythm and suggests that A. fulvescens is an oxygen regulator, like most teleost fish. Finally, metabolic repeatability and positive correlations between MMRF and MMRS support the conjecture that MMRF represents a measure of organism performance that could be a target of natural selection. PMID:24718688

  15. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity.

    PubMed

    Guo, Huan; Yao, Jun; Cai, Minmin; Qian, Yiguang; Guo, Yue; Richnow, Hans H; Blake, Ruth E; Doni, Serena; Ceccanti, Brunello

    2012-06-01

    The influence of petroleum contamination on soil microbial activities was investigated in 13 soil samples from sites around an injection water well (Iw-1, 2, 3, 4) (total petroleum hydrocarbons (TPH): 7.5-78 mg kg(-1)), an oil production well (Op-1, 2, 3, 4, 5) (TPH: 149-1110 mg kg(-1)), and an oil spill accident well (Os-1, 2, 3, 4) (TPH: 4500-34600 mg kg(-1)). The growth rate constant (μ) of glucose stimulated organisms, determined by microcalorimetry, was higher in Iw soil samples than in Op and Os samples. Total cultivable bacteria and fungi and urease activity also decreased with increasing concentration of TPH. Total heat produced demonstrated that TPH at concentrations less than about 1 g kg(-1) soil stimulated anaerobic respiration. A positive correlation between TPH and soil organic matter (OM) and stimulation of fungi-bacteria-urease at low TPH doses suggested that TPH is bound to soil OM and slowly metabolized in Iw soils during OM consumption. These methods can be used to evaluate the potential of polluted soils to carry out self-bioremediation by metabolizing TPH. PMID:22336736

  16. Novel TPP-riboswitch activators bypass metabolic enzyme dependency

    NASA Astrophysics Data System (ADS)

    Mayer, Günter; Lünse, Christina; Suckling, Colin; Scott, Fraser

    2014-07-01

    Riboswitches are conserved regions within mRNA molecules that bind specific metabolites and regulate gene expression. TPP-riboswitches, which respond to thiamine pyrophosphate (TPP), are involved in the regulation of thiamine metabolism in numerous bacteria. As these regulatory RNAs are often modulating essential biosynthesis pathways they have become increasingly interesting as promising antibacterial targets. Here, we describe thiamine analogs containing a central 1,2,3-triazole group to induce repression of thiM-riboswitch dependent gene expression in different E. coli strains. Additionally, we show that compound activation is dependent on proteins involved in the metabolic pathways of thiamine uptake and synthesis. The most promising molecule, triazolethiamine (TT), shows concentration dependent reporter gene repression that is dependent on the presence of thiamine kinase ThiK, whereas the effect of pyrithiamine (PT), a known TPP-riboswitch modulator, is ThiK independent. We further show that this dependence can be bypassed by triazolethiamine-derivatives that bear phosphate-mimicking moieties. As triazolethiamine reveals superior activity compared to pyrithiamine, it represents a very promising starting point for developing novel antibacterial compounds that target TPP-riboswitches. Riboswitch-targeting compounds engage diverse endogenous mechanisms to attain in vivo activity. These findings are of importance for the understanding of compounds that require metabolic activation to achieve effective riboswitch modulation and they enable the design of novel compound generations that are independent of endogenous activation mechanisms.

  17. Effects of NaCl on metabolic heat evolution rates by barley roots

    NASA Technical Reports Server (NTRS)

    Criddle, R. S.; Hansen, L. D.; Breidenbach, R. W.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    The effect of salinity stress on metabolic heat output of barley (Hordeum vulgare L.) root tips was measured by isothermal microcalorimetry. Several varieties differing in tolerance to salinity were compared and differences quantified. Two levels of inhibition by increasing salt were found. Following the transition from the initial rate of the first level, inhibition remained at about 50% with further increases in salt concentration up to 150 millimolar. The concentration of salt required to inhibit to this level was cultivar dependent. At highter concentrations (>150 millimolar) of salt, metabolism was further decreased. This decrease was not cultivar dependent. The decreased rate of metabolic heat output at the first transition could be correlated with decreases in uptake of NO3-, NH4+, and Pi that occurred as the salt concentration was increased. The high degree of dependence of the inhibition of metabolic heat output on NaCl concentration points to a highly cooperative reaction responsible for the general inhibition of metabolism and nutrient uptake. The time required to attain the first level of salt inhibition is less than 20 minutes. Inhibition of root tips was not reversible by washing with salt free solutions. In addition to revealing these features of salt inhibition, isothermal microcalorimetry is a promising method for convenient and rapid determination of varietal differences in response to increasing salinity.

  18. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease

    PubMed Central

    Azhar, Salman

    2011-01-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/β and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  19. Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease.

    PubMed

    Azhar, Salman

    2010-09-01

    Metabolic syndrome (MetS) is a constellation of risk factors including insulin resistance, central obesity, dyslipidemia and hypertension that markedly increase the risk of Type 2 diabetes (T2DM) and cardiovascular disease (CVD). The peroxisome proliferators-activated receptor (PPAR) isotypes, PPARα, PPARδ/ß and PPARγ are ligand-activated nuclear transcription factors, which modulate the expression of an array of genes that play a central role in regulating glucose, lipid and cholesterol metabolism, where imbalance can lead to obesity, T2DM and CVD. They are also drug targets, and currently, PPARα (fibrates) and PPARγ (thiazolodinediones) agonists are in clinical use for treating dyslipidemia and T2DM, respectively. These metabolic characteristics of the PPARs, coupled with their involvement in metabolic diseases, mean extensive efforts are underway worldwide to develop new and efficacious PPAR-based therapies for the treatment of additional maladies associated with the MetS. This article presents an overview of the functional characteristics of three PPAR isotypes, discusses recent advances in our understanding of the diverse biological actions of PPARs, particularly in the vascular system, and summarizes the developmental status of new single, dual, pan (multiple) and partial PPAR agonists for the clinical management of key components of MetS, T2DM and CVD. It also summarizes the clinical outcomes from various clinical trials aimed at evaluating the atheroprotective actions of currently used fibrates and thiazolodinediones. PMID:20932114

  20. Metabolism of azo dyes: implication for detoxication and activation.

    PubMed

    Levine, W G

    1991-01-01

    Azo dyes are consumed and otherwise utilized in varying quantities in many parts of the world. Such widely used chemicals are of great concern with regard to their potential toxicity and carcinogenic properties. Their metabolism has been studied extensively and is significant for detoxication and metabolic activation. Both oxidative and reductive pathways are involved in these processes. The majority of azo dyes undergo reduction catalyzed by enzymes of the intestinal microorganisms and/or hepatic enzymes including microsomal and soluble enzymes. The selectivity of substrate and enzyme may to a large extent be determined by the oxygen sensitivity of reduction since a normal liver is mainly aerobic in all areas, whereas the microorganisms of the lower bowel exist in an anaerobic environment. However, it should be pointed out that the pO2 of centrilobular cells within the liver is only a fraction that of air, where pO2 = 150 torr. Therefore, an azo dye reduction experiment performed aerobically may not be an accurate predictor of reductive metabolism in all areas of the liver. Many of the azo dyes in common use today have highly charged substituents such as sulfonate. These resist enzymic attack and for the most part are poorly absorbed from the intestinal tract, providing poor access to the liver, the major site of the mixed-function oxidase system. Lipophilic dyes, such as DAB, which are often carcinogenic, readily access oxidative enzymes and are activated by both mixed-function oxidase and conjugating systems. Reduction of the carcinogenic dyes usually leads to loss of carcinogenic activity. By contrast, most of the highly charged water-soluble dyes become mutagenic only after reduction. Even then, most of the fully reduced amines required oxidative metabolic activation. An outstanding example is the potent human bladder carcinogen benzidine, which derives from the reduction of several azo dyes. Many problems regarding mutagenic and carcinogenic activation remain

  1. Muscle Transcriptional Profile Based on Muscle Fiber, Mitochondrial Respiratory Activity, and Metabolic Enzymes

    PubMed Central

    Liu, Xuan; Du, Yang; Trakooljul, Nares; Brand, Bodo; Muráni, Eduard; Krischek, Carsten; Wicke, Michael; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    Skeletal muscle is a highly metabolically active tissue that both stores and consumes energy. Important biological pathways that affect energy metabolism and metabolic fiber type in muscle cells may be identified through transcriptomic profiling of the muscle, especially ante mortem. Here, gene expression was investigated in malignant hyperthermia syndrome (MHS)-negative Duroc and Pietrian (PiNN) pigs significantly differing for the muscle fiber types slow-twitch-oxidative fiber (STO) and fast-twitch-oxidative fiber (FTO) as well as mitochondrial activity (succinate-dependent state 3 respiration rate). Longissimus muscle samples were obtained 24 h before slaughter and profiled using cDNA microarrays. Differential gene expression between Duroc and PiNN muscle samples were associated with protein ubiquitination, stem cell pluripotency, amyloid processing, and 3-phosphoinositide biosynthesis and degradation pathways. In addition, weighted gene co-expression network analysis within both breeds identified several co-expression modules that were associated with the proportion of different fiber types, mitochondrial respiratory activity, and ATP metabolism. In particular, Duroc results revealed strong correlations between mitochondrion-associated co-expression modules and STO (r = 0.78), fast-twitch glycolytic fiber (r = -0.98), complex I (r=0.72) and COX activity (r = 0.86). Other pathways in the protein-kinase-activity enriched module were positively correlated with STO (r=0.93), while negatively correlated with FTO (r = -0.72). In contrast to PiNN, co-expression modules enriched in macromolecule catabolic process, actin cytoskeleton, and transcription activator activity were associated with fiber types, mitochondrial respiratory activity, and metabolic enzyme activities. Our results highlight the importance of mitochondria for the oxidative capacity of porcine muscle and for breed-dependent molecular pathways in muscle cell fibers. PMID:26681915

  2. Relationships between metabolic rate, muscle electromyograms, and swim performance of adult chinook salmon

    SciTech Connect

    Geist, David R. ); Brown, Richard S. ); Cullinan, Valerie I. ); Mesa, Matthew G.; VanderKooi, S P.; McKinstry, Craig A. )

    2003-10-01

    We measured oxygen consumption rates of adult spring Chinook salmon and compared these values to other species of Pacific salmon. Our results indicated that adult salmon achieve their maximum level of oxygen consumption at about their upper critical swim speed. It is also at this speed that the majority of the energy supplied to the swimming fish switches from red muscle (powered by aerobic metabolism) to white muscle (powered by anaerobic metabolism). Determining the swimming performance of adult salmon will assist managers in developing fishways and other means to safely pass fish over hydroelectric dams and other man-made structures.

  3. Active metabolism of thyroid hormone during metamorphosis of amphioxus.

    PubMed

    Paris, Mathilde; Hillenweck, Anne; Bertrand, Stéphanie; Delous, Georges; Escriva, Hector; Zalko, Daniel; Cravedi, Jean-Pierre; Laudet, Vincent

    2010-07-01

    Thyroid hormones (THs), and more precisely the 3,3',5-triiodo-l-thyronine (T(3)) acetic derivative 3,3',5-triiodothyroacetic acid (TRIAC), have been shown to activate metamorphosis in amphioxus. However, it remains unknown whether TRIAC is endogenously synthesized in amphioxus and more generally whether an active TH metabolism is regulating metamorphosis. Here we show that amphioxus naturally produces TRIAC from its precursors T(3) and l-thyroxine (T(4)), supporting its possible role as the active TH in amphioxus larvae. In addition, we show that blocking TH production inhibits metamorphosis and that this effect is compensated by exogenous T(3), suggesting that a peak of TH production is important for advancement of proper metamorphosis. Moreover, several amphioxus genes encoding proteins previously proposed to be involved in the TH signaling pathway display expression profiles correlated with metamorphosis. In particular, thyroid hormone receptor (TR) and deiodinases gene expressions are either up- or down-regulated during metamorphosis and by TH treatments. Overall, these results suggest that an active TH metabolism controls metamorphosis in amphioxus, and that endogenous TH production and metabolism as well as TH-regulated metamorphosis are ancestral in the chordate lineage. PMID:21558188

  4. Effect of dietary fatty acids on metabolic rate and nonshivering thermogenesis in golden hamsters.

    PubMed

    Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-02-01

    Hibernating rodents prior to winter tend to select food rich in polyunsaturated fatty acids (PUFA). Several studies found that such diet may positively affect their winter energy budget by enhancing torpor episodes. However, the effect of composition of dietary fatty acids (FA) on metabolism of normothermic heterotherms is poorly understood. Thus we tested whether diets different in FA composition affect metabolic rate (MR) and the capacity for nonshivering thermogenesis (NST) in normothermic golden hamsters (Mesocricetus auratus). Animals were housed in outdoor enclosures from May 2010 to April 2011 and fed a diet enriched with PUFA (i.e., standard food supplemented weekly with sunflower and flax seeds) or with saturated and monounsaturated fatty acids (SFA/MUFA, standard food supplemented with mealworms). Since diet rich in PUFA results in lower MR in hibernating animals, we predicted that PUFA-rich diet would have similar effect on MR of normothermic hamsters, that is, normothermic hamsters on the PUFA diet would have lower metabolic rate in cold and higher NST capacity than hamsters supplemented with SFA/MUFA. Indeed, in winter resting metabolic rate (RMR) below the lower critical temperature was higher and NST capacity was lower in SFA/MUFA-supplemented animals than in PUFA-supplemented ones. These results suggest that the increased capacity for NST in PUFA-supplemented hamsters enables them lower RMR below the lower critical temperature of the thermoneural zone. PMID:24151228

  5. Regulation of oxidative phosphorylation complex activity: effects of tissue-specific metabolic stress within an allometric series and acute changes in workload

    PubMed Central

    Phillips, Darci; Covian, Raul; Aponte, Angel M.; Glancy, Brian; Taylor, Joni F.; Chess, David

    2012-01-01

    The concentration of mitochondrial oxidative phosphorylation complexes (MOPCs) is tuned to the maximum energy conversion requirements of a given tissue; however, whether the activity of MOPCs is altered in response to acute changes in energy conversion demand is unclear. We hypothesized that MOPCs activity is modulated by tissue metabolic stress to maintain the energy-metabolism homeostasis. Metabolic stress was defined as the observed energy conversion rate/maximum energy conversion rate. The maximum energy conversion rate was assumed to be proportional to the concentration of MOPCs, as determined with optical spectroscopy, gel electrophoresis, and mass spectrometry. The resting metabolic stress of the heart and liver across the range of resting metabolic rates within an allometric series (mouse, rabbit, and pig) was determined from MPOCs content and literature respiratory values. The metabolic stress of the liver was high and nearly constant across the allometric series due to the proportional increase in MOPCs content with resting metabolic rate. In contrast, the MOPCs content of the heart was essentially constant in the allometric series, resulting in an increasing metabolic stress with decreasing animal size. The MOPCs activity was determined in native gels, with an emphasis on Complex V. Extracted MOPCs enzyme activity was proportional to resting metabolic stress across tissues and species. Complex V activity was also shown to be acutely modulated by changes in metabolic stress in the heart, in vivo and in vitro. The modulation of extracted MOPCs activity suggests that persistent posttranslational modifications (PTMs) alter MOPCs activity both chronically and acutely, specifically in the heart. Protein phosphorylation of Complex V was correlated with activity inhibition under several conditions, suggesting that protein phosphorylation may contribute to activity modulation with energy metabolic stress. These data are consistent with the notion that metabolic

  6. Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis.

    PubMed

    Watford, Malcolm; Wu, Guoyao

    2005-04-01

    High intracellular glutamine levels have been implicated in promoting net protein synthesis and accretion in mammalian skeletal muscle. Little is known regarding glutamine metabolism in uricotelic species but chicken breast muscle exhibits high rates of protein accretion and would be predicted to maintain high glutamine levels. However, chicken breast muscle expresses high glutaminase activity and here we report that chicken breast muscle also expresses low glutamine synthetase activity (0.07+/-0.01 U/g) when compared to leg muscle (0.50+/-0.04 U/g). Free glutamine levels were 1.38+/-0.09 and 9.69+/-0.12 nmol/mg wet weight in breast and leg muscles of fed chickens, respectively. Glutamine levels were also lower in dove breast muscle (4.82+/-0.35 nmol/mg wet weight) when compared to leg muscle (16.2+/-1.0 nmol/mg wet weight) and much lower (1.80+/-0.46 nmol/mg wet weight) in lizard leg muscle. In fed chickens, rates of fractional protein synthesis were higher in leg than in breast muscle, and starvation (48 h) resulted in a decrease in both glutamine content and rate of protein synthesis in leg muscle. Thus, although tissue-specific glutamine metabolism in uricotelic species differs markedly from that in ureotelic animals, differences in rates of skeletal muscle protein synthesis are associated with corresponding differences in intramuscular glutamine content. PMID:15763516

  7. Heart rate and aerobic metabolism in Humboldt penguins, Spheniscus humboldti, during voluntary dives.

    PubMed

    Butler, P J; Woakes, A J

    1984-01-01

    Heart rate and aerobic metabolism have been recorded from three Humboldt penguins, Spheniscus humboldti, freely diving on a freshwater pond (9 X 4.6 X 2.7 m deep), using an implanted radiotransmitter and an open circuit respirometer. Oxygen uptake at mean dive duration (46.2s) was 26% greater than the resting value, but the difference was not statistically significant. Heart rate was also similar to the resting value. It is concluded that voluntary dives of penguins are completely aerobic and that oxygen stores are sufficient to allow metabolism to continue at the rate estimated in the present study for 2.27 min during voluntary submersion. This is longer than that calculated for tufted ducks, probably because the penguins are more efficient at underwater locomotion and because they are almost neutrally buoyant. PMID:6423763

  8. Measuring Rates of Herbicide Metabolism in Dicot Weeds with an Excised Leaf Assay.

    PubMed

    Ma, Rong; Skelton, Joshua J; Riechers, Dean E

    2015-01-01

    In order to isolate and accurately determine rates of herbicide metabolism in an obligate-outcrossing dicot weed, waterhemp (Amaranthus tuberculatus), we developed an excised leaf assay combined with a vegetative cloning strategy to normalize herbicide uptake and remove translocation as contributing factors in herbicide-resistant (R) and -sensitive (S) waterhemp populations. Biokinetic analyses of organic pesticides in plants typically include the determination of uptake, translocation (delivery to the target site), metabolic fate, and interactions with the target site. Herbicide metabolism is an important parameter to measure in herbicide-resistant weeds and herbicide-tolerant crops, and is typically accomplished with whole-plant tests using radiolabeled herbicides. However, one difficulty with interpreting biokinetic parameters derived from whole-plant methods is that translocation is often affected by rates of herbicide metabolism, since polar metabolites are usually not mobile within the plant following herbicide detoxification reactions. Advantages of the protocol described in this manuscript include reproducible, accurate, and rapid determination of herbicide degradation rates in R and S populations, a substantial decrease in the amount of radiolabeled herbicide consumed, a large reduction in radiolabeled plant materials requiring further handling and disposal, and the ability to perform radiolabeled herbicide experiments in the lab or growth chamber instead of a greenhouse. As herbicide resistance continues to develop and spread in dicot weed populations worldwide, the excised leaf assay method developed and described herein will provide an invaluable technique for investigating non-target site-based resistance due to enhanced rates of herbicide metabolism and detoxification. PMID:26383604

  9. Mechanisms and metabolic regulation of PPARα activation in Nile tilapia (Oreochromis niloticus).

    PubMed

    Ning, Li-Jun; He, An-Yuan; Li, Jia-Min; Lu, Dong-Liang; Jiao, Jian-Gang; Li, Ling-Yu; Li, Dong-Liang; Zhang, Mei-Ling; Chen, Li-Qiao; Du, Zhen-Yu

    2016-09-01

    Although the key metabolic regulatory functions of mammalian peroxisome proliferator-activated receptor α (PPARα) have been thoroughly studied, the molecular mechanisms and metabolic regulation of PPARα activation in fish are less known. In the first part of the present study, Nile tilapia (Nt)PPARα was cloned and identified, and high mRNA expression levels were detected in the brain, liver, and heart. NtPPARα was activated by an agonist (fenofibrate) and by fasting and was verified in primary hepatocytes and living fish by decreased phosphorylation of NtPPARα and/or increased NtPPARα mRNA and protein expression. In the second part of the present work, fenofibrate was fed to fish or fish were fasted for 4weeks to investigate the metabolic regulatory effects of NtPPARα. A transcriptomic study was also performed. The results indicated that fenofibrate decreased hepatic triglyceride and 18C-series fatty acid contents but increased the catabolic rate of intraperitoneally injected [1-(14)C] palmitate in vivo, hepatic mitochondrial β-oxidation efficiency, the quantity of cytochrome b DNA, and carnitine palmitoyltransferase-1a mRNA expression. Fenofibrate also increased serum glucose, insulin, and lactate concentrations. Fasting had stronger hypolipidemic and gene regulatory effects than those of fenofibrate. Taken together, we conclude that: 1) liver is one of the main target tissues of the metabolic regulation of NtPPARα activation; 2) dephosphorylation is the basal NtPPARα activation mechanism rather than enhanced mRNA and protein expression; 3) activated NtPPARα has a hypolipidemic effect by increasing activity and the number of hepatic mitochondria; and 4) PPARα activation affects carbohydrate metabolism by altering energy homeostasis among nutrients. PMID:27320014

  10. Marine Omega-3 Phospholipids: Metabolism and Biological Activities

    PubMed Central

    Burri, Lena; Hoem, Nils; Banni, Sebastiano; Berge, Kjetil

    2012-01-01

    The biological activities of omega-3 fatty acids (n-3 FAs) have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs) versus ethyl esters or phospholipids (PLs). New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs. PMID:23203133

  11. [An electrochemical method for measuring metabolic activity and counting cells].

    PubMed

    Kuznetsov, B a; Khlupova, M e; Shleev, S V; Kaprel'iants, A S; Iaropolov, A I

    2006-01-01

    An express electrochemical method for determining the metabolic activity of live cells based on the possibility of an electron exchange between an electrode and elements of the biological electron transfer chain in the presence of a mediator is proposed. This method is useful for studying any live cells (animal, plant, and microbial), including anaerobic, dormant, and spore cells. The sample preparation and measurement itself does not take more than 30 min. The detection limit in a volume of 15 ml amounts to 10-5 cells/ml. The applicability of the assessment method of the metabolic activity level during the transition of the bacteria Mycobacterium smegmatis into an uncultivable dormant state was demonstrated. This method is of special value for medicine and environmental control, detecting latent forms of pathogens. An optimal combination of the methods for the express analysis of latent pathogens is proposed. PMID:17066962

  12. Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica.

    PubMed

    Ryu, Seunghyun; Hipp, Julie; Trinh, Cong T

    2016-02-01

    The oleaginous yeast Yarrowia lipolytica is an industrially important host for production of organic acids, oleochemicals, lipids, and proteins with broad biotechnological applications. Albeit known for decades, the unique native metabolism of Y. lipolytica for using complex fermentable sugars, which are abundant in lignocellulosic biomass, is poorly understood. In this study, we activated and elucidated the native sugar metabolism in Y. lipolytica for cell growth on xylose and cellobiose as well as their mixtures with glucose through comprehensive metabolic and transcriptomic analyses. We identified 7 putative glucose-specific transporters, 16 putative xylose-specific transporters, and 4 putative cellobiose-specific transporters that are transcriptionally upregulated for growth on respective single sugars. Y. lipolytica is capable of using xylose as a carbon source, but xylose dehydrogenase is the key bottleneck of xylose assimilation and is transcriptionally repressed by glucose. Y. lipolytica has a set of 5 extracellular and 6 intracellular β-glucosidases and is capable of assimilating cellobiose via extra- and intracellular mechanisms, the latter being dominant for growth on cellobiose as a sole carbon source. Strikingly, Y. lipolytica exhibited enhanced sugar utilization for growth in mixed sugars, with strong carbon catabolite activation for growth on the mixture of xylose and cellobiose and with mild carbon catabolite repression of glucose on xylose and cellobiose. The results of this study shed light on fundamental understanding of the complex native sugar metabolism of Y. lipolytica and will help guide inverse metabolic engineering of Y. lipolytica for enhanced conversion of biomass-derived fermentable sugars to chemicals and fuels. PMID:26682853

  13. Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica

    PubMed Central

    Ryu, Seunghyun; Hipp, Julie

    2015-01-01

    The oleaginous yeast Yarrowia lipolytica is an industrially important host for production of organic acids, oleochemicals, lipids, and proteins with broad biotechnological applications. Albeit known for decades, the unique native metabolism of Y. lipolytica for using complex fermentable sugars, which are abundant in lignocellulosic biomass, is poorly understood. In this study, we activated and elucidated the native sugar metabolism in Y. lipolytica for cell growth on xylose and cellobiose as well as their mixtures with glucose through comprehensive metabolic and transcriptomic analyses. We identified 7 putative glucose-specific transporters, 16 putative xylose-specific transporters, and 4 putative cellobiose-specific transporters that are transcriptionally upregulated for growth on respective single sugars. Y. lipolytica is capable of using xylose as a carbon source, but xylose dehydrogenase is the key bottleneck of xylose assimilation and is transcriptionally repressed by glucose. Y. lipolytica has a set of 5 extracellular and 6 intracellular β-glucosidases and is capable of assimilating cellobiose via extra- and intracellular mechanisms, the latter being dominant for growth on cellobiose as a sole carbon source. Strikingly, Y. lipolytica exhibited enhanced sugar utilization for growth in mixed sugars, with strong carbon catabolite activation for growth on the mixture of xylose and cellobiose and with mild carbon catabolite repression of glucose on xylose and cellobiose. The results of this study shed light on fundamental understanding of the complex native sugar metabolism of Y. lipolytica and will help guide inverse metabolic engineering of Y. lipolytica for enhanced conversion of biomass-derived fermentable sugars to chemicals and fuels. PMID:26682853

  14. Preweaning cocaine exposure alters brain glucose metabolic rates following repeated amphetamine administration in the adult rat.

    PubMed

    Melnick, Susan M; Torres-Reveron, Annelyn; Dow-Edwards, Diana L

    2004-10-15

    Developmental cocaine exposure produces long-term alterations in function of many neuronal circuits. This study examined glucose metabolic rates following repeated amphetamine administration in adult male and female rats pretreated with cocaine during postnatal days (PND) 11-20. PND11-20 cocaine increased the response to amphetamine in many components of the motor system and the dorsal caudate-putamen, in particular, and decreased the metabolic response in the hypothalamus. While amphetamine alone produced widespread increases in metabolism, there were no cocaine-related effects in the mesolimbic, limbic or sensory structures. These data suggest that a brief cocaine exposure during development can alter ontogeny and result in abnormal neuronal responses to repeated psychostimulant administration in adulthood. PMID:15464226

  15. [Detection of viable metabolically active yeast cells using a colorimetric assay].

    PubMed

    Růzicka, F; Holá, V

    2008-02-01

    The increasing concern of yeasts able to form biofilm brings about the need for susceptibility testing of both planktonic and biofilm cells. Detection of viability or metabolic activity of yeast cells after exposure to antimicrobials plays a key role in the assessment of susceptibility testing results. Colorimetric assays based on the color change of the medium in the presence of metabolically active cells proved suitable for this purpose. In this study, the usability of a colorimetric assay with the resazurin redox indicator for monitoring the effect of yeast inoculum density on the reduction rate was tested. As correlation between the color change rate and inoculum density was observed, approximate quantification of viable cells was possible. The assay would be of relevance to antifungal susceptibility testing in both planktonic and biofilm yeasts. PMID:18318392

  16. The implications of reduced metabolic rate in resource-limited corals.

    PubMed

    Jacobson, Lianne M; Edmunds, Peter J; Muller, Erik B; Nisbet, Roger M

    2016-03-01

    Many organisms exhibit depressed metabolism when resources are limited, a change that makes it possible to balance an energy budget. For symbiotic reef corals, daily cycles of light and periods of intense cloud cover can be chronic causes of food limitation through reduced photosynthesis. Furthermore, coral bleaching is common in present-day reefs, creating a context in which metabolic depression could have beneficial value to corals. In the present study, corals (massive Porites spp.) were exposed to an extreme case of resource limitation by starving them of food and light for 20 days. When resources were limited, the corals depressed area-normalized respiration to 37% of initial rates, and coral biomass declined to 64% of initial amounts, yet the corals continued to produce skeletal mass. However, the declines in biomass cannot account for the declines in area-normalized respiration, as mass-specific respiration declined to 30% of the first recorded time point. Thus, these corals appear to be capable of metabolic depression. It is possible that some coral species are better able to depress metabolic rates than others; such variation could explain differential survival during conditions that limit resources (e.g. shading). Furthermore, we found that maintenance of existing biomass, in part, supports the production of skeletal mass. This association could be explained if maintenance supplies needed energy (e.g. ATP) or inorganic carbon (i.e. CO2) that otherwise limits the production of skeletal mass. Finally, the observed metabolic depression can be explained as a change in pool sizes, and does not require a change in metabolic rules. PMID:26823098

  17. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage.

