Science.gov

Sample records for active metabolite 6-o-desmethyl

  1. Fungal metabolites with anticancer activity.

    PubMed

    Evidente, Antonio; Kornienko, Alexander; Cimmino, Alessio; Andolfi, Anna; Lefranc, Florence; Mathieu, Véronique; Kiss, Robert

    2014-05-01

    Covering: 1964 to 2013. Natural products from bacteria and plants have played a leading role in cancer drug discovery resulting in a large number of clinically useful agents. In contrast, the investigations of fungal metabolites and their derivatives have not led to a clinical cancer drug in spite of significant research efforts revealing a large number of fungi-derived natural products with promising anticancer activity. Many of these natural products have displayed notable in vitro growth-inhibitory properties in human cancer cell lines and select compounds have been demonstrated to provide therapeutic benefits in mouse models of human cancer. Many of these compounds are expected to enter human clinical trials in the near future. The present review discusses the reported sources, structures and biochemical studies aimed at the elucidation of the anticancer potential of these promising fungal metabolites.

  2. Active Metabolites of Isoxazolylpenicillins in Humans

    PubMed Central

    Thijssen, H. H. W.; Mattie, H.

    1976-01-01

    Metabolites of the isoxazolylpenicillins that still possessed antibacterial activity were shown to be present in urine and serum. In healthy subjects, the amounts excreted in urine were low; 10 to 23% of the excreted penicillin activities represented the metabolites. The highest amount of metabolite in urine was found for oxacillin, and the lowest was found for flucloxacillin. No extreme differences in the amounts of metabolite excreted were observed when the compounds were administered orally or intravenously. In one healthy subject metabolite levels were estimated for cloxacillin in serum. Very low levels were found, i.e., about 9% of the activity. In subjects with highly impaired renal function, the metabolite may represent up to 50% of the total level of penicillin in serum. The antibacterial activities of the different metabolites were of the same order of magnitude as those of the respective parent compounds. Also, the activity against benzylpenicillin-resistant staphylococci was retained. It is not likely that the formation of the active metabolites should influence therapeutic results. PMID:825029

  3. [Biologically active metabolites of the marine actinobacteria].

    PubMed

    Sobolevskaia, M P; Kuznetsova, T A

    2010-01-01

    This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.

  4. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities.

    PubMed

    Nakamura, Yukiko; Afendi, Farit Mochamad; Parvin, Aziza Kawsar; Ono, Naoaki; Tanaka, Ken; Hirai Morita, Aki; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2014-01-01

    Databases (DBs) are required by various omics fields because the volume of molecular biology data is increasing rapidly. In this study, we provide instructions for users and describe the current status of our metabolite activity DB. To facilitate a comprehensive understanding of the interactions between the metabolites of organisms and the chemical-level contribution of metabolites to human health, we constructed a metabolite activity DB known as the KNApSAcK Metabolite Activity DB. It comprises 9,584 triplet relationships (metabolite-biological activity-target species), including 2,356 metabolites, 140 activity categories, 2,963 specific descriptions of biological activities and 778 target species. Approximately 46% of the activities described in the DB are related to chemical ecology, most of which are attributed to antimicrobial agents and plant growth regulators. The majority of the metabolites with antimicrobial activities are flavonoids and phenylpropanoids. The metabolites with plant growth regulatory effects include plant hormones. Over half of the DB contents are related to human health care and medicine. The five largest groups are toxins, anticancer agents, nervous system agents, cardiovascular agents and non-therapeutic agents, such as flavors and fragrances. The KNApSAcK Metabolite Activity DB is integrated within the KNApSAcK Family DBs to facilitate further systematized research in various omics fields, especially metabolomics, nutrigenomics and foodomics. The KNApSAcK Metabolite Activity DB could also be utilized for developing novel drugs and materials, as well as for identifying viable drug resources and other useful compounds.

  5. Biologically Active Secondary Metabolites from the Fungi.

    PubMed

    Bills, Gerald F; Gloer, James B

    2016-11-01

    Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops

  6. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  8. Metabolite

    MedlinePlus

    A metabolite is any substance produced during metabolism (digestion or other bodily chemical processes). The term metabolite may also refer to the product that remains after a drug is broken down (metabolized) by the body.

  9. Biologically active secondary metabolites from Asphodelus microcarpus.

    PubMed

    Ghoneim, Mohammed M; Ma, Guoyi; El-Hela, Atef A; Mohammad, Abd-Elsalam I; Kottob, Saeid; El-Ghaly, Sayed; Cutler, Stephen J; Ross, Samir A

    2013-08-01

    Bioassay guided fractionation of the ethanolic extract of Asphodelus microcarpus Salzm.et Vivi (Asphodelaceae) resulted in the isolation of one new metabolite, 1,6-dimethoxy-3-methyl-2-naphthoic acid (1) as well as nine known compounds: asphodelin (2), chrysophanol (3), 8-methoxychrysophanol (4), emodin (5), 2-acetyl-1,8-dimethoxy-3-methylnaphthalene (6), 10-(chrysophanol-7'-yl)-10-hydroxychrysophanol-9-anthrone (7), aloesaponol-III-8-methyl ether (8), ramosin (9) and aestivin (10). The compounds were identified by 1D and 2D NMR and HRESIMS. Compounds 3, 6 and 10 were isolated for the first time from this species. Compounds 3 and 4 showed moderate to weak antileishmanial activity with IC50 values of 14.3 and 35.1 microg/mL, respectively. Compound 4 exhibited moderate antifungal activity against Cryptococcus neoformans with an IC50 value of 15.0 microg/mL, while compounds 5, 7 and 10 showed good to potent activity against methicillin resistant Staphylococcus aureus (MRSA) with IC50 values of 6.6, 9.4 microg/mL and 1.4 microg/mL respectively. Compounds 5, 8 and 9 displayed good activity against S. aureus with IC50 values of 3.2, 7.3 and 8.5 microg/mL, respectively. Compounds 7 and 9 exhibited a potent cytotoxic activity against leukemia LH60 and K562 cell lines. Compound 10 showed potent antimalarial activities against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum with IC50 values in the range of 0.8-0.7 microg/mL without showing any cytotoxicity to mammalian cells.

  10. Medicinal chemistry of drugs with active metabolites following conjugation.

    PubMed

    Kalász, Huba; Petroianu, Georg; Hosztafi, Sándor; Darvas, Ferenc; Csermely, Tamás; Adeghate, Ernest; Siddiq, Afshan; Tekes, Kornélia

    2013-10-01

    Authorities of Drug Administration in the United States of America approved about 5000 drugs for use in the therapy or management of several diseases. About two hundred of these drugs have active metabolites and the knowledge of their medicinal chemistry is important both in medical practice and pharmaceutical research. This review gives a detailed description of the medicinal chemistry of drugs with active metabolites generated after conjugation. This review focused on glucuronide-, acetyl-, sulphate- and phosphate-conjugation of drugs, converting the drug into an active metabolite. This conversion essentially changed the lipophilicity of the drug.

  11. Metabolites of alectinib in human: their identification and pharmacological activity.

    PubMed

    Sato-Nakai, Mika; Kawashima, Kosuke; Nakagawa, Toshito; Tachibana, Yukako; Yoshida, Miyuki; Takanashi, Kenji; Morcos, Peter N; Binder, Martin; Moore, David J; Yu, Li

    2017-07-01

    Two metabolites (M4 and M1b) in plasma and four metabolites (M4, M6, M1a and M1b) in faeces were detected through the human ADME study following a single oral administration of [(14)C]alectinib, a small-molecule anaplastic lymphoma kinase inhibitor, to healthy subjects. In the present study, M1a and M1b, which chemical structures had not been identified prior to the human ADME study, were identified as isomers of a carboxylate metabolite oxidatively cleaved at the morpholine ring. In faeces, M4 and M1b were the main metabolites, which shows that the biotransformation to M4 and M1b represents two main metabolic pathways for alectinib. In plasma, M4 was a major metabolite and M1b was a minor metabolite. The contribution to in vivo pharmacological activity of these circulating metabolites was assessed from their in vitro pharmacological activity and plasma protein binding. M4 had a similar cancer cell growth inhibitory activity and plasma protein binding to that of alectinib, suggesting its contribution to the antitumor activity of alectinib, whereas the pharmacological activity of M1b was insignificant.

  12. Biologically active secondary metabolites from Asphodelus microcarpus

    USDA-ARS?s Scientific Manuscript database

    Bioassay guided fractionation of the ethanolic extract of Asphodelus microcarpus Salzm.et Vivi (Asphodelaceae) resulted in the isolation of one new metabolite, 1,6-dimethoxy-3-methyl-2-naphthoic acid (1) as well as nine known compounds: asphodelin (2), chrysophanol (3), 8-methoxychrysophanol (4), em...

  13. DHEA metabolites activate estrogen receptors alpha and beta

    PubMed Central

    Michael Miller, Kristy K.; Al-Rayyan, Numan; Ivanova, Margarita M.; Mattingly, Kathleen A.; Ripp, Sharon L.; Klinge, Carolyn M.; Prough, Russell A.

    2012-01-01

    Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβ in vitro, modulating estrogen target genes in vivo. PMID:23123738

  14. Secondary Metabolites from Three Florida Sponges with Antidepressant Activity

    PubMed Central

    Kochanowska, Anna J.; Rao, Karumanchi V.; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R.; Kelly, Michelle; Stewart, Gina S.; Sufka, Kenneth J.; Hamann, Mark T.

    2016-01-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety–depression continuum model. Among the isolated compounds, 5,6-dibromo-N,N-dimethyltryptamine (1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo-N,N-dimethyltryptamine (2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs. PMID:18217716

  15. Secondary metabolites from three Florida sponges with antidepressant activity.

    PubMed

    Kochanowska, Anna J; Rao, Karumanchi V; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R; Kelly, Michelle; Stewart, Gina S; Sufka, Kenneth J; Hamann, Mark T

    2008-02-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.

  16. Effects of metronidazole and its metabolites on histamine immunosuppression activity.

    PubMed

    Elizondo, G; Ostrosky-Wegman, P

    1996-01-01

    We have previously reported that metronidazole treatment increases human lymphocyte proliferation showing individual differences. This drug and its metabolites are imidazole compounds like histamine and cimetidine. The first is an endogenous amine that inhibits T-helper lymphocyte proliferation, and the second is a histamine antagonist. We presently report the in vitro effects of histamine, cimetidine, imidazole, metronidazole and its two principal metabolites (the acetic acid and hydroxy forms), on the mitogenic response to phytohemagglutinin (PHA) stimulation of human peripheral blood lymphocytes. Histamine decreased lymphocyte proliferation while (in order of potency) cimetidine, the hydroxy metabolite of metronidazole, imidazole and metronidazole, increased the mitogenic response to PHA in a dose-response fashion. The acetic acid metabolite lacked immunomodulatory effects. Competitive studies showed that cimetidine, metronidazole, and the hydroxy metabolite blocked the inhibitory effect of histamine on lymphocyte proliferation in a dose-related manner. This blockage was non-competitive, suggesting that the target of the imidazole compounds was not the active site of the H2 receptor.

  17. Metabolism of mometasone furoate and biological activity of the metabolites.

    PubMed

    Sahasranaman, S; Issar, M; Hochhaus, G

    2006-02-01

    To better evaluate the pharmacokinetic and pharmacodynamic properties of the new inhaled glucocorticoid mometasone furoate (MF), the metabolism of MF was evaluated in rat and human tissues and in rat after i.v. administration. Metabolic studies with 3H-MF in human and rat plasma and S9 fractions of human and rat lung showed relatively high stability and a degradation pattern similar to that seen in buffer systems. MF was efficiently metabolized into at least five metabolites in S9 fractions of both rat and human liver. There were, however, quantitative differences in the metabolites between the two species. The apparent half-life of MF in the S9 fraction of human liver was found to be 3 times greater compared with that in rat. MET1, the most polar metabolite, was the major metabolite in rat liver fractions, whereas both MET1 and MET2 were formed to an equal extent in human liver. Metabolism and distribution studies in rats after intravenous and intratracheal administration of [1,2-(3)H]MF revealed that most of the radioactivity (approximately 90%) was present in the stomach, intestines, and intestinal contents, suggesting biliary excretion of MF and its metabolites. Radiochromatography showed that most radioactivity was associated with MET1, MET2, and MET 3. Fractionation of the high-performance liquid chromatography eluate (MET1-5) revealed that only MF [relative binding affinity (RBA) 2900] and MET2 (RBA 700) had appreciable glucocorticoid receptor binding affinity. These results suggest that MF undergoes distinct extrahepatic metabolism but generates active metabolites that might be in part responsible for the systemic side effects of MF.

  18. Monascus secondary metabolites: production and biological activity.

    PubMed

    Patakova, Petra

    2013-02-01

    The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.

  19. Plant products and secondary metabolites with acaricide activity against ticks.

    PubMed

    Rosado-Aguilar, J A; Arjona-Cambranes, K; Torres-Acosta, J F J; Rodríguez-Vivas, R I; Bolio-González, M E; Ortega-Pacheco, A; Alzina-López, A; Gutiérrez-Ruiz, E J; Gutiérrez-Blanco, E; Aguilar-Caballero, A J

    2017-04-30

    The present review documents the results of studies evaluating the acaricidal activity of different plant products and secondary metabolites against ticks that are resistant and susceptible to conventional acaricides. Studies published from 1998 to 2016 were included. The acaricidal activity of plant extracts, essential oils and secondary compounds from plants have been evaluated using bioassays with ticks in the larval and adult stages. There is variable effectiveness according to the species of plant and the concentrations used, with observed mortalities ranging from 5 to 100% against the Rhipicephalus (Boophilus), Amblyomma, Dermacentor, Hyalomma, and Argas genera. A number of plants have been reported to cause high mortalities and/or affect the reproductive capacity of ticks in the adult phase. In the majority of these trials, the main species of plants evaluated correspond to the families Lamiaceae, Fabaceae, Asteraceae, Piperaceae, Verbenaceae, and Poaceae. Different secondary metabolites such as thymol, carvacrol, 1,8-cineol and n-hexanal, have been found to be primarily responsible for the acaricidal activity of different essential oils against different species of ticks, while nicotine, dibenzyldisulfide and dibenzyltrisulfide have been evaluated for plant extracts. Only thymol, carvacrol and 1,8-cineol have been evaluated for acaricidal activity under in vivo conditions. The information in the present review allows the conclusion that the secondary metabolites contained in plant products could be used as an alternative for the control of ticks that are susceptible or resistant to commercial acaricides. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Investigations of fungal secondary metabolites with potential anticancer activity.

    PubMed

    Balde, ElHadj Saidou; Andolfi, Anna; Bruyère, Céline; Cimmino, Alessio; Lamoral-Theys, Delphine; Vurro, Maurizio; Damme, Marc Van; Altomare, Claudio; Mathieu, Véronique; Kiss, Robert; Evidente, Antonio

    2010-05-28

    Fourteen metabolites, isolated from phytopathogenic and toxigenic fungi, were evaluated for their in vitro antigrowth activity for six distinct cancer cell lines, using the MTT colorimetric assay. Bislongiquinolide (1) and dihydrotrichodimerol (5), which belong to the bisorbicillinoid structural class, displayed significant growth inhibitory activity against the six cancer cell lines studied, while the remaining compounds displayed weak or no activity. The data show that 1 and 5 have similar growth inhibitory activities with respect to those cancer cell lines that display certain levels of resistance to pro-apoptotic stimuli or those that are sensitive to apoptosis. Quantitative videomicroscopy analysis revealed that 1 and 5 exert their antiproliferative effect through cytostatic and not cytotoxic activity. The preliminary results from the current study have stimulated further structure-activity investigations with respect to the growth inhibitory activity of compounds belonging to the bisorbicillinoid group.

  1. Pharmacologically active plant metabolites as survival strategy products.

    PubMed

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  2. Biological activity of secondary metabolites from Peltostigma guatemalense.

    PubMed

    Cuca Suarez, Luis Enrique; Pattarroyo, Manuel Elkin; Lozano, Jose Manuel; Delle Monache, Franco

    2009-01-01

    Leaves and wood of Peltostigma guatemalense, a novel species of the family Rutaceae, yielded a total of 14 secondary metabolites, i.e. methyl p-hydroxy benzoate, phenylacetic acid, beta-sitosterol, lupeol, syringaresinol, scopoletin, gardenin B (1), and seven alkaloids: gamma-fagarine (2), skimmianine (3), kokusaginine (4), 7-O-isopentenyl-gamma-fagarine (5), anhydro-evoxine (6), evoxine (7) and 4-methoxy-1-methyl-quinolin-2-one (8). The compounds have been identified by spectroscopic methods. Antibacterial and antimalarial in vitro activity of the isolated compounds were also determined. Methyl p-hydroxy benzoate and quinolone (8) were the most effective on Plasmodium falciparium strains.

  3. Potential anticancer activity of lichen secondary metabolite physodic acid.

    PubMed

    Cardile, V; Graziano, A C E; Avola, R; Piovano, M; Russo, A

    2017-02-01

    Secondary metabolites present in lichens, which comprise aliphatic, cycloaliphatic, aromatic and terpenic compounds, are unique with respect to those of higher plants and show interesting biological and pharmacological activities. However, only a few of these compounds, have been assessed for their effectiveness against various in vitro cancer models. In the present study, we investigated the cytotoxicity of three lichen secondary metabolites (atranorin, gyrophoric acid and physodic acid) on A375 melanoma cancer cell line. The tested compounds arise from different lichen species collected in different areas of Continental and Antarctic Chile. The obtained results confirm the major efficiency of depsidones. In fact, depsides atranorin and gyrophoric acid, showed a lower activity inhibiting the melanoma cancer cells only at more high concentrations. Whereas the depsidone physodic acid, showed a dose-response relationship in the range of 6.25-50 μM concentrations in A375 cells, activating an apoptotic process, that probably involves the reduction of Hsp70 expression. Although the molecular mechanism, by which apoptosis is induced by physodic acid remains unclear, and of course further studies are needed, the results here reported confirm the promising biological properties of depsidone compounds, and may offer a further impulse to the development of analogues with more powerful efficiency against melanoma cells.

  4. Pharmacokinetic profiles of the active metamizole metabolites in healthy horses.

    PubMed

    Giorgi, M; Aupanun, S; Lee, H-K; Poapolathep, A; Rychshanova, R; Vullo, C; Faillace, V; Laus, F

    2017-04-01

    Metamizole (MT) is an analgesic and antipyretic drug labelled for use in humans, horses, cattle, swine and dogs. MT is rapidly hydrolysed to the active primary metabolite 4-methylaminoantipyrine (MAA). MAA is formed in much larger amounts compared with other minor metabolites. Among the other secondary metabolites, 4-aminoantipyrine (AA) is also relatively active. The aim of this research was to evaluate the pharmacokinetic profiles of MAA and AA after dose of 25 mg/kg MT by intravenous (i.v.) and intramuscular (i.m.) routes in healthy horses. Six horses were randomly allocated to two equally sized treatment groups according to a 2 × 2 crossover study design. Blood was collected at predetermined times within 24 h, and plasma was analysed by a validated HPLC-UV method. No behavioural changes or alterations in health parameters were observed in the i.v. or i.m. groups of animals during or after (up to 7 days) drug administration. Plasma concentrations of MAA after i.v. and i.m. administrations of MT were detectable from 5 min to 10 h in all the horses. Plasma concentrations of AA were detectable in the same range of time, but in smaller amounts. Maximum concentration (Cmax ), time to maximum concentration (Tmax ) and AUMC0-last of MAA were statistically different between the i.v. and i.m. groups. The AUCIM /AUCIV ratio of MAA was 1.06. In contrast, AUC0-last of AA was statistically different between the groups (P < 0.05) with an AUCIM /AUCIV ratio of 0.54. This study suggested that the differences in the MAA and AA plasma concentrations found after i.m. and i.v. administrations of MT might have minor consequences on the pharmacodynamics of the drug.

  5. Mutagenic activity of austocystins - secondary metabolites of Aspergillus ustus

    SciTech Connect

    Kfir, R.; Johannsen, E.; Vleggaar, R.

    1986-11-01

    Mycotoxins constitute a group of toxic secondary fungal metabolites. Fungi that produce these toxins frequently contaminate food and feed, creating a potential threat to human and animal health. Biological activities of mycotoxins include, amongst others: toxicity, mutagenicity and carcinogenicity, which can be expressed with or without metabolic activation. Austocystins are similar in structure to aflatoxin B/sup 1/ and are probably synthesized in a similar manner. The Ames Salmonella test, a widely accepted method employed for the detection of mutagenic activity of various chemical compounds was used for testing the mutagenic activity of different mycotoxins. As aflatoxin B/sup 1/ was found by the Ames test to be highly mutagenic, the same test was applied for the study of possible mutagenicity of the austocystins. The mutagenic activity of these compounds was studied with and without metabolic activation using two tester strains of S. typhimurium, one capable of detecting frame shift mutation (strain TA98) and the other capable of detecting base pair substitution (strain TA100).

  6. Biological activity of secondary metabolites from Bupleurum salicifolium (Umbelliferae).

    PubMed

    González, J A; Estévez-Braun, A; Estévez-Reyes, R; Bazzocchi, I L; Moujir, L; Jimenez, I A; Ravelo, A G; González, A G

    1995-01-15

    Secondary metabolites from Bupleurum salicifolium were tested against viruses, Gram-positive and Gram-negative bacteria, the yeast Candida albicans, the nematodes Globodera pallida and G. rostochiensis, the insect Spodoptera littoralis and the crustacean Artemia salina. These compounds were also tested against tumoral and non-tumoral cell lines. The polyacetylene 8S-heptadeca-2(Z)-9(Z)-diene-4,6-diyne-1,8-diol exhibited toxicity for A. salina and specific antibiotic activity against Gram-positive bacteria. Nine of the lignans and one coumarin showed toxicity for A. salina, and the lignans bursehernin and matairesinol inhibited the hatching of the two nematode species. These are the first lignans that have been reported as affecting phytoparasitic nematodes, and the first natural products known to have an effect on the hatching of G. pallida. Lignans may play a role in the defence mechanisms of potato plants, as allelopathic substances acting against cyst-forming nematodes.

  7. Degradability of selected azo dye metabolites in activated sludge systems.

    PubMed

    Ekici, P; Leupold, G; Parlar, H

    2001-08-01

    The stability of eight environmentally relevant azo dye metabolites [o-aminotoluene (2), 4,4'-thiodianiline (4), 4,4'-diaminodiphenylmethane (6), p-chloroaniline (7), 2,4-toluylenediamine (9), p-kresidine (14), 2,4-diaminoanisole (15), and 2-naphthylamine (18)] was investigated in activated sludge systems and compared to their hydrolysis stability. For both studies, test systems of the EC and EPA were used. The results show that degradation under aerobic conditions proceeds via oxidation of the substituents located on the aromatic ring or on the side chain. Under anaerobic conditions, the azo bond is reductively cleaved, which leads to the substituted amines. These are toxic and potentially hazardous to the environment.

  8. Antifouling activity of secondary metabolites isolated from chinese marine organisms.

    PubMed

    Li, Yong-Xin; Wu, Hui-Xian; Xu, Ying; Shao, Chang-Lun; Wang, Chang-Yun; Qian, Pei-Yuan

    2013-10-01

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml(-1). Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml(-1) and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity.

  9. Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens

    PubMed Central

    Stodůlková, Eva; Císařová, Ivana; Kolařík, Miroslav; Chudíčková, Milada; Novák, Petr; Man, Petr; Kuzma, Marek; Pavlů, Barbora; Černý, Jan; Flieger, Miroslav

    2015-01-01

    Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

  10. Ergosteroids. II: Biologically active metabolites and synthetic derivatives of dehydroepiandrosterone.

    PubMed

    Lardy, H; Kneer, N; Wei, Y; Partridge, B; Marwah, P

    1998-03-01

    An improved procedure for the synthesis of 3 beta-hydroxyandrost-5-ene-7,17-dione, a natural metabolite of dehydroepiandrosterone (DHEA) is described. The synthesis and magnetic resonance spectra of several other related steroids are presented. Feeding dehydroepiandrosterone to rats induces enhanced formation of several liver enzymes among which are mitochondrial sn-glycerol 3-phosphate dehydrogenase (GPDH) and cytosolic malic enzyme. The induction of these two enzymes, that complete a thermogenic system in rat liver, was used as an assay to search for derivatives of DHEA that might be more active than the parent steroid. Activity is retained in steroids that are reduced to the corresponding 17 beta-hydroxy derivative, or hydroxylated at 7 alpha or 7 beta, and is considerably enhanced when the 17-hydroxy or 17-carbonyl steroid is converted to the 7-oxo derivative. Several derivatives of DHEA did not induce the thermogenic enzymes whereas the corresponding 7-oxo compounds did. Both short and long chain acyl esters of DHEA and of 7-oxo-DHEA are active inducers of the liver enzymes when fed to rats. 7-Oxo-DHEA-3-sulfate is as active as 7-oxo-DHEA or its 3-acetyl ester, whereas DHEA-3-sulfate is much less active than DHEA. Among many steroids tested, those possessing a carbonyl group at position 3, a methyl group at 7, a hydroxyl group at positions 1, 2, 4, 11, or 19, or a saturated B ring, with or without a 4-5 double bond, were inactive.

  11. Environmental metabolites of fluoroquinolones: synthesis, fractionation and toxicological assessment of some biologically active metabolites of ciprofloxacin.

    PubMed

    Lewis, Gareth; Juhasz, Albert; Smith, Euan

    2011-08-01

    Biowastes produced by humans and animals are routinely disposed of on land, and concern is now growing that such practices provide a pathway for fluoroquinolone (FQs) antibacterial agents and their environmental metabolites (FQEMs) to contaminate the terrestrial environment. The focus of concern is that FQs and FQEMs may accumulate in amended soils to then adversely impact on the terrestrial environment. One postulated impact is the development of a selective environment in which FQ-resistant bacteria may grow. To find evidence in support of an accumulation of antibacterial-like activity, it was first necessary to establish whether any biologically active FQEMs could be synthesized by physicochemical factors that are normally present in the environment. However, many FQEMs are not commercially available to be used as standards in such studies. FQEMs were therefore synthesized using well-defined processes. They were subsequently analyzed using spectroscopy (UV-vis) and high performance liquid chromatography with mass spectral detection. The antibacterial-like activities of fractionated FQEMs were then assessed in novel bacterial growth inhibition bioassays, and results were compared to those obtained from instrumental analyses. Parent FQs were either exposed to sunlight or were synthesized using defined aerobic microbial (Mycobacterium gilvum or a mixed culture derived from an agricultural soil) fermentation processes. Mixtures of FQEMs derived from photo- and (intracellular) microbial processes were isolated by preparative chromatography and centrifugation techniques, respectively. Mixtures were subsequently fractionated using analytical high-performance thin layer chromatography (HPTLC), and excised analytes were tested in bioautography assays for their antibacterial-like activities. Two bacteria, Escherichia coli (E. coli) and Azospirillum brasilense (A. brasilense) were used as reporter organisms in testing FQ standards and any subtle differences between

  12. Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases.

    PubMed

    Sun, Dongxiao; Sharma, Arun K; Dellinger, Ryan W; Blevins-Primeau, Andrea S; Balliet, Renee M; Chen, Gang; Boyiri, Telih; Amin, Shantu; Lazarus, Philip

    2007-11-01

    Tamoxifen (TAM) is an antiestrogen that has been widely used in the treatment and prevention of breast cancer in women. One of the major mechanisms of metabolism and elimination of TAM and its major active metabolites 4-hydroxytamoxifen (4-OH-TAM) and 4-OH-N-desmethyl-TAM (endoxifen; 4-hydroxy-N-desmethyl-tamoxifen) is via glucuronidation. Although limited studies have been performed characterizing the glucuronidation of 4-OH-TAM, no studies have been performed on endoxifen. In the present study, characterization of the glucuronidating activities of human UDP glucuronosyltransferases (UGTs) against isomers of 4-OH-TAM and endoxifen was performed. Using homogenates of individual UGT-overexpressing cell lines, UGTs 2B7 approximately 1A8 > UGT1A10 exhibited the highest overall O-glucuronidating activity against trans-4-OH-TAM as determined by Vmax/K(M), with the hepatic enzyme UGT2B7 exhibiting the highest binding affinity and lowest K(M) (3.7 microM). As determined by Vmax/K(M), UGT1A10 exhibited the highest overall O-glucuronidating activity against cis-4-OH-TAM, 10-fold higher than the next-most active UGTs 1A1 and 2B7, but with UGT1A7 exhibiting the lowest K(M). Although both N- and O-glucuronidation occurred for 4-OH-TAM in human liver microsomes, only O-glucuronidating activity was observed for endoxifen; no endoxifen-N-glucuronidation was observed for any UGT tested. UGTs 1A10 approximately 1A8 > UGT2B7 exhibited the highest overall glucuronidating activities as determined by Vmax/K(M) for trans-endoxifen, with the extrahepatic enzyme UGT1A10 exhibiting the highest binding affinity and lowest K(M) (39.9 microM). Similar to that observed for cis-4-OH-TAM, UGT1A10 also exhibited the highest activity for cis-endoxifen. These data suggest that several UGTs, including UGTs 1A10, 2B7, and 1A8 play an important role in the metabolism of 4-OH-TAM and endoxifen.

  13. Effect of sulphasalazine and its active metabolite, 5-amino-salicylic acid, on toxic oxygen metabolite production by neutrophils.

    PubMed Central

    Williams, J G; Hallett, M B

    1989-01-01

    The possibility that the mode of action of sulphasalazine and its active metabolite 5-amino-salicylic acid (5ASA) involves modification of toxic oxygen metabolite production by neutrophils has been investigated by measuring the effect of these drugs on luminol-dependent chemiluminescence, superoxide release and oxygen consumption by stimulated neutrophils in vitro. 5ASA, and to a lesser extent sulphasalazine, had profound inhibitory effects on the luminol dependent chemiluminescent response of neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine (1 microM) + cytochalasin B (5 micrograms/ml). A concentration of 50 microM 5ASA or sulphasalazine produced 93.8 (2.3)% and 65.7 (3.7)% inhibition of control responses respectively. The concentration of 5ASA and sulphasalazine producing 50% inhibition of chemiluminescence were 3.6 (1.8) microM and 16.5 (6) microM respectively. Both drugs had little effect on the chemiluminescent response of neutrophils stimulated with phorbol myristate acetate (1 microgram/ml), producing only 11.4 (3.9)% and 34 (7)% inhibition respectively, at a concentration of 50 microM. Superoxide release from fMLP + CB stimulated neutrophils was also inhibited slightly by 5ASA (50 microM) by 35.6% and by sulphasalazine (50 microM) by 7.9%. Similarly, there was little inhibition in the rate of oxygen consumption by fMLP + CB stimulated neutrophils by either 5ASA or sulphasalazine at concentrations which produced near total abolition of luminol dependent chemiluminescence. These results show that sulphasalazine and 5ASA inhibit the reaction of toxic metabolites produced by stimulated neutrophils with luminol, without inhibition of the oxidase system producing these metabolites. The site of action of these drugs on neutrophils in vitro is thus extracellular, by scavenging a released metabolite, probably hypochlorite. This has important implications for their mode of action in vivo in inflammatory bowel disease. PMID:2574700

  14. Serum metabolites related to cardiorespiratory fitness, physical activity energy expenditure, sedentary time and vigorous activity.

    PubMed

    Wientzek, Angelika; Floegel, Anna; Knüppel, Sven; Vigl, Matthaeus; Drogan, Dagmar; Adamski, Jerzy; Pischon, Tobias; Boeing, Heiner

    2014-04-01

    The aim of our study was to investigate the relationship between objectively measured physical activity (PA) and cardiorespiratory fitness (CRF) and serum metabolites measured by targeted metabolomics in a population- based study. A total of 100 subjects provided 2 fasting blood samples and engaged in a CRF and PA measurement at 2 visits 4 months apart. CRF was estimated from a step test, whereas physical activity energy expenditure (PAEE), time spent sedentary and time spend in vigorous activity were measured by a combined heart rate and movement sensor for a total of 8 days. Serum metabolite concentrations were determined by flow injection analysis tandem mass spectrometry (FIA-MS/MS). Linear mixed models were applied with multivariable adjustment and p-values were corrected for multiple testing. Furthermore, we explored the associations between CRF, PA and two metabolite factors that have previously been linked to risk of Type 2 diabetes. CRF was associated with two phosphatidylcholine clusters independently of all other exposures. Lysophosphatidylcholine C14:0 and methionine were significantly negatively associated with PAEE and sedentary time. CRF was positively associated with the Type 2 diabetes protective factor. Vigorous activity was positively associated with the Type 2 diabetes risk factor in the mutually adjusted model. Our results suggest that CRF and PA are associated with serum metabolites, especially CRF with phosphatidylcholines and with the Type 2 diabetes protective factor. PAEE and sedentary time were associated with methionine. The identified metabolites could be potential mediators of the protective effects of CRF and PA on chronic disease risk.

  15. Antibacterial Activity of Metabolites Products of Vibrio Alginolyticus Isolated from Sponge Haliclona sp. Against Staphylococcus Aureus

    PubMed Central

    Nursyam, Happy

    2017-01-01

    The objective of this study was to investigate the antibacterial activity of primary and secondary metabolites from Vibrio alginoliticus isolated from sponge Haliclona sp. against Staphylococcus aureus. A descriptive method was used in this research. The antibacterial activity was analysed by paper disk method. The results showed that the primary metabolites produced by Vibrio alginoliticus that is in symbiosis with sponge Haliclona sp. were able to effectively inhibit Staphylococcus aureus growth with an inhibition zone diameter of 12.9 mm, while the secondary metabolites of 9.9 mm. Electrophoresis analysis of the primary metabolites showed that there were 11 protein bands which were not found in secondary metabolites. Protein bands with low molecular weights presumably had an inhibiting effect on the growth of Staphylococcus aureus. PMID:28299291

  16. Pathway Activity Profiling (PAPi): from the metabolite profile to the metabolic pathway activity.

    PubMed

    Aggio, Raphael B M; Ruggiero, Katya; Villas-Bôas, Silas Granato

    2010-12-01

    Metabolomics is one of the most recent omics-technologies and uses robust analytical techniques to screen low molecular mass metabolites in biological samples. It has evolved very quickly during the last decade. However, metabolomics datasets are considered highly complex when used to relate metabolite levels to metabolic pathway activity. Despite recent developments in bioinformatics, which have improved the quality of metabolomics data, there is still no straightforward method capable of correlating metabolite level to the activity of different metabolic pathways operating within the cells. Thus, this kind of analysis still depends on extremely laborious and time-consuming processes. Here, we present a new algorithm Pathway Activity Profiling (PAPi) with which we are able to compare metabolic pathway activities from metabolite profiles. The applicability and potential of PAPi was demonstrated using a previously published data from the yeast Saccharomyces cerevisiae. PAPi was able to support the biological interpretations of the previously published observations and, in addition, generated new hypotheses in a straightforward manner. However, PAPi is time consuming to perform manually. Thus, we also present here a new R-software package (PAPi) which implements the PAPi algorithm and facilitates its usage to quickly compare metabolic pathways activities between different experimental conditions. Using the identified metabolites and their respective abundances as input, the PAPi package calculates pathways' Activity Scores, which represents the potential metabolic pathways activities and allows their comparison between conditions. PAPi also performs principal components analysis and analysis of variance or t-test to investigate differences in activity level between experimental conditions. In addition, PAPi generates comparative graphs highlighting up- and down-regulated pathway activity. These datasets are available in http://www.4shared

  17. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    PubMed

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  18. Larvicidal activity of some secondary lichen metabolites against the mosquito Culiseta longiareolata Macquart (Diptera: Culicidae).

    PubMed

    Cetin, H; Tufan-Cetin, O; Turk, A O; Tay, T; Candan, M; Yanikoglu, A; Sumbul, H

    2012-01-01

    The larvicidal activity of some lichen metabolites, (+)-usnic acid, atranorin, 3-hydroxyphysodic acid and gyrophoric acid, against the second and third instar larvae of the mosquito Culiseta longiareolata were studied. All metabolites caused high larvicidal activities. When metabolites were compared on the basis of their LC(50) values, the order of increasing toxicity was as follows: gyrophoric acid (0.41 ppm) > (+)-usnic acid (0.48 ppm) > atranorin (0.52 ppm) > 3-hydroxyphysodic acid (0.97 ppm). However, when LC(90) values were compared, the order of toxicity was (+)-usnic acid (1.54 ppm) > gyrophoric acid (1.93 ppm) > 3-hydroxyphysodic acid (4.33 ppm) > atranorin (5.63 ppm). In conclusion, our results found that lichen secondary metabolites may have a promising role as potential larvicides.

  19. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors.

    PubMed

    Kojima, Hiroyuki; Takeuchi, Shinji; Van den Eede, Nele; Covaci, Adrian

    2016-03-14

    Organophosphate flame retardants (OPFRs) have been used in a wide variety of applications and detected in several environmental matrices, including indoor air and dust. Continuous human exposure to these chemicals is of growing concern. In this study, the agonistic and/or antagonistic activities of 12 primary OPFR-metabolites against ten human nuclear receptors were examined using cell-based transcriptional assays, and compared to those of their parent compounds. As a result, 3-hydroxylphenyl diphenyl phosphate and 4-hydroxylphenyl diphenyl phosphate showed more potent estrogen receptor α (ERα) and ERβ agonistic activity than did their parent, triphenyl phosphate (TPHP). In addition, these hydroxylated TPHP-metabolites also showed ERβ antagonistic activity at higher concentrations and exhibited pregnane X receptor (PXR) agonistic activity as well as androgen receptor (AR) and glucocorticoid receptor (GR) antagonistic activities at similar levels to those of TPHP. Bis(2-butoxyethyl) 3'-hydroxy-2-butoxyethyl phosphate and 2-hydroxyethyl bis(2-butoxyethyl) phosphate act as PXR agonists at similar levels to their parent, tris(2-butoxyethyl) phosphate. On the other hand, seven diester OPFR-metabolites and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate did not show any receptor activity. Taken together, these results suggest that hydroxylated TPHP-metabolites show increased estrogenicity compared to the parent compound, whereas the diester OPFR-metabolites may have limited nuclear receptor activity compared to their parent triester OPFRs.

  20. Garlic sprouting is associated with increased antioxidant activity and concomitant changes in the metabolite profile.

    PubMed

    Zakarova, Alexandra; Seo, Ji Yeon; Kim, Hyang Yeon; Kim, Jeong Hwan; Shin, Jung-Hye; Cho, Kye Man; Lee, Choong Hwan; Kim, Jong-Sang

    2014-02-26

    Although garlic (Allium sativum) has been extensively studied for its health benefits, sprouted garlic has received little attention. We hypothesized that sprouting garlic would stimulate the production of various phytochemicals that improve health. Ethanolic extracts from garlic sprouted for different periods had variable antioxidant activities when assessed with in vitro assays, including the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay and the oxygen radical absorbance capacity assay. Extracts from garlic sprouted for 5 days had the highest antioxidant activity, whereas extracts from raw garlic had relatively low antioxidant activity. Furthermore, sprouting changed the metabolite profile of garlic: the metabolite profile of garlic sprouted for 5-6 days was distinct from the metabolite profile of garlic sprouted for 0-4 days, which is consistent with the finding that garlic sprouted for 5 days had the highest antioxidant activity. Therefore, sprouting may be a useful way to improve the antioxidant potential of garlic.

  1. Antibacterial activity of metabolite produced by Paenibacillus polymyxa strain HKA-15 against Xanthomonas campestris pv. phaseoli.

    PubMed

    Mageshwaran, V; Walia, Suresh; Govindasamy, V; Annapurna, K

    2011-03-01

    An antibacterial metabolite extracted from Paenibacillus polymyxa HKA-15 showed strong inhibition against Xanthomonas campestris pv. phaseoli strains CP-1-1 and M-5. Minimum inhibitory concentration (MIC) of crude extract against strains CP-1-1 and M-5 was found to be 1.7 mg/ml and 1.52 mg/ml, respectively. In UV-Vis range, the absorption peak of crude extract was maximum at 240 nm. The compound is resilience to wide range of temperature, pH, surfactants and organic solvents. The complete loss of activity was observed when crude metabolite was treated with pepsin (400 unit/ml). Characterization of crude metabolite suggested its hydrophobic and peptide nature. Inhibition of Xanthomonas campestris pv. phaseoli by peptide like metabolite produced by Paenibacillus polymyxa strain HKA-15 under in vitro conditions showed ecological and biotechnological potential of strain HKA-15 to control common blight disease in beans.

  2. O-Methylated Metabolite of 7,8-Dihydroxyflavone Activates TrkB Receptor and Displays Antidepressant Activity

    PubMed Central

    Liu, Xia; Qi, Qi; Xiao, Ge; Li, Jingyu; Luo, Hongbo R.; Ye, Keqiang

    2016-01-01

    7,8-Dihydroxyflavone (7,8-DHF) acts as a TrkB receptor-specific agonist. It mimics the physiological actions of brain-derived neurotrophic factor (BDNF) and demonstrates remarkable therapeutic efficacy in animal models of various neurological diseases. Nonetheless, its in vivo pharmacokinetic profiles and metabolism remain unclear. Here we report that 7,8-DHF and its O-methylated metabolites distribute in mouse brain after oral administration. Both hydroxy groups can be mono-methylated, and the mono-methylated metabolites activate TrkB in vitro and in vivo. Blocking methylation, using COMT inhibitors, diminishes the agonistic effect of TrkB activation by 7,8-DHF or 4′-dimethylamino-7,8-DHF, supporting the contribution of the methylated metabolite to TrkB activation in mouse brain. Moreover, we have synthesized several methylated metabolite derivatives, and they also potently activate the TrkB receptor and reduce immobility in both forced swim test and tail suspension test, indicating that these methylated metabolites may possess antidepressant activity. Hence, our data demonstrate that 7,8-DHF is orally bioavailable and can penetrate the brain-blood barrier. The O-methylated metabolites are implicated in TrkB receptor activation in the brain. PMID:23445871

  3. Membrane-active metabolites produced by soil actinomycetes using chromatic phospholipid/polydiacetylene vesicles.

    PubMed

    Mehravar, Maryam; Sardari, Soroush; Owlia, Parviz

    2011-12-01

    Increased resistance of pathogens toward existing antibiotics has compelled the research efforts to introduce new antimicrobial substances. Drugs with new and less resistant-prone targets to antimicrobial activity have a high priority for drug development activities. Cell membrane seems to be a potential target for new antibiotic agent development to overcome resistance. In this study, A total number of 67 actinomycetes were isolated from the soil samples collected from desert, farming and mineral parts of Iran. We used a chromatic sensor as a membrane model that was set up for the target of antimicrobial metabolites of actinomycetes isolated from the soil. The sensors particles were composed of phospholipid and polymerized polydiacetylene (PDA) lipids. These polymers exhibited color change following interaction with membrane-active metabolites. The color change was due to structural disorder in the lipids following their interaction with membrane-active metabolites. The resultant color change was recorded by fluorescent microscope and easily recognizable by naked eye as well. Sixteen strains were isolated which produced antimicrobial metabolites and were effective against test microorganisms (Escherichia coli, Candida albicans and Saccharomyces cerevisiae ). A total number of 3 out of 16 strains produced membrane-active metabolites. These 3 strains were identified using 16s rRNA as Streptomyces sp and submitted to GenBank (accession no. JN180853; JN180854; JN180855).

  4. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  5. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation.

    PubMed

    Cho, Joo-Youn; Kang, Dong Wook; Ma, Xiaochao; Ahn, Sung-Hoon; Krausz, Kristopher W; Luecke, Hans; Idle, Jeffrey R; Gonzalez, Frank J

    2009-05-01

    Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.

  6. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation

    PubMed Central

    Cho, Joo-Youn; Kang, Dong Wook; Ma, Xiaochao; Ahn, Sung-Hoon; Krausz, Kristopher W.; Luecke, Hans; Idle, Jeffrey R.; Gonzalez, Frank J.

    2009-01-01

    Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16α-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite α-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with β-glucuronidase and β-glucosidase suggested that the novel urinary metabolite was γ-CEHC β-D-glucoside (Glc). The identity of γ-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal β-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, γ-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation. PMID:19141872

  7. Curcumin Pharmacokinetic and Pharmacodynamic Evidences in Streptozotocin-Diabetic Rats Support the Antidiabetic Activity to Be via Metabolite(s)

    PubMed Central

    Gutierres, Vânia Ortega; Campos, Michel Leandro; Arcaro, Carlos Alberto; Assis, Renata Pires; Baldan-Cimatti, Helen Mariana; Peccinini, Rosângela Gonçalves; Paula-Gomes, Silvia; Kettelhut, Isis Carmo; Baviera, Amanda Martins; Brunetti, Iguatemy Lourenço

    2015-01-01

    This study measures the curcumin concentration in rat plasma by liquid chromatography and investigates the changes in the glucose tolerance and insulin sensitivity of streptozotocin-diabetic rats treated with curcumin-enriched yoghurt. The analytical method for curcumin detection was linear from 10 to 500 ng/mL. The C max⁡ and the time to reach C max⁡ (t max⁡) of curcumin in plasma were 3.14 ± 0.9 μg/mL and 5 minutes (10 mg/kg, i.v.) and 0.06 ± 0.01 μg/mL and 14 minutes (500 mg/kg, p.o.). The elimination half-time was 8.64 ± 2.31 (i.v.) and 32.70 ± 12.92 (p.o.) minutes. The oral bioavailability was about 0.47%. Changes in the glucose tolerance and insulin sensitivity were investigated in four groups: normal and diabetic rats treated with yoghurt (NYOG and DYOG, resp.) and treated with 90 mg/kg/day curcumin incorporated in yoghurt (NC90 and DC90, resp.). After 15 days of treatment, the glucose tolerance and the insulin sensitivity were significantly improved in DC90 rats in comparison with DYOG, which can be associated with an increase in the AKT phosphorylation levels and GLUT4 translocation in skeletal muscles. These findings can explain, at least in part, the benefits of curcumin-enriched yoghurt to diabetes and substantiate evidences for the curcumin metabolite(s) as being responsible for the antidiabetic activity. PMID:26064170

  8. Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters

    PubMed Central

    Mayer, F P; Wimmer, L; Dillon‐Carter, O; Partilla, J S; Burchardt, N V; Mihovilovic, M D; Baumann, M H

    2016-01-01

    Background and Purpose 4‐Methyl‐N‐methylcathinone (mephedrone) is a synthetic stimulant that acts as a substrate‐type releaser at transporters for dopamine (DAT), noradrenaline (NET) and 5‐HT (SERT). Upon systemic administration, mephedrone is metabolized to several phase I compounds: the N‐demethylated metabolite, 4‐methylcathinone (nor‐mephedrone); the ring‐hydroxylated metabolite, 4‐hydroxytolylmephedrone (4‐OH‐mephedrone); and the reduced keto‐metabolite, dihydromephedrone. Experimental Approach We used in vitro assays to compare the effects of mephedrone and synthetically prepared metabolites on transporter‐mediated uptake and release in HEK293 cells expressing human monoamine transporters and in rat brain synaptosomes. In vivo microdialysis was employed to examine the effects of i.v. metabolite injection (1 and 3 mg·kg−1) on extracellular dopamine and 5‐HT levels in rat nucleus accumbens. Key Results In cells expressing transporters, mephedrone and its metabolites inhibited uptake, although dihydromephedrone was weak overall. In cells and synaptosomes, nor‐mephedrone and 4‐OH‐mephedrone served as transportable substrates, inducing release via monoamine transporters. When administered to rats, mephedrone and nor‐mephedrone produced elevations in extracellular dopamine and 5‐HT, whereas 4‐OH‐mephedrone did not. Mephedrone and nor‐mephedrone, but not 4‐OH‐mephedrone, induced locomotor activity. Conclusions and Implications Our results demonstrate that phase I metabolites of mephedrone are transporter substrates (i.e. releasers) at DAT, NET and SERT, but dihydromephedrone is weak in this regard. When administered in vivo, nor‐mephedrone increases extracellular dopamine and 5‐HT in the brain whereas 4‐OH‐mephedrone does not, suggesting the latter metabolite does not penetrate the blood–brain barrier. Future studies should examine the pharmacokinetics of nor‐mephedrone to determine its possible

  9. Evaluation of Bacillus cereus and Bacillus pumilus metabolites for anthelmintic activity.

    PubMed

    Kumar, M L Vijaya; Thippeswamy, B; Kuppust, I L; Naveenkumar, K J; Shivakumar, C K

    2015-01-01

    To assess the anthelmintic acivity of Bacillus cereus and Bacillus pumilus metabolites. The successive solvent extractions with petroleum ether, ethyl acetate and methanol. The solvent extracts were tested for anthelmintic activity against Pheretima posthuma at 20 mg/ml concentration. The time of paralysis and time of death of the worms was determined for all the extracts. Albendazole was taken as a standard reference and sterile water as a control. All the sample extracts showed significant anthelmintic activity in paralyzing the worms comparable with that of the standard drug. The time of death exhibited by BP metabolites was close to the time exhibited by standard. The study indicates both bacteria Bacillus cereus and Bacillus pumilus have anthelmintic activity indicating potential metabolites in them.

  10. Evaluation of Bacillus cereus and Bacillus pumilus metabolites for anthelmintic activity

    PubMed Central

    Kumar, M. L. Vijaya; Thippeswamy, B.; Kuppust, I. L.; Naveenkumar, K. J.; Shivakumar, C. K.

    2015-01-01

    Objective: To assess the anthelmintic acivity of Bacillus cereus and Bacillus pumilus metabolites. Materials and Methods: The successive solvent extractions with petroleum ether, ethyl acetate and methanol. The solvent extracts were tested for anthelmintic activity against Pheretima posthuma at 20 mg/ml concentration. The time of paralysis and time of death of the worms was determined for all the extracts. Albendazole was taken as a standard reference and sterile water as a control. Results: All the sample extracts showed significant anthelmintic activity in paralyzing the worms comparable with that of the standard drug. The time of death exhibited by BP metabolites was close to the time exhibited by standard. Conclusion: The study indicates both bacteria Bacillus cereus and Bacillus pumilus have anthelmintic activity indicating potential metabolites in them. PMID:25598639

  11. Examination of microsomal cytochrome P450-catalyzed in vitro activation of o-phenylphenol to DNA binding metabolite(s) by 32P-postlabeling technique.

    PubMed

    Pathak, D N; Roy, D

    1992-09-01

    It has been previously reported that the reactive metabolites phenylsemiquinone and phenylbenzoquinone are generated during microsomal cytochrome P450-catalyzed redox cycling of o-phenylphenol (OPP). However, covalent modification of DNA by OPP-reactive metabolites has yet not been demonstrated. In the present study we have investigated the covalent binding in DNA by OPP-reactive metabolites using 32P-postlabeling. Analysis of adducts by 32P-postlabeling in products of chemical reaction of DNA with phenylbenzoquinone revealed four major and several minor adducts. The chemical reaction of deoxyguanosine 3'-phosphate with phenylbenzoquinone also showed four major adducts. The chromatographic mobility of major adducts of deoxyguanosine 3'-phosphate-phenylbenzoquinone was identical to that of major adducts of DNA-phenylbenzoquinone. The major adducts are demonstrated to be stable. The total covalent binding in deoxyguanosine 3'-phosphate by phenylbenzoquinone (686,000-687,000 amol/nmol nucleotide) was higher than that observed in DNA (26,500-28,000 amol/nmol nucleotides). Reaction of DNA with OPP or a hydroxylated metabolite of OPP, phenylhydroquinone, in the presence of microsomes and NADPH or cumene hydroperoxide showed four major adducts. Adduct formation in DNA by OPP or phenylhydroquinone in the presence of the microsomal activation system was drastically decreased by known inhibitors of cytochrome P450. The chromatographic mobility of major adducts in DNA by OPP or phenylhydroquinone in the presence of microsomal activation system matched with those major adducts observed in deoxyguanosine 3'-phosphate or DNA reacted with pure phenylbenzoquinone. These data demonstrate that OPP or phenylhydroquinone, a hydroxylated metabolite of OPP, is able to bind covalently to DNA in the presence of a microsomal cytochrome P450 activation system. Phenylbenzoquinone is one of the DNA-binding metabolite(s) of OPP. It is concluded that OPP is genotoxic in an in vitro system and

  12. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters

    USGS Publications Warehouse

    Writer, Jeffrey; Ferrer, Imma; Barber, Larry B.; Thurman, E. Michael

    2013-01-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations ± standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700 ± 1000 ng L−1, 2100 ± 1700 ng L−1, carbamazepine and 10-hydroxy-carbamazepine 480 ± 380 ng L−1, 360 ± 400 ng L−1, venlafaxine and O-desmethyl-venlafaxine 1400 ± 1300 ng L−1, 1800 ± 2300 ng L−1. Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that

  13. Effects of omeprazole and genetic polymorphism of CYP2C19 on the clopidogrel active metabolite.

    PubMed

    Boulenc, Xavier; Djebli, Nassim; Shi, Juan; Perrin, Laurent; Brian, William; Van Horn, Robert; Hurbin, Fabrice

    2012-01-01

    Clopidogrel is an antiplatelet agent widely used in cardiovascular diseases and an inactive prodrug that needs to be converted to an active metabolite in two sequential metabolic steps. Several CYP450 isoforms involved in these two steps have been described, although the relative contribution in vivo of each enzyme is still under debate. CYP2C19 is considered to be the major contributor to active metabolite formation. In the current study, net CYP2C19 contribution to the active metabolite formation was determined from exposure of the active metabolite in two clinical studies (one phase I study with well balanced genetic polymorphic populations and a meta-analysis with a total of 396 healthy volunteers) at different clopidogrel doses. CYP2C19 involvements were estimated to be from 58 to 67% in intermediate metabolizers (IMs), from 58 to 72% in extensive metabolizers (EMs), and from 56 to 74% in ultrarapid metabolizers (UMs), depending on the study and the dose. For this purpose, a static model was proposed to estimate the net contribution of a given enzyme to the secondary metabolite formation. This static model was compared with a dynamic approach (Simcyp model) and showed good consistency. In parallel, in vitro investigations showed that omeprazole is a mechanism-based inhibitor of CYP2C19 with K(I) of 8.56 μM and K(inact) of 0.156 min(-1). These values were combined with the net CYP2C19 contribution to the active metabolite formation, through a static approach, to predict the inhibitory effect at 80-mg omeprazole doses in EM, IM, and UM CYP2C19 populations, with good consistency, compared with observed clinical values.

  14. Anti-Oxidative Activity of Mytiloxanthin, a Metabolite of Fucoxanthin in Shellfish and Tunicates

    PubMed Central

    Maoka, Takashi; Nishino, Azusa; Yasui, Hiroyuki; Yamano, Yumiko; Wada, Akimori

    2016-01-01

    Anti-oxidative activities of mytiloxanthin, a metabolite of fucoxanthin in shellfish and tunicates, were investigated. Mytiloxanthin showed almost the same activities for quenching singlet oxygen and the inhibition of lipid peroxidation as those of astaxanthin, which is a well-known singlet oxygen quencher. Furthermore, mytiloxanthin showed excellent scavenging activity for hydroxyl radicals and this activity was markedly higher than that of astaxanthin. PMID:27187417

  15. Human Metabolites of Cannabidiol: A Review on Their Formation, Biological Activity, and Relevance in Therapy

    PubMed Central

    Ujváry, István; Hanuš, Lumír

    2016-01-01

    Abstract Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa, has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo, and discusses relevant drug–drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued. PMID:28861484

  16. Tamoxifen and its active metabolites inhibit dopamine transporter function independently of the estrogen receptors.

    PubMed

    Mikelman, Sarah R; Guptaroy, Bipasha; Gnegy, Margaret E

    2017-04-01

    As one of the primary mechanisms by which dopamine signaling is regulated, the dopamine transporter (DAT) is an attractive pharmacological target for the treatment of diseases based in dopaminergic dysfunction. In this work we demonstrate for the first time that the commonly prescribed breast cancer therapeutic tamoxifen and its major metabolites, 4-hydroxytamoxifen and endoxifen, inhibit DAT function. Tamoxifen inhibits [(3) H]dopamine uptake into human DAT (hDAT)-N2A cells via an uncompetitive or mixed mechanism. Endoxifen, an active metabolite of tamoxifen, asymmetrically inhibits DAT function in hDAT-N2A cells, showing a preference for the inhibition of amphetamine-stimulated dopamine efflux as compared to dopamine uptake. Importantly, we demonstrate that the effects of tamoxifen and its metabolites on the DAT occur independently of its activity as selective estrogen receptor modulators. This work suggests that tamoxifen is inhibiting DAT function through a previously unidentified mechanism. © 2017 International Society for Neurochemistry.

  17. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications.

    PubMed

    Pan, Long; Ren, Lili; Chen, Fang; Feng, Yuqian; Luo, Youqing

    2016-01-01

    Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control.

  18. Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus).

    PubMed

    Pereira, Thiago Scremin Boscolo; Boscolo, Camila Nomura Pereira; Felício, Andreia Arantes; Batlouni, Sergio Ricardo; Schlenk, Daniel; de Almeida, Eduardo Alves

    2016-03-01

    Some endocrine disrupting chemicals (EDCs) can alter the estrogenic activities of the organism by directly interacting with estrogen receptors (ER) or indirectly through the hypothalamus-pituitary-gonadal axis. Recent studies in male Nile tilapia (Oreochromis niloticus) indicated that diuron may have anti-androgenic activity augmented by biotransformation. In this study, the effects of diuron and three of its metabolites were evaluated in female tilapia. Sexually mature female fish were exposed for 25 days to diuron, as well as to its metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU), at concentrations of 100 ng/L. Diuron metabolites caused increases in E2 plasma levels, gonadosomatic indices and in the percentage of final vitellogenic oocytes. Moreover, diuron and its metabolites caused a decrease in germinative cells. Significant differences in plasma concentrations of the estrogen precursor and gonadal regulator17α-hydroxyprogesterone (17α-OHP) were not observed. These results show that diuron metabolites had estrogenic effects potentially mediated through enhanced estradiol biosynthesis and accelerated the ovarian development of O. niloticus females. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer.

    PubMed

    Lu, Wenjie Jessie; Desta, Zeruesenay; Flockhart, David A

    2012-01-01

    The mechanism of tamoxifen action in the treatment of breast cancer is believed to be via active metabolites that act as potent estrogen receptor antagonists. Attempts to identify relationships between active metabolite concentrations and clinical outcomes have produced mixed results. Since anti-estrogenic effects may be brought about not only by estrogen antagonism, but also by reduced estrogen synthesis, we tested the ability of tamoxifen and its principal metabolites to inhibit aromatase in vitro. The activity of human aromatase in both recombinant and placental microsomal preparations was measured using the rate of generation of a fluorescent metabolite in the presence and absence of multiple concentrations of tamoxifen, endoxifen, N-desmethyl-tamoxifen, and Z-4-hydroxy-tamoxifen. Aromatase inhibition was further characterized by measuring the inhibition of testosterone metabolism to estradiol. The biochemical mechanisms of inhibition were documented and their inhibitory potency was compared. Using recombinant human aromatase, endoxifen, and N-desmethyl-tamoxifen were able to inhibit aromatase activity with K (i) values of 4.0 and 15.9 μM, respectively. Detailed characterization of inhibition by endoxifen and N-desmethyl-tamoxifen indicated non-competitive kinetics for both inhibitors. Similarly, endoxifen-inhibited testosterone metabolism via a non-competitive mechanism. No appreciable inhibition by tamoxifen or Z-4-hydroxy-tamoxifen was observed at similar concentrations. The relative inhibitory potency was: endoxifen > N-desmethyl-tamoxifen > Z-4-hydroxy-tamoxifen > tamoxifen. Similar data were obtained in human placental microsomes. Endoxifen and N-desmethyl-tamoxifen were found to be potent inhibitors of aromatase. Inhibition by these tamoxifen metabolites may contribute to the variability in clinical effects of tamoxifen in patients with breast cancer. Relationships between tamoxifen metabolite concentrations and clinical outcomes may be complex

  20. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  1. CHARACTERIZATION ADN BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM ARMILLARIA TABESCENS

    USDA-ARS?s Scientific Manuscript database

    Ethyl acetate extracts from liquid cultures of Armillaria tabescens showed good antimicrobial activity against Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analyses of extract constituents led to the isolation and identification of two new co...

  2. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting

    PubMed Central

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter “D” obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  3. Lipocarbazoles, secondary metabolites from Tsukamurella pseudospumae Acta 1857 with antioxidative activity.

    PubMed

    Schneider, Kathrin; Nachtigall, Jonny; Hänchen, Anne; Nicholson, Graeme; Goodfellow, Michael; Süssmuth, Roderich D; Fiedler, Hans-Peter

    2009-10-01

    A family of new secondary metabolites with a carbazole moiety and an alkyl side chain was isolated from Tsukamurella pseudospumae strain Acta 1857. They were named lipocarbazoles in accordance with their chemical structures, which were determined by mass spectrometry and NMR spectroscopy. Lipocarbazoles are free radical scavengers showing antioxidative activity.

  4. In Vitro Effect of Sulfasalazine and Its Metabolites on Human T Lymphocyte Activation

    DTIC Science & Technology

    1994-08-01

    sulfonamide used in the treatment of rheumatoid arthritis, ulcerative colitis and ankylosing spondylitis . Its mechanism of action is not fully...interventions for immune- mediated diseases . One such therapy invoivt %j,_ sulfonamide, sulfasalazine, an -- 4- 4-inflammatory drug used in the treatment of...rheumatoid arthritis, ulcerative colitis, and ankylosing spondylitis2 . The exact mode of action of sulfasalazine and its active metabolites, 5

  5. Effects of Catechol O-Methyl Transferase Inhibition on Anti-Inflammatory Activity of Luteolin Metabolites.

    PubMed

    Ha, Sang Keun; Lee, Jin-Ah; Cho, Eun Jung; Choi, Inwook

    2017-02-01

    Although luteolin is known to have potent anti-inflammatory activities, much less information has been provided on such activities of its hepatic metabolites. Luteolin was subjected to hepatic metabolism in HepG2 cells either without or with catechol O-methyl transferase (COMT) inhibitor. To identify hepatic metabolites of luteolin without (luteolin metabolites, LMs) or with COMT inhibitor (LMs+CI), metabolites were treated by β-glucuronidase and sulfatase, and found that they were composed of glucuronide and sulfate conjugates of diosmetin in LMs or these conjugates of luteolin in LMs+CI. LMs and LMs+CI were examined for their anti-inflammatory activities on LPS stimulated Raw 264.7 cells. Expression of iNOS and production of nitric oxide and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 were suppressed more effectively by the treatment with LMs+CI than LMs. Our data provide a new insight on possible improvement in functional properties of luteolin on target cells by modifying their metabolic pathway in hepatocytes.