    PubMed

    Midorikawa, Kaoru; Uchida, Takafumi; Okamoto, Yoshinori; Toda, Chitose; Sakai, Yoshie; Ueda, Koji; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke; Kojima, Nakao

    2004-12-01

    Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P<0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene. PMID:15560893

  18. Carbohydrate-active enzymes exemplify entropic principles in metabolism

    PubMed Central

    Kartal, Önder; Mahlow, Sebastian; Skupin, Alexander; Ebenhöh, Oliver

    2011-01-01

    Glycans comprise ubiquitous and essential biopolymers, which usually occur as highly diverse mixtures. The myriad different structures are generated by a limited number of carbohydrate-active enzymes (CAZymes), which are unusual in that they catalyze multiple reactions by being relatively unspecific with respect to substrate size. Existing experimental and theoretical descriptions of CAZyme-mediated reaction systems neither comprehensively explain observed action patterns nor suggest biological functions of polydisperse pools in metabolism. Here, we overcome these limitations with a novel theoretical description of this important class of biological systems in which the mixing entropy of polydisperse pools emerges as an important system variable. In vitro assays of three CAZymes essential for central carbon metabolism confirm the power of our approach to predict equilibrium distributions and non-equilibrium dynamics. A computational study of the turnover of the soluble heteroglycan pool exemplifies how entropy-driven reactions establish a metabolic buffer in vivo that attenuates fluctuations in carbohydrate availability. We argue that this interplay between energy- and entropy-driven processes represents an important regulatory design principle of metabolic systems. PMID:22027553

  19. Thermal sensitivity of metabolic rates and swimming performance in two latitudinally separated populations of cod, Gadus morhua L.

    PubMed

    Sylvestre, Eve-Lyne; Lapointe, Dominique; Dutil, Jean-Denis; Guderley, Helga

    2007-05-01

    Atlantic cod populations live in a wide thermal range and can differ genetically and physiologically. Thermal sensitivity of metabolic capacity and swimming performance may vary along a latitudinal gradient, to facilitate performance in distinct thermal environments. To evaluate this hypothesis, we compared the thermal sensitivity of performance in two cod stocks from the Northwest Atlantic that differ in their thermal experience: Gulf of St Lawrence (GSL) and Bay of Fundy (BF). We first compared the metabolic, physiological and swimming performance after short-term thermal change to that at the acclimation temperature (7 degrees C) for one stock (GSL), before comparing the performance of the two stocks after short-term thermal change. For cod from GSL, standard metabolism (SMR) increased with temperature, while active metabolism (AMR, measured in the critical swimming tests), EMR (metabolic rate after an exhaustive chase protocol), aerobic scope (AS) and critical swimming speeds (U (crit) and U (b-c)) were lower at 3 degrees C than 7 or 11 degrees C. In contrast, anaerobic swimming (sprint and burst-coasts in U (crit) test) was lower at 11 than 7 or 3 degrees C. Factorial AS (AMR SMR(-1)) decreased as temperature rose. Time to exhaustion (chase protocol) was not influenced by temperature. The two stocks differed little in the thermal sensitivities of metabolism or swimming. GSL cod had a higher SMR than BF cod despite similar AMR and AS. This led factorial AS to be significantly higher for the southern stock. Despite these metabolic differences, cod from the two stocks did not differ in their U (crit) speeds. BF cod were better sprinters at both temperatures. Cod from GSL had a lower aerobic cost of swimming at intermediate speeds than those from BF, particularly at low temperature. Only the activity of cytochrome C oxidase (CCO) in white muscle differed between stocks. No enzymatic correlates were found for swimming capacities, but oxygen consumption was best

  20. Patterns of metabolic activity in the treatment of schizophrenia

    SciTech Connect

    Brodie, J.D.; Christman, D.R.; Corona, J.F.; Fowler, J.S.; Gomez-Mont, F.; Jaeger, J.; Micheels, P.A.; Rotrosen, J.; Russell, J.A.; Volkow, N.D.; Wikler, A.

    1984-04-01

    Six patients with chronic schizophrenia were studied with positron emission tomography (PET) before and after neuroleptic treatment, using fluorine-18-labeled fluorodeoxyglucose. After treatment, the mean whole-slice glucose metabolic rate at the level of the basal ganglia showed a 25% increase. However, patterns of frontal hypometabolism observed with the schizophrenic patients were not altered by medication. Pattern analysis using the fast Fourier transform was applied to a set of 422 images from a mixed group of normal, depressed, and schizophrenic subjects. Reconstruction of the images with low-frequency coefficients was excellent, reducing considerably the number of variables needed to characterize each image. Hierarchical cluster analysis categorized the transformed images according to anatomical level and subject group (patient versus control). The results suggest the utility of this procedure for the classification and characterization of metabolic PET images from psychiatric patients. 8 references, 3 figures, 1 table.

  1. Cellular oxidative damage is more sensitive to biosynthetic rate than to metabolic rate: A test of the theoretical model on hornworms (Manduca sexta larvae).

    PubMed

    Amunugama, Kaushalya; Jiao, Lihong; Olbricht, Gayla R; Walker, Chance; Huang, Yue-Wern; Nam, Paul K; Hou, Chen

    2016-09-01

    We develop a theoretical model from an energetic viewpoint for unraveling the entangled effects of metabolic and biosynthetic rates on oxidative cellular damage accumulation during animal's growth, and test the model by experiments in hornworms. The theoretical consideration suggests that most of the cellular damages caused by the oxidative metabolism can be repaired by the efficient maintenance mechanisms, if the energy required by repair is unlimited. However, during growth a considerable amount of energy is allocated to the biosynthesis, which entails tradeoffs with the requirements of repair. Thus, the model predicts that cellular damage is more influenced by the biosynthetic rate than the metabolic rate. To test the prediction, we induced broad variations in metabolic and biosynthetic rates in hornworms, and assayed the lipid peroxidation and protein carbonyl. We found that the increase in the cellular damage was mainly caused by the increase in biosynthetic rate, and the variations in metabolic rate had negligible effect. The oxidative stress hypothesis of aging suggests that high metabolism leads to high cellular damage and short lifespan. However, some empirical studies showed that varying biosynthetic rate, rather than metabolic rate, changes animal's lifespan. The conflicts between the empirical evidence and the hypothesis are reconciled by this study. PMID:27296440

  2. Influence of swimming speed on metabolic rates of juvenile pacific bluefin tuna and yellowfin tuna.

    PubMed

    Blank, Jason M; Farwell, Charles J; Morrissette, Jeffery M; Schallert, Robert J; Block, Barbara A

    2007-01-01

    Bluefin tuna are endothermic and have higher temperatures, heart rates, and cardiac outputs than tropical tuna. We hypothesized that the increased cardiovascular capacity to deliver oxygen in bluefin may be associated with the evolution of higher metabolic rates. This study measured the oxygen consumption of juvenile Pacific bluefin Thunnus orientalis and yellowfin tuna Thunnus albacares swimming in a swim-tunnel respirometer at 20 degrees C. Oxygen consumption (Mo2) of bluefin (7.1-9.4 kg) ranged from 235+/-38 mg kg(-1) h(-1) at 0.85 body length (BL) s(-1) to 498+/-55 mg kg(-1) h(-1) at 1.80 BL s(-1). Minimal metabolic rates of swimming bluefin were 222+/-24 mg O(2) kg(-1) h(-1) at speeds of 0.75 to 1.0 BL s(-1). Mo2 of T. albacares (3.7-7.4 kg) ranged from 164+/-18 mg kg(-1) h(-1) at 0.65 BL s(-1) to 405+/-105 mg kg(-1) h(-1) at 1.8 BL s(-1). Bluefin tuna had higher metabolic rates than yellowfin tuna at all swimming speeds tested. At a given speed, bluefin had higher metabolic rates and swam with higher tailbeat frequencies and shorter stride lengths than yellowfin. The higher M dot o2 recorded in Pacific bluefin tuna is consistent with the elevated cardiac performance and enhanced capacity for excitation-contraction coupling in cardiac myocytes of these fish. These physiological traits may underlie thermal-niche expansion of bluefin tuna relative to tropical tuna species. PMID:17252513

  3. Consequences of complex environments: Temperature and energy intake interact to influence growth and metabolic rate.

    PubMed

    Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L

    2015-09-01

    The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation. PMID:25899738

  4. Metabolic rate M  0.75 in human beings

    NASA Astrophysics Data System (ADS)

    Agrawal, D. C.

    2014-11-01

    Human beings consume energy every day. Even at rest, energy is still needed for the working of the internal organs. This is achieved by the metabolism of consumed food in the presence of inhaled oxygen. During the resting state this is called the maintenance rate, and follows the mouse-to-elephant formula, Pmet = 70M0.75 kcal per day. Here, M is the body mass of the subject in kilograms. The heat generated in metabolism is lost through the body surface of the subject, so the metabolic rate should also be proportional to the body surface area. In other words, the body surface area in the case of a human being must also depend on M0.75. The present paper examines this issue by finding a relationship between human body surface area and its mass through a very simple model that can be easily understood and verified by physics students, who can also compare it with all the expressions for body surface area available in the literature. This will build confidence in the students that the heat generated from metabolism in fact dissipates through the surface of the body.

  5. Metabolically activated steviol, the aglycone of stevioside, is mutagenic.

    PubMed Central

    Pezzuto, J M; Compadre, C M; Swanson, S M; Nanayakkara, D; Kinghorn, A D

    1985-01-01

    Stevioside, a constituent of Stevia rebaudiana, is commonly used as a noncaloric sugar substitute in Japan. Consistent with reports in the literature, we have found that stevioside is not mutagenic as judged by utilization of Salmonella typhimurium strain TM677, either in the presence or in the absence of a metabolic activating system. Similar negative results were obtained with several structurally related sweet-tasting glycosides. However, steviol, the aglycone of stevioside, was found to be highly mutagenic when evaluated in the presence of a 9000 X g supernatant fraction derived from the livers of Aroclor 1254-pretreated rats. Expression of mutagenic activity was dependent on both pretreatment of the rats with Aroclor 1254 and addition of NADPH; unmetabolized steviol was not active. The structurally related species, isosteviol, was not active regardless of metabolic activation. Similarly, chemical reduction of the unsaturated bond linking the carbon-16 and -17 positions of steviol resulted in the generation of two isomeric products, dihydrosteviol A and B, that were not mutagenic. In addition, ent-kaurenoic acid was found to be inactive. It is therefore clear that a metabolite of an integral component of stevioside is mutagenic; structural features of requisite importance for the expression of mutagenic activity include a hydroxy group at position 13 and an unsaturated bond joining the carbon atoms at positions 16 and 17. A potential metabolite of steviol, steviol-16 alpha,17-epoxide, was synthesized chemically and found to be ineffective as a direct-acting mutagen. Thus, although stevioside itself appears innocuous, it would seem prudent to expeditiously and unequivocally establish the human metabolic disposition of this substance. PMID:3887402

  6. Lack of metabolic activation and predominant formation of an excreted metabolite of nontoxic platynecine-type pyrrolizidine alkaloids.

    PubMed

    Ruan, Jianqing; Liao, Cangsong; Ye, Yang; Lin, Ge

    2014-01-21

    Pyrrolizidine alkaloid (PA) poisoning is well-known because of the intake of PA-containing plant-derived natural products and PA-contaminated foodstuffs. Based on different structures of the necine bases, PAs are classified into three types: retronecine, otonecine, and platynecine type. The former two type PAs possessing an unsaturated necine base with a 1,2-double bond are hepatotoxic due to the P450-mediated metabolic activation to generate reactive pyrrolic ester, which interacts with cellular macromolecules leading to toxicity. With a saturated necine base, platynecine-type PAs are reported to be nontoxic and their nontoxicity was hypothesized to be due to the absence of metabolic activation; however, the metabolic pathway responsible for their nontoxic nature is largely unknown. In the present study, to prove the absence of metabolic activation in nontoxic platynecine-type PAs, hepatic metabolism of platyphylline (PLA), a representative platynecine-type PA, was investigated and directly compared with the representatives of two toxic types of PAs in parallel. By determining the pyrrolic ester-derived glutathione conjugate, our results confirmed that the major metabolic pathway of PLA did not lead to formation of the reactive pyrrolic ester. More interestingly, having a metabolic rate similar to that of toxic PAs, PLA also underwent oxidative metabolisms mediated by P450s, especially P450 3A4, the same enzyme that catalyzes metabolic activation of two toxic types of PAs. However, the predominant oxidative dehydrogenation pathway of PLA formed a novel metabolite, dehydroplatyphylline carboxylic acid, which was water-soluble, readily excreted, and could not interact with cellular macromolecules. In conclusion, our study confirmed that the saturated necine bases determine the absence of metabolic activation and thus govern the metabolic pathway responsible for the nontoxic nature of platynecine-type PAs. PMID:24308637

  7. COMPARISON OF IN VIVO DERIVED AND SCALED IN VITRO METABOLIC RATE CONSTANTS FOR SOME VOLATILE ORGANIC COMPOUNDS (VOCS)

    EPA Science Inventory

    The reliability of physiologically based pharmacokinetic (PBPK) models is directly related to the accuracy of the metabolic rate parameters used as model inputs. When metabolic rate parameters derived from in vivo experiments are unavailable, they can be estimated from in vitro d...

  8. Base substitution mutations induced by metabolically activated aflatoxin B1.

    PubMed

    Foster, P L; Eisenstadt, E; Miller, J H

    1983-05-01

    We have determined the base substitutions generated by metabolically activated aflatoxin B1 in the lacI gene of a uvrB- strain of Escherichia coli. By monitoring over 70 different nonsense mutation sites, we show that activated aflatoxin B1 specifically induced GxC leads to TxA transversions. One possible pathway leading to this base change involves depurination at guanine residues. We consider this mechanism of mutagenesis in the light of our other findings that the carcinogens benzo[a]pyrene diol epoxide and N-acetoxyacetylaminofluorene also specifically induce GxC leads to TxA transversions. PMID:6405385

  9. Infiltration rate measurement by active perfluorocarbon monitoring

    SciTech Connect

    Menzies, K.T.; Pong, C.M.; Randel, M.A. )

    1987-01-01

    The rate of air infiltration in homes and buildings is a significant factor affecting the magnitude of human exposure to air pollutants in the indoor environment. Several techniques have been utilized for the determination of air infiltration. These include building pressurization and tracer analysis, e.g., SF/sub 6/. Dietz and Cote at Brookhaven National Laboratory (BNL) have developed a simple, steady-state tracer kit that can be utilized by homeowners. This kit includes a source(s) of perfluorocarbon, i.e., perfluoromethylcyclohexane (PMCH) or perfluorodimethylcyclohexane (PDCH), and a passive sampling tube containing Ambersorb XE-347. Typically, the sampling tube is deployed for several days and then returned to a laboratory for analysis by thermal desorption/gas chromatography/electron capture detection. The authors developed an alternative sampling and analysis technique for PMCH/PDCH in homes. In order to facilitate monitoring of short-term infiltration rates (i.e., less than one day) they developed an active sorbent sampling method and solvent desorption/gas chromatography/electron capture detection analytical method. The method is based on the collection of PMCH on charcoal. The method validation, which is discussed in this article, includes analytical method development, selection of a solid sorbent, determination of desorption efficiency, analysis of breakthrough, testing of storage stability, and assessment of precision and accuracy in both the laboratory and field environment.

  10. Potential role for snoRNAs in PKR activation during metabolic stress.

    PubMed

    Youssef, Osama A; Safran, Sarah A; Nakamura, Takahisa; Nix, David A; Hotamisligil, Gökhan S; Bass, Brenda L

    2015-04-21

    Protein kinase RNA-activated (PKR) has long been known to be activated by viral double-stranded RNA (dsRNA) as part of the mammalian immune response. However, in mice PKR is also activated by metabolic stress in the absence of viral infection, and this requires a functional kinase domain, as well as a functional dsRNA-binding domain. The endogenous cellular RNA that potentially leads to PKR activation during metabolic stress is unknown. We investigated this question using mouse embryonic fibroblast cells expressing wild-type PKR (PKRWT) or PKR with a point mutation in each dsRNA-binding motif (PKRRM). Using this system, we identified endogenous RNA that interacts with PKR after induction of metabolic stress by palmitic acid (PA) treatment. Specifically, RIP-Seq analyses showed that the majority of enriched RNAs that interacted with WT PKR (≥twofold, false discovery rate ≤ 5%) were small nucleolar RNAs (snoRNAs). Immunoprecipitation of PKR in extracts of UV-cross-linked cells, followed by RT-qPCR, confirmed that snoRNAs were enriched in PKRWT samples after PA treatment, but not in the PKRRM samples. We also demonstrated that a subset of identified snoRNAs bind and activate PKR in vitro; the presence of a 5'-triphosphate enhanced PKR activity compared with the activity with a 5'-monophosphate, for some, but not all, snoRNAs. Finally, we demonstrated PKR activation in cells upon snoRNA transfection, supporting our hypothesis that endogenous snoRNAs can activate PKR. Our results suggest an unprecedented and unexpected model whereby snoRNAs play a role in the activation of PKR under metabolic stress. PMID:25848059

  11. Compensatory elevation of voluntary activity in mouse mutants with impaired mitochondrial energy metabolism

    PubMed Central

    Lapointe, Jérôme; G. Hughes, Bryan; Bigras, Eve; Hekimi, Siegfried

    2014-01-01

    Abstract Mitochondria play a crucial role in determining whole‐body metabolism and exercise capacity. Genetic mouse models of mild mitochondrial dysfunction provide an opportunity to understand how mitochondrial function affects these parameters. MCLK1 (a.k.a. Coq7) is an enzyme implicated in the biosynthesis of ubiquinone (UQ; Coenzyme Q). Low levels of MCLK1 in Mclk1+/− heterozygous mutants lead to abnormal sub‐mitochondrial distribution of UQ, impaired mitochondrial function, elevated mitochondrial oxidative stress, and increased lifespan. Here, we report that young Mclk1+/− males, but not females, show a significant decrease in whole‐body metabolic rate as measured by indirect calorimetry. Such a sex‐specific effect of mitochondrial dysfunction on energy metabolism has also been reported for heterozygous mice carrying a mutation for the gene encoding the “Rieske” protein of mitochondrial complex III (RISP+/P224S). We find that both Mclk1+/− and RISP+/P224S males are capable of restoring their defective metabolic rates by making significantly more voluntary use of a running wheel compared to wild type. However, this increase in voluntary activity does not reflect their exercise capacity, which we found to be impaired as revealed by a shorter treadmill distance run before exhaustion. In contrast to what is observed in Mclk1+/− and RISP+/P224S mutants, Sod2+/− mice with elevated oxidative stress and major mitochondrial dysfunction did not increase voluntary activity. Our study reveals a sex‐specific effect on how impaired mitochondrial function impacts whole‐body energy metabolism and locomotory behavior, and contributes to the understanding of the metabolic and behavioral consequences of mitochondrial disorders. PMID:25413331

  12. Basal Metabolic Rate of the Black-Faced Sheathbill (Chionis minor): Intraspecific Variation in a Phylogenetically Distinct Island Endemic.

    PubMed

    McClelland, Gregory T W; McKechnie, Andrew E; Chown, Steven L

    2016-01-01

    Metabolic rate is a fundamental characteristic of all organisms. It covaries most significantly with activity, body mass, seasonality, and temperature. Nonetheless, substantial additional variation in metabolic rate, especially either resting rate or basal rate, is associated with a range of factors including phylogenetic position, ecological distinctiveness, range position, and diet. Understanding this variation is a key goal of physiological ecology. The black-faced sheathbill is a phylogenetically distinct, high-latitude, island-endemic bird occurring exclusively on several archipelagos in the southern Indian Ocean. Here we examined the idea that the unique phylogenetic position and ecology of the black-faced sheathbill may lead to a basal metabolic rate (BMR) different from that predicted by its body mass. When compared with BMR data available for all birds and a subset of island species, it was clear that the BMR of the black-faced sheathbill on subantarctic Marion Island, estimated at 15°C using indirect calorimetry (2.370 ± 0.464 W, mean ± SD; n = 22), for a group of birds with a mean mass of 459 ± 64 g, is no different from that expected based on body mass. However, variation in BMR, associated with habitat use and diet, even when correcting for variation in mass, was found. Sheathbills foraging year-round in comparatively resource-rich king penguin colonies have a higher BMR (2.758 ± 0.291 W, n = 12) than sheathbills that split their foraging between rockhopper penguin colonies and the intertidal zone (2.047 ± 0.303 W, n = 10), which are poorer in resources. Because these populations coexist at relatively small spatial extents (the entire island is 290 km(2)), other factors seem unlikely as causes of this variation. PMID:27082724

  13. Metabolic Plasticity in Resting and Thrombin Activated Platelets

    PubMed Central

    Ravi, Saranya; Chacko, Balu; Sawada, Hirotaka; Kramer, Philip A.; Johnson, Michelle S.; Benavides, Gloria A.; O’Donnell, Valerie; Marques, Marisa B.; Darley-Usmar, Victor M.

    2015-01-01

    Platelet thrombus formation includes several integrated processes involving aggregation, secretion of granules, release of arachidonic acid and clot retraction, but it is not clear which metabolic fuels are required to support these events. We hypothesized that there is flexibility in the fuels that can be utilized to serve the energetic and metabolic needs for resting and thrombin-dependent platelet aggregation. Using platelets from healthy human donors, we found that there was a rapid thrombin-dependent increase in oxidative phosphorylation which required both glutamine and fatty acids but not glucose. Inhibition of fatty acid oxidation or glutamine utilization could be compensated for by increased glycolytic flux. No evidence for significant mitochondrial dysfunction was found, and ATP/ADP ratios were maintained following the addition of thrombin, indicating the presence of functional and active mitochondrial oxidative phosphorylation during the early stages of aggregation. Interestingly, inhibition of fatty acid oxidation and glutaminolysis alone or in combination is not sufficient to prevent platelet aggregation, due to compensation from glycolysis, whereas inhibitors of glycolysis inhibited aggregation approximately 50%. The combined effects of inhibitors of glycolysis and oxidative phosphorylation were synergistic in the inhibition of platelet aggregation. In summary, both glycolysis and oxidative phosphorylation contribute to platelet metabolism in the resting and activated state, with fatty acid oxidation and to a smaller extent glutaminolysis contributing to the increased energy demand. PMID:25875958

  14. Metabolic rate of carrying added mass: a function of walking speed, carried mass and mass location.

    PubMed

    Schertzer, Eliran; Riemer, Raziel

    2014-11-01

    The effort of carrying additional mass at different body locations is important in ergonomics and in designing wearable robotics. We investigate the metabolic rate of carrying a load as a function of its mass, its location on the body and the subject's walking speed. Novel metabolic rate prediction equations for walking while carrying loads at the ankle, knees and back were developed based on experiments where subjects walked on a treadmill at 4, 5 or 6km/h bearing different amounts of added mass (up to 2kg per leg and 22kg for back). Compared to previously reported equations, ours are 7-69% more accurate. Results also show that relative cost for carrying a mass at a distal versus a proximal location changes with speed and mass. Contrary to mass carried on the back, mass attached to the leg cannot be modeled as an increase in body mass. PMID:24793822

  15. Repeatability of metabolic rate is lower for animals living under field versus laboratory conditions.

    PubMed

    Auer, Sonya K; Bassar, Ronald D; Salin, Karine; Metcalfe, Neil B

    2016-03-01

    Metabolic rate has been linked to several components of fitness and is both heritable and repeatable to a certain extent. However, its repeatability can differ among studies, even after controlling for the time interval between measurements. Some of this variation in repeatability might be due to the relative stability of the environmental conditions in which the animals are living between measurements. We compared published repeatability estimates for basal, resting and maximum metabolic rate from studies of endotherms living in the laboratory with those living in the wild during the interval between measurements. We found that repeatability declines over time, as demonstrated previously, but show for the first time that estimates from free-living animals are also considerably lower than those from animals living under more stable laboratory conditions. PMID:26747898

  16. Respiratory allocation and standard rate of metabolism in the African lungfish, Protopterus aethiopicus.

    PubMed

    Seifert, Ashley W; Chapman, Lauren J

    2006-01-01

    This paper quantifies the relationship between respiratory allocation (air vs. water) and the standard rate of metabolism (SMR) in the primitive air-breathing lungfish, Protopterus aethiopicus. Simultaneous measurements of oxygen consumed from both air and water were made to determine the SMR at ecologically relevant aquatic oxygen levels for juveniles 2 to 221 g. Total metabolic rate was positively correlated with body mass with a scaling exponent of 0.78. Aerial oxygen consumption averaged 98% (range=94% to 100%) of total respiratory allocation under low aquatic oxygen levels. Measurements of oxygen consumption made across a gradient of dissolved oxygen from normoxia to anoxia showed that P. aethiopicus maintains its SMR despite a change in respiratory allocation between water and air. PMID:16380279

  17. Dietary intakes, resting metabolic rates, and body composition in benign and malignant gastrointestinal disease.

    PubMed Central

    Burke, M; Bryson, E I; Kark, A E

    1980-01-01

    Dietary protein and energy intakes were assessed in 42 patients with cancer and 24 with benign conditions of the gastrointestinal tract. The relations of dietary intake to body composition was examined. Resulting metabolic rate was measured in 51 patients. No significant differences in dietary intake or metabolic rate were found between patients with cancer and those with benign disease. There were significant positive correlations between protein and energy intakes and the ratio of total body potassium to total body water in patients with benign disease but not in those with cancer. Weight loss was probably due to inadequate food intake, the main defect being energy deficiency, since protein intake was usually well maintained. Supplementing with energy the voluntary ingested diet of patients with cancer would probably prevent weight loss in most cases. PMID:7427083

  18. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  19. Changes to coral health and metabolic activity under oxygen deprivation.

    PubMed

    Murphy, James W A; Richmond, Robert H

    2016-01-01

    On Hawaiian reefs, the fast-growing, invasive algae Gracilaria salicornia overgrows coral heads, restricting water flow and light, thereby smothering corals. Field data shows hypoxic conditions (dissolved oxygen (DO2) < 2 mg/L) occurring underneath algal mats at night, and concurrent bleaching and partial tissue loss of shaded corals. To analyze the impact of nighttime oxygen-deprivation on coral health, this study evaluated changes in coral metabolism through the exposure of corals to chronic hypoxic conditions and subsequent analyses of lactate, octopine, alanopine, and strombine dehydrogenase activities, critical enzymes employed through anaerobic respiration. Following treatments, lactate and octopine dehydrogenase activities were found to have no significant response in activities with treatment and time. However, corals subjected to chronic nighttime hypoxia were found to exhibit significant increases in alanopine dehydrogenase activity after three days of exposure and strombine dehydrogenase activity starting after one overnight exposure cycle. These findings provide new insights into coral metabolic shifts in extremely low-oxygen environments and point to ADH and SDH assays as tools for quantifying the impact of hypoxia on coral health. PMID:27114888

  20. Changes to coral health and metabolic activity under oxygen deprivation

    PubMed Central

    Richmond, Robert H.