  6. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast.

    PubMed

    Skjoedt, Mette L; Snoek, Tim; Kildegaard, Kanchana R; Arsovska, Dushica; Eichenberger, Michael; Goedecke, Tobias J; Rajkumar, Arun S; Zhang, Jie; Kristensen, Mette; Lehka, Beata J; Siedler, Solvej; Borodina, Irina; Jensen, Michael K; Keasling, Jay D

    2016-11-01

    Whole-cell biocatalysts have proven a tractable path toward sustainable production of bulk and fine chemicals. Yet the screening of libraries of cellular designs to identify best-performing biocatalysts is most often a low-throughput endeavor. For this reason, the development of biosensors enabling real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily of LysR-type transcriptional regulators (LTTRs). We identified a design supporting LTTR-dependent activation of reporter gene expression in the presence of cognate small-molecule inducers. As proof of principle, we applied the biosensors for in vivo screening of cells producing naringenin or cis,cis-muconic acid at different levels, and found that reporter gene output correlated with production. The transplantation of prokaryotic transcriptional activators into the eukaryotic chassis illustrates the potential of a hitherto untapped biosensor resource useful for biotechnological applications.

  7. Bioequivalence of Two Intravenous Artesunate Products with Its Active Metabolite Following Single and Multiple Injections

    PubMed Central

    Li, Qigui; Xie, Lisa; Melendez, Victor; Weina, Peter

    2011-01-01

    In animal species and humans, artesunate (AS) undergoes extensive and complex biotransformation to an active metabolite, dihydroartemisinin (DHA). The bioequivalence of two intravenous AS pharmaceutical products with 5% NaHCO3 (China Formulation) or 0.3 M PBS (WRAIR Formulation) was determined in rats in a two-formulation, two-period, and two-sequence crossover experimental design. Following single and multiple intravenous administrations, a series of blood samples was collected by using an automated blood sampler and drug concentrations were analyzed by LC-MS/MS. The 90% CI of the difference between the two intravenous formulations was contained within 80–125% of the geometric mean of pharmacokinetic parameters for AS and DHA in all animals dosed. Hematological effects were studied on days 1 and 3 after the final dosing, and a rapidly reversible hematological toxicity (significant reductions in reticulocyte levels) was seen in the peripheral blood of the rats treated with each formulation. The results showed that bioequivalence with the parent compound and active metabolite was fulfilled in the 82.3–117.7% ranges of all parameters (AUC0−t, Cmax, concentration average and degree of fluctuation) in the two-period and two-sequence crossover studies following single and repeated intravenous injections. For the metabolite, the equivalence was satisfied in most pharmacokinetic parameters tested due to the variability in the hydrolysis rate of AS to DHA. The WRAIR formulation of AS was considered to be bioequivalent to the Chinese formulation at steady-state according to the total drug exposure, in terms of both parent drug and active metabolite, rapidly reversal in reticulocyte decline, and extension of single and multiple administrations. Therefore, the parent drug and active metabolites should play similar important roles in the determination of efficacy and safety of the drug.

  8. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    PubMed

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  9. Direct evidence of plant-pathogenic activity of fungal metabolites of Trichothecium roseum on apple.

    PubMed

    Zabka, Martin; Drastichová, Kamila; Jegorov, Alexandr; Soukupová, Julie; Nedbal, Ladislav

    2006-07-01

    Apples were exposed to various concentrations of roseotoxins - metabolites of Trichothecium roseum and kinetic fluorescence imaging was used to detect the area influenced by the phytotoxin. Contrast was quantified within these images between the areas exposed to roseotoxins and the untreated areas. It was proved that roseotoxin B is able to penetrate apple peel and produce chlorotic lesions. Activity of roseotoxin B is similar as the activity of destruxins, host specific phytotoxins of Alternaria brassicae parasitic on canola.

  10. Buprenorphine metabolites, buprenorphine-3-glucuronide and norbuprenorphine-3-glucuronide, are biologically active

    PubMed Central

    Brown, Sarah M.; Holtzman, Michael; Kim, Thomas; Kharasch, Evan D.

    2012-01-01

    Background The long-lasting high affinity opioid buprenorphine has complex pharmacology including ceiling effects with respect to analgesia and respiratory depression. Plasma concentrations of the major buprenorphine metabolites norbuprenorphine, buprenorphine-3-glucuronide, and norbuprenorphine-3-glucuronide approximate or exceed those of the parent drug. Buprenorphine glucuronide metabolites pharmacology is undefined. This investigation determined binding and pharmacological activity of the two glucuronide metabolites, and in comparison with buprenorphine and norbuprenorphine. Methods Competitive inhibition of radioligand binding to human mu, kappa, delta opioid and nociceptin receptors was used to determine glucuronide binding affinities for these receptors. Common opiate effects were assessed in vivo in Swiss Webster mice. Antinociception was assessed using a tail-flick assay, respiratory effects were measured using unrestrained whole-body plethysmography, and sedation was assessed by inhibition of locomotion measured by open-field testing. Results Buprenorphine-3-glucuronide had high affinity for human mu (Ki = 4.9±2.7 pM), delta (Ki = 270±0.4 nM), and nociceptin (Ki = 36±0.3 μM) but not kappa receptors. Norbuprenorphine-3-glucuronide had affinity for human kappa (Ki = 300±0.5 nM) and nociceptin (Ki= 18±0.2 μM) but not mu or delta receptors. At the dose tested, buprenorphine-3-glucuronide had a small antinociceptive effect. Neither glucuronide had significant effects on respiratory rate, but norbuprenorphine-3-glucuronide decreased tidal volume. Norbuprenorphine-3-glucuronide also caused sedation. Conclusions Both glucuronide metabolites of buprenorphine are biologically active at doses relevant to metabolite exposures which occur after buprenorphine. Activity of the glucuronides may contribute to the overall pharmacology of buprenorphine. PMID:22037640

  11. Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference.

    PubMed

    Pimentel-Elardo, Sheila M; Sørensen, Dan; Ho, Louis; Ziko, Mikaela; Bueler, Stephanie A; Lu, Stella; Tao, Joe; Moser, Arvin; Lee, Richard; Agard, David; Fairn, Greg; Rubinstein, John L; Shoichet, Brian K; Nodwell, Justin R

    2015-11-20

    Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This "activity-guided screening" method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of "cryptic" secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.

  12. Effect of aging on lazabemide binding, monoamine oxidase activity and monoamine metabolites in human frontal cortex.

    PubMed

    Galva, M D; Bondiolotti, G P; Olasmaa, M; Picotti, G B

    1995-01-01

    Age-related modifications of monoamine oxidase-A and -B (MAO-A and MAO-B) and amine metabolite concentrations were studied in human frontal cortex taken postmortem from 22 subjects of various ages (21-75 years). Qualitative and quantitative analysis for MAO-B was provided by kinetic studies with a specific radioligand, [3H]lazabemide. The data demonstrated a significant (P < 0.05) positive correlation between the density of [3H]lazabemide binding sites (Bmax) and age of the subject, without showing an apparent modification in the dissociation constant (KD) of the radioligand. In parallel experiments, MAO-B but not MAO-A activity was shown to correlate with age (P < 0.05). The concentrations of the amine metabolites 4-hydroxy-3-methoxyphenylacetic acid (HVA), 5-hydroxyindole-3-acetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylglycol (MHPG) and 3,4-dihydroxyphenylglycol (DHPG) were all devoid of a correlation with age. Neither did the concentrations of these metabolites relate to the respective subject's MAO-B enzymatic activity nor to [3H]lazabemide Bmax. A correlation, though rather weak, was obtained between MAO-A activity and MHPG concentration (P = 0.045). The MAO-A and -B enzyme characteristics in subjects who had committed suicide (n = 9) did not differ from those of subjects deceased for other causes (n = 13). Among the measured monoamine metabolites the concentrations of DOPAC and HVA were higher in the suicide versus control group (P < 0.05). The present data confirm in a direct manner that the increase in MAO-B activity in aging brain is due to an enhancement of the number of active sites of the enzyme and not through modifications of its kinetic characteristics. Furthermore, that neither the characteristics nor the activity of the enzyme are changed in the frontal cortex of suicide victims compared to control subjects.

  13. In Vitro Cytochrome P450 Formation of a Mono-Hydroxylated Metabolite of Zearalenone Exhibiting Estrogenic Activities: Possible Occurrence of This Metabolite in Vivo

    PubMed Central

    Bravin, Frederique; Duca, Radu C.; Balaguer, Patrick; Delaforge, Marcel

    2009-01-01

    The mycoestrogen zearalenone (ZEN), as well as its reduced metabolites, which belong to the endocrine disruptor bio-molecule family, are substrates for various enzymes involved in steroid metabolism. In addition to its reduction by the steroid dehydrogenase pathway, ZEN also interacts with hepatic detoxification enzymes, which convert it into hydroxylated metabolites (OH-ZEN). Due to their structures to that of estradiol, ZEN and its derived metabolites bind to the estrogen receptors and are involved in endocrinal perturbations and are possibly associated with estrogen-dependent cancers. The primary aim of this present study was to identify the enzymatic cytochrome P450 isoforms responsible for the formation of the most abundant OH-ZEN. We thus studied its in vitro formation using hepatic microsomes in a range of animal model systems including man. OH-ZEN was also recovered in liver and urine of rats treated orally with ZEN. Finally we compared the activity of ZEN and its active metabolites (α-ZAL and OH-ZEN) on estrogen receptors using HeLa ER-α and ER-β reporter cell lines as reporters. OH-ZEN estrogenic activities were revealed to be limited and not as significant as those of ZEN or α-ZAL. PMID:19468341

  14. Discovery of microsomal triglyceride transfer protein (MTP) inhibitors with potential for decreased active metabolite load compared to dirlotapide.

    PubMed

    Robinson, Ralph P; Bartlett, Jeremy A; Bertinato, Peter; Bessire, Andrew J; Cosgrove, Judith; Foley, Patrick M; Manion, Tara B; Minich, Martha L; Ramos, Brenda; Reese, Matthew R; Schmahai, Theodore J; Swick, Andrew G; Tess, David A; Vaz, Alfin; Wolford, Angela

    2011-07-15

    Analogues related to dirlotapide (1), a gut-selective inhibitor of microsomal triglyceride transfer protein (MTP) were prepared with the goal of further reducing the potential for unwanted liver MTP inhibition and associated side-effects. Compounds were designed to decrease active metabolite load: reducing MTP activity of likely human metabolites and increasing metabolite clearance to reduce exposure. Introduction of 4'-alkyl and 4'-alkoxy substituents afforded compounds exhibiting improved therapeutic index in rats with respect to liver triglyceride accumulation and enzyme elevation. Likely human metabolites of select compounds were prepared and characterized for their potential to inhibit MTP in vivo. Based on preclinical efficacy and safety data and its potential for producing short-lived, weakly active metabolites, compound 13 (PF-02575799) advanced into phase 1 clinical studies.

  15. Bioactivation of dibrominated biphenyls by cytochrome P450 activity to metabolites with estrogenic activity and estrogen sulfotransferase inhibition capacity.

    PubMed

    van Lipzig, Marola M H; Commandeur, Jan N; de Kanter, Frans J J; Damsten, Micaela C; Vermeulen, Nico P E; Maat, Evelina; Groot, Ed J; Brouwer, Abraham; Kester, Monique H A; Visser, Theo J; Meerman, John H N

    2005-11-01

    Exposure of humans and wildlife to xenobiotics, such as halogenated biphenyls, that interfere with the endogenous estrogen balance may lead to endocrine disruption. Such compounds may either mimic or block estradiol's action by agonistic or antagonistic action, respectively. They may also affect endogenous estradiol concentrations by induction or inhibition of enzymes that metabolize estradiol. In the present study, we demonstrate that estrogenic metabolites of two brominated biphenyls, 2,2'-dibromobiphenyl (2,2'-DBB) and 4,4'-dibromobiphenyl (4,4'-DBB), are formed by rat liver microsomal cytochrome P450 (CYP) activity. Bioactivation of 2,2'-DBB and 4,4'-DBB yielded various mono- and dihydroxylated bromobiphenyl metabolites, which were collected by preparative HPLC and analyzed by LC/MS. Several of the metabolites bound to the estrogen receptor (ER) activated the ER and inhibited human estrogen sulfotransferase (hEST). Seven monohydroxylated metabolites were positively identified using synthetic monohydroxylated reference compounds. These synthetic monohydroxylated bromobiphenyls also bound to and activated the ER and inhibited hEST. The highest ER affinity was observed for 4-OH-2,2'-DBB, with an EC50 of 6.6 nM. The highest ER activation was observed for 4-OH-3,4'-DBB (EC50 of 74 nM) while 4-OH-4'-MBB and 4-OH-2,2'-DBB induced a supramaximal (as compared to estradiol) ER activation. The strongest hEST inhibition was found with 4-OH-3,4'-DBB (EC50 = 40 nM). In conclusion, we show that two dibrominated biphenyls are bioactivated by CYP activity into very potent estrogenic metabolites and inhibitors of hEST. These findings are of vital importance for accurate risk assessment of exposure to environmental contaminants, such as halogenated biphenyls. Neglecting bioactivation through biotransformation will lead to underestimation of health risks of this class of xenobiotics.

  16. Reproductive activity in the peninsular pronghorn determined from excreted gonadal steroid metabolites.

    PubMed

    Kersey, David C; Holland, Jeff; Eng, Curtis

    2015-01-01

    Fecal hormone monitoring was employed to better define annual patterns of reproductive steroid metabolites from a breeding pair of peninsular pronghorn (Antilocapra americana peninsularis) maintained at the Los Angeles Zoo. Notably in the female, increased excretion of estrogen metabolites occurred during the breeding season (Jun-Aug), and a biphasic pattern in progestagen activity was measured during gestation. Of additional interest, a preterm increase in estrogen that continued for an additional 64 days post partum. Male androgen activity correlated with the female estrogen patterns, with a single successful copulation occurring during the breeding season; interestingly however, the male exhibited no reproductive behaviors during the female's preterm/post partum estrogen increase. These data are the first reproductive steroid profiles for the peninsular pronghorn and provide valuable insight that will aid efforts that link the species' reproductive physiology with conservation management.

  17. New metabolic and pharmacokinetic characteristics of thiocolchicoside and its active metabolite in healthy humans.

    PubMed

    Trellu, M; Filali-Ansary, A; Françon, D; Adam, R; Lluel, P; Dubruc, C; Thénot, J P

    2004-08-01

    Thiocolchicoside (TCC) has been prescribed for several years as a muscle relaxant drug, but its pharmacokinetic (PK) profile and metabolism still remain largely unknown. Therefore, we re-investigated its metabolism and PK, and we assessed the muscle relaxant properties of its metabolites. After oral administration of 8 mg (a therapeutic dose) of 14C-labelled TCC to healthy volunteers, we found no detectable TCC in plasma, urine or faeces. On the other hand, the aglycone derivative obtained after de-glycosylation of TCC (M2) was observed and, in addition, we identified, as the major circulating metabolic entity, 3-O-glucuronidated aglycone (M1) obtained after glucuro-conjugation of M2. One hour after oral administration, M1 plus M2 accounted for more than 75% of the circulating total radioactivity. The pharmacological activity of these metabolites was assessed using a rat model, the muscle relaxant activity of M1 was similar to that of TCC whereas M2 was devoid of any activity. Subsequently, to investigate the PK profile of TCC in human PK studies, we developed and validated a specific bioanalytical method that combines liquid chromatography and ultraviolet detection to assay both active entities. After oral administration, TCC was not quantifiable with an lower limit of quantification set at 1 ng/mL, whereas its active metabolite M1 was detected. M1 appeared rapidly in plasma (tmax=1 h) and was eliminated with an apparent terminal half-life of 7.3 h. In contrast, after intramuscular administration both active entities (TCC and M1) were present; TCC was rapidly absorbed (tmax=0.4 h) and eliminated with an apparent terminal half-life of 1.5 h. M1 concentration peaked at 5 h and this metabolite was eliminated with an apparent terminal half-life of 8.6 h. As TCC and M1 present an equipotent pharmacological activity, the relative oral pharmacological bioavailability of TCC vs. intramuscular administration was calculated and represented 25%. Therefore, to correctly

  18. Structure-Activity Relationships of Benzbromarone Metabolites and Derivatives as EYA Inhibitory Anti-Angiogenic Agents

    PubMed Central

    Pandey, Ram Naresh; Wang, Tim Sen; Tadjuidje, Emmanuel; McDonald, Matthew G.; Rettie, Allan E.; Hegde, Rashmi S.

    2013-01-01

    The tyrosine phosphatase activity of the phosphatase-transactivator protein Eyes Absent (EYA) is angiogenic through its roles in endothelial cell migration and tube formation. Benzbromarone, a known anti-gout agent, was previously identified as an inhibitor of EYA with anti-angiogenic properties. Here we show that the major metabolite of BBR, 6-hydroxy benzbromarone, is a significantly more potent inhibitor of cell migration, tubulogenesis and angiogenic sprouting. In contrast, other postulated metabolites of BBR such as 5-hydroxy benzbromaorne and 1’-hydroxy benzbromarone are less potent inhibitors of EYA tyrosine phosphatase activity as well as being less effective in cellular assays for endothelial cell migration and angiogenesis. Longer substituents at the 2 position of the benzofuran ring promoted EYA3 binding and inhibition, but were less effective in cellular assays, likely reflecting non-specific protein binding and a resulting reduction in free, bio-available inhibitor. The observed potency of 6-hydroxy benzbromarone is relevant in the context of the potential re-purposing of benzbromarone and its derivatives as anti-angiogenic agents. 6-hydroxy benzbromarone represents a metabolite with a longer half-life and greater pharmacological potency than the parent compound, suggesting that biotransformation of benzbromarone could contribute to its therapeutic activity. PMID:24367676

  19. Biological activity of secondary metabolites produced by a strain of Pseudomonas fluorescens.

    PubMed

    Boruah, H P Deka; Kumar, B S Dileep

    2002-01-01

    Biological activity of secondary metabolites produced by a plant-growth-promoting Pseudomonas fluorescens was evaluated. The strain produced antibiotics phenazine (PHE), 2,4-diacetylphloroglucinol (PHL) and siderophore pyoverdin (PYO) in standard King's B and succinic acid media, respectively. After extraction, PYO was identified by comparing the UV-spectra and moss-green color development after 'diazotized sulfanilic acid' (DSA) spray in TLC. PHE and PHL were identified by comparing standard compounds on TLC and orange-color development immediately after DSA spray. In vitro antibiosis study of the metabolites revealed their antibacterial and antifungal activity against bacterial test organisms Corynebacterium sp., Mycobacterium phlei and M. smegmatis and test fungi Fusarium moniliforme, F. oxysporum, F. semitectum, F. solani and Rhizoctonia solani. A statistically significantly higher plant growth was recorded in siderophore-amended plantlets under gnotobiotic conditions whereas PHE and PHL did not show any plant-growth-promoting activity. These results support the importance of the secondary metabolites produced by the strain P. fluorescens in enhancing plant growth and in controlling fungal and bacterial pathogens.

  20. Reactive metabolites of acetaminophen activate and sensitize the capsaicin receptor TRPV1.

    PubMed

    Eberhardt, Mirjam J; Schillers, Florian; Eberhardt, Esther M; Risser, Linus; Roche, Jeanne de la; Herzog, Christine; Echtermeyer, Frank; Leffler, Andreas

    2017-10-06

    The irritant receptor TRPA1 was suggested to mediate analgesic, antipyretic but also pro-inflammatory effects of the non-opioid analgesic acetaminophen, presumably due to channel activation by the reactive metabolites parabenzoquinone (pBQ) and N-acetyl-parabenzoquinonimine (NAPQI). Here we explored the effects of these metabolites on the capsaicin receptor TRPV1, another redox-sensitive ion channel expressed in sensory neurons. Both pBQ and NAPQI, but not acetaminophen irreversibly activated and sensitized recombinant human and rodent TRPV1 channels expressed in HEK 293 cells. The reducing agents dithiothreitol and N-acetylcysteine abolished these effects when co-applied with the metabolites, and both pBQ and NAPQI failed to gate TRPV1 following substitution of the intracellular cysteines 158, 391 and 767. NAPQI evoked a TRPV1-dependent increase in intracellular calcium and a potentiation of heat-evoked currents in mouse spinal sensory neurons. Although TRPV1 is expressed in mouse hepatocytes, inhibition of TRPV1 did not alleviate acetaminophen-induced hepatotoxicity. Finally, intracutaneously applied NAPQI evoked burning pain and neurogenic inflammation in human volunteers. Our data demonstrate that pBQ and NAQPI activate and sensitize TRPV1 by interacting with intracellular cysteines. While TRPV1 does not seem to mediate acetaminophen-induced hepatotoxicity, our data identify TRPV1 as a target of acetaminophen with a potential relevance for acetaminophen-induced analgesia, antipyresia and inflammation.

  1. Only tyrosine-containing metabolites of [Leu]enkephalin impair active avoidance conditioning in mice.

    PubMed

    Janak, P H; Martinez, J L

    1990-12-01

    The effects of the enkephalin metabolites, Tyr, des-Tyr-[Leu]enkephalin (GGFL), and Tyr-Gly-Gly (YGG), on acquisition of an active avoidance task following their IP administration to mice were determined. Neither free Tyr (3.9-390.0 micrograms/kg) nor GGFL (7.1-710.0 micrograms/kg) altered acquisition of the avoidance response. In contrast, 53, but not 16 micrograms/kg, of YGG significantly impaired response acquisition. A 390.0, but not 39.0 micrograms/kg, dose of Tyr decreased locomotor activity levels measured in an open field. Together with previous findings that the enkephalin metabolites Tyr-Gly and Tyr-Gly-Gly-Phe also impair avoidance acquisition, these data indicate that the dipeptide Tyr-Gly is the minimum sequence needed to intefere with acquisition of an active avoidance response. Because the various enkephalin metabolites do not bind to opioid receptors, it is likely that their effects on avoidance acquisition represent a separate class of pharmacological agents whose effects are mediated by a nonopioid receptor mechanism. These results are important to the interpretation of behavioral studies involving peripheral administration of the opioid peptide, [Leu]enkephalin (LE).

  2. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  3. Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models.

    PubMed

    Larrosa, Mar; Luceri, Cristina; Vivoli, Elisa; Pagliuca, Chiara; Lodovici, Maura; Moneti, Gloriano; Dolara, Piero

    2009-08-01

    The polyphenols in fruits and vegetables may be partly responsible for the health-promoting effects attributed to fruit and vegetable intake. Although their properties have been relatively well studied, the activity of their metabolites, produced after ingestion, has been poorly investigated. Thus, the aim of this work was to study the potential anti-inflammatory effect of 18 polyphenol metabolites, derived from colon microbiota. They were screened by measuring prostaglandin E(2) (PGE(2)) production by CCD-18 colon fibroblast cells stimulated with IL-1beta. Metabolites that inhibited more than 50% PGE(2) production were hydrocaffeic (HCAF), dihydroxyphenyl acetic (dOHPA), and hydroferulic acid (HFER), that subsequently were tested with the writhing and paw pressure test in rodents where all three compounds showed an anti-inflammatory effect. The effect of HCAF administered orally (50 mg/kg) was also tested in the dextran sodium sulfate (DSS)-induced colitis model. Weight loss and fecal water content were more pronounced in DSS rats than in DSS-HCAF treated rats. HCAF treatment diminished the expression of the cytokines IL-1beta, IL-8, and TNF-alpha, reduced malonyldialdehyde (MDA) levels and oxidative DNA damage (measured as 8-oxo-2'-deoxyguanosine levels) in distal colon mucosa. These results indicate that HCAF, dOHPA, and HFER have anti-inflammatory activity in vitro and in vivo.

  4. Lipopeptaibol metabolites of tolypocladium geodes: total synthesis, preferred conformation, and membrane activity.

    PubMed

    Rainaldi, Mario; Moretto, Alessandro; Peggion, Cristina; Formaggio, Fernando; Mammi, Stefano; Peggion, Evaristo; Galvez, José Antonio; Díaz-de-Villegas, Maria Dolores; Cativiela, Carlos; Toniolo, Claudio

    2003-08-04

    We have synthesized by solution methods and characterized the lipopeptaibol metabolite LP237-F8 extracted from the fungus Tolypocladium geodes and five selected analogues with the Etn-->Aib or Etn-->Nva replacement at position 8 and/or a triple Gln-->Glu(OMe) replacement at positions 5, 6, and 9 (Etn=Calpha-ethylnorvaline, Aib=alpha-aminoisobutyric acid, Nva=norvaline). Conformation analysis, performed by FT-IR absorption, NMR, and CD techniques, strongly supports the view that the six terminally blocked decapeptides are highly helical in solution. Helix topology and amphiphilic character are responsible for their remarkable membrane activity. At position 8 the combination of high hydrophobicity and Calpha tetrasubstitution, as in the Etn-containing LP237-F8 metabolite, has a positive effect on membrane interaction.

  5. Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites.

    PubMed

    Gliszczyńska, Anna; Łysek, Agnieszka; Janeczko, Tomasz; Świtalska, Marta; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2011-04-01

    Six metabolites were obtained as a result of microbial transformation of (+)-nootkatone (1) by the fungal strains: Botrytis, Didymosphaeria, Aspergillus, Chaetomium and Fusarium. Their structure were established as (+)-(4R,5S,7R,9R)-9α-hydroxynootkatone (2), (+)-(4R,5S,7R)-13-hydroxynootkatone (3) and (+)-(4R,5S,7R,9R,11S)-11,12-epoxy-9α-hydroxynootkatone (4), (+)-(4R,5S,7R,11S)-11,12-epoksynootkatone (5), (+)-(4R,5S,7R)-11,12-dihydroxynootkatone (6) and (+)-(4R,5S,7R)-7,11,12-trihydroxynootkatone (7) on the basis of their spectral data. Two products: (4) and (7) were not previously reported in the literature. The antiproliferative activity of (+)-nootkatone (1) and isolated metabolites (2-7) of its biotransformation has been evaluated.

  6. Inhibition of cytochrome P450 activity enhances the systemic availability of triclabendazole metabolites in sheep.

    PubMed

    Virkel, G; Lifschitz, A; Sallovitz, J; Ballent, M; Scarcella, S; Lanusse, C

    2009-02-01

    Understanding the disposition kinetics and the pattern of metabolism is critical to optimise the flukicidal activity of triclabendazole (TCBZ) in ruminants. TCBZ is metabolised by both flavin-monooxygenase (FMO) and cytochrome P450 (P450) in the liver. Interference with these metabolic pathways may be useful to increase the systemic availabilities of TCBZ metabolites, which may improve the efficacy against Fasciola hepatica. The plasma disposition of TCBZ metabolites was evaluated following TCBZ co-administration with FMO [methimazole (MTZ)] and P450 [piperonyl butoxyde (PB) and ketoconazole (KTZ)] inhibitors in sheep. Twenty (20) healthy Corriedale x Merino weaned female lambs were randomly allocated into four experimental groups. Animals of each group were treated as follow: Group A, TCBZ alone (5 mg/kg, IV route); Group B, TCBZ (5 mg/kg, IV) + MTZ (3 mg/kg, IV); Group C, TCBZ (5 mg/kg, IV) + PB (30 mg/kg, IV) and Group D, TCBZ (5 mg/kg, IV) + KTZ (10 mg/kg, orally). Blood samples were taken over 240 h post-treatment and analysed by HPLC. TCBZ sulphoxide and sulphone were the main metabolites recovered in plasma. MTZ did not affect TCBZ disposition kinetics. TCBZ sulphoxide Cmax values were significantly increased (P < 0.05) after the TCBZ + PB (62%) and TCBZ + KTZ (37%) treatments compared to those measured in the TCBZ alone treatment. TCBZ sulphoxide plasma AUCs were higher (P < 0.05) in the presence of both PB (99%) and KTZ (41%). Inhibition of TCBZ P450-mediated oxidation in the liver accounted for the increased systemic availability of its active metabolite TCBZ sulphoxide. This work contributes to the search of different strategies to improve the use of this flukicidal drug in ruminants.

  7. Evaluation of the pharmacological activity of the major mexiletine metabolites on skeletal muscle sodium currents

    PubMed Central

    De Bellis, M; De Luca, A; Rana, F; Cavalluzzi, M M; Catalano, A; Lentini, G; Franchini, C; Tortorella, V; Conte Camerino, D

    2006-01-01

    Background and purpose: Mexiletine (Mex), an orally effective antiarrhythmic agent used to treat ventricular arrhythmias, has also been found to be effective for myotonia and neuropathic pain. It is extensively metabolized in humans but little information exists about the pharmacodynamic properties of its metabolites. Experimental approach: To determine their contribution to the clinical activity of Mex, p-hydroxy-mexiletine (PHM), hydroxy-methyl-mexiletine (HMM), N-hydroxy-mexiletine (NHM) (phase I reaction products) and N-carbonyloxy β-D-glucuronide (NMG) (phase II reaction product) were tested on sodium currents (INa) of frog skeletal muscle fibres. Sodium currents were elicited with depolarizing pulses from different holding potentials (HP=−140, −100, −70 mV) and stimulation frequencies (0.25, 0.5, 1, 2, 5, 10 Hz) using the vaseline-gap voltage-clamp method. Key results: All the hydroxylated derivatives blocked the sodium channel in a voltage- and use-dependent manner. The PHM, HMM and NHM metabolites were up to 10-fold less effective than the parent compound. However, HMM showed a greater use-dependent behaviour (10 Hz), compared to Mex and the other metabolites. Similar to Mex, these products behaved as inactivating channel blockers. Conjugation with glucuronic acid (NMG) resulted in almost complete abolition of the pharmacological activity of the parent compound. Conclusions and Implications: Thus, although less potent, the phase I metabolites tested demonstrated similar pharmacological behaviour to Mex and might contribute to its clinical profile. PMID:16921388

  8. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study.

    PubMed

    Floegel, A; Wientzek, A; Bachlechner, U; Jacobs, S; Drogan, D; Prehn, C; Adamski, J; Krumsiek, J; Schulze, M B; Pischon, T; Boeing, H

    2014-11-01

    It is not yet resolved how lifestyle factors and intermediate phenotypes interrelate with metabolic pathways. We aimed to investigate the associations between diet, physical activity, cardiorespiratory fitness and obesity with serum metabolite networks in a population-based study. The present study included 2380 participants of a randomly drawn subcohort of the European Prospective Investigation into Cancer and Nutrition-Potsdam. Targeted metabolomics was used to measure 127 serum metabolites. Additional data were available including anthropometric measurements, dietary assessment including intake of whole-grain bread, coffee and cake and cookies by food frequency questionnaire, and objectively measured physical activity energy expenditure and cardiorespiratory fitness in a subsample of 100 participants. In a data-driven approach, Gaussian graphical modeling was used to draw metabolite networks and depict relevant associations between exposures and serum metabolites. In addition, the relationship of different exposure metabolite networks was estimated. In the serum metabolite network, the different metabolite classes could be separated. There was a big group of phospholipids and acylcarnitines, a group of amino acids and C6-sugar. Amino acids were particularly positively associated with cardiorespiratory fitness and physical activity. C6-sugar and acylcarnitines were positively associated with obesity and inversely with intake of whole-grain bread. Phospholipids showed opposite associations with obesity and coffee intake. Metabolite networks of coffee intake and obesity were strongly inversely correlated (body mass index (BMI): r = -0.57 and waist circumference: r = -0.59). A strong positive correlation was observed between metabolite networks of BMI and waist circumference (r = 0.99), as well as the metabolite networks of cake and cookie intake with cardiorespiratory fitness and intake of whole-grain bread (r = 0.52 and r = 0.50; respectively). Lifestyle factors

  9. Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment.

    PubMed

    Ferrando-Climent, Laura; Collado, Neus; Buttiglieri, Gianluigi; Gros, Meritxell; Rodriguez-Roda, Ignasi; Rodriguez-Mozaz, Sara; Barceló, Damià

    2012-11-01

    Even though Ibuprofen is one of the most studied pharmaceutical in the aquatic environment, there is still a lack of information about its fate and the generation of different transformation products along wastewater treatment plants (WWTPs). Ibuprofen biotransformation products can be generated by human metabolism or by microorganisms present in WWTPs and in natural waters, soils, and sediments, which increase the probability to find them in environment. In this work, the presence of ibuprofen and its main metabolites: ibuprofen carboxylic acid (CBX IBU), 2-hydroxylated ibuprofen (2-OH IBU) and 1-hydroxylated ibuprofen (1-OH IBU), was monitored quantitatively along the biodegradation processes occurring in different batch activated sludge (BAS) experiments under different working conditions. Total ibuprofen removal, achieved in almost all the experiments, was related in part to the formation of the metabolites mentioned. Another ibuprofen metabolite, 1,2-dihydroxy ibuprofen, was detected in BAS experiments for the first time. The metabolites 2-OH IBU and 1-OH IBU remained in solution at the end of ibuprofen biodegradation experiments whereas CBX IBU disappeared faster than hydroxylated metabolites. In addition, also the biodegradation of 1-OH IBU, 2-OH IBU and CBX IBU was evaluated in batch experiments: CBX IBU removal occurred at the highest rate followed by IBU, 2-OH IBU, and 1-OH IBU, which exhibited the lowest removal rate. Finally, Ibuprofen and ibuprofen metabolites were monitored in sewage and natural water samples, where they were found at higher levels than expected: the maximum concentration in influent wastewater samples were 13.74, 5.8, 38.4, 94.0μg/L for IBU, 1-OH IBU, CBX IBU and 2-OH IBU respectively; whereas maximum levels in effluent wastewater samples were 1.9, 1.4, 10.7, 5.9 μg/L for IBU, 1-OH IBU, CBX IBU and 2-OH IBU respectively. High levels of the compounds were also found in river samples, in particular for CBX IBU, which was detected up

  10. Selective and potent in vitro antitrypanosomal activities of ten microbial metabolites.

    PubMed

    Otoguro, Kazuhiko; Ishiyama, Aki; Namatame, Miyuki; Nishihara, Aki; Furusawa, Toshiaki; Masuma, Rokuro; Shiomi, Kazuro; Takahashi, Yoko; Yamada, Haruki; Omura, Satoshi

    2008-06-01

    More than 400 compounds isolated from soil microorganisms, and catalogued in the antibiotic library of the Kitasato Institute for Life Sciences, were screened against African trypanosomes. Ten compounds were found to have selective and potent antitrypanosomal activity in vitro: aureothin, cellocidin, destomycin A, echinomycin, hedamycin, irumamycin, LL-Z 1272beta, O-methylnanaomycin A, venturicidin A and virustomycin A. Results of the in vitro assays using the GUTat 3.1 strain of Trypanosomal brucei brucei and the STIB900 strain of T. b. rhodesiense are presented. Cytotoxicity was determined using a human MRC-5 cell line. This is the first report of antitrypanosomal activities of the 10 microbial metabolites listed above.

  11. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties

    PubMed Central

    2013-01-01

    The resinous metabolites commonly known as frankincense or olibanum are produced by trees of the genus Boswellia and have attracted increasing popularity in Western countries in the last decade for their various pharmacological activities. This review described the pharmacological specific details mainly on anti-inflammatory, anti-carcinogenic, anti-bacterial and apoptosis-regulating activities of individual triterpenoid together with the relevant mechanism. In addition, species-characterizing triterpenic markers with the methods for their detection, bioavailability, safety and other significant properties were reviewed for further research. PMID:24028654

  12. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi--Metabolites, enzymes and residual antibacterial activity.

    PubMed

    Čvančarová, Monika; Moeder, Monika; Filipová, Alena; Cajthaml, Tomáš

    2015-10-01

    A group of white rot fungi (Irpex lacteus, Panus tigrinus, Dichomitus squalens, Trametes versicolor and Pleurotus ostreatus) was investigated for the biodegradation of norfloxacin (NOR), ofloxacin (OF) and ciprofloxacin (CIP). The selected fluoroquinolones were readily degraded almost completely by I. lacteus and T. versicolor within 10 and 14 d of incubation in liquid medium, respectively. The biodegradation products were identified by liquid chromatography-mass spectrometry. The analyses indicated that the fungi use similar mechanisms to degrade structurally related antibiotics. The piperazine ring of the molecules is preferably attacked via either substitution or/and decomposition. In addition to the degradation efficiency, attention was devoted to the residual antibiotic activities estimated using Gram-positive and Gram-negative bacteria. Only I. lacteus was able to remove the antibiotic activity during the course of the degradation of NOR and OF. The product-effect correlations evaluated by Principal Component Analysis (PCA) enabled elucidation of the participation of the individual metabolites in the residual antibacterial activity. Most of the metabolites correlated with the antibacterial activity, explaining the rather high residual activity remaining after the biodegradation. PCA of ligninolytic enzyme activities indicated that manganese peroxidase might participate in the degradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities.

    PubMed

    Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko

    2014-12-01

    Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities.

  14. Comparison of the circulating metabolite profile of PF-04991532, a hepatoselective glucokinase activator, across preclinical species and humans: potential implications in metabolites in safety testing assessment.

    PubMed

    Sharma, Raman; Litchfield, John; Bergman, Arthur; Atkinson, Karen; Kazierad, David; Gustavson, Stephanie M; Di, Li; Pfefferkorn, Jeffrey A; Kalgutkar, Amit S

    2015-02-01

    A previous report from our laboratory disclosed the identification of PF-04991532 [(S)-6-(3-cyclopentyl-2-(4-trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid] as a hepatoselective glucokinase activator for the treatment of type 2 diabetes mellitus. Lack of in vitro metabolic turnover in microsomes and hepatocytes from preclinical species and humans suggested that metabolism would be inconsequential as a clearance mechanism of PF-04991532 in vivo. Qualitative examination of human circulating metabolites using plasma samples from a 14-day multiple ascending dose clinical study, however, revealed a glucuronide (M1) and monohydroxylation products (M2a and M2b/M2c) whose abundances (based on UV integration) were greater than 10% of the total drug-related material. Based on this preliminary observation, mass balance/excretion studies were triggered in animals, which revealed that the majority of circulating radioactivity following the oral administration of [¹⁴C]PF-04991532 was attributed to an unchanged parent (>70% in rats and dogs). In contrast with the human circulatory metabolite profile, the monohydroxylated metabolites were not detected in circulation in either rats or dogs. Available mass spectral evidence suggested that M2a and M2b/M2c were diastereomers derived from cyclopentyl ring oxidation in PF-04991532. Because cyclopentyl ring hydroxylation on the C-2 and C-3 positions can generate eight possible diastereomers, it was possible that additional diastereomers may have also formed and would need to be resolved from the M2a and M2b/M2c peaks observed in the current chromatography conditions. In conclusion, the human metabolite scouting study in tandem with the animal mass balance study allowed early identification of PF-04991532 oxidative metabolites, which were not predicted by in vitro methods and may require additional scrutiny in the development phase of PF-04991532.

  15. Secondary Metabolites, Glandular Trichomes and Biological Activity of Sideritis montana L. subsp. montana from Central Italy.

    PubMed

    Venditti, Alessandro; Bianco, Armandodoriano; Frezza, Claudio; Serafini, Mauro; Giacomello, Ginevra; Giuliani, Claudia; Bramucci, Massimo; Quassinti, Luana; Lupidi, Giulio; Lucarini, Domenico; Papa, Fabrizio; Maggi, Filippo

    2016-10-01

    Sideritis montana subsp. montana is a small annual herb occurring in countries bordering the Mediterranean and Balkan regions. The secondary metabolism of this plant has not been fully explored so far. The aim of the present study was to understand the complex mixture of secondary metabolites and the type of secretory structures. The polar constituents were isolated by column chromatography from the ethanolic extract, and their structure was elucidated by NMR and MS. The essential oil was isolated by hydrodistillation and analysed by GC/MS. The plant indumentum was studied by light and scanning electron microscopy. To complete the work, the essential oil antioxidant activity and cytotoxicity on tumor cells were evaluated by DPPH, ABTS, FRAP, and MTT methods. Four different classes of secondary metabolites were isolated, namely flavonoids, caffeoylquinic derivatives, glycosidic hydroquinones and iridoids. The essential oil was mainly characterized by sesquiterpenene hydrocarbons. Peltate and long-capitate hairs were the main sites where terpenes and polar constituents are produced. The secondary metabolites found in S. montana subsp. montana are of chemotaxonomic interest, some of them being typical of the genus Sideritis. The trichomes types observed partially differ from those described in other members of the genus Sideritis. The essential oil showed noteworthy inhibition on tumor cells. © 2016 Wiley-VHCA AG, Zürich.

  16. Linear glandular trichomes of Helianthus (Asteraceae): morphology, localization, metabolite activity and occurrence

    PubMed Central

    Aschenbrenner, Anna-Katharina; Horakh, Silke; Spring, Otmar

    2013-01-01

    Capitate glandular trichomes of sunflower are well investigated, but detailed studies are lacking for the linear glandular trichomes (LGT), a second type of physiologically active plant hair present on the surface of sunflowers. Light, fluorescence and scanning electron microscopy as well as histochemical staining were used to investigate the structure and metabolite deposition of LGT. Consisting of 6–11 linearly arranged cells, LGT were found on the surface of most plant organs of Helianthus annuus. They were associated with the leaf vascular system, and also occurred along petioles, stems and the abaxial surface of chaffy bracts, ray and disc florets. The highest density was found on the abaxial surface of phyllaries. Phenotypically similar LGT were common in all species of the genus, but also occurred in most other genera of the Helianthinae so far screened. Brownish and fluorescent metabolites of an as yet unknown chemical structure, together with terpenoids, were produced and stored in apical cells of LGT. The deposition of compounds gradually progressed from the tip cell to the basal cells of older trichomes. This process was accompanied by nucleus degradation in metabolite-accumulating cells. The localization of these trichomes on prominent plant parts of the apical bud and the capitulum combined with the accumulation of terpenoids and other as yet unknown compounds suggests a chemo-ecological function of the LGT in plant–insect or plant–herbivore interaction.

  17. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    PubMed

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons.

  18. Select steroid hormone glucuronide metabolites can cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Frick, Morin M.; Zhang, Yingning; Maier, Steven F.; Sammakia, Tarek; Rice, Kenner C.; Watkins, Linda R.

    2014-01-01

    We have recently shown that several classes of glucuronide metabolites, including the morphine metabolite morphine-3-glucuronide and the ethanol metabolite ethyl glucuronide, cause toll like receptor 4 (TLR4)-dependent signalling in vitro and enhanced pain in vivo. Steroid hormones, including estrogens and corticosterone, are also metabolized through glucuronidation. Here we demonstrate that in silico docking predicts that corticosterone, corticosterone-21-glucuronide, estradiol, estradiol-3-glucuronide and estradiol-17-glucuronide all dock with the MD-2 component of the TLR4 receptor complex. In addition to each docking with MD-2, the docking of each was altered by pre-docking with (+)-naloxone, a TLR4 signaling inhibitor. As agonist versus antagonist activity cannot be determined from these in silico interactions, an in vitro study was undertaken to clarify which of these compounds can act in an agonist fashion. Studies using a cell line transfected with TLR4, necessary co-signaling molecules, and a reporter gene revealed that only estradiol-3-glucuronide and estradiol-17-glucuronide increased reporter gene product, indicative of TLR4 agonism. Finally, in in vivo studies, each of the 5 drugs was injected intrathecally at equimolar doses. In keeping with the in vitro results, only estradiol-3-glucuronide and estradiol-17-glucuronide caused enhanced pain. For both compounds, pain enhancement was blocked by the TLR4 antagonist lipopolysaccharide from Rhodobacter sphaeroides, evidence for the involvement in TLR4 in the resultant pain enhancement. These findings have implications for several chronic pain conditions, including migraine and tempromandibular joint disorder, in which pain episodes are more likely in cycling females when estradiol is decreasing and estradiol metabolites are at their highest. PMID:25218902

  19. Biotransformation of dianabol with the filamentous fungi and β-glucuronidase inhibitory activity of resulting metabolites.

    PubMed

    Khan, Naik T; Zafar, Salman; Noreen, Shagufta; Al Majid, Abdullah M; Al Othman, Zeid A; Al-Resayes, Saud Ibrahim; Atta-ur-Rahman; Choudhary, M Iqbal

    2014-07-01

    Biotransformation of the anabolic steroid dianabol (1) by suspended-cell cultures of the filamentous fungi Cunninghamella elegans and Macrophomina phaseolina was studied. Incubation of 1 with C. elegans yielded five hydroxylated metabolites 2-6, while M. phaseolina transformed compound 1 into polar metabolites 7-11. These metabolites were identified as 6β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (2), 15α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (3), 11α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (4), 6β,12β,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (5), 6β,15α,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (6), 17β-hydroxy-17α-methylandrost-1,4-dien-3,6-dione (7), 7β,17β,-dihydroxy-17α-methylandrost-1,4-dien-3-one (8), 15β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (9), 17β-hydroxy-17α-methylandrost-1,4-dien-3,11-dione (10), and 11β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (11). Metabolite 3 was also transformed chemically into diketone 12 and oximes 13, and 14. Compounds 6 and 12-14 were identified as new derivatives of dianabol (1). The structures of all transformed products were deduced on the basis of spectral analyses. Compounds 1-14 were evaluated for β-glucuronidase enzyme inhibitory activity. Compounds 7, 13, and 14 showed a strong inhibition of β-glucuronidase enzyme, with IC50 values between 49.0 and 84.9 μM. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi.

    PubMed

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2010-12-27

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity.

  1. Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    PubMed Central

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2011-01-01

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity. PMID:21339946

  2. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes.

    PubMed

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo

    2013-07-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.

  3. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity.

    PubMed

    Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S

    2015-01-01

    This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and β-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), δ-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 μg mL(-1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations.

  4. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites 1

    PubMed Central

    Schrader, L. E.; Hageman, R. H.

    1967-01-01

    Primary and secondary metabolites of inorganic nitrogen metabolism were evaluated as inhibitors of nitrate reductase (EC 1.6.6.1) induction in green leaf tissue of corn seedlings. Nitrite, nitropropionic acid, ammonium ions, and amino acids were not effective as inhibitors of nitrate reductase activity or synthesis. Increasing α-amino nitrogen and protein content of intact corn seedlings by culture techniques significantly enhanced rather than decreased the potential for induction of nitrate reductase activity in excised seedlings. Secondary metabolites, derived from phenylalanine and tyrosine, were tested as inhibitors of induction of nitrate reductase. Of the 9 different phenylpropanoid compounds tested, only coumarin, trans-cinnamic and trans-o-hydroxycinnamic acids inhibited induction of nitrate reductase. While coumarin alone exhibited a relatively greater inhibitory effect on enzyme induction than on general protein synthesis (the latter measured by incorporation of labeled amino acids), this differential effect may have been dependent upon unequal rates of synthesis and accumulation with respect to the initial levels of nitrate reductase and general proteins. Because of the short half-life of nitrate reductase, inhibitors of protein synthesis in general could still achieve differential regulation of nitrogen metabolism. Coumarin did not inhibit nitrate reductase activity when added directly to the assay mixture at 5 mm. Carbamyl phosphate and its chemical derivative, cyanate, were found to be competitive (with nitrate) inhibitors of nitrate reductase. The data suggest that cyanate is the active inhibitor in the carbamyl phosphate preparations. PMID:16656715

  5. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism.

    PubMed

    Watanabe, Shunsuke; Matsumoto, Mayumi; Hakomori, Yuki; Takagi, Hiroshi; Shimada, Hiroshi; Sakamoto, Atsushi

    2014-04-01

    Purine catabolism is regarded as a housekeeping function that remobilizes nitrogen for plant growth and development. However, emerging evidence suggests that certain purine metabolites might contribute to stress protection of plants. Here, we show that in Arabidopsis, the intermediary metabolite allantoin plays a role in abiotic stress tolerance via activation of abscisic acid (ABA) metabolism. The aln loss-of-function of ALN, encoding allantoinase, results in increased allantoin accumulation, genome-wide up-regulation of stress-related genes and enhanced tolerance to drought-shock and osmotic stress in aln mutant seedlings. This phenotype is not caused by a general response to purine catabolism inhibition, but rather results from a specific effect of allantoin. Allantoin activates ABA production both through increased transcription of NCED3, encoding a key enzyme in ABA biosynthesis, and through post-translational activation via high-molecular-weight complex formation of BG1, a β-glucosidase hydrolysing glucose-conjugated ABA. Exogenous application of allantoin to wild-type plants also activates the two ABA-producing pathways that lead to ABA accumulation and stress-responsive gene expression, but this effect is abrogated in ABA-deficient and BG1-knockout mutants. We propose that purine catabolism functions not only in nitrogen metabolism, but also in stress tolerance by influencing ABA production, which is mediated by the possible regulatory action of allantoin. © 2013 John Wiley & Sons Ltd.

  6. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity.

    PubMed

    Wardecki, Tina; Brötz, Elke; De Ford, Christian; von Loewenich, Friederike D; Rebets, Yuriy; Tokovenko, Bogdan; Luzhetskyy, Andriy; Merfort, Irmgard

    2015-08-01

    Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients.

  7. Potent Antidiabetic Activity and Metabolite Profiling of Melicope Lunu-ankenda Leaves.

    PubMed

    Al-Zuaidy, Mizher Hezam; Hamid, Azizah Abdul; Ismail, Amin; Mohamed, Suhaila; Abdul Razis, Ahmad Faizal; Mumtaz, Muhammad Waseem; Salleh, Syafiq Zikri

    2016-05-01

    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in

  8. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    PubMed

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity.

  9. [The pharmacokinetics of the dipeptide analog of piracetam with nootropic activity GVS-111 and of its basic metabolites].

    PubMed

    Boĭko, S S; Zherdev, V P; Dvorianinov, A A; Gudasheva, T A; Ostrovskaia, R U; Voronina, T A; Rozantsev, G G; Seredenin, S B

    1997-01-01

    The pharmacokinetics of a new nootropic dipeptide analog of piracetam-N-phenylacetyl-L-prolylglycine (GWS-111) and its main metabolites were studied in rats by means of high performance liquid chromatography and gas-liquid chromatography. The compound under study showed a greater resistance to an enzymatic effect than natural neuropeptides. In addition to an unchanged compound three of its metabolites were found in the blood plasma of the rats. One of them, cyclo-Pro-Gly was an active metabolite of GWS-111.

  10. Antistaphylococcal activity and metabolite profiling of manuka honey (Leptospermum scoparium L.) after in vitro simulated digestion.

    PubMed

    Mannina, Luisa; Sobolev, Anatoly P; Coppo, Erika; Di Lorenzo, Arianna; Nabavi, Seyed Mohammad; Marchese, Anna; Daglia, Maria

    2016-03-01

    The antistaphylococcal activity against methicillin-susceptible and -resistant Staphylococcus aureus and the metabolite profiling of manuka honey (MH) were investigated before and after in vitro simulated gastric (GD) and gastroduodenal (GDD) digestions. Undigested manuka honey showed antibacterial activity against all the tested strains, the GD sample showed no activity against S. aureus, and the GDD honey showed an antistaphylococcal activity, which was slightly reduced in comparison with the undigested sample. To explain these results, methylglyoxal (MGO), to which most of the antibacterial activity of MH is ascribed, was subjected to in vitro simulated GD and GDD. After digestion, MGO showed antibacterial activity at concentrations definitively higher than those registered in digested MH samples. These results showed that the antistaphylococcal activity registered after digestion cannot be ascribed to MGO. Thus metabolite analysis, carried out using an explorative untargeted NMR-based approach and a targeted RP-HPLC-PAD-ESI-MSn analysis focused on bio-active substances, was used to highlight the chemical modifications occurring from digestion. The results showed that (1) the level of MGO decreases and (2) the content of aromatic compounds, such as leptosin and methyl syringate, markers of manuka honey, was stable under gastric and gastroduodenal conditions, whereas (3) the levels of acetic and lactic acids increase in particular after gastroduodenal digestion, being 1.5 and 2.8 times higher in GDD-MH than in UND-MH, respectively. Overall, the results obtained from chemical analysis provide at least a partial explanation of the registered antibacterial activity observed after gastroduodenal digestion.

  11. Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection

    PubMed Central

    Brode, Sven; Ellis, Lou; Fitzmaurice, Timothy J.; Elder, Matthew J.; Gekara, Nelson O.; Tourlomousis, Panagiotis; Clare, Simon; Chee, Ronnie; Gaston, Hill J. S.; Goodall, Jane C.

    2017-01-01

    The innate immune system is a critical component of host defence against microbial pathogens, but effective responses require an ability to distinguish between infectious and non-infectious insult to prevent inappropriate inflammation. Using the important obligate intracellular human pathogen Chlamydia trachomatis; an organism that causes significant immunopathology, we sought to determine critical host and pathogen factors that contribute to the induction of inflammasome activation. We assayed inflammasome activation by immunoblotting and ELISA to detect IL-1β processing and LDH release to determine pyroptosis. Using primary murine bone marrow derived macrophages or human monocyte derived dendritic cells, infected with live or attenuated Chlamydia trachomatis we report that the live organism activates both canonical and non-canonical inflammasomes, but only canonical inflammasomes controlled IL-1β processing which preceded pyroptosis. NADPH oxidase deficient macrophages were permissive to Chlamydia trachomatis replication and displayed elevated type-1 interferon and inflammasome activation. Conversely, attenuated, non-replicating Chlamydia trachomatis, primed but did not activate inflammasomes and stimulated reduced type-1 interferon responses. This suggested bacterial replication or metabolism as important factors that determine interferon responses and inflammasome activation. We identified STING but not cGAS as a central mediator of interferon regulated inflammasome activation. Interestingly, exogenous delivery of a Chlamydia trachomatis metabolite and STING ligand—cyclic di-AMP, recovered inflammasome activation to attenuated bacteria in a STING dependent manner thus indicating that a bacterial metabolite is a key factor initiating inflammasome activation through STING, independent of cGAS. These data suggest a potential mechanism of how the innate immune system can distinguish between infectious and non-infectious insult and instigate appropriate immune

  12. Free-radical-scavenging and antioxidant activities of secondary metabolites from reddened cv. Annurca apple fruits.

    PubMed

    Cefarelli, Giuseppe; D'Abrosca, Brigida; Fiorentino, Antonio; Izzo, Angelina; Mastellone, Claudio; Pacifico, Severina; Piscopo, Vincenzo

    2006-02-08

    Forty-three secondary metabolites were isolated and characterized from cv. Annurca apple fruit, an apple variety cultivated in the south of Italy. This apple cultivar undergoes a typical reddening treatment after collection. All of the compounds were characterized on the basis of their spectroscopic data. The compounds were tested for their radical-scavenging and antioxidant activities by measuring their capacity to scavenge DPPH* (2,2'-diphenyl-1-picrylhydrazyl radical), H2O2, and NO (nitric oxide) and to inhibit the formation of methyl linoleate conjugated diene hydroperoxides or TBARS (thiobarbituric acid reactive species).

  13. Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana.

    PubMed

    Howlett, A C

    1987-05-01

    delta 9Tetrahydrocannabinol (THC) has been shown to inhibit the activity of adenylate cyclase in the N18TG2 clone of murine neuroblastoma cells. The concentration of delta 9THC exhibiting half-maximal inhibition was 500 nM. delta 8Tetrahydrocannabinol was less active, and cannabinol was only partially active. Cannabidiol, cannabigerol, cannabichromene, olivetol and compounds having a reduced length of the C3 alkyl side chain were inactive. The metabolites of delta 8THC and delta 9THC hydroxylated at the C11 position were more potent than the parent drugs. However, hydroxylation at the C8 position of the terpenoid ring resulted in loss of activity. Compounds hydroxylated along the C3 alkyl side chain were equally efficacious but less potent than delta 9THC. These findings are compared to the pharmacology of cannabinoids reported for psychological effects in humans and behavioral effects in a variety of animal models.

  14. Free radical scavenging activity of erdosteine metabolite I investigated by electron paramagnetic resonance spectroscopy.

    PubMed

    Braga, Pier Carlo; Culici, Maria; Dal Sasso, Monica; Falchi, Mario; Spallino, Alessandra

    2010-01-01

    The aim of this study was to explore the antiradical activity of Met I (an active metabolite of erdosteine) containing a pharmacologically active sulphydryl group, by means of electron paramagnetic resonance (EPR) spectroscopy which has not previously been used to characterize the antiradical activity of Met I. The effects of concentrations of 20, 10, 5, 2.5, 1.25 and 0.625 microg/ml of Met I were tested against: (a) the Fenton reaction model system with EPR detection of HO.; (b) the KO2-crown ether system with EPR detection of O2-.; (c) the EPR assay based on the reduction of the Tempol radical, and (d) the EPR assay based on the reduction of Fremy's salt radical. Our findings show that the intensity of 4 different free radicals was significantly reduced in the presence of Met I, thus indicating the presence of a termination reaction between the free radicals and Met I.

  15. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites.

    PubMed

    Blevins-Primeau, Andrea S; Sun, Dongxiao; Chen, Gang; Sharma, Arun K; Gallagher, Carla J; Amin, Shantu; Lazarus, Philip

    2009-03-01

    Tamoxifen (TAM) is a selective estrogen receptor modulator widely used in the prevention and treatment of breast cancer. A major mode of metabolism of the major active metabolites of TAM, 4-OH-TAM and endoxifen, is by glucuronidation via the UDP-glucuronosyltransferase (UGT) family of enzymes. To examine whether polymorphisms in the UGT enzymes responsible for the glucuronidation of active TAM metabolites play an important role in interindividual differences in TAM metabolism, cell lines overexpressing wild-type or variant UGTs were examined for their activities against TAM metabolites in vitro. For variants of active extrahepatic UGTs, the UGT1A8(173Ala/277Tyr) variant exhibited no detectable glucuronidation activity against the trans isomers of either 4-OH-TAM or endoxifen. Little or no difference in TAM glucuronidating activity was observed for the UGT1A8(173Gly/277Cys) or UGT1A10(139Lys) variants compared with their wild-type counterparts. For active hepatic UGTs, the UGT2B7(268Tyr) variant exhibited significant (P < 0.01) 2- and 5-fold decreases in activity against the trans isomers of 4-OH-TAM and endoxifen, respectively, compared with wild-type UGT2B7(268His). In studies of 111 human liver microsomal specimens, the rate of O-glucuronidation against trans-4-OH-TAM and trans-endoxifen was 28% (P < 0.001) and 27% (P = 0.002) lower, respectively, in individuals homozygous for the UGT2B7 Tyr(268)Tyr genotype compared with subjects with the UGT2B7 His(268)His genotype, with a significant (P < 0.01) trend of decreasing activity against both substrates with increasing numbers of the UGT2B7(268His) allele. These results suggest that functional polymorphisms in TAM-metabolizing UGTs, including UGT2B7 and potentially UGT1A8, may be important in interindividual variability in TAM metabolism and response to TAM therapy.

  16. Synthesis and Evaluation of Vitamin D Receptor-Mediated Activities of Cholesterol and Vitamin D Metabolites

    PubMed Central

    Teske, Kelly A.; Bogart, Jonathan W.; Sanchez, Luis M.; Yu, Olivia B.; Preston, Joshua V.; Cook, James M.; Silvaggi, Nicholas R.; Bikle, Daniel D.; Arnold, Leggy A.

    2016-01-01

    A systematic study with phase 1 and phase 2 metabolites of cholesterol and vitamin D was conducted to determine whether their biological activity is mediated by the vitamin D receptor (VDR). The investigation necessitated the development of novel synthetic routes for lithocholic acid (LCA) glucuronides (Gluc). Biochemical and cell-based assays were used to demonstrate that hydroxylated LCA analogs were not able to bind VDR. This excludes VDR from mediating their biological and pharmacological activities. Among the synthesized LCA conjugates a novel VDR agonist was identified. LCA Gluc II increased the expression of CYP24A1 in DU145 cancer cells especially in the presence of the endogenous VDR ligand 1,25(OH)2D3. Furthermore, the methyl ester of LCA was identified as novel VDR antagonist. For the first time, we showed that calcitroic acid, the assumed inactive final metabolite of vitamin D, was able to activate VDR-mediated transcription to a higher magnitude than bile acid LCA. Due to a higher metabolic stability in comparison to vitamin D, a very low toxicity, and high concentration in bile and intestine, calcitroic acid is likely to be an important mediator of the protective vitamin D properties against colon cancer. PMID:26774929

  17. Noribogaine (12-hydroxyibogamine): a biologically active metabolite of the antiaddictive drug ibogaine.

    PubMed

    Baumann, M H; Pablo, J P; Ali, S F; Rothman, R B; Mash, D C

    2000-09-01

    Ibogaine (IBO) is a plant-derived alkaloid that is being evaluated as a possible medication for substance use disorders. When administered peripherally to monkeys and humans, IBO is rapidly converted to an o-demethylated metabolite, 12-hydroxyibogamine (NORIBO). We have found in rats that peak blood levels of NORIBO can exceed those of the parent compound, and NORIBO persists in the bloodstream for at least 24 h. Surprisingly few studies have examined the in vivo biological activity of NORIBO. In the present series of experiments, we compared the effects of intravenous (i.v.) administration of IBO and NORIBO (1 and 10 mg/kg) on unconditioned behaviors, circulating stress hormones, and extracellular levels of dopamine (DA) and serotonin (5-HT) in the nucleus accumbens of male rats. IBO caused dose-related increases in tremors and forepaw treading, whereas NORIBO did not. Both IBO and NORIBO produced significant elevations in plasma corticosterone and prolactin, but IBO was more potent as a stimulator of corticosterone secretion. Neither drug affected extracellular DA levels in the nucleus accumbens. However, both IBO and NORIBO increased extracellular 5-HT levels, and NORIBO was more potent in this regard. The present data demonstrate that NORIBO is biologically active and undoubtedly contributes to the in vivo pharmacological profile of IBO in rats. Most importantly, NORIBO appears less likely to produce the adverse effects associated with IBO (i.e., tremors and stress-axis activation), suggesting that the metabolite may be a safer alternative for medication development.

  18. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus

    PubMed Central

    Moghaddam, Ehsan; Teoh, Boon-Teong; Sam, Sing-Sin; Lani, Rafidah; Hassandarvish, Pouya; Chik, Zamri; Yueh, Andrew; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted. PMID:24965553

  19. Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro.

    PubMed

    Tronina, Tomasz; Bartmańska, Agnieszka; Filip-Psurska, Beata; Wietrzyk, Joanna; Popłoński, Jarosław; Huszcza, Ewa

    2013-04-01

    Xanthohumol (1) and xanthohumol D (2) were isolated from spent hops. Isoxanthohumol (3) was obtained from xanthohumol by isomerisation in alkaline solution. Six metabolites were obtained as a result of transformation of xanthohumol (1) by selected fungal cultures. Their structures were established on the basis of their spectral data. One of them: 2″-(2'''-hydroxyisopropyl)-dihydrofurano-[4″,5″:3',4']-4',2-dihydroxy-6'-methoxy-α,β-dihydrochalcone (6) has not been previously reported in the literature. The antioxidant properties of hops flavonoids and xanthohumol derivatives were investigated using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The effects of these compounds on proliferation of MCF-7, PC-3 and HT-29 human cancer cell lines were determined by the SRB assay. With the exception of one metabolite, all tested compounds showed antiproliferative activity against the tested human cancer lines. α,β-Dihydroxanthohumol (4), obtained through the biotransformation of xanthohumol, showed higher antiproliferative activity against MCF-7 human breast carcinoma cell line than cisplatin, a widely used anticancer therapeutic agent, and a comparably high activity against PC-3 human prostate cancer cell line.

  20. Estrogenic activity of estradiol and its metabolites in the ER-CALUX assay with human T47D breast cells.

    PubMed

    Hoogenboom LAP; de Haan, L; Hooijerink, D; Bor, G; Murk, A J; Brouwer, A

    2001-02-01

    A number of metabolites of 17beta-estradiol were tested for their estrogenic activity using the ER-CA-LUX assay based on the increased expression of luciferase in exposed T47D breast cancer cells. E2beta and estrone showed similar potencies in the test, whereas E2alpha was 100 times less active. Incubation of cells with estrone (0.35 microM) resulted in the formation of E2beta, whereas the reverse reaction was observed for E2beta. The resulting equilibrium may explain the similar estrogenic potency of estrone in the test. The synthetic 17-hydroxy benzoate ester of E2beta was 3 times less active than the parent compound. The 17-hydroxy palmitate and oleate esters of E2beta, were respectively 25 and 200 times less active than the parent compound. The 2-hydroxy metabolites of E2beta and estrone showed a 5,000 to 10,000 fold lower activity. The 4-hydroxy metabolites were more potent than the 2-hydroxy metabolites, showing only a 20-200 times lower activity. The 2- and 4-methoxyesters of estrone were 700 times less active. It is concluded that the estrogenic potency of metabolites formed in cattle after treatment with E2beta, like estrone, E2alpha and especially the esters of E2beta, may be significant with respect to the potential risk of the use of estradiol for growth promotion in domestic animals in certain countries.

  1. Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from Epichloë bromicola, a Fungus Obtained from Elymus tangutorum Grass.

    PubMed

    Song, Qiu-Yan; Nan, Zhi-Biao; Gao, Kun; Song, Hui; Tian, Pei; Zhang, Xing-Xu; Li, Chun-Jie; Xu, Wen-Bo; Li, Xiu-Zhang

    2015-10-14

    The development of high-quality herbage is an important aspect of animal husbandry. Inoculating beneficial fungi onto inferior grass is a feasible strategy for producing new varieties of high-quality herbage. Epichloë bromicola is a candidate fungus that is isolated from Elymus tangutorum. A total of 17 metabolites, 1-17, were obtained from E. bromicola, and their biological activities were assayed. Metabolite 1 exhibited antifungal activities against Alternaria alternata, Fusarium avenaceum, Bipolaris sorokiniana, and Curvularia lunata. EC50 values ranged from 0.7 to 5.3 μM, which were better than the positive control, chlorothalonil. Metabolite 8 displayed obvious phytotoxic effects toward Lolium perenne and Poa crymophila seedlings, and it was as active as glyphosate. None of these isolated metabolites displayed cytotoxicity against Madin-Darby bovine kidney cells. The IC50 values were greater than 100 μM, and the metabolites increased the growth of the cells at a concentration of 12.5 μM. The bioassay indicated that E. bromicola may be a beneficial fungus for producing new varieties of herbage with various resistances. Additionally, metabolite 7, 3-(2'-(4″-hydroxyphenyl)acetoxy)-2S-methylpropanoic acid, is a new natural product, and its stereochemistry was determined by means of optical rotation computation and chemical reactions.

  2. Passage of irinotecan and its active metabolite, SN-38, into human milk.

    PubMed

    Nakagawa, J; Terui, K; Hosoi, K; Ueno, K; Yokoyama, Y; Hayakari, M

    2016-10-01

    We measured the levels of irinotecan and its active metabolite, SN-38, in human milk after the administration of irinotecan to assess the potential risks when women treated with irinotecan nurse their infants. Human milk was collected for 6 days starting on the day after irinotecan was administered. The levels of irinotecan and SN-38 in human milk were measured using liquid chromatography-mass spectrometry. Irinotecan was detected on Days 2 and 3 but not after Day 4. A strong signal indicating the presence of SN-38 was detected on Day 2 and the signal was readily detected until Day 7, indicating that SN-38 remained in human milk. Intravenously administered CPT-11 continues to pass into human milk over a prolonged period in the form of its active metabolite, SN-38. The relationship between administration of CPT-11 and SN-38 exposure and toxicity is still not well defined, so patients should avoid nursing their infants while they are being treated with CPT-11. © 2016 John Wiley & Sons Ltd.

  3. Pharmacologically active metabolites, combination screening and target identification-driven drug repositioning in antituberculosis drug discovery.

    PubMed

    Kigondu, Elizabeth M; Wasuna, Antonina; Warner, Digby F; Chibale, Kelly

    2014-08-15

    There has been renewed interest in alternative strategies to address bottlenecks in antibiotic development. These include the repurposing of approved drugs for use as novel anti-infective agents, or their exploitation as leads in drug repositioning. Such approaches are especially attractive for tuberculosis (TB), a disease which remains a leading cause of morbidity and mortality globally and, increasingly, is associated with the emergence of drug-resistance. In this review article, we introduce a refinement of traditional drug repositioning and repurposing strategies involving the development of drugs that are based on the active metabolite(s) of parental compounds with demonstrated efficacy. In addition, we describe an approach to repositioning the natural product antibiotic, fusidic acid, for use against Mycobacterium tuberculosis. Finally, we consider the potential to exploit the chemical matter arising from these activities in combination screens and permeation assays which are designed to confirm mechanism of action (MoA), elucidate potential synergies in polypharmacy, and to develop rules for drug permeability in an organism that poses a special challenge to new drug development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. In vitro metabolism of pyripyropene A and ACAT inhibitory activity of its metabolites.

    PubMed

    Matsuda, Daisuke; Ohshiro, Taichi; Ohtawa, Masaki; Yamazaki, Hiroyuki; Nagamitsu, Tohru; Tomoda, Hiroshi

    2015-01-01

    Pyripyropene A (PPPA, 1) of fungal origin, a selective inhibitor of acyl-CoA:cholesterol acyltransferase 2 (ACAT2), proved orally active in atherogenic mouse models. The in vitro metabolites of 1 in liver microsomes and plasma of human, rabbit, rat and mouse were analyzed by ultra fast liquid chromatography and liquid chromatography/tandem mass spectrometry. In the liver microsomes from all species, successive hydrolysis occurred at the 1-O-acetyl residue, then at the 11-O-acetyl residue of 1, while the 7-O-acetyl residue was resistant to hydrolysis. Furthermore, dehydrogenation of the newly generated 11-alcoholic hydroxyl residue occurred in human and mouse-liver microsomes, while oxidation of the pyridine ring occurred in human and rabbit liver microsomes. On the other hand, hydrolysis of the 7-O-acetyl residue proceeded only in the mouse plasma. These data indicated that the in vitro metabolic profiles of 1 have subtle differences among animal species. All of the PPPA metabolites observed in liver microsomes and plasma markedly decreased ACAT2 inhibitory activity. These findings will help us to synthesize new PPPA derivatives more effective in in vivo study than 1.

  5. Enantioselective determination of sibutramine and its active metabolites in human plasma.

    PubMed

    Kang, Wonku; Bae, Kyoungjin; Noh, Keumhan

    2010-01-05

    Although racemic sibutramine has been widely used for the treatment of obesity, its enantioselective detection method has not been elucidated in human plasma. In this report we introduce a validated analytical method for the determination of sibutramine and its two active metabolites, desmethylsibutramines using LC-MS/MS. R- and S-isomers of those compounds in human plasma were extracted using diethyl ether-hexane (4:1, v/v) followed by an addition of NaOH solution. After removing the organic layer, the residue was reconstituted in the mobile phase 10mM ammonium acetate solution adjusted to pH 4.0 with acetic acid-acetonitrile (94:6, v/v). Both isomers in the extract were separated on a Chiralcel AGP chiral stationary-phase column and were quantified in a tandem mass spectrometry. The assay method was in accordance with FDA regulations for the validation of bioanalytical methods. This method was successfully used to profile the plasma concentrations of the stereoisomers of sibutramine and its two active metabolites with time in healthy volunteers.

  6. Antimicrobial and Cytotoxic Activity of Extracts of Ferula heuffelii Griseb. ex Heuff. and Its Metabolites.

    PubMed

    Pavlović, Ivan; Petrović, Silvana; Milenković, Marina; Stanojković, Tatjana; Nikolić, Dejan; Krunić, Aleksej; Niketić, Marjan

    2015-10-01

    The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb. ex Heuff. were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram-positive than Gram-negative bacteria, especially against Staphylococcus aureus (MIC=12.5 μg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5 μg/ml, resp.). Among the tested metabolites, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyldodeca-6,10-dien-1-one (2) and (2S*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2-c]coumarin (4) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2 μM, resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5 μM, resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2 μM). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF-7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50 <11.0 μg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF-7 cell line, comparable to that of cisplatin (IC50 =22.32±1.32 vs. 18.67±0.75μM).

  7. Seasonal profiles of ovarian activity in Iberian lynx (Lynx pardinus) based on urinary hormone metabolite analyses.

    PubMed

    Jewgenow, K; Göritz, F; Vargas, A; Dehnhard, M

    2009-07-01

    The Iberian Lynx Ex-Situ Conservation Programme is an essential part of a co-ordinated action plan to conserve the most endangered felid species of the world. Successful captive breeding demands reliable methods for reproduction monitoring including reliable non-invasive pregnancy diagnosis. During a 3-year study, urine samples from six captive Iberian lynx females were obtained (one non-pregnant, one pseudo-pregnant and 11 pregnant cycles). Progesterone, pregnanediol and oestradiol were determined in urinary extracts and relevant urinary oestrogen metabolites were characterized by high-performance liquid chromatography (HPLC). Urinary progestins did not follow the typical pregnancy-related course of felids. In the lynx, we failed to demonstrate an urinary progestin elevation during pregnancy. In contrast, urinary oestrogens increased from 3.8 +/- 0.6 to 8.6 +/- 0.5 ng/mg creatinine (p < 0.001) during the pregnancy. A comparison of pseudo-pregnant with pregnant cycles revealed a further increase of oestrogens caused by implantation (p < 0.05). In one female, which refused to mate, no difference was estimated between oestrogens levels during the breeding and non-breeding seasons. Almost 10-fold higher oestrogen concentrations were measured in urines of females that shared enclosures with males. HPLC analysis of oestrogens in urine samples collected from Iberian lynx during the pregnancy revealed that lynx urine is composed of two polar oestrogen metabolites in addition to oestrone and minor amounts of oestradiol. Oestrone was detectable in all urinary extracts (8-12% of metabolites), whereas oestradiol was elevated only during late pregnancy (18%). Thus, seasonal luteal activity in Iberian lynx can be monitored by urinary oestrogens. The increase of urinary oestradiol during late pregnancy might indicate an oestradiol secretion by the lynx placenta.

  8. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

    PubMed

    Kumar, Rakesh; Hazan, Adina; Geron, Matan; Steinberg, Rebbeca; Livni, Lital; Matzner, Henry; Priel, Avi

    2017-03-01

    Peripheral neuronal activation by inflammatory mediators is a multifaceted physiological response that involves a multitude of regulated cellular functions. One key pathway that has been shown to be involved in inflammatory pain is Gq/GPCR, whose activation by inflammatory mediators is followed by the regulated response of the cation channel transient receptor potential vanilloid 1 (TRPV1). However, the mechanism that underlies TRPV1 activation downstream of the Gq/GPCR pathway has yet to be fully defined. In this study, we employ pharmacological and molecular biology tools to dissect this activation mechanism via perforated-patch recordings and calcium imaging of both neurons and a heterologous system. We showed that TRPV1 activity downstream of Gq/GPCR activation only produced a subdued current, which was noticeably different from the robust current that is typical of TRPV1 activation by exogenous stimuli. Moreover, we specifically demonstrated that 2 pathways downstream of Gq/GPCR signaling, namely endovanilloid production by lipoxygenases and channel phosphorylation by PKC, converge on TRPV1 to evoke a tightly regulated response. Of importance, we show that only when both pathways are acting on TRPV1 is the inflammatory-mediated response achieved. We propose that the requirement of multiple signaling events allows subdued TRPV1 activation to evoke regulated neuronal response during inflammation.-Kumar R., Hazan, A., Geron, M., Steinberg, R., Livni, L., Matzner, H., Priel, A. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

  9. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health.

    PubMed

    Lv, Xinmiao; Zhao, Siyu; Ning, Zhangchi; Zeng, Honglian; Shu, Yisong; Tao, Ou; Xiao, Cheng; Lu, Cheng; Liu, Yuanyan

    2015-01-01

    Citrus fruits, which are cultivated worldwide, have been recognized as some of the most high-consumption fruits in terms of energy, nutrients and health supplements. What is more, a number of these fruits have been used as traditional medicinal herbs to cure diseases in several Asian countries. Numerous studies have focused on Citrus secondary metabolites as well as bioactivities and have been intended to develop new chemotherapeutic or complementary medicine in recent decades. Citrus-derived secondary metabolites, including flavonoids, alkaloids, limonoids, coumarins, carotenoids, phenolic acids and essential oils, are of vital importance to human health due to their active properties. These characteristics include anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects, neuroprotective effects, etc. This review summarizes the global distribution and taxonomy, numerous secondary metabolites and bioactivities of Citrus fruits to provide a reference for further study. Flavonoids as characteristic bioactive metabolites in Citrus fruits are mainly introduced.

  10. Mutagenic activity and metabolites in the urine of workers exposed to trinitrotoluene (TNT).

    PubMed Central

    Ahlborg, G; Einistö, P; Sorsa, M

    1988-01-01

    Urine samples taken after work and after a free weekend from 50 workers employed in various activities in a chemical plant manufacturing explosives were analysed. On the basis of hygienic surveys, the subjects were divided into three categories of exposure to trinitrotoluene (TNT). The urine analyses consisted of gas chromatographic identification of TNT and its two metabolites, 4-ADNT and 2-ADNT, and a determination of the mutagenic activity. Two frame shift detector strains of Salmonella typhimurium were used, TA 98 and TA 98 NR, the latter being deficient in endogenous nitroreductase activity. On the basis of previous results on TNT mutagenicity, no exogeneous metabolic system was used to test the urine concentrates. Both tester strains showed that the mean urinary mutagenic activity was higher in the after work samples than in post weekend samples from the same subjects, showing that bacterial nitroreductase activity was not significantly responsible for the mutagenicity, although the response was higher with strain TA 98 than with TA 98 NR. The interindividual variation in urine mutagenicity was high, however, and the difference between the two sampling times was statistically significant (p less than 0.05) only for the high exposed group (workers in trotyl foundry and sieve house). Correlation between urinary mutagenicity and concentration of TNT in urine was poor; correlation was significant only with the urinary concentration of 4-ADNT. The correlation between urinary TNT and both metabolites was good (p less than 0.001). These results suggest that analysis of 4-ADNT in urine would be a sufficient biological measure for controlling exposure to TNT. PMID:3378017

  11. Estrogenic activity in vivo and in vitro of some diethylstilbestrol metabolites and analogs

    PubMed Central

    Korach, Kenneth S.; Metzler, Manfred; McLachlan, John A.

    1978-01-01

    The diethylstilbestrol (DES) metabolite (β-dienestrol), which had been identified in mouse, rat, monkey, and human urine, and two proposed metabolic intermediates (diethylstilbestrol α,α′-epoxide and α,α′-dihydroxy DES) were synthesized and their estrogenic activities determined. In addition, three DES analogs, α-dienestrol, DES-dihydroxy diethyl phenanthrene (DES-phenanthrene), and 1-(α-ethyl, 4α-hydroxyphenyl)indanyl-5-ol (indanyl-DES), were studied. Estrogenic activities of the compounds in vivo were determined by the immature mouse uterine weight bioassay; in vitro, their estradiol receptor binding activity (competitive equilibrium binding, sucrose gradient analysis, and association rate inhibition assays) was determined. Results of the mouse uterine weight bioassay gave the following order of estrogenicity: DES > α-dienestrol ≥ DES-epoxide > indanyl-DES > dihydroxy DES > β-dienestrol > DES-phenanthrene. Results of competitive equilibrium binding analyses of these compounds with estradiol-17β for the mouse uterine cytosol receptor followed the same order seen for the bioassay, except for indanyl-DES. DES, indanyl-DES, and α-dienestrol had the greatest affinities (Ka values approximately 0.5-19.1 × 1010 M-1), while DES-phenanthrene had the lowest (Ka = 3.5 × 107 M-1 ± 1.2). Sucrose gradient analysis of the above competition preparations illustrated the displacement of [3H]estradiol from the receptor peak. This displacement was receptor specific and concentration dependent and correlated with the equilibrium binding concentrations. In addition, the most hormonally active substances demonstrated the greatest rate inhibition in the estradiol cytosol receptor association rate reaction (V0). The rank order of estrogenicity of the compounds determined in this study should be useful in evaluating alternative metabolic pathways of DES as well as distinguishing biologically active metabolites from relatively inactive ones. PMID:272664

  12. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    USGS Publications Warehouse

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  13. In-stream attenuation of neuro-active pharmaceuticals and their metabolites.

    PubMed

    Writer, Jeffrey H; Antweiler, Ronald C; Ferrer, Imma; Ryan, Joseph N; Thurman, E Michael

    2013-09-03

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  14. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity.

    PubMed

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling

    2016-09-01

    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  15. Antiangiogenic activity of selenium in cancer chemoprevention: metabolite-specific effects.

    PubMed

    Lu, J; Jiang, C

    2001-01-01

    We review recent data that support a potential antiangiogenic effect of selenium (Se) in the chemoprevention of cancer and data that contrast two pools of Se metabolites, namely, methylselenol vs. hydrogen selenide, that differentially affect proteins and cellular processes crucial to tumor angiogenesis regulation. With regard to tumor angiogenesis, the chemopreventive effect of increased Se intake on chemically induced mammary carcinogenesis has been associated with reduced intratumoral microvessel density and an inhibition of the expression of vascular endothelial growth factor. The in vitro data show that monomethyl Se potently inhibits cell cycle progression of vascular endothelial cells to the S phase, endothelial expression of matrix metalloproteinase-2, and cancer epithelial expression of vascular endothelial growth factor with concentrations giving half-maximal inhibition that are within the plasma range of Se in US adults. The methyl Se-specific activities may therefore be physiologically pertinent for angiogenic switch regulation in early lesions in vivo in the context of cancer chemoprevention, which aims at retarding and blocking the growth and progression of early lesions. We argue for the antiangiogenic action of Se, especially the methyl Se pool of metabolites, as a primary mechanism for preventing avascular lesion growth. Contrary to the currently held paradigm, we speculate that there is a potential role for selenoproteins in regulating the growth and fate of transformed epithelial cells.

  16. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites.

    PubMed

    Masand, Meeta; Jose, Polpass Arul; Menghani, Ekta; Jebakumar, Solomon Robinson David

    2015-12-01

    Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.

  17. Sensorically and antimicrobially active metabolite production of Lactobacillus strains on Jerusalem artichoke juice.

    PubMed

    Zalán, Zsolt; Hudáček, Jaroslav; Tóth-Markus, Marianna; Husová, Eva; Solichová, Kateřina; Hegyi, Ferenc; Plocková, Milada; Chumchalová, Jana; Halász, Anna

    2011-03-15

    In the tubers of Jerusalem artichoke (Helianthus tuberosus L.) the main carbohydrate is the well-known prebiotic inulin, which is a good growth substrate for gut microorganisms. Jerusalem artichoke tuber is traditionally consumed boiled or pickled rather than in fermented form. Lactic acid bacteria are traditionally used in the production of fermented foods; nevertheless their behavior and metabolite production are considerably influenced by the substrate. The purpose of this study was to investigate the growth and production of the most important sensorically and antimicrobially active metabolites of different Lactobacillus strains on Jerusalem artichoke juice. All investigated strains grew well (in the range 10(9) cfu mL(-1) ) in the media. The organic acids (lactic acid, 110-337 mmol L(-1) ; acetic acid, 0-180 mmol L(-1) ; and succinic acid, 0-79 mmol L(-1) ), hydrogen peroxide (0.25-1.77 mg L(-1) ), mannitol (0.06-3.24 g L(-1) ), acetoin and diacetyl production of strains varies not only according to the species but also from strain to strain, which will be demonstrated and discussed in the paper. Our results showed that lactobacilli can be used for the fermentation of Jerusalem artichoke, which in this form could be used, alone or mixed with other raw food material, as a new synbiotic functional food. Copyright © 2011 Society of Chemical Industry.

  18. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio).

    PubMed

    Liu, Zhenzhen; Wang, Yueyi; Zhu, Zhihong; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei; Jin, Yuanxiang

    2016-04-01

    Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish.

  19. Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro

    PubMed Central

    Subedi, Lalita; Ji, Eunhee; Shin, Dongyun; Jin, Jongsik; Yeo, Joo Hong; Kim, Sun Yeou

    2017-01-01

    Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max) as primary isoflavones, possess anti-inflammatory activity, but the effect of its active metabolite Equol (7-hydroxy-3-(4′-hydroxyphenyl)-chroman) has not been well established. In this study, we investigated the anti-neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS) cells, including microglia (BV-2), astrocytes (C6), and neurons (N2a), were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), Mitogen activated protein kinase (MAPK) signaling proteins, and apoptosis-related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS)-induced TLR4 activation, MAPK activation, NF-kB-mediated transcription of inflammatory mediators, production of nitric oxide (NO), release of prostaglandin E2 (PGE-2), secretion of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), in Lipopolysaccharide (LPS)-activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS-activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF) production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti-neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration. PMID:28264445

  20. The antitumor activity study of ginsenosides and metabolites in lung cancer cell

    PubMed Central

    Xu, Feng-Yuan; Shang, Wen-Qing; Yu, Jia-Jun; Sun, Qian; Li, Ming-Qing; Sun, Jian-Song

    2016-01-01

    Ginseng and its components exert various biological effects, including antioxidant, anti-carcinogenic, anti-mutagenic, and antitumor activity. Ginsenosides are the main biological components of ginseng. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides. However, the difference between these compounds in anti-lung cancer is unclear. The present study aimed to evaluate the antitumor activity of PPD, PPT, Ginsenosides-Rg3 (G-Rg3) and Ginsenosides-Rh2 (G-Rh2) in lung cancer cell. After treatment with cisplatin, PPD, PPT, G-Rg3 or G-Rh2, the viability, apoptosis level and invasiveness of lung cell lines (A549 cell, a lung adenocarcinoma cell line and SK-MES-1 cell, a lung squamous cell line) in vitro were analyzed by Cell Counting Kit-8 (CCK8), Annexin V/PI apoptosis and Matrigel invasion assays, respectively. Here we found that all these compounds led to significant decreases of viability and invasiveness and an obvious increase of apoptosis of A549 and SK-MES-1 cells. Among these, the viability of SK-MES-1 cell treated with PPT was decreased to 66.8%, and this effect was closest to Cisplatin. G-Rg3 had the highest stimulatory effect on apoptosis, and PTT had the highest inhibitory effect on cell invasiveness in A549 and SK-MES-1 cells. These results indicate that both ginsenosides and two metabolites have antitumor activity on lung cancer cell in vitro. However, PPT is more powerful for inhibiting the viability and invasiveness of lung cancer cell, especially lung squamous cell. G-Rg3 has the best pro-apoptosis effects. This study provides a scientific basis for potential therapeutic strategies targeted to lung cancer by further structure modification. PMID:27186294

  1. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells

    SciTech Connect

    Wan, Joanne; Winn, Louise M. . E-mail: winnl@queensu.ca

    2007-07-15

    Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

  2. Firefighters' exposure biomonitoring: Impact of firefighting activities on levels of urinary monohydroxyl metabolites.

    PubMed

    Oliveira, Marta; Slezakova, Klara; Alves, Maria José; Fernandes, Adília; Teixeira, João Paulo; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2016-11-01

    The concentrations of six urinary monohydroxyl metabolites (OH-PAHs) of polycyclic aromatic hydrocarbons, namely 1-hydroxynaphthalene, 1-hydroxyacenaphthene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene (1OHPy), and 3-hydroxybenzo[a]pyrene, were assessed in the post-shift urine of wildland firefighters involved in fire combat activities at six Portuguese fire corporations, and compared with those of non-exposed subjects. Overall, median levels of urinary individual and total OH-PAHs (ΣOH-PAHs) suggest an increased exposure to polycyclic aromatic hydrocarbons during firefighting activities with ΣOH-PAH levels in exposed firefighters 1.7-35 times higher than in non-exposed ones. Urinary 1-hydroxynaphthalene and/or 1-hydroxyacenapthene were the predominant compounds, representing 63-98% of ΣOH-PAHs, followed by 2-hydroxyfluorene (1-17%), 1-hydroxyphenanthrene (1-13%), and 1OHPy (0.3-10%). A similar profile was observed when gender discrimination was considered. Participation in fire combat activities promoted an increase of the distribution percentage of 1-hydroxynaphthalene and 1-hydroxyacenaphthene, while contributions of 1-hydroxyphenanthrene and 1OHPy decreased. The detected urinary 1OHPy concentrations (1.73×10(-2) to 0.152μmol/mol creatinine in exposed subjects versus 1.21×10(-2) to 5.44×10(-2)μmol/mol creatinine in non-exposed individuals) were lower than the benchmark level (0.5μmol/mol creatinine) proposed by the American Conference of Governmental Industrial Hygienists. This compound, considered the biomarker of exposure to PAHs, was the less abundant one from the six analyzed biomarkers. Thus the inclusion of other metabolites, in addition to 1OHPy, in future studies is suggested to better estimate firefighters' occupational exposure to PAHs. Moreover, strong to moderate Spearman correlations were observed between individual compounds and ΣOH-PAHs corroborating the prevalence of an emission source.

  3. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations.

    PubMed

    Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan

    2016-06-01

    An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions.

  4. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study

    PubMed Central

    Floegel, A; Wientzek, A; Bachlechner, U; Jacobs, S; Drogan, D; Prehn, C; Adamski, J; Krumsiek, J; Schulze, M B; Pischon, T; Boeing, H

    2014-01-01

    Objective: It is not yet resolved how lifestyle factors and intermediate phenotypes interrelate with metabolic pathways. We aimed to investigate the associations between diet, physical activity, cardiorespiratory fitness and obesity with serum metabolite networks in a population-based study. Methods: The present study included 2380 participants of a randomly drawn subcohort of the European Prospective Investigation into Cancer and Nutrition-Potsdam. Targeted metabolomics was used to measure 127 serum metabolites. Additional data were available including anthropometric measurements, dietary assessment including intake of whole-grain bread, coffee and cake and cookies by food frequency questionnaire, and objectively measured physical activity energy expenditure and cardiorespiratory fitness in a subsample of 100 participants. In a data-driven approach, Gaussian graphical modeling was used to draw metabolite networks and depict relevant associations between exposures and serum metabolites. In addition, the relationship of different exposure metabolite networks was estimated. Results: In the serum metabolite network, the different metabolite classes could be separated. There was a big group of phospholipids and acylcarnitines, a group of amino acids and C6-sugar. Amino acids were particularly positively associated with cardiorespiratory fitness and physical activity. C6-sugar and acylcarnitines were positively associated with obesity and inversely with intake of whole-grain bread. Phospholipids showed opposite associations with obesity and coffee intake. Metabolite networks of coffee intake and obesity were strongly inversely correlated (body mass index (BMI): r=−0.57 and waist circumference: r=−0.59). A strong positive correlation was observed between metabolite networks of BMI and waist circumference (r=0.99), as well as the metabolite networks of cake and cookie intake with cardiorespiratory fitness and intake of whole-grain bread (r=0.52 and r=0

  5. Identification of metabolites from an active fraction of Cajanus cajan seeds by high resolution mass spectrometry.

    PubMed

    Tekale, Satishkumar S; Jaiwal, Bhimrao V; Padul, Manohar V

    2016-11-15

    Antioxidants are important food additives which prolong food storage due to their protective effects against oxidative degradation of foods by free radicals. However, the synthetic antioxidants show toxic properties. Alternative economical and eco-friendly approach is screening of plant extract for natural antioxidants. Plant phenolics are potent antioxidants. Hence, in present study Cajanus cajan seeds were analyzed for antioxidant activity, Iron chelating activity and total phenolic content. The antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay showed 71.3% inhibition and 65.8% Iron chelating activity. Total 37 compounds including some short peptides and five major abundant compounds were identified in active fraction of C. cajan seeds. This study concludes that C. cajan seeds are good source of antioxidants and Iron chelating activity. Metabolites found in C. cajan seeds which remove reactive oxygen species (ROS), may help to alleviate oxidative stress associated dreaded health problem like cancer and cardiovascular diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients.

    PubMed

    Pompilio, Arianna; Pomponio, Stefano; Di Vincenzo, Valentina; Crocetta, Valentina; Nicoletti, Marcello; Piovano, Marisa; Garbarino, Juan A; Di Bonaventura, Giovanni

    2013-02-01

    Three secondary metabolites of lichens - usnic acid, atranorin and fumarprotocetraric acid - were evaluated for their in vitro antibacterial and antibiofilm activities against three strains each of methicillin-susceptible and methicillin-resistant Staphylococcus aureus (MRSA) from cystic fibrosis patients. Antibacterial activity was assessed by broth microdilution, while antibiofilm activity was evaluated by spectrophotometry or viable count. Usnic acid was significantly more active than atranorin against planktonic cells, while fumarprotocetraric acid exhibited no activity. Atranorin was the most effective in counteracting adhesion to polystyrene, although usnic acid was more active against MRSA. Usnic acid and atranorin showed comparable activity against biofilm formation, although atranorin was more active against MRSA. Usnic acid was significantly more active than atranorin against preformed biofilms. Secondary metabolites of lichens may be considered to be 'lead compounds' for the development of novel molecules for the treatment of S. aureus infections in cystic fibrosis patients.

  7. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet.

  8. Structural characterization of metabolites of the X-ray contrast agent iopromide in activated sludge using ion trap mass spectrometry.

    PubMed

    Pérez, Sandra; Eichhorn, Peter; Celiz, Mary Dawn; Aga, Diana S

    2006-03-15

    Identification of degradation products of environmental contaminants is a challenging task because not only are they present in very low concentrations but they are also mixed with complex matrixes that interfere with detection. This work illustrates a simple approach using ion trap mass spectrometry combined with H/D-exchange experiments to elucidate the structures of iopromide metabolites formed during biodegradation in activated sludge. Iopromide is an X-ray contrast agent that has been detected frequently in effluents of wastewater treatment plants and in surface waters due to its persistence and high usage. Three metabolites produced by oxidation of the primary alcohols (forming carboxylates) on the side chains of iopromide were identified in a batch reactor with mixed liquor from a conventional activated sludge. Derivatization of the carboxylic acid to form a methyl ester and interpretation of the MS2 data of this derivative aided in the confirmation of the identities of these metabolites. Furthermore, one metabolite formed by dehydroxylation at the two side chains was identified in a batch reactor with mixed liquor from a nitrifying activated sludge. The MS2 fragmentation pattern of iopromide and its metabolites revealed that the iodinated ring remains intact and that minor transformations in the structure occur during biodegradation of iopromide in biological wastewater treatment plants.

  9. Contamination of honey by the herbicide asulam and its antibacterial active metabolite sulfanilamide.

    PubMed

    Kaufmann, A; Kaenzig, A

    2004-06-01

    A number of antibacterial drugs (antibiotics) like sulfonamides, tetracyclines and streptomycin are used for the treatment of bacterial diseases in beehives. Yet, the finding of sulfanilamide residues in some 15 Swiss honeys out of some 350 samples could not be explained by such apicultural practice. Bees occasionally collect nectar from meadows treated with the herbicide asulam. Such honey is not only contaminated by asulam, but also by its degradation product sulfanilamide. This is the first report that the use of a herbicide causes the appearance of residues of an antibacterial active metabolite belonging to the category of sulfonamide drugs in food. The relevance of this finding lies in the fact that the use of the herbicide asulam might cause unacceptable residue levels of sulfanilamide in a product fbr human consumption.

  10. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium.

    PubMed

    Min-Oo, Gundula; Ayi, Kodjo; Bongfen, Silayuv E; Tam, Mifong; Radovanovic, Irena; Gauthier, Susan; Santiago, Helton; Rothfuchs, Antonio Gigliotti; Roffê, Ester; Sher, Alan; Mullick, Alaka; Fortin, Anny; Stevenson, Mary M; Kain, Kevin C; Gros, Philippe

    2010-08-01

    In mice, loss of pantetheinase activity causes susceptibility to infection with Plasmodium chabaudi AS. Treatment of mice with the pantetheinase metabolite cysteamine reduces blood-stage replication of P. chabaudi and significantly increases survival. Similarly, a short exposure of Plasmodium to cysteamine ex vivo is sufficient to suppress parasite infectivity in vivo. This effect of cysteamine is specific and not observed with a related thiol (dimercaptosuccinic acid) or with the pantethine precursor of cysteamine. Also, cysteamine does not protect against infection with the parasite Trypanosoma cruzi or the fungal pathogen Candida albicans, suggesting cysteamine acts directly against the parasite and does not modulate host inflammatory response. Cysteamine exposure also blocks replication of P. falciparum in vitro; moreover, these treated parasites show higher levels of intact hemoglobin. This study highlights the in vivo action of cysteamine against Plasmodium and provides further evidence for the involvement of pantetheinase in host response to this infection.

  11. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium

    PubMed Central

    Min-Oo, Gundula; Ayi, Kodjo; Bongfen, Silayuv E.; Tam, Mifong; Radovanovic, Irena; Gauthier, Susan; Santiago, Helton; Rothfuchs, Antonio Gigliotti; Roffê, Ester; Sher, Alan; Mullick, Alaka; Fortin, Anny; Stevenson, Mary M.; Kain, Kevin C.; Gros, Philippe

    2016-01-01

    In mice, loss of pantetheinase activity causes susceptibility to infection with Plasmodium chabaudi AS. Treatment of mice with the pantetheinase metabolite cysteamine reduces blood-stage replication of P. chabaudi and significantly increases survival. Similarly, a short exposure of Plasmodium to cysteamine ex vivo is sufficient to suppress parasite infectivity in vivo. This effect of cysteamine is specific and not observed with a related thiol (dimercaptosuccinic acid) or with the pantethine precursor of cysteamine. Also, cysteamine does not protect against infection with the parasite Trypanosoma cruzi or the fungal pathogen Candida albicans, suggesting cysteamine acts directly against the parasite and does not modulate host inflammatory response. Cysteamine exposure also blocks replication of P. falciparum in vitro; moreover, these treated parasites show higher levels of intact hemoglobin. This study highlights the in vivo action of cysteamine against Plasmodium and provides further evidence for the involvement of pantetheinase in host response to this infection. PMID:20219464

  12. Secondary Metabolites from the Marine-Derived Fungus Dichotomomyces sp. L-8 and Their Cytotoxic Activity.

    PubMed

    Huang, Li-Hong; Chen, Yan-Xiu; Yu, Jian-Chen; Yuan, Jie; Li, Hou-Jin; Ma, Wen-Zhe; Watanapokasin, Ramida; Hu, Kun-Chao; Niaz, Shah Iram; Yang, De-Po; Lan, Wen-Jian

    2017-03-11

    Bioassay-guided isolation of the secondary metabolites from the fungus Dichotomomyces sp. L-8 associated with the soft coral Lobophytum crassum led to the discovery of two new compounds, dichotones A and B (1 and 2), together with four known compounds including dichotocejpin C (3), bis-N-norgliovictin (4), bassiatin (5) and (3R,6R)-bassiatin (6). The structures of these compounds were determined by 1D, 2D NMR and mass spectrometry. (3R,6R)-bassiatin (6) displayed significant cytotoxic activities against the human breast cancer cell line MDA-MB-435 and the human lung cancer cell line Calu3 with IC50 values of 7.34 ± 0.20 and 14.54 ± 0.01 μM, respectively, while bassiatin (5), the diastereomer of compound 6, was not cytotoxic.

  13. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis.

    PubMed

    Ding, Ling; Qin, Song; Li, Fuchao; Chi, Xiaoyuan; Laatsch, Hartmut

    2008-03-01

    Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.

  14. Secondary metabolites from Sida rhombifolia L. (Malvaceae) and the vasorelaxant activity of cryptolepinone.

    PubMed

    Chaves, Otemberg Souza; Gomes, Roosevelt Albuquerque; Tomaz, Anna Cláudia de Andrade; Fernandes, Marianne Guedes; das Graças Mendes, Leônidas; de Fátima Agra, Maria; Braga, Valdir Andrade; de Fátima Vanderlei de Souza, Maria

    2013-03-01

    The phytochemical study of Sida rhombifolia L. (Malvaceae) led to the isolation through chromatographic techniques of eleven secondary metabolites: sitosterol (1a) and stigmasterol (1b), sitosterol-3-O-b-D-glucopyranoside (2a) and stigmasterol-3-O-b-D-glucopyranoside (2b), phaeophytin A (3), 17³-ethoxypheophorbide A (4), 13²-hydroxy phaeophytin B (5), 17³-ethoxypheophorbide B (6), 5,7-dihydroxy-4'-methoxyflavone (7), cryptolepinone (8) and a salt of cryptolepine (9). Their structures were identified by ¹H- and ¹³C-NMR using one- and two-dimensional techniques. In addition, the vasorelaxant activity of cryptolepinone in rat mesenteric artery rings is reported herein for the first time.

  15. Biotransformation of finasteride by Ocimum sanctum L., and tyrosinase inhibitory activity of transformed metabolites: experimental and computational insights.

    PubMed

    Ali, Sajid; Nisar, Muhammad; Iriti, Marcello; Shah, Mohammad Raza; Mahmud, Maqsood; Ali, Ihsan; Khan, Inamullah

    2014-12-01

    Transformation of Finasteride (I) by cell suspension cultures of Ocimum sanctum L. was investigated. Fermentation of compound (I) with O. sanctum afforded three oxidized derivatives, 16β-hydroxyfinasteride (II), 11α-hydroxyfinasteride (III) and 15β-hydroxyfinasteride (IV). Among these metabolites, compound (II) was a new metabolite. Compound (I) and its derivatives were studied for their tyrosinase inhibition assay. All test compounds exhibited significant activity compared to standard drug kojic acid, with compound IV being the most potent member with an IC50 of 1.87μM. Molecular docking revealed significant molecular interactions behind the potent tyrosinase inhibitory activity of the tested compounds.

  16. Raman spectroscopy applied to identify metabolites in urine of physically active subjects.

    PubMed

    Moreira, Letícia Parada; Silveira, Landulfo; da Silva, Alexandre Galvão; Fernandes, Adriana Barrinha; Pacheco, Marcos Tadeu Tavares; Rocco, Débora Dias Ferraretto Moura

    2017-09-22

    Raman spectroscopy is a rapid and non-destructive technique suitable for biological fluids analysis. In this work, dispersive Raman spectroscopy has been employed as a rapid and nondestructive technique to detect the metabolites in urine of physically active subjects before and after vigorous 30min pedaling or running compared to sedentary subjects. For so, urine samples from 9 subjects were obtained before and immediately after physical activities and submitted to Raman spectroscopy (830nm excitation, 250mW laser power, 20s integration time) and compared to urine from 5 sedentary subjects. The Raman spectra of urine from sedentary showed peaks related to urea, creatinine, ketone bodies, phosphate and other nitrogenous compounds. These metabolic biomarkers presented peaks with different intensities in the urine of physically active individuals after exercises compared to before, measured by the intensity of selected peaks the Raman spectra, which means different concentrations after training. These peaks presented different intensity values for each subject before physical activity, also behaving differently compared to the post-training: some subjects presented increase while others decrease the intensity. Raman spectroscopy may allow the development of a rapid and non-destructive test for metabolic evaluation of the physical training in active and trained subjects using urine samples, allowing nutrition adjustment with the sport's performance. Copyright © 2017. Published by Elsevier B.V.

  17. Synergistic antimicrobial activity of metabolites produced by a nonobligate bacterial predator.

    PubMed

    Cain, Cody C; Lee, Dongho; Waldo, Robert H; Henry, Alexis T; Casida, Earl J; Wani, Mansukh C; Wall, Monroe E; Oberlies, Nicholas H; Falkinham, Joseph O

    2003-07-01

    A naturally occurring, gram-negative, nonobligate predator bacterial strain 679-2, exhibits broad-spectrum antimicrobial activity that is due, in part, to the production of three extracellular compounds. Antimicrobial-activity-directed fractionation of a culture of strain 679-2 against a panel of microorganisms has led to the isolation of three compounds: pyrrolnitrin, maculosin, and a new compound, which we have named banegasine. Although pyrrolnitrin is well known in the literature, it has not been found in cells with the herbicide maculosin. Further, this is the first report of production of maculosin by a prokaryote. Both maculosin and banegasine, which displayed no antimicrobial activities alone, were found to potentiate the antimicrobial activity of pyrrolnitrin. Based on 16S rRNA sequence, cellular fatty acid composition, and biochemical and cultural characteristics, strain 679-2 appears to represent a new genus and species of eubacteria, Aristabacter necator. The potent, broad-spectrum antimicrobial activity of predator strain 679-2 may be due to synergism between metabolites.

  18. Synergistic Antimicrobial Activity of Metabolites Produced by a Nonobligate Bacterial Predator†

    PubMed Central

    Cain, Cody C.; Lee, Dongho; Waldo III, Robert H.; Henry, Alexis T.; Casida Jr., Earl J.; Wani, Mansukh C.; Wall, Monroe E.; Oberlies, Nicholas H.; Falkinham III, Joseph O.

    2003-01-01

    A naturally occurring, gram-negative, nonobligate predator bacterial strain 679-2, exhibits broad-spectrum antimicrobial activity that is due, in part, to the production of three extracellular compounds. Antimicrobial-activity-directed fractionation of a culture of strain 679-2 against a panel of microorganisms has led to the isolation of three compounds: pyrrolnitrin, maculosin, and a new compound, which we have named banegasine. Although pyrrolnitrin is well known in the literature, it has not been found in cells with the herbicide maculosin. Further, this is the first report of production of maculosin by a prokaryote. Both maculosin and banegasine, which displayed no antimicrobial activities alone, were found to potentiate the antimicrobial activity of pyrrolnitrin. Based on 16S rRNA sequence, cellular fatty acid composition, and biochemical and cultural characteristics, strain 679-2 appears to represent a new genus and species of eubacteria, Aristabacter necator. The potent, broad-spectrum antimicrobial activity of predator strain 679-2 may be due to synergism between metabolites. PMID:12821455

  19. Neuropharmacological and neuroprotective activities of some metabolites produced by cell suspension culture of Waltheria americana Linn.

    PubMed

    Mundo, Jorge; Villeda-Hernández, Juana; Herrera-Ruiz, Maribel; Gutiérrez, María Del Carmen; Arellano-García, Jesús; León-Rivera, Ismael; Perea-Arango, Irene

    2017-10-01

    Waltheria americana is a plant used in Mexican traditional medicine to treat some nervous system disorders. The aims of the present study were to isolate and determine the neuropharmacological and neurprotective activities of metabolites produced by a cell suspension culture of Waltheria americana. Submerged cultivation of W. americana cells provided biomass. A methanol-soluble extract (WAsc) was obtained from biomass. WAsc was fractionated yielding the chromatographic fractions 4WAsc-H2O and WAsc-CH2Cl2. For the determination of anticonvulsant activity in vivo, seizures were induced in mice by pentylenetetrazol (PTZ). Neuropharmacological activities (release of gamma amino butyric acid (GABA) and neuroprotection) of chromatographic fractions were determined by in vitro histological analysis of brain sections of mice post mortem. Fraction 4WAsc-H2O (containing saccharides) did not produce neuronal damage, neurodegeneration, interstitial tissue edema, astrocytic activation, nor cell death. Pretreatment of animals with 4WAsc-H2O and WAsc-CH2Cl2 from W. americana cell suspensions induced an increase in: GABA release, seizure latency, survival time, neuroprotection, and a decrease in the degree of severity of tonic/tonic-clonic convulsions, preventing PTZ-induced death of up to 100% of animals of study. Bioactive compounds produced in suspension cell culture of W. americana produce neuroprotective and neuropharmacological activities associated with the GABAergic neurotransmission system. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Laccase- and electrochemically mediated conversion of triclosan: Metabolite formation and influence on antibacterial activity.

    PubMed

    Jahangiri, Elham; Seiwert, Bettina; Reemtsma, Thorsten; Schlosser, Dietmar

    2017-02-01

    Metabolite formation from radical-based oxidation of the environmental pollutant triclosan (TCS) was compared using an ascomycete (Phoma sp. UHH 5-1-03) and a basidiomycete (Trametes versicolor) laccase, laccase-redox mediator systems, and electrochemical oxidation (EC). Laccase oxidation predominantly yielded TCS di- and trimers, but notably also caused TCS ether bond cleavage. The latter was more prominent during EC-catalysed TCS oxidation, which generally resulted in a broader and more divergent product spectrum. By contrast, only quantitative but not qualitative differences in TCS metabolite formation were observed for the two laccases. Application of the presumable natural laccase redox mediator syringaldehyde (SYD) shifted the TCS-transforming reactions of laccase systems from oligomerization more towards ether bond cleavage. However, the observed rapid removal of SYD from reaction systems caused by predominant adduct formation from SYD and TCS, and concomitant conversion of SYD into 2,6-dimethoxy-1,4-benzoquinone (DMBQ) clearly demonstrates that SYD does not function as a "true" laccase redox mediator in the sense of being recycled during TCS oxidation. Laccase treatment of TCS without SYD decreased the anti-bacterial TCS activity more than treatment employing SYD in addition, indicating that SYD and/or its transformation products contribute to bacterial toxicity. DMBQ was found to be about 80% more active in a bacterial growth inhibition test than its parent compound SYD in terms of IC20 values. These observations establish DMBQ as a potential cause of toxicity effects of SYD-laccase systems. They further illustrate that a natural origin of a redox mediator does not automatically qualify its use as environmentally benign or non-hazardous.

  1. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    DOE PAGES

    Tsogtbaatar, Enkhtuul; Cocuron, Jean -Christophe; Sonera, Marcos Corchado; ...

    2015-02-22

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oilmore » synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. In conclusion, this study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.« less

  2. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    PubMed Central

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-01-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography–mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  3. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis.

    PubMed

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-07-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.

  4. 7-Dehydrocholesterol metabolites produced by sterol 27-hydroxylase (CYP27A1) modulate liver X receptor activity.

    PubMed

    Endo-Umeda, Kaori; Yasuda, Kaori; Sugita, Kazuyuki; Honda, Akira; Ohta, Miho; Ishikawa, Minoru; Hashimoto, Yuichi; Sakaki, Toshiyuki; Makishima, Makoto

    2014-03-01

    7-Dehydrocholesterol (7-DHC) is a common precursor of vitamin D3 and cholesterol. Although various oxysterols, oxygenated cholesterol derivatives, have been implicated in cellular signaling pathways, 7-DHC metabolism and potential functions of its metabolites remain poorly understood. We examined 7-DHC metabolism by various P450 enzymes and detected three metabolites produced by sterol 27-hydroxylase (CYP27A1) using high-performance liquid chromatography. Two were further identified as 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC. These 7-DHC metabolites were detected in serum of a patient with Smith-Lemli-Opitz syndrome. Luciferase reporter assays showed that 25-hydroxy-7-DHC activates liver X receptor (LXR) α, LXRβ and vitamin D receptor and that 26/27-hydroxy-7-DHC induces activation of LXRα and LXRβ, although the activities of both compounds on LXRs were weak. In a mammalian two-hybrid assay, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC induced interaction between LXRα and a coactivator fragment less efficiently than a natural LXR agonist, 22(R)-hydroxycholesterol. These 7-DHC metabolites did not oppose agonist-induced LXR activation and interacted directly to LXRα in a manner distinct from a potent agonist. These findings indicate that the 7-DHC metabolites are partial LXR activators. Interestingly, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC suppressed mRNA expression of sterol regulatory element-binding protein 1c, an LXR target gene, in HepG2 cells and HaCaT cells, while they weakly increased mRNA levels of ATP-binding cassette transporter A1, another LXR target, in HaCaT cells. Thus, 7-DHC is catabolized by CYP27A1 to metabolites that act as selective LXR modulators.

  5. Association between Physical Activity and Urinary Estrogens and Estrogen Metabolites in Premenopausal Women

    PubMed Central

    Fortner, Renee T.; Xu, Xia; Hankinson, Susan E.; Eliassen, A. Heather; Ziegler, Regina G.

    2012-01-01

    Objective: The objective of the study was to evaluate in premenopausal women the relationships of physically active and sedentary behaviors reported for adulthood and adolescence with a comprehensive profile of estrogen metabolism. Methodology: Fifteen estrogens and estrogen metabolites (jointly termed EM) were measured using liquid chromatography-tandem mass spectrometry in luteal phase urines from 603 premenopausal women in the Nurses' Health Study II. Geometric means of individual EM, metabolic pathway groups, and pathway ratios were examined by level of exposure after adjustment for age, body mass index, alcohol intake, menstrual cycle length, and sample collection timing. Results: High overall physical activity in adulthood (42+ metabolic equivalent h/wk vs. <3 metabolic equivalent h/wk) was associated with a 15% lower level of urinary estradiol (Ptrend = 0.03) and 15% lower level of 16-hydroxylation pathway EM (Ptrend = 0.03). Levels of 2- and 4-hydroxylation pathway EM did not differ significantly by physical activity. High overall activity was also positively associated with four ratios: 2-pathway EM to parent estrogens (Ptrend = 0.05), 2-pathway catechols to parent estrogens (Ptrend = 0.03), 2-pathway catechols to methylated 2-pathway catechols (Ptrend < 0.01), and 2-hydroxyestrone to 16α-hydroxyestrone (Ptrend = 0.01). Similar patterns of association were noted for walking and vigorous physical activity, but there was little evidence of associations with sedentary behaviors or activity during adolescence. Conclusions: High levels of physical activity were associated with lower levels of parent estrogens and 16-hydroxylation pathway EM and preferential metabolism to 2-pathway catechols. The results of our analysis, the largest, most comprehensive examination of physical activity and estrogen metabolism to date, may be useful in future studies investigating the etiology of diseases linked to both physical activity and endogenous estrogen. PMID:22855335

  6. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR.

    PubMed

    Kurashov, Evgeny A; Fedorova, Elena V; Krylova, Julia V; Mitrukova, Galina G

    2016-01-01

    The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases.

  7. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR

    PubMed Central

    Fedorova, Elena V.; Krylova, Julia V.

    2016-01-01

    The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases. PMID:27200207

  8. Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin

    PubMed Central

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-01-01

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944

  9. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin.

    PubMed

    Wang, Chong-Zhi; Zhang, Chun-Feng; Chen, Lina; Anderson, Samantha; Lu, Fang; Yuan, Chun-Su

    2015-11-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal microbiota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anticancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis.

  10. Peripheral distribution of kynurenine metabolites and activity of kynurenine pathway enzymes in renal failure.

    PubMed

    Pawlak, D; Tankiewicz, A; Matys, T; Buczko, W

    2003-06-01

    We investigated L-kynurenine distribution and metabolism in rats with experimental chronic renal failure of various severity, induced by unilateral nephrectomy and partial removal of contralateral kidney cortex. In animals with renal insufficiency the plasma concentration and the content of L-tryptophan in homogenates of kidney, liver, lung, intestine and spleen were significantly decreased. These changes were accompanied by increase activity of liver tryptophan 2,3-dioxygenase, the rate-limiting enzyme of kynurenine pathway in rats, while indoleamine 2,3-dioxygenase activity was unchanged. Conversely, the plasma concentration and tissue content of L-kynurenine, 3-hydroxykynurenine, and anthranilic, kynurenic, xanthurenic and quinolinic acids in the kidney, liver, lung, intestine, spleen and muscles were increased. The accumulation of L-kynurenine and the products of its degradation was proportional to the severity of renal failure and correlated with the concentration of renal insufficiency marker, creatinine. Kynurenine aminotransferase, kynureninase and 3-hydroxyanthranilate-3,4-dioxygenase activity was diminished or unchanged, while the activity of kynurenine 3-hydroxylase was significantly increased. We conclude that chronic renal failure is associated with the accumulation of L-kynurenine metabolites, which may be involved in the pathogenesis of certain uremic syndromes.

  11. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin.

    PubMed

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-04-09

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.

  12. Sequential first-pass metabolism of nortilidine: the active metabolite of the synthetic opioid drug tilidine.

    PubMed

    Hajda, Jacek Piotr; Jähnchen, Eberhard; Oie, Svein; Trenk, Dietmar

    2002-11-01

    The disposition of nortildine, the active metabolite of the synthetic opioid drug tilidine, was investigated in healthy volunteers in a randomized, single-dose, three-way crossover design. Three different treatments were administered: tilidine 50 mg intravenously, tilidine 50 mg orally, and nortilidine 10 mg intravenously. The plasma concentrations of tilidine, nortilidine, and bisnortilidine were determined and subjected to pharmacokinetic analysis using noncompartmental methods. The systemic bioavailability of tilidine was low (7.6% +/- 5.3%) due to a pronounced first-pass metabolism. The areas under the plasma concentration versus time curves (A UC) of nortilidine were similar following either oral or intravenous administration of tilidine 50 mg (375 +/- 184 vs. 364 +/- 124 ng.h.ml(-1)). AUC of nortilidine was 229 +/- 42 ng.h.ml(-1) after IV infusion of nortilidine 10 mg and thus much greater than after IV tilidine corrected for differences in dose. Nortilidine had a much lower volume of distribution (275 +/- 79 vs. 1326 +/- 477 L) and a somewhat lower clearance (749 +/- 119 vs. 1198 +/- 228 ml/min) than tilidine. About two-thirds of the dose of tilidine was metabolized to nortilidine, although only half of the latter fraction was available in the peripheral circulation. Nortilidine was subsequently metabolized to bisnortilidine. The mean ratio of the AUC of bisnortilidine to nortilidine was 0.65 +/- 0.14 following IV administration of nortilidine but 1.69 +/- 0.38 and 1.40 +/- 0.27 following oral and intravenous administration of tilidine, respectively. The shapes of the plasma concentration-time curves of the metabolites and parent drug declined in parallel, indicating that the disposition of the metabolites is formation rate limited. Thus, although two-thirds of the dose of tilidine is metabolized to nortilidine, only one-third of the dose is available systemically as nortilidine for interaction with the opiate receptors after both intravenous and oral dosing

  13. Detection of antibacterial-like activity on a silica surface: fluoroquinolones and their environmental metabolites.

    PubMed

    Lewis, Gareth; Juhasz, Albert; Smith, Euan

    2011-08-01

    BACKGROUND, SCOPE, AND AIMS: Antibacterial fluoroquinolones (FQs) are third-generation antibiotics that are commonly used as therapeutic treatments of respiratory and urinary tract infections. They are used far less in intensively farmed animal production systems, though their use may be permitted in the veterinary treatments of flocks or in medicated feeds. When used, only a fraction of ingested parent FQ actually reaches the in vivo target site of infection, while the remainder is excreted as the parent FQ and its metabolized products. In many species' metabolism, enrofloxacin (EF) is converted into ciprofloxacin (CF) while both FQs are classified as parent FQs in human treatments. It is therefore likely that both FQs and their metabolic products will contribute to a common pool of metabolites in biological wastes. Wastes from intensive farming practices are either directly applied to agricultural land without treatment or may be temporarily stored prior to disposal. However, human waste is treated in sewage treatment plants (STPs) where it is converted into biosolids. In the storage or treatment process of STPs, FQs and their in vivo metabolites are further converted into other environmental metabolites (FQEMs) by ex vivo physicochemical processes that act and interact to produce complex mixtures of FQEMs, some of which have antibacterial-like activities. Biosolids are then often applied to agricultural land as a fertilizer amendment where FQs and FQEMs can be further converted into additional FQEMs by soil processes. It is therefore likely that FQ-contaminated biowaste-treated soils will contain complex mixtures of FQEMs, some of which may have antibacterial-like activities that may be expressed on bacteria endemic to the receiving agricultural soil environment. Concern has arisen in the scientific and in the general community that repeated use of FQ-contaminated biowaste as fertilizer amendments of nutrient-impoverished agricultural land may create a selective

  14. Structural Characterization of a Therapeutic Anti-Methamphetamine Antibody Fragment: Oligomerization and Binding of Active Metabolites

    PubMed Central

    Gokulan, Kuppan; Varughese, Kottayil I.

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy. PMID:24349338

  15. Structural characterization of a therapeutic anti-methamphetamine antibody fragment: oligomerization and binding of active metabolites.

    PubMed

    Peterson, Eric C; Celikel, Reha; Gokulan, Kuppan; Varughese, Kottayil I

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, K(D) = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or "ecstasy"). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni(2+). Two of the histidine residues of each C-terminal His-tag interact with Ni(2+) in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy.

  16. Liquid chromatography-mass spectrometric determination of losartan and its active metabolite on dried blood spots.

    PubMed

    Rao, R Nageswara; Raju, S Satyanarayana; Vali, R Mastan; Sankar, G Girija

    2012-08-01

    A simple and rapid quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for simultaneous determination of losartan and its active metabolite, losartan carboxylic acid on rat dried blood spots was developed and validated as per regulatory guidelines. Losartan and its metabolite were extracted from dried blood spots using 50% aqueous methanol and separated on Waters XTerra(®) RP18 (250 mm × 4.6 mm, 5 μm) column using mobile phase composed of 40% acetonitrile and 60% aqueous ammonium acetate (10mM). The eluents were monitored using ESI tandem mass spectrometric detection with negative polarity in MRM mode using ion transitions m/z 421.2→179.0, m/z 435.3→157.0 and m/z 427.3→193.0 for losartan, losartan carboxylic acid and Irbesartan (internal standard), respectively. The method was validated over the linear range of 1-200 ng/mL and 5-1000 ng/mL with lower limits of quantification of 1.0 ng/mL and 5.0 ng/mL for losartan and losartan carboxylic acid, respectively. Inter and intra-day precision and accuracy (Bias) were below 5.96% and between -2.8 and 1.5%, respectively. The mean recoveries of the analytes from dried blood spots were between 89% and 97%. No significant carry over and matrix effects were observed. The stability of stock solution, whole blood, dried blood spot and processed samples were tested under different conditions and the results were found to be well within the acceptable limits. Additional validation parameters such as influence of hematocrit and spot volume were also evaluated and found to be well within the acceptable limits.

  17. Radical-scavenging activity of butylated hydroxytoluene (BHT) and its metabolites.

    PubMed

    Fujisawa, Seiichiro; Kadoma, Yoshinori; Yokoe, Ichiro

    2004-07-01

    To clarify the radical-scavenging activity of butylated hydroxytoluene (BHT), a food additive, stoichiometric factors (n) and inhibition rate constants (kinh) were determined for 2,6-di-tert-butyl-4-methylphenol (BHT) and its metabolites 2,6-di-tert-butyl-p-benzoquinone (BHT-Q), 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHA-CHO) and 3,5-di-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadiene-1-one (BHT-OOH). Values of n and kinh were determined from differential scanning calorimetry (DSC) monitoring of the polymerization of methyl methacrylate (MMA) initiated by 2,2'-azobis(isobutyronitrile) (AIBN) or benzoyl peroxide (BPO) at 70 degrees C in the presence or absence of antioxidants (BHT-related compounds). The n values declined in the order BHT (1-2) > BHT-CHO, BHT-OOH (0.1-0.3) > BHT-Q ( approximately 0). The n value for BHT with AIBN was approximately 1.0, suggesting dimerization of BHT. The kinh values declined in the order BHT-Q ((3.5-4.6) x 10(4) M(-1)s(-1)) > BHT-OOH (0.7-1.9 x 10(4) M(-1)s(-1)) > BHT-CHO ((0.4-1.7 x 10(4) M(-1)s(-1)) > BHT ((0.1-0.2 x 10(4) M(-1)s(-1)). The kinh for metabolites was greater than that for the parent BHT. Growing MMA radicals initiated by BPO were suppressed much more efficiently by BHT or BHT-Q compared with those initiated by AIBN. BHT was effective as a chain-breaking antioxidant.

  18. Antioxidant activity of Heterotheca inuloides extracts and of some of its metabolites.

    PubMed

    Coballase-Urrutia, Elvia; Pedraza-Chaverri, José; Camacho-Carranza, Rafael; Cárdenas-Rodríguez, Noemí; Huerta-Gertrudis, Bernardino; Medina-Campos, Omar Noel; Mendoza-Cruz, Myrna; Delgado-Lamas, Guillermo; Espinosa-Aguirre, J Javier

    2010-09-30

    Arnica (Heterotheca inuloides) is a widely used medicinal plant in México; it has been recognized as anti-inflammatory, analgesic, cytotoxic, scavenger of superoxide anion and also as a preventive of lipid peroxidation. In vivo studies have demonstrated a hepatoprotective action of the methanolic extract of this plant as well as of quercetin, one of its main components, and the evidence obtained pointed out to an antioxidant mechanism. In this work, we focused on the free radical scavenging capacity of acetonic and methanolic extracts of H. inuloides in comparison with reference compounds. The two extracts were 2-12 times more effective (IC50, microg/mL) than the reference compounds to cope with the following radicals or molecules tested: 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)), 2,2-diphenyl-1-picrylhydrazyl (DPPH), peroxynitrite (ONOO(-)), superoxide (O2(-)), singlet oxygen ((1)O(2)), hypochlorous acid (HOCl), hydrogen peroxide (H2O2), hydroxyl (OH). Additionally, five secondary metabolites isolated from the methanolic extract displayed potent concentration-dependent antioxidant effects against reactive oxygen species produced in vitro (IC50 values in the range of 0.018-4.31mg/mL). d-Chiro-inositol showed the higher antioxidant effect against O2(-), H2O2 and OH while spinasterol and quercetin were the most active against (1)O(2) and ONOO(-), respectively. The antioxidant properties of the extracts and metabolites tested partially support the wide use of this plant in traditional medicine. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Formation of estrogenic metabolites of benzo[a]pyrene and chrysene by cytochrome P450 activity and their combined and supra-maximal estrogenic activity.