    2016-01-01

    On Hawaiian reefs, the fast-growing, invasive algae Gracilaria salicornia overgrows coral heads, restricting water flow and light, thereby smothering corals. Field data shows hypoxic conditions (dissolved oxygen (DO2) < 2 mg/L) occurring underneath algal mats at night, and concurrent bleaching and partial tissue loss of shaded corals. To analyze the impact of nighttime oxygen-deprivation on coral health, this study evaluated changes in coral metabolism through the exposure of corals to chronic hypoxic conditions and subsequent analyses of lactate, octopine, alanopine, and strombine dehydrogenase activities, critical enzymes employed through anaerobic respiration. Following treatments, lactate and octopine dehydrogenase activities were found to have no significant response in activities with treatment and time. However, corals subjected to chronic nighttime hypoxia were found to exhibit significant increases in alanopine dehydrogenase activity after three days of exposure and strombine dehydrogenase activity starting after one overnight exposure cycle. These findings provide new insights into coral metabolic shifts in extremely low-oxygen environments and point to ADH and SDH assays as tools for quantifying the impact of hypoxia on coral health. PMID:27114888

  1. Influence of metabolism on endocrine activities of bisphenol S.

    PubMed

    Skledar, Darja Gramec; Schmidt, Jan; Fic, Anja; Klopčič, Ivana; Trontelj, Jurij; Dolenc, Marija Sollner; Finel, Moshe; Mašič, Lucija Peterlin

    2016-08-01

    Bisphenol S (BPS; bis[4-hydroxyphenyl]sulfone) is commonly used as a replacement for bisphenol A in numerous consumer products. The main goal of this study was to examine the influence of different metabolic reactions that BPS undergoes on the endocrine activity. We demonstrate that hydroxylation of the aromatic ring of BPS, catalyzed mainly by the cytochrome P450 enzymes CYP3A4 and CYP2C9, is its major in-vitro phase I biotransformation. Nevertheless, coupled oxidative-conjugative reactions analyses revealed that glucuronidation and formation of BPS glucuronide is the predominant BPS metabolic pathway. BPS reactive metabolites that can be tracked as glutathione conjugates were not detected in the present study. Two in-vitro systems were used to evaluate the endocrine activity of BPS and its two main metabolites, BPS glucuronide and hydroxylated BPS 4-(4-hydroxy-benzenesulfonyl)-benzene-1,2-diol (BPSM1). In addition, we have tested two structural analogs of BPS, bis[4-(2-hydroxyetoxy)phenyl]sulfone (BHEPS) and 4,4-sulfonylbis(2-methylphenol) (dBPS). The test systems were yeast cells, for evaluating estrogenic and androgenic activities, and the GH3.TRE-Luc reporter cell line for measuring thyroid hormone activity. BPS and BPSM1 were weak agonists of the estrogen receptor, EC50 values of 8.4 × 10(-5) M and 6.7 × 10(-4) M, respectively. Additionally, BPSM1 exhibited weak antagonistic activity toward the thyroid hormone receptor, with an IC50 of 4.3 × 10(-5) M. In contrast to BPSM1, BPS glucuronide was inactive in these assays, inhibiting neither the estrogen nor the thyroid hormone receptors. Hence, glucuronidation appears to be the most important pathway for both BPS metabolism and detoxification. PMID:27213244

  2. Effect of predator odors on heart rate and metabolic rate of wapiti (Cervus elaphus canadensis).

    PubMed

    Chabot, D; Gagnon, P; Dixon, E A

    1996-04-01

    We measured the heart rate (HR) and oxygen consumption ([Formula: see text]) of wapiti (Cervus elaphus canadensis) before, during, and after presentation of biologically irrelevant odors (pentane, thiophene, and a perfume), artificial predator odors (an ether extract of cougar feces, and PDT, a compound found in mustelid anal gland secretion), stale predator odors (dog feces and urine and fox urine, kept at ambient temperature for a few weeks), and fresh predator odors (wolf, coyote, and cougar feces and the odor of a dead coyote, kept frozen between collection and test). Overall, responses to odors were small compared to other stressful stimuli. Individual variability was high among scents and among wapiti, but two of the fresh predator odors (cougar and wolf feces) produced larger HR and[Formula: see text] responses than the other scents and were more often successful at producing responses. As a group, fresh predator odors produced larger tachycardias and elicited a larger number of significant HR responses than biologically irrelevant novel odors. although the two classes of odors did not differ in their effect on[Formula: see text]. Although several other studies have shown that ungulates have reduced feeding levels when their food is scented with predator odors, it is not clear if this is due to reduced palatability or antipredator behavior. This study is the first demonstration that a wild ungulate species reacted more strongly to predator odors than to other odors in a nonfeeding situation. PMID:24227589

  3. Vocal performance affects metabolic rate in dolphins: implications for animals communicating in noisy environments.

    PubMed

    Holt, Marla M; Noren, Dawn P; Dunkin, Robin C; Williams, Terrie M

    2015-06-01

    Many animals produce louder, longer or more repetitious vocalizations to compensate for increases in environmental noise. Biological costs of increased vocal effort in response to noise, including energetic costs, remain empirically undefined in many taxa, particularly in marine mammals that rely on sound for fundamental biological functions in increasingly noisy habitats. For this investigation, we tested the hypothesis that an increase in vocal effort would result in an energetic cost to the signaler by experimentally measuring oxygen consumption during rest and a 2 min vocal period in dolphins that were trained to vary vocal loudness across trials. Vocal effort was quantified as the total acoustic energy of sounds produced. Metabolic rates during the vocal period were, on average, 1.2 and 1.5 times resting metabolic rate (RMR) in dolphin A and B, respectively. As vocal effort increased, we found that there was a significant increase in metabolic rate over RMR during the 2 min following sound production in both dolphins, and in total oxygen consumption (metabolic cost of sound production plus recovery costs) in the dolphin that showed a wider range of vocal effort across trials. Increases in vocal effort, as a consequence of increases in vocal amplitude, repetition rate and/or duration, are consistent with behavioral responses to noise in free-ranging animals. Here, we empirically demonstrate for the first time in a marine mammal, that these vocal modifications can have an energetic impact at the individual level and, importantly, these data provide a mechanistic foundation for evaluating biological consequences of vocal modification in noise-polluted habitats. PMID:25852069

  4. Metabolic Rate M[superscript 0.75] in Human Beings

    ERIC Educational Resources Information Center

    Agrawal. D. C.

    2014-01-01

    Human beings consume energy every day. Even at rest, energy is still needed for the working of the internal organs. This is achieved by the metabolism of consumed food in the presence of inhaled oxygen. During the resting state this is called the maintenance rate, and follows the mouse-to-elephant formula, P[subscript met] = 70M[superscript 0.75]…

  5. Is There a Chronic Elevation in Organ-Tissue Sleeping Metabolic Rate in Very Fit Runners?

    PubMed Central

    Midorikawa, Taishi; Tanaka, Shigeho; Ando, Takafumi; Tanaka, Chiaki; Masayuki, Konishi; Ohta, Megumi; Torii, Suguru; Sakamoto, Shizuo

    2016-01-01

    It is unclear whether the resting metabolic rate of individual organ-tissue in adults with high aerobic fitness is higher than that in untrained adults; in fact, this topic has been debated for years using a two-component model. To address this issue, in the present study, we examined the relationship between the measured sleeping energy expenditure (EE) by using an indirect human calorimeter (IHC) and the calculated resting EE (REE) from organ-tissue mass using magnetic resonance imaging, along with the assumed metabolic rate constants in healthy adults. Seventeen healthy male long-distance runners were recruited and grouped according to the median V·O2peak: very fit group (>60 mL/min/kg; n = 8) and fit group (<60 mL/min/kg; n = 9). Participants performed a graded exercise test for determining V·O2peak; X-ray absorptiometry and magnetic resonance imaging were used to determine organ-tissue mass, and IHC was used to determine sleeping EE. The calculated REE was estimated as the sum of individual organ-tissue masses multiplied by their metabolic rate constants. No significant difference was observed in the measured sleeping EE, calculated REE, and their difference, as well as in the slopes and intercepts of the two regression lines between the groups. Moreover, no significant correlation between V·O2peak and the difference in measured sleeping EE and calculated REE was observed for all subjects. Thus, aerobic endurance training does not result in a chronic elevation in the organ-tissue metabolic rate in cases with V·O2peak of approximately 60 mL/min/kg.

  6. Adenosine monophosphate-activated protein kinase activation, substrate transporter translocation, and metabolism in the contracting hyperthyroid rat heart.

    PubMed

    Heather, Lisa C; Cole, Mark A; Atherton, Helen J; Coumans, Will A; Evans, Rhys D; Tyler, Damian J; Glatz, Jan F C; Luiken, Joost J F P; Clarke, Kieran

    2010-01-01

    Thyroid hormones can modify cardiac metabolism via multiple molecular mechanisms, yet their integrated effect on overall substrate metabolism is poorly understood. Here we determined the effect of hyperthyroidism on substrate metabolism in the isolated, perfused, contracting rat heart. Male Wistar rats were injected for 7 d with T(3) (0.2 mg/kg x d ip). Plasma free fatty acids increased by 97%, heart weights increased by 33%, and cardiac rate pressure product, an indicator of contractile function, increased by 33% in hyperthyroid rats. Insulin-stimulated glycolytic rates and lactate efflux rates were increased by 33% in hyperthyroid rat hearts, mediated by an increased insulin-stimulated translocation of the glucose transporter GLUT4 to the sarcolemma. This was accompanied by a 70% increase in phosphorylated AMP-activated protein kinase (AMPK) and a 100% increase in phosphorylated acetyl CoA carboxylase, confirming downstream signaling from AMPK. Fatty acid oxidation rates increased in direct proportion to the increased heart weight and rate pressure product in the hyperthyroid heart, mediated by synchronized changes in mitochondrial enzymes and respiration. Protein levels of the fatty acid transporter, fatty acid translocase (FAT/CD36), were reduced by 24% but were accompanied by a 19% increase in the sarcolemmal content of fatty acid transport protein 1 (FATP1). Thus, the relationship between fatty acid metabolism, cardiac mass, and contractile function was maintained in the hyperthyroid heart, associated with a sarcolemmal reorganization of fatty acid transporters. The combined effects of T(3)-induced AMPK activation and insulin stimulation were associated with increased sarcolemmal GLUT4 localization and glycolytic flux in the hyperthyroid heart. PMID:19940039

  7. Flexibility in metabolic rate confers a growth advantage under changing food availability

    PubMed Central

    Auer, Sonya K; Salin, Karine; Rudolf, Agata M; Anderson, Graeme J; Metcalfe, Neil B; Ardia, Daniel

    2015-01-01

    Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species’ resilience in the face of global change. PMID:25939669

  8. Metabolic rate and body size are linked with perception of temporal information☆

    PubMed Central

    Healy, Kevin; McNally, Luke; Ruxton, Graeme D.; Cooper, Natalie; Jackson, Andrew L.

    2013-01-01

    Body size and metabolic rate both fundamentally constrain how species interact with their environment, and hence ultimately affect their niche. While many mechanisms leading to these constraints have been explored, their effects on the resolution at which temporal information is perceived have been largely overlooked. The visual system acts as a gateway to the dynamic environment and the relative resolution at which organisms are able to acquire and process visual information is likely to restrict their ability to interact with events around them. As both smaller size and higher metabolic rates should facilitate rapid behavioural responses, we hypothesized that these traits would favour perception of temporal change over finer timescales. Using critical flicker fusion frequency, the lowest frequency of flashing at which a flickering light source is perceived as constant, as a measure of the maximum rate of temporal information processing in the visual system, we carried out a phylogenetic comparative analysis of a wide range of vertebrates that supported this hypothesis. Our results have implications for the evolution of signalling systems and predator–prey interactions, and, combined with the strong influence that both body mass and metabolism have on a species' ecological niche, suggest that time perception may constitute an important and overlooked dimension of niche differentiation. PMID:24109147

  9. How does evolutionary variation in Basal metabolic rates arise? A statistical assessment and a mechanistic model.

    PubMed

    Naya, Daniel E; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-05-01

    Metabolic rates are related to the pace of life. Hence, research into their variability at global scales is of vital importance for several contemporary theories in physiology, ecology, and evolution. Here we evaluated the effect of latitude, climate, primary productivity, habitat aridity, and species trophic habits, on mass-independent basal metabolic rates (BMRs) for 195 rodent species. The aims of this article were twofold. First, we evaluated the predictive power of different statistical models (via a model selection approach), using a dimensional reduction technique on the exogenous factor matrix to achieve a clear interpretation of the selected models. Second, we evaluated three specific predictions derived from a recently proposed hypothesis, herein called the "obligatory heat" model (OHM), for the evolution of BMR. Obtained results indicate that mean/minimum environmental temperature, rainfall/primary productivity and, finally, species trophic habits are, in this order, the major determinants of mass-independent BMR. Concerning the mechanistic causes behind this variation, obtained data agree with the predictions of the OHM: (1) mean annual environmental temperature was the best single predictor of residual variation in BMR, (2) herbivorous species have greater mass-independent metabolic rates, and tend to be present at high-latitude cold environments, than species in other trophic categories. PMID:23617921

  10. Flexibility in metabolic rate confers a growth advantage under changing food availability.

    PubMed

    Auer, Sonya K; Salin, Karine; Rudolf, Agata M; Anderson, Graeme J; Metcalfe, Neil B

    2015-09-01

    1. Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. 2. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. 3. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). 4. SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. 5. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species' resilience in the face of global change. PMID:25939669

  11. Insulin sensitivity and metabolic clearance rate of insulin in familial multiple lipomatosis.

    PubMed

    Garcia Lopez, J M; Murias Taboada, E; Torre Carballada, J A; Vidal Vazquez, P; Iglesias Guerrero, M; Cabezas-Cerrato, J

    1988-01-01

    Intolerance to glucose in certain kinds of lipomatosis is well documented. This article describes a euglucaemic hyperinsulinaemic clamp study of alterations in glucose and/or insulin metabolism in four members of a single family with familial multiple lipomatosis. Fifteen normal subjects were studied as controls. The four patients exhibited no alteration in tolerance to orally administered glucose. When a Biostator Glucose-Controlled Insulin Infusion System (GCIIS) was used to clamp glycaemia at 4.44 mmol/L with successive insulin infusion rates of (a) 0.5 (b) 1.0 or (c) 5.0 mU/kg/min, there was no difference between patients and controls as regards the value of M, the rate of glucose infusion, but the concentrations of immunoreactive insulin recorded during the last 40 minutes of each phase of the clamp were greater in patients than in controls (45 +/- 2 vs 27 +/- 2 uU/mL (p less than 0.01), 83 +/- 2 vs 60 +/- 5 uU/mL (p less than 0.05) and 537 +/- 48 vs 377 +/- 25 uU/mL (p less than 0.05) for insulin infusion rates (a), (b) and (c) respectively), and the ratio M/IRI was consequently smaller for patients than controls (1.92 +/- 0.41 vs 3.06 +/- 0.19 (p less than 0.05) for an insulin infusion rate of 5 mU/kg/min). The metabolic clearance rate of insulin was likewise slower in patients than controls (p less than 0.01). It is concluded that the four patients studied (all members of the same family) have sub-normal sensitivity to insulin secondary to a sub-normal metabolic clearance rate for insulin. PMID:3044865

  12. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  13. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  14. Experimental sources of variation in avian energetics: estimated basal metabolic rate decreases with successive measurements.

    PubMed

    Jacobs, Paul J; McKechnie, Andrew E

    2014-01-01

    Basal metabolic rate (BMR) is one of the most widely used metabolic variables in endotherm ecological and evolutionary physiology. Surprisingly few studies have investigated how BMR is influenced by experimental and analytical variables over and above the standardized conditions required for minimum normothermic resting metabolism. We tested whether avian BMR is affected by habituation to the conditions experienced during laboratory gas exchange measurements by measuring BMR five times in succession in budgerigars (Melopsittacus undulatus) housed under constant temperature and photoperiod. Both the magnitude and the variability of BMR decreased significantly with repeated measurements, from 0.410 ± 0.092 W (n = 9) during the first measurement to 0.285 ± 0.042 W (n = 9) during the fifth measurement. Thus, estimated BMR decreased by ∼30% within individuals solely on account of the number of times they had previously experienced the experimental conditions. The most likely explanation for these results is an attenuation with repeated exposure of the acute stress response induced by birds being handled and placed in respirometry chambers. Our data suggest that habituation to experimental conditions is potentially an important determinant of observed BMR, and this source of variation needs to be taken into account in future studies of metabolic variation among individuals, populations, and species. PMID:25244387

  15. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.

    PubMed

    Rosewarne, P J; Wilson, J M; Svendsen, J C

    2016-01-01

    Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology. PMID:26768978

  16. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity.

    PubMed

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K

    2015-12-01

    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively. PMID:26285591

  17. Metabolic Effects of Cholecystectomy: Gallbladder Ablation Increases Basal Metabolic Rate through G-Protein Coupled Bile Acid Receptor Gpbar1-Dependent Mechanisms in Mice

    PubMed Central

    Cortés, Víctor; Amigo, Ludwig; Zanlungo, Silvana; Galgani, José; Robledo, Fermín; Arrese, Marco; Bozinovic, Francisco; Nervi, Flavio

    2015-01-01

    Background & Aims Bile acids (BAs) regulate energy expenditure by activating G-protein Coupled Bile Acid Receptor Gpbar1/TGR5 by cAMP-dependent mechanisms. Cholecystectomy (XGB) increases BAs recirculation rates resulting in increased tissue exposure to BAs during the light phase of the diurnal cycle in mice. We aimed to determine: 1) the effects of XGB on basal metabolic rate (BMR) and 2) the roles of TGR5 on XGB-dependent changes in BMR. Methods BMR was determined by indirect calorimetry in wild type and Tgr5 deficient (Tgr5-/-) male mice. Bile flow and BAs secretion rates were measured by surgical diversion of biliary duct. Biliary BAs and cholesterol were quantified by enzymatic methods. BAs serum concentration and specific composition was determined by liquid chromatography/tandem mass spectrometry. Gene expression was determined by qPCR analysis. Results XGB increased biliary BAs and cholesterol secretion rates, and elevated serum BAs concentration in wild type and Tgr5-/- mice during the light phase of the diurnal cycle. BMR was ~25% higher in cholecystectomized wild type mice (p <0.02), whereas no changes were detected in cholecystectomized Tgr5-/- mice compared to wild-type animals. Conclusion XGB increases BMR by TGR5-dependent mechanisms in mice. PMID:25738495

  18. Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen

    PubMed Central

    Liu, Tan; Wei, Qing; Wang, Jing; Jiao, Shuliang; Zhang, Hao F.

    2011-01-01

    We proposed to measure the metabolic rate of oxygen (MRO2) in small animals in vivo using a multimodal imaging system that combines laser-scanning optical-resolution photoacoustic microscopy (LSOR-PAM) and spectral-domain optical coherence tomography (SD-OCT). We first tested the capability of the multimodal system to measure flow rate in a phantom made of two capillary tubes of different diameters. We then demonstrated the capability of measuring MRO2 by imaging two parallel vessels selected from the ear of a Swiss Webster mouse. The hemoglobin oxygen saturation (sO2) and the vessel diameter were measured by the LSOR-PAM and the blood flow velocity was measured by the SD-OCT, from which blood flow rate and MRO2 were further calculated. The measured blood flow rates in the two vessels agreed with each other. PMID:21559147

  19. Dopaminergic correlates of metabolic network activity in Parkinson's disease.

    PubMed

    Holtbernd, Florian; Ma, Yilong; Peng, Shichun; Schwartz, Frank; Timmermann, Lars; Kracht, Lutz; Fink, Gereon R; Tang, Chris C; Eidelberg, David; Eggers, Carsten

    2015-09-01

    Parkinson's disease (PD) is associated with distinct metabolic covariance patterns that relate to the motor and cognitive manifestations of the disorder. It is not known, however, how the expression of these patterns relates to measurements of nigrostriatal dopaminergic activity from the same individuals. To explore these associations, we studied 106 PD subjects who underwent cerebral PET with both (18) F-fluorodeoxyglucose (FDG) and (18) F-fluoro-L-dopa (FDOPA). Expression values for the PD motor- and cognition-related metabolic patterns (PDRP and PDCP, respectively) were computed for each subject; these measures were correlated with FDOPA uptake on a voxel-by-voxel basis. To explore the relationship between dopaminergic function and local metabolic activity, caudate and putamen FDOPA PET signal was correlated voxel-wise with FDG uptake over the entire brain. PDRP expression correlated with FDOPA uptake in caudate and putamen (P < 0.001), while PDCP expression correlated with uptake in the anterior striatum (P < 0.001). While statistically significant, the correlations were only of modest size, accounting for less than 20% of the overall variation in these measures. After controlling for PDCP expression, PDRP correlations were significant only in the posterior putamen. Of note, voxel-wise correlations between caudate/putamen FDOPA uptake and whole-brain FDG uptake were significant almost exclusively in PDRP regions. Overall, the data indicate that PDRP and PDCP expression correlates significantly with PET indices of presynaptic dopaminergic functioning obtained in the same individuals. Even so, the modest size of these correlations suggests that in PD patients, individual differences in network activity cannot be explained solely by nigrostriatal dopamine loss. PMID:26037537

  20. Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?

    NASA Astrophysics Data System (ADS)

    Boas, D. A.; Strangman, G.; Culver, J. P.; Hoge, R. D.; Jasdzewski, G.; Poldrack, R. A.; Rosen, B. R.; Mandeville, J. B.

    2003-08-01

    We have measured the changes in oxy-haemoglobin and deoxy-haemoglobin in the adult human brain during a brief finger tapping exercise using near-infrared spectroscopy (NIRS). The cerebral metabolic rate of oxygen (CMRO2) can be estimated from these NIRS data provided certain model assumptions. The change in CMRO2 is related to changes in the total haemoglobin concentration, deoxy-haemoglobin concentration and blood flow. As NIRS does not provide a measure of dynamic changes in blood flow during brain activation, we relied on a Windkessel model that relates dynamic blood volume and flow changes, which has been used previously for estimating CMRO2 from functional magnetic resonance imaging (fMRI) data. Because of the partial volume effect we are unable to quantify the absolute changes in the local brain haemoglobin concentrations with NIRS and thus are unable to obtain an estimate of the absolute CMRO2 change. An absolute estimate is also confounded by uncertainty in the flow-volume relationship. However, the ratio of the flow change to the CMRO2 change is relatively insensitive to these uncertainties. For the finger tapping task, we estimate a most probable flow-consumption ratio ranging from 1.5 to 3 in agreement with previous findings presented in the literature, although we cannot exclude the possibility that there is no CMRO2 change. The large range in the ratio arises from the large number of model parameters that must be estimated from the data. A more precise estimate of the flow-consumption ratio will require better estimates of the model parameters or flow information, as can be provided by combining NIRS with fMRI.

  1. Lipid metabolizing enzyme activities modulated by phospholipid substrate lateral distribution.

    PubMed

    Salinas, Dino G; Reyes, Juan G; De la Fuente, Milton

    2011-09-01

    Biological membranes contain many domains enriched in phospholipid lipids and there is not yet clear explanation about how these domains can control the activity of phospholipid metabolizing enzymes. Here we used the surface dilution kinetic theory to derive general equations describing how complex substrate distributions affect the activity of enzymes following either the phospholipid binding kinetic model (which assumes that the enzyme molecules directly bind the phospholipid substrate molecules), or the surface-binding kinetic model (which assumes that the enzyme molecules bind to the membrane before binding the phospholipid substrate). Our results strongly suggest that, if the enzyme follows the phospholipid binding kinetic model, any substrate redistribution would increase the enzyme activity over than observed for a homogeneous distribution of substrate. Besides, enzymes following the surface-binding model would be independent of the substrate distribution. Given that the distribution of substrate in a population of micelles (each of them a lipid domain) should follow a Poisson law, we demonstrate that the general equations give an excellent fit to experimental data of lipases acting on micelles, providing reasonable values for kinetic parameters--without invoking special effects such as cooperative phenomena. Our theory will allow a better understanding of the cellular-metabolism control in membranes, as well as a more simple analysis of the mechanisms of membrane acting enzymes. PMID:21108012

  2. In vivo enzyme activity in inborn errors of metabolism

    SciTech Connect

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. )

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  3. Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak

    PubMed Central

    Polymeropoulos, E. T.; Heldmaier, G.; Frappell, P. B.; McAllan, B. M.; Withers, K. W.; Klingenspor, M.; White, C. R.; Jastroch, M.

    2012-01-01

    Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence. PMID:21632624

  4. The allometry of the smallest: superlinear scaling of microbial metabolic rates in the Atlantic Ocean.

    PubMed

    García, Francisca C; García-Martín, Enma Elena; Taboada, Fernando González; Sal, Sofía; Serret, Pablo; López-Urrutia, Ángel

    2016-05-01

    Prokaryotic planktonic organisms are small in size but largely relevant in marine biogeochemical cycles. Due to their reduced size range (0.2 to 1 μm in diameter), the effects of cell size on their metabolism have been hardly considered and are usually not examined in field studies. Here, we show the results of size-fractionated experiments of marine microbial respiration rate along a latitudinal transect in the Atlantic Ocean. The scaling exponents obtained from the power relationship between respiration rate and size were significantly higher than one. This superlinearity was ubiquitous across the latitudinal transect but its value was not universal revealing a strong albeit heterogeneous effect of cell size on microbial metabolism. Our results suggest that the latitudinal differences observed are the combined result of changes in cell size and composition between functional groups within prokaryotes. Communities where the largest size fraction was dominated by prokaryotic cyanobacteria, especially Prochlorococcus, have lower allometric exponents. We hypothesize that these larger, more complex prokaryotes fall close to the evolutionary transition between prokaryotes and protists, in a range where surface area starts to constrain metabolism and, hence, are expected to follow a scaling closer to linearity. PMID:26636550

  5. Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism

    PubMed Central

    Itkonen, Harri M.; Gorad, Saurabh S.; Duveau, Damien Y.; Martin, Sara E.S.; Barkovskaya, Anna; Bathen, Tone F.; Moestue, Siver A.; Mills, Ian G.

    2016-01-01

    Metabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179). Metabolic profiling revealed decreased glucose consumption and lactate production after OGT inhibition. This decreased glycolytic activity specifically sensitized prostate cancer cells, but not cells representing normal prostate epithelium, to inhibitors of oxidative phosphorylation (rotenone and metformin). Intra-cellular alanine was depleted upon OGT inhibitor treatment. OGT inhibitor increased the expression and activity of alanine aminotransferase (GPT2), an enzyme that can be targeted with a clinically approved drug, cycloserine. Simultaneous inhibition of OGT and GPT2 inhibited cell viability and growth rate, and additionally activated a cell death response. These combinatorial effects were predominantly seen in prostate cancer cells, but not in a cell-line derived from normal prostate epithelium. Combinatorial treatments were confirmed with two inhibitors against both OGT and GPT2. Taken together, here we report the reprogramming of energy metabolism upon inhibition of OGT activity, and identify synergistically lethal combinations that are prostate cancer cell specific. PMID:26824323

  6. Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism.

    PubMed

    Itkonen, Harri M; Gorad, Saurabh S; Duveau, Damien Y; Martin, Sara E S; Barkovskaya, Anna; Bathen, Tone F; Moestue, Siver A; Mills, Ian G

    2016-03-15

    Metabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179). Metabolic profiling revealed decreased glucose consumption and lactate production after OGT inhibition. This decreased glycolytic activity specifically sensitized prostate cancer cells, but not cells representing normal prostate epithelium, to inhibitors of oxidative phosphorylation (rotenone and metformin). Intra-cellular alanine was depleted upon OGT inhibitor treatment. OGT inhibitor increased the expression and activity of alanine aminotransferase (GPT2), an enzyme that can be targeted with a clinically approved drug, cycloserine. Simultaneous inhibition of OGT and GPT2 inhibited cell viability and growth rate, and additionally activated a cell death response. These combinatorial effects were predominantly seen in prostate cancer cells, but not in a cell-line derived from normal prostate epithelium. Combinatorial treatments were confirmed with two inhibitors against both OGT and GPT2. Taken together, here we report the reprogramming of energy metabolism upon inhibition of OGT activity, and identify synergistically lethal combinations that are prostate cancer cell specific. PMID:26824323

  7. Metabolic equivalents of task are confounded by adiposity, which disturbs objective measurement of physical activity

    PubMed Central

    Tompuri, Tuomo T.