    PubMed

    van Lipzig, Marola M H; Vermeulen, Nico P E; Gusinu, Renato; Legler, Juliette; Frank, Heinz; Seidel, Albrecht; Meerman, John H N

    2005-01-01

    Metabolism of polycyclic aromatic hydrocarbons (PAHs) has been studied intensively, and potential metabolites with estrogenic activity have been identified previously. However, little attention has been paid to the metabolic pathways in mammalians and to the combined effect of individual metabolites. Several hydroxylated metabolites of benzo[a]pyrene (BaP) and chrysene (CHN) were formed by rat liver microsomal cytochrome P450 (CYP) activity, some of which possess estrogenic activity. All mono- and several dihydroxylated metabolites of BaP and CHN were tested for ER affinity and estrogenic activity in a proliferation assay (E-screen) and in a reporter-gene assay (ER-CALUX). Twelve estrogenic metabolites were identified with EC50 values ranging from 40nM to 0.15mM. The combined effect of a mixture of seven PAH-metabolites was also studied in the ER binding assay. At concentrations that show little activity themselves, their joint action clearly exhibited significant estrogenic activity. BaP itself exhibited estrogenicity in the ER-CALUX assay due to bio-activation into estrogenic metabolites, probably via aryl hydrocarbon receptor (AhR) induced CYP activity. Furthermore, 2-hydroxy-CHN (2-OHCHN) induced supra-maximal (400%) estrogenic effects in the ER-CALUX assay. This effect was entirely ER-mediated, since the response was completely blocked with the ER-antagonist ICI182,780. We showed that 2-OHCHN increased ER-concentration, using ELISA techniques, which may explain the observed supra-maximal effects. Co-treatment with the AhR-antagonist 3',4'-dimethoxyflavone (DMF) enhanced ER-signaling, possibly via blockage of AhR-ER inhibitory cross-talk.

  20. Urinary nitric oxide metabolite changes in spontaneous and induced onset active labor.

    PubMed

    Chen, Da-Chung; Ku, Chih-Hung; Huang, Yi-Chun; Chen, Chi-Huang; Wu, Gwo-Jang

    2004-07-01

    The aim of this prospective, randomized study was to investigate the changes in urinary nitric oxide (NO) metabolite between the latent and the active phases of spontaneous and either prostaglandin E(1) (PGE(1)) or prostaglandin E(2) (PGE(2))-induced labors. Eighty-eight singleton pregnant women at 36-41(+) weeks' gestation without signs of fetal distress were enrolled. The first group consisted of 29 pregnant women in whom labor was induced by PGE(1) applied intravaginally. The second group consisted of 29 pregnant women with labor induced by PGE(2) applied intracervically. The third group consisted of 30 women, who had spontaneous active labor. Clinical data of the three groups were assessed as labor progressed. Urinary nitric oxide/creatinine (U NO/Cr) decreased significantly after the onset of active labor in all three groups (p < 0.005), with the percentage decline of 42.2%, 28.6% and 10.1%, respectively. The magnitude of the difference in decline in U NO/Cr after active labor between the PGE(1)-induced and the spontaneous labor group was significantly reduced (p = 0.0047) after adjustment for potential confounders using the generalized estimating equations test (GEE). The duration of the latent phase was significantly shortened in the PGE(1)-induced group as compared with the spontaneous labor group (p < 0.01). Decreased U NO/Cr may facilitate transition from the latent to the active phase either in spontaneous or induced labors. Our results indicate that U NO/Cr can serve as an easily obtained marker for use in controlling myometrial contractility and cervical ripening at the onset of active labor. The nitric oxide system is present in the human uterus and may contribute to uterine quiescence during pregnancy and show down-regulation in U NO/Cr at the initiation of active labor.

  1. Metabolism of 20(S)-Ginsenoside Rg₂ by Rat Liver Microsomes: Bioactivation to SIRT1-Activating Metabolites.

    PubMed

    Ma, Li-Yuan; Zhou, Qi-Le; Yang, Xin-Bao; Wang, Hong-Ping; Yang, Xiu-Wei

    2016-06-10

    20(S)-Ginsenoside Rg₂ (1) has recently become a hot research topic due to its potent bioactivities and abundance in natural sources such as the roots, rhizomes and stems-leaves of Panax ginseng. However, due to the lack of studies on systematic metabolic profiles, the prospects for new drug development of 1 are still difficult to predict, which has become a huge obstacle for its safe clinical use. To solve this problem, investigation of the metabolic profiles of 1 in rat liver microsomes was first carried out. To identify metabolites, a strategy of combined analyses based on prepared metabolites by column chromatography and ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was performed. As a result, four metabolites M1-M4, including a rare new compound named ginsenotransmetin A (M1), were isolated and the structures were confirmed by spectroscopic analyses. A series of metabolites of 1, MA-MG, were also tentatively identified by UPLC-Q-TOF/MS in rat liver microsomal incubate of 1. Partial metabolic pathways were proposed. Among them, 1 and its metabolites M1, M3 and M4 were discovered for the first time to be activators of SIRT1. The SIRT1 activating effects of the metabolite M1 was comparable to those of 1, while the most interesting SIRT1 activatory effects of M3 and M4 were higher than that of 1 and comparable with that of resveratrol, a positive SIRT1 activator. These results indicate that microsome-dependent metabolism may represent a bioactivation pathway for 1. This study is the first to report the metabolic profiles of 1 in vitro, and the results provide an experimental foundation to better understand the in vivo metabolic fate of 1.

  2. Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells.

    PubMed

    Chang, Yu-Ying; Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2015-01-14

    Monascus-fermented products have been used as dietary food and traditional medicine due to their beneficial effects on circulation and digestive systems in Asia for thousands of years. Besides, monascin and ankaflavin, secondary metabolites from Monascus-fermented products, have proven anti-inflammatory and immunomodulatory effects. In previous research, monascin and ankaflavin ameliorated ovalbumin-induced airway allergic reaction often used as a type I allergy asthma model. Additionally, mast cells play critical roles in type I allergy. Therefore, RBL-2H3 cells were used as the mast cell model to determine whether the improving effects on asthma of monascin and ankaflavin came from influencing mast cells. PMA and ionomycin are common activators of mast cells because they stimulate the main signaling molecules during mast cell activation. Forty micromolar monascin and ankaflavin inhibited PMA/ionomycin-induced mast cell degranulation and TNF-α secretion through suppressing the phosphorylation of PKC and MAPK family ERK, JNK, and p38. Consequently, monascin and ankaflavin affected the activation of mast cells and may have the potential to improve type I allergy.

  3. Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator.

    PubMed

    Penttinen, Pauliina; Jaehrling, Jan; Damdimopoulos, Anastasios E; Inzunza, José; Lemmen, Josephine G; van der Saag, Paul; Pettersson, Katarina; Gauglitz, Günter; Mäkelä, Sari; Pongratz, Ingemar

    2007-10-01

    Numerous dietary compounds can modify gene expression by binding to the members of the nuclear receptor superfamily of transcription factors. For example, dietary polyphenols, such as soy isoflavones genistein and daidzein, modulate the activity of the estrogen receptors (ERs)-alpha and ERbeta. An additional class of dietary polyphenols that modulate cellular signaling pathways are lignans, compounds that are common constituents of Western diets. In this study, we show that a metabolite of dietary lignans, enterolactone, at physiological concentrations, activates ER-mediated transcription in vitro with preference for ERalpha. The effects of enterolactone are mediated by the ER ligand binding domain and are susceptible to antiestrogen treatment. Furthermore, the affinity of enterolactone toward ERalpha, measured by a novel ligand binding assay, is augmented in cell culture conditions. Moreover, our results demonstrate for the first time that enterolactone has estrogenic activity in vivo. In transgenic estrogen-sensitive reporter mice, enterolactone induces tissue-specific estrogen-responsive reporter gene expression as well as promotes uterine stromal edema and expression of estrogen-responsive endogenous genes (CyclinD1 and Ki67). Taken together, our data show that enterolactone is a selective ER agonist inducing ER-mediated transcription both in vitro in different cell lines and in vivo in the mouse uterus.

  4. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic

    PubMed Central

    Shentu, Xuping; Zhan, Xiaohuan; Ma, Zheng; Yu, Xiaoping; Zhang, Chuanxi

    2014-01-01

    The endophytic fungus strain 0248, isolated from garlic, was identified as Trichoderma brevicompactum based on morphological characteristics and the nucleotide sequences of ITS1-5.8S- ITS2 and tef1. The bioactive compound T2 was isolated from the culture extracts of this fungus by bioactivity-guided fractionation and identified as 4β-acetoxy-12,13- epoxy-Δ9-trichothecene (trichodermin) by spectral analysis and mass spectrometry. Trichodermin has a marked inhibitory activity on Rhizoctonia solani, with an EC50 of 0.25 μgmL−1. Strong inhibition by trichodermin was also found for Botrytis cinerea, with an EC50 of 2.02 μgmL−1. However, a relatively poor inhibitory effect was observed for trichodermin against Colletotrichum lindemuthianum (EC50 = 25.60 μgmL−1). Compared with the positive control Carbendazim, trichodermin showed a strong antifungal activity on the above phytopathogens. There is little known about endophytes from garlic. This paper studied in detail the identification of endophytic T. brevicompactum from garlic and the characterization of its active metabolite trichodermin. PMID:24948941

  5. Seasonal variability of Chelidonium majus L. secondary metabolites content and antioxidant activity

    PubMed Central

    Jakovljevic, Z. Dragana; Stankovic, S. Milan; Topuzovic, D. Marina

    2013-01-01

    The aim of this study is to investigate the total phenolic content, concentration of flavonoids and antioxidant activity in extracts of the plant Chelidonium majus L. during different phenological stages (stage of rosette, the initial flowering stage, the stage of fully formed flowers and stage of fruits formation). Five different extracts of the whole plant, for each phase, were obtained by extraction with water, methanol, acetone, ethyl acetate and petroleum ether. The concentration of total phenolic content was determined using the Folin-Ciocalteu´s reagent and obtained values were the highest in the rosette stage (60.96 mg GA/g). The concentration of flavonoids was the highest in the initial stage of flowering (291.58 mg RU/g). The antioxidant activity was determined in vitro using DPPH reagent. The highest antioxidant activity was expressed in the rosette stage (50.72 mg/ml). Based on the obtained results it can be concluded that the concentrations of secondary metabolites in Ch. majus depend on the phenological stage of the plant. PMID:27047313

  6. Seasonal variability of Chelidonium majus L. secondary metabolites content and antioxidant activity.

    PubMed

    Jakovljevic, Z Dragana; Stankovic, S Milan; Topuzovic, D Marina

    2013-01-01

    The aim of this study is to investigate the total phenolic content, concentration of flavonoids and antioxidant activity in extracts of the plant Chelidonium majus L. during different phenological stages (stage of rosette, the initial flowering stage, the stage of fully formed flowers and stage of fruits formation). Five different extracts of the whole plant, for each phase, were obtained by extraction with water, methanol, acetone, ethyl acetate and petroleum ether. The concentration of total phenolic content was determined using the Folin-Ciocalteu´s reagent and obtained values were the highest in the rosette stage (60.96 mg GA/g). The concentration of flavonoids was the highest in the initial stage of flowering (291.58 mg RU/g). The antioxidant activity was determined in vitro using DPPH reagent. The highest antioxidant activity was expressed in the rosette stage (50.72 mg/ml). Based on the obtained results it can be concluded that the concentrations of secondary metabolites in Ch. majus depend on the phenological stage of the plant.

  7. Anti-Inflammatory and Immunomodulatory Activities of Stevioside and Its Metabolite Steviol on THP-1 Cells.

    PubMed

    Boonkaewwan, Chaiwat; Toskulkao, Chaivat; Vongsakul, Molvibha

    2006-02-08

    Stevioside, a natural noncaloric sweetener isolated from Stevia rebaudiana Bertoni, possesses anti-inflammatory and antitumor promoting properties; however, no information is available to explain its activity. The aim of this study was to elucidate the anti-inflammatory and immunomodulatory activities of stevioside and its metabolite, steviol. Stevioside at 1 mM significantly suppressed lipopolysaccharide (LPS)-induced release of TNF-alpha and IL-1beta and slightly suppressed nitric oxide release in THP-1 cells without exerting any direct toxic effect, whereas steviol at 100 microM did not. Activation of IKKbeta and transcription factor NF-kappaB were suppressed by stevioside, as demonstrated by Western blotting. Furthermore, only stevioside induced TNF-alpha, IL-1beta, and nitric oxide release in unstimulated THP-1 cells. Release of TNF-alpha could be partially neutralized by anti-TLR4 antibody. This study suggested that stevioside attenuates synthesis of inflammatory mediators in LPS-stimulated THP-1 cells by interfering with the IKKbeta and NF-kappaB signaling pathway, and stevioside-induced TNF-alpha secretion is partially mediated through TLR4.

  8. Insights into the mechanisms of Promysalin, a secondary metabolite with genus-specific antibacterial activity against Pseudomonas

    USDA-ARS?s Scientific Manuscript database

    Promysalin, a secondary metabolite produced by Pseudomonas putida RW10S1, has antibacterial activity against a wide variety of Pseudomonas sp., including both human and plant pathogens. Promysalin induces swarming and biofilm formation in the producing species, and inhibits growth of susceptible sp...

  9. Endoxifen, the active metabolite of tamoxifen, inhibits cloned hERG potassium channels.

    PubMed

    Chae, Yun Ju; Lee, Keon Jin; Lee, Hong Joon; Sung, Ki-Wug; Choi, Jin-Sung; Lee, Eun Hui; Hahn, Sang June

    2015-04-05

    The effects of tamoxifen, and its active metabolite endoxifen (4-hydroxy-N-desmethyl-tamoxifen), on hERG currents stably expressed in HEK cells were investigated using the whole-cell patch-clamp technique and an immunoblot assay. Tamoxifen and endoxifen inhibited hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 1.2 and 1.6μM, respectively. The steady-state activation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of endoxifen. The voltage-dependent inhibition of hERG currents by endoxifen increased steeply in the voltage range of channel activation. The inhibition by endoxifen displayed a shallow voltage dependence (δ=0.18) in the full activation voltage range. A fast application of endoxifen induced a reversible block of hERG tail currents during repolarization in a concentration-dependent manner, which suggested an interaction with the open state of the channel. Endoxifen also decreased the hERG current elicited by a 5s depolarizing pulse to +60mV to inactivate the hERG currents, suggesting an interaction with the activated (open and/or inactivated) states of the channels. Tamoxifen and endoxifen inhibited the hERG channel protein trafficking to the plasma membrane in a concentration-dependent manner with endoxifen being more potent than tamoxifen. These results indicated that tamoxifen and endoxifen inhibited the hERG current by direct channel blockage and by the disruption of channel trafficking to the plasma membrane in a concentration-dependent manner. A therapeutic concentration of endoxifen inhibited the hERG current by preferentially interacting with the activated (open and/or inactivated) states of the channel.

  10. Electrophysiological and behavioral activity of secondary metabolites in the confused flour beetle, Tribolium confusum.

    PubMed

    Verheggen, F; Ryne, C; Olsson, P O C; Arnaud, L; Lognay, G; Högberg, H E; Persson, D; Haubruge, E; Löfstedt, C

    2007-03-01

    Several previous studies have addressed pheromone communication in various flour beetles (Coleoptera: Tenebrionidae), including the confused flour beetle, Tribolium confusum (du Val). Different stereoisomers of 4,8-dimethyldecanal (DMD) were reported as the only components of an aggregation pheromone, but the behavioral activity of DMD is low. In the present study, additional previously reported secondary metabolites (benzoquinones and hydrocarbons) were tested for electrophysiological activity (EAG) with both sexes of T. confusum. Two benzoquinones and three monoenic hydrocarbons elicited significant EAG activity from both male and female antennae. There was an elevated male EAG response (vs. the females) to two out of the three hydrocarbons and for both quinones. The EAG-active compounds were subsequently investigated for behavioral activity in a walking bioassay. Benzoquinones are considered toxic and have been assigned a function as alarm substances in flour beetles, but we found that methyl-1, 4-benzoquinone in intermediate concentrations was attractive to both male and female beetles and could therefore act as an aggregation pheromone component. Males were also attracted to ethyl-1,4-benzoquinone. The corresponding hydroquinones, presumed precursors of the benzoquinones, did not elicit any electrophysiological response and were not tested for behavioral activity. The unsaturated hydrocarbons (1-tetradecene, 1-pentadecene, and 1-hexadecene) elicited significant EAG responses from both male and female antennae and were also attractive in the behavioral assay. Our results show that several beetle-produced compounds, in addition to 4,8-dimethyldecanal, may be part of a complex pheromone system in flour beetles and play a role in mediating aggregation in T. confusum.

  11. Toxicity, dioxin-like activities, and endocrine effects of DDT metabolites--DDA, DDMU, DDMS, and DDCN.

    PubMed

    Wetterauer, Bernhard; Ricking, Mathias; Otte, Jens C; Hallare, Arnold V; Rastall, Andrew; Erdinger, Lothar; Schwarzbauer, Jan; Braunbeck, Thomas; Hollert, Henner

    2012-02-01

    2,2-bis(chlorophenyl)-1,1,1-trichloroethane (DDT) metabolites, other than those routinely measured [i.e., 2,2-bis(chlorophenyl)-1,1-dichloroethylene (DDE) and 2,2-bis(chlorophenyl)-1,1-dichloroethane (DDD)], have recently been detected in elevated concentrations not only in the surface water of Teltow Canal, Berlin, but also in sediment samples from Elbe tributaries (e.g., Mulde and Havel/Spree). This was paralleled by recent reports that multiple other metabolites could emerge from the degradation of parent DDT by naturally occurring organisms or by interaction with some heavy metals. Nevertheless, only very few data on the biological activities of these metabolites are available to date. The objective of this communication is to evaluate, for the first time, the cytotoxicity, dioxin-like activity, and estrogenicity of the least-studied DDT metabolites. Four DDT metabolites, p,p'-2,2-bis(chlorophenyl)-1-chloroethylene (DDMU), p,p'-2,2-bis(chlorophenyl)-1-chloroethane (DDMS), p,p'-2,2-bis(4-ch1oropheny1)acetonitrile (DDCN), and p,p'-2,2-bis(chlorophenyl)acetic acid (DDA), were selected based on their presence in environmental samples in Germany such as in sediments from the Mulde River and Teltow Canal. O,p'-DDT was used as reference in all assays. Cytotoxicity was measured by neutral red retention with the permanent cell line RTG-2 of rainbow trout (Oncorhynchus mykiss). Dioxin-like activity was determined using the 7-ethoxyresorufin-O-deetylase assay. The estrogenic potential was tested in a dot blot/RNAse protection-assay with primary hepatocytes from male rainbow trout (O. mykiss) and in a yeast estrogen screen (YES) assay. All DDT metabolites tested revealed a clear dose-response relationship for cytotoxicity in RTG-2 cells, but no dioxin-like activities with RTL-W1 cells. The dot blot/RNAse protection-assay demonstrated that the highest non-toxic concentrations of these DDT metabolites (50 μM) had vitellogenin-induction potentials comparable to the positive

  12. Plasma concentrations of amino acid and nicotinamide metabolites in rheumatoid arthritis--potential biomarkers of disease activity and drug treatment.

    PubMed

    Smolenska, Zaneta; Smolenski, Ryszard T; Zdrojewski, Zbigniew

    2016-01-01

    This study aimed to evaluate changes in plasma amino acid and nicotinamide metabolites concentrations in rheumatoid arthritis (RA) in a search for potential biomarkers of the disease activity and the effect treatment. Analysis of plasma metabolite patterns with liquid chromatography/mass spectrometry revealed specific changes in RA as well as correlations with clinical parameters. Combined concentration parameter calculated as [aspartic acid] + [threonine] + [tryptophan] - [histidine] - [phenylalanine] offered the strongest correlation (p < 0.001) with pain joint count, swollen joint count and DAS 28. Such analysis of amino acid and related metabolite pattern offers potential for diagnosis as well as for monitoring disease progression and therapy in RA.

  13. Anti-rheumatoid Activity of Secondary Metabolites Produced by Endophytic Chaetomium globosum

    PubMed Central

    Abdel-Azeem, Ahmed M.; Zaki, Sherif M.; Khalil, Waleed F.; Makhlouf, Noha A.; Farghaly, Lamiaa M.

    2016-01-01

    The aim of the present study was to investigate the anti-rheumatoid activity of secondary metabolites produced by endophytic mycobiota in Egypt. A total of 27 endophytic fungi were isolated from 10 dominant medicinal plant host species in Wadi Tala, Saint Katherine Protectorate, arid Sinai, Egypt. Of those taxa, seven isolates of Chaetomium globosum (CG1–CG7), being the most frequent taxon, were recovered from seven different host plants and screened for production of active anti-inflammatory metabolites. Isolates were cultivated on half – strength potato dextrose broth for 21 days at 28°C on a rotatory shaker at 180 rpm, and extracted in ethyl acetate and methanol, respectively. The probable inhibitory effects of both extracts against an adjuvant induced arthritis (AIA) rat model were examined and compared with the effects of methotrexate (MTX) as a standard disease-modifying anti-rheumatoid drug. Disease activity and mobility scoring of AIA, histopathology and transmission electron microscopy (TEM) were used to evaluate probable inhibitory roles. A significant reduction (P < 0.05) in the severity of arthritis was observed in both the methanolic extract of CG6 (MCG6) and MTX treatment groups 6 days after treatment commenced. The average arthritis score of the MCG6 treatment group was (10.7 ± 0.82) compared to (13.8 ± 0.98) in the positive control group. The mobility score of the MCG6 treatment group (1.50 ± 0.55) was significantly lower than that of the positive control group (3.33 ± 0.82). In contrast, the ethyl acetate extract of CG6 (EACG6) treatment group showed no improvements in arthritis and mobility scores in AIA model rats. Histopathology and TEM findings confirmed the observation. Isolate CG6 was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1–5.8 s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KC

  14. Monitoring testicular activity of male Eurasian (Lynx lynx) and Iberian (Lynx pardinus) lynx by fecal testosterone metabolite measurement.

    PubMed

    Jewgenow, K; Naidenko, S V; Goeritz, F; Vargas, A; Dehnhard, M

    2006-11-01

    The aim of the present study was to identify relevant fecal testosterone metabolites in the Eurasian lynx (Lynx lynx) using HPLC analysis and to evaluate the specificity of two testosterone immunoassays against these fecal metabolites. Finally, fecal hormone analysis was used to characterize seasonal reproductive activity of captive male Eurasian and Iberian (Lynx pardinus) lynx. Fecal samples from a male Eurasian lynx who received an i.v. injection of [3H]testosterone were subjected to HPLC analysis. All HPLC fractions were analyzed for radioactivity and androgen content by two testosterone immune assays (EIA and Testosterone-Immulite kits, DPC Biermann, Germany). Furthermore, fecal samples from four Eurasian lynx males (n=174) and three Iberian lynx (n=52) were collected throughout the year and fecal testosterone metabolites were determined with Testosterone-Immulite assay. HPLC separation of radiolabeled Eurasian lynx fecal extract indicated that the majority of testosterone metabolites are substances with a higher polarity than testosterone. Only minor proportion of radioactivity co-eluted with authentic testosterone and dihydrotestosterone. Enzymatic hydrolysis and solvolysis of the fecal extract were insufficient to liberate testosterone. After solvolysis relatively more activity was eluated the position of DHT, but the majority of metabolites remained unaffected. The EIA measured substantial amount of immunoreactivity, which corresponded with two radioactive peaks. Additionally, both immunoassays recognized two metabolites, which were only minor components according to their radioactivity. The Immulite assay was able to recognize a metabolite at the position of dihydrotestosterone. HPLC separation of Iberian lynx feces extracts revealed a similar metabolite pattern determined by EIA that were typical for Eurasian lynx fecal extracts. Simultaneous analyses of fecal samples with both testosterone assays provided comparative results for both lynx species

  15. Itraconazole moderately increases serum concentrations of oxybutynin but does not affect those of the active metabolite.

    PubMed

    Lukkari, E; Juhakoski, A; Aranko, K; Neuvonen, P J

    1997-01-01

    Oxybutynin has low oral bioavailability due to an extensive presystemic metabolism. It has been suggested that the biotransformation of oxybutynin is dependent on CYP3A. Because itraconazole, a widely used mycotic, is a potent inhibitor of CYP3A4, we wanted to study a possible interaction between oxybutynin and itraconazole. In this double-blind, randomized, two-phase cross-over study, ten healthy volunteers received either 200 mg itraconazole or placebo for 4 days. On day 4, each volunteer ingested a single dose of 5 mg oxybutynin. Serum concentrations of oxybutynin, its active metabolite N-desethyloxybutynin, and itraconazole were monitored over 24 h. Itraconazole significantly increased both the area under the serum drug concentration-time curve (AUC0-t) and the peak concentration of oxybutynin twofold. The AUC0-t and the peak concentration of N-desethyloxybutynin were not significantly affected by itraconazole. Itraconazole did not change the peak time or the elimination half-life of either oxybutynin or N-desethyloxybutynin. The occurrence of adverse events after oxybutynin administration was not increased by itraconazole. Itraconazole moderately increases serum concentrations of oxybutynin, probably by inhibiting the CYP3A-mediated metabolism. However, the concentrations of N-desethyloxybutynin were practically unchanged. Since about 90% of the antimuscarinic activity of oxybutynin is attributable to N-desethyloxybutynin, any interaction of oxybutynin with CYP3A4 inhibiting drugs has only minor clinical significance.

  16. WR-1065, the active metabolite of amifostine, mitigates radiation-induced delayed genomic instability.

    PubMed

    Dziegielewski, Jaroslaw; Baulch, Janet E; Goetz, Wilfried; Coleman, Mitchell C; Spitz, Douglas R; Murley, Jeffrey S; Grdina, David J; Morgan, William F

    2008-12-15

    Compounds that can protect cells from the effects of radiation are important for clinical use, in the event of an accidental or terrorist-generated radiation event, and for astronauts traveling in space. One of the major concerns regarding the use of radio-protective agents is that they may protect cells initially, but predispose surviving cells to increased genomic instability later. In this study we used WR-1065, the active metabolite of amifostine, to determine how protection from direct effects of high- and low-LET radiation exposure influences genomic stability. When added 30 min before irradiation and in high concentrations, WR-1065 protected cells from immediate radiation-induced effects as well as from delayed genomic instability. Lower, nontoxic concentrations of WR-1065 did not protect cells from death; however, it was effective in significantly decreasing delayed genomic instability in the progeny of irradiated cells. The observed increase in manganese superoxide dismutase protein levels and activity may provide an explanation for this effect. These results confirm that WR-1065 is protective against both low- and high-LET radiation-induced genomic instability in surviving cells.

  17. Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites

    PubMed Central

    Chen, Xiao-Jia; Zhang, Xiao-Jing; Shui, Yan-Mei; Wan, Jian-Bo

    2016-01-01

    Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer. PMID:27446225

  18. High-throughput quantification of 8 antihypertensive drugs and active metabolites in human plasma using UPLC-MS/MS.

    PubMed

    van der Nagel, Bart C H; Versmissen, Jorie; Bahmany, Soma; van Gelder, Teun; Koch, Birgit C P

    2017-08-15

    To assess drug adherence of patients with hypertension, an analytical method was developed and validated using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The method includes eight frequently prescribed antihypertensive drugs from four classes and their active metabolites: angiotensin converting enzyme inhibitors enalapril and perindopril (active metabolites respectively enalaprilate and perindoprilate), angiotensin II receptor blockers losartan (with the active metabolite losartan carboxylic acid) and valsartan, calcium channel blockers amlodipine and nifedipine and diuretics hydrochlorothiazide and spironolactone (with the active metabolite canrenone). The antihypertensive drugs were analyzed using a simple and fast sample preparation protocol with protein precipitation followed by chromatographic separation using a gradient elution on a reversed phase column. Mass spectrometric detection was conducted by applying both positive and negative electrospray ionization (ESI+/ESI-) and selected reaction monitoring mode (MS/MS). Only 50μl of plasma sample is needed for the simultaneous quantification of all 12 compounds within 6min run-to-run analysis time. Enalapril-d5 was applied as internal standard for all compounds except hydrochlorothiazide (internal standard: Hydrochlorothiazide-13C,d2). The method was validated according to FDA guidelines. Matrix effects were examined using the method of Matuszewski. Correlation coefficients were higher than 0.995 for all compounds. Intra- and inter-day accuracies were <15% for all analytes except spironolactone (-16.8%) in the established linear range. Intra- and inter-day precision were <15% for all analytes. As a result of the lower sensitivity of hydrochlorothiazide, the lowest three calibration levels were excluded. The described method is suitable for the simultaneous quantitative analysis of the most commonly used antihypertensive drugs and their corresponding active metabolites. Major

  19. Antiproliferative activity of phenylbutyrate ester of haloperidol metabolite II [(±)-MRJF4] in prostate cancer cells.

    PubMed

    Marrazzo, Agostino; Fiorito, Jole; Zappalà, Laura; Prezzavento, Orazio; Ronsisvalle, Simone; Pasquinucci, Lorella; Scoto, Giovanna M; Bernardini, Renato; Ronsisvalle, Giuseppe

    2011-01-01

    Complex mechanisms of prostate cancer progression prompt to novel therapeutic strategies concerning a combination of drugs or of single molecules able to interact with more crucial targets. Histone deacetylase inhibitors and sigma ligands with mixed σ(1) antagonist and σ(2) agonist properties were proposed as new potential tools for treatment of prostate cancer. (±)-MRJF4 was synthesized as phenylbutyrate ester of haloperidol metabolite II, which is a molecule consisting of a histone deacetilase inhibitor (4-phenylbutyric acid) and a sigma ligand (haloperidol metabolite II). Antiproliferatives activities of 4-phenylbutyric acid, haloperidol metabolite II, equimolar mixture of both compounds and (±)-MRJF4 were evaluated in vitro on LNCaP and PC3 prostate cancer cells. Preliminary binding studies of (±)-MRJF4 for σ(1), σ(2), D(2) and D(3) receptors and inhibition HDAC activity were reported. MTT cell viability assays highlighted a notable increase of antiproliferative activity of (±)-MRJF4 (IC(50) = 11 and 13 μM for LNCaP and PC3, respectively) compared to 4-phenylbutyric acid, haloperidol metabolite II and the respective equimolar pharmacological association. (±)-MRJF4 was also used in combination with σ(1) agonist (+)-pentazocine and σ(2) antagonist AC927 in order to evaluate the role of σ receptor subtypes in prostate cancer cell death.

  20. Central activation, metabolites, and calcium handling during fatigue with repeated maximal isometric contractions in human muscle.

    PubMed

    Cairns, Simeon P; Inman, Luke A G; MacManus, Caroline P; van de Port, Ingrid G L; Ruell, Patricia A; Thom, Jeanette M; Thompson, Martin W

    2017-08-01

    To determine the roles of calcium (Ca(2+)) handling by sarcoplasmic reticulum (SR) and central activation impairment (i.e., central fatigue) during fatigue with repeated maximal voluntary isometric contractions (MVC) in human muscles. Contractile performance was assessed during 3 min of repeated MVCs (7-s contraction, 3-s rest, n = 17). In ten participants, in vitro SR Ca(2+)-handling, metabolites, and fibre-type composition were quantified in biopsy samples from quadriceps muscle, along with plasma venous [K(+)]. In 11 participants, central fatigue was compared using tetanic stimulation superimposed on MVC in quadriceps and adductor pollicis muscles. The decline of peak MVC force with fatigue was similar for both muscles. Fatigue resistance correlated directly with % type I fibre area in quadriceps (r = 0.77, P = 0.009). The maximal rate of ryanodine-induced Ca(2+)-release and Ca(2+)-uptake fell by 31 ± 26 and 28 ± 13%, respectively. The tetanic force depression was correlated with the combined reduction of ATP and PCr, and increase of lactate (r = 0.77, P = 0.009). Plasma venous [K(+)] increased from 4.0 ± 0.3 to 5.4 ± 0.8 mM over 1-3-min exercise. Central fatigue occurred during the early contractions in the quadriceps in 7 out of 17 participants (central activation ratio fell from 0.98 ± 0.05 to 0.86 ± 0.11 at 1 min), but dwindled at exercise cessation. Central fatigue was seldom apparent in adductor pollicis. Fatigue with repeated MVC in human limb muscles mainly involves peripheral aspects which include impaired SR Ca(2+)-handling and we speculate that anaerobic metabolite changes are involved. A faster early force loss in quadriceps muscle with some participants is attributed to central fatigue.

  1. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin

    PubMed Central

    WANG, CHONG-ZHI; ZHANG, CHUN-FENG; CHEN, LINA; ANDERSON, SAMANTHA; LU, FANG; YUAN, CHUN-SU

    2015-01-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal micro-biota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anti-cancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis. PMID:26398706

  2. Differential effects of clinically used derivatives and metabolites of artemisinin in the activation of constitutive androstane receptor isoforms

    PubMed Central

    Burk, O; Piedade, R; Ghebreghiorghis, L; Fait, JT; Nussler, AK; Gil, JP; Windshügel, B; Schwab, M

    2012-01-01

    BACKGROUND AND PURPOSE Widespread resistance to antimalarial drugs requires combination therapies with increasing risk of pharmacokinetic drug–drug interactions. Here, we explore the capacity of antimalarial drugs to induce drug metabolism via activation of constitutive androstane receptors (CAR) by ligand binding. EXPERIMENTAL APPROACH A total of 21 selected antimalarials and 11 major metabolites were screened for binding to CAR isoforms using cellular and in vitro CAR-coactivator interaction assays, combined with in silico molecular docking. Identified ligands were further characterized by cell-based assays and primary human hepatocytes were used to elucidate induction of gene expression. KEY RESULTS Only two artemisinin derivatives arteether and artemether, the metabolite deoxyartemisinin and artemisinin itself demonstrated agonist binding to the major isoforms CAR1 and CAR3, while arteether and artemether were also inverse agonists of CAR2. Dihydroartemisinin and artesunate acted as weak inverse agonists of CAR1. While arteether showed the highest activities in vitro, it was less active than artemisinin in inducing hepatic CYP3A4 gene expression in hepatocytes. CONCLUSIONS AND IMPLICATIONS Artemisinin derivatives and metabolites differentially affect the activities of CAR isoforms and of the pregnane X receptor (PXR). This negates a common effect of these drugs on CAR/PXR-dependent induction of drug metabolism and further provides an explanation for artemisinin consistently inducing cytochrome P450 genes in vivo, whereas arteether and artemether do not. All these drugs are metabolized very rapidly, but only artemisinin is converted to an enzyme-inducing metabolite. For better understanding of pharmacokinetic drug–drug interaction possibilities, the inducing properties of artemisinin metabolites should be considered. PMID:22577882

  3. The TLR4-Active Morphine Metabolite Morphine-3-Glucuronide Does Not Elicit Macrophage Classical Activation In Vitro.

    PubMed

    Khabbazi, Samira; Xie, Nan; Pu, Wenjun; Goumon, Yannick; Parat, Marie-Odile

    2016-01-01

    Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G). We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS), alone or in combination with interferon gamma (IFN-γ). The classical macrophage activation markers tested were iNOS, CD86, IL-6, or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10, and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages.

  4. The TLR4-Active Morphine Metabolite Morphine-3-Glucuronide Does Not Elicit Macrophage Classical Activation In Vitro

    PubMed Central

    Khabbazi, Samira; Xie, Nan; Pu, Wenjun; Goumon, Yannick; Parat, Marie-Odile

    2016-01-01

    Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G). We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS), alone or in combination with interferon gamma (IFN-γ). The classical macrophage activation markers tested were iNOS, CD86, IL-6, or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10, and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages. PMID:27909407

  5. Effects of metabolites of the analgesic agent dipyrone (metamizol) on rostral ventromedial medulla cell activity in mice.

    PubMed

    Maione, Sabatino; Radanova, Lilyana; De Gregorio, Danilo; Luongo, Livio; De Petrocellis, Luciano; Di Marzo, Vincenzo; Imming, Peter

    2015-02-05

    The molecular mechanism of action of dipyrone, a widely used antipyretic and non-opioid analgesic drug, is still not fully understood. Actions upon peripheral inflamed tissues as well as the central nervous system, especially upon the PAG-RVM axis, have been suggested. Dipyrone is a prodrug and its activity is due to its immediate conversion to its active metabolites. We tested the effect of two recently discovered metabolites of dipyrone, the arachidonoyl amides of 4-methylaminoantipyrine and 4-aminoantipyrine, on the neurons of the rostral ventromedial medulla (RVM), which are part of the descending pathway of antinociception. These compounds reduced the activity of ON-cells and increased the activity of OFF-cells. Both CB1 and TRPV1 blockade reversed these effects, suggesting that the endocannabinoid/endovanilloid system takes part in the analgesic effects of dipyrone. Copyright © 2015. Published by Elsevier B.V.

  6. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  7. An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon.

    PubMed

    Yuan, Yongge; Tang, Jianjun; Leng, Dong; Hu, Shuijin; Yong, Jean W H; Chen, Xin

    2014-01-01

    Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1-3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts.

  8. An Invasive Plant Promotes Its Arbuscular Mycorrhizal Symbioses and Competitiveness through Its Secondary Metabolites: Indirect Evidence from Activated Carbon

    PubMed Central

    Yuan, Yongge; Tang, Jianjun; Leng, Dong; Hu, Shuijin; Yong, Jean W. H.; Chen, Xin

    2014-01-01

    Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1–3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts. PMID:24817325

  9. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity.

    PubMed

    Suh, Dong Ho; Lee, Sunmin; Heo, Do Yeon; Kim, Young-Suk; Cho, Somi Kim; Lee, Sarah; Lee, Choong Hwan

    2014-08-27

    Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) was performed using gas chromatography-time-of-flight-mass spectrometry and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry with multivariate analysis. Different species and parts of pitayas (red peel, RP; white peel, WP; red flesh, RF; and white flesh, WF) were clearly separated by partial least-squares discriminate analysis. Furthermore, betalain-related metabolites, such as betacyanins and betaxanthins, or their precursors were described on the basis of their metabolites. The results of antioxidant activity tests [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing ability of plasma (FRAP)], total phenolic contents (TPC), total flavonoid contents (TFC), and total betacyanin contents (TBC) showed the following: RP ≥ WP > RF > WF. TPC, TFC, TBC, and betalain-related metabolites were higher in the peel than in the flesh and suggested to be the main contributors to antioxidant activity in pitayas. Therefore, peels as well as pulp of pitaya could beneficially help in the food industry.

  10. Determination of the active metabolite of sibutramine by liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Chen, Jun; Lu, Wei; Zhang, Qizhi; Jiang, Xinguo

    2003-03-05

    A sensitive and specific method for the determination of the active primary amine metabolite of sibutramine, N-di-desmethylsibutramine (BTS 54,505), in human plasma was developed, based on high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS). The samples were extracted from plasma with methyl tert.-butyl ether, followed by separation and evaporation after addition of the internal standard, propranolol, and basification with sodium hydroxide. The residue was reconstituted in mobile phase and injected into the HPLC-MS-MS system. Chromatography was performed on an ODS MS column with a mobile phase consisting of acetonitrile (containing 0.1% trifluoroacetic acid, v/v)-0.1% trifluoroacetic acid (55:45, v/v) at a flow-rate of 0.3 ml/min. Multiple reaction monitoring using precursor-->product ion combinations at m/z 252.00-->125.00 and 260.00-->115.70 was applied to determine BTS 54,505 and propranolol, respectively. Linearity was confirmed in the concentration range 0.328-32.8 ng/ml in human plasma and the imprecision of this assay was less than 19.90% over the entire concentration range. The method is sufficiently sensitive and repeatable to be used in pharmacokinetic studies.

  11. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    NASA Astrophysics Data System (ADS)

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  12. Microscale LC-MS-NMR Platform Applied to the Identification of Active Cyanobacterial Metabolites

    PubMed Central

    Lin, Yiqing; Schiavo, Susan; Orjala, Jimmy; Vouros, Paul; Kautz, Roger

    2009-01-01

    An LC-MS-NMR platform is demonstrated, which combines two innovations in microscale analysis, nanoSplitter LC–MS and microdroplet NMR, for the identification of unknown compounds found at low concentrations in complex sample matrixes as frequently encountered in metabolomics or natural products discovery. The nano-Splitter provides the high sensitivity of nanoelectrospray MS while allowing 98% of the HPLC effluent from a large-bore LC column to be collected and concentrated for NMR. Microdroplet NMR is a droplet microfluidic NMR loading method providing severalfold higher sample efficiency than conventional flow injection methods. Performing NMR offline from LC-UV-MS accommodates the disparity between MS and NMR in their sample mass and time requirements, as well as allowing NMR spectra to be requested retrospectively, after review of the LC–MS data. Interpretable 1D NMR spectra were obtained from analytes at the 200-ng level, in 1 h/well automated NMR data acquisitions. The system also showed excellent intra- and interdetector reproducibility with retention time RSD values less than 2% and sample recovery on the order of 93%. When applied to a cyanobacterial extract showing antibacterial activity, the platform recognized several previously known metabolites, down to the 1% level, in a single 30-μg injection, and prioritized one unknown for further study. PMID:18834150

  13. Nifurtimox Activation by Trypanosomal Type I Nitroreductases Generates Cytotoxic Nitrile Metabolites*

    PubMed Central

    Hall, Belinda S.; Bot, Christopher; Wilkinson, Shane R.

    2011-01-01

    The prodrug nifurtimox has been used for more than 40 years to treat Chagas disease and forms part of a recently approved combinational therapy that targets West African trypanosomiasis. Despite this, its mode of action is poorly understood. Detection of reactive oxygen and nitrogen intermediates in nifurtimox-treated extracts led to the proposal that this drug induces oxidative stress in the target cell. Here, we outline an alternative mechanism involving reductive activation by a eukaryotic type I nitroreductase. Several enzymes proposed to metabolize nifurtimox, including prostaglandin F2α synthase and cytochrome P450 reductase, were overexpressed in bloodstream-form Trypanosoma brucei. Only cells with elevated levels of the nitroreductase displayed altered susceptibility to this nitrofuran, implying a key role in drug action. Reduction of nifurtimox by this enzyme was shown to be insensitive to oxygen and yields a product characterized by LC/MS as an unsaturated open-chain nitrile. This metabolite was shown to inhibit both parasite and mammalian cell growth at equivalent concentrations, in marked contrast to the parental prodrug. These experiments indicate that the basis for the selectivity of nifurtimox against T. brucei lies in the expression of a parasite-encoded type I nitroreductase. PMID:21345801

  14. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling.

    PubMed

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-07

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  15. The Natural Fungal Metabolite Beauvericin Exerts Anticancer Activity In Vivo: A Pre-Clinical Pilot Study.

    PubMed

    Heilos, Daniela; Rodríguez-Carrasco, Yelko; Englinger, Bernhard; Timelthaler, Gerald; van Schoonhoven, Sushilla; Sulyok, Michael; Boecker, Simon; Süssmuth, Roderich D; Heffeter, Petra; Lemmens-Gruber, Rosa; Dornetshuber-Fleiss, Rita; Berger, Walter

    2017-08-24

    Recently, in vitro anti-cancer properties of beauvericin, a fungal metabolite were shown in various cancer cell lines. In this study, we assessed the specificity of this effect by comparing beauvericin cytotoxicity in malignant versus non-malignant cells. Moreover, we tested in vivo anticancer effects of beauvericin by treating BALB/c and CB-17/SCID mice bearing murine CT-26 or human KB-3-1-grafted tumors, respectively. Tumor size and weight were measured and histological sections were evaluated by Ki-67 and H/E staining as well as TdT-mediated-dUTP-nick-end (TUNEL) labeling. Beauvericin levels were determined in various tissues and body fluids by LC-MS/MS. In addition to a more pronounced activity against malignant cells, we detected decreased tumor volumes and weights in beauvericin-treated mice compared to controls in both the allo- and the xenograft model without any adverse effects. No significant differences were detected concerning percentages of proliferating and mitotic cells in tumor sections from treated and untreated mice. However, a significant increase of necrotic areas within whole tumor sections of beauvericin-treated mice was found in both models corresponding to an enhanced number of TUNEL-positive, i.e., apoptotic, cells. Furthermore, moderate beauvericin accumulation was detected in tumor tissues. In conclusion, we suggest beauvericin as a promising novel natural compound for anticancer therapy.

  16. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    PubMed Central

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-01-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions. PMID:27053227

  17. Luteolibacter yonseiensis sp. nov., isolated from activated sludge using algal metabolites.

    PubMed

    Park, Joonhong; Baek, Gyu Seok; Woo, Sung-Geun; Lee, Jangho; Yang, Jihoon; Lee, Juyoun

    2013-05-01

    A Gram-negative, rod-shaped, aerobic bacterial strain, designated EBTL01(T), was isolated from activated sludge by using metabolites of microalgae Ankistrodesmus gracilis SAG278-2. Phylogenetic analyses based on 16S rRNA gene sequence showed that strain EBTL01(T) belongs to the family Verrucomicrobiaceae, class Verrucomicrobiae, and is related most closely to Luteolibacter pohnpeiensis A4T-83(T) (95.5 % sequence similarity) and Luteolibacter algae A5J-41-2(T) (95.2 %). The G+C content of the genomic DNA of strain EBTL01(T) was 56.3 mol% and the menaquinone MK-9 was detected as the predominant quinone. Major fatty acid components were iso-C14 : 0, C16 : 1ω7c and C16 : 0. The amino acids of the cell-wall peptidoglycan contained muramic acid and meso-diaminopimelic acid. These profile results supported the affiliation of strain EBTL01(T) to the genus Luteolibacter. On the other hand, based on chemotaxonomic properties and phenotypic characteristics, strain EBTL01(T) could be clearly differentiated from its phylogenetic neighbours. Therefore, strain EBTL01(T) represents a novel species of the genus Luteolibacter, for which the name Luteolibacter yonseiensis sp. nov. is proposed. The type strain is EBTL01(T) ( = KCTC 23678(T) = JCM 18052(T)).

  18. Prosthecobacter algae sp. nov., isolated from activated sludge using algal metabolites.

    PubMed

    Lee, Jangho; Park, Banghyo; Woo, Sung-Geun; Lee, Juyoun; Park, Joonhong

    2014-02-01

    A Gram-stain-negative, fusiform-shaped, facultatively anaerobic bacterial strain, designated EBTL04(T), was isolated from activated sludge using algal metabolites and taxonomically characterized through polyphasic investigation. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain EBTL04(T) belongs to the family Verrucomicrobiaceae, class Verrucomicrobiae, and is closely related to Prosthecobacter dejongeii DSM 12251(T) (98.6 % sequence similarity), Prosthecobacter fusiformis ATCC 25309(T) (97.9 %), Prosthecobacter debontii DSM 14044(T) (97.5%), Prosthecobacter vanneervenii DSM 12252(T) (94.7%) and Prosthecobacter fluviatilis KCTC 22182(T) (93.7%). The G+C content of the genomic DNA of strain EBTL04(T) was 62.7 mol%. The menaquinone MK-6 was detected as the predominant quinone. Strain EBTL04(T) contained phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine as major polar lipids. A fatty acid profile with C(16 : 1)ω5c, iso-C(14 : 0), C(16 : 0), anteiso-C(15 : 0) and C(14 : 0) as the major components supported the classification of strain EBTL04(T) in the genus Prosthecobacter. Based on several phenotypic, genotypic and chemotaxonomic features, strain EBTL04(T) was clearly differentiated from its phylogenetic neighbours. Therefore, strain EBTL04(T) should be considered to represent a novel species of the genus Prosthecobacter, for which the name Prosthecobacter algae sp. nov. is proposed. The type strain is EBTL04(T) ( = KCTC 23681(T) = JCM 18053(T)).

  19. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK.

    PubMed

    Galano, Annia; Tan, Dun Xian; Reiter, Russel J

    2013-04-01

    The reactions of N(1) -acetyl-N(2) -formyl-5-methoxykynuramine (AFMK) and N(1) -acetyl-5-methoxykynuramine (AMK) with (•) OH, (•) OOH, and •OOCCl3 radicals have been studied using the density functional theory. Three mechanisms of reaction have been considered: radical adduct formation (RAF), hydrogen transfer (HT), and single electron transfer (SET). Their relative importance for the free radical scavenging activity of AFMK and AMK has been assessed. It was found that AFMK and AMK react with •OH at diffusion-limited rates, regardless of the polarity of the environment, which supports their excellent •OH radical scavenging activity. Both compounds were found to be also very efficient for scavenging •OOCCl3 , but rather ineffective for scavenging •OOH. Regarding their relative activity, it was found that AFMK systematically is a poorer scavenger than AMK and melatonin. In aqueous solution, AMK was found to react faster than melatonin with all the studied free radicals, while in nonpolar environments, the relative efficiency of AMK and melatonin as free radical scavengers depends on the radical with which they are reacting. Under such conditions, melatonin is predicted to be a better •OOH and •OOCCl3 scavenger than AMK, while AMK is predicted to be slightly better than melatonin for scavenging •OH. Accordingly it seems that melatonin and its metabolite AMK constitute an efficient team of scavengers able of deactivating a wide variety of reactive oxygen species, under different conditions. Thus, the presented results support the continuous protection exerted by melatonin, through the free radical scavenging cascade. © 2012 John Wiley & Sons A/S.

  20. Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-06-18

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage.

  1. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide.

    PubMed

    Tilmanis, Danielle; van Baalen, Carel; Oh, Ding Yuan; Rossignol, Jean-Francois; Hurt, Aeron C

    2017-10-03

    Nitazoxanide is a thiazolide compound that was originally developed as an anti-parasitic agent, but has recently been repurposed for the treatment of influenza virus infections. Thought to exert its anti-influenza activity via the inhibition of hemagglutinin maturation and intracellular trafficking in infected cells, the effectiveness of nitazoxanide in treating patients with non-complicated influenza is currently being assessed in phase III clinical trials. Here, we describe the susceptibility of 210 seasonal influenza viruses to tizoxanide, the active circulating metabolite of nitazoxanide. An optimised cell culture-based focus reduction assay was used to determine the susceptibility of A(H1N1)pdm09, A(H3N2), and influenza B viruses circulating in the southern hemisphere from the period March 2014 to August 2016. Tizoxanide showed potent in vitro antiviral activity against all influenza viruses tested, including neuraminidase inhibitor-resistant viruses, allowing the establishment of a baseline level of susceptibility for each subtype. Median EC50 values (±IQR) of 0.48 μM (0.33-0.71), 0.62 μM (0.56-0.75), 0.66 μM (0.62-0.69), and 0.60 μM (0.51-0.67) were obtained for A(H1N1)pdm09, A(H3N2), B(Victoria lineage), and B(Yamagata lineage) influenza viruses respectively. There was no significant difference in the median baseline tizoxanide susceptibility for each influenza subtype tested. This is the first report on the susceptibility of circulating viruses to tizoxanide. The focus reduction assay format described is sensitive, robust, and less laborious than traditional cell based antiviral assays, making it highly suitable for the surveillance of tizoxanide susceptibility in circulating seasonal influenza viruses. Copyright © 2017. Published by Elsevier B.V.

  2. Effects of 3-O-methyldopa, L-3,4-dihydroxyphenylalanine metabolite, on locomotor activity and dopamine turnover in rats.

    PubMed

    Onzawa, Yoritaka; Kimura, Yasuhiro; Uzuhashi, Kengo; Shirasuna, Megumi; Hirosawa, Tasuku; Taogoshi, Takanori; Kihira, Kenji

    2012-01-01

    It has been well known that 3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA) formed by catechol O-methyltransferase (COMT), and 3-OMD blood level often reaches higher than physiological level in Parkinson's disease (PD) patients receiving long term L-DOPA therapy. However, the physiological role of 3-OMD has not been well understood. Therefore, in order to clarify the effects of 3-OMD on physiological function, we examined the behavioral alteration in rats based on locomotor activity, and measured dopamine (DA) and its metabolites levels in rats at the same time after 3-OMD subchronic administration. The study results showed that repeated administrations of 3-OMD increased its blood and the striatum tissue levels in those rats, and decreased locomotor activity in a dose dependent manner. Although 3-OMD subchronic administration showed no significant change in DA level in the striatum, DA metabolite levels, such as 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were significantly decreased. After 3-OMD washout period (7 d), locomotor activity and DA turnover in those rats returned to normal levels. Furthermore, locomotor activity and DA turnover decreased by 3-OMD administration were recovered to normal level by acute L-DOPA administration. These results suggested that 3-OMD affect to locomotor activity via DA neuron system. In conclusion, 3-OMD itself may have a disadvantage in PD patients receiving L-DOPA therapy.

  3. [Secondary metabolites, lethality and antimicrobial activity of extracts from three corals and three marine mollusks from Sucre, Venezuela].

    PubMed

    Ordaz, Gabriel; D'Armas, Haydelba; Yáñez, Dayanis; Hernández, Juan; Camacho, Angel

    2010-06-01

    The study of biochemical activity of extracts obtained from marine organisms is gaining interest as some have proved to have efficient health or industrial applications. To evaluate lethality and antimicrobial activities, some chemical tests were performed on crude extracts of the octocorals Eunicea sp., Muricea sp. and Pseudopterogorgia acerosa and the mollusks Pteria colymbus, Phyllonotus pomum and Chicoreus brevifrons, collected in Venezuelan waters. The presence of secondary metabolites like alkaloids, unsaturated sterols and pentacyclic triterpenes in all invertebrates, was evidenced. Additionally, sesquiterpenlactones, saponins, tannins, cyanogenic and cardiotonic glycosides were also detected in some octocoral extracts, suggesting that biosynthesis of these metabolites is typical in this group. From the lethality bioassays, all extracts resulted lethal to Artemia salina (LC50<1000 microg/ml) with an increased of lethal activity with exposition time. P. pomum extract showed the highest lethality rate (LC50=46.8 microg/ml). Compared to the octocorals, mollusks extracts displayed more activity and a greater action spectrum against different bacterial strains, whereas octocorals also inhibited some fungi strains growth. Staphylococcus aureus was the most susceptible to the antimicrobial power of the extracts (66.7%), whereas Pseudomonas aeruginosa, Candida albicans and Aspergillus niger were not affected. The antibiosis shown by marine organisms extracts indicates that some of their biosynthesized metabolites are physiologically active, and may have possible cytotoxic potential or as a source of antibiotic components.

  4. Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition.

    PubMed

    Hanna, Imad; Alexander, Natalya; Crouthamel, Matthew H; Davis, John; Natrillo, Adrienne; Tran, Phi; Vapurcuyan, Arpine; Zhu, Bing

    2017-03-10

    1. The potential for drug-drug interactions of LCZ696 (a novel, crystalline complex comprising sacubitril and valsartan) was investigated in vitro. 2. Sacubitril was shown to be a highly permeable P-glycoprotein (P-gp) substrate and was hydrolyzed to the active anionic metabolite LBQ657 by human carboxylesterase 1 (CES1b and 1c). The multidrug resistance-associated protein 2 (MRP2) was shown to be capable of LBQ657 and valsartan transport that contributes to the elimination of either compound. 3. LBQ657 and valsartan were transported by OAT1, OAT3, OATP1B1 and OATP1B3, whereas no OAT- or OATP-mediated sacubitril transport was observed. 4. The contribution of OATP1B3 to valsartan transport (73%) was appreciably higher than that by OATP1B1 (27%), Alternatively, OATP1B1 contribution to the hepatic uptake of LBQ657 (∼70%) was higher than that by OATP1B3 (∼30%). 5. None of the compounds inhibited OCT1/OCT2, MATE1/MATE2-K, P-gp, or BCRP. Sacubitril and LBQ657 inhibited OAT3 but not OAT1, and valsartan inhibited the activity of both OAT1 and OAT3. Sacubitril and valsartan inhibited OATP1B1 and OATP1B3, whereas LBQ657 weakly inhibited OATP1B1 but not OATP1B3. 6. Drug interactions due to the inhibition of transporters are unlikely due to the redundancy of the available transport pathways (LBQ657: OATP1B1/OAT1/3 and valsartan: OATP1B3/OAT1/3) and the low therapeutic concentration of the LCZ696 analytes.

  5. Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1.

    PubMed

    Materazzi, Serena; Nassini, Romina; Andrè, Eunice; Campi, Barbara; Amadesi, Silvia; Trevisani, Marcello; Bunnett, Nigel W; Patacchini, Riccardo; Geppetti, Pierangelo

    2008-08-19

    Prostaglandins (PG) are known to induce pain perception indirectly by sensitizing nociceptors. Accordingly, the analgesic action of nonsteroidal anti-inflammatory drugs (NSAIDs) results from inhibition of cyclooxygenases and blockade of PG biosynthesis. Cyclopentenone PGs, 15-d-PGJ(2), PGA(2), and PGA(1), formed by dehydration of their respective parent PGs, PGD(2), PGE(2), and PGE(1), possess a highly reactive alpha,beta-unsaturated carbonyl group that has been proposed to gate the irritant transient receptor potential A1 (TRPA1) channel. Here, by using TRPA1 wild-type (TRPA1(+/+)) or deficient (TRPA1(-/-)) mice, we show that cyclopentenone PGs produce pain by direct stimulation of nociceptors via TRPA1 activation. Cyclopentenone PGs caused a robust calcium response in dorsal root ganglion (DRG) neurons of TRPA1(+/+), but not of TRPA1(-/-) mice, and a calcium-dependent release of sensory neuropeptides from the rat dorsal spinal cord. Intraplantar injection of cyclopentenone PGs stimulated c-fos expression in spinal neurons of the dorsal horn and evoked an instantaneous, robust, and transient nociceptive response in TRPA1(+/+) but not in TRPA1(-/-) mice. The classical proalgesic PG, PGE(2), caused a slight calcium response in DRG neurons, increased c-fos expression in spinal neurons, and induced a delayed and sustained nociceptive response in both TRPA1(+/+) and TRPA1(-/-) mice. These results expand the mechanism of NSAID analgesia from blockade of indirect nociceptor sensitization by classical PGs to inhibition of direct TRPA1-dependent nociceptor activation by cyclopentenone PGs. Thus, TRPA1 antagonism may contribute to suppress pain evoked by PG metabolites without the adverse effects of inhibiting cyclooxygenases.

  6. Spontaneous locomotor activity and pharmacokinetics of intravenous methamphetamine and its metabolite amphetamine in the rat.

    PubMed

    Rivière, G J; Byrnes, K A; Gentry, W B; Owens, S M

    1999-12-01

    The purpose of these studies was to better understand the behavioral effects and pharmacokinetics of an i.v. bolus dose of (+)-methamphetamine [(+)-METH] in a rat model of (+)-METH abuse. We characterized the behavioral effects after increasing (+)-METH doses (0.1, 0.3, and 1.0 mg/kg) and the pharmacokinetics of (+)-METH (and its metabolite (+)-amphetamine [(+)-AMP)]) at the lowest and highest of these doses in adult male Sprague-Dawley rats. The doses and route of administration were selected to mimic aspects of human use on a dose/body weight basis. Although the 0.1 mg/kg dose did not cause statistically significant increases in locomotor activity compared with saline controls, the higher doses (0.3 and 1.0 mg/kg) caused statistically significant increases in locomotor activity (p <.05), which lasted for up to 3 h at the highest dose. After the 1.0 mg/kg dose, the volume of distribution at steady state was 9.0 liters/kg, the total clearance was 126 ml/min/kg, and the average distribution and elimination half-lives were 9.2 and 63.0 min, respectively. Because the pharmacokinetic values after the 0.1 mg/kg dose were not different from those after the 1.0 mg/kg dose, the pharmacokinetics of (+)-METH were considered to be independent of the dose over this 10-fold range. (+)-AMP serum concentrations after the 1.0 mg/kg dose peaked from 10 to 30 min, and exhibited a T(1/2lambdaz) of 98.5 min. The statistically longer T(1/2lambdaz) of (+)-AMP (p <.05) suggested that the (+)-AMP terminal elimination rate and not the (+)-AMP metabolic formation rate is the rate-limiting step in (+)-AMP elimination following i.v. (+)-METH dosing.

  7. Differences in endogenous esterification and retention in the rat trachea between budesonide and ciclesonide active metabolite.

    PubMed

    Lexmüller, Kristina; Gullstrand, Helena; Axelsson, Bengt-Olof; Sjölin, Petter; Korn, Solange H; Silberstein, David S; Miller-Larsson, Anna

    2007-10-01

    The airway retention of inhaled glucocorticosteroids (GCs) depends largely on their lipophilicity. Inhaled budesonide (BUD) becomes highly lipophilic reversibly by the formation of esters acting as a reservoir of active BUD. Ciclesonide (CIC) was also reported to form esters after hydrolysis to active metabolite (CIC-AM). We have investigated lipophilicity and airway retention of BUD, CIC/CIC-AM, fluticasone propionate (FP), and mometasone furoate (MF), and compared esterification of BUD and CIC-AM and its contribution to GC airway retention. Rat tracheas were preincubated with the esterification inhibitor cyclandelate or vehicle. A (3)H-GC ( approximately 10(-7) M: BUD, CIC, CIC-AM, FP, MF) was added for 20 min. After incubation, one half of the trachea was used for analysis of GC uptake and the other to analyze GC release during 3 h in drug-free medium. GC species in trachea halves were analyzed by radiochromatography. At 20 min, the uptake of BUD was similar to that of CIC/CIC-AM; however, the BUD-ester pool was 9-fold greater (p < 0.01). BUD overall retention in trachea at 3 h was greater than that of other GCs (p < 0.01), and the BUD-ester pool was 3-fold greater than the CIC-AM-ester pool (p < 0.01). Cyclandelate decreased the initial BUD- and CIC-AM-ester pools (p < 0.01), and reduced the overall retention of BUD at 3 h (p < 0.01) but not of CIC-AM. Thus, BUD becomes esterified in the airways more promptly and to a greater extent than CIC-AM, and BUD esterification prolongs BUD airway retention. In contrast, airway retention of CIC-AM and CIC seems to be determined mainly by their lipophilicity, similar to FP and MF, which are not esterified.

  8. CSF Biomarkers of Monocyte Activation and Chemotaxis correlate with Magnetic Resonance Spectroscopy Metabolites during Chronic HIV Disease

    PubMed Central

    Anderson, Albert M.; Fennema-Notestine, Christine; Umlauf, Anya; Taylor, Michael J.; Clifford, David B.; Marra, Christina M.; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Simpson, David M.; Morgello, Susan; Grant, Igor; Letendre, Scott L.