    2015-01-01

    Physical activity refers any bodily movements produced by skeletal muscles that expends energy. Hence the amount and the intensity of physical activity can be assessed by energy expenditure. Metabolic equivalents of task (MET) are multiplies of the resting metabolism reflecting metabolic rate during exercise. The standard MET is defined as 3.5 ml/min/kg. However, the expression of energy expenditure by body weight to normalize the size differences between subjects causes analytical hazards: scaling by body weight does not have a physiological, mathematical, or physical rationale. This review demonstrates by examples that false methodology may cause paradoxical observations if physical activity would be assessed by body weight scaled values such as standard METs. While standard METs are confounded by adiposity, lean mass proportional measures of energy expenditure would enable a more truthful choice to assess physical activity. While physical activity as a behavior and cardiorespiratory fitness or adiposity as a state represents major determinants of public health, specific measurements of health determinants must be understood to enable a truthful evaluation of the interactions and their independent role as a health predictor. PMID:26321958

  8. Resting metabolic rate and work efficiency of rural Beninese women: a 2-y longitudinal study.

    PubMed

    Ategbo, E A; van Raaij, J M; de Koning, F L; Hautvast, J G

    1995-03-01

    This study was performed on 34 female farmers in northern Benin during 2 consecutive years. Body composition, energy intake, energy expenditure, resting metabolic rate (RMR), and energy cost of cycling on a bicycle were measured in three periods per year. Energy intake showed seasonal fluctuations of approximately 1.7 MJ/d in 1990 and 0.6 MJ/d in 1991. Body weight fluctuated between periods, with the lowest weight in preharvest periods. Observed changes in body weight were 2.6 +/- 2.3 and 0.9 +/- 1.7 kg in 1990 and 1991, respectively. The same pattern was observed in both fat mass and fat-free mass. RMR, energy cost of cycling, and delta work efficiency did not show any seasonal changes. It is concluded that metabolic adaptation, as a response to a seasonal food shortage up to 15% of average daily intake, will not occur. PMID:7872208

  9. Age-related increase of resting metabolic rate in the human brain

    PubMed Central

    Peng, Shin-Lei; Dumas, Julie A.; Park, Denise C.; Liu, Peiying; Filbey, Francesca M.; McAdams, Carrie J.; Pinkham, Amy E.; Adinoff, Bryon; Zhang, Rong; Lu, Hanzhang

    2014-01-01

    With age, many aspects of the brain structure undergo a pronounced decline, yet individuals generally function well until advanced old age. There appear to be several compensatory mechanisms in brain aging, but their precise nature is not well characterized. Here we provide evidence that the brain of older adults expends more energy when compared to younger adults, as manifested by an age-related increase (P=0.03) in cerebral metabolic rate of oxygen (CMRO2) (N=118, men=56, ages 18 to 74). We further showed that, before the mean menopausal age of 51 years old, female and male groups have similar rates of CMRO2 increase (P=0.015) and there was no interaction between age and sex effects (P=0.85). However, when using data from the entire age range, women have a slower rate of CMRO2 change when compared to men (P<0.001 for age × sex interaction term). Thus, menopause and estrogen level may have played a role in this sex difference. Our data also revealed a possible circadian rhythm of CMRO2 in that brain metabolic rate is greater at noon than in the morning (P=0.02). This study reveals a potential neurobiological mechanism for age-related compensation in brain function and also suggests a sex-difference in its temporal pattern. PMID:24814209

  10. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    SciTech Connect

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  11. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index. PMID:11282319

  12. Activities of nitrate reductase and glutamine synthetase in rice seedlings during cyanide metabolism.

    PubMed

    Yu, Xiao-Zhang; Zhang, Fu-Zhong

    2012-07-30

    A study was conducted to investigate activities of nitrate reductase (NR) and glutamine synthetase (GS) in plants during cyanide metabolism. Young rice seedlings (Oryza sativa L. cv. XZX 45) were grown in the nutrient solutions containing KNO(3) or NH(4)Cl and treated with free cyanide (KCN). Cyanide in solutions and in plant materials was analyzed to estimate the phyto-assimilation potential. Activities of NR and GS in different parts of rice seedlings were assayed in vivo. Seedlings grown on NH(4)(+) showed significantly higher relative growth rate than those on NO(3)(-) (p<0.05) in the presence of exogenous cyanide. The metabolic rates of cyanide by seedlings were all positively correlated to the concentrations supplied. A negligible difference was observed between the two treatments with nitrate and ammonium (p>0.05). Enzymatic assays showed that cyanide (≥0.97mg CN L(-1)) impaired NR activity significantly in both roots and shoots (p<0.05). The effect of cyanide on GS activity in roots was more evident at 1.93mg CN L(-1), suggesting that NR activity was more susceptible to change from cyanide application than GS activity. The results observed here suggest that the exogenous cyanide, which to a certain level has a beneficial role in plant nutrition. PMID:22633925

  13. Treatment benefits on metabolic syndrome with diet and physical activity.

    PubMed

    Dragusha, Gani; Elezi, Abdulla; Dragusha, Shpend; Gorani, Daut; Begolli, Luljeta

    2010-05-01

    The research has included 422 patients aged between 25 to 60, of whom 341 were men and 81 women. The purpose of research was to determine impact of diet and physical activity in the treatment of metabolic syndrome during the six month period. Processing of results through descriptive and discriminative analysis have indicated that 6 month treatment with diet and physical activity have had an impact in the: waistline decrease by 6.05 cm or 5.50% among males, and 4.92 cm or 5.10% among females; body mass index (BMI) decrease by 1.78 or 6.20% among males, and 2.3 or 8.16% among females; decrease of blood triglycerides levels by 0.35 mmol/L or 16.28% among males, and 0.27 mmol/L or 13.30% among females; increase of blood cholesterol HDL-C by 0.48 mmol/L or 34.78% among males, and 0.06 mmol/L or 4.28% among females; systolic arterial pressure decreased by 15 mmHg or 10.18%, and diastolic blood pressure by 8.74 mmHg or 9.47% among males, and systolic arterial pressure decreased by 7.39 mmHg or 5.17%, and diastolic blood pressure decreased by 5.18 mmHg or 5.75% among females; the level of blood glucose decreased by 0.45 mmol/L or 7.04% among males, and by 0.64 mmol/L or 9.92% decreased among females. The results show that physical exercise and diet are important factors in reducing the values symptoms of metabolic syndrome. In order to improve symptoms of metabolic syndrome, it is necessary to keep on with healthy diet and physical exercise that means the change of lifestyle. PMID:20507300

  14. Benzene metabolism by human liver microsomes in relation to cytochrome P450 2E1 activity.

    PubMed

    Seaton, M J; Schlosser, P M; Bond, J A; Medinsky, M A

    1994-09-01

    Low levels of benzene from sources including cigarette smoke and automobile emissions are ubiquitous in the environment. Since the toxicity of benzene probably results from oxidative metabolites, an understanding of the profile of biotransformation of low levels of benzene is critical in making a valid risk assessment. To that end, we have investigated metabolism of a low concentration of [14C]benzene (3.4 microM) by microsomes from human, mouse and rat liver. The extent of phase I benzene metabolism by microsomal preparations from 10 human liver samples and single microsomal preparations from both mice and rats was then related to measured activities of cytochrome P450 (CYP) 2E1. Measured CYP 2E1 activities, as determined by hydroxylation of p-nitrophenol, varied 13-fold (0.253-3.266 nmol/min/mg) for human samples. The fraction of benzene metabolized in 16 min ranged from 10% to 59%. Also at 16 min, significant amounts of oxidative metabolites were formed. Phenol was the main metabolite formed by all but two human microsomal preparations. In those samples, both of which had high CYP 2E1 activity, hydroquinone was the major metabolite formed. Both hydroquinone and catechol formation showed a direct correlation with CYP 2E1 activity over the range of activities present. A simulation model was developed based on a mechanism of competitive inhibition between benzene and its oxidized metabolites, and was fit to time-course data for three human liver preparations. Model calculations for initial rates of benzene metabolism ranging from 0.344 to 4.442 nmol/mg/min are directly proportional to measured CYP 2E1 activities. The model predicted the dependence of benzene metabolism on the measured CYP 2E1 activity in human liver samples, as well as in mouse and rat liver samples. These results suggest that differences in measured hepatic CYP 2E1 activity may be a major factor contributing to both interindividual and interspecies variations in hepatic metabolism of benzene

  15. Indole generates quiescent and metabolically active Escherichia coli cultures.

    PubMed

    Chen, Chih-Chin; Walia, Rupali; Mukherjee, Krishna J; Mahalik, Subhashree; Summers, David K

    2015-04-01

    An inherent problem with bacterial cell factories used to produce recombinant proteins or metabolites is that resources are channeled into unwanted biomass as well as product. Over several years, attempts have been made to increase efficiency by unlinking biomass and product generation. One example was the quiescent cell (Q-Cell) expression system that generated non-growing but metabolically active Escherichia coli by over-expressing a regulatory RNA (Rcd) in a defined genetic background. Although effective at increasing the efficiency with which resources are converted to product, the technical complexity of the Rcd-based Q-Cell system limited its use. We describe here an alternative method for generating Q-Cells by the direct addition of indole, or related indole derivatives, to the culture medium of an E. coli strain carrying defined mutations in the hns gene. This simple and effective approach is shown to be functional in both shake-flask and fermenter culture. The cells remain metabolically active and analysis of their performance in the fermenter suggests that they may be particularly suitable for the production of cellular metabolites. PMID:25594833

  16. Metabolism of a highly selective gelatinase inhibitor generates active metabolite.

    PubMed

    Lee, Mijoon; Villegas-Estrada, Adriel; Celenza, Giuseppe; Boggess, Bill; Toth, Marta; Kreitinger, Gloria; Forbes, Christopher; Fridman, Rafael; Mobashery, Shahriar; Chang, Mayland

    2007-11-01

    (4-Phenoxyphenylsulfonyl)methylthiirane (inhibitor 1) is a highly selective inhibitor of gelatinases (matrix metalloproteinases 2 and 9), which is showing considerable promise in animal models for cancer and stroke. Despite demonstrated potent, selective, and effective inhibition of gelatinases both in vitro and in vivo, the compound is rapidly metabolized, implying that the likely activity in vivo is due to a metabolite rather than the compound itself. To this end, metabolism of inhibitor 1 was investigated in in vitro systems. Four metabolites were identified by LC/MS-MS and the structures of three of them were further validated by comparison with authentic synthetic samples. One metabolite, 4-(4-thiiranylmethanesulfonylphenoxy)phenol (compound 21), was generated by hydroxylation of the terminal phenyl group of 1. This compound was investigated in kinetics of inhibition of several matrix metalloproteinases. This metabolite was a more potent slow-binding inhibitor of gelatinases (matrix metalloproteinase-2 and matrix metalloproteinase-9) than the parent compound 1, but it also served as a slow-binding inhibitor of matrix metalloproteinase-14, the upstream activator of matrix metalloproteinase-2. PMID:17927722

  17. Physiological community ecology: variation in metabolic activity of ecologically important rocky intertidal invertebrates along environmental gradients.

    PubMed

    Dahlhoff, Elizabeth P; Stillman, Jonathon H; Menge, Bruce A

    2002-08-01

    Rocky intertidal invertebrates live in heterogeneous habitats characterized by steep gradients in wave activity, tidal flux, temperature, food quality and food availability. These environmental factors impact metabolic activity via changes in energy input and stress-induced alteration of energetic demands. For keystone species, small environmentally induced shifts in metabolic activity may lead to disproportionately large impacts on community structure via changes in growth or survival of these key species. Here we use biochemical indicators to assess how natural differences in wave exposure, temperature and food availability may affect metabolic activity of mussels, barnacles, whelks and sea stars living at rocky intertidal sites with different physical and oceanographic characteristics. We show that oxygen consumption rate is correlated with the activity of key metabolic enzymes (e.g., citrate synthase and malate dehydrogenase) for some intertidal species, and concentrations of these enzymes in certain tissues are lower for starved individuals than for those that are well fed. We also show that the ratio of RNA to DNA (an index of protein synthetic capacity) is highly variable in nature and correlates with short-term changes in food availability. We also observed striking patterns in enzyme activity and RNA/DNA in nature, which are related to differences in rocky intertidal community structure. Differences among species and habitats are most pronounced in summer and are linked to high nearshore productivity at sites favored by suspension feeders and to exposure to stressful low-tide air temperatures in areas of low wave splash. These studies illustrate the great promise of using biochemical indicators to test ecological models, which predict changes in community structure along environmental gradients. Our results also suggest that biochemical indices must be carefully validated with laboratory studies, so that the indicator selected is likely to respond to the

  18. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  19. The interaction among age, thermal acclimation and growth rate in determining muscle metabolic capacities and tissue masses in the threespine stickleback, Gasterosteus aculeatus.

    PubMed

    Guderley, H; Lavoie, B A; Dubois, N

    1994-11-01

    Thermal acclimation may directly modify muscle metabolic capacities, or may modify them indirectly via effects upon physiological processes such as growth, reproduction or senescence. To evaluate these interacting effects, we examined the influence of thermal acclimation and acclimatization upon muscle metabolic capacities and tissue masses in 1 + stickleback, Gasterosteus aculeatus, in which confounding interactions between temperature and senescense should be absent. Furthermore, we examined the influence of thermal acclimation upon individual growth rate, muscle enzyme levels and tissue masses in 2 + stickleback sampled at the beginning of their final reproductive season. For 1 + stickleback, cold acclimation more than doubles mitochondrial enzyme levels in the axial muscle. Thermal acclimation did not change the condition of 1 + stickleback at feeding levels which could not maintain the condition of 2+ stickleback. Compensatory metabolic responses to temperature were not apparent in field acclimatized 1 + stickleback. The growth rate of 2 + stickleback was markedly affected by temperature: warm-acclimated fish generally lost mass even at very high levels of feeding (up to 78 enchytraid worms per day) while cold-acclimated fish gained mass. This suggests that warm temperatures accelerate the senescence of 2 + stickleback. Generally, muscle enzyme activities increased with growth rate. In axial muscle, the relationships between CS activity and growth rate differed with acclimation temperature. Independent of the influence of growth rate, CS activities were consistently higher in cold- than warm-acclimated 2 + stickleback, suggesting compensatory increases of CS activity with cold acclimation. PMID:24197078

  20. Effects of glyphosate on growth rate, metabolic rate and energy reserves of early juvenile crayfish, Cherax quadricarinatus M.

    PubMed

    Avigliano, L; Fassiano, A V; Medesani, D A; Ríos de Molina, M C; Rodríguez, E M

    2014-06-01

    Early juveniles of the crayfish Cherax quadricarinatus were exposed for 60 days to 10 and 40 mg/L of pure glyphosate (acid form) in freshwater. Mortality was 33 % at the highest concentration, while no differences in molting were noted among treatments. After the first month of exposure, weight gain was significantly (p < 0.05) reduced in the 40 mg/L group. At the end of the assay, lipid levels in muscle, as well as protein level in both hepatopancreas and muscle were significantly (p < 0.05) reduced. These results suggest long-term utilization of both lipid and protein as main energetic reserves, likely in response to the chronic stress associated with herbicide exposure. Besides, the lower pyruvate kinase activity in muscle suggests a possible metabolic depression in this tissue. The hemolymphatic ASAT:ALAT ratio showed higher levels than the control at the highest glyphosate concentration, indicating possible damage to several tissues. PMID:24584268

  1. Simvastatin Inhibits Glucose Metabolism and Legumain Activity in Human Myotubes

    PubMed Central

    Smith, Robert; Solberg, Rigmor; Jacobsen, Linn Løkken; Voreland, Anette Larsen; Rustan, Arild Christian; Thoresen, G. Hege; Johansen, Harald Thidemann

    2014-01-01

    Simvastatin, a HMG-CoA reductase inhibitor, is prescribed worldwide to patients with hypercholesterolemia. Although simvastatin is well tolerated, side effects like myotoxicity are reported. The mechanism for statin-induced myotoxicity is still poorly understood. Reports have suggested impaired mitochondrial dysfunction as a contributor to the observed myotoxicity. In this regard, we wanted to study the effects of simvastatin on glucose metabolism and the activity of legumain, a cysteine protease. Legumain, being the only known asparaginyl endopeptidase, has caspase-like properties and is described to be involved in apoptosis. Recent evidences indicate a regulatory role of both glucose and statins on cysteine proteases in monocytes. Satellite cells were isolated from the Musculus obliquus internus abdominis of healthy human donors, proliferated and differentiated into polynuclear myotubes. Simvastatin with or without mevalonolactone, farnesyl pyrophosphate or geranylgeranyl pyrophosphate were introduced on day 5 of differentiation. After 48 h, cells were either harvested for immunoblotting, ELISA, cell viability assay, confocal imaging or enzyme activity analysis, or placed in a fuel handling system with [14C]glucose or [3H]deoxyglucose for uptake and oxidation studies. A dose-dependent decrease in both glucose uptake and oxidation were observed in mature myotubes after exposure to simvastatin in concentrations not influencing cell viability. In addition, simvastatin caused a decrease in maturation and activity of legumain. Dysregulation of glucose metabolism and decreased legumain activity by simvastatin points out new knowledge about the effects of statins on skeletal muscle, and may contribute to the understanding of the myotoxicity observed by statins. PMID:24416446

  2. Effects of nutritional status on metabolic rate, exercise and recovery in a freshwater fish

    SciTech Connect

    Gingerich, Andrew J.; Philipp, D. P.; Suski, C. D.

    2010-11-20

    The influence of feeding on swimming performance and exercise recovery in fish is poorly understood. Examining swimming behavior and physiological status following periods of feeding and fasting is important because wild fish often face periods of starvation. In the current study, researchers force fed and fasted groups of largemouth bass (Micropterus salmoides) of similar sizes for a period of 16 days. Following this feeding and fasting period, fish were exercised for 60 s and monitored for swimming performance and physiological recovery. Resting metabolic rates were also determined. Fasted fish lost an average of 16 g (nearly 12%) of body mass, while force fed fish maintained body mass. Force fed fish swam 28% further and required nearly 14 s longer to tire during exercise. However, only some physiological conditions differed between feeding groups. Resting muscle glycogen concentrations was twofold greater in force fed fish, at rest and throughout recovery, although it decreased in both feeding treatments following exercise. Liver mass was nearly three times greater in force fed fish, and fasted fish had an average of 65% more cortisol throughout recovery. Similar recovery rates of most physiological responses were observed despite force fed fish having a metabolic rate 75% greater than fasted fish. Results are discussed as they relate to largemouth bass starvation in wild systems and how these physiological differences might be important in an evolutionary context.

  3. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2014-01-01

    This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239

  4. Kleptoparasitism and aggressiveness are influenced by standard metabolic rate in eels.

    PubMed

    Geffroy, Benjamin; Bolliet, Valérie; Bardonnet, Agnès

    2016-04-01

    Kleptoparasitism refers to either interspecific or intraspecific stealing of food already procured by other species or individuals. Within a given species, individuals might differ in their propensity to use such a tactic, in a similar manner to which they differ in their general level of aggressiveness. Standard metabolic rate is often viewed as a proxy for energy requirements. For this reason, it should directly impact on both kleptoparasitism and aggressiveness when individuals have to share the same food source. In the present study we first assessed the standard metabolic rate (SMR) of 128 juvenile European eels (Anguilla anguilla) by the determination of oxygen consumption. We then tested how the SMR could influence agonistic behavior of individuals competing for food in three distinct trials evenly distributed over three months. We demonstrate that SMR positively correlates with attacks (sum of bite and push events) in all trials. Similarly SMR correlated positively with kleptoparasitism (food theft), but this was significant only for the third trial (month 3). To our knowledge, the present study is the first reporting a link between kleptoparasitism and SMR in a fish species. This has ecological implications owing to the fact that this species is characterized by an environmental sex determination linked to early growth rate. We discuss theses findings in the light of the producer-scrounger foraging game. PMID:26861178

  5. Genetic variances and covariances of aerobic metabolic rates in laboratory mice

    PubMed Central

    Wone, Bernard; Sears, Michael W.; Labocha, Marta K.; Donovan, Edward R.; Hayes, Jack P.

    2009-01-01

    The genetic variances and covariances of traits must be known to predict how they may respond to selection and how covariances among them might affect their evolutionary trajectories. We used the animal model to estimate the genetic variances and covariances of basal metabolic rate (BMR) and maximal metabolic rate (MMR) in a genetically heterogeneous stock of laboratory mice. Narrow-sense heritability (h2) was approximately 0.38 ± 0.08 for body mass, 0.26 ± 0.08 for whole-animal BMR, 0.24 ± 0.07 for whole-animal MMR, 0.19 ± 0.07 for mass-independent BMR, and 0.16 ± 0.06 for mass-independent MMR. All h2 estimates were significantly different from zero. The phenotypic correlation of whole animal BMR and MMR was 0.56 ± 0.02, and the corresponding genetic correlation was 0.79 ± 0.12. The phenotypic correlation of mass-independent BMR and MMR was 0.13 ± 0.03, and the corresponding genetic correlation was 0.72 ± 0.03. The genetic correlations of metabolic rates were significantly different from zero, but not significantly different from one. A key assumption of the aerobic capacity model for the evolution of endothermy is that BMR and MMR are linked. The estimated genetic correlation between BMR and MMR is consistent with that assumption, but the genetic correlation is not so high as to preclude independent evolution of BMR and MMR. PMID:19656796

  6. Metabolism and alkylating activity of thio-TEPA in rat liver slice incubation.

    PubMed

    Hagen, B; Dale, O; Neverdal, G; Azri, S; Nilsen, O G

    1991-01-01

    Precision-cut rat-liver slices were used to study the metabolism of the alkylating agent N,N',N''-triethylenethiophosphoramide (thio-TEPA). Exposure to high concentrations (1-10 mM) of thio-TEPA for 6 h did not prove to be toxic to the liver slices as indicated by insignificant leakage of potassium from the cells. The time course of the disappearance of thio-TEPA (initial concentration, 5.2 microM) from the buffer during incubation followed first-order kinetics. Formation of N,N'N''-triethylenephosphoramide (TEPA) apparently accounted for the elimination of thio-TEPA. Pretreatment of the rats with phenobarbital significantly increased the reaction rate. Conversely, pretreatment with the cytochrome P-450 inhibitor allylisopropylacetamide significantly reduced the metabolic rate. The elimination of thio-TEPA and formation of TEPA occurred independently of thio-TEPA concentration, which ranged from 5.2 to 104 microM. Thio-TEPA's oxo-analogue TEPA, which was not further metabolized, was the only metabolite identified. However, a significantly time-related increase in 4-(nitrobenzyl)-pyridine (NBP) alkylating activity was observed following incubation of liver slices with thio-TEPA but not after their incubation with TEPA. This may possibly indicate the formation of unknown active metabolites. PMID:1718615

  7. Improving consumption rate estimates by incorporating wild activity into a bioenergetics model.

    PubMed

    Brodie, Stephanie; Taylor, Matthew D; Smith, James A; Suthers, Iain M; Gray, Charles A; Payne, Nicholas L

    2016-04-01

    Consumption is the basis of metabolic and trophic ecology and is used to assess an animal's trophic impact. The contribution of activity to an animal's energy budget is an important parameter when estimating consumption, yet activity is usually measured in captive animals. Developments in telemetry have allowed the energetic costs of activity to be measured for wild animals; however, wild activity is seldom incorporated into estimates of consumption rates. We calculated the consumption rate of a free-ranging marine predator (yellowtail kingfish, Seriola lalandi) by integrating the energetic cost of free-ranging activity into a bioenergetics model. Accelerometry transmitters were used in conjunction with laboratory respirometry trials to estimate kingfish active metabolic rate in the wild. These field-derived consumption rate estimates were compared with those estimated by two traditional bioenergetics methods. The first method derived routine swimming speed from fish morphology as an index of activity (a "morphometric" method), and the second considered activity as a fixed proportion of standard metabolic rate (a "physiological" method). The mean consumption rate for free-ranging kingfish measured by accelerometry was 152 J·g(-1)·day(-1), which lay between the estimates from the morphometric method (μ = 134 J·g(-1)·day(-1)) and the physiological method (μ = 181 J·g(-1)·day(-1)). Incorporating field-derived activity values resulted in the smallest variance in log-normally distributed consumption rates (σ = 0.31), compared with the morphometric (σ = 0.57) and physiological (σ = 0.78) methods. Incorporating field-derived activity into bioenergetics models probably provided more realistic estimates of consumption rate compared with the traditional methods, which may further our understanding of trophic interactions that underpin ecosystem-based fisheries management. The general methods used to estimate active metabolic rates of free-ranging fish

  8. Do great tits (Parus major) suppress basal metabolic rate in response to increased perceived predation danger? A field experiment.

    PubMed

    Mathot, Kimberley J; Abbey-Lee, Robin N; Kempenaers, Bart; Dingemanse, Niels J

    2016-10-01

    Several studies have shown that individuals with higher metabolic rates (MRs) feed at higher rates and are more willing to forage in the presence of predators. This increases the acquisition of resources, which in turn, may help to sustain a higher MR. Elevated predation danger may be expected to result in reduced MRs, either as a means of allowing for reduced feeding and risk-taking, or as a consequence of adaptively reducing intake rates via reduced feeding and/or risk-taking. We tested this prediction in free-living great tits (Parus major) using a playback experiment to manipulate perceived predation danger. There was evidence that changes in body mass and BMR differed as a function of treatment. In predator treatment plots, great tits tended to reduce their body mass, a commonly observed response in birds to increased predation danger. In contrast, birds from control treatment plots showed no overall changes in body mass. There was also evidence that great tits from control treatment plots increased their basal metabolic rate (BMR) over the course of the experiment, presumably due to decreasing ambient temperatures over the study period. However, there was no evidence for changes in BMR for birds from predator treatment plots. Although the directions of these results are consistent with the predicted directions of effects, the effects sizes and confidence intervals yield inconclusive support for the hypothesis that great tits would adaptively suppress BMR in response to increased perceived predation risk. The effect size observed in the present study was small (~1%) and would not be expected to result in substantive reductions in feeding rate and/or risk-taking. Whether or not ecological conditions that generate greater energetic stress (e.g. lower food availability, lower ambient temperatures) could produce an effect that produces biologically meaningful reductions in feeding activity and/or risk-taking remains an open question. PMID:27342428

  9. Resting Metabolic Rate Is Positively Correlated with Parental Care Behavior in a Dwarf Hamster.

    PubMed

    Clavijo-Baquet, Sabrina; Cumplido, Nicolás; Bozinovic, Francisco

    2016-04-01

    Endotherms maintain high and constant body temperatures through the production and maintenance of metabolic heat. Defining the evolutionary history of these thermal adaptations and the selective factors responsible for the evolution of endothermy despite its high metabolic costs have been elusive and controversial topics in evolutionary biology. In this sense, several models have been proposed to explain the evolution of endothermy. Among them, the parental care model explains the increase in resting metabolic rate (RMR) by the action of natural selection favoring parental care. Thus, a positive relationship between parental care behavior and RMR is predicted. However, there appears to be no or little previous work experimentally testing this relationship. In the study presented here, RMR was increased through l-tyrosine injections and parental care behavior was measured. This treatment allowed us to test the relationship between RMR level and parental care behavior in a dwarf hamster. It was found that increased RMR enhanced male parental care. Specifically, male latency time, or the time until contacting and picking up their pups, decreased when RMR increased. This study demonstrates the positive relationship between RMR and the allocation of resources to parental care. This study supports the main assumption of Kotejas's parental care model and accepts Koteja's proposed explanation for the evolution of endothermy as a plausible hypothesis. PMID:27121541

  10. Effects of Time-Release Caffeine Containing Supplement on Metabolic Rate, Glycerol Concentration and Performance

    PubMed Central

    Gonzalez, Adam M.; Hoffman, Jay R.; Wells, Adam J.; Mangine, Gerald T.; Townsend, Jeremy R.; Jajtner, Adam R.; Wang, Ran; Miramonti, Amelia A.; Pruna, Gabriel J.; LaMonica, Michael B.; Bohner, Jonathan D.; Hoffman, Mattan W.; Oliveira, Leonardo P.; Fukuda, David H.; Fragala, Maren S.; Stout, Jeffrey R.

    2015-01-01

    This study compared caffeine pharmacokinetics, glycerol concentrations, metabolic rate, and performance measures following ingestion of a time-release caffeine containing supplement (TR-CAF) versus a regular caffeine capsule (CAF) and a placebo (PL). Following a double-blind, placebo-controlled, randomized, cross-over design, ten males (25.9 ± 3.2 y) who regularly consume caffeine ingested capsules containing either TR-CAF, CAF, or PL. Blood draws and performance measures occurred at every hour over an 8-hour period. Plasma caffeine concentrations were significantly greater (p < 0.05) in CAF compared to TR-CAF during hours 2-5 and significantly greater (p = 0.042) in TR-CAF compared to CAF at hour 8. There were no significant differences between trials in glycerol concentrations (p = 0.86) or metabolic measures (p = 0.17-0.91). Physical reaction time was significantly improved for CAF at hour 5 (p=0.01) compared to PL. Average upper body reaction time was significantly improved for CAF and TR-CAF during hours 1-4 (p = 0.04 and p = 0.01, respectively) and over the 8-hour period (p = 0.04 and p = 0.001, respectively) compared to PL. Average upper body reaction time was also significantly improved for TR-CAF compared to PL during hours 5-8 (p = 0.004). TR-CAF and CAF showed distinct pharmacokinetics yielding modest effects on reaction time, yet did not alter glycerol concentration, metabolic measures, or other performance measures. Key points Time-release caffeine and regular caffeine showed distinct pharmacokinetics over an 8-hour period following ingestion. Time-release caffeine and regular caffeine yielded modest effects on reaction time over an 8-hour period following ingestion. Time-release caffeine and regular caffeine did not alter glycerol concentration, metabolic measures, or other performance measures over an 8-hour period following ingestion. PMID:25983581

  11. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18

    SciTech Connect

    Baxter, L.R. Jr.; Phelps, M.E.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.; Selin, C.E.; Sumida, R.M.

    1985-05-01

    Cerebral metabolic rates for glucose were examined in patients with unipolar depression (N = 11), bipolar depression (N = 5), mania (N = 5), bipolar mixed states (N = 3), and in normal controls (N = 9) using positron emission tomography and fluorodeoxyglucose F 18. All subjects were studied supine under ambient room conditions with eyes open. Bipolar depressed and mixed patients had supratentorial whole brain glucose metabolic rates that were significantly lower than those of the other comparison groups. The whole brain metabolic rates for patients with bipolar depression increased going from depression or a mixed state to a euthymic or manic state. Patients with unipolar depression showed a significantly lower ratio of the metabolic rate of the caudate nucleus, divided by that of the hemisphere as a whole, when compared with normal controls and patients with bipolar depression.

  12. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    USGS Publications Warehouse

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  13. Cerebral metabolic rate of glucose computed by Bayes regression of deoxyglucose PET scans

    SciTech Connect

    Wilson, P.D.; Links, J.M.; Huang, S.C.; Douglass, K.H.; Wong, D.F.; Frost, J.J.; Wagner, H.N. Jr.

    1984-01-01

    Local cerebral metabolic rate of glucose (LCMRG) is currently measured using a PET scan of deoxyglucose at 40-60 min postinjection and computed using assumed mean normal rate constants. While the method is accurate in normal tissue, another study showed that for ischemic regions the use of mean normal rate constants underestimated LCMRG by 50%. The authors used computer simulation to study the use of Bayes Regression, a useful method for combining prior information with patient data to estimate the patient's LCMRG. Prior information (means and variances of rate constants in the population) is combined with the patient's data with weighting factors determined by the variances of the rate constants in the population and the noise in the data. The authors simulated noisy data from both a normal and an ischemic population. Each simulation was based on different randomly-selected rate constants from the parent population. They compared the current method with Bayes Regression in each of 100 simulated experiments in each of 3 cases: (1) normal patient, normal prior; (2) ischemic patient, ischemic prior; (3) ischemic patient, normal prior. In patients with ischemic, Bayes Regression appears to provide truer estimates of LCMRG.

  14. Effect of Grain Size on Bacterial Penetration, Reproduction, and Metabolic Activity in Porous Glass Bead Chambers

    PubMed Central

    Sharma, Pramod K.; McInerney, Michael J.

    1994-01-01

    We determined the effects of grain size and nutritional conditions on the penetration rate and metabolic activity of Escherichia coli strains in anaerobic, nutrient-saturated chambers packed with different sizes of glass beads (diameters, 116 to 767 μm) under static conditions. The chambers had nearly equal porosities (38%) but different calculated pore sizes (range, 10 to 65 μm). Motile strains always penetrated faster than nonmotile strains, and nutrient conditions that resulted in faster growth rates (fermentative conditions versus nitrate-respiring conditions) resulted in faster penetration rates for both motile and nonmotile strains for all of the bead sizes tested. The penetration rate of nonmotile strains increased linearly when bead size was increased, while the penetration rate of motile strains became independent of the bead size when beads having diameters of 398 μm or greater were used. The rate of H2 production and the final amount of H2 produced decreased when bead size was decreased. However, the final protein concentrations were similar in chambers packed with 116-, 192-, and 281-μm beads and were only slightly higher in chambers packed with 398- and 767-μm beads. Our data indicated that conditions that favored faster growth rates also resulted in faster penetration times and that the lower penetration rates observed in chambers packed with small beads were due to restriction of bacterial activity in the small pores. The large increases in the final amount of hydrogen produced without corresponding increases in the final amount of protein made indicated that metabolism became uncoupled from cell mass biosynthesis as bead size increased, suggesting that pore size influenced the efficiency of substrate utilization. PMID:16349250

  15. Physical activity disparities by socioeconomic status among metabolic syndrome patients: The Fifth Korea National Health and Nutrition Examination Survey.

    PubMed

    Lee, Hyo; Kim, Byung-Hoon

    2016-02-01

    Physical activity plays an important role in preventing further progression of metabolic syndrome conditions to cardiovascular disease and type-2 diabetes. This study investigated physical activity disparities by socioeconomic status among metabolic syndrome patients. The fifth Korea National Health and Nutrition Examination Survey (2010-2012) data were analyzed (n=19,831). A revised definition of the US National Cholesterol Education Program Adult Treatment Panel III was used for screening metabolic syndrome patients. Using International Physical Activity Questionnaire, physical activity adherence was defined as participating in 150+ minutes of moderate-intensity physical activity, 75+ minutes of vigorous-intensity physical activity, or an equivalent combination of moderate-to vigorous-intensity physical activity per week. Socioeconomic status was measured by level of education and house-hold income. Among metabolic syndrome patients, physical activity adherence rate of first (lowest), second, third, and fourth quartile house-hold income group were 28.31% (95% confidence interval [CI], 26.14-30.28%), 34.68% (95% CI, 32.71-36.70), 37.44% (95% CI, 35.66-39.25), and 43.79% (95% CI, 41.85-45.75). Physical activity adherence rate of groups with elementary or lower, middle-school, high-school, and college or higher education degree were 25.17% (95% CI, 22.95-27.54), 38.2% (95% CI, 35.13-41.00), 39.60% (95% CI, 38.24-41.77), and 36.89% (95% CI, 35.77-38.03), respectively. This study found that physical activity adherence rate was lower in socioeconomically disadvantaged metabolic syndrome patients, which may aggravate health inequity status of Korean society. PMID:26933654

  16. The effects of hyperammonemia in learning and brain metabolic activity.

    PubMed

    Arias, Natalia; Fidalgo, Camino; Felipo, Vicente; Arias, Jorge L

    2014-03-01

    Ammonia is thought to be central in the development of hepatic encephalopathy. However, the specific relation of ammonia with brain energy depletions and learning has not been studied. Our work attempts to reproduce an increase in rat cerebral ammonia level, study the hyperamonemic animals' performance of two learning tasks, an allocentric (ALLO) and a cue guided (CG) task, and elucidate the contribution of hyperammonemia to the differential energy requirements of the brain limbic system regions involved in these tasks. To assess these goals, four groups of animals were used: a control (CHA) CG group (n = 10), a CHA ALLO group (n = 9), a hyperammonemia (HA) CG group (n = 7), and HA ALLO group (n = 8). Oxidative metabolism of the target brain regions were assessed by histochemical labelling of cytochrome oxidase (C.O.). The behavioural results revealed that the hyperammonemic rats were not able to reach the behavioural criterion in either of the two tasks, in contrast to the CHA groups. The metabolic brain consumption revealed increased C.O. activity in the anterodorsal thalamus when comparing the HA ALLO group with the CHA ALLO group. Significant differences between animals trained in the CG task were observed in the prelimbic, infralimbic, parietal, entorhinal and perirhinal cortices, the anterolateral and anteromedial striatum, and the basolateral and central amygdala. Our findings may provide fresh insights to reveal how the differential damage to the brain limbic structures involved in these tasks differs according to the degree of task difficulty. PMID:24415107

  17. Standard metabolic rate is associated with gestation duration, but not clutch size, in speckled cockroaches Nauphoeta cinerea.

    PubMed

    Schimpf, Natalie G; Matthews, Philip G D; White, Craig R

    2012-12-15

    Metabolic rate varies significantly between individuals, and these differences persist even when the wide range of biotic and abiotic factors that influence metabolism are accounted for. It is important to understand the life history implications of variation in metabolic rate, but they remain poorly characterised despite a growing body of work examining relationships between metabolism and a range of traits. In the present study we used laboratory-bred families (one sire to three dams) of Nauphoeta cinerea (Olivier) (speckled cockroaches) to examine the relationship between standard metabolic rate (SMR) and reproductive performance (number of offspring and gestation duration). We show that SMR is negatively associated with female gestation duration. Age at mating is negatively associated with gestation duration for females, and mass is negatively associated with the average gestation duration of the females a male was mated with. In addition to the results in the current literature, the results from the present study suggest that the association between metabolism and life history is more complex than simple relationships between metabolism and various fitness traits. Future work should consider longitudinal, ontogenetic as well as selective and quantitative genetic breeding approaches to fully examine the associations between metabolism and fitness. PMID:23259052

  18. Standard metabolic rate is associated with gestation duration, but not clutch size, in speckled cockroaches Nauphoeta cinerea

    PubMed Central

    Schimpf, Natalie G.; Matthews, Philip G. D.; White, Craig R.

    2012-01-01

    Summary Metabolic rate varies significantly between individuals, and these differences persist even when the wide range of biotic and abiotic factors that influence metabolism are accounted for. It is important to understand the life history implications of variation in metabolic rate, but they remain poorly characterised despite a growing body of work examining relationships between metabolism and a range of traits. In the present study we used laboratory-bred families (one sire to three dams) of Nauphoeta cinerea (Olivier) (speckled cockroaches) to examine the relationship between standard metabolic rate (SMR) and reproductive performance (number of offspring and gestation duration). We show that SMR is negatively associated with female gestation duration. Age at mating is negatively associated with gestation duration for females, and mass is negatively associated with the average gestation duration of the females a male was mated with. In addition to the results in the current literature, the results from the present study suggest that the association between metabolism and life history is more complex than simple relationships between metabolism and various fitness traits. Future work should consider longitudinal, ontogenetic as well as selective and quantitative genetic breeding approaches to fully examine the associations between metabolism and fitness. PMID:23259052

  19. Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes.

    PubMed

    Rummer, Jodie L; Binning, Sandra A; Roche, Dominique G; Johansen, Jacob L

    2016-01-01

    Respirometry is frequently used to estimate metabolic rates and examine organismal responses to environmental change. Although a range of methodologies exists, it remains unclear whether differences in chamber design and exercise (type and duration) produce comparable results within individuals and whether the most appropriate method differs across taxa. We used a repeated-measures design to compare estimates of maximal and standard metabolic rates (MMR and SMR) in four coral reef fish species using the following three methods: (i) prolonged swimming in a traditional swimming respirometer; (ii) short-duration exhaustive chase with air exposure followed by resting respirometry; and (iii) short-duration exhaustive swimming in a circular chamber. We chose species that are steady/prolonged swimmers, using either a body-caudal fin or a median-paired fin swimming mode during routine swimming. Individual MMR estimates differed significantly depending on the method used. Swimming respirometry consistently provided the best (i.e. highest) estimate of MMR in all four species irrespective of swimming mode. Both short-duration protocols (exhaustive chase and swimming in a circular chamber) produced similar MMR estimates, which were up to 38% lower than those obtained during prolonged swimming. Furthermore, underestimates were not consistent across swimming modes or species, indicating that a general correction factor cannot be used. However, SMR estimates (upon recovery from both of the exhausting swimming methods) were consistent across both short-duration methods. Given the increasing use of metabolic data to assess organismal responses to environmental stressors, we recommend carefully considering respirometry protocols before experimentation. Specifically, results should not readily be compared across methods; discrepancies could result in misinterpretation of MMR and aerobic scope. PMID:27382471

  20. Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes

    PubMed Central

    Rummer, Jodie L.; Binning, Sandra A.; Roche, Dominique G.; Johansen, Jacob L.

    2016-01-01

    Respirometry is frequently used to estimate metabolic rates and examine organismal responses to environmental change. Although a range of methodologies exists, it remains unclear whether differences in chamber design and exercise (type and duration) produce comparable results within individuals and whether the most appropriate method differs across taxa. We used a repeated-measures design to compare estimates of maximal and standard metabolic rates (MMR and SMR) in four coral reef fish species using the following three methods: (i) prolonged swimming in a traditional swimming respirometer; (ii) short-duration exhaustive chase with air exposure followed by resting respirometry; and (iii) short-duration exhaustive swimming in a circular chamber. We chose species that are steady/prolonged swimmers, using either a body–caudal fin or a median–paired fin swimming mode during routine swimming. Individual MMR estimates differed significantly depending on the method used. Swimming respirometry consistently provided the best (i.e. highest) estimate of MMR in all four species irrespective of swimming mode. Both short-duration protocols (exhaustive chase and swimming in a circular chamber) produced similar MMR estimates, which were up to 38% lower than those obtained during prolonged swimming. Furthermore, underestimates were not consistent across swimming modes or species, indicating that a general correction factor cannot be used. However, SMR estimates (upon recovery from both of the exhausting swimming methods) were consistent across both short-duration methods. Given the increasing use of metabolic data to assess organismal responses to environmental stressors, we recommend carefully considering respirometry protocols before experimentation. Specifically, results should not readily be compared across methods; discrepancies could result in misinterpretation of MMR and aerobic scope. PMID:27382471

  1. Developmental and Immediate Thermal Environments Shape Energetic Trade-Offs, Growth Efficiency, and Metabolic Rate in Divergent Life-History Ecotypes of the Garter Snake Thamnophis elegans.

    PubMed

    Gangloff, Eric J; Vleck, David; Bronikowski, Anne M

    2015-01-01

    Interactions at all levels of ecology are influenced by the rate at which energy is obtained, converted, and allocated. Trade-offs in energy allocation within individuals in turn form the basis for life-history theory. Here we describe tests of the influences of temperature, developmental environment, and genetic background on measures of growth efficiency and resting metabolic rate in an ectothermic vertebrate, the western terrestrial garter snake (Thamnophis elegans). After raising captive-born snakes from divergent life-history ecotypes on thermal regimes mimicking natural habitat differences (2 × 2 experimental design of ecotype and thermal environment), we measured oxygen consumption rate at temperatures spanning the activity range of this species. We found ecotypic differences in the reaction norms of snakes across the measured range of temperatures and a temperature-dependent allometric relationship between mass and metabolic rate predicted by the metabolic-level boundaries hypothesis. Additionally, we present evidence of within-individual trade-offs between growth efficiency and resting metabolic rate, as predicted by classic life-history theory. These observations help illuminate the ultimate and proximate factors that underlie variation in these interrelated physiological and life-history traits. PMID:26658251

  2. Unwinding activity of cold shock proteins and RNA metabolism.

    PubMed

    Phadtare, Sangita

    2011-01-01

    Temperature downshift from 37 °C to 15 °C results in the exertion of cold shock response in Escherichia coli, which induces cold shock proteins, such as CsdA. Previously, we showed that the helicase activity of CsdA is critical for its function in the cold acclimation of cells and its primary role is mRNA degradation. Only RhlE (helicase), CspA (RNA chaperone) and RNase R (exoribonuclease) were found to complement the cold shock function of CsdA. RNase R has two independent activities, helicase and ribonuclease, only helicase being essential for the functional complementation of CsdA. Here, we discuss the significance of above findings as these emphasize the importance of the unwinding activity of cold-shock-inducible proteins in the RNA metabolism at low temperature, which may be different than that at 37 °C. It requires assistance of proteins to destabilize the secondary structures in mRNAs that are stabilized upon temperature downshift, hindering the activity of ribonucleases. PMID:21445001

  3. Scaling of metabolic rate on body mass in small mammals at 2.0 g

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, A. H.

    1983-01-01

    It is postulated that augmentation of gravitational loading should produce a shift in the classic Kleiber mammalian allometric relationship between metabolic rate and total body mass by an increase in both these parameters. Oxygen consumption rate and body mass measurements of 10 male rabbits 8 months of age were obtained initially for 1.0 g, and then over a 9-week period of chronic centrifugation at 2.0 g. Analysis of covariance showed that the positioning constant at 2.0 g is increased by 17 percent from that at 1.0 g at the P less than 0.001 level, and the exponent is increased by 8 percent at the P = 0.008 level. It is concluded that abatement of gravitational loading in spaceflight will result in a lowering of both allometric parameters.

  4. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris)

    USGS Publications Warehouse

    Geluso, K.; Hayes, J.P.

    1999-01-01

    European starlings (Sturnus vulgaris) were fed either a low- or high-quality diet to test the effects of dietary quality on basal metabolic rate (BMR) and internal morphology. Basal metabolic rate did not differ significantly between the two dietary groups, but internal morphology differed greatly. Starlings fed the low-quality diet had heavier gastrointestinal tracts, gizzards, and livers. Starlings fed the high-quality diet had heavier breast muscles. Starlings on the low-quality diet maintained mass, while starlings on the high-quality diet gained mass. Dry matter digestibility and energy digestibility were lower for starlings fed the low-quality diet, and their food and water intake were greater than starlings on the high-quality diet. The lack of dietary effect on BMR may be the result of increased energy expenditure of digestive organs paralleling a reduction of energy expenditure of organs and tissues not related to digestion (i.e., skeletal muscle). This trade-off in energy allocation among organs suggests a mechanism by which organisms may alter BMR in response to a change in seasonal variation in food availability.

  5. The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals.

    PubMed

    White, Craig R

    2003-01-01

    Two competing but nonexclusive hypotheses to explain the reduced basal metabolic rate (BMR) of mammals that live and forage underground (fossorial species) are examined by comparing this group with burrowing mammals that forage on the surface (semifossorial species). These hypotheses suggest that the low BMR of fossorial species either compensates for the enormous energetic demands of subterranean foraging (the cost-of-burrowing hypothesis) or prevents overheating in closed burrow systems (the thermal-stress hypothesis). Because phylogentically informed allometric analysis showed that arid burrowing mammals have a significantly lower BMR than mesic ones, fossorial and semifossorial species were compared within these groups. The BMRs of mesic fossorial and semifossorial mammals could not be reliably distinguished, nor could the BMRs of large (>77 g) arid fossorial and semifossorial mammals. This finding favours the thermal-stress hypothesis, because the groups appear to have similar BMRs despite differences in foraging costs. However, in support of the cost-of-burrowing hypothesis, small (<77 g) arid fossorial mammals were found to have a significantly lower BMR than semifossorial mammals of the similar size. Given the high mass-specific metabolic rates of small animals, they are expected to be under severe energy and water stress in arid environments. Under such conditions, the greatly reduced BMR of small fossorial species may compensate for the enormous energetic demands of subterranean foraging. PMID:12695993

  6. Evolution of basal metabolic rate in bank voles from a multidirectional selection experiment

    PubMed Central

    Sadowska, Edyta T.; Stawski, Clare; Rudolf, Agata; Dheyongera, Geoffrey; Chrząścik, Katarzyna M.; Baliga-Klimczyk, Katarzyna; Koteja, Paweł

    2015-01-01

    A major theme in evolutionary and ecological physiology of terrestrial vertebrates encompasses the factors underlying the evolution of endothermy in birds and mammals and interspecific variation of basal metabolic rate (BMR). Here, we applied the experimental evolution approach and compared BMR in lines of a wild rodent, the bank vole (Myodes glareolus), selected for 11 generations for: high swim-induced aerobic metabolism (A), ability to maintain body mass on a low-quality herbivorous diet (H) and intensity of predatory behaviour towards crickets (P). Four replicate lines were maintained for each of the selection directions and an unselected control (C). In comparison to C lines, A lines achieved a 49% higher maximum rate of oxygen consumption during swimming, H lines lost 1.3 g less mass in the test with low-quality diet and P lines attacked crickets five times more frequently. BMR was significantly higher in A lines than in C or H lines (60.8, 56.6 and 54.4 ml O2 h−1, respectively), and the values were intermediate in P lines (59.0 ml O2 h−1). Results of the selection experiment provide support for the hypothesis of a positive association between BMR and aerobic exercise performance, but not for the association of adaptation to herbivorous diet with either a high or low BMR. PMID:25876844

  7. Evolution of basal metabolic rate in bank voles from a multidirectional selection experiment.

    PubMed

    Sadowska, Edyta T; Stawski, Clare; Rudolf, Agata; Dheyongera, Geoffrey; Chrząścik, Katarzyna M; Baliga-Klimczyk, Katarzyna; Koteja, Paweł

    2015-05-01

    A major theme in evolutionary and ecological physiology of terrestrial vertebrates encompasses the factors underlying the evolution of endothermy in birds and mammals and interspecific variation of basal metabolic rate (BMR). Here, we applied the experimental evolution approach and compared BMR in lines of a wild rodent, the bank vole (Myodes glareolus), selected for 11 generations for: high swim-induced aerobic metabolism (A), ability to maintain body mass on a low-quality herbivorous diet (H) and intensity of predatory behaviour towards crickets (P). Four replicate lines were maintained for each of the selection directions and an unselected control (C). In comparison to C lines, A lines achieved a 49% higher maximum rate of oxygen consumption during swimming, H lines lost 1.3 g less mass in the test with low-quality diet and P lines attacked crickets five times more frequently. BMR was significantly higher in A lines than in C or H lines (60.8, 56.6 and 54.4 ml O2 h(-1), respectively), and the values were intermediate in P lines (59.0 ml O2 h(-1)). Results of the selection experiment provide support for the hypothesis of a positive association between BMR and aerobic exercise performance, but not for the association of adaptation to herbivorous diet with either a high or low BMR. PMID:25876844

  8. Weight loss and weight cycling in amateur wrestlers: implications for performance and resting metabolic rate.

    PubMed

    Horswill, C A

    1993-09-01

    Amateur wrestlers practice weight loss for ergogenic reasons. The effects of rapid weight loss on aerobic performance are adverse and profound, but the effects of anaerobic performance are equivocal. Anaerobic performance--strength and power--may be the most relevant type of performance to the wrestler. Maintenance of or even small decrements in anaerobic performance may translate into improvements in performance relative to the weight class, the factor by which wrestlers are matched for competition. During the recovery period between the official weigh-in and competition, wrestlers achieve at least partial nutritional recovery, which appears to benefit performance. Successive bouts of (a) weight loss to make weight and (b) recovery for performance lead to weight cycling. There is speculation that weight cycling may contribute to chronic glycogen depletion, reductions in fat-free weight, a decrease in resting metabolic rate, and an increase in body fat. The latter two would augment the difficulty of losing weight for subsequent weigh-ins. Most research indicates that the suppressed resting metabolic rate with weight loss in wrestlers appears to be transient, but subsequent research is needed for confirmation. PMID:8220391

  9. Molecular Analysis of Rates of Metal Reduction andMetabolic State of Geobacter Species During in situ Uranium Bioremediation

    SciTech Connect

    Lovley, Derek R.

    2005-06-01

    This report summarizes progress from June 2004 through April 2005. Research focused on monitoring the in situ rates of metabolism and the metabolic state of Geobacteraceae during in situ bioremediation of uranium at the field study site in Rifle, Colorado. As detailed below, it was demonstrated for the first time that it is possible to quantify in situ levels of transcripts for key metabolic genes and from this information infer not only rates of electron transfer to metals, but also nutrient limitations which might be limiting this process.

  10. Estimation of dynamic metabolic activity in micro-tissue cultures from sensor recordings with an FEM model.

    PubMed

    Pfister, Cornelia; Forstmeier, Christian; Biedermann, Johannes; Schermuly, Julia; Demmel, Franz; Wolf, Peter; Kaspers, Bernd; Brischwein, Martin

    2016-05-01

    We estimated the dynamic cell metabolic activity and the distribution of the pH value and oxygen concentration in tissue samples cultured in vitro by using real-time sensor records and a numerical simulation of the underlying reaction-diffusion processes. As an experimental tissue model, we used chicken spleen slices. A finite element method model representing the biochemical processes and including the relevant sensor data was set up. By fitting the calculated results to the measured data, we derived the spatiotemporal values of the pH value, the oxygen concentration and the absolute metabolic activity (extracellular acidification and oxygen uptake rate) of the samples. Notably, the location of the samples in relation to the sensors has a great influence on the detectable metabolic rates. The long-term vitality of the tissue samples strongly depends on their size. We further discuss the benefits and limitations of the model. PMID:26296800

  11. Control of macrophage metabolism and activation by mTOR and Akt signaling

    PubMed Central

    Covarrubias, Anthony J.; Aksoylar, H. Ibrahim; Horng, Tiffany

    2015-01-01

    Macrophages are pleiotropic cells that assume a variety of functions depending on their tissue of residence and tissue state. They maintain homeostasis as well as coordinate responses to stresses such as infection and metabolic challenge. The ability of macrophages to acquire diverse, context-dependent activities requires their activation (or polarization) to distinct functional states. While macrophage activation is well understood at the level of signal transduction and transcriptional regulation, the metabolic underpinnings are poorly understood. Importantly, emerging studies indicate that metabolic shifts play a pivotal role in control of macrophage activation and acquisition of context-dependent effector activities. The signals that drive macrophage activation impinge on metabolic pathways, allowing for coordinate control of macrophage activation and metabolism. Here we discuss how mTOR and Akt, major metabolic regulators and targets of such activation signals, control macrophage metabolism and activation. Dysregulated macrophage activities contribute to many diseases, including infectious, inflammatory, and metabolic diseases and cancer, thus a better understanding of metabolic control of macrophage activation could pave the way to the development of new therapeutic strategies. PMID:26360589

  12. BMP7 drives human adipogenic stem cells into metabolically active beige adipocytes

    PubMed Central

    Okla, Meshail; Ha, Jung-Heun; Temel, Ryan E.; Chung, Soonkyu

    2014-01-01

    Adult humans have a substantial amount of inducible-brown (or beige) fat, which is associated with increased energy expenditure and reduced weight gain via thermogenesis. Despite the identification of key regulators of beige adipogenesis, impacts of dietary factors on adaptive thermogenesis are largely unknown, partly due to a lack of validated human cell models. Bone morphogenetic protein 7 (BMP7) is known to promote brown adipogenesis in rodent and human progenitor cells. However, controversy still surrounds the cellular identity in BMP7-mediated transition of white to brown adipocytes. The aim of this study is to confirm BMP7-derived human adipocytes as a relevant in vitro model of human beige adipocyte by verifying the cellular lineage and metabolic activity. In this study, we hypothesized that pre-exposure of stromal vascular (SV) fraction of primary human adipogenic precursor cells (hASC) to BMP7 would convert metabolically active brown adipocytes. Our results showed that exposure of hASC to human BMP7 was associated with significant escalation of 1) UCP1 gene expression, a signature gene of brown adipocytes, 2) beige specific marker gene expression (i.e., CD137 and TMEM26), 3) glucose and fatty acid uptake, and 4) basal and cAMP-stimulated oxygen consumption rate compared to white adipocyte control. Taken together, we demonstrated that BMP7 mediates conversion of hASC into metabolically active beige adipocytes. By confirming the cellular identity and metabolic activity, this BMP7-induced human beige adipocytes from hASC should aid in the discovery and assessment of bioactive molecules to promote adaptive thermogenesis. PMID:25534037

  13. BMP7 drives human adipogenic stem cells into metabolically active beige adipocytes.

    PubMed

    Okla, Meshail; Ha, Jung-Heun; Temel, Ryan E; Chung, Soonkyu

    2015-02-01

    Adult humans have a substantial amount of inducible-brown (or beige) fat, which is associated with increased energy expenditure and reduced weight gain via thermogenesis. Despite the identification of key regulators of beige adipogenesis, impacts of dietary factors on adaptive thermogenesis are largely unknown, partly due to a lack of validated human cell models. Bone morphogenetic protein 7 (BMP7) is known to promote brown adipogenesis in rodent and human progenitor cells. However, controversy still surrounds the cellular identity in BMP7-mediated transition of white to brown adipocytes. The aim of this study was to confirm BMP7-derived human adipocytes as a relevant in vitro model of human beige adipocyte by verifying the cellular lineage and metabolic activity. In this study, we hypothesized that pre-exposure of the stromal vascular (SV) fraction of primary human adipogenic precursor cells (hASC) to BMP7 would convert metabolically active brown adipocytes. Our results showed that exposure of hASC to human BMP7 was associated with significant escalation of (1) UCP1 gene expression, a signature gene of brown adipocytes, (2) beige specific marker gene expression (i.e., CD137 and TMEM26), (3) glucose and fatty acid uptake, and (4) basal and cAMP-stimulated oxygen consumption rate compared to white adipocyte control. Taken together, we demonstrated that BMP7 mediates conversion of hASC into metabolically active beige adipocytes. By confirming the cellular identity and metabolic activity, this BMP7-induced human beige adipocytes from hASC should aid in the discovery and assessment of bioactive molecules to promote adaptive thermogenesis. PMID:25534037

  14. Muscle Energy Stores and Stroke Rates of Emperor Penguins: Implications for Muscle Metabolism and Dive Performance

    PubMed Central

    Williams, Cassondra L.; Sato, Katsufumi; Shiomi, Kozue; Ponganis, Paul J.

    2016-01-01

    In diving birds and mammals, bradycardia and peripheral vasoconstriction potentially isolate muscle from the circulation. During complete ischemia, ATP production is dependent on the size of the myoglobin oxygen (O2) store and the concentrations of phosphocreatine (PCr) and glycogen (Gly). Therefore, we measured PCr and Gly concentrations in the primary underwater locomotory muscle of emperor penguin and modeled the depletion of muscle O2 and those energy stores under conditions of complete ischemia and a previously determined muscle metabolic rate. We also analyzed stroke rate to assess muscle workload variation during dives and evaluate potential limitations on the model. Measured PCr and Gly concentrations, 20.8 and 54.6 mmol kg−1, respectively, were similar to published values for non-diving animals. The model demonstrated that PCr and Gly provide a large anaerobic energy store, even for dives longer than 20 min. Stroke rate varied throughout the dive profile indicating muscle workload was not constant during dives as was assumed in the model. The stroke rate during the first 30 seconds of dives increased with increased dive depth. In extremely long dives, lower overall stroke rates were observed. Although O2 consumption and energy store depletion may vary during dives, the model demonstrated that PCr and Gly, even at concentrations typical of terrestrial birds and mammals, are a significant anaerobic energy store and can play an important role in the emperor penguin’s ability to perform long dives. PMID:22418705

  15. Changes in the condition factor have an impact on metabolic rate and swimming performance relationships in Atlantic cod (Gadus morhua L.).

    PubMed

    Lapointe, Dominique; Guderley, Helga; Dutil, Jean-Denis

    2006-01-01

    In the field, Atlantic cod face seasonal changes in food availability that in turn lead to changes in condition. To examine the physiological consequences of these changes in condition, we measured routine metabolic rate (RMR) to estimate standard metabolic rate (SMR), active metabolic rate (AMR), aerobic scope, critical swimming speed (Ucrit), cost of transport, sprint performance, time to exhaustion, and postexhaustion metabolic rate (EMR) for 24 Atlantic cod from the Gulf of St. Lawrence. Cod were measured at their initial condition (condition factor of 0.676+/-0.076) and after 9 wk of feeding (condition factor of 0.923+/-0.096). These levels of condition are representative of wild cod in the Gulf of St. Lawrence during the spring and during the fall-early winter, respectively. The improved condition did not change mass-specific SMR. However, mass-specific AMR, aerobic scope, and EMR decreased with the improvement in condition. The various measures of swimming performance were affected differently. Ucrit increased and cost of transport at 1.3 and 1.5 body lengths s(-1) decreased with improved condition, but the cost of transport at 0.3, 0.9, 1.1, 1.7, and 1.9 body lengths s(-1), sprint performance, and time to exhaustion did not change. Hierarchies for the speed at first burst-coast, the proportion of Ucrit supported by burst-coasts, and time to exhaustion were maintained with the improvement in condition. The relationships between metabolic rates and swimming performance differed with condition level, with stronger correlations apparent in the cod at their initial condition. Given the low condition of wild cod stocks, these responses indicate that reduced performance, due to both maintenance of metabolic expenditures and modified swimming capacities, may impair survival under conditions of reduced food availability. PMID:16380932

  16. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    PubMed

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-01

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation. PMID:27052834

  17. Metaproteomic analysis reveals microbial metabolic activities in the deep ocean

    NASA Astrophysics Data System (ADS)

    Wang, Da-Zhi; Xie, Zhang-Xian; Zhang, Shu-Feng; Wang, Ming-Hua; Zhang, Hao; Kong, Ling-Fen; Lin, Lin

    2016-04-01

    The deep sea is the largest habitat on earth and holds many and varied microbial life forms. However, little is known about their metabolic activities in the deep ocean. Here, we characterized protein profiles of particulate (>0.22 μm) and dissolved (between 10 kDa and 0.22 μm) fractions collected from the deep South China Sea using a shotgun proteomic approach. SAR324, Alteromonadales and SAR11 were the most abundant groups, while Prasinophyte contributed most to eukaryotes and cyanophage to viruses. The dominant heterotrophic activity was evidenced by the abundant transporters (33%). Proteins participating in nitrification, methanogenesis, methyltrophy and CO2 fixation were detected. Notably, the predominance of unique cellular proteins in dissolved fraction suggested the presence of membrane structures. Moreover, the detection of translation proteins related to phytoplankton indicated that other process rather than sinking particles might be the downward export of living cells. Our study implied that novel extracellular activities and the interaction of deep water with its overlying water could be crucial to the microbial world of deep sea.