    2015-01-01

    Background HIV-associated neurocognitive disorders (HAND) persist despite combination antiretroviral therapy (cART), supporting the need to better understand HIV neuropathogenesis. Magnetic resonance spectroscopy (MRS) of the brain has demonstrated abnormalities in HIV-infected individuals despite cART. We examined the associations between MRS metabolites and selected cerebrospinal fluid (CSF) biomarkers reflecting monocyte/macrophage activation and chemotaxis. Methods A multicenter cross-sectional study involving five sites in the United States was conducted. The following CSF biomarkers were measured: soluble CD14 (sCD14), monocyte chemotactic protein 1 (MCP-1), interferon inducible protein 10 (IP-10), and stromal cell derived growth factor 1 alpha (SDF-1α). The following MRS metabolites were measured from basal ganglia (BG), frontal white matter (FWM) and frontal gray matter (FGM): N-acetyl-aspartate (NAA), Myo-inositol (MI), Choline (Cho), and Creatine (Cr). CSF biomarkers were compared to absolute MRS metabolites as well as metabolite/Cr ratios using linear regression. Results 83 HIV-infected individuals were included, 78% on cART and 37% with HAND. The most robust positive correlations were between MCP-1 and Cho in BG (R2 0.179, p<0.001) as well as MCP-1 and MI in FWM (R2 0.137, p=0.002). Higher Cr levels in FWM were associated with MCP-1 (R2 0. 075, p=0.01) and IP-10 (R2 0.106, p=0.003). Comparing biomarkers to MRS metabolite/Cr ratios impacted some relationships, e.g., higher sCD14 levels were associated with lower Cho/Cr ratios in FGM (R2 0.224, p<0.001), although higher MCP-1 levels remained associated with Cho/Cr in BG. Conclusion These findings provide evidence that monocyte activation and chemotaxis continue to contribute to HIV-associated brain abnormalities in cART-treated individuals. PMID:26069183

  9. The Relationship between Mitochondrial Respiratory Chain Activities in Muscle and Metabolites in Plasma and Urine: A Retrospective Study

    PubMed Central

    Alban, Corinne; Fatale, Elena; Joulani, Abed; Ilin, Polina; Saada, Ann

    2017-01-01

    The relationship between 114 cases with decreased enzymatic activities of mitochondrial respiratory chain (MRC) complexes I-V (C I-V) in muscle and metabolites in urine and plasma was retrospectively examined. Less than 35% disclosed abnormal plasma amino acids and acylcarnitines, with elevated alanine and low free carnitine or elevated C4-OH-carnitine as the most common findings, respectively. Abnormal urine organic acids (OA) were detected in 82% of all cases. In CI and CII defects, lactic acid (LA) in combination with other metabolites was the most common finding. 3-Methylglutaconic (3MGA) acid was more frequent in CIV and CV, while Tyrosine metabolites, mainly 4-hydroxyphenyllactate, were common in CI and IV defects. Ketones were present in all groups but more prominent in combined deficiencies. There was a significant strong correlation between elevated urinary LA and plasma lactate but none between urine Tyrosine metabolites and plasma Tyrosine or urinary LA and plasma Alanine. All except one of 14 cases showed elevated FGF21, but correlation with urine OA was weak. Although this study is limited, we conclude that urine organic acid test in combination with plasma FGF21 determination are valuable tools in the diagnosis of mitochondrial diseases. PMID:28287425

  10. Activation of Dormant Secondary Metabolite Production by Introducing Neomycin Resistance into the Deep-Sea Fungus, Aspergillus versicolor ZBY-3

    PubMed Central

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-01-01

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(d-Pro-d-Phe) (1), cyclo(d-Tyr-d-Pro) (2), phenethyl 5-oxo-l-prolinate (3), cyclo(l-Ile-l-Pro) (4), cyclo(l-Leu-l-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1–6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent

  11. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3.

    PubMed

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-07-29

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(D-Pro-D-Phe) (1), cyclo(D-Tyr-D-Pro) (2), phenethyl 5-oxo-L-prolinate (3), cyclo(L-Ile-L-Pro) (4), cyclo(L-Leu-L-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1-6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent fungal

  12. The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells.

    PubMed

    Rath, Alexander G; Rehberg, Markus; Janke, Robert; Genzel, Yvonne; Scholz, Sebastian; Noll, Thomas; Rose, Thomas; Sandig, Volker; Reichl, Udo

    2014-05-20

    Optimization of bioprocesses with mammalian cells mainly concentrates on cell engineering, cell screening and medium optimization to achieve enhanced cell growth and productivity. For improving cell lines by cell engineering techniques, in-depth understandings of the regulation of metabolism and product formation as well as the resulting demand for the different medium components are needed. In this work, the relationship of cell specific growth and uptake rates and of changes in maximum in vitro enzyme activities with intracellular metabolite pools of glycolysis, pentose phosphate pathway, citric acid cycle and energy metabolism were determined for batch cultivations with AGE1.HN.AAT cells. Results obtained by modeling cell growth and consumption of main substrates showed that the dynamics of intracellular metabolite pools is primarily linked to the dynamics of specific glucose and glutamine uptake rates. By analyzing maximum in vitro enzyme activities we found low activities of pyruvate dehydrogenase and pyruvate carboxylase which suggest a reduced metabolite transfer into the citric acid cycle resulting in lactate release (Warburg effect). Moreover, an increase in the volumetric lactate production rate during the transition from exponential to stationary growth together with a transient accumulation of fructose 1,6-bisphosphate, fructose 1-phosphate and ribose 5-phosphate point toward an upregulation of PK via FBP. Glutaminase activity was about 44-fold lower than activity of glutamine synthetase. This seemed to be sufficient for the supply of intermediates for biosynthesis but might lead to unnecessary dissipation of ATP. Taken together, our results elucidate regulation of metabolic networks of immortalized mammalian cells by changes of metabolite pools over the time course of batch cultivations. Eventually, it enables the use of cell engineering strategies to improve the availability of building blocks for biomass synthesis by increasing glucose as well as

  13. Pre-systemic elimination of tilidine: localization and consequences for the formation of the active metabolite nortilidine.

    PubMed

    Eichbaum, Christine; Mathes, Kristin; Burhenne, Jürgen; Markert, Christoph; Blank, Antje; Mikus, Gerd

    2015-02-01

    The therapeutic activity of tilidine, an opioid analgesic, is mainly related to its active metabolite nortilidine. Nortilidine formation mainly occurs during the high intestinal first-pass metabolism of tilidine by N-demethylation. Elimination of the active nortilidine to the inactive bisnortilidine is also mediated by N-demethylation and is supposed to take place in the liver, probably at a smaller rate. The aim of this study was the investigation of the pre-systemic elimination of tilidine using grapefruit juice (GFJ) as an intestinal CYP3A4 inhibitor and efavirenz (EFV) as a CYP3A4 activator. A randomized, open, placebo-controlled, cross-over study was conducted in 12 healthy volunteers using 100 mg tilidine solution p.o., regular strength GFJ 250 mL (3 times at 12-hr intervals) and EFV 400 mg (12 hr before tilidine administration). Tilidine, nortilidine and bisnortilidine in plasma and urine were quantified by a validated LC/MS/MS analysis. GFJ did not change any pharmacokinetic parameter of tilidine and its metabolites, which suggests that intestinal CYP3A4 does not contribute to the first-pass metabolism of tilidine. No effect of EFV on the pharmacokinetics of the active nortilidine was observed except a significant reduction of the terminal elimination half-life by 15%. Overall elimination (renal and metabolic clearances) was unaffected by every treatment. CYP3A4 does not seem to play a major role in tilidine first-pass and overall metabolism. Other unknown metabolites and their enzymes responsible for their formation have to be investigated as they account for the majority of renally excreted metabolites.

  14. Metabolites analysis, metabolic enzyme activities and bioaccumulation in the clam Ruditapes philippinarum exposed to benzo[a]pyrene.

    PubMed

    Liu, Dong; Pan, Luqing; Li, Zhen; Cai, Yuefeng; Miao, Jingjing

    2014-09-01

    A study was performed on clams (Ruditapes philippinarum) exposed to 0.03, 0.3 and 3μg/L benzo[a]pyrene (B[a]P) for 21 days. B[a]P metabolite contents, activities of aryl hydrocarbon hydroxylase (AHH), 7-ethoxyresorufin O-deethylase (EROD), epoxide hydrolase (EH), dihydrodiol dehydrogenase (DD), glutathione-S-transferase (GST), sulfotransferase (SULT) and uridinediphosphate glucuronyltransferase (UGT) and B[a]P bioaccumulation were assayed in gills and digestive glands. Results showed that the order of B[a]P phase I metabolite contents was 9-hydroxy-B[a]P>B[a]P-1,6-dione>B[a]P-7,8-dihydrodiol, and the concentration of B[a]P-7,8-dihydrodiol sulfate conjugates was higher than that of B[a]P-7,8-dihydrodiol glucuronide conjugates. B[a]P accumulation and the activities of AHH, EROD, EH, DD, SULT and UGT increased first and then reached equilibrium. GST activity was induced first and then depressed. The concentration of B[a]P was far higher than that of its metabolites. Besides, there were no significant differences between enzyme activities in gills and those in digestive glands. These results provided information on B[a]P metabolic mechanism in bivalve and scientific data for pollution monitoring and food security.

  15. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression inJurkat Cells

    PubMed Central

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-01-01

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells. PMID:26343699

  16. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    PubMed

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  17. DNA damage and estrogenic activity induced by the environmental pollutant 2-nitrotoluene and its metabolite

    PubMed Central

    Watanabe, Chigusa; Egami, Takashi; Midorikawa, Kaoru; Hiraku, Yusuke; Oikawa, Shinji; Kawanishi, Shosuke

    2010-01-01

    Objectives The environmental pollutant 2-nitrotoluene (2-NO2-T) is carcinogenic and reproductively toxic in animals. In this study, we elucidated the mechanisms of its carcinogenicity and reproductive toxicity. Methods We examined DNA damage induced by 2-NO2-T and its metabolite, 2-nitrosotoluene (2-NO-T), using 32P-5′-end-labeled DNA. We measured 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA and cellular DNA in cultured human leukemia (HL-60) cells treated with 2-NO2-T and 2-NO-T. 8-Oxoguanine DNA glycosylase (OGG1) gene expression in HL-60 cells was measured by real-time polymerase chain reaction (PCR). We examined estrogenic activity using an E-screen assay and a surface plasmon resonance (SPR) sensor. Results In experiments with isolated DNA fragments, 2-NO-T induced oxidative DNA damage in the presence of Cu (II) and β-nicotinamide adenine dinucleotide disodium salt (reduced form) (NADH), while 2-NO2-T did not. 2-NO-T significantly increased levels of 8-oxodG in HL-60 cells. Real-time polymerase chain reaction (PCR) analysis revealed upregulation of OGG1 gene expression induced by 2-NO-T. An E-screen assay using the human breast cancer cell line MCF-7 revealed that 2-NO2-T induced estrogen-dependent cell proliferation. In contrast, 2-NO-T decreased the cell number and suppressed 17β-estradiol-induced cell proliferation. The data obtained with the SPR sensor using estrogen receptor α and the estrogen response element supported the results of the E-screen assay. Conclusions Oxidative DNA damage caused by 2-NO-T and estrogen-disrupting effects caused by 2-NO2-T and 2-NO-T may play a role in the reproductive toxicity and carcinogenicity of these entities. PMID:21432561

  18. Population Pharmacokinetic Modeling of Olmesartan, the Active Metabolite of Olmesartan Medoxomil, in Patients with Hypertension.

    PubMed

    Kodati, Devender; Kotakonda, Harish Kaushik; Yellu, Narsimhareddy

    2017-08-01

    Olmesartan medoxomil is an orally given angiotensin II receptor antagonist indicated for the treatment of hypertension. The aim of the study was to establish a population pharmacokinetic model for olmesartan, the active metabolite of olmesartan medoxomil, in Indian hypertensive patients, and to evaluate effects of covariates on the volume of distribution (V/F) and oral clearance (CL/F) of olmesartan. The population pharmacokinetic model for olmesartan was developed using Phoenix NLME 1.3 with a non-linear mixed-effect model. Bootstrap and visual predictive check were used simultaneously to validate the final population pharmacokinetic models. The covariates included age, sex, body surface area (BSA), bodyweight, height, creatinine clearance (CLCR) as an index of renal function and liver parameters as indices of hepatic function. A total of 205 olmesartan plasma sample concentrations from 69 patients with hypertension were collected in this study. The pharmacokinetic data of olmesartan was well described by a two-compartment linear pharmacokinetic model with first-order absorption and an absorption lag-time. The mean values of CL/F and V/F of olmesartan in the patients were 0.31565 L/h and 44.5162 L, respectively. Analysis of covariates showed that age and CLCR were factors influencing the clearance of olmesartan and the volume of distribution of olmesartan was dependent on age and BSA. The final population pharmacokinetic model was demonstrated to be appropriate and effective and it can be used to assess the pharmacokinetic parameters of olmesartan in Indian patients with hypertension.

  19. Population pharmacokinetic modeling of oxcarbazepine active metabolite in Chinese patients with epilepsy.

    PubMed

    Yu, Yunli; Zhang, Quanying; Xu, Wenjun; Lv, Chengzhe; Hao, Gang

    2016-08-01

    The aim of the study was to develop a population pharmacokinetic (PPK) model of oxcarbazepine and optimize the treatment of oxcarbazepine in Chinese patients with epilepsy. A total of 108 oxcarbazepine therapeutic drug monitoring samples from 78 patients with epilepsy were collected in this study. The pharmacologically active metabolite 10,11-dihydro-10-hydrocarbamazepine (MHD) was used as the analytical target for monitoring therapy of oxcarbazepine. Patients' clinical data were retrospectively collected. The PPK model for MHD was developed using Phoenix NLME 1.2 with a non-linear mixed-effect model. MHD pharmacokinetics obeys a one-compartment model with first-order absorption and elimination. The effect of age, gender, red blood cell count, red blood cell specific volume, hemoglobin (HGB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatine were analyzed. Bootstrap and data splitting were used simultaneously to validate the final PPK models. The mean values of volume of distribution and clearance of MHD in the patients were 14.2 L and 2.38 L h(-1), respectively. BUN and HGB influenced the MHD volume of distribution according to the following equation: V = tvV × (BUN/4.76)(-0.007) × (HGB/140)(-0.001) × e (ηV) . The MHD clearance was dependent on ALT and gender as follows: CL = tvCL × (ALT/30)(0.181) × (gender) × 1.083 × e (ηCL). The final PPK model was demonstrated to be suitable and effective and it can be used to evaluate the pharmacokinetic parameters of MHD in Chinese patients with epilepsy and to choose an optimal dosage regimen of oxcarbazepine on the basis of these parameters.

  20. Controversial alkoxyl and peroxyl radical scavenging activity of the tryptophan metabolite 3-hydroxy-anthranilic acid.

    PubMed

    Dorta, E; Aspée, A; Pino, E; González, L; Lissi, E; López-Alarcón, C

    2017-06-01

    3-Hydroxy-anthranilic acid (3-OHAA), a tryptophan metabolite produced in the kynurenine pathway, is an efficient antioxidant towards peroxyl radicals (ROO) derived from the AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride) thermolysis. However, self-reactions of ROO can give rise to alkoxyl radicals (RO), which could strongly affect the fate of scavenging reactions. In the present work, we studied the influence of RO in the scavenging activity of 3-OHAA in three different systems: i) Monitoring of the direct reaction between 3-OHAA and AAPH-derived free radicals (kinetic studies); ii) Evaluation of the protective effect of 3-OHAA on the AAPH-induced consumption of fluorescein; and, iii) Inhibition, given by 3-OHAA, of the AAPH-initiated lipid peroxidation of both, rat brain synaptosomes and homogenate preparations (assessed by chemiluminescence). For such purposes, the fraction of free radicals (f) trapped per 3-OHAA molecule was determined in each system. Kinetic results show that the oxidation of 3-OHAA follows a process dominated by ROO with a zero order kinetic limit in 3-OHAA, and a fraction (fri) equal to 0.88. From the induction times, elicited by 3-OHAA in the kinetic profiles of fluorescein consumption, a fraction (fT) of 0.28 was determined. 3-OHAA also generated induction times in the kinetic profiles of light emission during the AAPH-initiated lipid peroxidation of rat brain synaptosomes and homogenates. From such induction times, fractions of 0.61 and 0.63 were determined for rat brain synaptosomes (fsyn) and homogenates (fhom), respectively. These results show that during the incubation of 3-OHAA and AAPH, a low fraction of ROO self-reacts to generate RO. Nevertheless, when 3-OHAA is employed to protect particular targets, such as fluorescein, rat brain synaptosomes and homogenates, reactions of ROO and/or RO should be considered. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia

    PubMed Central

    Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora; Osorio, Edison; León, Francisco; Cutler, Stephen J.

    2015-01-01

    Ethnopharmacological relevance Renealmia alpinia is native to the American continent and can be found from Mexico to Brazil, and in the Caribbean islands. It is known as “matandrea” in Colombia, and it has been commonly used in traditional medicine to treat painful diseases and ailments. Based on its traditional uses, it is of interest to evaluate the pharmacologic effects of this plant and its secondary metabolites. Materials and methods Methanol and aqueous extracts of wild and micropropagated R. alpinia (leaves) were obtained and chemically compared by High Performance Thin Layer Chromatography (HPTLC). The antinociceptive activity of these extracts was examined using an in vivo assay (Siegmund test). Additionally, the dichloromethane extract of R. alpinia was fractionated and pure compounds were isolated by chromatographic methods. The structure elucidation of isolated compounds was performed by NMR experiments and spectroscopic techniques and comparison with the literature data. Purified compounds were evaluated for their in vitro binding affinity for opioids and cannabinoids receptors. Results The dichloromethane extract of the plant’s aerial part afforded sinostrobin (1), naringenin 7,4′-dimethyl ether (2), 2′,6′-dihydroxy-4′-methoxychalcone (3), 4-methoxy-6-(2-phenylethenyl)-2H-pyran-2-one (4), naringenin 7-methyl ether (5) and 3,5-heptanediol, 1,7-diphenyl (6), which were isolated using chromatographic methods. Their chemical structures were established by physical and spectroscopic techniques. The antinociceptive effects observed in mice by extracts of wild and micropropagated plants were similar. The compounds isolated from R. alpinia do not show affinity to opioid or cannabinoid receptors. Conclusion Aqueous and methanol extracts of R. alpinia provide antinociceptive and analgesic effects in an in vivo model. These results contribute additional insight as to why this plant is traditionally used for pain management. Also, this is the first

  2. Tissue accumulation kinetics of ciclesonide-active metabolite and budesonide in mice.

    PubMed

    Mårs, Ulla; d'Argy, Roland; Hallbeck, Karin; Miller-Larsson, Anna; Edsbäcker, Staffan

    2013-06-01

    Inhaled corticosteroids (ICS) are mainstay treatment of asthma and chronic obstructive pulmonary disease. However, highly lipophilic ICS accumulate in systemic tissues, which may lead to adverse systemic effects. The accumulation of a new, highly lipophilic ICS, ciclesonide and its active metabolite (des-CIC) has not yet been reported. Here, we have compared tissue accumulation of des-CIC and an ICS of a moderate lipophilicity, budesonide (BUD), after 14 days of once-daily treatment in mice. Single, three or 14 daily doses of [(3) H]-des-CIC or [(3) H]-BUD were administered subcutaneously to male CD1 albino mice, which were killed at 4 hr, 24 hr or 5 days after the last dose. Distribution of tissue concentration of radioactivity was studied by quantitative whole-body autoradiography. Pattern of radioactivity distribution across most tissues was similar for both corticosteroids after a single as well as after repeated dosing. However, tissue concentration of radioactivity differed between des-CIC and BUD. After a single dose, concentrations of radioactivity for both corticosteroids were low for most tissues but increased over 14 days of daily dosing. The tissue radioactivity of des-CIC at 24 hr and 5 days after the 14th dose was 2-3 times higher than that of BUD in majority of tissues. Tissue accumulation, assessed as concentration of tissue radioactivity 5 days after the 14th versus 3rd dose, showed an average ratio of 5.2 for des-CIC and 2.7 for BUD (p < 0.0001). In conclusion, des-CIC accumulated significantly more than BUD. Systemic accumulation may lead to increased risk of adverse systemic side effects during long-term therapy. © 2012 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  3. Oxidative stress and apoptosis in HIV infection: a role for plant-derived metabolites with synergistic antioxidant activity.

    PubMed

    Greenspan, H C; Aruoma, O I

    1994-05-01

    The cascade of events resulting from 'oxidative stress' is markedly similar to that which can initiate apoptosis, a possible mechanism of immune-cell loss in patients with HIV infection and AIDS. Since primary and secondary metabolites found in plants can act as synergistic antioxidants, and can prevent oxidation-induced cell death, Howard Greenspan and Okezie Aruoma ask whether or not these compounds can be useful in inhibiting viral activation and the death of immune cells in HIV/AIDS.

  4. Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor-alpha reporter gene assay.

    PubMed

    Charles, G D; Bartels, M J; Zacharewski, T R; Gollapudi, B B; Freshour, N L; Carney, E W

    2000-06-01

    A human breast cancer cell line, MCF-7, transiently transfected with a chimeric estrogen receptor (Gal4-HEG0) and a luciferase reporter plasmid (17m5-G-Luc), was used to investigate the estrogenic activity of benzo[a]pyrene (B[a]P), a prototypical polyaromatic hydrocarbon (PAH). B[a]P at concentrations > or = 1 microM produced responses comparable to that of 0.1 nM 17beta-estradiol (E2). The ER antagonist ICI 182,780 (ICI) completely inhibited the response to both E2 and B[a]P, indicating that the responses were ER-mediated. However, 2 microM alpha-napthoflavone (alpha-NF), an Ah receptor antagonist and P450 inhibitor, also decreased the response to B[a]P but not to E2. Analysis of the profile of B[a]P metabolites in the transfected MCF-7 cultures indicated that alpha-NF inhibited the production of the 3- and 9-hydroxy (3-OH and 9-OH), as well as the 7, 8- and 9,10-dihydroxy (7,8-OH and 9,10-OH) B[a]P species. In the ER-alpha reporter assay, the 3-OH and 9-OH metabolites produced maximal responses comparable to E2, with EC50 values of 1.2 microM and 0.7 microM, respectively. The 9,10-OH metabolite exhibited minimal activity in the assay. These responses were inhibited by ICI for both the 3-OH and the 9-OH species; however, alpha-NF inhibited only the response to the 9-OH metabolite. The 7,8-OH metabolite did not exhibit significant estrogenic activity. Furthermore, 7,8-OH B[a]P displayed observable cytotoxicity at concentrations > or = 10(-7) M. This cytotoxic response was completely inhibited by alpha-NF, suggesting that 7,8-OH B[a]P was being further metabolized to one or more cytotoxic metabolites.

  5. Water-Soluble MMP-9 Inhibitor Prodrug Generates Active Metabolites That Cross the Blood–Brain Barrier

    PubMed Central

    2013-01-01

    MMP-9 plays a detrimental role in the pathology of several neurological diseases and, thus, represents an important target for intervention. The water-soluble prodrug ND-478 is hydrolyzed to the active MMP-9 inhibitor ND-322, which in turn is N-acetylated to the even more potent metabolite ND-364. We used a sensitive bioanalytical method based on ultraperformance liquid chromatography with multiple-reaction monitoring detection to measure levels of ND-478, ND-322, and ND-364 in plasma and brain after administration of ND-478 and the metabolites. ND-478 did not cross the blood–brain barrier, as was expected; however the active metabolites ND-322 and ND-364 distributed to the brain. The active compound after administration of either ND-478 or ND-322 is likely ND-364. ND-322 is N-acetylated in both brain and liver, but it is so metabolized preferentially in liver. Since N-acetyltransferases involved in the metabolism of ND-322 to ND-364 are polymorphic, direct administration of the N-acetylated ND-364 would achieve the requisite therapeutic levels in the brain. PMID:23687970

  6. Non-targeted Metabolite Profiling and Scavenging Activity Unveil the Nutraceutical Potential of Psyllium (Plantago ovata Forsk)

    PubMed Central

    Patel, Manish K.; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Non-targeted metabolomics implies that psyllium (Plantago ovata) is a rich source of natural antioxidants, PUFAs (ω-3 and ω-6 fatty acids) and essential and sulfur-rich amino acids, as recommended by the FAO for human health. Psyllium contains phenolics and flavonoids that possess reducing capacity and reactive oxygen species (ROS) scavenging activities. In leaves, seeds, and husks, about 76, 78, 58% polyunsaturated, 21, 15, 20% saturated, and 3, 7, 22% monounsaturated fatty acids were found, respectively. A range of FAs (C12 to C24) was detected in psyllium and among different plant parts, a high content of the nutritive indicators ω-3 alpha-linolenic acid (57%) and ω-6 linoleic acid (18%) was detected in leaves. Similarly, total content of phenolics and the essential amino acid valine were also detected utmost in leaves followed by sulfur-rich amino acids and flavonoids. In total, 36 different metabolites were identified in psyllium, out of which 26 (13 each) metabolites were detected in leaves and seeds, whereas the remaining 10 were found in the husk. Most of the metabolites are natural antioxidants, phenolics, flavonoids, or alkaloids and can be used as nutrient supplements. Moreover, these metabolites have been reported to have several pharmaceutical applications, including anti-cancer activity. Natural plant ROS scavengers, saponins, were also detected. Based on metabolomic data, the probable presence of a flavonoid biosynthesis pathway was inferred, which provides useful insight for metabolic engineering in the future. Non-targeted metabolomics, antioxidants and scavenging activities reveal the nutraceutical potential of the plant and also suggest that psyllium leaves can be used as a green salad as a dietary supplement to daily food. PMID:27092153

  7. Mixture toxicity of the antiviral drug Tamiflu((R)) (oseltamivir ethylester) and its active metabolite oseltamivir acid.

    PubMed

    Escher, Beate I; Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith; Straub, Jürg Oliver

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  8. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    PubMed

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  9. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    PubMed Central

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites produced by microbial biofilms, which can drastically affect colony development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. “Images” over a 3.25 × 0.9 mm area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify, and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression. PMID:24510163

  10. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): Glycoalkaloids and phenolic acids show synergistic effects.

    PubMed

    Sánchez-Maldonado, A F; Schieber, A; Gänzle, M G

    2016-04-01

    To study the antifungal effects of the potato secondary metabolites α-solanine, α-chaconine, solanidine and caffeic acid, alone or combined. Resistance to glycoalkaloids varied among the fungal species tested, as derived from minimum inhibitory concentrations assays. Synergistic antifungal activity between glycoalkaloids and phenolic compounds was found. Changes in the fluidity of fungal membranes caused by potato secondary plant metabolites were determined by calculation of the generalized polarization values. The results partially explained the synergistic effect between caffeic acid and α-chaconine and supported findings on membrane disruption mechanisms from previous studies on artificial membranes. LC/MS analysis was used to determine variability and relative amounts of sterols in the different fungal species. Results suggested that the sterol pattern of fungi is related to their resistance to potato glycoalkaloids and to their taxonomy. Fungal resistance to α-chaconine and possibly other glycoalkaloids is species dependent. α-Chaconine and caffeic acid show synergistic antifungal activity. The taxonomic classification and the sterol pattern play a role in fungal resistance to glycoalkaloids. Results improve the understanding of the antifungal mode of action of potato secondary metabolites, which is essential for their potential utilization as antifungal agents in nonfood systems. © 2016 The Society for Applied Microbiology.

  11. The neurosteroid dehydroepiandrosterone (DHEA) and its metabolites alter 5-HT neuronal activity via modulation of GABAA receptors.

    PubMed

    Gartside, S E; Griffith, N C; Kaura, V; Ingram, C D

    2010-11-01

    Dehydroepiandrosterone (DHEA) and its metabolites, DHEA-sulphate (DHEA-S) and androsterone, have neurosteroid activity. In this study, we examined whether DHEA, DHEA-S and androsterone, can influence serotonin (5-HT) neuronal firing activity via modulation of γ-aminobutryic acid (GABA(A)) receptors. The firing of presumed 5-HT neurones in a slice preparation containing rat dorsal raphe nucleus was inhibited by the GABA(A) receptor agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridinyl-3-ol (THIP) (25 μM) and GABA (100 μM). DHEA (100 and 300 μM) and DHEA-S (1, 10 and 100 μM) caused a rapid and reversible attenuation of the response to THIP. DHEA (100 μM) and DHEA-S (100 μM) also attenuated the effect of GABA. Androsterone (10 and 30 μM) markedly enhanced the inhibitory response to THIP (25 μM). The effect was apparent during androsterone administration but persisted and even increased in magnitude after drug wash-out. The data indicate that GABA(A) receptor-mediated regulation of 5-HT neuronal firing is sensitive to negative modulation by DHEA and its metabolite DHEA-S is sensitive to positive modulation by the metabolite androsterone. The effects of these neurosteroids on GABA(A) receptor-mediated regulation of 5-HT firing may underlie some of the reported behavioural and psychological effects of endogenous and exogenous DHEA.

  12. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities.

    PubMed

    Li, Xiao-Jun; Zhang, Qiang; Zhang, An-Ling; Gao, Jin-Ming

    2012-04-04

    Thirty-nine fungal metabolites 1-39, including two new alkaloids, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6) and 3-hydroxyfumiquinazoline A (16), were isolated from the fermentation broth of Aspergillus fumigatus LN-4, an endophytic fungus isolated from the stem bark of Melia azedarach. Their structures were elucidated on the basis of detailed spectroscopic analysis (mass spectrometry and one- and two-dimensional NMR experiments) and by comparison of their NMR data with those reported in the literature. These isolated compounds were evaluated for in vitro antifungal activities against some phytopathogenic fungi, toxicity against brine shrimps, and antifeedant activities against armyworm larvae (Mythimna separata Walker). Among them, sixteen compounds showed potent antifungal activities against phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Alternaria alternata, Colletotrichum gloeosporioides, Fusarium solani, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. vasinfectum, and Gibberella saubinettii), and four of them, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6), fumitremorgin B (7), verruculogen (8), and helvolic acid (39), exhibited antifungal activities with MIC values of 6.25-50 μg/mL, which were comparable to the two positive controls carbendazim and hymexazol. In addition, of eighteen that exerted moderate lethality toward brine shrimps, compounds 7 and 8 both showed significant toxicities with median lethal concentration (LC(50)) values of 13.6 and 15.8 μg/mL, respectively. Furthermore, among nine metabolites that were found to possess antifeedant activity against armyworm larvae, compounds 7 and 8 gave the best activity with antifeedant indexes (AFI) of 50.0% and 55.0%, respectively. Structure-activity relationships of the metabolites were also discussed.

  13. Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine

    NASA Astrophysics Data System (ADS)

    Zaazaa, Hala E.; Mohamed, Afaf O.; Hawwam, Maha A.; Abdelkawy, Mohamed

    2015-01-01

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance.

  14. Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine.

    PubMed

    Zaazaa, Hala E; Mohamed, Afaf O; Hawwam, Maha A; Abdelkawy, Mohamed

    2015-01-05

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance.

  15. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  16. Solving the Jigsaw Puzzle of Wound-Healing Potato Cultivars: Metabolite Profiling and Antioxidant Activity of Polar Extracts

    PubMed Central

    2015-01-01

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding. PMID:24998264

  17. Solving the jigsaw puzzle of wound-healing potato cultivars: metabolite profiling and antioxidant activity of polar extracts.

    PubMed

    Dastmalchi, Keyvan; Cai, Qing; Zhou, Kevin; Huang, Wenlin; Serra, Olga; Stark, Ruth E

    2014-08-06

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding.

  18. Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis.

    PubMed Central

    Ye, J J; Neal, J W; Cui, X; Reizer, J; Saier, M H

    1994-01-01

    Lactobacillus brevis takes up glucose and the nonmetabolizable glucose analog 2-deoxyglucose (2DG), as well as lactose and the nonmetabolizable lactose analoge thiomethyl beta-galactoside (TMG), via proton symport. Our earlier studies showed that TMG, previously accumulated in L. brevis cells via the lactose:H+ symporter, rapidly effluxes from L. brevis cells or vesicles upon addition of glucose and that glucose inhibits further accumulation of TMG. This regulation was shown to be mediated by a metabolite-activated protein kinase that phosphorylase serine 46 in the HPr protein. We have now analyzed the regulation of 2DG uptake and efflux and compared it with that of TMG. Uptake of 2DG was dependent on an energy source, effectively provided by intravesicular ATP or by extravesicular arginine which provides ATP via an ATP-generating system involving the arginine deiminase pathway. 2DG uptake into these vesicles was not inhibited, and preaccumulated 2DG did not efflux from them upon electroporation of fructose 1,6-diphosphate or gluconate 6-phosphate into the vesicles. Intravesicular but not extravesicular wild-type or H15A mutant HPr of Bacillus subtilis promoted inhibition (53 and 46%, respectively) of the permease in the presence of these metabolites. Counterflow experiments indicated that inhibition of 2DG uptake is due to the partial uncoupling of proton symport from sugar transport. Intravesicular S46A mutant HPr could not promote regulation of glucose permease activity when electroporated into the vesicles with or without the phosphorylated metabolites, but the S46D mutant protein promoted regulation, even in the absence of a metabolite. The Vmax but not the Km values for both TMG and 2DG uptake were affected. Uptake of the natural, metabolizable substrates of the lactose, glucose, mannose, and ribose permeases was inhibited by wild-type HPr in the presence of fructose 1,6-diphosphate or by S46D mutant HPr. These results establish that HPr serine

  19. Body Fat Mass Is Associated With Ratio of Steroid Metabolites Reflecting 17,20-Lyase Activity in Prepubertal Girls.

    PubMed

    Kim, Shin-Hye; Moon, Ju-Yeon; Sasano, Hironobu; Choi, Man Ho; Park, Mi-Jung

    2016-12-01

    Pediatric obesity has been related to hyperandrogenism and premature adrenarche in previous studies. However, little is known regarding the association between body fat mass and steroidogenic enzyme activities in children. To examine whether body fat mass is associated with serum steroid profiles in girls. We enrolled 242 girls (125 prepubertal, 117 pubertal; age, 7-13 years). Early morning blood samples were drawn at a university hospital to measure serum steroid profiles using gas chromatography-mass spectrometry, and steroidogenic enzyme activities were assessed from the ratios of steroid metabolites. We evaluated serum steroid profiles and estimated steroidogenic enzyme activities and their association with anthropometric indices and body composition. Prepubertal obese girls demonstrated significantly higher progestin, androgens (dehydroepiandrosterone [DHEA], androstenedione [A-dione], T, androsterone), and ratio of steroid metabolites reflecting 17,20-lyase activity [(DHEA + A-dione)/17-hydroxypregnenolone] compared with prepubertal controls. Pubertal obese girls demonstrated significantly higher serum T and androsterone than pubertal controls; however, serum steroid metabolite ratios reflecting steroidogenic enzyme activities did not significantly differ among obese and non-obese girls. Partial correlation analysis revealed that body fat mass was positively correlated with pregnenolone, DHEA, A-dione, T, androsterone, and ratio of (DHEA + A-dione)/17-hydroxypregnenolone in prepubertal girls only. Prepubertal girls with increased body fat mass had significantly higher serum DHEA and ratio of (DHEA + A-dione)/17-hydroxypregnenolone than controls. Increased androgen production in prepubertal obese girls could be at least partly due to increased body fat mass and 17,20-lyase activity.

  20. Novel tryptophan metabolites, chromoazepinone A, B and C, produced by a blocked mutant of Chromobacterium violaceum, the biosynthetic implications and the biological activity of chromoazepinone A and B.

    PubMed

    Mizuoka, Takaaki; Toume, Kazufumi; Ishibashi, Masami; Hoshino, Tsutomu

    2010-07-21

    Chromobacterium violaceum produces tryptophan metabolites, purple pigments of violacein and deoxyviolacein. A blocked mutant was prepared with N-methyl-N'-nitrosoguanidine to gain insights into the biosynthetic mechanisms of the pigments. Five tryptophan metabolites were isolated: three novel compounds, named chromoazepinone A, B and C and two known compounds, chromopyrrolic acid and arcyriarubin A. The structure determinations of the three novel compounds are described. The biosynthetic pathways of these metabolites are proposed on the basis of the findings about violacein biosynthesis. Chromoazepinone A and B were found to have an interesting effect of inhibition of Wnt signal transcriptional activity, which is implicated in the formation of numerous tumors when aberrantly activated.

  1. Estimation of tamoxifen metabolite concentrations in the blood of breast cancer patients through CYP2D6 genotype activity score.

    PubMed

    Wu, Alan H B; Lorizio, Wendy; Tchu, Simone; Lynch, Kara; Gerona, Roy; Ji, Wuyang; Ruan, Weiming; Ruddy, Kathryn J; Desantis, Stephen D; Burstein, Harold J; Ziv, Elad

    2012-06-01

    Tamoxifen, a prodrug used for adjuvant breast cancer therapy, requires conversion to the active metabolite endoxifen through CYP 2D6. We aimed to construct an algorithm to predict endoxifen concentrations based on a patient’s CYP 2D6 genotype, demographic factors, and co-medication use. Eighty-eight women enrolled in the UCSF TamGen II study and 81 women enrolled in a prospective study at Dana-Farber Cancer Institute were included in this analysis. All the women had been on tamoxifen for at least 3 months before blood collection. Demographic information included the patient’s age, race/ethnicity, body mass index (where available), and self-reported and measured medications and herbals that affect 2D6 activity. DNA was extracted and genotyped for 2D6 (Amplichip, Roche Diagnostics). An activity score was calculated based on genotypes and adjusted for use of medications known to inhibit 2D6. Serum was tested for tamoxifen and metabolite concentrations and for the presence of drugs by liquid chromatography/mass spectrometry. Univariate and multivariate regression analysis were computed for age, body mass index, ethnicity, and adjusted activity score to predict tamoxifen metabolite concentrations in the training data-set of UCSF patients, and the resulting algorithm was validated in the Dana-Farber patients. For the training set, the correlation coefficient (r2) for log endoxifen and N-desmethyltamoxifen:endoxifen ratio to activity score, age, and race, were 0.520 and 0.659, respectively; 0.324 and 0.567 for the validation; and 0.396 and 0.615 for both the datasets combined. An algorithm that incorporates genotype and demographic variables can be used to predict endoxifen concentrations for women on tamoxifen therapy. If endoxifen levels are confirmed to be predictive of tamoxifen benefit, then this algorithm may be helpful to determine which women warrant endoxifen testing.

  2. [Simultaneous determination of erdosteine and its active metabolite in human plasma by liquid chromatography-tandem mass spectrometry with pre-column derivatization].

    PubMed

    Jin, Jing; Chen, Xiao-Yan; Zhang, Yi-Fan; Ma, Zhi-Yu; Zhong, Da-Fang

    2013-03-01

    A sensitive, rapid and accurate liquid chromatography-tandem mass spectrometric (LC-MS/MS) method with pre-column derivatization was developed for the simultaneous determination of erdosteine and its thiol-containing active metabolite in human plasma. Paracetamol and captopril were chosen as the internal standard of erdosteine and its active metabolite, respectively. Aliquots of 100 microL plasma sample were derivatized by 2-bromine-3'-methoxy acetophenone, then separated on an Agilent XDB-C18 (50 mm x 4.6 mm ID, 1.8 microm) column using 0.1% formic acid methanol--0.1% formic acid 5 mmol x L(-1) ammonium acetate as mobile phase, in a gradient mode. Detection of erdosteine and its active metabolite were achieved by ESI MS/MS in the positive ion mode. The linear calibration curves for erdosteine and its active metabolite were obtained in the concentration ranges of 5-3 000 ng x mL(-1) and 5-10 000 ng x mL(-1), respectively. The lower limit of quantification of erdosteine and its active metabolite were both 5.00 ng x mL(-1). The pharmacokinetic results of erdosteine and its thiol-containing active metabolite showed that the area under curve (AUC) of the thiol-containing active metabolite was 6.2 times of that of erdosteine after a single oral dose of 600 mg erdosteine tables in 32 healthy volunteers, The mean residence time (MRT) of the thiol-containing active metabolite was (7.51 +/- 0.788) h, which provided a pharmacokinetic basis for the rational dosage regimen.

  3. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics.

    PubMed

    Adomako-Bonsu, Amma G; Chan, Sue Lf; Pratten, Margaret; Fry, Jeffrey R

    2017-04-01

    Persistent accumulation of reactive oxygen species causes cellular oxidative stress which contributes strongly towards the induction and progression of various diseases. Therapeutic focus has therefore shifted towards the use of antioxidants, with recent interest in those of plant origin. In the current study, rosmarinic acid (RA) and its key metabolites were evaluated in non-cellular and cellular antioxidant assays, using quercetin (Q) as a positive control. The non-cellular assay was performed as scavenging of DPPH radical, whilst the cellular assay was performed as protection from an oxidant stress. Radical-scavenging activity of RA and two of its primary metabolites, CA and DHPLA, were comparable to that of Q, whilst FA was of lower potency and m-CoA was inactive. In the cellular assay, RA and CA were markedly less potent than Q, with DHPLA, FA and m-CoA being inactive, this being true in short-term (5-h) or long-term (20-h) exposure conditions. However, antioxidant potency of Q and methyl rosmarinate, a non-ionisable ester of RA, was similar in the non-cellular and short-term cellular assays. It is proposed that marked ionisation of organic acids such as RA and its metabolites at physiological pH greatly limits their intracellular accumulation, and so attenuates intrinsic antioxidant ability demonstrated in the non-cellular assay. This study demonstrates some of the factors that prevent well-known phytochemicals from progressing further along the drug discovery chain.

  4. In vitro antimicrobial activities of metabolites from vaginal Lactobacillus strains against Clostridium perfringens isolated from a woman's vagina.

    PubMed

    Amin, Mansour; Moradi Choghakabodi, Parastoo; Alhassan Hamidi, Mohammad; Najafian, Mahin; Farajzadeh Sheikh, Ahmad

    2017-01-01

    More than 50 different species of bacteria may live in a woman's vagina, with lactobacilli being the predominant microorganism found in healthy adult females. Lactobacilli are relevant as a barrier to infection and are important in the impairment of colonization by pathogens, owing to competitive adherence to adhesion sites in the vaginal epithelium and their capacity to produce antimicrobial compounds. The aim of the present study was to demonstrate the inhibitory capability of Lactobacillus metabolites against Clostridium perfringens, an anaerobic Gram-positive bacterium. These bacteria were isolated from vaginal swabs by using culture-dependent approaches, and the bacteriostatic effect of Lactobacillus metabolites, extracted from different isolates, was assessed using a modified E test. Among the 100 vaginal swabs, 59 (59%) samples showed the presence of Lactobacillus strains and only one sample contained C. perfringens. Lactobacillus metabolites demonstrated the significant potency of in vitro activity against C. perfringens, with minimal inhibitory concentration values ranging from 15.6 μg/mL to 31.2 μg/mL. This study suggests that women without vaginal Lactobacillus strains may be susceptible to nonindigenous and potentially harmful microorganisms. Copyright © 2016. Published by Elsevier Taiwan LLC.

  5. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats.

    PubMed

    Lysne, Vegard; Strand, Elin; Svingen, Gard F T; Bjørndal, Bodil; Pedersen, Eva R; Midttun, Øivind; Olsen, Thomas; Ueland, Per M; Berge, Rolf K; Nygård, Ottar

    2016-01-05

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats.

  6. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats

    PubMed Central

    Lysne, Vegard; Strand, Elin; Svingen, Gard F. T.; Bjørndal, Bodil; Pedersen, Eva R.; Midttun, Øivind; Olsen, Thomas; Ueland, Per M.; Berge, Rolf K.; Nygård, Ottar

    2016-01-01

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. PMID:26742069

  7. Relationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea).

    PubMed

    Wessel, N; Santos, R; Menard, D; Le Menach, K; Buchet, V; Lebayon, N; Loizeau, V; Burgeot, T; Budzinski, H; Akcha, F

    2010-01-01

    Polycylic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in the marine environment. Their toxicity is mainly linked to the ability of marine species to biotransform them into reactive metabolites. PAHs are thus often detected at trace levels in animal tissues. For biomonitoring purposes, this findings have two main consequences, (i) the determination of the PAH tissue concentration is not suitable for the evaluation of individual exposure to PAHs (ii) it can explain sometimes the lack of correlations obtained with relevant markers of toxicity such as genotoxicity biomarkers. The aim of the present study was to better investigate the link between PAH exposure and genotoxicity in marine flatfish. During a laboratory experiment, juvenile soles were exposed for four weeks to a mixture of three PAHs, namely benzo[a]pyrene, fluoranthene and pyrene, followed by one week of depuration. Fish were exposed via the trophic route to a daily PAH concentration of 120 μg/g food. Fish were sampled at different time points. The bioavailability and the biotransformation of PAHs were assessed by the measurement of biliary metabolites using a sensitive UPLC MS/MS method. The 7-ethoxyresorufine-O-deethylase was also measured in liver subcellular fractions as a biomarker of phase I biotransformation activities. Genotoxicity was assessed in parallel by the measurement of DNA strand breaks in fish erythrocytes by the alkaline comet assay. During this study, the high amount of PAH metabolites produced in sole demonstrated the bioavailability of PAHs and their biotransformation by fish enzymes. A positive correlation was observed between the level of hydroxylated PAH metabolites and genotoxicity as measured by the alkaline comet assay.

  8. Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity

    PubMed Central

    Jones, D J L; Lamb, J H; Verschoyle, R D; Howells, L M; Butterworth, M; Lim, C K; Ferry, D; Farmer, P B; Gescher, A J

    2004-01-01

    Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavone with putative ability to prevent cancer and cardiovascular diseases. Its metabolism was evaluated in rats and human. Rats received quercetin via the intravenous (i.v.) route and metabolites were isolated from the plasma, urine and bile. Analysis was by high-performance liquid chromatography and confirmation of species identity was achieved by mass spectrometry. Quercetin and isorhamnetin, the 3′-O-methyl analogue, were found in both the plasma and urine. In addition, several polar peaks were characterised as sulphated and glucuronidated conjugates of quercetin and isorhamnetin. Extension of the metabolism studies to a cancer patient who had received quercetin as an i.v. bolus showed that (Quercetin removed) isorhamnetin and quercetin 3′-O-sulphate were major plasma metabolites. As a catechol, quercetin can potentially be converted to a quinone and subsequently conjugated with glutathione (GSH). Oxidation of quercetin with mushroom tyrosinase in the presence of GSH furnished GSH conjugates of quercetin, two mono- and one bis-substituted conjugates. However, these species were not found in biomatrices in rats treated with quercetin. As cyclo-oxygenase-2 (COX-2) expression is mechanistically linked to carcinogenesis, we examined whether quercetin and its metabolites can inhibit COX-2 in a human colorectal cancer cell line (HCA-7). Isorhamnetin and its 4′-isomer tamarixetin were potent inhibitors, reflected in a 90% decrease in prostaglandin E-2 (PGE-2) levels, a marker of COX-2 activity. Quercetin was less effective, with a 50% decline. Quercetin 3- and 7-O-sulphate had no effect on PGE-2. The results indicate that quercetin may exert its pharmacological effects, at least in part, via its metabolites. PMID:15292928

  9. Could oxidative stress initiate programmed cell death in HIV infection? A role for plant derived metabolites having synergistic antioxidant activity.

    PubMed

    Greenspan, H C; Aruoma, O I; Arouma, O

    1994-06-01

    Evidence supports the premise that a pro-oxidant condition exists in HIV-seropositive patients, a result of an overabundance in production of reactive oxygen forms combined with a multilevel deficiency in nutritional and metabolic sources of antioxidants. Apoptosis (a programmed cell death) is recognized as a possible pathway of immune cell loss in patients with HIV infection and AIDS. The cascade of events that results from 'oxidative stress' (OS) is markedly similar to that which can initiate apoptosis and includes oxidation of cellular membranes, alteration of metabolic pathways, disruption of electron transport systems, depletion of cellular ATP production, loss of Ca2+ homeostasis, endonuclease activation and DNA/chromatin fragmentation. Downstream events secondary to these effects may also play a role in activation of latent virus and subsequent viral replication. Primary and secondary metabolites found in plants act as synergistic antioxidants, and can protect plants from oxidation-induced cell death. Experiments have shown that some of these same metabolites can inhibit cell killing by HIV. Can these compounds be useful in inhibiting viral activation and the death of immune cells in HIV/AIDS through their synergistic antioxidant properties? A brief review of the evidence for OS in HIV is presented and the potential basis for OS playing a role in the initiation of cell death and viral replication is explored. The functional antioxidant activities of plant metabolites are illustrated and the use of these synergistic antioxidants from plants are proposed as a mechanism by which viral replication and cell killing in HIV infection can be inhibited.

  10. Reduced photoinhibition under low irradiance enhanced Kacip Fatimah (Labisia pumila Benth) secondary metabolites, phenyl alanine lyase and antioxidant activity.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E

    2012-01-01

    A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m(2)/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m(2)/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m(2)/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition.

  11. Reduced Photoinhibition under Low Irradiance Enhanced Kacip Fatimah (Labisia pumila Benth) Secondary Metabolites, Phenyl Alanine Lyase and Antioxidant Activity

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z.E.

    2012-01-01

    A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m2/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m2/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m2/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition. PMID:22754297

  12. Why do metabolites circulate?

    PubMed

    Smith, Dennis A; Dalvie, Deepak

    2012-01-01

    The aim of most metabolism and excretion processes is to remove the drug and drug related material from the body; however, in most cases metabolites are present in abundance in circulation. To allow better in vitro/in vivo correlations a greater understanding of why metabolites formed in organs such as the liver are present in the circulation is necessary. Separating metabolites into highly lipid permeable and low lipid permeable allows the role of passive efflux from the liver and active transport to be dissected. Many drugs form glucuronide metabolites that circulate at high total concentrations and attention is drawn to low lipid permeability, efflux from the liver by MRP3, high plasma protein binding and restricted distribution as the explanation for this. The use of metabolite maps is suggested as a way of displaying complex processes in a simple form.

  13. Activation of 3-nitrobenzanthrone and its metabolites to DNA-damaging species in human B lymphoblastoid MCL-5 cells.

    PubMed

    Arlt, Volker M; Cole, Kathleen J; Phillips, David H

    2004-03-01

    3-Nitrobenzanthrone (3-NBA) is one of the most potent mutagens in the Ames Salmonella typhimurium assay and a suspected human carcinogen recently identified in diesel exhaust and in airborne particulate matter. 3-Aminobenzanthrone (3-ABA), 3-acetylaminobenzanthrone (3-Ac-ABA) and N-acetyl-N-hydroxy-3-aminobenzanthrone (N-Ac-N-OH-ABA) have been identified as 3-NBA metabolites. In the present study we investigated the genotoxic effects of 3-NBA and its metabolites in the human B lymphoblastoid cell line MCL-5. DNA strand breaks were measured using the Comet assay, chromosomal damage was assessed using the micronucleus assay and DNA adduct formation was determined by 32P-post-labelling analysis. DNA strand-breaking activity was observed with each compound in a concentration-dependent manner (1-50 microM, 2 h incubation time). At 50 microM median comet tail lengths (CTLs) were 25.0 microm for 3-NBA, 48.0 microm for 3-ABA, 54.5 microm for 3-Ac-ABA and 65.0 microm for N-Ac-N-OH-ABA. Median CTLs in control incubations were in the range 7.7-13.1 micro m. Moreover, the strand-breaking activity of 3-NBA was more pronounced in the presence of a DNA repair inhibitor, hydroxyurea. Depending on the concentration used (1-20 microM, 24 h incubation time), 3-NBA and its metabolites also showed clastogenic activity in the micronucleus assay. 3-NBA and N-Ac-N-OH-ABA were the most active at low concentrations; at 1 microM the total number of micronuclei per 500 binucleate cells was 4.7 +/- 0.6 in both cases, compared with 1.7-3.0 for controls (P < 0.05). Furthermore, multiple DNA adducts were detected with each compound (1 microM, 24 h incubation time), essentially similar to those found recently in vivo in rats treated with 3-NBA or its metabolites. DNA adduct levels ranged from 1.3 to 42.8 and from 2.0 to 39.8 adducts/10(8) nt using the nuclease P1 and butanol enrichment procedures, respectively. DNA binding was highest for N-Ac-N-OH-ABA, followed by 3-NBA, and much lower for 3-ABA

  14. Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in guinea pigs

    SciTech Connect

    Garattini, E.; Coccia, P.; Romano, M.; Jiritano, L.; Noseda, A.; Salmona, M.

    1984-11-01

    The role of prostaglandin endoperoxide synthetase in the in vivo activation of benzo(a)pyrene to reactive metabolites capable of interacting irreversibly with cellular macromolecules was studied in guinea pig liver, lung, kidney, spleen, small intestine, colon, and brain. DNA and protein covalent binding experiments were made after systemic administration of acetylsalicylic acid (200 mg/kg) followed by radiolabeled benzo(a)pyrene (4 microgram/kg). Results are compared with a control situation in which the prostaglandin endoperoxide synthetase inhibitor (acetylsalicylic acid) was not administered. No decrease in the level of DNA or protein benzo(a)pyrene-derived covalent binding was observed in any of the tissues studied.

  15. Biologic activity of mitochondrial metabolites on aging and age-related hearing loss.

    PubMed

    Seidman, M D; Khan, M J; Bai, U; Shirwany, N; Quirk, W S

    2000-03-01

    Compounds that upregulate mitochondrial function in an aging model will improve hearing and reduce some of the effects of aging. Reactive oxygen metabolites (ROM) are known products of oxidative metabolism and are continuously generated in vivo. More than 100 human clinical conditions have been associated with ROM, including atherosclerosis, arthritis, autoimmune diseases, cancers, heart disease, cerebrovascular accidents, and aging. The ROM are extremely reactive and cause extensive DNA, cellular, and tissue damage. Specific deletions within the mitochondrial DNA (mtDNA) occur with increasing frequency in age and presbyacusis. These deletions are the result of chronic exposure to ROM. When enough mtDNA damage accrues, the cell becomes bioenergetically deficient. This mechanism is the basis of the mitochondrial clock theory of aging, also known as the membrane hypothesis of aging. Nutritional compounds have been identified that enhance mitochondrial function and reverse several age-related processes. It is the purpose of this article to describe the effects of two mitochondrial metabolites, alpha-lipoic acid and acetyl L-carnitine, on the preservation of age-related hearing loss. Twenty-one Fischer rats, aged 24 months, were divided into three groups: acetyl-l-carnitine, alpha-lipoic acid, and control. The subjects were orally supplemented with either a placebo or one of the two nutritional compounds for 6 weeks. Auditory brainstem response testing was used to obtain baseline and posttreatment hearing thresholds. Cochlear, brain, and skeletal muscle tissues were obtained to assess for mtDNA mutations. The control group demonstrated an expected age-associated threshold deterioration of 3 to 7 dB in the 6-week study. The treated subjects experienced a delay in progression of hearing loss. Acetyl-l-carnitine improved auditory thresholds during the same time period (p<0.05). The mtDNA deletions associated with aging and presbyacusis were reduced in the treated groups

  16. Comparison of prorenoate potassium and spironolactone after repeated doses and steady state plasma levels of active metabolites.

    PubMed Central

    McInnes, G T; Shelton, J R; Harrison, I R; Perkins, R M; Palmer, R F

    1982-01-01

    1 After repeated single daily doses, the aldosterone antagonists prorenoate potassium and spironolactone were compared with regard to renal antimineralocorticoid activity, plasma potassium concentration and steady state plasma levels of their active metabolites, prorenone and canrenone respectively, in a balanced crossover study of twelve healthy subjects. 2 Following challenge with the mineralocorticoid, fludrocortisone, best estimates of the potency of prorenoate potassium relative to spironolactone were 3.6 (95% confidence limits 1.6-10.4) for urinary sodium excretion and 3.4 (95% confidence limits 2.0-6.5) for urinary log10 10Na/K. Estimates with respect to urinary potassium excretion and plasma potassium concentration were imprecise, confirming the limitations of the fludrocortisone model in the evaluation of aldosterone antagonists at steady state. 3 Both compounds exhibited directly proportional relationships between daily dose and steady state plasma levels of active metabolites. The approximate mean terminal elimination half-life of prorenone at steady state was 32.6 h (range 18-80 h). PMID:7059416

  17. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    PubMed Central

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  18. Evaluation of anti-quorum-sensing activity of fermentation metabolites from different strains of a medicinal mushroom, Phellinus igniarius.

    PubMed

    Zhu, Hu; Liu, Wei; Wang, Shou-xian; Tian, Bao-zhen; Zhang, Shuai-shuai

    2012-01-01

    This study aimed to evaluate the different abilities of various Phellinus igniarius strains inhibiting quorum sensing (QS), to search for novel QS inhibitors from them and to analyze their inhibitory activity, with a view to their possible use in controlling infections. The bioactive metabolites produced by P. igniarius cultures were tested for their abilities to inhibit QS-regulated behavior. All P. igniarius strains were cultured in potato-dextrose medium by large-scale submerged fermentation. The culture supernatant was condensed into 0.2-fold volumes by freeze drying. The condensed supernatant was sterilized by filtration through a 0.22-µm membrane filter and added to Chromobacterium violaceum CV026 cultures, which were used to monitor QS inhibition. Inhibitory activity was measured by quantifying violacein production using a microplate reader. The bioactive metabolites produced by 10 P. igniarius strains could inhibit violacein production, a QS-regulated behavior in C. violaceum. Furthermore, these strains could be roughly categorized into three groups on the basis of their inhibitory activities. P. igniarius strains can produce QS-inhibitory compounds and have different abilities to inhibit QS. Copyright © 2012 S. Karger AG, Basel.

  19. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.

    PubMed

    Nakabayashi, Ryo; Yang, Zhigang; Nishizawa, Tomoko; Mori, Tetsuya; Saito, Kazuki

    2015-05-22

    The discovery of bioactive natural compounds containing sulfur, which is crucial for inhibitory activity against angiotensin-converting enzyme (ACE), is a challenging task in metabolomics. Herein, a new S-containing metabolite, asparaptine (1), was discovered in the spears of Asparagus officinalis by targeted metabolomics using mass spectrometry for S-containing metabolites. The contribution ratio (2.2%) to the IC50 value in the crude extract showed that asparaptine (1) is a new ACE inhibitor.

  20. Characterization of in vivo metabolites of WR319691, a novel compound with activity against Plasmodium falciparum.

    PubMed

    Milner, Erin; Sousa, Jason; Pybus, Brandon; Melendez, Victor; Gardner, Sean; Grauer, Kristina; Moon, Jay; Carroll, Dustin; Auschwitz, Jennifer; Gettayacamin, Montip; Lee, Patricia; Leed, Susan; McCalmont, William; Norval, Suzanne; Tungtaeng, Anchalee; Zeng, Qiang; Kozar, Michael; Read, Kevin D; Li, Qigui; Dow, Geoffrey

    2011-09-01

    WR319691 has been shown to exhibit reasonable Plasmodium falciparum potency in vitro and exhibits reduced permeability across MDCK cell monolayers, which as part of our screening cascade led to further in vivo analysis. Single-dose pharmacokinetics was evaluated after an IV dose of 5 mg/kg in mice. Maximum bound and unbound brain levels of WR319691 were 97 and 0.05 ng/g versus approximately 1,600 and 3.2 ng/g for mefloquine. The half-life of WR319691 in plasma was approximately 13 h versus 23 h for mefloquine. The pharmacokinetics of several N-dealkylated metabolites was also evaluated. Five of six of these metabolites were detected and maximum total and free brain levels were all lower after an IV dose of 5 mg/kg WR319691 compared to mefloquine at the same dose. These data provide proof of concept that it is feasible to substantially lower the brain levels of a 4-position modified quinoline methanol in vivo without substantially decreasing potency against P. falciparum in vitro.

  1. Anticholestatic activity of flavonoids from artichoke (Cynara scolymus L.) and of their metabolites.

    PubMed

    Gebhardt, R

    2001-05-01

    It is well known that water-soluble extracts of artichoke (Cynara scolymus L.) leaves exert choleresis. When studying this effect in vitro using primary cultured rat hepatocytes and cholephilic fluorescent compounds, it was noticed that the artichoke leaf extracts not only stimulated biliary secretion, but that they also reestablished it when secretion was inhibited by addition of taurolithocholate to the culture medium. Furthermore, taurolithocholate-induced bizarre bile canalicular membrane distortions detectable by electron microscopy could be prevented by artichoke leaf extracts in a dose-dependent manner when added simultaneously with the bile acid. These effects were exerted by the flavonol luteolin and, to a lesser extent, by luteolin-7-O-glucoside, while chlorogenic acid and 1.5-dicaffeoyl quinic acid were almost ineffective. Surprisingly, metabolites produced by the cultured hepatocytes were able to stimulate biliary secretion substantially as well as prevent canalicular membrane deformation. These results demonstrate that artichoke leaf extracts exert a potent anticholestatic action at least in the case of taurolithocholate-induced cholestasis. Flavonoids and their metabolites may contribute significantly to this effect.

  2. Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases.

    PubMed

    Ko, Wen-Hsiung; Tsou, Yi-Jung; Lin, Mei-Ju; Chern, Lih-Ling

    2010-09-30

    Microorganisms capable of utilizing vegetable tissues for growth in soils were isolated and their vegetable broth cultures were individually sprayed directly on leaves to test their ability to control Phytophthora blight of bell pepper caused by Phytophthora capsici. Liquid culture of Streptomyces strain TKA-5, a previously undescribed species obtained in this study, displayed several desirable disease control characteristics in nature, including high potency, long lasting and ability to control also black leaf spot of spoon cabbage caused by Alternaria brassicicolca. The extract was fungicidal to P. capsici but fungistatic to A. brassicicola. It was stable at high temperature and high pH. However, after exposure to pH 2 for 24h, the extract was no longer inhibitory to P. capsici although it was still strongly inhibitory to A. brassicicola. After treatment with cation or anion exchange resins, the extract lost its inhibitory effect against P. capsici but not A. brassicicola. The results suggest that the extract contained two different kinds of inhibitory metabolites, one against P. capsici with both positive and negative charges on its molecule and another against A. brassicicola with no charges on its molecule. The inhibitory metabolites were soluble in ethanol or methanol but not in water, ether or chloroform. They were dialyzable in the membrane tubing with molecular weight cut-off of 10,000, 1000 or 500 but not 100, indicating that the inhibitors have a molecular weight between 500 and 100. Results also showed that both inhibitors are not proteins.

  3. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites.