  18. Leucine disposal rate for assessment of amino acid metabolism in maintenance hemodialysis patients

    PubMed Central

    Denny, Gerald B.; Deger, Serpil M.; Chen, Guanhua; Bian, Aihua; Sha, Feng; Booker, Cindy; Kesler, Jaclyn T.; David, Sthuthi; Ellis, Charles D.; Ikizler, T. Alp

    2016-01-01

    Background Protein energy wasting (PEW) is common in patients undergoing maintenance hemodialysis (MHD) and closely associated with poor outcomes. Insulin resistance and associated alterations in amino acid metabolism are potential pathways leading to PEW. We hypothesized that the measurement of leucine disposal during a hyperinsulinemic- euglycemic-euaminoacidemic clamp (HEAC) procedure would accurately measure the sensitivity to insulin for its actions on concomitant carbohydrate and protein metabolism in MHD patients. Methods We examined 35 MHD patients and 17 control subjects with normal kidney function by hyperinsulinemic-euglycemic clamp (HEGC) followed by HEAC clamp procedure to obtain leucine disposal rate (LDR) along with isotope tracer methodology to assess whole body protein turnover. Results The glucose disposal rate (GDR) by HEGC was 5.1 ± 2.1 mg/kg/min for the MHD patients compared to 6.3 ± 3.9 mg/kg/min for the controls (p = 0.38). The LDR during HEAC was 0.09 ± 0.03 mg/kg/min for the MHD patients compared to 0.11 ± 0.05 mg/kg/min for the controls (p = 0.009). The LDR level was correlated with whole body protein synthesis (r = 0.25; p = 0.08), with whole body protein breakdown (r = −0.38 p = 0.01) and net protein balance (r = 0.85; p < 0.001) in the overall study population. Correlations remained significant in subgroup analysis. The GDR derived by HEGC and LDR correlated well in the controls (r = 0.79, p < 0.001), but less so in the MHD patients (r = 0.58, p < 0.001). Conclusions Leucine disposal rate reliably measures amino acid utilization in MHD patients and controls in response to high dose insulin. PMID:27413537

  19. Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo

    PubMed Central

    Salin, Karine; Auer, Sonya K.; Rudolf, Agata M.; Anderson, Graeme J.; Cairns, Andrew G.; Mullen, William; Hartley, Richard C.; Selman, Colin; Metcalfe, Neil B.

    2015-01-01

    There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2. PMID:26382073

  20. Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo.

    PubMed

    Salin, Karine; Auer, Sonya K; Rudolf, Agata M; Anderson, Graeme J; Cairns, Andrew G; Mullen, William; Hartley, Richard C; Selman, Colin; Metcalfe, Neil B

    2015-09-01

    There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2. PMID:26382073

  1. HEALTHY Intervention: Fitness, Physical Activity, and Metabolic Syndrome Results

    PubMed Central

    Jago, Russell; McMurray, Robert G.; Drews, Kimberly L.; Moe, Esther L.; Murray, Tinker; Pham, Trang H.; Venditti, Elizabeth M.; Volpe, Stella L.

    2013-01-01

    Purpose This study aimed to assess the effect of the HEALTHY intervention on the metabolic syndrome (Met-S), fitness, and physical activity levels of US middle-school students. Methods Cluster randomized controlled trial conducted in 42 (21 intervention) US middle schools. Participants were recruited at the start of sixth grade (2006) when baseline assessments were made, with post-assessments made 2.5 yr later at the end of eighth grade (2009). The HEALTHY intervention had four components: 1) improved school food environment, 2) physical activity and eating educational sessions, 3) social marketing, and 4) revised physical education curriculum. Met-S risk factors, 20-m shuttle run (fitness), and self-reported moderate to vigorous physical activity (MVPA) were assessed at each time point. Ethnicity and gender were self-reported. Obesity status (normal weight, overweight, or obese) was also assessed. Results At baseline, 5% of the participants were classified with Met-S, with two-thirds of the males and one-third of the females recording below average baseline fitness levels. Control group participants reported 96 min of MVPA at baseline with 103 min reported by the intervention group. There were no statistically significant (P < 0.05) differences in Met-S, fitness, or MVPA levels at the end of the study after adjustment for baseline values and confounders. There were no differences in any ethnic, obesity, or ethnic × obesity subgroups for either gender. Conclusions The HEALTHY intervention had no effect on the Met-S, fitness, or physical activity levels. Approaches that focus on how to change physical activity, fitness, and Met-S using nonschool or perhaps in addition to school based components need to be developed. PMID:21233778

  2. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    SciTech Connect

    Shlomai, Amir; Shaul, Yosef

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  3. Effects of salinity on metabolic rate and branchial expression of genes involved in ion transport and metabolism in Mozambique tilapia (Oreochromis mossambicus).

    PubMed

    Zikos, Aris; Seale, Andre P; Lerner, Darren T; Grau, E Gordon; Korsmeyer, Keith E

    2014-12-01

    This study investigated the effects of two rearing salinities, and acute salinity transfer, on the energetic costs of osmoregulation and the expression of metabolic and osmoregulatory genes in the gill of Mozambique tilapia. Using automated, intermittent-flow respirometry, measured standard metabolic rates (SMRs) of tilapia reared in seawater (SW, 130 mg O₂ kg⁻¹ h⁻¹) were greater than those reared in fresh water (FW, 103 mg O₂ kg⁻¹ h⁻¹), when normalized to a common mass of 0.05 kg and at 25±1°C. Transfer from FW to 75% SW increased SMR within 18h, to levels similar to SW-reared fish, while transfer from SW to FW decreased SMR to levels similar to FW-reared fish. Branchial gene expression of Na⁺-K⁺-2Cl⁻ cotransporter (NKCC), an indicator of SW-type mitochondria-rich (MR) cells, was positively correlated with SMR, while Na⁺-Cl⁻ cotransporter (NCC), an indicator of FW-type MR cells, was negatively correlated. Principal Components Analysis also revealed that branchial expression of cytochrome c oxidase subunit IV (COX-IV), glycogen phosphorylase (GP), and a putative mitochondrial biogenesis regulator in fish, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), were correlated with a higher SMR, plasma osmolality, and environmental salinity, while expression of glycogen synthase (GS), PGC-1β, and nuclear respiratory factor 1 (NRF-1) had negative correlations. These results suggest that the energetic costs of osmoregulation are higher in SW than in FW, which may be related to the salinity-dependent differences in osmoregulatory mechanisms found in the gills of Mozambique tilapia. PMID:25193178

  4. Predicting metabolic rate during level and uphill outdoor walking using a low-cost GPS receiver.

    PubMed

    de Müllenheim, Pierre-Yves; Dumond, Rémy; Gernigon, Marie; Mahé, Guillaume; Lavenu, Audrey; Bickert, Sandrine; Prioux, Jacques; Noury-Desvaux, Bénédicte; Le Faucheur, Alexis

    2016-08-01

    The objective of this study was to assess the accuracy of using speed and grade data obtained from a low-cost global positioning system (GPS) receiver to estimate metabolic rate (MR) during level and uphill outdoor walking. Thirty young, healthy adults performed randomized outdoor walking for 6-min periods at 2.0, 3.5, and 5.0 km/h and on three different grades: 1) level walking, 2) uphill walking on a 3.7% mean grade, and 3) uphill walking on a 10.8% mean grade. The reference MR [metabolic equivalents (METs) and oxygen uptake (V̇o2)] values were obtained using a portable metabolic system. The speed and grade were obtained using a low-cost GPS receiver (1-Hz recording). The GPS grade (Δ altitude/distance walked) was calculated using both uncorrected GPS altitude data and GPS altitude data corrected with map projection software. The accuracy of predictions using reference speed and grade (actual[SPEED/GRADE]) data was high [R(2) = 0.85, root-mean-square error (RMSE) = 0.68 MET]. The accuracy decreased when GPS speed and uncorrected grade (GPS[UNCORRECTED]) data were used, although it remained substantial (R(2) = 0.66, RMSE = 1.00 MET). The accuracy was greatly improved when the GPS speed and corrected grade (GPS[CORRECTED]) data were used (R(2) = 0.82, RMSE = 0.79 MET). Published predictive equations for walking MR were also cross-validated using actual or GPS speed and grade data when appropriate. The prediction accuracy was very close when either actual[SPEED/GRADE] values or GPS[CORRECTED] values (for level and uphill combined) or GPS speed values (for level walking only) were used. These results offer promising research and clinical applications related to the assessment of energy expenditure during free-living walking. PMID:27402559

  5. Comparison of metabolic rates and feed nutrient digestibility in conventional, genetically improved (GIFT) and genetically male (GMNT) Nile tilapia, Oreochromis niloticus (L.).

    PubMed

    Mamun, Shamsuddin Mohammed; Focken, Ulfert; Becker, Klaus

    2007-09-01

    Various aspects of energy metabolism and feed digestibility were evaluated in two reportedly improved strains of Nile tilapia (Oreochromis niloticus) namely GIFT (genetically improved farmed tilapia) and GMNT (genetically male Nile tilapia) and compared with those of CNT (conventional Nile tilapia). Fish were stocked individually in a computer-controlled respirometer system at 27+/-0.1 degrees C for 10 weeks. Metabolic rates were measured at three different feeding levels: starved, maintenance (3.0 g kg(-0.8) day(-1)) and growth (7.5 g kg(-0.8) day(-1)) using a fishmeal based feed containing TiO2 marker (41% crude protein, 9% crude lipid and 19 kJ (g DM)(-1) gross energy). The standard metabolic rate (SMR), measured at the beginning of the experiment (45.4+/-4.6, 52.4+/-7.7 and 46.8+/-4.6 mg O2 kg(-0.8) h(-1) respectively for GIFT, GMNT and CNT), did not differ significantly between the groups (p<0.05). Similarly, non-significant differences were also observed in the routine metabolic rates under starved, maintenance and growth conditions but the variability was higher in the case of GMNT and CNT than in GIFT. The latter group showed a significantly lower active metabolic rate (145 mg O2 kg(-0.8) h(-1)) compared to GMNT and CNT (232 and 253 mg O2 kg(-0.8) h(-1), respectively) at maintenance feeding level. The specific dynamic action (% offered feed energy) showed no significant differences among the groups. Digestibility coefficients of feed dry matter, protein, lipid and energy for the three tilapia groups also did not differ significantly. Therefore, we concluded that the genetic improvement or modification in the GIFT or GMNT might not upgrade the inherent physiological potential compared to CNT as far as energy metabolism and digestion efficiencies are concerned. PMID:17555997

  6. The correlations of glycated hemoglobin and carbohydrate metabolism parameters with heart rate variability in apparently healthy sedentary young male subjects

    PubMed Central

    Cherkas, Andriy; Abrahamovych, Orest; Golota, Sergii; Nersesyan, Armen; Pichler, Christoph; Serhiyenko, Victoria; Knasmüller, Siegfried; Zarkovic, Neven; Eckl, Peter

    2015-01-01

    Introduction Sedentary lifestyle is a major risk factor for diabetes, cardiovascular and many other age-related diseases. Heart rate variability (HRV) reflects the function of regulatory systems of internal organs and may sensitively indicate early metabolic disturbances. We hypothesize that quantitative and qualitative changes of HRV in young subjects may reflect early metabolic derangements responsible for further development of clinically significant disease. Aim The aim of our study was to determine whether the parameters of carbohydrate metabolism (fasting blood glucose, HBA1c and surrogate insulin sensitivity/resistance indices) correlate with anthropometric data and HRV. Methods The study group consisted of 30 healthy sedentary male subjects aged 20–40, nonsmokers, mainly office and research employees, medical staff and students. Athletes, actively training more than one hour per week, severely obese and men of physical work were excluded from the study. HRV parameters were derived from short term ECG records (five minutes intervals) in supine position and during orthostatic test. Anthropometric data included height, weight, body mass index (BMI), age and body composition (estimation by bioelectric impedance method). The fasting blood glucose, insulin and C-peptide, homeostatic model assessment (HOMA-IR) index and glycated hemoglobin (HbA1c) were evaluated. Linear correlation coefficient (r) was calculated using Statistica 10.0 software. Results and discussion HOMA-IR index correlated positively with body weight, visceral fat and BMI (p=0.047, 0.027 and 0.017 respectively). In supine position pNN50 positively correlated with glucose/insulin ratio (p=0.011) and heart rate with HOMA-IR (p=0.006). In orthostatic test negative correlations of HBA1c with standard deviation, total and low frequency power were determined (p=0.034, 0.400 and 0.403 respectively), which indicates a gradual worsening of functional capacity of cardiovascular system with low

  7. MRI-based methods for quantification of the cerebral metabolic rate of oxygen.

    PubMed

    Rodgers, Zachary B; Detre, John A; Wehrli, Felix W

    2016-07-01

    The brain depends almost entirely on oxidative metabolism to meet its significant energy requirements. As such, the cerebral metabolic rate of oxygen (CMRO2) represents a key measure of brain function. Quantification of CMRO2 has helped elucidate brain functional physiology and holds potential as a clinical tool for evaluating neurological disorders including stroke, brain tumors, Alzheimer's disease, and obstructive sleep apnea. In recent years, a variety of magnetic resonance imaging (MRI)-based CMRO2 quantification methods have emerged. Unlike positron emission tomography - the current "gold standard" for measurement and mapping of CMRO2 - MRI is non-invasive, relatively inexpensive, and ubiquitously available in modern medical centers. All MRI-based CMRO2 methods are based on modeling the effect of paramagnetic deoxyhemoglobin on the magnetic resonance signal. The various methods can be classified in terms of the MRI contrast mechanism used to quantify CMRO2: T2*, T2', T2, or magnetic susceptibility. This review article provides an overview of MRI-based CMRO2 quantification techniques. After a brief historical discussion motivating the need for improved CMRO2 methodology, current state-of-the-art MRI-based methods are critically appraised in terms of their respective tradeoffs between spatial resolution, temporal resolution, and robustness, all of critical importance given the spatially heterogeneous and temporally dynamic nature of brain energy requirements. PMID:27089912

  8. Long-term effects of manipulated natal brood size on metabolic rate in zebra finches.

    PubMed

    Verhulst, Simon; Holveck, Marie-Jeanne; Riebel, Katharina

    2006-09-22

    Long-term effects of developmental conditions on health, longevity and other fitness components in humans are drawing increasing attention. In evolutionary ecology, such effects are of similar importance because of their role in the trade-off between quantity and quality of offspring. The central role of energy consumption is well documented for some long-term health effects in humans (e.g. obesity), but little is known of the long-term effects of rearing conditions on energy requirements later in life. We manipulated the rearing conditions in zebra finches (Taeniopygia guttata) using brood size manipulation and cross-fostering. It has previously been shown in this species that being reared in a large brood has negative fitness consequences, and that such effects are stronger in daughters than in sons. We show that, independent of mass, standard metabolic rate of 1-year-old birds was higher when they had been reared in a large brood, and this is to our knowledge the first demonstration of such an effect. Furthermore, the brood size effect was stronger in daughters than in sons. This suggests that metabolic efficiency may play a role in mediating the long-term fitness consequences of rearing conditions. PMID:17148435

  9. Long-term effects of manipulated natal brood size on metabolic rate in zebra finches

    PubMed Central

    Verhulst, Simon; Holveck, Marie-Jeanne; Riebel, Katharina

    2006-01-01

    Long-term effects of developmental conditions on health, longevity and other fitness components in humans are drawing increasing attention. In evolutionary ecology, such effects are of similar importance because of their role in the trade-off between quantity and quality of offspring. The central role of energy consumption is well documented for some long-term health effects in humans (e.g. obesity), but little is known of the long-term effects of rearing conditions on energy requirements later in life. We manipulated the rearing conditions in zebra finches (Taeniopygia guttata) using brood size manipulation and cross-fostering. It has previously been shown in this species that being reared in a large brood has negative fitness consequences, and that such effects are stronger in daughters than in sons. We show that, independent of mass, standard metabolic rate of 1-year-old birds was higher when they had been reared in a large brood, and this is to our knowledge the first demonstration of such an effect. Furthermore, the brood size effect was stronger in daughters than in sons. This suggests that metabolic efficiency may play a role in mediating the long-term fitness consequences of rearing conditions. PMID:17148435

  10. Metabolic activity of permafrost bacteria below the freezing point

    NASA Technical Reports Server (NTRS)

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.

  11. Metabolic Activity of Permafrost Bacteria below the Freezing Point

    PubMed Central

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and −20°C on the basis of incorporation of 14C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5°C) to 20 days (−10°C) to ca. 160 days (−20°C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature. PMID:10919774

  12. Metabolic signals and innate immune activation in obesity and exercise.

    PubMed

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. PMID:25825956

  13. Positron emission tomography assessment of effects of benzodiazepines on regional glucose metabolic rate in patients with anxiety disorder

    SciTech Connect

    Buchsbaum, M.S.; Wu, J.; Haier, R.; Hazlett, E.; Ball, R.; Katz, M.; Sokolski, K.; Lagunas-Solar, M.; Langer, D.

    1987-06-22

    Patients with generalized anxiety disorder (n = 18) entered a 21-day, double-blind, placebo-controlled random assignment trial of clorazepate. Positron emission tomography with YF-deoxyglucose was carried out before and after treatment. Decreases in glucose metabolic rate in visual cortex and relative increases in the basal ganglia and thalamus were found. A correlation between regional changes in metabolic rate and regional benzodiazepine receptor binding density from other human autopsy studies was observed; brain regions highest in receptor density showed the greatest decrease in rate.

  14. Metabolic activity of sodium, measured by neutron activation, in the hands of patients suffering from bone diseases: concise communication

    SciTech Connect

    Spinks, T.J.; Bewley, D.K.; Paolillo, M.; Vlotides, J.; Joplin, G.F.; Ranicar, A.S.O.

    1980-01-01

    Turnover of sodium in the human hand was studied by neutron activation. Patients suffering from various metabolic abnormalities affecting the skeleton, who were undergoing routine neutron activation for the measurement of calcium, were investigated along with a group of healthy volunteers. Neutron activation labels the sodium atoms simultaneously and with equal probability regardless of the turnover time of individual body compartments. The loss of sodium can be described either by a sum of two exponentials or by a single power function. Distinctions between patients and normal subjects were not apparent from the exponential model but were brought out by the power function. The exponent of time in the latter is a measure of clearance rate. The mean values of this parameter in (a) a group of patients suffering from acromegaly; (b) a group including Paget's disease, osteoporosis, Cushing's disease, and hyperparathyroidism; and (c) a group of healthy subjects, were found to be significantly different from each other.

  15. Metabolic Expenditures During Extravehicular Activity: Spaceflight versus Ground-based Simulation

    NASA Technical Reports Server (NTRS)

    Klein, Jill; Conkin, Johnny; Gernhardt, Michael; Srinivasan, Ramachandra

    2008-01-01

    In general metabolic rates tend to be higher in NBL than in flight: a) Restraint method dependent; b) Significant differences between the NBL and flight for BRT and APFR (buoyancy effects); and c) No significant difference between NBL and flight for free float and SRMS/SSRMS operations. The total metabolic energy expenditure for a given task and for the EVA as a whole are similar between NBL and flight: a) NBL metabolic rates are higher, but training EVAs are constrained to 5 hours; and b) Flight metabolic rates are lower, but the EVAs are typically an hour or more longer in duration. NBL metabolic rates provide a useful operational tool for flight planning. Quantifying differences and similarities between training and flight improves knowledge for preparation of safe and efficient EVAs.

  16. Accuracy of predictive equations for resting metabolic rate in Korean athletic and non-athletic adolescents

    PubMed Central

    Kim, Jae-Hee; Kim, Myung-Hee; Kim, Gwi-Sun; Park, Ji-Sun

    2015-01-01

    BACKGROUND/OBJECTIVES Athletes generally desire changes in body composition in order to enhance their athletic performance. Often, athletes will practice chronic energy restrictions to attain body composition changes, altering their energy needs. Prediction of resting metabolic rates (RMR) is important in helping to determine an athlete's energy expenditure. This study compared measured RMR of athletic and non-athletic adolescents with predicted RMR from commonly used prediction equations to identify the most accurate equation applicable for adolescent athletes. SUBJECTS/METHODS A total of 50 athletes (mean age of 16.6 ± 1.0 years, 30 males and 20 females) and 50 non-athletes (mean age of 16.5 ± 0.5 years, 30 males and 20 females) were enrolled in the study. The RMR of subjects was measured using indirect calorimetry. The accuracy of 11 RMR prediction equations was evaluated for bias, Pearson's correlation coefficient, and Bland-Altman analysis. RESULTS Until more accurate prediction equations are developed, our findings recommend using the formulas by Cunningham (-29.8 kcal/day, limits of agreement -318.7 and +259.1 kcal/day) and Park (-0.842 kcal/day, limits of agreement -198.9 and +196.9 kcal/day) for prediction of RMR when studying male adolescent athletes. Among the new prediction formulas reviewed, the formula included in the fat-free mass as a variable [RMR = 730.4 + 15 × fat-free mass] is paramount when examining athletes. CONCLUSIONS The RMR prediction equation developed in this study is better in assessing the resting metabolic rate of Korean athletic adolescents. PMID:26244075

  17. The interplay between aerobic metabolism and antipredator performance: vigilance is related to recovery rate after exercise

    PubMed Central

    Killen, Shaun S.; Reid, Donald; Marras, Stefano; Domenici, Paolo

    2015-01-01

    When attacked by a predator, fish respond with a sudden fast-start motion away from the threat. Although this anaerobically-powered swimming necessitates a recovery phase which is fueled aerobically, little is known about links between escape performance and aerobic traits such as aerobic scope (AS) or recovery time after exhaustive exercise. Slower recovery ability or a reduced AS could make some individuals less likely to engage in a fast-start response or display reduced performance. Conversely, increased vigilance in some individuals could permit faster responses to an attack but also increase energy demand and prolong recovery after anaerobic exercise. We examined how AS and the ability to recover from anaerobic exercise relates to differences in fast-start escape performance in juvenile golden gray mullet at different acclimation temperatures. Individuals were acclimated to either 18, 22, or 26°C, then measured for standard and maximal metabolic rates and AS using intermittent flow respirometry. Anaerobic capacity and the time taken to recover after exercise were also assessed. Each fish was also filmed during a simulated attack to determine response latency, maximum speed and acceleration, and turning rate displayed during the escape response. Across temperatures, individuals with shorter response latencies during a simulated attack are those with the longest recovery time after exhaustive anaerobic exercise. Because a short response latency implies high preparedness to escape, these results highlight the trade-off between the increased vigilance and metabolic demand, which leads to longer recovery times in fast reactors. These results improve our understanding of the intrinsic physiological traits that generate inter-individual variability in escape ability, and emphasize that a full appreciation of trade-offs associated with predator avoidance and energy balance must include energetic costs associated with vigilance and recovery from anaerobic exercise

  18. Fenitrothion, an organophosphorous insecticide, impairs locomotory function and alters body temperatures in Sminthopsis macroura (Gould 1845) without reducing metabolic rates during running endurance and thermogenic performance tests.

    PubMed

    Story, Paul G; French, Kris; Astheimer, Lee B; Buttemer, William A

    2016-01-01

    Endemic Australian mammal species are exposed to pesticides used for locust control as they occupy the same habitat as the target insect. The authors examined the impact of an ultra-low volume formulation of the organophosphorous insecticide fenitrothion (O,O-dimethyl-O-[3-methyl-4-nitrophenol]-phosphorothioate) on a suite of physiological measures that affect the ability of animals to survive in free-living conditions: locomotory and thermogenic functions, metabolic performance, body mass, and hematocrit and hemoglobin levels. Plasma and brain cholinesterase activity in relation to time since exposure to pesticide were also determined. An orally applied dose of 90 mg kg(-1) fenitrothion reduced running endurance in the stripe-faced dunnart, Sminthopsis macroura, by 80% the day after exposure concomitantly with a reduction of approximately 50% in plasma and 45% in brain acetylcholinesterase activity. These adverse effects disappeared by 10 d postexposure. Maximal metabolic rates reached during running were unaffected by pesticide, as were body mass and hemoglobin and hematocrit levels. Maximal cold-induced metabolic rate (measured as peak 2 min metabolic rate attained during cold exposure), time taken to reach peak metabolic rate on cold exposure, cumulative total oxygen consumed during shivering thermogenesis, and body temperature before and after cold exposure were unaffected by fenitrothion. Dunnart rectal temperatures showed a reduction of up to 5 °C after exposure to fenitrothion but returned to pre-exposure levels by 10 d postdose. Such physiological compromises in otherwise asymptomatic animals demonstrate the importance of considering performance-based measures in pesticide risk assessments. PMID:26184692

  19. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback.

    PubMed

    Ulmer, H V

    1996-05-15

    Efferent motor signals to skeletal muscles concern not only the space/ time pattern of motion, but also the setting of muscular performance and through this the control of the current metabolic rate. For an optimal adjustment of metabolic rate during heavy exercise-e.g. in athletic competitions-a feedback control system must exist, including a programmer that takes into consideration a finishing point (teleoanticipation). The presented experiments, using Borg's scale, indicate the existence and functioning of a system for optimal adjustment of performance during heavy exercise and the relevance of teleoanticipatory effects. Thus motor learning includes not only somatosensory control, but also metabolic control. With regard to migratory birds, such metabolic control would have to operate in the individual as well as in the migrating flock as a whole. PMID:8641377

  20. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals.

    PubMed

    Frasier, Charles C

    2015-01-01

    The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymass) (b) . Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal's characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal's means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals' skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or not MMLE can

  1. An explanation of the relationship between mass, metabolic rate and characteristic length for placental mammals

    PubMed Central

    2015-01-01

    The Mass, Metabolism and Length Explanation (MMLE) was advanced in 1984 to explain the relationship between metabolic rate and body mass for birds and mammals. This paper reports on a modernized version of MMLE. MMLE deterministically computes the absolute value of Basal Metabolic Rate (BMR) and body mass for individual animals. MMLE is thus distinct from other examinations of these topics that use species-averaged data to estimate the parameters in a statistically best fit power law relationship such as BMR = a(bodymass)b. Beginning with the proposition that BMR is proportional to the number of mitochondria in an animal, two primary equations are derived that compute BMR and body mass as functions of an individual animal’s characteristic length and sturdiness factor. The characteristic length is a measureable skeletal length associated with an animal’s means of propulsion. The sturdiness factor expresses how sturdy or gracile an animal is. Eight other parameters occur in the equations that vary little among animals in the same phylogenetic group. The present paper modernizes MMLE by explicitly treating Froude and Strouhal dynamic similarity of mammals’ skeletal musculature, revising the treatment of BMR and using new data to estimate numerical values for the parameters that occur in the equations. A mass and length data set with 575 entries from the orders Rodentia, Chiroptera, Artiodactyla, Carnivora, Perissodactyla and Proboscidea is used. A BMR and mass data set with 436 entries from the orders Rodentia, Chiroptera, Artiodactyla and Carnivora is also used. With the estimated parameter values MMLE can calculate characteristic length and sturdiness factor values so that every BMR and mass datum from the BMR and mass data set can be computed exactly. Furthermore MMLE can calculate characteristic length and sturdiness factor values so that every body mass and length datum from the mass and length data set can be computed exactly. Whether or not MMLE can

  2. Metabolism of Antarctic micronektonic crustacea across a summer ice-edge bloom: respiration, composition, and enzymatic activity

    NASA Astrophysics Data System (ADS)

    Donnelly, Joseph; Kawall, Helena; Geiger, Stephen P.; Torres, Joseph J.

    2004-08-01

    The Antarctic marginal ice zone is an important oceanic front separating the pack-ice and open-water environments. During summer, the retreating pack ice creates a meltwater lens in the euphotic zone, allowing primary producers and microheterotrophs to flourish in a discrete bloom just seaward of the retreating ice edge that lasts about 60 days. The purpose of the present study was to see if the ice-edge bloom had a discernible effect on the metabolism and physiological condition of Antarctic micronekton similar to that observed in zooplankton species. We also wished to assess the importance of the summer season to species' life cycles. Two major data sets were collected on 25 species in the following taxonomic groups: amphipods, cephalopods, decapods, euphausiids, isopods, mysids, ostracods, and polychaetes. The first data set described the metabolic rates of individuals in areas of the marginal ice zone with widely different levels of chlorophyll biomass to investigate the effect of the ice-edge bloom on metabolism. Additionally, summer metabolic rates were compared with data from other seasons. The second data set detailed the levels of protein, water, ash, RNA and DNA, and the activities of metabolic enzymes (citrate synthase and malate dehydrogenase) to examine the efficacy of biochemical indices as predictive tools for metabolism. Results suggested that the mobility of the micronektonic species eliminated most direct effects of the bloom on metabolism. Individuals captured in very different productivity regimes showed few significant differences in the metabolic indicators listed above. Isolated cases of changes in body composition and enzyme activity, however, implied that longer-term effects of the bloom may be exhibited. Seasonal increases in metabolism from winter to summer were observed in the euphausiids Euphausia superba, E. triacantha, and Thysanoessa macrura and the amphipod Vibilia stebbingi. It was concluded that the seasonal shifts were indicative

  3. Theoretical studies of chemical reactivity of metabolically activated forms of aromatic amines toward DNA.

    PubMed

    Shamovsky, Igor; Ripa, Lena; Blomberg, Niklas; Eriksson, Leif A; Hansen, Peter; Mee, Christine; Tyrchan, Christian; O'Donovan, Mike; Sjö, Peter

    2012-10-15

    The metabolism of aromatic and heteroaromatic amines (ArNH₂) results in nitrenium ions (ArNH⁺) that modify nucleobases of DNA, primarily deoxyguanosine (dG), by forming dG-C8 adducts. The activated amine nitrogen in ArNH⁺ reacts with the C8 of dG, which gives rise to mutations in DNA. For the most mutagenic ArNH₂, including the majority of known genotoxic carcinogens, the stability of ArNH⁺ is of intermediate magnitude. To understand the origin of this observation as well as the specificity of reactions of ArNH⁺ with guanines in DNA, we investigated the chemical reactivity of the metabolically activated forms of ArNH₂, that is, ArNHOH and ArNHOAc, toward 9-methylguanine by DFT calculations. The chemical reactivity of these forms is determined by the rate constants of two consecutive reactions leading to cationic guanine intermediates. The formation of ArNH⁺ accelerates with resonance stabilization of ArNH⁺, whereas the formed ArNH⁺ reacts with guanine derivatives with the constant diffusion-limited rate until the reaction slows down when ArNH⁺ is about 20 kcal/mol more stable than PhNH⁺. At this point, ArNHOH and ArNHOAc show maximum reactivity. The lowest activation energy of the reaction of ArNH⁺ with 9-methylguanine corresponds to the charge-transfer π-stacked transition state (π-TS) that leads to the direct formation of the C8 intermediate. The predicted activation barriers of this reaction match the observed absolute rate constants for a number of ArNH⁺. We demonstrate that the mutagenic potency of ArNH₂ correlates with the rate of formation and the chemical reactivity of the metabolically activated forms toward the C8 atom of dG. On the basis of geometric consideration of the π-TS complex made of genotoxic compounds with long aromatic systems, we propose that precovalent intercalation in DNA is not an essential step in the genotoxicity pathway of ArNH₂. The mechanism-based reasoning suggests rational design strategies to

  4. The influence of carbon dioxide on brain activity and metabolism in conscious humans

    PubMed Central

    Xu, Feng; Uh, Jinsoo; Brier, Matthew R; Hart, John; Yezhuvath, Uma S; Gu, Hong; Yang, Yihong; Lu, Hanzhang

    2011-01-01

    A better understanding of carbon dioxide (CO2) effect on brain activity may have a profound impact on clinical studies using CO2 manipulation to assess cerebrovascular reserve and on the use of hypercapnia as a means to calibrate functional magnetic resonance imaging (fMRI) signal. This study investigates how an increase in blood CO2, via inhalation of 5% CO2, may alter brain activity in humans. Dynamic measurement of brain metabolism revealed that mild hypercapnia resulted in a suppression of cerebral metabolic rate of oxygen (CMRO2) by 13.4%±2.3% (N=14) and, furthermore, the CMRO2 change was proportional to the subject's end-tidal CO2 (Et-CO2) change. When using functional connectivity MRI (fcMRI) to assess the changes in resting-state neural activity, it was found that hypercapnia resulted in a reduction in all fcMRI indices assessed including cluster volume, cross-correlation coefficient, and amplitude of the fcMRI signal in the default-mode network (DMN). The extent of the reduction was more pronounced than similar indices obtained in visual-evoked fMRI, suggesting a selective suppression effect on resting-state neural activity. Scalp electroencephalogram (EEG) studies comparing hypercapnia with normocapnia conditions showed a relative increase in low frequency power in the EEG spectra, suggesting that the brain is entering a low arousal state on CO2 inhalation. PMID:20842164

  5. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.

    PubMed

    Swanson, David L; Thomas, Nathan E; Liknes, Eric T; Cooper, Sheldon J

    2012-01-01

    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, M(sum) (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; M(sum) and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and M(sum) only) and examined correlations among these variables. We also measured BMR and M(sum) in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either M(sum) or MMR in juncos. Moreover, no significant correlation between M(sum) and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and M(sum) were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and M(sum) were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic

  6. Metabolic Rate Constants for Hydroquinone in F344 Rat and Human Liver Isolated Hepatocytes: Application to a PBPK model.

    SciTech Connect

    Poet, Torka S.; Wu, Hong; English, J C.; Corley, Rick A.

    2004-11-15

    Hydroquinone (HQ) is an important industrial chemical that also occurs naturally in foods and in the leaves and bark of a number of plant species. Exposure of laboratory animals to HQ may result in a species-, sex-, and strain-specific nephrotoxicity. The sensitivity of male F344 vs. female F344 and Sprague-Dawley rats or B6C3F1 mice appears to be related to differences in the rates of formation and further metabolism of key nephrotoxic metabolites. Metabolic rate constants for the conversion of HQ through several metabolic steps to the mono-glutathione conjugate and subsequent detoxification via mercapturic acid were measured in suspension cultures of hepatocytes isolated from male F344 rats and humans. An in vitro mathematic kinetic model was used to analyze each metabolic step by simultaneously fitting the disappearance of each substrate and the appearance of subsequent metabolites. An iterative, nested approach was used whereby downstream metabolites were considered first and the model was constrained by the requirement that rate constants determined during analysis of individual metabolic steps must also satisfy the complete, integrated metabolism scheme, including competitive pathways. The results from this study indicated that the overall capacity for metabolism of HQ and its mono-glutathione conjugate is greater in hepatocytes from humans than those isolated from rats, suggesting a greater capacity for detoxification of the glutathione conjugates. Metabolic rate constants were applied to an existing physiologically based pharmacokinetic model and the model was used to predict total glutathione metabolites produced in the liver. The results showed that body burdens of these metabolites will be much higher in rats than humans.

  7. The proportion of genes in a functional category is linked to mass-specific metabolic rate and lifespan

    PubMed Central

    Takemoto, Kazuhiro; Kawakami, Yuko

    2015-01-01

    Metabolic rate and lifespan are important biological parameters that are studied in a wide range of research fields. They are known to correlate with body mass, but their association with gene (protein) functions is poorly understood. In this study, we collected data on the metabolic rate and lifespan of various organisms and investigated the relationship of these parameters with their genomes. We showed that the proportion of genes in a functional category, but not genome size, was correlated with mass-specific metabolic rate and maximal lifespan. In particular, the proportion of genes in oxic reactions (which occur in the presence of oxygen) was significantly associated with these two biological parameters. Additionally, we found that temperature, taxonomy, and mode-of-life traits had little effect on the observed associations. Our findings emphasize the importance of considering the biological functions of genes when investigating the relationships between genome, metabolic rate, and lifespan. Moreover, this provides further insights into these relationships, and may be useful for estimating metabolic rate and lifespan in individuals and the ecosystem using a combination of body mass measurements and genomic data. PMID:25943793

  8. The effects of weekly exercise time on VO2max and resting metabolic rate in normal adults

    PubMed Central

    Gim, Mi-Na; Choi, Jung-Hyun

    2016-01-01

    [Purpose] The present study examined the effect of individual weekly exercise time on resting metabolic rate and VO2max (maximal oxygen uptake), which are important components of individual health indexes. [Subjects and Methods] Thirty healthy adults participated in this study. Questionnaires were used to divide the participants into groups based on average weekly walking. Resting metabolic rate was measured using a respiratory gas analyzer. Graded exercise tests were conducted using a treadmill, and the modified Bruce protocol was used as an exercise test method. [Results] VO2max, anaerobic threshold, and resting metabolic rate were significantly different among the groups. [Conclusion] Average weekly exercise time affected VO2max, resting metabolic rate, and anaerobic threshold, all of which are indicators of individual physical ability and health. These values increased as the individual amount of exercise increased. In addition, VO2max, resting metabolic rate, and anaerobic threshold were found to be closely correlated. These findings were consistent with the results of similar previous studies. PMID:27190483

  9. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR

    PubMed Central

    2013-01-01

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism. PMID:22414897

  10. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation

    SciTech Connect

    Bordbar, Aarash; Mo, Monica L.; Nakayasu, Ernesto S.; Rutledge, Alexandra C.; Kim, Young-Mo; Metz, Thomas O.; Jones, Marcus B.; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott N.; Hyduke, Daniel R.; Adkins, Joshua N.; Palsson, Bernhard O.

    2012-06-26

    Macrophages are central players in the immune response, manifesting divergent phenotypes to control inflammation and innate immunity through the release of cytokines and other regulatory factor-dependent signaling pathways. In recent years, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features critical for macrophage functions. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of macrophage activation. Metabolites well-known to be associated with immunoactivation (e.g., glucose and arginine) and immunosuppression (e.g., tryptophan and vitamin D3) were amongst the most critical effectors. Intracellular metabolic mechanisms linked to critical suppressive effectors were then assessed, identifying a suppressive role for de novo nucleotide synthesis. Finally, the underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying metabolic connections between activation and metabolic effectors.

  11. Pre-treatment evaluation of 5-fluorouracil degradation rate: association of poor and ultra-rapid metabolism with severe toxicity in a colorectal cancer patients cohort

    PubMed Central

    Mazzuca, Federica; Borro, Marina; Botticelli, Andrea; Mazzotti, Eva; Marchetti, Luca; Gentile, Giovanna; La Torre, Marco; Lionetto, Luana; Simmaco, Maurizio; Marchetti, Paolo

    2016-01-01

    Despite the wide use of 5-fluorouracil-based chemotherapy, development of severe toxicity that follow the treatment is not a rare event. The efforts to establish pretreatment tools for toxicity prediction, led to the development of various pharmacogenetic and biochemical assays, mainly targeted to assess the activity level of dihydropyrimidine dehydrogenase (DPD), the main metabolizing enzyme for 5-fluorouracil. Using peripheral blood mononuclear cells, we developed a biochemical assay, that is not limited to the evaluation of DPD activity, but determines the net result of all the enzymatic transformation of 5FU, in terms of the amount of drug consumed by the cells in a time unit. This parameter, named 5-fluorauracil degradation rate, presents a normal distribution inside the population and highlight the presence of an ultra-rapid metabolizers class of subjects, besides the expected poor metabolizers class. Here we will show that, in a colorectal cancer patient cohort, both poor and ultra-rapid metabolizers have significantly increased the risk of developing severe toxicity (grade3–4). Patient stratification depending on the individual 5-fluorouracil degradation rate allows to identify a 10% of the overall population at high risk of developing severe toxicity, compared to the 1.3% (as assessed in the Italian population) identified by the most commonly employed pharmacogenetic test, including the DPD polymorphism IVS14+1G>A. PMID:26967565

  12. TRANSPORT AND DEPOSITION OF METABOLICALLY ACTIVE AND STATIONARY PHASE DEINOCOCCUS RADIODURANS IN UNSATURATED POROUS MEDIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioremediation is a cost efficient clean-up technique that involves the use of metabolically active bacteria to degrade recalcitrant pollutants. To further develop this technique it is important to understand the migration and deposition behaviour of metabolically active bacteria in unsaturated soil...

  13. Influence of host seed on metabolic activity by Enterobacter cloacae in the spermosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known regarding the influences of nutrients released from plants on the metabolic activity of colonizing microbes. To gain a better understanding of these influences, we used bioluminescence- and oxygen consumption-based methods to compare bacterial metabolic activity expressed during col...

  14. Spatially distinct and metabolically active membrane domain in mycobacteria.

    PubMed

    Hayashi, Jennifer M; Luo, Chu-Yuan; Mayfield, Jacob A; Hsu, Tsungda; Fukuda, Takeshi; Walfield, Andrew L; Giffen, Samantha R; Leszyk, John D; Baer, Christina E; Bennion, Owen T; Madduri, Ashoka; Shaffer, Scott A; Aldridge, Bree B; Sassetti, Christopher M; Sandler, Steven J; Kinoshita, Taroh; Moody, D Branch; Morita, Yasu S

    2016-05-10

    Protected from host immune attack and antibiotic penetration by their unique cell envelope, mycobacterial pathogens cause devastating human diseases such as tuberculosis. Seamless coordination of cell growth with cell envelope elongation at the pole maintains this barrier. Unraveling this spatiotemporal regulation is a potential strategy for controlling mycobacterial infections. Our biochemical analysis previously revealed two functionally distinct membrane fractions in Mycobacterium smegmatis cell lysates: plasma membrane tightly associated with the cell wall (PM-CW) and a distinct fraction of pure membrane free of cell wall components (PMf). To provide further insight into the functions of these membrane fractions, we took the approach of comparative proteomics and identified more than 300 proteins specifically associated with the PMf, including essential enzymes involved in cell envelope synthesis such as a mannosyltransferase, Ppm1, and a galactosyltransferase, GlfT2. Furthermore, comparative lipidomics revealed the distinct lipid composition of the PMf, with specific association of key cell envelope biosynthetic precursors. Live-imaging fluorescence microscopy visualized the PMf as patches of membrane spatially distinct from the PM-CW and notably enriched in the pole of the growing cells. Taken together, our study provides the basis for assigning the PMf as a spatiotemporally distinct and metabolically active membrane domain involved in cell envelope biogenesis. PMID:27114527

  15. Activation of AMP-kinase by Policosanol Requires Peroxisomal Metabolism

    PubMed Central

    Banerjee, Subhashis; Ghoshal, Sarbani

    2011-01-01

    Policosanol, a well-defined mixture of very long chain primary alcohols that is available as a nutraceutical product, has been reported to lower blood cholesterol levels. The present studies demonstrate that policosanol promotes the phosphorylation of AMP-kinase and HMG-CoA reductase in hepatoma cells and in mouse liver after intragastric administration, providing a possible means by which policosanol might lower blood cholesterol levels. Treatment of hepatoma cells with policosanol produced a 2.5-fold or greater increase in the phosphorylation of AMP-kinase and HMG-CoA reductase, and increased the phosphorylation of Ca++/calmodulin-dependent kinase kinase (CaMKK), an upstream AMP-kinase kinase. Intra-gastric administration of policosanol to mice similarly increased the phosphorylation of hepatic HMG-CoA reductase and AMP-kinase by greater than 2-fold. siRNA-mediated suppression of fatty aldehyde dehydrogenase, fatty acyl-CoA synthetase 4, and acyl-CoA acetyltransferase expression in hepatoma cells prevented the phosphorylation of AMP-kinase and HMG-CoA reductase by policosanol, indicating that metabolism of these very long chain alcohols to activated fatty acids is necessary for the suppression of cholesterol synthesis, presumably by increasing cellular AMP levels. Subsequent peroxisomal β-oxidation probably augments this effect. PMID:21359855

  16. Regulation of bacterial metabolic activity by dissolved organic carbon and viruses

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Jing, Hongmei; Sun, Mingming; Harrison, Paul J.; Liu, Hongbin

    2013-12-01

    regulation of bacterial metabolic activity by viruses and dissolved organic carbon (DOC) was examined using natural microbial communities in three treatments (active viruses, inactive viruses, and virus free) at two contrasting coastal sites (pristine vs. eutrophic) with substantial differences in environmental conditions during the wet and dry seasons. Our results showed that net growth rates and production of bacterioplankton were reduced primarily by viruses via repressing metabolically active bacteria with high nucleic acid (HNA) content which had a high capacity for incorporating carbon, while bacterial respiration was primarily regulated by DOC lability. The quality of organic matter played a more important role in regulating bacterial growth efficiency (BGE) than the supply of organic matter in eutrophic coastal waters. The lack of HMW-DOC and high carbon demand in the virus-free treatment resulted in a significant increase in cell-specific bacterial respiration, which was responsible for the lowest bacterial growth efficiency among the three treatments. The presence of viruses did not necessarily lower bacterial growth efficiency since virus-induced mortality alleviated bacterial carbon demand and enhanced carbon cycling. Virus-induced mortality was greater in relatively pristine waters than eutrophic waters, likely since the high supply of substrates alleviated the pressure of viral infection, through extracellular proteases produced by bacteria, which might result in the hydrolytic destruction or modification of viral capsids. An important implication of our results was that the input of riverine DOC and nutrients improved bacterial metabolic activity by alleviating virus-induced mortality of bacteria in estuarine and coastal waters.

  17. Modulation of fructokinase activity of potato (Solanum tuberosum) results in substantial shifts in tuber metabolism.

    PubMed

    Davies, Howard V; Shepherd, Louise V T; Burrell, Michael M; Carrari, Fernando; Urbanczyk-Wochniak, Ewa; Leisse, Andrea; Hancock, Robert D; Taylor, Mark; Viola, Roberto; Ross, Heather; McRae, Diane; Willmitzer, Lothar; Fernie, Alisdair R

    2005-07-01

    Potato plants (Solanum tuberosum L. cvs Desiree and Record) transformed with sense and antisense constructs of a cDNA encoding the potato fructokinase StFK1 exhibited altered transcription of this gene, altered amount of protein and altered enzyme activities. Measurement of the maximal catalytic activity of fructokinase revealed a 2-fold variation in leaf (from 90 to 180% of wild type activity) and either a 10- or 30-fold variation in tuber (from 10 or 30% to 300% in Record and Desiree, respectively) activity. The comparative effect of the antisense construct in leaf and tuber tissue suggests that this isoform is only a minor contributor to the total fructokinase activity in the leaf but the predominant isoform in the tuber. Antisense inhibition of the fructokinase resulted in a reduced tuber yield; however, its overexpression had no impact on this parameter. The modulation of fructokinase activity had few, consistent effects on carbohydrate levels, with the exception of a general increase in glucose content in the antisense lines, suggesting that this enzyme is not important for the control of starch synthesis. However, when metabolic fluxes were estimated, it became apparent that the transgenic lines display a marked shift in metabolism, with the rate of redistribution of radiolabel to sucrose markedly affected by the activity of fructokinase. These data suggest an important role for fructokinase, acting in concert with sucrose synthase, in maintaining a balance between sucrose synthesis and degradation by a mechanism independent of that controlled by the hexose phosphate-mediated activation of sucrose phosphate synthase. PMID:15890680

  18. Metabolic turnover rates of carbon and nitrogen stable isotopes in captive juvenile snakes.

    PubMed

    Fisk, Aaron T; Sash, Kim; Maerz, John; Palmer, William; Carroll, John P; Macneil, M Aaron

    2009-01-01

    Metabolic turnover rates (m) of delta(15)N and delta(13)C were assessed in different tissues of newly hatched captive-raised corn snakes (Elaphe guttata guttata) fed maintenance diets consisting of earthworms (Eisenia foetida) that varied substantially in delta(15)N (by 644 per thousand) and delta(13)C (by 5.0 per thousand). Three treatments were used during this 144 day experiment that consisted of the same diet throughout (control), shifting from a depleted to an enriched stable isotope signature diet (uptake), and shifting from an enriched to depleted stable isotope signature diet (elimination). Values of delta(13)C in the liver, blood, and muscle of the control snakes reached equilibrium with and were, respectively, 1.73, 2.25 and 2.29 greater than in their diet, this increase is called an isotopic discrimination factor (Deltadelta(13)C = delta(13)C(snake) - delta(13)C(food)). Values of delta(15)N in snake tissues did not achieve equilibrium with the diets in any of the exposures and thus Delta(15)N could not be estimated. Values of metabolic turnover rates (m) for delta(13)C and delta(15)N were greater in liver than in muscle and blood, which were similar, and relative results remained the same if the fraction of (15)N and (13)C were modeled. Although caution is warranted because equilibrium values of stable isotopes in the snakes were not achieved, values of m were greater for delta(13)C than delta(15)N, resulting in shorter times to dietary equilibrium for delta(13)C upon a diet shift, and for both stable isotopes in all tissues, greater during an elimination than in an uptake shift in diet stable isotope signature. Multiple explanations for the observed differences between uptake and elimination shifts raise new questions about the relationship between animal and diet stable isotope concentrations. Based on this study, interpretation of feeding ecology using stable isotopes is highly dependent on the kind of stable isotope, tissue, direction of diet switch

  19. Dietary supplement increases plasma norepinephrine, lipolysis, and metabolic rate in resistance trained men

    PubMed Central

    Bloomer, Richard J; Fisher-Wellman, Kelsey H; Hammond, Kelley G; Schilling, Brian K; Weber, Adrianna A; Cole, Bradford J

    2009-01-01

    Background Dietary supplements targeting fat loss and increased thermogenesis are prevalent within the sport nutrition/weight loss market. While some isolated ingredients have been reported to be efficacious when used at high dosages, in particular in animal models and/or via intravenous delivery, little objective evidence is available pertaining to the efficacy of a finished product taken by human subjects in oral form. Moreover, many ingredients function as stimulants, leading to increased hemodynamic responses. The purpose of this investigation was to determine the effects of a finished dietary supplement on plasma catecholamine concentration, markers of lipolysis, metabolic rate, and hemodynamics. Methods Ten resistance trained men (age = 27 ± 4 yrs; BMI = 25 ± 3 kg· m-2; body fat = 9 ± 3%; mean ± SD) ingested a dietary supplement (Meltdown®, Vital Pharmaceuticals) or a placebo, in a random order, double blind cross-over design, with one week separating conditions. Fasting blood samples were collected before, and at 30, 60, and 90 minutes post ingestion and were assayed for epinephrine (EPI), norepinephrine (NE), glycerol, and free fatty acids (FFA). Area under the curve (AUC) was calculated for all variables. Gas samples were collected from 30–60 minutes post ingestion for measurement of metabolic rate. Heart rate and blood pressure were recorded at all blood collection times. Results AUC was greater for the dietary supplement compared to the placebo for NE (1332 ± 128 pg·mL-1·90 min-1 vs. 1003 ± 133 pg·mL-1·90 min-1; p = 0.03), glycerol (44 ± 3 μg·mL-1·90 min-1 vs. 26 ± 2 μg·mL-1·90 min-1; p < 0.0001), and FFA (1.24 ± 0.17 mmol·L-1·90 min-1 vs. 0.88 ± 0.12 mmol·L-1·90 min-1; p = 0.0003). No difference between conditions was noted for EPI AUC (p > 0.05). For all variables, values were highest at 90 minutes post ingestion. Total kilocalorie expenditure during the 30 minute collection period was 29.6% greater (p = 0.02) for the

  20. Metabolic Free Energy and Biological Codes: A 'Data Rate Theorem' Aging Model.

    PubMed

    Wallace, Rodrick

    2015-06-01

    A famous argument by Maturana and Varela (Autopoiesis and cognition. Reidel, Dordrecht, 1980) holds that the living state is cognitive at every scale and level of organization. Since it is possible to associate many cognitive processes with 'dual' information sources, pathologies can sometimes be addressed using statistical models based on the Shannon Coding, the Shannon-McMillan Source Coding, the Rate Distortion, and the Data Rate Theorems, which impose necessary conditions on information transmission and system control. Deterministic-but-for-error biological codes do not directly invoke cognition, but may be essential subcomponents within larger cognitive processes. A formal argument, however, places such codes within a similar framework, with metabolic free energy serving as a 'control signal' stabilizing biochemical code-and-translator dynamics in the presence of noise. Demand beyond available energy supply triggers punctuated destabilization of the coding channel, affecting essential biological functions. Aging, normal or prematurely driven by psychosocial or environmental stressors, must interfere with the routine operation of such mechanisms, initiating the chronic diseases associated with senescence. Amyloid fibril formation, intrinsically disordered protein logic gates, and cell surface glycan/lectin 'kelp bed' logic gates are reviewed from this perspective. The results generalize beyond coding machineries having easily recognizable symmetry modes, and strip a layer of mathematical complication from the study of phase transitions in nonequilibrium biological systems. PMID:25185747

  1. Metabolic clearance and production rates of oestradiol and progesterone during pubertal and postpubertal development in gilts.

    PubMed

    Christenson, R K; Ford, J J; Redmer, D A

    1985-09-01

    The crossbred gilts studied were aged 80 days (prepubertal), 180 days (prepubertal or postpubertal) and 260 days (postpubertal or pregnant). Estimates of metabolic clearance rate (MCR) of oestradiol and progesterone were consistently less (21 and 27%) in plasma than in blood, and these differences were not influenced by age of gilt. The MCR (1/day per kg body weight) for oestradiol and progesterone in plasma was greater (P less than 0.05) for 80-day-old prepubertal gilts than for older gilts. The MCR values of oestradiol and progesterone were similar in 180-day-old and 260-day-old gilts independent of reproductive state. Production rate (PR) of oestradiol and progesterone increased with age (80-180 days), and age and reproductive state differences were much more pronounced for PR of progesterone than of oestradiol. These results support the hypothesis that a reduction in the MCR and an increase in PR of oestradiol and progesterone in the gilt are associated with the process of pubertal development, and changes in gonadal steroid concentrations appear not to alter the MCR of oestradiol and progesterone. PMID:4032373

  2. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function.

    PubMed

    Dutta, Arnob; Abmayr, Susan M; Workman, Jerry L

    2016-08-18

    Modifications of histones play important roles in balancing transcriptional output. The discovery of acyl marks, besides histone acetylation, has added to the functional diversity of histone modifications. Since all modifications use metabolic intermediates as substrates for chromatin-modifying enzymes, the prevalent landscape of histone modifications in any cell type is a snapshot of its metabolic status. Here, we review some of the current findings of how differential use of histone acylations regulates gene expression as response to metabolic changes and differentiation programs. PMID:27540855

  3. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism.

    PubMed

    Sotero, Roberto C; Trujillo-Barreto, Nelson J

    2008-01-01

    Our goal is to model the coupling between neuronal activity, cerebral metabolic rates of glucose and oxygen consumption, cerebral blood flow (CBF), electroencephalography (EEG) and blood oxygenation level-dependent (BOLD) responses. In order to accomplish this, two previous models are coupled: a metabolic/hemodynamic model (MHM) for a voxel, linking BOLD signals and neuronal activity, and a neural mass model describing the neuronal dynamics within a voxel and its interactions with voxels of the same area (short-range interactions) and other areas (long-range interactions). For coupling both models, we take as the input to the BOLD model, the number of active synapses within the voxel, that is, the average number of synapses that will receive an action potential within the time unit. This is obtained by considering the action potentials transmitted between neuronal populations within the voxel, as well as those arriving from other voxels. Simulations are carried out for testing the integrated model. Results show that realistic evoked potentials (EP) at electrodes on the scalp surface and the corresponding BOLD signals for each voxel are produced by the model. In another simulation, the alpha rhythm was reproduced and reasonable similarities with experimental data were obtained when calculating correlations between BOLD signals and the alpha power curve. The origin of negative BOLD responses and the characteristics of EEG, PET and BOLD signals in Alzheimer's disease were also studied. PMID:17919931

  4. Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds.

    PubMed

    Bertoni, Giuseppe; Trevisi, Erminio

    2013-07-01

    The usefulness of the metabolic profile in dairy cows has been questioned because of poor standardization of procedures, high cost of analysis, and perceived inefficiency of the approach. Composite indices based on multiple variables, namely the Liver Activity Index and the Liver Functionality Index, which consider the pattern of changes of some negative acute-phase proteins in the first month of lactation, appear promising in the assessment of metabolic health status and the prediction of lactational and reproductive performance. The application of such indices depends on their reliability and on making them practical and economical regarding test cost and number of sampling points required. PMID:23809898

  5. AMP-activated Protein Kinase Signaling Activation by Resveratrol Modulates Amyloid-β Peptide Metabolism*

    PubMed Central

    Vingtdeux, Valérie; Giliberto, Luca; Zhao, Haitian; Chandakkar, Pallavi; Wu, Qingli; Simon, James E.; Janle, Elsa M.; Lobo, Jessica; Ferruzzi, Mario G.; Davies, Peter; Marambaud, Philippe

    2010-01-01

    Alzheimer disease is an age-related neurodegenerative disorder characterized by amyloid-β (Aβ) peptide deposition into cerebral amyloid plaques. The natural polyphenol resveratrol promotes anti-aging pathways via the activation of several metabolic sensors, including the AMP-activated protein kinase (AMPK). Resveratrol also lowers Aβ levels in cell lines; however, the underlying mechanism responsible for this effect is largely unknown. Moreover, the bioavailability of resveratrol in the brain remains uncertain. Here we show that AMPK signaling controls Aβ metabolism and mediates the anti-amyloidogenic effect of resveratrol in non-neuronal and neuronal cells, including in mouse primary neurons. Resveratrol increased cytosolic calcium levels and promoted AMPK activation by the calcium/calmodulin-dependent protein kinase kinase-β. Direct pharmacological and genetic activation of AMPK lowered extracellular Aβ accumulation, whereas AMPK inhibition reduced the effect of resveratrol on Aβ levels. Furthermore, resveratrol inhibited the AMPK target mTOR (mammalian target of rapamycin) to trigger autophagy and lysosomal degradation of Aβ. Finally, orally administered resveratrol in mice was detected in the brain where it activated AMPK and reduced cerebral Aβ levels and deposition in the cortex. These data suggest that resveratrol and pharmacological activation of AMPK have therapeutic potential against Alzheimer disease. PMID:20080969

  6. Physical Activity and Sedentary Behavior Associated with Components of Metabolic Syndrome among People in Rural China

    PubMed Central

    Xiao, Jing; Shen, Chong; Chu, Min J.; Gao, Yue X.; Xu, Guang F.; Huang, Jian P.; Xu, Qiong Q.; Cai, Hui

    2016-01-01

    Background Metabolic syndrome is prevalent worldwide and its prevalence is related to physical activity, race, and lifestyle. Little data is available for people living in rural areas of China. In this study we examined associations of physical activity and sedentary behaviors with metabolic syndrome components among people in rural China. Methods The Nantong Metabolic Syndrome Study recruited 13,505 female and 6,997 male participants between 2007 and 2008. Data of socio-demographic characteristics and lifestyle were collected. The associations of physical activity and sedentary behaviors with metabolic syndrome components were analyzed. Results Prevalence of metabolic syndrome was 21.6%. It was significantly lower in men than in women. Low risks of metabolic syndrome were observed in those who did less sitting and engaged in more vigorous physical activity. The highest tertile of vigorous physical activity was associated with 15–40% decreased odds of metabolic syndrome and all of its components, except for low high-density lipoprotein cholesterol in men. Women with the highest tertile of moderate physical activity had 15–30% lower odds of central obesity, high glucose, and high triglycerides compared with those in the lowest tertile. Sitting time >42 hours per week had a 4%-12% attributable risk of metabolic syndrome, central obesity, and high triglycerides in both genders, and abnormal glucose and diastolic blood pressure in women. Sleeping for more than 8 hours per day was associated with risk of high serum glucose and lipids. Conclusions Our data suggested that physical activity has a preventive effect against metabolic syndrome and all its abnormal components, and that longer sitting time and sleep duration are associated with an increased risk of metabolic syndrome components, including central obesity and high triglycerides, glucose, and diastolic blood pressure. This study could provide information for future investigation into these associations. Also

  7. Adenosine triphosphate utilization rates and metabolic pool sizes in intact cells measured by transfer of 18O from water.