    PubMed

    Manojlović, Nedeljko; Ranković, Branislav; Kosanić, Marijana; Vasiljević, Perica; Stanojković, Tatjana

    2012-10-15

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia caperata, P. saxatilis and P. sulcata and antioxidant, antimicrobial and anticancer activities of some their major metabolites. The phytochemical analysis of acetone extracts of three Parmelia lichens were determined by HPLC-UV method. The predominant phenolic compounds in these extracts were protocetraric and usnic acids (P. caperata) and depsidone salazinic acid (other two species). Besides these compounds, atranorin and chloroatranorin, were also detected in some of these extracts. Antioxidant activity of their isolated metabolites was evaluated by free radical scavenging, superoxide anion radical scavenging and reducing power. As a result of the study salazinic acid had stronger antioxidant activity than protocetraric acid. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. Both compounds were highly active with minimum inhibitory concentration values ranging from 0.015 to 1mg/ml. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. Salazinic acid and protocetraric acid were found to be strong anticancer activity toward both cell lines with IC(50) values ranging from 35.67 to 60.18μg/ml. The present study shows that tested lichen compounds demonstrated a strong antioxidant, antimicrobial, and anticancer effects. That suggest that these lichens can be used as new sources of the natural antimicrobial agents, antioxidants and anticancer compounds. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora.

    PubMed

    Choo, Min-Kyung; Park, Eun-Kyung; Yoon, Hae-Kyung; Kim, Dong-Hyun

    2002-10-01

    To evaluate the antithrombotic activities of puerarin and daidzin from the rhizome of Pueraria lobata, in vitro and ex vivo inhibitory activities of these compounds and their metabolite, daidzein, were measured. These compounds inhibited ADP- and collagen-induced platelet aggregation. Daidzein was the most potent. However, when puerarin and daidzin were intraperitoneally administered, their antiaggregation activities were weaker than when these compounds were administered orally. When in vivo antithrombotic activities of these compounds against collagen and epinephrine were measured, these compounds showed significant protection from death due to pulmonary thrombosis in mice. To evaluate the antiallergic activity of puerarin, daidzin, and daidzein, their inhibitory effects on the release of beta-hexosaminidase from RBL 2H3 cells and on the passive cutaneous anaphylaxis (PCA) reaction in mice were examined. Daidzein exhibited potent inhibitory activity on the beta-hexosaminidase release induced by DNP-BSA and potently inhibited the PCA reaction in rats. Daidzein administered intraperitoneally showed the strongest inhibitory activity and significantly inhibited the PCA reaction at doses of 25 and 50mg/kg with inhibitory activity of 37 and 73%, respectively. The inhibitory activity of intraperitoneally administered daidzein was stronger than those of intraperitoneally and orally administered puerarin and daidzin. Therefore we believe that puerarin and daidzin in the rhizome of Pueraria lobata are prodrugs, which have antiallergic and antithrombotic activities, produced by intestinal microflora.

  5. Modulation of macrophage activity by aflatoxins B1 and B2 and their metabolites aflatoxins M1 and M2.

    PubMed

    Bianco, G; Russo, R; Marzocco, S; Velotto, S; Autore, G; Severino, L

    2012-05-01

    Aflatoxins are natural contaminants frequently found both in food and feed. Many of them exert immunomodulatory properties in mammals; therefore, the aim of the current study was to investigate immune-effects of AFB1, AFB2, AFM1 and AFM2, alone and differently combined, in J774A.1 murine macrophages. MTT assay showed that AFB1, alone and combined with AFB2, possess antiproliferative activity only at the highest concentration; such effect was not shown by their hydroxylated metabolites, AFM1 and AFM2, respectively. However, the immunotoxic effects of the aflatoxins evaluated in the current study may be due to the inhibition of production of active oxygen metabolites such as NO. Cytofluorimetric assay in macrophages exposed to aflatoxins (10-100 μM) revealed that their cytoxicity is not related to apoptotic pathways. Nevertheless, a significant increase of the S phase cell population accompanied by a decrease in G0/G1 phase cell population was observed after AFB1 treatment. In conclusion, the results of the current study suggest that aflatoxins could compromise the macrophages functions; in particular, co-exposure to AFB1, AFB2, AFM1 and AFM2 may exert interactions which can significantly affect immunoreactivity.

  6. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and CNS inflammation via the aryl hydrocarbon receptor

    PubMed Central

    Rothhammer, Veit; Mascanfroni, Ivan D.; Bunse, Lukas; Takenaka, Maisa C.; Kenison, Jessica E.; Mayo, Lior; Chao, Chun-Cheih; Patel, Bonny; Yan, Raymond; Blain, Manon; Alvarez, Jorge I.; Kébir, Hania; Anandasabapathy, Niroshana; Izquierdo, Guillermo; Jung, Steffen; Obholzer, Nikolaus; Pochet, Nathalie; Clish, Clary B.; Prinz, Marco; Prat, Alexandre; Antel, Jack; Quintana, Francisco J.

    2016-01-01

    Astrocytes play important roles in the central nervous system (CNS) during health and disease. Through genome-wide analyses we detected a transcriptional response to type I interferons (IFN-I) in astrocytes during experimental CNS autoimmunity and also in CNS lesions from multiple sclerosis (MS) patients. IFN-I signaling in astrocytes reduces inflammation and experimental autoimmune encephalomyelitis (EAE) disease scores via the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) and suppressor of cytokine signaling 2 (SOCS2). The anti-inflammatory effects of nasally administered IFN-β are partly mediated by AhR. Dietary tryptophan is metabolized by the gut microbiota into AhR agonists that act on astrocytes to limit CNS inflammation. EAE scores were increased following ampicillin treatment during the recovery phase, and CNS inflammation was reduced in antibiotic-treated mice by supplementation with the tryptophan metabolites indole, indoxyl-3-sulfate (I3S), indole-3-propionic acid (IPA) and indole-3-aldehyde (IAld), or the bacterial enzyme tryptophanase. In individuals with MS, the circulating levels of AhR agonists were decreased. These findings suggest that IFN-I produced in the CNS act in combination with metabolites derived from dietary tryptophan by the gut flora to activate AhR signaling in astrocytes and suppress CNS inflammation. PMID:27158906

  7. Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera ( Aloe barbadensis Miller) in different growth stages.

    PubMed

    Lee, Sarah; Do, Seon-Gil; Kim, Sun Yeou; Kim, Jinwan; Jin, Yoojeong; Lee, Choong Hwan

    2012-11-14

    Metabolite profiling of four different-sized Aloe vera plants was performed using gas chromatography-ion trap-mass spectrometry (GC-IT-MS) and ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) with multivariate analysis. Amino acids, sugars, and organic acids related to growth and development were identified by sizes. In particular, the relative contents of glucose, fructose, alanine, valine, and aspartic acid increased gradually as the size of the aloe increased. Anthraquinone derivatives such as 7-hydroxy-8-O-methylaloin, 7-hydroxyaloin A, and 6'-malonylnataloins A and B increased gradually, whereas chromone derivatives decreased continuously as the size of the aloe increased. The A30 aloe (size = 20-30 cm) with relatively high contents of aloins A and B, was suggested to have antioxidant components showing the highest antioxidant activity among the four different sizes of aloe. These data suggested that MS-based metabolomic approaches can illuminate metabolite changes associated with growth and development and can explain their change of antioxidant activity.

  8. Possibility of influence of midazolam sedation on the diagnosis of brain death: concentrations of active metabolites after cessation of midazolam.

    PubMed

    Hirata, Kiyotaka; Matsumoto, Yoshiaki; Kurokawa, Akira; Onda, Miho; Shimizu, Makiko; Fukuoka, Masamichi; Hirano, Masaaki; Yamamoto, Yasuhiro

    2003-09-01

    Midazolam and its active metabolites have a depressant effect on respiration and consciousness level, and therefore their effects should be considered in all patients for whom brain death testing is contemplated. The concentrations of midazolam and its active metabolites were measured in critically ill patients on a ventilator during and after continuous intravenous infusion of midazolam. Three days after cessation of midazolam infusion, the concentrations of midazolam and 1-hydroxymidazolam decreased to below the therapeutic range (100-1000 ng/ml) in all patients, although the concentrations of 1-hydroxymidazolam glucuronide remained extremely high in a patient who showed deteriorating renal function. The concentrations of 1-hydroxymidazolam glucuronide (19,497-29,761 ng/ml) were measured in this patient. When it is impossible to confirm factors consistent with irreversible brain death, such as the lack of cerebral blood flow, until 3 days after cessation of midazolam infusion, monitoring of the concentration of these substances should be carried out in all patients in whom suspicion exists prior to the evaluation of brain death. It is particularly imperative that monitoring of the 1-hydroxymidazolam glucuronide concentration be carried out in patients with poor renal function.

  9. Activation of the silent secondary metabolite production by introducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59.

    PubMed

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-04-22

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1-5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1-5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways.

  10. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential.

    PubMed

    Xu, Maonian; Heidmarsson, Starri; Olafsdottir, Elin Soffia; Buonfiglio, Rosa; Kogej, Thierry; Omarsdottir, Sesselja

    2016-05-15

    Lichens, as a symbiotic association of photobionts and mycobionts, display an unmatched environmental adaptability and a great chemical diversity. As an important morphological group, cetrarioid lichens are one of the most studied lichen taxa for their phylogeny, secondary chemistry, bioactivities and uses in folk medicines, especially the lichen Cetraria islandica. However, insufficient structure elucidation and discrepancy in bioactivity results could be found in a few studies. This review aimed to present a more detailed and updated overview of the knowledge of secondary metabolites from cetrarioid lichens in a critical manner, highlighting their potentials for pharmaceuticals as well as other applications. Here we also highlight the uses of molecular phylogenetics, metabolomics and ChemGPS-NP model for future bioprospecting, taxonomy and drug screening to accelerate applications of those lichen substances. The paper starts with a short introduction in to the studies of lichen secondary metabolites, the biological classification of cetrarioid lichens and the aim. In light of ethnic uses of cetrarioid lichens for therapeutic purposes, molecular phylogeny is proposed as a tool for future bioprospecting of cetrarioid lichens, followed by a brief discussion of the taxonomic value of lichen substances. Then a delicate description of the bioactivities, patents, updated chemical structures and lichen sources is presented, where lichen substances are grouped by their chemical structures and discussed about their bioactivity in comparison with reference compounds. To accelerate the discovery of bioactivities and potential drug targets of lichen substances, the application of the ChemGPS NP model is highlighted. Finally the safety concerns of lichen substances (i.e. toxicity and immunogenicity) and future-prospects in the field are exhibited. While the ethnic uses of cetrarioid lichens and the pharmaceutical potential of their secondary metabolites have been recognized

  11. Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth) in Response to CO2 and Light Intensity

    PubMed Central

    Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μmol/mol) and four levels of light intensity (225, 500, 625, and 900 μmol/m2/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μmol/mol + light intensity at 225 μmol/m2/s. Meanwhile, at 400 μmol/mol CO2 + 900 μmol/m2/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μmol/mol the photosynthesis, stomatal conductance, fv/fm (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition. PMID:24683336

  12. Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila Benth) in response to CO2 and light intensity.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μ mol/mol) and four levels of light intensity (225, 500, 625, and 900 μ mol/m(2)/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μ mol/mol + light intensity at 225 μ mol/m(2)/s. Meanwhile, at 400 μ mol/mol CO2 + 900 μ mol/m(2)/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μ mol/mol the photosynthesis, stomatal conductance, f v /f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition.

  13. The structure of anticapsin, a new biologically active metabolite of Streptomyces griseoplanus

    PubMed Central

    Neuss, N.; Molloy, B. B.; Shah, R.; DeLaHiguera, N.

    1970-01-01

    1. Physical and analytical data obtained on crystalline anticapsin indicated the empirical formula C9H13NO4. Spectral data (u.v., i.r. and proton magnetic resonance) and formation of l-tyrosine on hydrolysis revealed the functionalities and carbon skeleton of the new epoxy keto amino acid. 2. The optical properties of anticapsin (optical rotatory dispersion and circular dichroism) permitted assignment of absolute configuration to the new metabolite. 3. Treatment of anticapsin with hot methanolic hydrochloric acid followed by acetylation gave C18H19NO5, the α-alkoxycyclohexenone derivative. Analysis of the nuclear-magnetic-resonance and mass spectra of the latter allowed its structure to be determined and confirmed the assigned structure of anticapsin. PMID:5481496

  14. Biologically active new metabolites from a Florida collection of Moorea producens.

    PubMed

    Sabry, Omar M; Goeger, Douglas E; Gerwick, William H

    2017-03-01

    A bioassay-guided investigation (cancer cell cytotoxicity) of a Moorea producens collection from Key West, Florida, led to the discovery of two new bioactive natural products [(+)-malyngamide Y and a cyclic depsipeptide, (+)-floridamide]. Their planar structures were deduced through extensive analysis of 1D and 2D NMR spectroscopic data and supported by HRFAB mass spectrometry. The new cyclic depsipeptide contains four amino acids units, including N-methyl phenylalanine, proline, valine and alanine, beside the unique unit, 2,2-dimethyl-3-hydroxy-octanoic acid. In addition to the discovery of these two new compounds, two previously reported metabolites were also isolated and identified from this cyanobacterial collection; (-)-C-12 lyngbic acid and the antibacterial agent (-)-malyngolide.

  15. The structure of anticapsin, a new biologically active metabolite of Streptomyces griseoplanus.

    PubMed

    Neuss, N; Molloy, B B; Shah, R; DeLaHiguera, N

    1970-07-01

    1. Physical and analytical data obtained on crystalline anticapsin indicated the empirical formula C(9)H(13)NO(4). Spectral data (u.v., i.r. and proton magnetic resonance) and formation of l-tyrosine on hydrolysis revealed the functionalities and carbon skeleton of the new epoxy keto amino acid. 2. The optical properties of anticapsin (optical rotatory dispersion and circular dichroism) permitted assignment of absolute configuration to the new metabolite. 3. Treatment of anticapsin with hot methanolic hydrochloric acid followed by acetylation gave C(18)H(19)NO(5), the alpha-alkoxycyclohexenone derivative. Analysis of the nuclear-magnetic-resonance and mass spectra of the latter allowed its structure to be determined and confirmed the assigned structure of anticapsin.

  16. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.

    PubMed

    Wase, Nishikant; Tu, Boqiang; Allen, James W; Black, Paul N; DiRusso, Concetta C

    2017-08-01

    Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii, and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG accumulation was verified using gas chromatography-mass spectrometry quantification of total fatty acids, and targeted TAG and galactolipid measurements were performed using liquid chromatography-multiple reaction monitoring/mass spectrometry. These results demonstrated that TAG accumulation does not necessarily proceed at the expense of galactolipid. Untargeted metabolite profiling provided important insights into pathway shifts due to five different compound treatments and verified the anabolic state of the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways. Metabolite patterns were distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil accumulation in algae. The efficacy of these compounds also was demonstrated in three other algal species. These lipid-inducing compounds offer a valuable set of tools for delving into the biochemical mechanisms of lipid accumulation in algae and a direct means to improve algal oil content independent of the severe growth limitations associated with nutrient deprivation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae1[OPEN

    PubMed Central

    2017-01-01

    Microalgae are proposed as feedstock organisms useful for producing biofuels and coproducts. However, several limitations must be overcome before algae-based production is economically feasible. Among these is the ability to induce lipid accumulation and storage without affecting biomass yield. To overcome this barrier, a chemical genetics approach was employed in which 43,783 compounds were screened against Chlamydomonas reinhardtii, and 243 compounds were identified that increase triacylglyceride (TAG) accumulation without terminating growth. Identified compounds were classified by structural similarity, and 15 were selected for secondary analyses addressing impacts on growth fitness, photosynthetic pigments, and total cellular protein and starch concentrations. TAG accumulation was verified using gas chromatography-mass spectrometry quantification of total fatty acids, and targeted TAG and galactolipid measurements were performed using liquid chromatography-multiple reaction monitoring/mass spectrometry. These results demonstrated that TAG accumulation does not necessarily proceed at the expense of galactolipid. Untargeted metabolite profiling provided important insights into pathway shifts due to five different compound treatments and verified the anabolic state of the cells with regard to the oxidative pentose phosphate pathway, Calvin cycle, tricarboxylic acid cycle, and amino acid biosynthetic pathways. Metabolite patterns were distinct from nitrogen starvation and other abiotic stresses commonly used to induce oil accumulation in algae. The efficacy of these compounds also was demonstrated in three other algal species. These lipid-inducing compounds offer a valuable set of tools for delving into the biochemical mechanisms of lipid accumulation in algae and a direct means to improve algal oil content independent of the severe growth limitations associated with nutrient deprivation. PMID:28652262

  18. A new natural spiro heterocyclic compound and the cytotoxic activity of the secondary metabolites from Juniperus brevifolia leaves.

    PubMed

    Moujir, Laila M; Seca, Ana M L; Araujo, Liliana; Silva, Artur M S; Barreto, M Carmo

    2011-03-01

    A new natural spiro compound 3,4-dehydrotheaspirone and the known arctiol [1β,6α-dihydroxy-4(14)-eudesmene] were isolated from Juniperus brevifolia. Arctiol is reported for the first time in the Juniperus genus. Their structures were established by 1D, and 2D NMR and MS spectra. Antimicrobial and cytotoxic activities of 1 and several secondary metabolites 3,4,5,6,7,8,9,10,11,12 previously isolated by our group from J. brevifolia were evaluated and some SAR has been established. The 18-hydroxydehydroabietane (4) displayed great antiproliferative activity against cancer cell lines tested, namely HeLa, A-549 and MCF-7. Compound 4 also presented a significant bactericidal effect against Bacillus cereus at different concentrations tested.

  19. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments

    PubMed Central

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the “secondary compound hypothesis” and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  20. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    PubMed

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Significant difference in active metabolite levels of ginseng in humans consuming Asian or Western diet: The link with enteric microbiota.

    PubMed

    Wan, Jin-Yi; Wang, Chong-Zhi; Zhang, Qi-Hui; Liu, Zhi; Musch, Mark W; Bissonnette, Marc; Chang, Eugene B; Li, Ping; Qi, Lian-Wen; Yuan, Chun-Su

    2017-04-01

    After ingestion of ginseng, the bioavailability of its parent compounds is low and enteric microbiota plays an important role in parent compound biotransformation to their metabolites. Diet type can influence the enteric microbiota profile. When human subjects on different diets ingest ginseng, their different gut microbiota profiles may influence the metabolism of ginseng parent compounds. In this study, the effects of different diet type on gut microbiota metabolism of American ginseng saponins were investigated. We recruited six healthy adults who regularly consumed different diet types. These subjects received 7 days' oral American ginseng, and their biological samples were collected for LC-Q-TOF-MS analysis. We observed significant ginsenoside Rb1 (a major parent compound) and compound K (a major active metabolite) level differences in the samples from the subjects consuming different diets. Subjects on an Asian diet had much higher Rb1 levels but much lower compound K levels compared with those on a Western diet. Since compound K possesses much better cancer chemoprevention potential, our data suggested that consumers on a Western diet should obtain better cancer prevention effects with American ginseng intake compared with those on an Asian diet. Ginseng compound levels could be enhanced or reduced via gut microbiota manipulation for clinical utility. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments.

    PubMed

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-07-29

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes.

  3. Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays.

    PubMed

    Svobodová, K; Placková, M; Novotná, V; Cajthaml, T

    2009-11-01

    Investigations of environmental pollution by endocrine-disrupting chemicals are now in progress. Up to now, several in vitro bioassays have been developed for evaluation of the endocrine disruptive activity; however, there is still a lack of comparative studies of their sensitivity. In this work comparison of the estrogen screening assay based on beta-galactosidase expression and a bioluminescent estrogen screen revealed differences in the sensitivity and specificity of the two tests. With the beta-galactosidase screen a slight estrogen-like activity of Delor 103, a commercial mixture of PCB congeners, and a fungicide triclosan was measured whereas no activity was detected using the bioluminescent assay. A bioluminescent androgen test negated previously suggested androgenic potential of triclosan. Further, this work demonstrates the androgenic activity of Delor 103, with an EC(50) value of 2.29 x 10(-2)mg/L. On the other hand, chlorobenzoic acids (CBAs), representing potential PCB degradation metabolites, exhibited no androgenic activity but were slightly estrogenic. Their estrogenicity varied with their chemical structure, with 2,3-CBA, 2,3,6-CBA, 2,4,6-CBA and monochlorinated compounds exhibiting the highest activity. Thus the results indicated possible transitions of the hormonal activity of PCBs during bacterial degradation.

  4. The interference of ethanol with heroin-stimulated psychomotor activation in mice is not related to changed brain concentrations of the active metabolites 6MAM or morphine.

    PubMed

    Andersen, Jannike M; Haugen, Karianne S; Ripel, Ase; Mørland, Jørg

    2014-02-01

    It has been suggested that the potentiating effect observed in human beings when combining alcohol and heroin may be due to an interference of ethanol with the pharmacokinetics of heroin, leading to accumulation of the biologically active metabolites, 6-monoacetylmorphine (6MAM) and morphine. However, experimental evidence for this hypothesis is lacking. In this study, we used mice and examined the effect of ethanol on the metabolism of heroin by combining a locomotor activity test, which is a behaviour model representative of psychomotor stimulation, with pharmacokinetic studies in blood and brain tissue. Pre-treatment with ethanol (1 and 2.5 g/kg, po) affected heroin-stimulated (2.5 and 15 μmol/kg, sc) locomotor activation significantly, resulting in a dose-dependent reduction in run distance. However, the change in the activity profiles did not indicate any increase in the concentration of active metabolites. Pharmacokinetic studies in blood and brain supported the behavioural findings, showing no change in the time-versus-concentration curves of either 6MAM or morphine after administration of heroin (15 μmol/kg, sc) to mice pre-treated with ethanol (2.5 g/kg, po). The concentration of heroin itself was elevated, but is probably of minor importance because heroin has low biological activity by itself. The in vivo pharmacokinetic findings were supported by experiments in vitro. In conclusion, studies in mice do not support the hypothesis from epidemiological studies of a pharmacokinetic interaction between alcohol and heroin.

  5. Observation of an Unusual Electronically Distorted Semiquinone Radical of PCB Metabolites in the Active Site of Prostaglandin H Synthase-2

    PubMed Central

    Wangpradit, Orarat; Moman, Edelmiro; Nolan, Kevin B.; Buettner, Garry R.; Robertson, Larry W.; Luthe, Gregor

    2013-01-01

    The activation of the metabolites of airborne polychlorinated biphenyls (PCBs) into highly reactive radicals is of fundamental importance. We found that human recombinant prostaglandin H synthase-2 (hPGHS-2) biotransforms dihydroxy-PCBs, such as 4-chlorobiphenyl-2′,5′-hydroquinone (4-CB-2′,5′H2Q), into semiquinone radicals via one-electron oxidation. Using electron paramagnetic resonance (EPR) spectroscopy, we observed the formation of the symmetric quartet spectrum (1:3:3:1 by area) of 4-chlorobiphenyl-2′,5′-semiquinone radical (4-CB-2′,5′-SQ•−) from 4-CB-2′,5′H2Q. This spectrum changed to an asymmetric spectrum with time: the change can be explained as the overlap of two different semiquinone radical species. Hindered rotation of the 4-CB-2′,5′-SQ•− appears not to be a major factor for the change in lineshape because increasing the viscosity of the medium with glycerol produced no significant change in lineshape. Introduction of a fluorine, which increases the steric hindrance for rotation of the dihydroxy-PCB studied, also produced no significant changes. An in silico molecular docking model of 4-CB-2′,5′H2Q in the peroxidase site of hPGHS-2 together with ab initio quantum mechanical studies indicate that the close proximity of a negatively charged carboxylic acid in the peroxidase active site may be responsible for the observed perturbation in the spectrum. This study provides new insights into the formation of semiquinones from PCB metabolites and underscores the potential role of PGHS-2 in the metabolic activation of PCBs. PMID:20843536

  6. Short-term exposure of human ovarian follicles to cyclophosphamide metabolites seems to promote follicular activation in vitro.

    PubMed

    Lande, Yechezkel; Fisch, Benjamin; Tsur, Abraham; Farhi, Jacob; Prag-Rosenberg, Roni; Ben-Haroush, Avi; Kessler-Icekson, Gania; Zahalka, Muayad A; Ludeman, Susan M; Abir, Ronit

    2017-01-01

    How chemotherapy affects dormant ovarian primordial follicles is unclear. The 'burnout' theory, studied only in mice, suggests cyclophosphamide enhances primordial follicle activation. Using 4-hydroperoxycyclophosphamide (4hc) and phosphoramide mustard (PM), this study assessed how the active cyclophosphamide metabolites 4-hydroxycyclophosphamide (4-OHC) and PM, affect human primordial follicles. Frozen-thawed human ovarian samples were sliced and cultured with basic culture medium (cultured controls) or with 4hc/PM (3 µmol/l/10 µmol/l) (treated samples) for 24-48 h. Follicular counts and classification, Ki67 and anti-Müllerian hormone (AMH) immunohistochemistry and an apoptosis assay were used for evaluation, and 17β-oestradiol and AMH were measured in spent media samples. Generally, there was primordial follicle decrease and elevated developing follicle rates in treated samples compared with cultured (P = 0.04 to P < 0.0005) and uncultured controls (P < 0.05 to P < 0.0001). No traces of apoptosis were found. There were almost twicethe levels of AMH and 17β-oestradiol in treated compared with untreated samples (AMH with 4hc 3 µmol/l; P = 0.04). All follicles stained positively for AMHincluded treated samples. Ki67 positive staining was noted in all samples. Cyclophosphamide metabolites seem to enhance human primordial follicle activation to developing follicles, in vitro. Study findings support the 'burnout' theory as the mechanism of chemotherapy-induced ovarian toxicity. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Garlic and its active metabolite allicin produce endothelium- and nitric oxide-dependent relaxation in rat pulmonary arteries.

    PubMed

    Ku, David D; Abdel-Razek, Tarek T; Dai, Jun; Kim-Park, SangAe; Fallon, Michael B; Abrams, Gary A

    2002-01-01

    1. The aims of the present study were to investigate the effects of fresh garlic and one of its active metabolites, allicin, on rat isolated pulmonary arteries (RPA). 2. In endothelium-intact and phenylephrine-precontracted RPA, the addition of a water or a 5% ethanol extract of fresh garlic (1-500 microg/mL) resulted in a dose-dependent relaxation reaching a maximum (mean +/- SEM) of -91 +/- 3 and -93 +/- 2%, respectively, with an ED(50) of 113 +/- 12 and 106 +/- 10 microg/mL, respectively. The vasorelaxation was readily reversible upon washing and no tachyphylaxis was noted. 3. An extract of the external garlic storage leaf produced a significantly greater relaxation than the inner stem. Microfiltration of extracts with a 10,000 molecular sieve did not attenuate relaxation. Inactivation of alliinase and allicin formation, with either boiling of the garlic clove for 30 min or 100% ethanol treatment, completely abolished relaxation. In contrast, similar treatment of crushed garlic with formed allicin retained the relaxation response. 4. Pure allicin produced a similar relaxation as garlic extract, with an EC(50) of approximately 0.8 microg/mL. Disruption of endothelium or N(G)-nitro-L-arginine methyl ester pretreatment attenuated the relaxation, whereas indomethacin had no effect. 5. Prior garlic (500 microg/mL) treatment enhanced acetylcholine relaxation by shifting the response curve to the left, but had no effect on nitric oxide (NO) donor-induced responses. 6. These results demonstrate that garlic and the active metabolite allicin are capable of eliciting a NO-dependent relaxation in RPA and that this response is likely to be mediated via garlic activation of NO formation rather than its stabilization.

  8. Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA.

    PubMed

    Scalabrin, Matteo; Quintieri, Luigi; Palumbo, Manlio; Riccardi Sirtori, Federico; Gatto, Barbara

    2017-02-20

    The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.

  9. Histopathology, enzyme activities, and PAH metabolites in English sole collected near coastal pulp mills

    SciTech Connect

    Brand, D.G.

    1995-12-31

    The bottom-feeding flatfish, English sole (Pleuronectes vetulus), is widely distributed along the B.C. Pacific coast and fulfills a majority of the requirements as a sentinel species for environmental effects monitoring programs. Studies involving the use of histopathological, biochemical, and chemical tools with English sole collected near the vicinity of B.C. pulp mills are currently being conducted. Analysis, to date, has revealed idiopathic liver lesions to be strongly dependent on location of capture with a prevalence of 30% preneoplastic and neoplastic lesions found in fish collected near pulp mills. All fish residing near pulp mills show hepatocellular hemosiderosis, an iron storage disorder. The mixed-function oxidizing enzyme, EROD, was found to be induced in fish collected near pulp mills. However, the levels of conjugating enzymes, GST and UDP-GT, were found to be unchanged when compared with reference fish. PAH metabolites, measured as FACs in bile, are also present in English sole collected from the mill sites and the conjugated derivatives are presently being identified by HPLC/ES-MS techniques, The relationships between these observations will be discussed.

  10. Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae).

    PubMed

    Zhao, Yunhe; Xu, Chunmei; Wang, Qiuhong; Wei, Yan; Liu, Feng; Xu, Shuangyu; Zhang, Zhengqun; Mu, Wei

    2016-05-01

    Bradysia odoriphaga (Diptera: Sciaridae) is the major pest that damages Chinese chive production. As a volatile compound derived from microbial secondary metabolites, benzothiazole has been determined to possess fumigant activity against B. odoriphaga. However, the mechanism of action of benzothiazole is not well understood. In the present study, fourth-instar larvae of B. odoriphaga were exposed to LC10 and LC30 of benzothiazole. Sublethal concentrations (LC10 and LC30) of benzothiazole significantly reduced the food consumption of the larvae on the second day after treatment (2 DAT). However, there were no significant changes in pupal weight among the different treatments. We also measured the protein, lipid, carbohydrate, and trehalose contents and the digestive enzyme activities of the larvae, and the results suggest that benzothiazole reduced the nutrient accumulation and decreased the digestive enzyme activities of B. odoriphaga. In addition, the activity of glutathione S-transferase was significantly decreased at 6h after treatment with benzothiazole, whereas general esterase activities were significantly increased at 6 and 24h after treatment. The results of this study indicate that benzothiazole interferes in the normal food consumption and digestion process by decreasing the activities of digestive enzymes. These results provide valuable information for understanding the toxicity of benzothiazole and for exploring volatile compound for the control of this pest.

  11. Simultaneous determination of gentiopicroside and its two active metabolites in rat plasma by LC-MS/MS and its application in pharmacokinetic studies.

    PubMed

    Xiong, Kai; Gao, Tingting; Zhang, Tong; Wang, Zhengtao; Han, Han

    2017-09-14

    Gentiopicroside is a natural secoiridoid glycoside that may require metabolic activation to exert pharmacological effects. In this study, two active metabolites of gentiopicroside (M1 and M2) were isolated from rat urines and identified with our previous method. Most importantly, a fast, sensitive and selective ultra high-performance liquid chromatography-tandem mass spectrometry method was developed to simultaneously determine gentiopicroside and its two metabolites in rat plasma. The analytes and internal standard (swertiamarin) were separated on an ACQUITY UPLC(®) BEH C18 column (2.1×50mm, 1.7μm) using gradient elution by acetonitrile and 0.1% formic acid at a flow rate of 0.4mL/min. The mass spectrometry detector was operated in the multiple reaction monitoring with positive ionization mode. The method had a good linearity over the concentration range of 0.2-10,000ng/mL for gentiopicroside and 0.1-5000ng/mL for the two metabolites. The validated method was successfully applied to the pharmacokinetic study of gentiopicroside and its metabolites after single oral administration of gentiopicroside (150mg/kg) to rats (n=8). The pharmacokinetic differences between gentiopicroside and its two metabolites were identified.Results provided the evidence for in vivo metabolism-based activation of gentiopicroside. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. In vitro estrogen receptor binding of PCBs: measured activity and detection of hydroxylated metabolites in a recombinant yeast assay.

    PubMed

    Layton, Alice C; Sanseverino, John; Gregory, Betsy W; Easter, James P; Sayler, Gary S; Schultz, T Wayne

    2002-05-01

    The estrogenic activities of 17beta-estradiol, biphenyl, chlorinated biphenyls, and Aroclor mixtures 1221, 1242, and 1248 were measured with a modified recombinant yeast estrogen assay (i.e., a Saccharomyces cerevisiae-based lac-Z (beta-galactosidase) reporter assay). Modifications of the assay included the use of glass vials instead of plastic microtiter plates and the addition of the medium and yeast before the test substrate. 14C-labeled compounds were used to follow improvements in the assay procedures. 14C-17beta-estradiol recovery from plastic microtiter plates and glass vials using the standard or the modified procedure was approximately 89%. However, 14C-4-CB (4-chlorobiphenyl) recovery was considerably less, ranging from 3% in plastic microtiter plates using the standard procedure to 26% in vials using the modified procedure. These results suggest that the toxicity of strongly hydrophobic chemicals may be underestimated. Using the modified yeast estrogen assay, full agonist activity was observed for 4-CB, 2,4,6-CB, and 2,5-CB while each of the Aroclor mixtures were only partial agonists. The equivalent EC50 values in ppm were in environmentally relevant concentrations for biphenyl (19 ppm), 4-CB (4.5 ppm), 2,5-CB (21 ppm), 2,4,6-CB (0.8 ppm), Aroclor 1221 (2.9 ppm), Aroclor 1242 (0.65 ppm), and Aroclor 1248 (2.3 ppm). Estrogen receptor binding for the individual PCB congeners was 25- to 650-fold less than the reported estrogen binding for the corresponding hydroxylated PCB metabolite. Gas chromatographic/mass spectrometric analysis of yeast extracts indicated that S. cerevisiae hydroxylated the individual PCB congeners in the ppb range. With the exception of biphenyl, the concentration of hydroxylated metabolites obtained from incubation of S. cerevisiae with PCB congeners was consistent with the concentration necessary to elicit a positive estrogen receptor-binding response. This work provides evidence that S. cerevisiae are capable of metabolic

  13. Thuringiensin: A Thermostable Secondary Metabolite from Bacillus thuringiensis with Insecticidal Activity against a Wide Range of Insects

    PubMed Central

    Liu, Xiaoyan; Ruan, Lifang; Peng, Donghai; Li, Lin; Sun, Ming; Yu, Ziniu

    2014-01-01

    Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided. PMID:25068925

  14. Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects.

    PubMed

    Liu, Xiaoyan; Ruan, Lifang; Peng, Donghai; Li, Lin; Sun, Ming; Yu, Ziniu

    2014-07-25

    Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided.

  15. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation.

    PubMed

    Garcia, Gonçalo; Nanni, Sara; Figueira, Inês; Ivanov, Ines; McDougall, Gordon J; Stewart, Derek; Ferreira, Ricardo B; Pinto, Paula; Silva, Rui F M; Brites, Dora; Santos, Cláudia N

    2017-01-15

    Neuroinflammation is an integral part of the neurodegeneration process inherent to several aging dysfunctions. Within the central nervous system, microglia are the effective immune cells, responsible for neuroinflammatory responses. In this study, raspberries were subjected to in vitro digestion simulation to obtain the components that result from the gastrointestinal (GI) conditions, which would be bioaccessible and available for blood uptake. Both the original raspberry extract and the gastrointestinal bioaccessible (GIB) fraction protected neuronal and microglia cells against H2O2-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammation, at low concentrations. Furthermore, this neuroprotective capacity was independent of intracellular ROS scavenging mechanisms. We show for the first time that raspberry metabolites present in the GIB fraction significantly inhibited microglial pro-inflammatory activation by LPS, through the inhibition of Iba1 expression, TNF-α release and NO production. Altogether, this study reveals that raspberry polyphenols may present a dietary route to the retardation or amelioration of neurodegenerative-related dysfunctions.

  16. Irreversible Inhibition of EGFR: Modeling the Combined Pharmacokinetic-Pharmacodynamic Relationship of Osimertinib and Its Active Metabolite AZ5104.

    PubMed

    Yates, James W T; Ashton, Susan; Cross, Darren; Mellor, Martine J; Powell, Steve J; Ballard, Peter

    2016-10-01

    Osimertinib (AZD9291) is a potent, selective, irreversible inhibitor of EGFR-sensitizing (exon 19 and L858R) and T790M-resistant mutation. In vivo, in the mouse, it is metabolized to an active des-methyl metabolite, AZ5104. To understand the therapeutic potential in patients, this study aimed to assess the relationship between osimertinib pharmacokinetics, the pharmacokinetics of the active metabolite, the pharmacodynamics of phosphorylated EGFR reduction, and efficacy in mouse xenograft models of EGFR-driven cancers, including two NSCLC lines. Osimertinib was dosed in xenografted models of EGFR-driven cancers. In one set of experiments, changes in phosphorylated EGFR were measured to confirm target engagement. In a second set of efficacy studies, the resulting changes in tumor volume over time after repeat dosing of osimertinib were observed. To account for the contributions of both molecules, a mathematical modeling approach was taken to integrate the resulting datasets. The model was able to describe the pharmacokinetics, pharmacodynamics, and efficacy in A431, PC9, and NCI-H1975 xenografts, with the differences in sensitivity described by the varying potency against wild-type, sensitizing, and T790M-mutant EGFR and the phosphorylated EGFR reduction required to reduce tumor volume. It was inferred that recovery of pEGFR is slower after chronic dosing due to reduced resynthesis. It was predicted and further demonstrated that although inhibition is irreversible, the resynthesis of EGFR is such that infrequent intermittent dosing is not as efficacious as once daily dosing. Mol Cancer Ther; 15(10); 2378-87. ©2016 AACR.

  17. Evaluation of the pharmacokinetics of oral amitriptyline and its active metabolite nortriptyline in fed and fasted Greyhound dogs.

    PubMed

    Norkus, C; Rankin, D; KuKanich, B

    2015-12-01

    This study reports the pharmacokinetics of oral amitriptyline and its active metabolite nortriptyline in Greyhound dogs. Five healthy Greyhound dogs were enrolled in a randomized crossover design. A single oral dose of amitriptyline hydrochloride (actual mean dose 8.1 per kg) was administered to fasted or fed dogs. Blood samples were collected at predetermined times from 0 to 24 h after administration, and plasma drug concentrations were measured by liquid chromatography with mass spectrometry. Noncompartmental pharmacokinetic analyses were performed. Two dogs in the fasted group vomited following amitriptyline administration and were excluded from analysis. The range of amitriptyline CMAX for the remaining fasted dogs (n = 3) was 22.8-64.5 ng/mL compared to 30.6-127 ng/mL for the fed dogs (n = 5). The range of the amitriptyline AUCINF for the three fasted dogs was 167-720 h·ng/mL compared to 287-1146 h·ng/mL for fed dogs. The relative bioavailability of amitriptyline in fasted dogs compared to fed dogs was 69-91% (n = 3). The exposure of the active metabolite nortriptyline was correlated to amitriptyline exposure (R(2)  = 0.84). Due to pharmacokinetic variability and the small number of dogs completing this study, further studies are needed assessing the impact of feeding on oral amitriptyline pharmacokinetics. Amitriptyline may be more likely to cause vomiting in fasted dogs. © 2015 John Wiley & Sons Ltd.

  18. The selenium metabolite methylselenol regulates the expression of ligands that trigger immune activation through the lymphocyte receptor NKG2D.

    PubMed

    Hagemann-Jensen, Michael; Uhlenbrock, Franziska; Kehlet, Stephanie; Andresen, Lars; Gabel-Jensen, Charlotte; Ellgaard, Lars; Gammelgaard, Bente; Skov, Søren

    2014-11-07

    For decades, selenium research has been focused on the identification of active metabolites, which are crucial for selenium chemoprevention of cancer. In this context, the metabolite methylselenol (CH3SeH) is known for its action to selectively kill transformed cells through mechanisms that include increased formation of reactive oxygen species, induction of DNA damage, triggering of apoptosis, and inhibition of angiogenesis. Here we reveal that CH3SeH modulates the cell surface expression of NKG2D ligands. The expression of NKG2D ligands is induced by stress-associated pathways that occur early during malignant transformation and enable the recognition and elimination of tumors by activating the lymphocyte receptor NKG2D. CH3SeH regulated NKG2D ligands both on the transcriptional and the posttranscriptional levels. CH3SeH induced the transcription of MHC class I polypeptide-related sequence MICA/B and ULBP2 mRNA. However, the induction of cell surface expression was restricted to the ligands MICA/B. Remarkably, our studies showed that CH3SeH inhibited ULBP2 surface transport through inhibition of the autophagic transport pathway. Finally, we identified extracellular calcium as being essential for CH3SeH regulation of NKG2D ligands. A balanced cell surface expression of NKG2D ligands is considered to be an innate barrier against tumor development. Therefore, our work indicates that the application of selenium compounds that are metabolized to CH3SeH could improve NKG2D-based immune therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The Selenium Metabolite Methylselenol Regulates the Expression of Ligands That Trigger Immune Activation through the Lymphocyte Receptor NKG2D*

    PubMed Central

    Hagemann-Jensen, Michael; Uhlenbrock, Franziska; Kehlet, Stephanie; Andresen, Lars; Gabel-Jensen, Charlotte; Ellgaard, Lars; Gammelgaard, Bente; Skov, Søren

    2014-01-01

    For decades, selenium research has been focused on the identification of active metabolites, which are crucial for selenium chemoprevention of cancer. In this context, the metabolite methylselenol (CH3SeH) is known for its action to selectively kill transformed cells through mechanisms that include increased formation of reactive oxygen species, induction of DNA damage, triggering of apoptosis, and inhibition of angiogenesis. Here we reveal that CH3SeH modulates the cell surface expression of NKG2D ligands. The expression of NKG2D ligands is induced by stress-associated pathways that occur early during malignant transformation and enable the recognition and elimination of tumors by activating the lymphocyte receptor NKG2D. CH3SeH regulated NKG2D ligands both on the transcriptional and the posttranscriptional levels. CH3SeH induced the transcription of MHC class I polypeptide-related sequence MICA/B and ULBP2 mRNA. However, the induction of cell surface expression was restricted to the ligands MICA/B. Remarkably, our studies showed that CH3SeH inhibited ULBP2 surface transport through inhibition of the autophagic transport pathway. Finally, we identified extracellular calcium as being essential for CH3SeH regulation of NKG2D ligands. A balanced cell surface expression of NKG2D ligands is considered to be an innate barrier against tumor development. Therefore, our work indicates that the application of selenium compounds that are metabolized to CH3SeH could improve NKG2D-based immune therapy. PMID:25258323

  20. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    SciTech Connect

    Tsogtbaatar, Enkhtuul; Cocuron, Jean -Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-02-22

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. In conclusion, this study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.

  1. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor

    PubMed Central

    Chennupati, Ramesh; Nüsing, Rolf M.; Offermanns, Stefan

    2016-01-01

    19(S)-hydroxy-eicosatetraenoic acid (19(S)-HETE) belongs to a family of arachidonic acid metabolites produced by cytochrome P450 enzymes, which play critical roles in the regulation of cardiovascular, renal and pulmonary functions. Although it has been known for a long time that 19(S)-HETE has vascular effects, its mechanism of action has remained unclear. In this study we show that 19(S)-HETE induces cAMP accumulation in the human megakaryoblastic leukemia cell line MEG-01. This effect was concentration-dependent with an EC50 of 520 nM, insensitive to pharmacological inhibition of COX-1/2 and required the expression of the G-protein Gs. Systematic siRNA-mediated knock-down of each G-protein coupled receptor (GPCR) expressed in MEG-01 followed by functional analysis identified the prostacyclin receptor (IP) as the mediator of the effects of 19(S)-HETE, and the heterologously expressed IP receptor was also activated by 19(S)-HETE in a concentration-dependent manner with an EC50 of 567 nM. Pretreatment of isolated murine platelets with 19(S)-HETE blocked thrombin-induced platelets aggregation, an effect not seen in platelets from mice lacking the IP receptor. Furthermore, 19(S)-HETE was able to relax mouse mesenteric artery- and thoracic aorta-derived vessel segments. While pharmacological inhibition of COX-1/2 enzymes had no effect on the vasodilatory activity of 19(S)-HETE these effects were not observed in vessels from mice lacking the IP receptor. These results identify a novel mechanism of action for the CYP450-dependent arachidonic acid metabolite 19(S)-HETE and point to the existence of a broader spectrum of naturally occurring prostanoid receptor agonists. PMID:27662627

  2. Role of phenmetrazine as an active metabolite of phendimetrazine: evidence from studies of drug discrimination and pharmacokinetics in rhesus monkeys

    PubMed Central

    Banks, Matthew L; Blough, Bruce E; Fennell, Timothy R.; Snyder, Rodney W.; Negus, S. Stevens

    2012-01-01

    Background Monoamine releasers such as d-amphetamine that selectively promote release of dopamine/norepinephrine versus serotonin are one class of candidate medications for treating cocaine dependence; however, their clinical utility is limited by undesirable effects such as abuse liability. Clinical utility of these compounds may be increased by development of prodrugs to reduce abuse potential by slowing onset of drug effects. This study examined the behavioral and pharmacokinetic profile of the Schedule III compound phendimetrazine, which may serve as a prodrug for the N-demethylated metabolite and potent dopamine/norepinephrine releaser phenmetrazine. Methods Monkeys (n=5) were trained in a two-key food-reinforced discrimination procedure to discriminate cocaine (0.32 mg/kg, IM) from saline, and the potency and time course of cocaine-like discriminative stimulus effects were determined for (+)-phenmetrazine, (−)-phenmetrazine, (+)-phendimetrazine, (−)-phendimetrazine, and (! )-phendimetrazine. Parallel pharmacokinetic studies in the same monkeys examined plasma phenmetrazine and phendimetrazine levels for correlation with cocaine-like discriminative stimulus effects. Results Both isomers of phenmetrazine, and the racemate and both isomers of phendimetrazine, produced dose- and time-dependent substitution for the discriminative stimulus effects of cocaine, with greater potency residing in the (+) isomers. In general, plasma phenmetrazine levels increased to similar levels after administration of behaviorally active doses of either phenmetrazine or phendimetrazine. Conclusions These results support the hypothesis that phenmetrazine is an active metabolite that contributes to the effects of phendimetrazine. However, behavioral effects of phendimetrazine had a more rapid onset than would have been predicted by phenmetrazine levels alone, suggesting that other mechanisms may also contribute. PMID:23211394

  3. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    SciTech Connect

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  4. In Vitro Transformation of Chlorinated Parabens by the Liver S9 Fraction: Kinetics, Metabolite Identification, and Aryl Hydrocarbon Receptor Agonist Activity.

    PubMed

    Terasaki, Masanori; Wada, Takeshi; Nagashima, Satoshi; Makino, Masakazu; Yasukawa, Hiro

    2016-01-01

    We investigated the kinetics of in vitro transformation of a dichlorinated propyl paraben (2-propyl 3,5-dichloro-4-hydroxybenzoate; Cl2PP) by the rat liver S9 fraction and assessed the aryl hydrocarbon receptor (AhR) agonist activity of the metabolite products identified in HPLC and GC/MS analysis and by metabolite syntheses. The results indicated that the chlorination of Cl2PP reduced its degradation rate by approximately 40-fold. Two hydroxylated metabolite products showed AhR agonist activity of up to 39% of that of the parent Cl2PP when assessed in a yeast (YCM3) reporter gene assay. The determination of the metabolic properties of paraben bioaccumulation presented here provides further information on the value of risk assessments of chlorinated parabens as a means to ensure human health and environmental safety.

  5. In silico Identification of Ergosterol as a Novel Fungal Metabolite Enhancing RuBisCO Activity in Lycopersicum esculentum.

    PubMed

    Mitra, Joyeeta; Narad, Priyanka; Sengupta, Abhishek; Sharma, P D; Paul, P K

    2016-09-01

    RuBisCO (EC 4.1.1.39), a key enzyme found in stroma of chloroplast, is important for fixing atmospheric CO2 in plants. Alterations in the activity of RuBisCO could influence photosynthetic yield. Therefore, to understand the activity of the protein, knowledge about its structure is pertinent. Though the structure of Nicotiana RuBisCO has been modeled, the structure of tomato RuBisCO is still unknown. RuBisCO extracted from chloroplasts of tomato leaves was subjected to MALDI-TOF-TOF followed by Mascot Search. The protein sequence based on gene identification numbers was subjected to in silico model construction, characterization and docking studies. The primary structure analysis revealed that protein was stable, neutral, hydrophilic and has an acidic pI. The result though indicates a 90 % homology with other members of Solanaceae but differs from the structure of Arabidopsis RuBisCO. Different ligands were docked to assess the activity of RuBisCO against these metabolite components. Out of the number of modulators tested, ergosterol had the maximum affinity (E = -248.08) with RuBisCO. Ergosterol is a major cell wall component of fungi and has not been reported to be naturally found in plants. It is a known immune elicitor in plants. The current study throws light on its role in affecting RuBisCO activity in plants, thereby bringing changes in the photosynthetic rate.

  6. The design and development of fesoterodine as a prodrug of 5-hydroxymethyl tolterodine (5-HMT), the active metabolite of tolterodine.

    PubMed

    Malhotra, B; Gandelman, K; Sachse, R; Wood, N; Michel, M C

    2009-01-01

    This review highlights the design and development of fesoterodine (Toviaz) as a prodrug of 5-hydroxymethyl tolterodine (5-HMT), which is also the active metabolite of tolterodine, for the treatment of overactive bladder (OAB). Tolterodine and 5-HMT are both potent antimuscarinic agents. A prodrug approach was necessary for systemic bioavailability of 5-HMT after oral administration. Fesoterodine was selected amongst a series of ester analogues of 5-HMT to develop an advanced OAB treatment with an optimum biopharmaceutics profile, while maintaining a pharmacological link to tolterodine. While tolterodine and 5-HMT have similar antimuscarinic activity, the logD value, a determinant of lipophilicity and permeability across biological interfaces such as the gut wall and blood-brain barrier, is considerably lower for 5-HMT (0.74) versus tolterodine (1.83). In contrast to the cytochrome P450 (CYP) 2D6-mediated metabolism of tolterodine, 5-HMT formation from fesoterodine occurs via ubiquitous nonspecific esterases. Consequently, treatment with fesoterodine results in consistent, genotype-independent exposure to a singular active moiety (5-HMT); treatment with tolterodine results in CYP2D6 genotype-dependent exposure to varying proportions of two active moieties (5-HMT and tolterodine). At least partially due to the avoidance of variations in pharmacokinetic exposures observed with tolterodine, it was possible to develop fesoterodine with the flexibility of two efficacious and well-tolerated dosage regimens of 4 and 8 mg daily.

  7. Effects of age on the pharmacokinetics of tramadol and its active metabolite, O-desmethyltramadol following intravenous administration to foals.

    PubMed

    Knych, H K; Steffey, E P; White, A M; McKemie, D S

    2016-01-01

    Tramadol is an analgesic agent used in man and a number of veterinary species. The pharmacokinetics and behavioural effects of tramadol and its active metabolite have been described in mature horses, but not in young foals. To characterise the pharmacokinetics, metabolism and some induced behavioural and physiological responses following i.v. tramadol administration in the same group of foals on 4 different occasions, from a few days after birth to age 43 days. Experimental. Tramadol was administered i.v. (3 mg/kg bwt) to a group of 8 foals on 4 separate occasions at ages 6–8, 13–15, 20–22 and 40–43 days. Blood samples were collected prior to administration and at multiple times until 48 h post administration. Blood samples were analysed for tramadol and metabolite concentrations and pharmacokinetics determined at each age. Behavioural and physiological effects were also assessed. The average volume of distribution was 5.10, 4.63, 4.02 and 3.84 l/kg bwt and clearance 3.44, 3.08, 3.14 and 2.69 l/h/kg bwt when foals were aged 6–8, 13–15, 20–22 and 40–43 days, respectively. There was not a significant difference in the elimination half-life between age groups (1.52, 1.73, 1.13 and 1.51 for ages 6–8, 13–15, 20–22 and 40–43 days, respectively). The metabolites produced were the same as in mature horses; however, glucuronidation capability, appeared to increase with increasing age. Tramadol administration was well tolerated at all ages studied with sedation noted in the 3 older age groups. Tramadol appears to be consistently well tolerated following i.v. administration of 3 mg/kg bwt to foals ranging in age from 1 to 6 weeks. Although analgesic concentrations in foals have yet to be established, the results of this study support further study of tramadol for clinical use in foals.

  8. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents.

    PubMed

    Pardo, Marta; Betz, Adrienne J; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D; Correa, Mercè

    2013-01-01

    IT HAS BEEN POSTULATED THAT A NUMBER OF THE CENTRAL EFFECTS OF ETHANOL ARE MEDIATED VIA ETHANOL METABOLITES: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7-2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25-100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression.

  9. [Biological activity of metabolites of the herb Kalanchoe diagremontania (Hamet de la Bbathie) Jacobs et Perr].

    PubMed

    Anisimov, M M; Gerasimenko, N I; Chaĭkina, E L; Serebriakov, Iu M

    2009-01-01

    In this study we investigated the hemolytic, antimicrobial, and phytoregulatory activity of various classes of lipids (triacylglycerols, free fatty acids (FFA), the glyceroglycolipids monogalactosyl diacylglycerol (MGDG), sulfoquinovosyl diacylglycerol (SQDG)), sterols, all of them were obtained from the medical herb Kalanchoe diagremontiana, and also pigments, phenolic compounds (FC), polysaccharides, and ethanol extract (EE) of the herbal. It was established that EE, FC, FFA, and sterols display pH-dependent membranothropic activity. FFA showed antimicrobial activity and stimulated growth of buckwheat stalk sprouts. K. diagremontiana glyceroglycolopids did not display expressed biological activity. Caroteniods displayed pH-independent membranothopic action and antibacterial activity. Chlorophylls displayed antimicrobial action, but did not influence erythrocytes and buckwheat sprouts. Polysaccharides acted against the microorganisms Safale S-04, Candida albicans, Fusarium oxysperum and buckwheat sprouts.

  10. 2-Hydroxymelatonin, a Predominant Hydroxylated Melatonin Metabolite in Plants, Shows Antitumor Activity against Human Colorectal Cancer Cells.

    PubMed

    Yang, Yi; Zhou, Rui; Park, So-Yeon; Back, Kyoungwhan; Bae, Woo Kyun; Kim, Kyung Keun; Kim, Hangun

    2017-03-14

    2-Hydroxymelatonin is a predominant hydroxylated melatonin metabolite in plants. To investigate whether it has potent cytotoxic effects on colorectal cancer cells, four colorectal cancer cell lines, Caco2, HCT116, DLD1, and CT26, were treated with 2-hydroxymelatonin and melatonin. 2-Hydroxymelatonin had a much lower IC50 value than melatonin in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytotoxic effect of 2-hydroxymelatonin was much stronger than that of melatonin at high concentrations (1000 or 2000 μM) in HCT116, DLD1, and CT26 cells, but only at intermediate concentrations (250 or 500 μM) in Caco2 cells. The cytotoxicity of 2-hydroxymelatonin was induced through activation of the apoptotic signaling pathway, as confirmed by Hoechst staining and Annexin V-FITC/propidium iodide double labeling of cells treated with a lethal dose (1 mM). However, sub-lethal doses of 2-hydroxymelatonin inhibited the invasive ability of Caco2 cells. Epithelial-mesenchymal transition (EMT) markers were significantly regulated by 2-hydroxymelatonin. Overall, the anti-cancer activity of 2-hydroxymelatonin is more potent than that of melatonin. Taken together, 2-hydroxymelatonin exhibits potent anti-cancer activity against human colorectal cancer cells via induction of apoptosis and inhibition of EMT.

  11. De Novo Sequencing of Hypericum perforatum Transcriptome to Identify Potential Genes Involved in the Biosynthesis of Active Metabolites

    PubMed Central

    He, Miao; Wang, Ying; Hua, Wenping; Zhang, Yuan; Wang, Zhezhi

    2012-01-01

    Background Hypericum perforatum L. (St. John’s wort) is a medicinal plant with pharmacological properties that are antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial. Its major active metabolites are hypericins, hyperforins, and melatonin. However, little genetic information is available for this species, especially that concerning the biosynthetic pathways for active ingredients. Methodology/Principal Findings Using de novo transcriptome analysis, we obtained 59,184 unigenes covering the entire life cycle of these plants. In all, 40,813 unigenes (68.86%) were annotated and 2,359 were assigned to secondary metabolic pathways. Among them, 260 unigenes are involved in the production of hypericin, hyperforin, and melatonin. Another 2,291 unigenes are classified as potential Type III polyketide synthase. Our BlastX search against the AGRIS database reveals 1,772 unigenes that are homologous to 47 known Arabidopsis transcription factor families. Further analysis shows that 10.61% (6,277) of these unigenes contain 7,643 SSRs. Conclusion We have identified a set of putative genes involved in several secondary metabolism pathways, especially those related to the synthesis of its active ingredients. Our results will serve as an important platform for public information about gene expression, genomics, and functional genomics in H. perforatum. PMID:22860059

  12. De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites.

    PubMed

    He, Miao; Wang, Ying; Hua, Wenping; Zhang, Yuan; Wang, Zhezhi

    2012-01-01

    Hypericum perforatum L. (St. John's wort) is a medicinal plant with pharmacological properties that are antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial. Its major active metabolites are hypericins, hyperforins, and melatonin. However, little genetic information is available for this species, especially that concerning the biosynthetic pathways for active ingredients. Using de novo transcriptome analysis, we obtained 59,184 unigenes covering the entire life cycle of these plants. In all, 40,813 unigenes (68.86%) were annotated and 2,359 were assigned to secondary metabolic pathways. Among them, 260 unigenes are involved in the production of hypericin, hyperforin, and melatonin. Another 2,291 unigenes are classified as potential Type III polyketide synthase. Our BlastX search against the AGRIS database reveals 1,772 unigenes that are homologous to 47 known Arabidopsis transcription factor families. Further analysis shows that 10.61% (6,277) of these unigenes contain 7,643 SSRs. We have identified a set of putative genes involved in several secondary metabolism pathways, especially those related to the synthesis of its active ingredients. Our results will serve as an important platform for public information about gene expression, genomics, and functional genomics in H. perforatum.

  13. Inhibition of advanced glycation end product formation by medicinal plant extracts correlates with phenolic metabolites and antioxidant activity.

    PubMed

    Harris, Cory S; Beaulieu, Louis-Philippe; Fraser, Marie-Hélène; McIntyre, Kristina L; Owen, Patrick L; Martineau, Louis C; Cuerrier, Alain; Johns, Timothy; Haddad, Pierre S; Bennett, Steffany A L; Arnason, John T

    2011-01-01

    Nonenzymatic formation of advanced glycation end products (AGEs) is accelerated under hyperglycemic conditions characteristic of type 2 diabetes mellitus and contributes to the development of vascular complications. As such, inhibition of AGE formation represents a potential therapeutic target for the prevention and treatment of diabetic complications. In the present study, ethanolic extracts of 17 medicinal plants were assessed for inhibitory effects on in vitro AGE formation through fluorometric and immunochemical detection of fluorescent AGEs and N(ε)-(carboxymethyl)lysine adducts of albumin (CML-BSA), respectively. Most extracts inhibited fluorescent AGE formation with IC (50) values ranging from 0.4 to 38.6 µg/mL and all extracts reduced CML-BSA formation but to differing degrees. Results obtained through both methods were highly correlated. Antiglycation activities were positively correlated with total phenolic content, free radical scavenging activity and reduction in malonyldiadehyde levels following oxidation of low-density lipoprotein, but negatively correlated with lag time to formation of conjugated dienes. Together, these results provide evidence that antioxidant phenolic metabolites mediate the antiglycation activity of our medicinal plant collection, a relationship that likely extends to other medicinal and food plants. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)--recent reports.

    PubMed

    El Kihel, Laïla

    2012-01-01

    Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Antioxidant activity and metabolite profile of quercetion in vitamin E depleted rats

    USDA-ARS?s Scientific Manuscript database

    Dietary antioxidants interact in a dynamic fashion, including recycling and sparing one another, to decrease oxidative stress. Limited information is available regarding the interrelationships in vivo between quercetin and vitamin E. We investigated the antioxidant activity and metabolism of querc...

  16. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus.

    PubMed

    Miao, Fang; Yang, Rui; Chen, Dong-Dong; Wang, Ying; Qin, Bao-Fu; Yang, Xin-Juan; Zhou, Le

    2012-11-28

    From the ethyl acetate extract of the culture broth of Talaromyces verruculosus, a rhizosphere fungus of Stellera chamaejasme L., (-)-8-hydroxy-3-(4-hydroxypentyl)-3,4-dihydroisocoumarin (1) and (E)-3-(2,5-dioxo-3-(propan-2-ylidene)pyrrolidin-1-yl)acrylic acid (2) were isolated and evaluated for their antimicrobial activities. Their structures were elucidated by UV, IR, MS, 1H-NMR, 13C-NMR and 2D NMR spectra. Compound 1 exhibited the significant activities in vitro against two strains of bacteria and four strains of fungi. Compound 2 gave slight activities on the fungi at 100 µg mL(-1), but no activities on the bacteria. Compound 1 should be considered as a new lead or model compound to develop new isocoumarin antimicrobial agents.

  17. Tryptophan in Alcoholism Treatment I:  Kynurenine Metabolites Inhibit the Rat Liver Mitochondrial Low Km Aldehyde Dehydrogenase Activity, Elevate Blood Acetaldehyde Concentration and Induce Aversion to Alcohol

    PubMed Central

    Badawy, Abdulla A.-B.; Bano, Samina; Steptoe, Alex

    2011-01-01

    Aims: The aims were to provide proofs of mechanism and principle by establishing the ability of kynurenine metabolites to inhibit the liver mitochondrial low Km aldehyde dehydrogenase (ALDH) activity after administration and in vivo, and to induce aversion to alcohol. Methods: Kynurenic acid (KA), 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) were administered to normal male Wistar rats and ALDH activity was determined both in vitro in liver homogenates and in vivo (by measuring blood acetaldehyde following ethanol administration). Alcohol consumption was studied in an aversion model in rats and in alcohol-preferring C57 mice. Results: ALDH activity was significantly inhibited by all three metabolites by doses as small as 1 mg/kg body wt. Blood acetaldehyde accumulation after ethanol administration was strongly elevated by KA and 3-HK and to a lesser extent by 3-HAA. All three metabolites induced aversion to alcohol in rats and decreased alcohol preference in mice. Conclusions: The above kynurenine metabolites of tryptophan induce aversion to alcohol by inhibiting ALDH activity. An intellectual property covering the use of 3-HK and 3-HAA and derivatives thereof in the treatment of alcoholism by aversion awaits further development. PMID:21896552

  18. Toward understanding the impacts of sediment contamination on a native fish species: transcriptional effects, EROD activity, and biliary PAH metabolites.