    PubMed Central

    Dawis, S M; Walseth, T F; Deeg, M A; Heyman, R A; Graeff, R M; Goldberg, N D

    1989-01-01

    The hydrolytic rates and metabolic pool sizes of ATP were determined in intact cells by monitoring the time courses of 18O incorporation from 18O-water into the gamma-phosphoryl of ATP and orthophosphate. To calculate the rate of ATP hydrolysis, a kinetic model is used to fit the time course of the 18O labeling. The size of the metabolic pool of ATP is calculated from the 18O distribution after isotopic equilibrium has been achieved. Metabolic pools have a binomial distribution of 18O whereas nonmetabolic pools exhibit negligible 18O labeling. The application and limitations of this approach are illustrated with data from isolated toad retinas and human platelets. At 22 degrees C, the time constant of ATP hydrolysis in the dark-adapted toad retina is about 30 s. Under these conditions, over 80% of the retinal ATP is involved in high-energy phosphate metabolism. It is calculated that when cGMP metabolic flux in the photoreceptors is maximally stimulated by light, it accounts for 10% of the ATP utilization by the entire retina. The time constant of ATP hydrolysis in human platelets at 37 degrees C is approximately 1 s, and 60% of the platelet ATP is involved in energy metabolism. PMID:2930826

  8. Exploring individual quality: Basal metabolic rate and reproductive performance in storm-petrels

    USGS Publications Warehouse

    Blackmer, A.L.; Mauck, R.A.; Ackerman, J.T.; Huntington, C.E.; Nevitt, G.A.; Williams, J.B.

    2005-01-01

    Despite evidence that some individuals achieve both superior reproductive performance and high survivorship, the factors underlying variation in individual quality are not well understood. The compensation and increased-intake hypotheses predict that basal metabolic rate (BMR) influences reproductive performance; if so, variation in BMR may be related to differences in individual quality. We evaluated whether BMR measured during the incubation period provides a proximate explanation for variation in individual quality by measuring the BMRs and reproductive performance of Leach's storm-petrels (Oceanodroma leucorhoa) breeding on Kent Island, New Brunswick, Canada, during 2000 and 2001. We statistically controlled for internal (body mass, breeding age, sex) and external (year, date, time of day) effects on BMR. We found that males with relatively low BMRs hatched their eggs earlier in the season and that their chicks' wing growth rates were faster compared to males with relatively high BMRs. Conversely, BMR was not related to egg volume, hatching date, or chick growth rate for females or to lifetime (???23 years) hatching success for either sex. Thus, for males but not for females, our results support the compensation hypothesis. This hypothesis predicts that animals with low BMRs will achieve better reproductive performance than animals with high BMRs because they have lower self-maintenance costs and therefore can apportion more energy to reproduction. These results provide evidence that intraspecific variation in reproductive performance is related to BMR and suggest that BMR may influence individual quality in males. ?? The Author 2005. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved.

  9. Effect of temperature on the standard metabolic rates of juvenile and adult Exopalaemon carinicauda

    NASA Astrophysics Data System (ADS)

    Zhang, Chengsong; Li, Fuhua; Xiang, Jianhai

    2015-03-01

    Ridgetail white prawn ( Exopalaemon carinicauda) are of significant economic importance in China where they are widely cultured. However, there is little information on the basic biology of this species. We evaluated the effect of temperature (16, 19, 22, 25, 28, 31, and 34°C) on the standard metabolic rates (SMRs) of juvenile and adult E. carinicauda in the laboratory under static conditions. The oxygen consumption rate (OCR), ammonia-N excretion rate (AER), and atomic ratio of oxygen consumed to nitrogen consumed (O:N ratio) of juvenile and adult E. carinicauda were significantly influenced by temperature ( P < 0.05). Both the OCR and AER of juveniles increased significantly with increasing temperature from 16 to 34°C, but the maximum OCR for adults was at 31°C. Juvenile shrimp exhibited a higher OCR than the adults from 19 to 34°C. There was no significant difference between the AERs of the two life-stages from 16 to 31°C ( P >0.05). The O:N ratio in juveniles was significantly higher than that in the adults over the entire temperature range ( P <0.05). The temperature coefficient ( Q 10) of OCR and AER ranged from 5.03 to 0.86 and 6.30 to 0.85 for the adults, respectively, and from 6.09-1.03 and 3.66-1.80 for the juveniles, respectively. The optimal temperature range for growth of the juvenile and adult shrimp was from 28 to 31°C, based on Q 10 and SMR values. Results from the present study may be used to guide pond culture production of E. carinicauda.

  10. [Drug with a high metabolic activity, cocarnit, in the treatment of diabetic cardiac autonomic neuropathy].

    PubMed

    Popov, S V; Melekhovets', O K; Demikhova, N V; Vynnychenko, L B

    2012-01-01

    Left ventricular diastolic dysfunction in patients with diabetes is formed in the absence of atherosclerotic changes as a consequence of diabetic cardiac autonomic neuropathy in the early stages of diabetes. Progression of autonomic cardiac neuropathy in cardio-vascular type is associated with the violation of energy supply of cells, protein synthesis, electrolyte exchange, the exchange of trace elements, oxidation reduction processes, oxygen-transport function of blood, so that metabolic therapy is carried out to optimize the processes of formation and energy costs. The drug cocarnit activates processes of aerobic oxidation of glucose, as well as providing regulatory influence on the oxidation of fatty acids. Applying of cocarnit in complex therapy in patients with diabetic cardiac autonomic neuropathy found improvement of left ventricular diastolic function, and positive dynamics in the efferent activity balance of the sympathetic and parasympathetic control of heart rate variability, which provides the regression of clinical symptoms. PMID:23356142

  11. Winter metabolic depression does not change arterial baroreflex control of heart rate in the tegu lizard Salvator merianae.

    PubMed

    Zena, Lucas A; Dantonio, Valter; Gargaglioni, Luciane H; Andrade, Denis V; Abe, Augusto S; Bícego, Kênia C

    2016-03-01

    Baroreflex regulation of blood pressure is important for maintaining appropriate tissue perfusion. Although temperature affects heart rate (fH) reflex regulation in some reptiles and toads, no data are available on the influence of temperature-independent metabolic states on baroreflex. The South American tegu lizard Salvator merianae exhibits a clear seasonal cycle of activity decreasing fH along with winter metabolic downregulation, independent of body temperature. Through pharmacological interventions (phenylephrine and sodium nitroprusside), the baroreflex control of fH was studied at ∼ 25 °C in spring-summer- and winter-acclimated tegus. In winter lizards, resting and minimum fH were lower than in spring-summer animals (respectively, 13.3 ± 0.82 versus 10.3 ± 0.81 and 11.2 ± 0.65 versus 7.97 ± 0.88 beats min(-1)), while no acclimation differences occurred in resting blood pressure (5.14 ± 0.38 versus 5.06 ± 0.56 kPa), baroreflex gain (94.3 ± 10.7 versus 138.7 ± 30.3% kPa(-1)) or rate-pressure product (an index of myocardial activity). Vagal tone exceeded the sympathetic tone of fH, especially in the winter group. Therefore, despite the lower fH, winter acclimation does not diminish the fH baroreflex responses or rate-pressure product, possibly because of increased stroke volume that may arise because of heart hypertrophy. Independent of acclimation, fH responded more to hypotension than to hypertension. This should imply that tegus, which have no pressure separation within the single heart ventricle, must have other protection mechanisms against pulmonary hypertension or oedema, presumably through lymphatic drainage and/or vagal vasoconstriction of pulmonary artery. Such a predominant fH reflex response to hypotension, previously observed in anurans, crocodilians and mammals, may be a common feature of tetrapods. PMID:26747909

  12. Real-time monitoring of the metabolic activity of periodontopathic bacteria.

    PubMed

    Ishiguro, Kazuko; Washio, Jumpei; Sasaki, Keiichi; Takahashi, Nobuhiro

    2015-08-01

    Bacterial metabolic activity is associated with the onset and progression mechanisms of oral biofilm-mediated disease; however, at present no method to monitor bacterial metabolism exists, especially for periodontopathic bacteria. Therefore, we aimed to establish a novel method for monitoring the metabolic activity of periodontopathic bacteria, Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi) and Fusobacterium nucleatum (Fn), as well as Streptococcus mutans (Sm) for comparison. The method is based on the dye resazurin, which is converted to the fluorescent molecule resorufin by reducing molecules derived from bacterial metabolism. Additionally, the effects of antimicrobial substances on bacterial metabolic activity were evaluated using this method. When bacterial suspensions were incubated with tryptone, glutamate, aspartate or glucose in the presence of resazurin, the fluorescence intensity increased over time by these bacterial metabolic reactions, indicating that this method can be used to monitor the metabolic activity of periodontopathic bacteria. Chlorhexidine showed the 50% inhibitory concentration (IC50) of 15-49 μg/ml for tryptone metabolism by Pg, Pi, and Fn, and 7.1-18 μg/ml for glucose metabolism by Pi and Sm. The IC50s for cetylpyridinium chloride and sodium dodecyl sulfate were 0.8-2.1 and 28-44 μg/ml, respectively for all bacteria examined. Fluoride had no effect except the IC50 of 640 μg/ml for Sm, while minocycline hydrochloride had no effect on any of the bacteria. The present study established the method for real-time monitoring of the metabolic activity of periodontopathic bacteria, and the method might be useful for evaluating the effects of antimicrobial substances on the bacterial metabolic activity. PMID:25986950

  13. Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in E. coli.

    PubMed

    Martino, Daniele De; Capuani, Fabrizio; Martino, Andrea De

    2016-01-01

    The solution space of genome-scale models of cellular metabolism provides a map between physically viable flux configurations and cellular metabolic phenotypes described, at the most basic level, by the corresponding growth rates. By sampling the solution space of E. coli's metabolic network, we show that empirical growth rate distributions recently obtained in experiments at single-cell resolution can be explained in terms of a trade-off between the higher fitness of fast-growing phenotypes and the higher entropy of slow-growing ones. Based on this, we propose a minimal model for the evolution of a large bacterial population that captures this trade-off. The scaling relationships observed in experiments encode, in such frameworks, for the same distance from the maximum achievable growth rate, the same degree of growth rate maximization, and/or the same rate of phenotypic change. Being grounded on genome-scale metabolic network reconstructions, these results allow for multiple implications and extensions in spite of the underlying conceptual simplicity. PMID:27232645

  14. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome

    PubMed Central

    Kang, Seol-Jung; Kim,, Eon-ho; Ko, Kwang-Jun

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness or female patients with metabolic syndrome. [Subjects and Methods] Subjects were randomly assigned to an exercise group (n=12) or a control group (n=11). Subjects in the exercise group performed aerobic exercise at 60–80% of maximum heart rate for 40 min 5 times a week for 12 weeks. The changes in metabolic syndrome risk factors, resting heart rate, physical fitness, and arterial stiffness were measured and analyzed before and after initiation of the exercise program to determine the effect of exercise. Arterial stiffness was assessed based on brachial-ankle pulse wave velocity (ba-PWV). [Results] Compared to the control group; The metabolic syndrome risk factors (weight, % body fat, waist circumference, systolic blood pressure, diastolic blood pressure, and HDL-Cholesterol) were significantly improved in the exercise: resting heart rate was significantly decreased; VO2max, muscle strength and muscle endurance were significantly increased; and ba-PWV was significantly decreased. [Conclusion] Aerobic exercise had beneficial effects on the resting heart rate, physical fitness, and arterial stiffness of patients with metabolic syndrome. PMID:27390411

  15. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome.

    PubMed

    Kang, Seol-Jung; Kim, Eon-Ho; Ko, Kwang-Jun

    2016-06-01

    [Purpose] The purpose of this study was to investigate the effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness or female patients with metabolic syndrome. [Subjects and Methods] Subjects were randomly assigned to an exercise group (n=12) or a control group (n=11). Subjects in the exercise group performed aerobic exercise at 60-80% of maximum heart rate for 40 min 5 times a week for 12 weeks. The changes in metabolic syndrome risk factors, resting heart rate, physical fitness, and arterial stiffness were measured and analyzed before and after initiation of the exercise program to determine the effect of exercise. Arterial stiffness was assessed based on brachial-ankle pulse wave velocity (ba-PWV). [Results] Compared to the control group; The metabolic syndrome risk factors (weight, % body fat, waist circumference, systolic blood pressure, diastolic blood pressure, and HDL-Cholesterol) were significantly improved in the exercise: resting heart rate was significantly decreased; VO2max, muscle strength and muscle endurance were significantly increased; and ba-PWV was significantly decreased. [Conclusion] Aerobic exercise had beneficial effects on the resting heart rate, physical fitness, and arterial stiffness of patients with metabolic syndrome. PMID:27390411

  16. Metabolic and water loss rates of two cryptic species in the African velvet worm genus Opisthopatus (Onychophora).

    PubMed

    Weldon, Christopher W; Daniels, Savel R; Clusella-Trullas, Susana; Chown, Steven L

    2013-04-01

    Velvet worms (Onychophora) are characterised by a dearth of mechanisms to retain water, yet recently identified cryptic species are located in areas with seemingly different climates. Using flow-through respirometry, this study determined the metabolic, water loss and cuticular water loss rates of two cryptic species of Opisthopatus cinctipes s.l. from locations that differ in their current climate. When controlling for trial temperature and body mass, velvet worms from the drier and warmer site had significantly lower water loss rates than the wetter and cooler site. Mass-corrected metabolic rate and cuticular water loss did not differ significantly between the two sites. The scaling exponent for the relationship between log metabolic rate and log body mass for O. cinctipes s.l. declined with an increase in temperature from 5 to 15 °C. Females in the two cryptic Opisthopatus species had higher metabolic, water loss and cuticular water loss rates than males, which may represent the increased energetic demands of embryonic growth and development in these viviparous taxa. PMID:23080220

  17. Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in E. coli

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele; Capuani, Fabrizio; De Martino, Andrea

    2016-06-01

    The solution space of genome-scale models of cellular metabolism provides a map between physically viable flux configurations and cellular metabolic phenotypes described, at the most basic level, by the corresponding growth rates. By sampling the solution space of E. coli's metabolic network, we show that empirical growth rate distributions recently obtained in experiments at single-cell resolution can be explained in terms of a trade-off between the higher fitness of fast-growing phenotypes and the higher entropy of slow-growing ones. Based on this, we propose a minimal model for the evolution of a large bacterial population that captures this trade-off. The scaling relationships observed in experiments encode, in such frameworks, for the same distance from the maximum achievable growth rate, the same degree of growth rate maximization, and/or the same rate of phenotypic change. Being grounded on genome-scale metabolic network reconstructions, these results allow for multiple implications and extensions in spite of the underlying conceptual simplicity.

  18. Does amifostine reduce metabolic rate? Effect of the drug on gas exchange and acute ventilatory hypoxic response in humans.

    PubMed

    Pandit, Jaideep J; Allen, Caroline; Little, Evelyn; Formenti, Federico; Harris, Adrian L; Robbins, Peter A

    2015-01-01

    Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange) over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg) of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. There was no change in metabolic rate with amifostine as measured by oxygen uptake (p = 0.113). However in carbon dioxide output and respiratory quotient, we detected a small decline over time in control and drug protocols, consistent with a gradual change from carbohydrate to fat metabolism over the course of the relatively long study protocol. A novel result was that amifostine (1000 mg) increased the mean ± SD acute hypoxic ventilatory response from 12.4 ± 5.1 L/min to 20.3 ± 11.9 L/min (p = 0.045). In conclusion, any cellular protective effects of amifostine are unlikely due to metabolic effects. The stimulatory effect on hypoxic ventilatory responses may be due to increased levels of hypoxia inducible factor, either peripherally in the carotid body, or centrally in the brain. PMID:25894815

  19. Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease

    PubMed Central

    Tsedensodnom, Orkhontuya; Vacaru, Ana M.; Howarth, Deanna L.; Yin, Chunyue; Sadler, Kirsten C.

    2013-01-01

    SUMMARY Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 μmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes. PMID

  20. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation

    PubMed Central

    Hernandez, J.P.; Mota, L.C.; Baldwin, W.S.

    2010-01-01

    The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I–III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors. PMID:20871735

  1. A unique cytosolic activity related but distinct from NQO1 catalyses metabolic activation of mitomycin C

    PubMed Central

    Joseph, P; Jaiswal, A K

    2000-01-01

    Mitomycin C (MMC) is a prototype bioreductive drug employed to treat a variety of cancers including head and neck cancer. Among the various enzymes, dicoumarol inhibitable cytosolic NAD(P)H:quinone oxidoreductase1 (NQO1) was shown to catalyse bioreductive activation of MMC leading to cross-linking of the DNA and cytotoxicity. However, the role of NQO1 in metabolic activation of MMC has been disputed. In this report, we present cellular and animal models to demonstrate that NQO1 may play only a minor role in metabolic activation of MMC. We further demonstrate that bioreductive activation of MMC is catalysed by a unique cytosolic activity which is related but distinct from NQO1. Chinese hamster ovary (CHO) cells were developed that permanently express higher levels of cDNA-derived NQO1. These cells showed significantly increased protection against menadione toxicity. However, they failed to demonstrate higher cytotoxicity due to exposure to MMC under oxygen (normal air) or hypoxia, as compared to the wild-type control CHO cells. Disruption of the NQO1 gene by homologous recombination generated NQO1–/– mice that do not express the NQO1 gene resulting in the loss of NQO1 protein and activity. The cytosolic fractions from liver and colon tissues of NQO1–/– mice showed similar amounts of DNA cross-linking upon exposure to MMC, as observed in NQO1+/+ mice. The unique cytosolic activity that activated MMC in cytosolic fractions of liver and colon tissues of NQO1–/– mice was designated as cytosolic MMC reductase. This activity, like NQO1, was inhibited by dicoumarol and immunologically related to NQO1. © 2000 Cancer Research Campaign PMID:10755406

  2. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning.

    PubMed

    Linnman, Clas; Zeidan, Mohamed A; Pitman, Roger K; Milad, Mohammed R

    2012-02-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  3. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning

    PubMed Central

    Linnman, Clas; Zeidan, Mohamed A.; Pitman, Roger K; Milad, Mohammed R.

    2011-01-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differentially conditioned skin conductance responses. Midbrain and insula resting metabolism negatively predicted midbrain and insula functional reactivity, while dorsal anterior cingulate resting metabolism positively predicted midbrain functional reactivity. We conclude that resting metabolism in limbic areas can predict some aspects of psychophysiological and neuronal reactivity during fear learning. PMID:22207247

  4. The influence of hydrologic connectivity on ecosystem metabolism and nitrate uptake in an active beaver meadow

    NASA Astrophysics Data System (ADS)

    Wegener, P.; Covino, T. P.; Wohl, E.; Kampf, S. K.; Lacy, S.

    2015-12-01

    Wetlands have been widely demonstrated to provide important watershed services, such as the sequestration of carbon (C) and removal of nitrate (NO3-) from through-flowing water. Hydrologic connectivity (degree of water and associated material exchange) between floodplain water bodies (e.g., side channels, ponds) and the main channel influence rates of C accumulation and NO3- uptake, and the degree to which wetlands contribute to enhanced water quality at the catchment scale. However, environmental engineers have largely ignored the role of hydrologic connectivity in providing essential ecosystem services, and constructed wetlands are commonly built using compacted clay and berms that result in less groundwater and surface water exchange than observed in natural wetlands. In a study of an active beaver meadow (multithreaded, riparian wetland) in Rocky Mountain National Park, CO, we show how shifts in hydrology (connectivity, residence times, flow paths) from late spring snowmelt (high connectivity) to autumn/winter baseflow (low connectivity) influence ecosystem metabolism metrics (e.g., gross primary production, ecosystem respiration, and net ecosystem productivity) and NO3- uptake rates. We use a combination of mixing analyses, tracer tests, and hydrometric methods to evaluate shifts in surface and subsurface hydrologic connections between floodplain water bodies from snowmelt to baseflow. In the main channel and three floodplain water bodies, we quantify metabolism metrics and NO3- uptake kinetics across shifting flow regimes. Results from our research indicate that NO3- uptake and metabolism dynamics respond to changing levels of hydrologic connectivity to the main channel, emphasizing the importance of incorporating connectivity in wetland mitigation practices that seek to enhance water quality at the catchment scale.

  5. Total Body Capacitance for Estimating Human Basal Metabolic Rate in an Egyptian Population

    PubMed Central

    M. Abdel-Mageed, Samir; I. Mohamed, Ehab

    2016-01-01

    Determining basal metabolic rate (BMR) is important for estimating total energy needs in the human being yet, concerns have been raised regarding the suitability of sex-specific equations based on age and weight for its calculation on an individual or population basis. It has been shown that body cell mass (BCM) is the body compartment responsible for BMR. The objectives of this study were to investigate the relationship between total body capacitance (TBC), which is considered as an expression for BCM, and BMR and to develop a formula for calculating BMR in comparison with widely used equations. Fifty healthy nonsmoking male volunteers [mean age (± SD): 24.93 ± 4.15 year and body mass index (BMI): 25.63 ± 3.59 kg/m2] and an equal number of healthy nonsmoking females matched for age and BMI were recruited for the study. TBC and BMR were measured for all participants using octopolar bioelectric impedance analysis and indirect calorimetry techniques, respectively. A significant regressing equation based on the covariates: sex, weight, and TBC for estimating BMR was derived (R=0.96, SEE=48.59 kcal, and P<0.0001), which will be useful for nutritional and health status assessment for both individuals and populations. PMID:27127453

  6. Seasonal and inter-annual variations of community metabolism rates of a Posidonia oceanica seagrass meadow

    NASA Astrophysics Data System (ADS)

    Champenois, W.; Borges, A. V.

    2012-04-01

    We report gross primary production (GPP), community respiration (CR), and net community production (NCP) over Posidonia oceanica meadow at 10 m in Corsica (Bay of Revellata) based on the open water O2 mass balance from a data-set of hourly measurements with an array of three O2 optodes deployed from August 2006 to October 2009. The method was checked by comparison with discrete measurements of metabolic rates derived from benthic chamber incubations also based on the diel change of O2. This comparison was satisfactory and actually highlights the potential caveats of benthic incubation measurements related to O2 accumulation in small chambers leading to photorespiration, and an under-estimation of GPP. Our data confirmed previous P. oceanica meadows GPP and CR values, strong seasonal variations, and net autotrophy. High resolution data revealed strong inter-annual variability, with a decrease of GPP by 35% and NCP by 87% during 2006-2007 characterized by a mild and less stormy winter compared 2007-2008 and 2008-2009. P. oceanica meadows are then expected to decrease export of organic carbon to adjacent communities (decrease of NCP), since a decrease in frequency and intensity of marine storms is expected in future in the Mediterranean Sea, due to a northward shift of the Atlantic storm track.

  7. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    PubMed Central

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  8. Best-fitting prediction equations for basal metabolic rate: informing obesity interventions in diverse populations.

    PubMed

    Sabounchi, N S; Rahmandad, H; Ammerman, A

    2013-10-01

    Basal metabolic rate (BMR) represents the largest component of total energy expenditure and is a major contributor to energy balance. Therefore, accurately estimating BMR is critical for developing rigorous obesity prevention and control strategies. Over the past several decades, numerous BMR formulas have been developed targeted to different population groups. A comprehensive literature search revealed 248 BMR estimation equations developed using diverse ranges of age, gender, race, fat-free mass, fat mass, height, waist-to-hip ratio, body mass index and weight. A subset of 47 studies included enough detail to allow for development of meta-regression equations. Utilizing these studies, meta-equations were developed targeted to 20 specific population groups. This review provides a comprehensive summary of available BMR equations and an estimate of their accuracy. An accompanying online BMR prediction tool (available at http://www.sdl.ise.vt.edu/tutorials.html) was developed to automatically estimate BMR based on the most appropriate equation after user-entry of individual age, race, gender and weight. PMID:23318720

  9. Total Body Capacitance for Estimating Human Basal Metabolic Rate in an Egyptian Population.

    PubMed

    M Abdel-Mageed, Samir; I Mohamed, Ehab

    2016-03-01

    Determining basal metabolic rate (BMR) is important for estimating total energy needs in the human being yet, concerns have been raised regarding the suitability of sex-specific equations based on age and weight for its calculation on an individual or population basis. It has been shown that body cell mass (BCM) is the body compartment responsible for BMR. The objectives of this study were to investigate the relationship between total body capacitance (TBC), which is considered as an expression for BCM, and BMR and to develop a formula for calculating BMR in comparison with widely used equations. Fifty healthy nonsmoking male volunteers [mean age (± SD): 24.93 ± 4.15 year and body mass index (BMI): 25.63 ± 3.59 kg/m(2)] and an equal number of healthy nonsmoking females matched for age and BMI were recruited for the study. TBC and BMR were measured for all participants using octopolar bioelectric impedance analysis and indirect calorimetry techniques, respectively. A significant regressing equation based on the covariates: sex, weight, and TBC for estimating BMR was derived (R=0.96, SEE=48.59 kcal, and P<0.0001), which will be useful for nutritional and health status assessment for both individuals and populations. PMID:27127453

  10. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?

    PubMed Central

    Burton, T.; Killen, S. S.; Armstrong, J. D.; Metcalfe, N. B.

    2011-01-01

    Individual differences in the energy cost of self-maintenance (resting metabolic rate, RMR) are substantial and the focus of an emerging research area. These differences may influence fitness because self-maintenance is considered as a life-history component along with growth and reproduction. In this review, we ask why do some individuals have two to three times the ‘maintenance costs’ of conspecifics, and what are the fitness consequences? Using evidence from a range of species, we demonstrate that diverse factors, such as genotypes, maternal effects, early developmental conditions and personality differences contribute to variation in individual RMR. We review evidence that RMR is linked with fitness, showing correlations with traits such as growth and survival. However, these relationships are modulated by environmental conditions (e.g. food supply), suggesting that the fitness consequences of a given RMR may be context-dependent. Then, using empirical examples, we discuss broad-scale reasons why variation in RMR might persist in natural populations, including the role of both spatial and temporal variation in selection pressures and trans-generational effects. To conclude, we discuss experimental approaches that will enable more rigorous examination of the causes and consequences of individual variation in this key physiological trait. PMID:21957133

  11. Does encephalization correlate with life history or metabolic rate in Carnivora?

    PubMed

    Finarelli, John A

    2010-06-23

    A recent analysis of brain size evolution reconstructed the plesiomorphic brain-body size allometry for the mammalian order Carnivora, providing an important reference frame for comparative analyses of encephalization (brain volume scaled to body mass). I performed phylogenetically corrected regressions to remove the effects of body mass, calculating correlations between residual values of encephalization with basal metabolic rate (BMR) and six life-history variables (gestation time, neonatal mass, weaning time, weaning mass, litter size, litters per year). No significant correlations were recovered between encephalization and any life-history variable or BMR, arguing against hypotheses relating encephalization to maternal energetic investment. However, after correcting for clade-specific adaptations, I recovered significant correlations for several variables, and further analysis revealed a conserved carnivoran reproductive strategy, linking degree of encephalization to the well-documented mammalian life-history trade-off between neonatal mass and litter size. This strategy of fewer, larger offspring correlating with increased encephalization remains intact even after independent changes in encephalization allometries in the evolutionary history of this clade. PMID:20007169

  12. Maximal sum of metabolic exchange fluxes outperforms biomass yield as a predictor of growth rate of microorganisms.

    PubMed

    Zarecki, Raphy; Oberhardt, Matthew A; Yizhak, Keren; Wagner, Allon; Shtifman Segal, Ella; Freilich, Shiri; Henry, Christopher S; Gophna, Uri; Ruppin, Eytan

    2014-01-01

    Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth. PMID:24866123

  13. Comparison of Indirect Calorimetry and Predictive Equations in Estimating Resting Metabolic Rate in Underweight Females

    PubMed Central

    ALIASGHARZADEH, Soghra; MAHDAVI, Reza; ASGHARI JAFARABADI, Mohammad; NAMAZI, Nazli

    2015-01-01

    Background: Underweight as a public healt