    PubMed

    Koglin, Sven; Kammann, Ulrike; Eichbaum, Kathrin; Reininghaus, Mathias; Eisner, Bryanna; Wiseman, Steve; Hecker, Markus; Buchinger, Sebastian; Reifferscheid, Georg; Hollert, Henner; Brinkmann, Markus

    2016-01-01

    Both frequency and intensity of flood events are expected to increase as a result of global climate change in the upcoming decades, potentially resulting in increased re-suspension of sediments in fluvial systems. Contamination of these re-suspended sediments with legacy contaminants, including dioxins and dioxin-like compounds (DLCs), as well as polycyclic aromatic hydrocarbons (PAHs) is of great ecotoxicological concern. DLCs, and to some extent also PAHs, exhibit their toxicity through activation of the aryl hydrocarbon receptor (AhR). However, interactions of DLCs with pathways other than those known to be mediated through the AhR are not fully understood to date. This study aimed to investigate molecular and biochemical effects in roach (Rutilus rutilus) during a 10 days exposure to suspensions of three natural sediments that differed in the level of DLC contamination. Concentrations of biliary PAH metabolites and hepatic 7-ethoxyresorufin-O-deethylase activity were quantified in exposed fish. Furthermore, the abundance of transcripts of several genes related to energy metabolism, response to oxidative stress, and apoptosis, as well as cytochrome P450 1A (cyp1a) was quantified. Biliary PAH metabolites and activation of the AhR were confirmed as suitable early warning biomarkers of exposure to suspended sediments containing DLCs and PAHs that corresponded well with analytically determined concentrations of those contaminants. Although the abundances of transcripts of superoxide dismutase (sod), protein kinase c delta (pkcd), and ATP-binding cassette transporter c9 (abcc9) were altered by the treatment compared with unexposed control fish, none of these showed a time- or concentration-dependent response. The abundance of transcripts of pyruvate carboxylase (pc) and transferrin variant d (tfd) remained unaltered by the treatments. We have shown that contaminated sediments can become a risk for fish during re-suspension events (e.g., flooding and dredging). We

  19. Structural characteristics of compounds that can be activated to chemically reactive metabolites: use for a prediction of a carcinogenic potential.

    PubMed

    Lutz, W K

    1984-01-01

    Many mutagens and carcinogens act via covalent interaction of metabolic intermediates with DNA in the target cell. This report groups those structural elements which are often found to form the basis for a metabolism to such chemically reactive metabolites. Compounds which are chemically reactive per se and which do not require metabolic activation form group 1. Group 2 comprises of olefins and aromatic hydrocarbons where the oxidation via an epoxide can be responsible for the generation of reactive species. Aromatic amines, hydrazines, and nitrosamines form group 3 requiring an oxidation of a nitrogen atom or of a carbon atom in alpha position to a nitrosated amine. Group 4 compounds are halogenated hydrocarbons which can either give rise to radicals or can form an olefin (group 2) upon dehydrohalogenation. Group 5 compounds depend upon some preceding enzymatic activity either not available in the target cell or acting on positions in the molecule which are not directly involved in the subsequent formation of electrophilic atoms. Examples for each group are taken from the "List of Chemicals and Industrial Processes Associated with Cancer in Humans" as compiled by the International Agency for the Research on Cancer, and it is shown that 91% of the organic carcinogens would have been detected on the basis of structural elements characteristic for group 1-5. As opposed to this very high sensitivity, the specificity (the true negative fraction) of using this approach as a short-term test for carcinogenicity is shown to be bad because detoxification pathways have so far not been taken into account. These competing processes are so complex, however, that either only very extensive knowledge about pharmacokinetics, stability, and reactivity will be required or that in vivo systems have to be used to predict, on a quantitative basis, the damage expected on the DNA. DNA-binding experiments in vivo are presented with benzene and toluene to demonstrate one possible way for

  20. Antimicrobial and antioxidant activities of a new metabolite from Quercus incana.

    PubMed

    Gul, Farah; Khan, Khalid Mohammed; Adhikari, Achyut; Zafar, Salman; Akram, Muhammad; Khan, Haroon; Saeed, Muhammad

    2016-12-21

    Phytochemical investigations of Quercus incana led to the isolation of a new catechin derivative quercuschin (1), along with six known compounds: quercetin (2), methyl gallate (3), gallic acid (4), betulinic acid (5), (Z)-9-octadecenoic acid methyl ester (6) and β-sitosterol glucoside (7) from the ethyl acetate fraction of methanolic extract of the bark. Compound 1 was screened for its antibacterial, antifungal and antioxidant potential. Antibacterial and antifungal activities of the compound were tested against different bacterial and fungal strains, employing the agar well diffusion methods. The antibacterial activity was the highest against Streptococcus pyogenes with 80.0% inhibition, while the antifungal activity of the compound was the highest against Candida glabrata with 80.5% inhibition. The results of the antioxidant activity indicated that the compound exhibited antioxidant activity comparable to that of standard, butylated hydroxyanisole (51.2 μg/10 μl versus 45.9 μg/10 μl).

  1. Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin.

    PubMed

    Benzidane, Yassine; Touinsi, Sarra; Motte, Emilie; Jadas-Hécart, Alain; Communal, Pierre-Yves; Leduc, Lionel; Thany, Steeve H

    2010-12-01

    In the present study, the effect of thiamethoxam and clothianidin on the locomotor activity of American cockroach, Periplaneta americana (L.), was evaluated. Because it has been proposed that thiamethoxam is metabolised to clothianidin, high-performance liquid chromatography coupled with mass spectrometry was used to evaluate the amount of clothianidin on thiamethoxam-treated cockroaches. One hour after neonicotinoid treatment, the time spent in the open-field-like apparatus significantly increased, suggesting a decrease in locomotor activity. The percentage of cockroaches displaying locomotor activity was significantly reduced 1 h after haemolymph application of 1 nmol g(-1) neonicotinoid, while no significant effect was found after topical and oral administration. However, at 24 and 48 h, all neonicotinoids were able to reduce locomotor activity, depending on their concentrations and the way they were applied. Interestingly, it was found that thiamethoxam was converted to clothianidin 1 h after application, but the amount of clothianidin did not rise proportionately to thiamethoxam, especially after oral administration. The data suggest that the effect of thiamethoxam on cockroach locomotor activity is due in part to clothianidin action because (1) thiamethoxam levels remained persistent 48 h after application and (2) the amount of clothianidin in cockroach tissues was consistent with the toxicity of thiamethoxam. Copyright © 2010 Society of Chemical Industry.

  2. Environmentally benign antifouling activity and toxic properties of bioactive metabolites from mangrove Excoecaria agallocha L.

    PubMed

    Ramasubburayan, Ramasamy; Prakash, Santhiyagu; Venkatesan, Srinivasan; Palavesam, Arunachalam; Immanuel, Grasian

    2017-10-04

    This study was aimed to investigate the antifouling (AF) potentials and toxic properties of methanol extract from leaves of mangrove Excoecaria agallocha. Antimicrofouling activity results inferred that this extract strongly inhibited fouling bacterial and microalgal growth. This extract had also inhibited the settlement of brown mussel Perna indica and larvae of barnacle Balanus amphitrite. Further, EC50 < LC50 and therapeutic ratio > 1 together propagated non-toxic nature of the extract. Mollusk foot adherence assay result showed complete inhibition of foot spreading and loss of attachment of common rocky fouler Patella vulgata to the substrata. Field assay results affirmed that this extract effectively deterred settlement of biofoulers. Purification and GC-MS analysis of bioassay-guided active spot evidenced presence of three major compounds (> 85%) responsible for the promising AF activity. The identified lead compounds subjected to an estimation (BIOWIN™) program developed by United States Environmental Protection Agency (USEPA) predicts that they are biodegradable in nature. Graphical abstract.

  3. Structure of neprilysin in complex with the active metabolite of sacubitril

    PubMed Central

    Schiering, Nikolaus; D’Arcy, Allan; Villard, Frederic; Ramage, Paul; Logel, Claude; Cumin, Frederic; Ksander, Gary M.; Wiesmann, Christian; Karki, Rajeshri G.; Mogi, Muneto

    2016-01-01

    Sacubitril is an ethyl ester prodrug of LBQ657, the active neprilysin (NEP) inhibitor, and a component of LCZ696 (sacubitril/valsartan). We report herein the three-dimensional structure of LBQ657 in complex with human NEP at 2 Å resolution. The crystal structure unravels the binding mode of the compound occupying the S1, S1’ and S2’ sub-pockets of the active site, consistent with a competitive inhibition mode. An induced fit conformational change upon binding of the P1’-biphenyl moiety of the inhibitor suggests an explanation for its selectivity against structurally homologous zinc metallopeptidases. PMID:27302413

  4. Structure of neprilysin in complex with the active metabolite of sacubitril.

    PubMed

    Schiering, Nikolaus; D'Arcy, Allan; Villard, Frederic; Ramage, Paul; Logel, Claude; Cumin, Frederic; Ksander, Gary M; Wiesmann, Christian; Karki, Rajeshri G; Mogi, Muneto

    2016-06-15

    Sacubitril is an ethyl ester prodrug of LBQ657, the active neprilysin (NEP) inhibitor, and a component of LCZ696 (sacubitril/valsartan). We report herein the three-dimensional structure of LBQ657 in complex with human NEP at 2 Å resolution. The crystal structure unravels the binding mode of the compound occupying the S1, S1' and S2' sub-pockets of the active site, consistent with a competitive inhibition mode. An induced fit conformational change upon binding of the P1'-biphenyl moiety of the inhibitor suggests an explanation for its selectivity against structurally homologous zinc metallopeptidases.

  5. Effect of phenylalanine metabolites on the activities of enzymes of ketone-body utilization in brain of suckling rats.

    PubMed Central

    Benavides, J; Gimenez, C; Valdivieso, F; Mayor, F

    1976-01-01

    1. The effects of phenylalanine and its metabolites (phenylacetate, phenethylamine, phenyl-lactate, o-hydroxyphenylacetate and phenylpyruvate) on the activity of 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) 3-oxo acid CoA-transferase (EC 2.8.3.5) and acetoacetyl-CoA thiolase (EC 2.3.1.9) in brain of suckling rats were investigated. 2. The 3-hydroxybutyrate dehydrogenase from the brain of suckling rats had a Km for 3-hydroxybutyrate of 1.2 mM. Phenylpyruvate, phenylacetate and o-hydroxyphenylacetate inhibited the enzyme activity with Ki values of 0.5, 1.3 and 4.7 mM respectively. 3. The suckling-rat brain 3-oxo acid CoA-transferase activity had a Km for acetoacetate of 0.665 mM and for succinyl (3-carboxypropionyl)-CoA of 0.038 mM. The enzyme was inhibited with respect to acetoacetate by phenylpyruvate (Ki equals 1.3 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). The reaction in the direction of acetoacetate was also inhibited by phenylpyruvate (Ki equals 1.6 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). 4. Phenylpyruvate inhibited with respect to acetoacetyl-CoA both the mitochondrial (Ki equals 3.2 mM) and cytoplasmic (Ki equals 5.2 mM) acetoacetyl-CoA thiolase activities. 5. The results suggest that inhibition of 3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase activities may impair ketone-body utilization and hence lipid synthesis in the developing brain. This suggestion is discussed with reference to the pathogenesis of mental retardation in phenylketonuria. PMID:12750

  6. Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein.

    PubMed

    Kwak, Mi-Kyoung; Kensler, Thomas W; Casero, Robert A

    2003-06-06

    The naturally occurring polycationic polyamines including putrescine, spermidine, and spermine play an important role in cell growth, differentiation, and gene expression. However, circulating polyamines are potential substrates for several oxidizing enzymes including copper-containing serum amine oxidase. These enzymes are capable of oxidizing serum polyamines to several toxic metabolites including aldehydes and H(2)O(2). In this study, we investigated the effects of polyamines as inducers of phase 2 enzymes and other genes that promote cell survival in a cell culture system in the presence of bovine serum. Spermidine and spermine (50 microM) increased NAD(P)H quinone oxidoreductase (NQO1) activity up to 3-fold in murine keratinocyte PE cells. Transcript levels for glutathione S-transferase (GST) A1, GST M1, NQO1, gamma-glutamylcysteine ligase regulatory subunit, and UDP-glucuronyltransferase 1A6 were significantly increased by spermidine and this effect was mediated through the antioxidant response element (ARE). The ARE from the mouse GST A1 promoter was activated about 9-fold by spermine and 5-fold by spermidine treatment, but could be inhibited by the amine oxidase inhibitor, aminoguanidine, suggesting that acrolein or hydrogen peroxide generated from polyamines by serum amine oxidase may be mediators for phase 2 enzyme induction. Elevations of ARE-luciferase expression and NQO1 enzyme activity by spermidine were not affected by catalase, while both were completely repressed by aldehyde dehydrogenase treatment. Direct addition of acrolein to PE cells induced multiple phase 2 genes and elevated nuclear levels of Nrf2, a transcription factor that binds to the ARE. Expression of mutant Nrf2 repressed the activation of the ARE-luciferase reporter by polyamines and acrolein. These results indicate that spermidine and spermine increase the expression of phase 2 genes in cells grown in culture through activation of the Nrf2-ARE pathway by generating the sulfhydryl

  7. A novel metabolite of antituberculosis therapy demonstrates host activation of isoniazid and formation of the isoniazid-NAD+ adduct.

    PubMed

    Mahapatra, Sebabrata; Woolhiser, Lisa K; Lenaerts, Anne J; Johnson, John L; Eisenach, Kathleen D; Joloba, Moses L; Boom, W Henry; Belisle, John T

    2012-01-01

    One of the most effective and widely used antituberculosis (anti-TB) drugs is isoniazid (INH), a prodrug activated via oxidation that forms an adduct with NAD(+) to inhibit NADH-dependent targets of Mycobacterium tuberculosis, such as enoyl-acyl carrier protein reductase (InhA). The metabolic by-products and potentially toxic intermediates resulting from INH therapy have been identified through a large body of work. However, an INH-NAD adduct or structures related to this adduct have not been identified in specimens from human TB patients or animal models of TB. Analyses by mass spectrometry of urine collected from TB patients in a study conducted by the NIAID-funded Tuberculosis Research Unit identified 4-isonicotinoylnicotinamide (C(12)H(9)N(3)O(2)) as a novel metabolite of INH therapy. This compound was formed by M. tuberculosis strains in a KatG-dependent manner but could also be produced by mice treated with INH independent of an M. tuberculosis infection. Thus, the 4-isonicotinoylnicotinamide observed in human urine samples is likely derived from the degradation of oxidized INH-NAD adducts and provides direct evidence of host INH activation.

  8. Fesoterodine, its active metabolite, and tolterodine bind selectively to muscarinic receptors in human bladder mucosa and detrusor muscle.

    PubMed

    Yoshida, Akira; Fuchihata, Yusuke; Kuraoka, Shiori; Osano, Ayaka; Otsuka, Atsushi; Ozono, Seiichiro; Takeda, Masayuki; Masuyama, Keisuke; Araki, Isao; Yamada, Shizuo

    2013-04-01

    To comparatively characterize the binding activity of fesoterodine, its active metabolite (5-hydroxymethyl tolterodine [5-HMT]), and tolterodine in the human bladder mucosa, detrusor muscle, and parotid gland. Muscarinic receptors in the homogenates of human bladder mucosa, detrusor muscle, and parotid gland were measured by a radioligand binding assay using [N-methyl-(3)H] scopolamine methyl chloride. Fesoterodine, 5-HMT, and tolterodine competed with [N-methyl-(3)H] scopolamine methyl chloride for binding sites in the bladder mucosa, detrusor muscle, and parotid gland in a concentration-dependent manner. The affinity for muscarinic receptors of these agents was significantly greater in the bladder than in the parotid gland, suggesting pharmacologic selectivity for the bladder over the parotid gland. The bladder selectivity was larger for fesoterodine and 5-HMT than for tolterodine. Fesoterodine, 5-HMT, and tolterodine resulted in significantly increased (two- to five-fold) values of the apparent dissociation constant for specific [N-methyl-(3)H] scopolamine methyl chloride binding in the detrusor muscle and parotid gland, with little effect on the corresponding values of the maximal number of binding sites. This finding indicates that these agents bind to the human muscarinic receptors in a competitive and reversible manner. Fesoterodine and 5-HMT bind to the muscarinic receptors with greater affinity in the human bladder mucosa and detrusor muscle than in the parotid gland in a competitive and reversible manner. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Antioxidant and anti-acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla

    PubMed Central

    Ghribia, Lotfi; Ghouilaa, Hatem; Omrib, Amel; Besbesb, Malek; Janneta, Hichem Ben

    2014-01-01

    Objective To investigate the antioxidant potential and anti-acetycholinesterase activity of compounds and extracts from Acacia cyanophylla (A. cyanophylla). Methods Three polyphenolic compounds were isolated from ethyl acetate extract of A. cyanophylla flowers. They have been identified as isosalipurposide 1, quercetin 2 and naringenin 3. Their structures were elucidated by extensive spectroscopic methods including 1D and 2D NMR experiments as well as ES-MS. The prepared extracts and the isolated compounds 1-3 were tested for their antioxidant activity using 1′-1′-diphenylpicrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays and reducing power. They have been also investigated for inhibitory effect against acetylcholinesterase using the microplate assay. Results In the DPPH test, the EtOAc extract of flowers exhibited the highest antioxidant effect (67.26 µg/mL). Isosalipurposide 1 showed a significant antiradical power against DPPH (81.9 µg/mL). All extracts showed a dose-dependent acetylcholinesterase inhibition. In terms of the IC50 value, the butanolic extract (16.03 µg/mL) was the most potent sample. Isosalipurposide 1 was found to be active against AChE with an IC50 value of 52.04 µg/mL. Conclusions The results demonstrated the important antioxidant and anti-acetylcholinesterase activity of pure compounds and extracts from A. cyanophylla. PMID:25183120

  10. In vitro biological activity of secondary metabolites from Seseli rigidum Waldst. et Kit. (Apiaceae).

    PubMed

    Jakovljević, Dragana; Vasić, Sava; Stanković, Milan; Čomić, Ljiljana; Topuzović, Marina

    2015-12-01

    The antioxidant, antimicrobial activity, total phenolic content and flavonoid concentration of Seseli rigidum Waldst. et Kit. were evaluated. Five different extracts of the aboveground plant parts were obtained by extraction with distilled water, methanol, acetone, ethyl acetate and petroleum ether. Total phenols were determined using the Folin-Ciocalteu's reagent, with the highest values obtained in the acetone extract (102.13 mg GAE/g). The concentration of flavonoids, determined by using a spectrophotometric method with aluminum chloride and expressed in terms of rutin equivalent, was also highest in the acetone extracts (291.58 mg RUE/g). The antioxidant activity was determined in vitro using DPPH reagent. The greatest antioxidant activity was expressed in the aqueous extract (46.15 μg/ml). In vitro antimicrobial activities were determined using a microdilution analysis method; minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) were determined. Methanolic extract had the greatest influence on bacilli (MIC at 0.0391 mg/ml), but the best antimicrobial effect had acetone and ethyl acetate extracts considering their broad impact on bacteria. According to our research, S. rigidum can be regarded as promising candidate for natural plant source with high value of biological compounds.

  11. Agropyrenol, a phytotoxic fungal metabolite, and its derivatives: a structure-activity relationship study.

    PubMed

    Cimmino, Alessio; Zonno, Maria Chiara; Andolfi, Anna; Troise, Ciro; Motta, Andrea; Vurro, Maurizio; Evidente, Antonio

    2013-02-27

    Agropyrenol is a phytotoxic substituted salicylic aldehyde produced in liquid culture by Ascochyta agropyrina var. nana , a potential mycoherbicide proposed for the control of the perennial weed Elytrigia repens. In this study, six derivatives obtained by chemical modifications of the toxin were assayed for phytotoxic, antimicrobial, and zootoxic activities, and the structure-activity relationships were examined. Each compound was tested on non-host weedy and agrarian plants, fungi, Gram-positive and Gram-negative bacteria, and brine shrimp larvae. The results provide insights into the structure-activity relationships of agropyrenol. Both the double bond and the diol system of the 3,4-dihydroxypentenyl side chain as well as the aldehyde group at C-1 of the phenolic ring of agropyrenol proved to be important for the phytotoxicity. The lesser polar 3',4'-O,O'-isopropylidene of agropyrenol also showed significant zootoxic and slight antimicrobial activities. This finding could be useful in devising new natural herbicides for practical application in agriculture.

  12. Effects of Metabolites Produced from (-)-Epigallocatechin Gallate by Rat Intestinal Bacteria on Angiotensin I-Converting Enzyme Activity and Blood Pressure in Spontaneously Hypertensive Rats.

    PubMed

    Takagaki, Akiko; Nanjo, Fumio

    2015-09-23

    Inhibitory activity of angiotensin I-converting enzyme (ACE) was examined with (-)-epigallocatechin gallate (EGCG) metabolites produced by intestinal bacteria, together with tea catechins. All of the metabolites showed ACE inhibitory activities and the order of IC50 was hydroxyphenyl valeric acids > 5-(3,4,5-trihydroxyphenyl)-γ-valerolactone (1) > trihydroxyphenyl 4-hydroxyvaleric acid ≫ dihydroxyphenyl 4-hydroxyvaleric acid ≫ 5-(3,5-dihydroxyphenyl)-γ-valerolactone (2). Among the catechins, galloylated catechins exhibited stronger ACE inhibitory activity than nongalloylated catechins. Furthermore, the effects of a single oral intake of metabolites 1 and 2 on systolic blood pressure (SBP) were examined with spontaneously hypertensive rats (SHR). Significant decreases in SBP were observed between 2 h after oral administration of 1 (150 mg/kg in SHR) and the control group (p = 0.002) and between 4 h after administration of 2 (200 mg/kg in SHR) and the control group (p = 0.044). These results suggest that the two metabolites have hypotensive effects in vivo.

  13. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma.

    PubMed

    Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H

    2011-05-01

    The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.

  14. Non-invasive monitoring of adrenocortical activity in captive African Penguin (Spheniscus demersus) by measuring faecal glucocorticoid metabolites.

    PubMed

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D

    2015-12-01

    Measurement of faecal glucocorticoid metabolites (FGMs) has become a useful and widely-accepted method for the non-invasive evaluation of stress in vertebrates. In this study we assessed the adrenocortical activity of five captive African Penguins (Spheniscus demersus) by means of FGM evaluation following a biological stressor, i.e. capture and immobilization. In addition, we detected individual differences in secretion of FGMs during a stage of the normal biological cycle of penguins, namely the breeding period, without any external or induced causes of stress. Our results showed that FGM concentrations peaked 5.5-8h after the induced stress in all birds, and significantly decreased within 30 h. As predictable, the highest peak of FGMs (6591 ng/g) was reached by the youngest penguin, which was at its first experience with the stressor. This peak was 1.8-2.7-fold higher compared to those of the other animals habituated to the stimulus. For the breeding period, our results revealed that the increase in FGMs compared to ordinary levels, and the peaks of FGMs, varied widely depending on the age and mainly on the reproductive state of the animal. The bird which showed the lowest peak (2518 ng/g) was an old male that was not in a reproductive state at the time of the study. Higher FGM increases and peaks were reached by the two birds which were brooding (male: 5552%, 96,631 ng/g; female: 1438%, 22,846 ng/g) and by the youngest bird (1582%, 39,700 ng/g). The impact of the reproductive state on FGM levels was unexpected compared to that produced by the induced stress. The EIA used in this study to measure FGM levels proved to be a reliable tool for assessing individual and biologically-relevant changes in FGM concentrations in African Penguin. Moreover, this method allowed detection of physiological stress during the breeding period, and identification of individual differences in relation to the reproductive status. The increase in FGM levels as a response to capture and

  15. Secondary metabolites from the unripe pulp of Persea americana and their antimycobacterial activities.

    PubMed

    Lu, Ying-Chen; Chang, Hsun-Shuo; Peng, Chien-Fang; Lin, Chu-Hung; Chen, Ih-Sheng

    2012-12-15

    The fruits of Persea americana (Avocado) are nowadays used as healthy fruits in the world. Bioassay-guided fractionation of the active ethyl acetate soluble fraction has led to the isolation of five new fatty alcohol derivatives, avocadenols A-D (1-4) and avocadoin (5) from the unripe pulp of P. americana, along with 12 known compounds (6-17). These structures were elucidated by spectroscopic analysis. Among the isolates, avocadenol A (1), avocadenol B (2), (2R,4R)-1,2,4-trihydroxynonadecane (6), and (2R,4R)-1,2,4-trihydroxyheptadec-16-ene (7) showed antimycobacterial activity against Mycobacterium tuberculosis H(37)R(V)in vitro, with MIC values of 24.0, 33.8, 24.9, and 35.7 μg/ml, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity.

    PubMed

    Gaudet, Ryan G; Sintsova, Anna; Buckwalter, Carolyn M; Leung, Nelly; Cochrane, Alan; Li, Jianjun; Cox, Andrew D; Moffat, Jason; Gray-Owen, Scott D

    2015-06-12

    Host recognition of pathogen-associated molecular patterns (PAMPs) initiates an innate immune response that is critical for pathogen elimination and engagement of adaptive immunity. Here we show that mammalian cells can detect and respond to the bacterial-derived monosaccharide heptose-1,7-bisphosphate (HBP). A metabolic intermediate in lipopolysaccharide biosynthesis, HBP is highly conserved in Gram-negative bacteria, yet absent from eukaryotic cells. Detection of HBP within the host cytosol activated the nuclear facto κB pathway in vitro and induced innate and adaptive immune responses in vivo. Moreover, we used a genome-wide RNA interference screen to uncover an innate immune signaling axis, mediated by phosphorylation-dependent oligomerization of the TRAF-interacting protein with forkhead-associated domain (TIFA) that is triggered by HBP. Thus, HBP is a PAMP that activates TIFA-dependent immunity to Gram-negative bacteria.

  17. Trypanocidal activity of a new pterocarpan and other secondary metabolites of plants from Northeastern Brazil flora.

    PubMed

    Vieira, Nashira Campos; Espíndola, Laila Salmen; Santana, Jaime Martins; Veras, Maria Leopoldina; Pessoa, Otília Deusdênia Loiola; Pinheiro, Sávio Moita; de Araújo, Renata Mendonça; Lima, Mary Anne Sousa; Silveira, Edilberto Rocha

    2008-02-15

    Two hundred fifteen compounds isolated from plants of Northeastern Brazil flora have been assayed against epimastigote forms of Trypanosoma cruzi, using the tetrazolium salt MTT as an alternative method. Eight compounds belonging to four different species: Harpalyce brasiliana (Fabaceae), Acnistus arborescens and Physalis angulata (Solanaceae), and Cordia globosa (Boraginaceae) showed significant activity. Among them, a novel and a known pterocarpan, a chalcone, four withasteroids, and a meroterpene benzoquinone were the represented chemical classes.

  18. Metabolite profiling and antioxidant activity of Prunus padus L. flowers and leaves.

    PubMed

    Olszewska, Monika A; Kwapisz, Anna

    2011-07-01

    Six phenolics were obtained from the leaves of Prunus padus by activity-guided isolation: isorhamnetin 3-O-β-xylopyranosyl-(1 → 2)-β-galactopyranoside (1), astragalin (2), hyperoside (3), quercetin 3-O-β-xylopyranosyl-(1 → 2)-β-galactopyranoside (4), quercetin 3-O-β-xylopyranosyl-(1 → 2)-β-glucopyranoside (5) and chlorogenic acid (6). The antioxidant potential of 70% methanolic extracts from the flowers and leaves collected over the growing season was evaluated using the 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging and 2,2′-azobis-(2-amidinopropane) dihydrochloride (AAPH)-induced linoleic acid (LA) peroxidation tests in relation to the contents of the isolates 1-6, total phenolics, total proanthocyanidins and total quercetin. The IC₅₀ values were expressed in gram dry weight per gram of DPPH or LA, respectively, and were in the range of 1.42-2.42 for the DPPH test and 1.78-4.92 for the LA peroxidation, with superior activity found for the flowers and the autumn leaves. Significant linear correlation of these values to the sum of proanthocyanidins and compounds 1-6 (R² > 0.87) showed that the listed phenolics are synergists of the tested activity.

  19. 3-Hydroxykynurenine, a Tryptophan Metabolite Generated during the Infection, Is Active Against Trypanosoma cruzi.

    PubMed

    Knubel, Carolina P; Insfran, Constanza; Martinez, Fernando F; Diaz Lujan, Cintia; Fretes, Ricardo E; Theumer, Martin G; Cervi, Laura; Motran, Claudia C

    2017-07-13

    The antiparasitic activity of 3-hydroxykynurenine (3-HK), one of the major tryptophan catabolites of the kynurenine pathway, against both Trypanosoma cruzi evolutive forms that are important for human infection, trypomastigotes (Tps) and amastigotes (Am), possible targets in the parasite and the drug toxicity to mammalian cells have been investigated. 3-HK showed a potent activity against Am with IC50 values in the micromolar concentration range, while the IC50 values to cause Tps death was ∼6000-times higher, indicating that the replicative form present in the vertebrate hosts is much more susceptible to 3-HK than bloodstream Tps. In addition, 3-HK showed activity against Tps and Am, at concentrations that did not exhibit toxicity to mammalian cells. Ultrastructural analysis and flow cytometry studies indicated that Am and Tps mitochondrion and nuclei contain 3-HK targets. The potency and selectivity of 3-HK, which is generated during T. cruzi infection in human and mice, suggest that 3-HK may be a suitable candidate for drug research and development for Chagas disease.

  20. The Content of Secondary Metabolites and Antioxidant Activity of Wild Strawberry Fruit (Fragaria vesca L.)

    PubMed Central

    Dyduch-Siemińska, Magdalena; Najda, Agnieszka; Dyduch, Jan; Gantner, Magdalena; Klimek, Kamila

    2015-01-01

    Chemical analyses carried out in 2011–2013 aimed at evaluating the contents of flavonoids, free phenolic acids, tannins, anthocyanins, and antioxidant activity (%) by means of DPPH radical neutralization ability in fresh and air-dried fruits of three wild strawberry cultivars. Examinations revealed differences in contents of biologically active substances determined in raw versus dried material depending on the cultivar. Mean concentrations of flavonoids and tannins were highest in raw fruits of “Baron von Solemacher” cv., which amounted to 1.244 mg·g−1 and 6.09%, respectively. Fresh fruits of “Regina” cv. were characterized by the highest average content of phenolic acids and anthocyanins: 4.987 mg·g−1 and 0.636 mg·100 g−1. The pattern of mean contents of biologically active substances analyzed in air-dried fruits was similar. Significant differences in abilities to neutralize the DPPH radical to diphenylpicrylhydrazine by extracts made of examined wild strawberry fruits were also indicated. PMID:26539306

  1. Estrogenic and androgenic activities of TBBA and TBMEPH, metabolites of novel brominated flame retardants, and selected bisphenols, using the XenoScreen XL YES/YAS assay.

    PubMed

    Fic, Anja; Žegura, Bojana; Gramec, Darja; Mašič, Lucija Peterlin

    2014-10-01

    The present study investigated and compared the estrogenic and androgenic activities of the three different classes of environmental pollutants and their metabolites using the XenoScreen XL YES/YAS assay, which has advantages compared with the original YES/YAS protocol. Contrary to the parent brominated flame retardants TBB and TBPH, which demonstrated no or very weak (anti)estrogenic or (anti)androgenic activities, their metabolites, TBBA and TBMEPH, exhibited anti-estrogenic (IC50 for TBBA=31.75 μM and IC50 for TBMEPH=0.265 μM) and anti-androgenic (IC50 for TBBA=73.95 μM and IC50 for TBMEPH=2.92 μM) activities. These results reveal that metabolism can enhance the anti-estrogenic and anti-androgenic effects of these two novel brominated flame retardants. Based on the activities of BPAF, BPF, BPA and MBP, we can conclude that the XenoScreen XL YES/YAS assay gives comparable results to the (anti)estrogenic or (anti)androgenic assays that are reported in the literature. For BPA, it was confirmed previously that the metabolite formed after an ipso-reaction (hydroxycumyl alcohol) exhibited higher estrogenic activity compared with the parent BPA, but this was not confirmed for BPAF and BPF ipso-metabolites, which were not active in the XenoScreen YES/YAS assay. Among the substituted BPA analogues, bis-GMA exhibited weak anti-estrogenic activity, BADGE demonstrated weak anti-estrogenic and anti-androgenic activities (IC50=13.73 μM), and the hydrolysed product BADGE·2H2O demonstrated no (anti)estrogenic or (anti)androgenic activities. Copyright © 2014. Published by Elsevier Ltd.

  2. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice.

    PubMed

    Gutman, Roee; Dayan, Tamar; Levy, Ofir; Schubert, Iris; Kronfeld-Schor, Noga

    2011-01-01

    We studied stress hormones and foraging of nocturnal Acomys cahirinus and diurnal A. russatus in field populations as well as in two field enclosures populated by both species and two field enclosures with individuals of A. russatus alone. When alone, A. russatus individuals become also nocturnally active. We asked whether nocturnally active A. russatus will respond to moon phase and whether this response will be obtained also in diurnally active individuals. We studied giving-up densities (GUDs) in artificial foraging patches and fecal cortisol metabolite levels. Both species exhibited elevated fecal cortisol metabolite levels and foraged to higher GUDs in full moon nights; thus A. russatus retains physiological response and behavioral patterns that correlate with full moon conditions, as can be expected in nocturnal rodents, in spite of its diurnal activity. The endocrinological and behavioral response of this diurnal species to moon phase reflects its evolutionary heritage.

  3. The Effect of the Lunar Cycle on Fecal Cortisol Metabolite Levels and Foraging Ecology of Nocturnally and Diurnally Active Spiny Mice

    PubMed Central

    Dayan, Tamar; Kronfeld-Schor, Noga

    2011-01-01

    We studied stress hormones and foraging of nocturnal Acomys cahirinus and diurnal A. russatus in field populations as well as in two field enclosures populated by both species and two field enclosures with individuals of A. russatus alone. When alone, A. russatus individuals become also nocturnally active. We asked whether nocturnally active A. russatus will respond to moon phase and whether this response will be obtained also in diurnally active individuals. We studied giving-up densities (GUDs) in artificial foraging patches and fecal cortisol metabolite levels. Both species exhibited elevated fecal cortisol metabolite levels and foraged to higher GUDs in full moon nights; thus A. russatus retains physiological response and behavioral patterns that correlate with full moon conditions, as can be expected in nocturnal rodents, in spite of its diurnal activity. The endocrinological and behavioral response of this diurnal species to moon phase reflects its evolutionary heritage. PMID:21829733

  4. Antibacterial Activities of Metabolites from Platanus occidentalis (American sycamore) against Fish Pathogenic Bacteria

    PubMed Central

    Schrader, Kevin K; Hamann, Mark T; McChesney, James D; Rodenburg, Douglas L; Ibrahim, Mohamed A

    2016-01-01

    One approach to the management of common fish diseases in aquaculture is the use of antibiotic-laden feed. However, there are public concerns about the use of antibiotics in agriculture and the potential development of antibiotic resistant bacteria. Therefore, the discovery of other environmentally safe natural compounds as alternatives to antibiotics would benefit the aquaculture industries. Four natural compounds, commonly called platanosides, [kaempferol 3-O-α-L-(2″,3″-di-E-p-coumaroyl)rhamnoside (1), kaempferol 3-O-α-L-(2″-E-p-coumaroyl-3″-Z-p-coumaroyl)rhamnoside (2), kaempferol 3-O-α-L-(2″-Z-p-coumaroyl-3″-E-p-coumaroyl)rhamnoside (3), and kaempferol 3-O-α-L-(2″,3″-di-Z-p-coumaroyl)rhamnoside (4)] isolated from the leaves of the American sycamore (Platanus occidentalis) tree were evaluated using a rapid bioassay for their antibacterial activities against common fish pathogenic bacteria including Flavobacterium columnare, Edwardsiella ictaluri, Aeromonas hydrophila, and Streptococcus iniae. The four isomers and a mixture of all four isomers were strongly antibacterial against isolates of F. columnare and S. iniae. Against F. columnare ALM-00-173, 3 and 4 showed the strongest antibacterial activities, with 24-h 50% inhibition concentration (IC50) values of 2.13 ± 0.11 and 2.62 ± 0.23 mg/L, respectively. Against S. iniae LA94-426, 4 had the strongest antibacterial activity, with 24-h IC50 of 1.87 ± 0.23 mg/L. Neither a mixture of the isomers nor any of the individual isomers were antibacterial against isolates of E. ictaluri and A. hydrophila at the test concentrations used in the study. Several of the isomers appear promising for the potential management of columnaris disease and streptococcosis in fish. PMID:27790379

  5. New acyclic secondary metabolites from the biologically active fraction of Albizia lebbeck flowers.

    PubMed

    Al-Massarani, Shaza M; El Gamal, Ali A; Abd El Halim, Mohamed F; Al-Said, Mansour S; Abdel-Kader, Maged S; Basudan, Omer A; Alqasoumi, Saleh I

    2017-01-01

    The total extract of Albizia lebbeck flowers was examined in vivo for its possible hepatoprotective activity in comparison with the standard drug silymarin at two doses. The higher dose expressed promising activity especially in reducing the levels of AST, ALT and bilirubin. Fractionation via liquid-liquid partition and reexamination of the fractions revealed that the n-butanol fraction was the best in improving liver biochemical parameters followed by the n-hexane fraction. However, serum lipid parameters were best improved with CHCl3 fraction. The promising biological activity results initiated an intensive chromatographic purification of A. lebbeck flowers fractions. Two compounds were identified from natural source for the first time, the acyclic farnesyl sesquiterpene glycoside1-O-[6-O-α-l-arabinopyranosyl-β-d-glucopyranoside]-(2E,6E-)-farnesol (6) and the squalene derivative 2,3-dihydroxy-2,3-dihydrosqualene (9), in addition to eight compounds reported here for the first time from the genus Albizia; two benzyl glycosides, benzyl 1-O-β-d-glucopyranoside (1) and benzyl 6-O-α-l-arabinopyranosyl β-d-glucopyranoside (2); three acyclic monoterpene glycosides, linalyl β-d-glucopyranoside (3) and linalyl 6-O-α-l-arabinopyranosyl-β-d-glucopyranoside (4); (2E)-3,7-dimethylocta-2,6-dienoate-6-O-α-l arabinopyranosyl-β-d-glucopyranoside (5), two oligoglycosides, n-hexyl-α-l arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (creoside) (7) and n-octyl α-l-arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (rhodiooctanoside) (8); and ethyl fructofuranoside (10). The structures of the isolated compounds were elucidated based on extensive examination of their spectroscopic 1D and 2D-NMR, MS, UV, and IR data. It is worth mentioning that, some of the isolated linalol glycoside derivatives were reported as aroma precursors.

  6. Secondary metabolites from the stems of Engelhardia roxburghiana and their antitubercular activities.

    PubMed

    Wu, Ho-Chen; Cheng, Ming-Jen; Peng, Chien-Fang; Yang, Shyh-Chyun; Chang, Hsun-Shuo; Lin, Chu-Hung; Wang, Chyi-Jia; Chen, Ih-Sheng

    2012-10-01

    Bioassay-guided fractionation of stems of Engelhardia roxburghiana led to isolation of: four diarylheptanoids, engelheptanoxides A-D (1-4); two cyclic diarylheptanoids, engelhardiols A (5) and B (6); one naphthoquinone dimer, engelharquinonol (7); and one 1-tetralone, (4S)-4,6-dihydroxy-1-tetralone (8), along with 24 known compounds (9-32). The structures of 1-8 were by spectroscopic analysis. Compounds 5, 6, 13, 22, and 23 showed antitubercular activity against Mycobacterium tuberculosis H(37)Rv with MIC values of 72.7, 62.1, 9.1, 15.3, and 70.1μM, respectively.

  7. Structure elucidation and antibacterial activity of new fungal metabolites of sclareol.

    PubMed

    Choudhary, M Iqbal; Siddiqui, Zafar Ali; Hussain, Samreen

    2006-01-01

    The transformation of the antibacterial diterpene sclareol (1) by two different fungal strains was investigated (Scheme). In the presence of Rhizopus stolonifer, (3beta)-3-hydroxysclareol (2), 18-hydroxysclareol (3), (6alpha)-6,18-dihydroxysclareol (4), and (11S)-11,18-dihydroxysclareol (5) were formed. Fermentation of 1 with Fusarium lini afforded (1beta)-1-hydroxysclareol (6) and (12S)-12-hydroxysclareol (7). Compounds 4-7 were identified as new compounds, and some of them were active against Bacillus subtilis (Table 3).

  8. Secondary Metabolites from the Roots of Beilschmiedia tsangii and Their Anti-Inflammatory Activities

    PubMed Central

    Huang, Yun-Ting; Chang, Hsun-Shuo; Wang, Guei-Jane; Lin, Chu-Hung; Chen, Ih-Sheng

    2012-01-01

    Four new endiandric acid analogues, tsangibeilin C (1), tsangibeilin D (2), tricyclotsangibeilin (3) and endiandric acid M (4), one new lignan, beilschminol B (5) and two new sesquiterpenes, (+)-5-hydroxybarbatenal (6) and (4R,5R)-4,5-dihydroxycaryophyll-8(13)-ene (7), together with four known compounds (8–11), were isolated from the roots of Beilschmiedia tsangii (Lauraceae). The structures of 1–7 were determined by spectroscopic techniques. Among the isolates, endiandric acid M (4) exhibited moderate iNOS inhibitory activity, with an IC50 value of 31.70 μM. PMID:23208379

  9. Secondary metabolites of ponderosa lemon (Citrus pyriformis) and their antioxidant, anti-inflammatory, and cytotoxic activities.

    PubMed

    Hamdan, Dalia; El-Readi, Mahmoud Zaki; Tahrani, Ahmad; Herrmann, Florian; Kaufmann, Dorothea; Farrag, Nawal; El-Shazly, Assem; Wink, Michael

    2011-01-01

    Column chromatography of the dichloromethane fraction from an aqueous methanolic extract of fruit peel of Citrus pyriformis Hassk. (Rutaceae) resulted in the isolation of seven compounds including one coumarin (citropten), two limonoids (limonin and deacetylnomilin), and four sterols (stigmasterol, ergosterol, sitosteryl-3-beta-D-glucoside, and sitosteryl-6'-O-acyl-3-beta-D-glucoside). From the ethyl acetate fraction naringin, hesperidin, and neohesperidin were isolated. The dichloromethane extract of the defatted seeds contained three additional compounds, nomilin, ichangin, and cholesterol. The isolated compounds were identified by MS (EI, CI, and ESI), 1H, 13C, and 2D-NMR spectral data. The limonoids were determined qualitatively by LC-ESI/MS resulting in the identification of 11 limonoid aglycones. The total methanolic extract of the peel and the petroleum ether, dichloromethane, and ethyl acetate fractions were screened for their antioxidant and anti-inflammatory activities. The ethyl acetate fraction exhibited a significant scavenging activity for DPPH free radicals (IC50 = 132.3 microg/mL). The petroleum ether fraction inhibited 5-lipoxygenase with IC50 = 30.6 microg/mL indicating potential anti-inflammatory properties. Limonin has a potent cytotoxic effect against COS7 cells [IC50 = (35.0 +/- 6.1) microM] compared with acteoside as a positive control [IC50 = (144.5 +/- 10.96) microM].

  10. Characterization of two water-soluble lignin metabolites with antiproliferative activities from Inonotus obliquus.

    PubMed

    Wang, Qingjie; Mu, Haibo; Zhang, Lin; Dong, Dongqi; Zhang, Wuxia; Duan, Jinyou

    2015-03-01

    The chaga mushroom, Inonotus obliquus has long been recognized as a remedy for cancer, gastritis, ulcers, and tuberculosis of the bones since the 16th century. Herein we reported the identification of two homogenous biological macromolecules, designated as IOW-S-1 and IOW-S-2 with anti-tumor activities from the hot-water extract of I. obliquus. Their molecular weights were determined to be 37.9 and 24.5kDa by high performance gel permeation chromatography (HPGPC) respectively. Chemical and spectral analysis indicated that both IOW-S-1 and IOW-S-2 were predominant in lignin, along with ∼20% carbohydrates. Examination of cytotoxicity showed that these two lignin-carbohydrate complexes induced cell death in a concentration dependent manner, while this apoptosis induction was largely cell-cycle independent. Further investigation demonstrated that IOW-S-1 or IOW-S-2 inhibited the activation of the nuclear transcription factor in cancer cells. These findings implied that soluble lignin derivatives were one of bioactive components in I. obliquus, and further provided insights into the understanding of molecular basis for diverse medicinal and nutritional values of this mushroom.

  11. Natural phenolic metabolites from endophytic Aspergillus sp. IFB-YXS with antimicrobial activity.

    PubMed

    Zhang, Wenjing; Wei, Wei; Shi, Jing; Chen, Chaojun; Zhao, Guoyan; Jiao, Ruihua; Tan, Renxiang

    2015-07-01

    Prompted by the pressing necessity to conquer phytopathogenic infections, the antimicrobial compounds were characterized with bioassay-guided method from the ethanol extract derived from the solid-substrate fermentation of Aspergillus sp. IFB-YXS, an endophytic fungus residing in the apparently healthy leave of Ginkgo biloba L. The aim of this work was to evaluate the antimicrobial activity and mechanism(s) of these bioactive compounds against phytopathogens. Among the compounds, xanthoascin (1) is significantly inhibitory on the growth of the phytopathogenic bacterium Clavibacter michiganense subsp. Sepedonicus with a minimum inhibitory concentration (MIC) value of 0.31μg/ml, which is more potent than streptomycin (MIC 0.62μg/ml), an antimicrobial drug co-assayed herein as a positive reference. Moreover, terphenyl derivatives 3, 5 and 6 are also found to be active against other phytopathogens including Xanthomonas oryzae pv. oryzae Swings, Xanthomonas oryzae pv. oryzicola Swings, Erwinia amylovora and Pseudomonas syringae pv. lachrymans etc. The antibacterial mechanism of xanthoascin (1) was addressed to change the cellular permeability of the phytopathogens, leading to the remarkable leakage of nucleic acids out of the cytomembrane. The work highlights the possibility that xanthoascin (1), an analogue of xanthocillin which is used to be an approved antibiotic, may find its renewed application as a potent antibacterial agrichemical. This study contributes to the development of new antimicrobial drugs, especially against C. michiganense subsp. Sepedonicus.

  12. Lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells

    SciTech Connect

    Zhao, Yu; Wang, Wenhui; Wang, Qi; Zhang, Xiaodong; Ye, Lihong

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer 5-LOX is able to upregulate expression of NF-{kappa}B p65. Black-Right-Pointing-Pointer 5-LOX enhances nuclear translocation of NF-{kappa}B p65 via increasing p-I{kappa}B-{alpha} level. Black-Right-Pointing-Pointer 5-LOX stimulates transcriptional activity of NF-{kappa}B in hepatoma cells. Black-Right-Pointing-Pointer LTB4 activates transcriptional activity of NF-{kappa}B in hepatoma cells. -- Abstract: The issue that lipid metabolism enzyme and its metabolites regulate transcription factors in cancer cell is not fully understood. In this study, we first report that the lipid metabolism enzyme 5-Lipoxygenase (5-LOX) and its metabolite leukotriene B4 (LTB4) are capable of activating nuclear factor-{kappa}B (NF-{kappa}B) in hepatoma cells. We found that the treatment of MK886 (an inhibitor of 5-LOX) or knockdown of 5-LOX was able to downregulate the expression of NF-{kappa}B p65 at the mRNA level and decreased the phosphorylation level of inhibitor {kappa}B{alpha} (I{kappa}B{alpha}) in the cytoplasm of hepatoma HepG2 or H7402 cells, which resulted in the decrease of the level of nuclear NF-{kappa}B p65. These were confirmed by immunofluorescence staining in HepG2 cell. Moreover, the above treatments were able to decrease the transcriptional activity of NF-{kappa}B in the cells. The LTB4, one of metabolites of 5-LOX, is responsible for 5-LOX-activated NF-{kappa}B in a dose-dependent manner. Thus, we conclude that the lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells. Our finding provides new insight into the significance of lipid metabolism in activation of transcription factors in cancer.

  13. Three new and eleven known unusual C25 steroids: activated production of silent metabolites in a marine-derived fungus by chemical mutagenesis strategy using diethyl sulphate.

    PubMed

    Xia, Ming-Wen; Cui, Cheng-Bin; Li, Chang-Wei; Wu, Chang-Jing

    2014-03-13

    Three new (1-3) and 11 known (4-14) C25 steroids with an unusual bicyclo[4.4.1]A/B ring system were isolated by tracing newly produced metabolites in the EtOAc extract of an antitumor mutant AD-1-2 obtained by the diethyl sulphate (DES) mutagenesis of a marine-derived Penicillium purpurogenum G59. HPLC-PDAD-UV and HPLC-ESI-MS analyses indicated that the G59 strain did not produce these metabolites and the production of 1-14 in the mutant AD-1-2 extract was caused by the activation of silent metabolites in the original G59 strain by DES mutagenesis. The structures of the new compounds, named antineocyclocitrinols A (1) and B (2) and 23-O-methylantineocyclocitrinol (3), including their absolute configurations were determined by various spectroscopic methods, especially the NMR and Mo2-induced CD analyses. Compounds 1-3 provide the first examples of the C25 bicyclo[4.4.1]A/B ring steroids with the Z-configuration of 20,22-double bond. All of 1-14 weakly inhibited several human cancer cell lines to varying extents. These results provided additional examples for the successful application of the chemical mutagenesis strategy using DES to discover new compounds by activating silent metabolites in fungal isolates and supported also the effectiveness and usefulness of this new strategy.

  14. Influence of Sulforaphane Metabolites on Activities of Human Drug-Metabolizing Cytochrome P450 and Determination of Sulforaphane in Human Liver Cells.

    PubMed

    Vanduchova, Alena; Tomankova, Veronika; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-12-01

    The influence of metabolites of sulforaphane, natural compounds present in broccoli (Brassica oleracea var. botrytis italica) and in other cruciferous vegetables, on drug-metabolizing cytochrome P450 (CYP) enzymes in human liver microsomes and possible entry of sulforaphane into human hepatic cells were investigated. Metabolites studied are compounds derived from sulforaphane by the mercapturic acid pathway (conjugation with glutathione and by following reactions), namely sulforaphane glutathione and sulforaphane cysteine conjugates and sulforaphane-N-acetylcysteine. Their possible effect on four drug-metabolizing CYP enzymes, CYP3A4 (midazolam 1'-hydroxylation), CYP2D6 (bufuralol 1'-hydroxylation), CYP1A2 (7-ethoxyresorufin O-deethylation), and CYP2B6 (7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation), was tested. Inhibition of four prototypical CYP activities by sulforaphane metabolites was studied in pooled human liver microsomes. Sulforaphane metabolites did not considerably affect biological function of drug-metabolizing CYPs in human liver microsomes except for CYP2D6, which was found to be inhibited down to 73-78% of the original activity. Analysis of the entry of sulforaphane into human hepatocytes was done by cell disruption by sonication, methylene chloride extraction, and modified high-performance liquid chromatography method. The results have shown penetration of sulforaphane into the human hepatic cells.

  15. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents

    PubMed Central

    Pardo, Marta; Betz, Adrienne J.; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2013-01-01

    It has been postulated that a number of the central effects of ethanol are mediated via ethanol metabolites: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7–2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25–100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression. PMID:23847487

  16. First syntheses of the biologically active fungal metabolites pestalotiopsones A, B, C and F.

    PubMed

    Beekman, Andrew Michael; Castillo Martinez, Edwin; Barrow, Russell Allan

    2013-02-21

    A synthetic approach accessing the pestalotiopsones, fungal chromones possessing a rare skeletal subtype, is reported for the first time. The synthesis of pestalotiopsone A (1) has been achieved in 7 linear steps (28%), from commercially available 3,5-dimethoxybenzoic acid and subsequently the first syntheses of pestalotiopsone B (2), C (3) and F (4) were performed utilising this chemistry. The key steps include a newly described homologation of a substituted benzoic acid to afford phenylacetate derivatives utilising Birch reductive alkylation conditions, a microwave mediated chromanone formation proceeding through an oxa-Michael cyclisation, and an IBX induced dehydrogenation to the desired chromone skeleton. The synthetic natural products were completely characterised for the first time, confirming their structures and their biological activities evaluated against a panel of bacterial pathogens.

  17. Comparative Clinical Pharmacokinetics of Midodrine and Its Active Metabolite Desglymidodrine in Cirrhotic Patients with Tense Ascites Versus Healthy Volunteers.

    PubMed

    Ali, Ahmed; Farid, Samar; Amin, Mona; Kassem, Mohamed; Al-Garem, Nouman; Al-Ghobashy, Medhat

    2016-02-01

    Midodrine is an α-agonist prodrug of desglymidodrine used for the management of hypotension, and can also be used for hepatorenal syndrome and cirrhotic patients with tense ascites. The objective of the present work was to study the clinical pharmacokinetic parameters of midodrine and its active metabolite desglymidodrine in cirrhotic patients with tense ascites, which may help in dose selection and improve treatment outcome. This was a prospective, open-label, single-dose, parallel-group study. At first, a pilot study was performed on one healthy volunteer by taking serial blood samples at scheduled time intervals to validate the method of analysis and sampling times. The full study was then conducted by selecting 12 cirrhotic patients with tense ascites in one group and taking nine blood samples. We also selected five healthy volunteers as the control group and took 11 blood samples. Statistically significant differences were observed between the healthy volunteer group and the patients group in the area under the concentration versus time curve (AUC0-t) and maximum plasma concentration (Cmax) values of midodrine and desglymidodrine. Based on the results of the pharmacokinetic analysis, the patient group was further subdivided into those receiving the interacting drug ranitidine (five patients) and those not receiving the interacting drug (seven patients). Pharmacokinetic parameters of midodrine can differ significantly in cirrhotic patients with tense ascites from those in healthy individuals. Drug monitoring, dose adjustments, and drug-drug interactions should all be considered during therapy in this vulnerable patient group.

  18. Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms.

    PubMed

    Pham, Thi Phuong Thuy; Cho, Chul-Woong; Jeon, Che-Ok; Chung, Yun-Jo; Lee, Min-Woo; Yun, Yeoung-Sang

    2009-01-15

    Ionic liquids (ILs) are low melting organic salts that potentially comprise wide application due to their fascinating properties and have emerged as promising "green" replacements for volatile organic solvents. Despite their nonmeasurable vapor pressure, some quantities of ILs will soon be present in effluent discharges since they do have significant solubility in water. Recently, the toxic effects of ILs toward aquatic communities have been intensively investigated, but little information is available concerning the biodegradable properties of these compounds. The objective of this study was to identify the metabolites generated during the biotransformation of 1-butyl-3-methylpyridinium by microorganisms in aerobic activated sludge. The obtained results revealed that the alkylpyridinium salt was metabolized through the sequential oxidization in different positions of the alkyl side chains. High-performance liquid chromatography and mass-spectrometry analyses demonstrated that this biodegradation led to the formation of 1-hydroxybutyl-3-methylpyridinium, 1-(2-hydroxybutal)-3-methylpyridinium, 1-(2-hydroxyethyl)-3-methylpyridinium, and methylpyridine. On the basis of these intermediate products, biodegradation pathways were also suggested. These findings provide the basic information that might be useful for assessing the factors related to the environmental fate and behavior of this commonly used pyridinium IL.

  19. 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti-thrombotic activity mediated by a cyclooxygenase-2/prostacyclin pathway

    PubMed Central

    Chlopicki, S; Swies, J; Mogielnicki, A; Buczko, W; Bartus, M; Lomnicka, M; Adamus, J; Gebicki, J

    2007-01-01

    Background and purpose: 1-methylnicotinamide (MNA) has been considered to be an inactive metabolite of nicotinamide. Here we assessed the anti-thrombotic activity of MNA in vivo. Experimental approach: Antithrombotic action of MNA was studied in normotensive rats with extracorporeal thrombus formation (thrombolysis), in renovascular hypertensive rats with intraarterial thrombus formation (arterial thrombosis) and in a venous thrombosis model in rats (venous thrombosis). Key results: MNA (3-100 mg kg−1) induced a dose-dependent and sustained thrombolytic response, associated with a rise in 6-keto-PGF1α in blood. Various compounds structurally related to MNA were either inactive or weaker thrombolytics. Rofecoxib (0.01-1 mg kg−1), dose-dependently inhibited the thrombolytic response of MNA, indomethacin (5 mg kg−1) abolished it, while L-NAME (5 mg kg−1) were without effect. MNA (3–30 mg kg−1) also reduced arterial thrombosis and this effect was abrogated by indomethacin (2.5 mg kg−1) as well as by rofecoxib (1 mg kg−1). MNA, however, did not affect venous thrombosis. In vitro MNA did not modify platelet aggregation nor induce vasodilation. Conclusions and implications: MNA displayed a profile of anti-thrombotic activity in vivo that surpasses that of closely related compounds. MNA inhibited platelet-dependent thrombosis by a mechanism involving cyclooxygenase-2 and prostacyclin. Our findings suggest that endogenous MNA, produced in the liver by nicotinamide N-methyltransferase, could be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system. PMID:17641676

  20. Aspirin’s Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses

    PubMed Central

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-01-01

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin’s bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world’s longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage. PMID:26101955

  1. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  2. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action?

    SciTech Connect

    Canton, Rocio F. . E-mail: r.Fernandezcanton@iras.uu.nl; Sanderson, J. Thomas; Nijmeijer, Sandra; Bergman, Ake; Letcher, Robert J.; Berg, Martin van den

    2006-10-15

    Fire incidents have decreased significantly over the last 20 years due, in part, to regulations requiring addition of flame retardants (FRs) to consumer products. Five major classes of brominated flame retardants (BFRs) are hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol-A (TBBPA) and three commercial mixtures of penta-, octa- and deca-polybrominated diphenyl ether (PBDE) congeners, which are used extensively as commercial FR additives. Furthermore, concentrations of PBDEs have been rapidly increasing during the 1999s in human breast milk and a number of endocrine effects have been reported. We used the H295R human adrenocortical carcinoma cell line to assess possible effects of some of these BFRs (PBDEs and several of their hydroxylated (OH) and methoxylated (CH{sub 3}O) metabolites or analogues), TBBPA and brominated phenols (BPs) on the combined 17{alpha}-hydroxylase and 17,20-lyase activities of CYP17. CYP17 enzyme catalyzes an important step in sex steroidogenesis and is responsible for the biosynthesis of dehydroepiandrosterone (DHEA) and androstenedione in the adrenals. In order to study possible interactions with BFRs, a novel enzymatic method was developed. The precursor substrate of CYP17, pregnenolone, was added to control and exposed H295R cells, and enzymatic production of DHEA was measured using a radioimmunoassay. In order to avoid pregnenolone metabolism via different pathways, specific chemical inhibitor compounds were used. None of the parent/precursor BFRs had a significant effect (P < 0.05) on CYP17 activity except for BDE-183, which showed significant inhibition of CYP17 activity at the highest concentration tested (10 {mu}M), with no signs of cytotoxicity as measured by mitochondrial toxicity tests (MTT). A strong inhibition of CYP17 activity was found for 6-OH-2,2',4,4'-tetrabromoDE (6-OH-BDE47) with a concentration-dependent decrease of almost 90% at 10 {mu}M, but with a concurrent decrease in cell viability at the higher

  3. Determination of antifungal activities in serum samples from mice treated with different antifungal drugs allows detection of an active metabolite of itraconazole.

    PubMed

    Maki, Katsuyuki; Watabe, Etsuko; Iguchi, Yumi; Nakamura, Hideko; Tomishima, Masaki; Ohki, Hidenori; Yamada, Akira; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro

    2006-01-01

    To establish an in vitro method of predicting in vivo efficacy of antifungal drugs against Candida albicans and Aspergillus fumigatus, the antifungal activities of fluconazole, itraconazole, and amphotericin B were determined in mouse serum. The minimum inhibitory concentration (MIC) of each drug was measured using mouse serum as a diluent. For C. albicans, the assay endpoint of azoles was defined as inhibition of mycelial extension (mMIC) and for A. fumigatus, as no growth (MIC). The MICs of amphotericin B for both pathogens were defined as the MIC at which no mycelial growth occurred. Serum MIC or mMIC determinations were then used to estimate the concentration of the drugs in serum of mice treated with antifungal drugs by multiplying the antifungal titer of the serum samples by the serum (m)MIC. The serum drug concentrations were also determined by HPLC. The serum concentrations estimated microbiologically showed good agreement with those determined by HPLC, except for itraconazole. Analysis of the serum samples from itraconazole-treated mice by a sensitive bioautography revealed the presence of additional spots, not seen in control samples of itraconazole. The bioautography assay demonstrated that the additional material detected in serum from mice treated with itraconazole was an active metabolite of itraconazole. The data showed that the apparent reduction in the itraconazole serum concentration as determined by HPLC was the result of the formation of an active metabolite, and that the use of a microbiological method to measure serum concentrations of drugs can provide a method for prediction of in vivo efficacy of antifungal drugs.

  4. Methylphenidate and its ethanol transesterification metabolite ethylphenidate: brain disposition, monoamine transporters and motor activity.

    PubMed

    Williard, Robin L; Middaugh, Lawrence D; Zhu, Hao-Jie B; Patrick, Kennerly S

    2007-02-01

    Ethylphenidate is formed by metabolic transesterification of methylphenidate and ethanol. Study objectives were to (a) establish that ethylphenidate is formed in C57BL/6 (B6) mice; (b) compare the stimulatory effects of ethylphenidate and methylphenidate enantiomers; (c) determine methylphenidate and ethylphenidate plasma and brain distribution and (d) establish in-vitro effects of methylphenidate and ethylphenidate on monoamine transporter systems. Experimental results were that: (a) coadministration of ethanol with the separate methylphenidate isomers enantioselectively produced l-ethylphenidate; (b) d and dl-forms of methylphenidate and ethylphenidate produced dose-responsive increases in motor activity with stimulation being less for ethylphenidate; (c) plasma and whole-brain concentrations were greater for ethylphenidate than methylphenidate and (d) d and DL-methylphenidate and ethylphenidate exhibited comparably potent low inhibition of the dopamine transporter, whereas ethylphenidate was a less potent norepinephrine transporter inhibitor. These experiments establish the feasibility of the B6 mouse model for examining the interactive effects of ethanol and methylphenidate. As reported for humans, concurrent exposure of B6 mice to methylphenidate and ethanol more readily formed l-ethylphenidate than d-ethylphenidate, and the l-isomers of both methylphenidate and ethylphenidate were biologically inactive. The observed reduced stimulatory effect of d-ethylphenidate relative to d-methylphenidate appears not to be the result of brain dispositional factors, but rather may be related to its reduced inhibition of the norepinephrine transporter, perhaps altering the interaction of dopaminergic and noradrenergic neural systems.

  5. Hepatoprotective and cytotoxic activities of Anvillea garcinii and isolation of four new secondary metabolites.

    PubMed

    Perveen, Shagufta; Al-Taweel, Areej Mohammad; Yusufoglu, Hasan Soliman; Fawzy, Ghada Ahmed; Foudah, Ahmed; Abdel-Kader, Maged Saad

    2017-08-09

    Anvillea garcinii is a medicinal plant traditionally used for the treatment of dysentery, gastrointestinal troubles, hepatitis, lung disease, colds, digestive problems and pulmonary affections and in liver diseases. Four new sesquiterpene lactones, garcinamines A-D, along with seven known compounds, were isolated from the leaves of A. garcinii. This is the first report of the isolation of amino acid analogues of parthenolide-type sesquiterpene lactones from the family Asteraceae. Total ethanol extract of leaves as well as the chloroform and n-butanol fractions were tested for their hepatoprotective effect using the carbon tetrachloride liver toxicity model. The chloroform fraction, at a dose of 400 mg/kg, demonstrated a significant hepatoprotective effect comparable to silymarin in all serum and tissue parameters. The cytotoxicity of all extracts and compounds were evaluated against five human cancer cell lines: MCF-7, HCT-116, HepG2, Hela and A-549. The results indicated that the chloroform and n-butanol fractions and compounds 3, 4, 7 and 8 displayed significant cytotoxic activity against these cell lines.

  6. The Ratio of a Urinary Tobacco-Specific Lung Carcinogen Metabolite to Cotinine is Significantly Higher in Passive than in Active Smokers

    PubMed Central

    Vogel, Rachel Isaksson; Carmella, Steven G.; Stepanov, Irina; Hatsukami, Dorothy K.; Hecht, Stephen S.

    2011-01-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol plus its glucuronides (total NNAL), metabolites of the lung carcinogen NNK, and total cotinine, metabolites of nicotine, are biomarkers of active and passive cigarette smoking. We calculated the total NNAL: total cotinine (× 103) ratio in 408 passive (infants, children, adults) and 1088 active smokers. The weighted averages were 0.73 (95% CI 0.71, 0.76) for passive smokers and 0.07 (0.06, 0.08) for active smokers (p<0.0001). These results demonstrate that cotinine measurements may underestimate exposure of passive smokers to the lung carcinogen NNK in secondhand cigarette smoke. The total NNAL:total cotinine (× 103) ratio may provide an improved biomarker for evaluating the health effects of passive smoking. PMID:21812592

  7. Algicidal Activity of Streptomyces eurocidicus JXJ-0089 Metabolites and Their Effects on Microcystis Physiology

    PubMed Central

    Zhang, Bing-Huo; Ding, Zhang-Gui; Li, Han-Quan; Zhang, Yu-Qin; Yang, Jian-Yuan; Zhou, En-Min

    2016-01-01

    ABSTRACT Copper sulfate (CuSO4) has been widely used as an algicide to control harmful cyanobacterial blooms (CyanoHABs) in freshwater lakes. However, there are increasing concerns about this application, due mainly to the general toxicity of CuSO4 to other aquatic species and its long-term persistence in the environment. This study reported the isolation and characterization of two natural algicidal compounds, i.e., tryptamine and tryptoline, from Streptomyces eurocidicus JXJ-0089. At a concentration of 5 μg/ml, both compounds showed higher algicidal efficiencies than CuSO4 on Microcystis sp. FACHB-905 and some other harmful cyanobacterial strains. Tryptamine and tryptoline treatments induced a degradation of chlorophyll and cell walls of cyanobacteria. These two compounds also significantly increased the intracellular oxidant content, i.e., superoxide anion radical (O2−) and malondialdehyde (MDA), but reduced the activity of intracellular reductants, i.e., superoxide dismutase (SOD), of cyanobacteria. Moreover, tryptamine and tryptoline treatments significantly altered the internal and external contents of microcystin-LR (MC-LR), a common cyanotoxin. Like CuSO4, tryptamine and tryptoline led to releases of intracellular MC-LR from Microcystis, but with lower rates than CuSO4. Tryptamine and tryptoline (5 μg/ml) in cyanobacterial cultures were completely degraded within 8 days, while CuSO4 persisted for months. Overall, our results suggest that tryptamine and tryptoline could potentially serve as more efficient and environmentally friendly alternative algicides than CuSO4 in controlling harmful cyanobacterial blooms. IMPORTANCE Cyanobacterial harmful algal blooms (CyanoHABs) in aquatic environments have become a worldwide problem. Numerous efforts have been made to seek means to prevent, control, and mitigate CyanoHABs. Copper sulfate (CuSO4), was once a common algicide to treat and control CyanoHABs. However, its application has become limited due to concerns

  8. Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya.

    PubMed

    Braña, Alfredo F; Rodríguez, Miriam; Pahari, Pallab; Rohr, Jurgen; García, Luis A; Blanco, Gloria

    2014-05-01

    Activation and silencing of antibiotic production was achieved in Streptomyces albus J1074 and Streptomyces lividans TK21 after introduction of genes within the thienamycin cluster from S. cattleya. Dramatic phenotypic and metabolic changes, involving activation of multiple silent secondary metabolites and silencing of others normally produced, were found in recombinant strains harbouring the thienamycin cluster in comparison to the parental strains. In S. albus, ultra-performance liquid chromatography purification and NMR structural elucidation revealed the identity of four structurally related activated compounds: the antibiotics paulomycins A, B and the paulomenols A and B. Four volatile compounds whose biosynthesis was switched off were identified by gas chromatography-mass spectrometry analyses and databases comparison as pyrazines; including tetramethylpyrazine, a compound with important clinical applications to our knowledge never reported to be produced by Streptomyces. In addition, this work revealed the potential of S. albus to produce many others secondary metabolites normally obtained from plants, including compounds of medical relevance as dihydro-β-agarofuran and of interest in perfume industry as β-patchoulene, suggesting that it might be an alternative model for their industrial production. In S. lividans, actinorhodins production was strongly activated in the recombinant strains whereas undecylprodigiosins were significantly reduced. Activation of cryptic metabolites in Streptomyces species might represent an alternative approach for pharmaceutical drug discovery.

  9. Influence of gut microbiota-derived ellagitannins' metabolites urolithins on pro-inflammatory activities of human neutrophils.

    PubMed

    Piwowarski, Jakub P; Granica, Sebastian; Kiss, Anna K

    2014-07-01

    Ellagitannin-rich products exhibit beneficial influence in the case of inflammation-associated diseases. Urolithins, metabolites of ellagitannins produced by gut microbiota, in contrary to high molecular weight hydrophilic parental polyphenols, possess well established bioavailability. Because of the important role of neutrophils in progression of inflammation, the influence of urolithins on their pro-inflammatory functions was tested. Urolithin B at a concentration of 20 µM showed significant inhibition of interleukin 8 and extracellular matrix-degrading enzyme MMP-9 production. It was also significantly active in prevention of cytochalasin A/formyl-met-leu-phenylalanine-triggered selectin CD62L shedding. Urolithin C was the only active compound towards inhibition of elastase release from cytochalasin A/formyl-met-leu-phenylalanine-stimulated neutrophils with 39.0 ± 15.9% inhibition at a concentration of 5 µM. Myeloperoxidase release was inhibited by urolithins A and C (at 20 µM by 46.7 ± 16.1 and 63.8 ± 8.6%, respectively). Urolithin A was the most potent reactive oxygen species release inhibitor both in formyl-met-leu-phenylalanine and 4β-phorbol-12β-myristate-R13-acetate-stimulated neutrophils. At the concentration of 1 µM, it caused reactive oxygen species level decrease by 42.6 ± 26.6 and 53.7 ± 16.0%, respectively. Urolithins can specifically modulate inflammatory functions of neutrophils, and thus could contribute to the beneficial health effects of ellagitannin-rich medicinal plant materials and food products. Georg Thieme Verlag KG Stuttgart · New York.

  10. Selexipag Active Metabolite ACT-333679 Displays Strong Anticontractile and Antiremodeling Effects but Low β-Arrestin Recruitment and Desensitization Potential.

    PubMed

    Gatfield, John; Menyhart, Katalin; Wanner, Daniel; Gnerre, Carmela; Monnier, Lucile; Morrison, Keith; Hess, Patrick; Iglarz, Marc; Clozel, Martine; Nayler, Oliver

    2017-07-01

    Prostacyclin (PGI2) receptor (IP receptor) agonists, which are indicated for the treatment of pulmonary arterial hypertension (PAH), increase cytosolic cAMP levels and thereby inhibit pulmonary vasoconstriction, pulmonary arterial smooth muscle cell (PASMC) proliferation, and extracellular matrix synthesis. Selexipag (Uptravi, 2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide) is the first nonprostanoid IP receptor agonist, it is available orally and was recently approved for the treatment of PAH. In this study we show that the active metabolite of selexipag and the main contributor to clinical efficacy ACT-333679 (previously known as MRE-269) behaved as a full agonist in multiple PAH-relevant receptor-distal-or downstream-cellular assays with a maximal efficacy (Emax) comparable to that of the prototypic PGI2 analog iloprost. In PASMC, ACT-333679 potently induced cellular relaxation (EC50 4.3 nM) and inhibited cell proliferation (IC50 4.0 nM) as well as extracellular matrix synthesis (IC50 8.3 nM). In contrast, ACT-333679 displayed partial agonism in receptor-proximal-or upstream-cAMP accumulation assays (Emax 56%) when compared with iloprost and the PGI2 analogs beraprost and treprostinil (Emax ∼100%). Partial agonism of ACT-333679 also resulted in limited β-arrestin recruitment (Emax 40%) and lack of sustained IP receptor internalization, whereas all tested PGI2 analogs behaved as full agonists in these desensitization-related assays. In line with these in vitro findings, selexipag, but not treprostinil, displayed sustained efficacy in rat models of pulmonary and systemic hypertension. Thus, the partial agonism of ACT-333679 allows for full efficacy in amplified receptor-distal PAH-relevant readouts while causing limited activity in desensitization-related receptor-proximal readouts. Copyright © 2017 by The Author(s).

  11. Isothermal microcalorimetry to study the activity of triclabendazole and its metabolites on juvenile and adult Fasciola hepatica.

    PubMed

    Keiser, Jennifer; Manneck, Theresia; Kirchhofer, Carla; Braissant, Olivier

    2013-03-01

    Isothermal microcalorimetry (IMC) is an analytical tool that continuously measures the heat flow generated by chemical, physical or biological processes. We have demonstrated that IMC is a useful tool to analyze drug effects on helminths, including adult Fasciola hepatica. Here, we used IMC to examine the activity of triclabendazole and its metabolites triclabendazole sulphone and triclabendazole sulphoxide on juvenile and adult F. hepatica. Worms (one adult or 2-3 juveniles) were placed in 4 or 20 ml glass ampoules containing RPMI 1640 and the test compound (25-100 μg/ml) and the heat flow and motility of worms was examined with TAM48 and TAMIII isothermal microcalorimetry instruments. IMC was found to be precisely document drug effects on juvenile F. hepatica and confirmed the pronounced effect of the benzimidazole derivatives on the motor activity of F. hepatica. Juvenile F. hepatica incubated with 100 μg/ml triclabendazole, triclabendazole sulphone and triclabendazole sulphoxide showed no movements 8.3, 35 and 6h post-incubation (all p<0.001). The metabolic heat of triclabendazole sulphoxide treated worms (100 μg/ml) was reduced by 50% and 76% 24 and 120 h post-incubation, respectively. Limitations of calorimetric measurements were observed using adult F. hepatica as only three worms could be measured simultaneously and also control worms showed a considerable decrease in heat flow. Adult F. hepatica exposed to triclabendazole, triclabendazole sulphone and triclabendazole sulphoxide showed no movements after 31 (p=0.009), 49 (p>0.05) and 88 (p>0.05)h. In conclusion, IMC is useful to document drug effects on juvenile F. hepatica and since rapid technological developments in this field are occurring IMC might also hold promise to study adult F. hepatica in the near future.

  12. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats

    PubMed Central

    Wong, Richard G.; Norman, Anthony W.; Reddy, Chilumula R.; Coburn, Jack W.

    1972-01-01

    The development of a vitamin D-resistant state in the course of renal failure may be responsible for reduced intestinal absorption of calcium and an impaired response of skeletal tissue. Moreover, the kidney has been shown to carry out the conversion of 25-hydroxycholecalciferol (25-OH-CC) to a highly biologically active metabolite, 1,25-dihydroxycholecalciferol (1,25-diOH-CC). In the present studies, vitamin D-deficient rats, made acutely uremic by either bilateral nephrectomy or urethral ligation, received physiological doses of cholecalciferol (vitamin D3) (CC), 25-OH-CC or 1,25-diOH-CC; 24 hr later intestinal calcium transport, in vitro, and bone calcium mobilization, in vivo, were assessed. Whereas CC and 25-OH-CC stimulated calcium transport in sham-operated controls, they were without effect in the uremic animals. In contrast, administration of 1,25-diOH-CC stimulated calcium transport in both groups of uremic animals. Administration of 1,25-diOH-CC also stimulated calcium mobilization from bone in each group of animals. However, CC and 25-OH-CC were only effective in the sham controls and the uremic group produced by urethral ligation and had little or no effect in animals without kidneys. These results indicate that renal conversion of calciferol to a more biologically active form is necessary for the stimulation of intestinal calcium absorption and calcium mobilization from bone, and that 1,25-diOH-CC may bypass a possible defect in vitamin D metabolism in uremia. From these studies it is likely that uremia, per se, may also impair intestinal calcium transport. PMID:4341503

  13. Effect of Supercritical Carbon Dioxide Extraction Parameters on the Biological Activities and Metabolites Present in Extracts from Arthrospira platensis

    PubMed Central

    Esquivel-Hernández, Diego A.; Rodríguez-Rodríguez, José; Cuéllar-Bermúdez, Sara P.; García-Pérez, J. Saúl; Mancera-Andrade, Elena I.; Núñez-Echevarría, Jade E.; Ontiveros-Valencia, Aura; Rostro-Alanis, Magdalena; García-García, Rebeca M.; Torres, J. Antonio; Chen, Wei Ning; Parra-Saldívar, Roberto

    2017-01-01

    Arthrospira platensis was used to obtain functional extracts through supercritical carbon dioxide extraction (SFE-CO2). Pressure (P), temperature (T), co-solvent (CX), static extraction (SX), dispersant (Di) and dynamic extraction (DX) were evaluated as process parameters through a Plackett–Burman design. The maximum extract yield obtained was 7.48 ± 0.15% w/w. The maximum contents of bioactive metabolites in extracts were 0.69 ± 0.09 µg/g of riboflavin, 5.49 ± 0.10 µg/g of α-tocopherol, 524.46 ± 0.10 µg/g of β-carotene, 1.44 ± 0.10 µg/g of lutein and 32.11 ± 0.12 mg/g of fatty acids with 39.38% of palmitic acid, 20.63% of linoleic acid and 30.27% of γ-linolenic acid. A. platensis extracts had an antioxidant activity of 76.47 ± 0.71 µg GAE/g by Folin–Ciocalteu assay, 0.52 ± 0.02, 0.40 ± 0.01 and 1.47 ± 0.02 µmol TE/g by DPPH, FRAP and TEAC assays, respectively. These extracts showed antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Overall, co-solvent was the most significant factor for all measured effects (p < 0.05). Arthrospira platensis represents a sustainable source of bioactive compounds through SFE using the following extraction parameters P: 450 bar, CX: 11 g/min, SX: 15 min, DX: 25 min, T: 60 °C and Di: 35 g. PMID:28604646

  14. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin.

    PubMed

    Schisler, Jonathan C; Grevengoed, Trisha J; Pascual, Florencia; Cooper, Daniel E; Ellis, Jessica M; Paul, David S; Willis, Monte S; Patterson, Cam; Jia, Wei; Coleman, Rosalind A

    2015-02-24

    Long chain acyl-CoA synthetases (ACSL) catalyze long-chain fatty acids (FA) conversion to acyl-CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1(H-/-)) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation. Metabolomics analysis identified 60 metabolites altered in Acsl1(H-/-) hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1(H-/-) hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1(H-/-) mice increased expression of several Hif1α-responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid-responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation. The switch from FA to glucose use causes mTOR-dependent alterations in cardiac metabolism. We identified cardiac mTOR-regulated genes not previously identified in other cellular models, suggesting heart-specific mTOR signaling. Increased glucose use also changed glutathione-related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Cardiac Energy Dependence on Glucose Increases Metabolites Related to Glutathione and Activates Metabolic Genes Controlled by Mechanistic Target of Rapamycin

    PubMed Central

    Schisler, Jonathan C.; Grevengoed, Trisha J.; Pascual, Florencia; Cooper, Daniel E.; Ellis, Jessica M.; Paul, David S.; Willis, Monte S.; Patterson, Cam; Jia, Wei; Coleman, Rosalind A.

    2015-01-01

    Background Long chain acyl‐CoA synthetases (ACSL) catalyze long‐chain fatty acids (FA) conversion to acyl‐CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1H−/−) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation. Methods and Results Metabolomics analysis identified 60 metabolites altered in Acsl1H−/− hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1H−/− hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1H−/− mice increased expression of several Hif1α‐responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid‐responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation. Conclusions The switch from FA to glucose use causes mTOR‐dependent alterations in cardiac metabolism. We identified cardiac mTOR‐regulated genes not previously identified in other cellular models, suggesting heart‐specific mTOR signaling. Increased glucose use also changed glutathione‐related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign. PMID:25713290

  16. Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation

    PubMed Central

    Liu, Y. F.; Zhao, H. B.; Liu, X. M.; You, W.; Cheng, H. J.; Wan, F. C.; Liu, G. F.; Tan, X. W.; Song, E. L.; Zhang, X. L.

    2016-01-01

    The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin×LuXi crossbred cattle with a body weight (400±10 kg), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a 4×4 Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal NH3-N concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle. PMID:26954111

  17. Effect of Supercritical Carbon Dioxide Extraction Parameters on the Biological Activities and Metabolites Present in Extracts from Arthrospira platensis.

    PubMed

    Esquivel-Hernández, Diego A; Rodríguez-Rodríguez, José; Cuéllar-Bermúdez, Sara P; García-Pérez, J Saúl; Mancera-Andrade, Elena I; Núñez-Echevarría, Jade E; Ontiveros-Valencia, Aura; Rostro-Alanis, Magdalena; García-García, Rebeca M; Torres, J Antonio; Chen, Wei Ning; Parra-Saldívar, Roberto

    2017-06-12

    Arthrospira platensis was used to obtain functional extracts through supercritical carbon dioxide extraction (SFE-CO₂). Pressure (P), temperature (T), co-solvent (CX), static extraction (SX), dispersant (Di) and dynamic extraction (DX) were evaluated as process parameters through a Plackett-Burman design. The maximum extract yield obtained was 7.48 ± 0.15% w/w. The maximum contents of bioactive metabolites in extracts were 0.69 ± 0.09 µg/g of riboflavin, 5.49 ± 0.10 µg/g of α-tocopherol, 524.46 ± 0.10 µg/g of β-carotene, 1.44 ± 0.10 µg/g of lutein and 32.11 ± 0.12 mg/g of fatty acids with 39.38% of palmitic acid, 20.63% of linoleic acid and 30.27% of γ-linolenic acid. A. platensis extracts had an antioxidant activity of 76.47 ± 0.71 µg GAE/g by Folin-Ciocalteu assay, 0.52 ± 0.02, 0.40 ± 0.01 and 1.47 ± 0.02 µmol TE/g by DPPH, FRAP and TEAC assays, respectively. These extracts showed antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Overall, co-solvent was the most significant factor for all measured effects (p < 0.05). Arthrospira platensis represents a sustainable source of bioactive compounds through SFE using the following extraction parameters P: 450 bar, CX: 11 g/min, SX: 15 min, DX: 25 min, T: 60 °C and Di: 35 g.

  18. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes.

    PubMed Central

    Sanderson, J T; Letcher, R J; Heneweer, M; Giesy, J P; van den Berg, M

    2001-01-01

    We investigated a potential mechanism for the estrogenic properties of three chloro-s-triazine herbicides and six metabolites in vitro in several cell systems. We determined effects on human aromatase (CYP19), the enzyme that converts androgens to estrogens, in H295R (adrenocortical carcinoma), JEG-3 (placental choriocarcinoma), and MCF-7 (breast cancer) cells; we determined effects on estrogen receptor-mediated induction of vitellogenin in primary hepatocyte cultures of adult male carp (Cyprinus carpio). In addition to atrazine, simazine, and propazine, two metabolites--atrazine-desethyl and atrazine-desisopropyl--induced aromatase activity in H295R cells concentration-dependently (0.3-30 microM) and with potencies similar to those of the parent triazines. After a 24-hr exposure to 30 microM of the triazines, an apparent maximum induction of about 2- to 2.5-fold was achieved. The induction responses were confirmed by similar increases in CYP19 mRNA levels, determined by reverse-transcriptase polymerase chain reaction. In JEG-3 cells, where basal aromatase expression is about 15-fold greater than in H295R cells, the induction responses were similar but less pronounced; aromatase expression in MCF-7 cells was neither detectable nor inducible under our culture conditions. The fully dealkylated metabolite atrazine-desethyl-desisopropyl and the three hydroxylated metabolites (2-OH-atrazine-desethyl, -desisopropyl, and -desethyl-desisopropyl) did not induce aromatase activity. None of the triazine herbicides nor their metabolites induced vitellogenin production in male carp hepatocytes; nor did they antagonize the induction of vitellogenin by 100 nM (EC(50) 17beta-estradiol. These findings together with other reports indicate that the estrogenic effects associated with the triazine herbicides in vivo are not estrogen receptor-mediated, but may be explained partly by their ability to induce aromatase in vitro. PMID:11675267

  19. Annual ovarian activity monitored by the noninvasive measurement of fecal concentrations of progesterone and 17β-estradiol metabolites in rusa deer (Rusa timorensis)

    PubMed Central

    SUDSUKH, Apichaya; TAYA, Kazuyoshi; WATANABE, Gen; WAJJWALKU, Worawidh; THONGPHAKDEE, Ampika; THONGTIP, Nikorn

    2016-01-01

    To clarify the reproductive cycle of female Rusa deer (Rusa timorensis), the fecal concentrations of progesterone and 17β-estradiol metabolites were measured. Fecal samples were collected on a weekly basis for one year (between October, 2012 and September, 2013) from five healthy adult hinds in Thailand. At the beginning of the study, three hinds were pregnant. Two hinds delivered one healthy offspring, and one hind delivered a stillborn calf. The mating period of Rusa hinds in Thailand is from November to April. In pregnant hinds, fecal progesterone metabolite concentration was high in late pregnancy and abruptly declined to the baseline around parturition, suggesting that the placenta secretes a large amount of progesterone. Fecal 17β-estradiol metabolite concentration remained elevated around the day of parturition. Both concentrations of fecal progesterone and 17β-estradiol metabolites in non-lactating hinds were significantly higher than those in lactating hinds, indicating that ovarian activity of lactating hinds is suppressed by the suckling stimulus of fawn during lactation. The present study demonstrated that monitoring of fecal steroid hormones is useful method for assessing ovarian function in this species. PMID:27570098

  20. Secondary metabolites from Ganoderma.

    PubMed

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Nuclear Hormone Receptor Activity of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Metabolites in Transactivation Assays Using Chinese Hamster Ovary Cells

    PubMed Central

    Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Sugihara, Kazumi; Yoshida, Takahiko; Kitamura, Shigeyuki

    2009-01-01

    Background An increasing number of studies are reporting the existence of polybrominated diphenyl ethers (PBDEs) and their hydroxylated (HO) and methoxylated (MeO) metabolites in the environment and in tissues from wildlife and humans. Objective Our aim was to characterize and compare the agonistic and antagonistic activities of principle PBDE congeners and their HO and MeO metabolites against human nuclear hormone receptors. Methods We tested the hormone receptor activities of estrogen receptor α (ERα), ERβ, androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor α1 (TRα1), and TRβ1 against PBDE congeners BDEs 15, 28, 47, 85, 99, 100, 153, and 209, four para-HO-PBDEs, and four para-MeO-PBDEs by highly sensitive reporter gene assays using Chinese hamster ovary cells. Results Of the 16 compounds tested, 6 and 2 showed agonistic activities in the ERα and ERβ assays, respectively, and 6 and 6 showed antagonistic activities in these assays. 4′-HO-BDE-17 showed the most potent estrogenic activity via ERα/β, and 4′-HO-BDE-49 showed the most potent anti estrogenic activity via ERα/β. In the AR assay, 13 compounds showed antagonistic activity, with 4′-HO-BDE-17 in particular inhibiting AR-mediated transcriptional activity at low concentrations in the order of 10−8 M. In the GR assay, seven compounds, including two HO-PBDEs and two MeO-PBDEs, showed weak antagonistic activity. In the TRα1 and TRβ1 assays, only 4-HO-BDE-90 showed weak antagonistic activity. Conclusions Taken together, these results suggest that PBDEs and their metabolites might have multiple endocrine-disrupting effects via nuclear hormone receptors, and para-HO-PBDEs, in particular, possess more potent receptor activities compared with those of the parent PBDEs and corresponding para-MeO-PBDEs. PMID:19672399

  2. Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of Arabidopsis Accessions[C][W][OA

    PubMed Central

    Sulpice, Ronan; Trenkamp, Sandra; Steinfath, Matthias; Usadel, Bjorn; Gibon, Yves; Witucka-Wall, Hanna; Pyl, Eva-Theresa; Tschoep, Hendrik; Steinhauser, Marie Caroline; Guenther, Manuela; Hoehne, Melanie; Rohwer, Johann M.; Altmann, Thomas; Fernie, Alisdair R.; Stitt, Mark

    2010-01-01

    Natural genetic diversity provides a powerful resource to investigate how networks respond to multiple simultaneous changes. In this work, we profile maximum catalytic activities of 37 enzymes from central metabolism and generate a matrix to investigate species-wide connectivity between metabolites, enzymes, and biomass. Most enzyme activities change in a highly coordinated manner, especially those in the Calvin-Benson cycle. Metabolites show coordinated changes in defined sectors of metabolism. Little connectivity was observed between maximum enzyme activities and metabolites, even after applying multivariate analysis methods. Measurements of posttranscriptional regulation will be required to relate these two functional levels. Individual enzyme activities correlate only weakly with biomass. However, when they are used to estimate protein abundances, and the latter are summed and expressed as a fraction of total protein, a significant positive correlation to biomass is observed. The correlation is additive to that obtained between starch and biomass. Thus, biomass is predicted by two independent integrative metabolic biomarkers: preferential investment in photosynthetic machinery and optimization of carbon use. PMID:20699391

  3. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth.

    PubMed

    Peter, B; Winter, G E; Blatt, K; Bennett, K L; Stefanzl, G; Rix, U; Eisenwort, G; Hadzijusufovic, E; Gridling, M; Dutreix, C; Hoermann, G; Schwaab, J; Radia, D; Roesel, J; Manley, P W; Reiter, A; Superti-Furga, G; Valent, P

    2016-02-01

    Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multikinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC(50) values. Midostaurin and CGP62221 also produced growth inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, which accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug competition experiments revealed that midostaurin interacts with KIT and several additional kinase targets. The key downstream regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE receptor downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation, which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs.

  4. 15-Deoxy-Δ12,14-prostaglandin J2-Glycerol Ester, a Putative Metabolite of 2-Arachidonyl Glycerol, Activates Peroxisome Proliferator Activated Receptor γ

    PubMed Central

    Raman, Priyadarshini; Kaplan, Barbara L. F.; Thompson, Jerry T.; Vanden Heuvel, John P.

    2011-01-01

    2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative capable of suppressing interleukin (IL)-2 production by activated T cells. 2-AG-mediated IL-2 suppression is dependent on cyclooxygenase-2 (COX-2) metabolism and peroxisome proliferator activated receptor γ (PPARγ) activation. The objective of the present studies was to examine whether 15-deoxy-Δ12,14-PGJ2-glycerol ester (15d-PGJ2-G), a putative metabolite of 2-AG, can mimic the actions of 2-AG on IL-2 regulation through PPARγ activation. 15d-PGJ2-G bound PPARγ-ligand binding domain in a PPARγ competitive binding assay. 15d-PGJ2-G treatment activated PPARγ in a reporter assay, and PPARγ activation was attenuated when a PPARγ antagonist, 2-chloro-5-nitro-N-4-pyridinylbenzamide (T0070907), was present. 15d-PGJ2-G treatment suppressed IL-2 production by activated Jurkat cells, which was partially attenuated when pretreated with T0070907. Moreover, IL-2 suppression was pronounced when 15d-PGJ2-G was present 30 min before or after T-cell activation. Concordant with IL-2 suppression, 15d-PGJ2-G treatment decreased nuclear factor of activated T cells (NFAT) transcriptional activity in transiently transfected Jurkat cells. It is noteworthy that T0070907 alone markedly increased NFAT reporter activity, suggesting the existence of endogenous PPARγ activation and modulation of NFAT. Because COX-2 metabolism of 2-AG is important for IL-2 suppression, the effect of 2-AG on COX-2 and PPARγ mRNA expression was investigated. 2-AG treatment decreased the up-regulation of COX-2 mRNA after T-cell activation, which suggests negative feedback limiting COX-2-mediated metabolism of 2-AG. PPARγ mRNA expression was increased upon activation, and 2-AG treatment produced a modest decrease in PPARγ mRNA expression. Collectively, our findings suggest that 15d-PGJ2-G activates PPARγ to decrease NFAT transcriptional activity and IL-2 expression in activated T cells. PMID:21511917

  5. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  6. Effect of bovine ABCG2 Y581S polymorphism on concentrations in milk of enrofloxacin and its active metabolite ciprofloxacin.

    PubMed

    Otero, J A; García-Mateos, D; de la Fuente, A; Prieto, J G; Álvarez, A I; Merino, G

    2016-07-01

    The ATP-binding cassette transporter G2 (ABCG2) is involved in the secretion of several drugs into milk. The bovine Y581S ABCG2 polymorphism increases the secretion into milk of the fluoroquinolone danofloxacin in Holstein cows. Danofloxacin and enrofloxacin are the fluoroquinolones most widely used in veterinary medicine. Both enrofloxacin (ENRO) and its active metabolite ciprofloxacin (CIPRO) reach milk at relatively high concentrations. The aim of this work was to study the effect of the bovine Y581S ABCG2 polymorphism on in vitro transport as well as on concentrations in plasma and in milk of ENRO and CIPRO. Experiments using cells overexpressing bovine ABCG2 showed the effects of ABCG2 on the transport of CIPRO, demonstrating more efficient in vitro transport of this antimicrobial by the S581 variant as compared with the Y581 variant. Animal studies administering 2.5mg/kg of ENRO subcutaneously to Y/Y 581 and Y/S 581 cows revealed that concentrations in plasma of ENRO and CIPRO were significantly lower in Y/S animals. Regardless of the genotype, the antimicrobial profile in milk after the administration of ENRO was predominantly of CIPRO. With respect to the genotype effects on the amounts of drugs present in milk, AUC0-24 values were more than 1.2 times higher in Y/S cows for ENRO and 2.2 times for CIPRO, indicating a greater capacity of Y581S to transfer these drugs into milk. These results emphasize the clinical relevance of this polymorphism as a factor affecting the concentrations in plasma and in milk of drugs of importance in veterinary medicine.

  7. Population pharmacokinetic-pharmacodynamic (PopPK/PD) modeling of risperidone and its active metabolite in Chinese schizophrenia patients.

    PubMed

    Ji, Shuangmin; Shang, Dewei; Wu, Kehua; Li, Anning; Li, Xiwei; Deng, Chenhui; Li, Liang; Zhou, Tianyan; Wang, Chuanyue; Lu, Wei

    2016-05-01

    Risperidone is a second-generation antipsychotic agent commonly used in the treatment of ~ 31.1% of schizophrenia patients in China, it is the most commonly-prescribed antipsychotic agent. Despite the abundant use of risperidone, population pharmacokinetic-pharmacodynamic models of risperidone have not been performed in Chinese schizophrenia patients. The objective of this study was to develop a population pharmacokinetic-pharmacodynamic (PopPK/PD) model to describe the PK behavior and efficacy of risperidone and 9-hydroxy-risperidone (active metabolite) in Chinese patients. Plasma concentration data (702 measurements from 131 patients) and positive and negative syndrome scale (PANSS) scores (258 observations from 56 patients) were analyzed using a nonlinear mixed-effects modeling (NONMEM) approach with first-order conditional estimation with interaction (FOCEI). The influence of potential covariates was evaluated. Model robustness was assessed using external validation, normalized prediction distribution error, nonparametric bootstrap, and visual predictive check approaches. Risperidone concentration data were well described by a one-compartmental model incorporating an additional compartment that refers to the concentration profiles of 9-hydroxy-risperidone. A complex absorption procedure was incorporated into the model to describe the metabolism of risperidone to 9-hydroxy-risperidone in the gastrointestinal (GI) tract. A binomial distribution in the estimated clearance (CL) of risperidone has been identified in our model. Decrease in PANSS score along with total AUC (AUCtotal) of risperidone and 9-hydroxy-risperidone was best characterized by an Emax model with 3 transit compartments describing the delay of drug effect. Considerable differences in PK behavior and drug effect of risperidone have been identified among Chinese extensive metabolizing (EM) and poor metabolizing (PM) patients. This PopPK/PD model may fulfill individualized treatment in clinical

  8. Relation between clopidogrel active metabolite levels and different platelet aggregation methods in patients receiving clopidogrel and aspirin.

    PubMed

    Liang, Yan; Johnston, Marilyn; Hirsh, Jack; Pare, Guillaume; Li, Chunjian; Mehta, Shamir; Teo, Koon K; Sloane, Debi; Yi, Qilong; Zhu, Jun; Eikelboom, John W

    2012-11-01

    Clopidogrel is a prodrug that undergoes bioconversion via cytochrome P450 system to form an active metabolite (AM) that binds to the platelet ADP receptor. The antiplatelet effect of clopidogrel is commonly assessed by measuring the aggregatory response to 5 μM ADP by light transmission aggregation (LTA) or multiple electrode aggregometry (MEA) or by the vasodilator-stimulated phosphoprotein platelet reactivity index (VASP-PRI). To determine which of these three tests of platelet ADP receptor pathway inhibition most closely correlates with clopidogrel AM levels. We analyzed blood samples from 82 patients with coronary artery disease who were randomized to receive double-dose or standard dose clopidogrel for 2 weeks. We measured peak clopidogrel AM levels, platelet aggregation in response to ADP and VASP-PRI on days 1, and repeated all the measures on days 7 and 14. Linear regression analysis was used to examine the correlation between clopidogrel AM and LTA, MEA and VASP-PRI. Bland-Altman plots were used to explore the agreement between tests of the antiplatelet effects of clopidogrel. Clopidogrel AM on day 1 correlated most closely with VASP-PRI (r = -0.5767) and demonstrated weaker correlations with LTA (r = -0.4656) and MEA (r = -0.3384) (all p < 0.01). Intra-class correlation (ICC) between VASP-PRI and LTA was 0.6446; VASP-PRI and MEA was 0.4720; and LTA and MEA was 0.4693. Similar results were obtained on days 7 and 14. Commonly used pharmacodynamic measures of clopidogrel response are only moderately correlated with clopidogrel AM levels and may not be suitable to measure the adequacy of clopidogrel therapy.

  9. Limited-sampling strategy models for estimating the pharmacokinetic parameters of 4-methylaminoantipyrine, an active metabolite of dipyrone.

    PubMed

    Suarez-Kurtz, G; Ribeiro, F M; Estrela, R C; Vicente, F L; Struchiner, C J

    2001-11-01

    Bioanalytical data from a bioequivalence study were used to develop limited-sampling strategy (LSS) models for estimating the area under the plasma concentration versus time curve (AUC) and the peak plasma concentration (Cmax) of 4-methylaminoantipyrine (MAA), an active metabolite of dipyrone. Twelve healthy adult male volunteers received single 600 mg oral doses of dipyrone in two formulations at a 7-day interval in a randomized, crossover protocol. Plasma concentrations of MAA (N = 336), measured by HPLC, were used to develop LSS models. Linear regression analysis and a "jack-knife" validation procedure revealed that the AUC(0-infinity) and the Cmax of MAA can be accurately predicted (R2>0.95, bias <1.5%, precision between 3.1 and 8.3%) by LSS models based on two sampling times. Validation tests indicate that the most informative 2-point LSS models developed for one formulation provide good estimates (R2>0.85) of the AUC(0-infinity) or Cmax for the other formulation. LSS models based on three sampling points (1.5, 4 and 24 h), but using different coefficients for AUC(0-infinity) and Cmax, predicted the individual values of both parameters for the enrolled volunteers (R2>0.88, bias = -0.65 and -0.37%, precision = 4.3 and 7.4%) as well as for plasma concentration data sets generated by simulation (R2>0.88, bias = -1.9 and 8.5%, precision = 5.2 and 8.7%). Bioequivalence assessment of the dipyrone formulations based on the 90% confidence interval of log-transformed AUC(0-infinity) and Cmax provided similar results when either the best-estimated or the LSS-derived metrics were used.

  10. Irreversible binding and adrenocorticolytic activity of the DDT metabolite 3-methylsulfonyl-DDE examined in tissue-slice culture.

    PubMed Central

    Lindhe , O; Lund, B O; Bergman , A; Brandt, I

    2001-01-01

    The persistent adrenocorticolytic DDT metabolite 3-methylsulfonyl-DDE (MeSO(2)-DDE) was originally identified in Baltic grey seals, a population suffering from adrenocortical hyperplasia. In mice, MeSO(2)-DDE induces mitochondrial degeneration and cellular necrosis in the adrenal zona fasciculata. In this study, we used precision-cut tissue slice culture to examine local CYP11B1-catalyzed irreversible binding of MeSO(2)-DDE in the murine adrenal cortex. We also examined effects on steroid hormone secretion, histology, and ultrastructure. As determined by microautoradiography, selective binding occurred in zona fasciculata of slices exposed to MeSO(2)-[(14)C]-DDE. Quantification of binding by phosphorautoradiography revealed a 3-fold reduction of binding in slices co-exposed to the CYP11B1 inhibitor metyrapone. As measured by HPLC, corticosterone and 11-deoxycorticosterone secretion to the medium increased linearly for at least 24 hr. Addition of the ACTH analog tetracosactide caused an 8-fold increase in corticosterone secretion. Addition of metyrapone reduced corticosterone secretion 4-fold. Exposure of slices to MeSO(2)-DDE (50 microM) reduced the rate of corticosterone secretion by 90% after 24 hr of incubation. As determined by electron microscopy, vacuolated mitochondria were present in zona fasciculata of slices exposed to MeSO(2)-DDE (50 microM) for 24 hr. Our findings show that all effects of MeSO(2)-DDE previously reported in vivo could be reproduced in adrenal slice culture ex vivo. This test system allows analysis of zone-specific irreversible binding and effects on steroid hormone secretion and target cell ultrastructure. We propose adrenal slice culture as a simple ex vivo test system with which to examine the adrenocorticolytic activity of xenobiotics in human and wild animal tissue. PMID:11266318

  11. Effects of woohwangcheongsimwon suspension on the pharmacokinetics of bupropion and its active metabolite, 4-hydroxybupropion, in healthy subjects

    PubMed Central

    Kim, Hyunmi; Bae, Soo Kyung; Park, Soo-Jin; Shim, Eon-Jeong; Kim, Ho-Sook; Shon, Ji-Hong; Liu, Kwang-Hyeon; Shin, Jae-Gook

    2010-01-01

    AIMS To examine the effects of woohwangcheongsimwon suspension on the pharmacokinetics of bupropion and its active metabolite, 4-hydroxybupropion, formed via CYP2B6 in vivo. METHODS A two-way crossover clinical trial with a 2 week washout period was conducted in 14 healthy volunteers. In phases I and II, subjects received 150 mg bupropion with or without woohwangcheongsimwon suspension four times (at −0.17, 3.5, 23.5 and 47.5 h, with the time of bupropion administration taken as 0 h) in a randomized balanced crossover order. Bupropion and 4-hydroxybupropion plasma concentrations were measured for up to 72 h by LC-MS/MS. Urine was collected up to 24 h to calculate the renal clearance. In addition, the CYP2B6*6 genotype was also analyzed. RESULTS The geometric mean ratios and 90% confidence interval of bupropion with woohwangcheongsimwon suspension relative to bupropion alone were 0.976 (0.917, 1.04) for AUC(0,∞) and 0.948 (0.830,1.08) for Cmax, respectively. The corresponding values for 4-hydroxybupropion were 0.856 (0.802, 0.912) and 0.845 (0.782, 0.914), respectively. The tmax values of bupropion and 4-hydroxybupropion were not significantly different between the two groups (P > 0.05). The pharmacokinetic parameters of bupropion and 4-hydroxybupropion were unaffected by woohwangcheongsimwon suspension. CONCLUSIONS These results indicate that woohwangcheongsimwon suspension has a negligible effect on the disposition of a single dose of bupropion in vivo. As a result, temporary co-administration with woohwangcheongsimwon suspension does not seem to require a dosage adjustment of bupropion. PMID:20642555

  12. Which platelet function test best reflects the in vivo plasma concentrations of ticagrelor and its active metabolite? The HARMONIC study.

    PubMed

    Koziński, Marek; Ostrowska, Małgorzata; Adamski, Piotr; Sikora, Joanna; Sikora, Adam; Karczmarska-Wódzka, Aleksandra; Marszałł, Michał Piotr; Boinska, Joanna; Laskowska, Ewa; Obońska, Ewa; Fabiszak, Tomasz; Kubica, Jacek

    2016-11-30

    Aim of this study was assessment of the relationship between concentrations of ticagrelor and its active metabolite (AR-C124910XX) and results of selected platelet function tests. In a single-centre, cohort study, patients with myocardial infarction underwent blood sampling following a 180 mg ticagrelor loading dose intake (predose, 1, 2, 3, 4, 6, 12, 24 hours postdose) to perform pharmacokinetic and pharmacodynamic assessments. Platelet reactivity was evaluated using the VASP-assay, the VerifyNow device and the Multiplate analyzer. Analysis of 36 patients revealed high negative correlations between ticagrelor concentrations and platelet reactivity evaluated with all three platelet function tests (the VASP-assay: RS=-0.722; p<0.0001; the VerifyNow device: RS=-0.715; p<0.0001; the Multiplate analyzer: RS=-0.722; p<0.0001), with no significant differences between correlation coefficients. Similar results were found for AR-C124910XX. Platelet reactivity values assessed with all three methods generally correlated well with each other; however, a significantly higher correlation (p<0.02) was demonstrated between the VerifyNow and Multiplate tests (RS=0.707; p<0.0001) than in other assay combinations (the VASP-assay and the VerifyNow device: RS=0.595; p<0.0001; the VASP-assay and the Multiplate analyzer: RS=0.588; p<0.0001). With respect to the recognition of high platelet reactivity, we found higher measurement concordance between the VerifyNow and Multiplate tests compared with other assay combinations, while for low platelet reactivity, only results of the VerifyNow and Multiplate assay were related to each other. Platelet reactivity measurements performed with the VASP, VerifyNow and Multiplate tests show comparably strong negative correlations with ticagrelor and AR-C124910XX concentrations.

  13. Estimates of the pharmacokinetics of famciclovir and its active metabolite penciclovir in young Asian elephants (Elephas maximus).

    PubMed

    Brock, A Paige; Isaza, Ramiro; Hunter, Robert P; Richman, Laura K; Montali, Richard J; Schmitt, Dennis L; Koch, David E; Lindsay, William A

    2012-12-01

    To determine plasma pharmacokinetics of penciclovir following oral and rectal administration of famciclovir to young Asian elephants (Elephas maximus). 6 healthy Asian elephants (5 females and 1 male), 4.5 to 9 years old and weighing 1,646 to 2,438 kg. Famciclovir was administered orally or rectally in accordance with an incomplete crossover design. Three treatment groups, each comprising 4 elephants, received single doses of famciclovir (5 mg/kg, PO, or 5 or 15 mg/kg, rectally); there was a minimum 12-week washout period between subsequent famciclovir administrations. Serial blood samples were collected after each administration. Samples were analyzed for famciclovir and penciclovir with a validated liquid chromatography-mass spectroscopy assay. Famciclovir was tolerated well for both routes of administration and underwent complete biotransformation to the active metabolite, penciclovir. Mean maximum plasma concentration of penciclovir was 1.3 μg/mL at 1.1 hours after oral administration of 5 mg/kg. Similar results were detected after rectal administration of 5 mg/kg. Mean maximum plasma concentration was 3.6 μg/mL at 0.66 hours after rectal administration of 15 mg/kg; this concentration was similar to results reported for humans receiving 7 mg/kg orally. Juvenile Asian elephants are susceptible to elephant endotheliotropic herpesvirus. Although most infections are fatal, case reports indicate administration of famciclovir has been associated with survival of 3 elephants. In Asian elephants, a dose of 8 to 15 mg of famciclovir/kg given orally or rectally at least every 8 hours may result in penciclovir concentrations that are considered therapeutic in humans.

  14. Assessment of adrenocortical activity by non-invasive measurement of faecal cortisol metabolites in dromedary camels (Camelus dromedarius).

    PubMed

    Sid-Ahmed, Omer-Elfaroug; Sanhouri, Ahmed; Elwaseela, Badr-Eldin; Fadllalah, Imad; Mohammed, Galal-Eldin Elazhari; Möstl, Erich

    2013-08-01

    The aim of this study was to determine whether glucocorticoid production could be monitored non-invasively in dromedary camels by measuring faecal cortisol metabolites (FCMs). Five Sudanese dromedaries, two males and three females, were injected with a synthetic adrenocorticotropic hormone (ACTH) analogue. Blood samples were collected pre- and post-ACTH injection. Faeces were sampled after spontaneous defecation for five consecutive days (2 days before and 3 days after ACTH injection). Baseline plasma cortisol values ranged from 0.6 to 10.8 ng/ml in males and from 1.1 to 16.6 ng/ml in females, while peak values after ACTH injection were 10.9-41.9 in males and 10-42.2 ng/ml in females. Peak blood cortisol values were reached between 1.5 and 2.0 h after ACTH injection. The concentration of FCMs increased after ACTH injection in the faeces of both sexes, although steroid levels peaked earlier in males [24 h; (286.7-2,559.7 ng/g faeces)] than in females [36-48 h; (1,182.6-5,169.1 ng/g faeces)], reflecting increases of 3.1-8.3- and 4.3-8-fold above baseline levels. To detect chromatographic patterns of immunoreactive FCMs, faecal samples with high FCM concentrations from both sexes were pooled and subjected to reverse phase high performance liquid chromatography (RP-HPLC). RP-HPLC analysis revealed sex differences in the polarity of FCMs, with females showing more polar FCMs than males. We concluded that stimulation of adrenocortical activity by ACTH injection resulted in a measurable increase in blood cortisol that was reliably paralleled by increases in FCM levels. Thus, measurement of FCMs is a powerful tool for monitoring the adrenocortical responses of dromedaries to stressors in field conditions.

  15. Cangrelor inhibits the binding of the active metabolites of clopidogrel and prasugrel to P2Y12 receptors in vitro.

    PubMed

    Judge, Heather M; Buckland, Robert J; Jakubowski, Joseph A; Storey, Robert F

    2016-01-01

    Cangrelor is a rapid-acting, direct-binding, and reversible P2Y12 antagonist which has been studied for use during percutaneous coronary intervention (PCI) in patients with or without pretreatment with an oral P2Y12 antagonist. As cangrelor is administered intravenously, it is necessary to switch to an oral P2Y12 antagonist following PCI, such as the thienopyridines clopidogrel, and prasugrel or the non-pyridine ticagrelor. Previous studies have suggested a negative pharmacodynamic interaction between cangrelor and thienopyridines. This in vitro study evaluated the receptor-level interaction between cangrelor and the active metabolite (AM) of clopidogrel or prasugrel by assessing functional P2Y12 receptor number using a (33)P-2MeSADP binding assay. All P2Y12 antagonists studied resulted in strong P2Y12 receptor blockade (cangrelor: 93.6%; clopidogrel AM: 93.0%; prasugrel AM: 97.9%). Adding a thienopyridine AM in the presence of cangrelor strongly reduces P2Y12 receptor blockade by the AM (clopidogrel AM: 7%, prasugrel AM: 3.2%). The thienopyridine AMs had limited ability to compete with cangrelor for binding to P2Y12 (% P2Y12 receptor blockade after co-incubation with cangrelor 1000 nmol/L: 11.7% for clopidogrel AM 3 µmol/L; 34.1% for prasugrel AM 3 µmol/L). In conclusion, in vitro cangrelor strongly inhibits the binding of clopidogrel and prasugrel AMs to the P2Y12 receptor, consistent with the previous observation of a negative pharmacodynamic interaction. Care may need to be taken to not overlap exposure to thienopyridine AMs and cangrelor in order to reduce the risk of thrombotic complications following PCI.

  16. Determination of loratadine and its active metabolite in human plasma by high-performance liquid chromatography with mass spectrometry detection.

    PubMed

    Vlase, Laurian; Imre, Silvia; Muntean, Dana; Leucuta, Sorin E

    2007-07-27

    A new sensitive and selective liquid chromatography coupled with mass spectrometry (LC/MS/MS) method for quantification of loratadine (LOR) and its active metabolite descarboethoxyloratadine (DSL) in human plasma was validated. After addition of the internal standard, metoclopramide, the human plasma samples (0.3 ml) were precipitated using acetonitrile (0.75 ml) and the centrifuged supernatants were partially evaporated under nitrogen at 37 degrees C at approximately 0.3 ml volume. The LOR, DSL and internal standard were separated on a reversed phase column (Zorbax SB-C18, 100 mmx3.0 mm i.d., 3.5 microm) under isocratic conditions using a mobile phase of an 8:92(v/v) mixture of acetonitrile and 0.4% (v/v) formic acid in water. The flow rate was 1 ml/min and the column temperature 45 degrees C. The detection of LOR, DSL and internal standard was in MRM mode using an ion trap mass spectrometer with electrospray positive ionisation. The ion transitions were monitored as follows: 383-->337 for LOR, 311-->(259+294+282) for DSL and 300-->226.8 for internal standard. Calibration curves were generated over the range of 0.52-52.3 ng/ml for both LOR and DSL with values for coefficient of determination greater than 0.994 by using a weighted (1/y) quadratic regression. The lower limits of quantification were established at 0.52 ng/ml LOR and DSL, respectively, with an accuracy and precision less than 20%. Both analytes demonstrated good short-term, long-term, post-preparative and freeze-thaw stability. Besides its simplicity, the sample treatment allows obtaining a very good recovery of both analytes, around 100%. The validated LC/MS/MS method has been applied to a pharmacokinetic study of loratadine tablets on healthy volunteers.

  17. Bioanalytical Method to Determine the Effects of Cyanide, Cyanide Metabolites and Cyanide Antidotes on the Activity of Cytochrome C Oxidase Immobilized in an Electrode Supported Lipid Bilayer Membrane

    DTIC Science & Technology

    2006-06-01

    relation to their toxicity and antidotal activity against hydrocyanic acid . Archs. int. Pharmacodyn. 1962, 139, 99-108. 42. Evans, C. L., Cobalt...compounds as antidotes for hydrocyanic acid . Brit. J. Pharmac. Chemother. 1964, 23, 455-475. 43. Friedberg, K. D.; Shukla, U. R., The efficiency of...affected by cyanide,9, 19, 20 and there is recent evidence that the cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA) is also toxic. ATCA is

  18. Carboxymefloquine, the major metabolite of the antimalarial drug mefloquine, induces drug-metabolizing enzyme and transporter expression by activation of pregnane X receptor.

    PubMed

    Piedade, Rita; Traub, Stefanie; Bitter, Andreas; Nüssler, Andreas K; Gil, José P; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies.

  19. Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094

    PubMed Central

    Ehteshami, Maryam; Tao, Sijia; Ozturk, Tugba; Zhou, Longhu; Cho, Jong Hyun; Zhang, Hongwang; Amiralaei, Sheida; Shelton, Jadd R.; Lu, Xiao; Khalil, Ahmed; Domaoal, Robert A.; Stanton, Richard A.; Suesserman, Justin E.; Lin, Biing; Lee, Sam S.; Amblard, Franck; Whitaker, Tony; Coats, Steven J.

    2016-01-01

    Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2′-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2′-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2′-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo. Finally, we found that although both 2′-C-methyl-GTP and 2′-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2′-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2′-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites. PMID:27216050

  20. In vitro cultures of Bacopa monnieri and an analysis of selected groups of biologically active metabolites in their biomass.

    PubMed

    Muszyńska, Bożena; Łojewski, Maciej; Sułkowska-Ziaja, Katarzyna; Szewczyk, Agnieszka; Gdula-Argasińska, Joanna; Hałaszuk, Patrycja

    2016-11-01

    Bacopa monnieri L. Pennell (Scrophulariaceae) is one of the most important plants in the system of Indian medicine (Ayurveda). This paper studies the optimal growth of B. monnieri for effective accumulation of metabolites. Biomass growth of this plant could be accomplished in liquid cultures on Murashige & Skoog medium. Powdered shoots of in vitro cultures of B. monnieri were extracted by methanol for indole compounds, phenolic compounds and bacosides for RP-HPLC analysis. Fatty acid analysis was performed via gas chromatography. Anti-inflammatory effect of B. monnieri extracts was evaluated in the A549 cells. COX-2 and cPGES expression was analyzed using Western blots. l-Tryptophan and serotonin were found in biomass from in vitro cultures of B. monnieri on MS medium and in biomass from the MS mediums enriched with the different additions such as of 0.1 g/L magnesium sulphate, 0.1 g/L zinc hydroaspartate, 0.1 g/L l-tryptophan, 0.25 g/L serine, 0.5 g/L serine and 0.5 mg/L anthranilic acid. The content of l-tryptophan and serotonin compounds was significant in biomass from medium with the addition of 0.1 g/L zinc hydroaspartate (0.72 mg/g dry weight and 1.19, respectively). Phenolic compounds identified in biomass from the same variants of MS medium were chlorogenic acid (ranging from 0.20 to 0.70 mg/g dry weight), neochlorogenic acid (ranging from 0.11 to 0.40 mg/g dry weight) and caffeic acid (ranging from 0.01 to 0.04 mg/g dry weight). The main group of fatty acids in biomass was saturated fatty acids (53.4%). The predominant fatty acid was palmitic acid. A significant decrease of COX-2 and cPGES expression was observed in the A549 cells activated with LPS and treated with B. monnieri extracts. As far as we know, this is the first analysis of indole compounds and phenolic acids in this plant. The multi-therapeutic effect of B. monnieri is expressed by the activity of bacosides. Information about the presence of indole and phenolic compounds

  1. Screening of the in vitro antileishmanial activities of compounds and secondary metabolites isolated from Maytenus guianensis Klotzsch ex Reissek (Celastraceae) chichuá Amazon.

    PubMed

    Meneguetti, Dionatas Ulises de Oliveira; Lima, Renato Abreu; Hurtado, Fernanda Bay; Passarini, Guilherme Matos; Macedo, Sharon Rose Aragão; Barros, Neuza Biguinati de; Oliveira, Flávio Augusto de Souza; Medeiros, Patrícia Soares de Maria de; Militão, Júlio Sancho Linhares Teixeira; Nicolete, Roberto; Facundo, Valdir Alves

    2016-01-01

    Maytenus guianensis is a member of the Celastraceae family that is used in traditional medicine, particularly for its anti-parasitic and anti-cancer effects. To explore the ethnopharmacological potential of this plant, the present study was designed to screen the in vitro antileishmanial activities of extracts and compounds isolated from M. guianensis. Maytenus guianensis stems and leaves were extracted in acetone, followed by the preparation of eluates and isolation of secondary metabolites using chromatography on a glass column with silica gel as the fixed phase. The chemical components were identified using spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance of hydrogen-1 and carbon-13, mass spectroscopy, and infrared spectroscopy. The anti-Leishmania amazonensis activities of these eluates and compounds were evaluated by direct promastigote counting and viability assays. It was found that the hexane bark eluate produced the strongest anti-L. amazonensis effect, with 90-100% inhibition of the promastigote form. The isolated metabolite that produced the best result was tingenone B, followed by a compound formed by the union of tingenone and tingenone B (80-90% inhibition). Maytenus guianensis shows anti-parasite activity that warrants further investigation to determine the mechanisms underlying this antileishmanial effect and to evaluate the pharmacological potential of these eluates and isolated secondary metabolites, while minimizing any adverse effects.

  2. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production.

    PubMed

    Zheng, Weifa; Miao, Kangjie; Liu, Yubing; Zhao, Yanxia; Zhang, Meimei; Pan, Shenyuan; Dai, Yucheng

    2010-07-01

    Inonotus obliquus (Fr.) Pilat is a white rot fungus belonging to the family Hymenochaetaceae in the Basidiomycota. In nature, this fungus rarely forms a fruiting body but usually an irregular shape of sclerotial conk called 'Chaga'. Characteristically, I. obliquus produces massive melanins released to the surface of Chaga. As early as in the sixteenth century, Chaga was used as an effective folk medicine in Russia and Northern Europe to treat several human malicious tumors and other diseases in the absence of any unacceptable toxic side effects. Chemical investigations show that I. obliquus produces a diverse range of secondary metabolites including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are the active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Geographically, however, this fungus is restricted to very cold habitats and grows very slowly, suggesting that Chaga is not a reliable source of these bioactive compounds. Attempts for culturing this fungus axenically all resulted in a reduced production of bioactive metabolites. This review examines the current progress in the discovery of chemical diversity of Chaga and their biological activities and the strategies to modulate the expression of desired pathways to diversify and up-regulate the production of bioactive metabolites by the fungus grown in submerged cultures for possible drug discovery.

  3. Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E

    2013-07-05

    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  4. The relationship of nitrogen and C/N ratio with secondary metabolites levels and antioxidant activities in three varieties of Malaysian kacip Fatimah (Labisia pumila Blume).

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E

    2011-06-29

    Kacip Fatimah (Labisia pumila Blume), one of the most famous and widely used herbs, especially in Southeast Asia, is found to have interesting bioactive compounds and displays health promoting properties. In this study, the antioxidant activities of the methanol extracts of leaves, stems and roots of three varieties of L. pumila (var. alata, pumila and lanceolata) were evaluated in an effort to compare and validate the medicinal potential of this indigenous Malaysian herb species. The antioxidant activity determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, as well as the total amount of phenolics and flavonoids were the highest in the leaves, followed by the stems and roots in all the varieties. A similar trend was displayed by the ferric reducing antioxidant potential (FRAP) activity, suggesting that the L. pumila varieties possess high foliar antioxidant properties. At low FRAP activity concentrations, the values of the leaves' inhibition activity in the three varieties were significantly higher than those of the stems and roots, with var. alata exhibiting higher antioxidant activities and total contents of phenolics and flavonoids compared to the varieties pumila and lanceolata. The high production of secondary metabolites and antioxidant activities in var. alata were firmly related to low nitrogen content and high C/N ratio in plant parts. The study also demonstrated a positive correlation between secondary metabolite content and antioxidant activities, and revealed that the consumption of L. pumila could exert several beneficial effects by virtue of its antioxidant activity.

  5. Tissue-specific activation of mitogen-activated protein kinases for expression of transthyretin by phenylalanine and its metabolite, phenylpyruvic acid

    PubMed Central

    Park, Joo-Won; Lee, Mi Hee; Choi, Jin-Ok; Park, Hae-Young

    2010-01-01

    Phenylketonuria is an autosomal recessive disorder caused by a deficiency of phenylalanine hydroxylase. Transthyretin has been implicated as an indicator of nutritional status in phenylketonuria patients. In this study, we report that phenylalanine and its metabolite, phenylpyruvic acid, affect MAPK, changing transthyretin expression in a cell- and tissue-specific manner. Treatment of HepG2 cells with phenylalanine or phenylpyruvic acid decreased transcription of the TTR gene and decreased the transcriptional activity of the TTR promoter site, which was partly mediated through HNF4α. Decreased levels of p38 MAPK were detected in the liver of phenylketonuria-affected mice compared with wild-type mice. In contrast, treatment with phenylalanine increased transthyretin expression and induced ERK1/2 activation in PC-12 cells; ERK1/2 activation was also elevated in the brainstem of phenylketonuria-affected mice. These findings may explain between-tissue differences in gene expression, including Ttr gene expression, in the phenylketonuria mouse model. PMID:19946178

  6. Estrogenic activity of 7-hydroxymatairesinol potassium acetate (HMR/lignan) from Norway spruce (Picea abies) knots and of its active metabolite enterolactone in MCF-7 cells.

    PubMed

    Cosentino, Marco; Marino, Franca; Ferrari, Marco; Rasini, Emanuela; Bombelli, Raffaella; Luini, Alessandra; Legnaro, Massimiliano; Delle Canne, Marco Gioacchino; Luzzani, Marcello; Crema, Francesca; Paracchini, Silvano; Lecchini, Sergio

    2007-08-01

    Lignans are plant polyphenols which may possess anticancer, antioxidant, antimicrobial, anti-inflammatory and immunomodulatory activities. In particular, the lignan 7-hydroxymatairesinol (HMR/lignan, HMR) is a novel precursor of the mammalian lignan enterolactone (EL). In the present study, we investigated the estrogenicity of HMR and of EL in comparison to estradiol (E2), by measuring their effects on growth and apoptotic markers in the human estrogen-sensitive cell line MCF-7. HMR, EL and E2 concentration-dependently increased the percentage of MCF-7 cells in the S phase of the cell cycle, with the following relative potencies: E2 congruent with EL>HMR, and efficacies: E2>HMR>EL. Treatment of MCF-7 cells with either HMR, EL or E2 also increased the Bcl-2/Bax mRNA ratio. The effects of HMR and EL were reduced in the presence of the estrogen receptor (ER) antagonist tamoxifene. We conclude that both HMR and its metabolite EL are endowed with estrogenic activity, which is likely to be exerted through the contribution of ER-dependent pathways and to target the same intracellular mechanisms acted upon by E2. The estrogenicity of HMR and EL is however milder than that of E2, as indicated by the lower potencies and efficacies of both lignans. The present results support the notion that dietary supplementation with HMR may result in a mild estrogenic activity, both directly and by providing a suitable source for endogenous EL.

  7. In vivo estrogenic potential of 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, an active metabolite of bisphenol A, in uterus of ovariectomized rat.

    PubMed

    Okuda, Katsuhiro; Takiguchi, Masufumi; Yoshihara, Shin'ichi

    2010-08-01

    4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A (BPA), has more potent estrogenic activity than BPA in vitro, but its activity in vivo is not established. Here, we examined in vivo estrogenic activity of MBP by means of uterotrophic assay in ovariectomized (OVX) female rats. MBP exhibited dose-dependent estrogenic activity, as evaluated in terms of effects on uterus weight, uterine luminal epithelial cell height and myometrium thickness. The highest concentration of MBP (10 mg/kg/day) completely reversed the changes caused by OVX, and its activity was equivalent to that of 5 microg/kg/day 17beta-estradiol (E2). We also investigated the effects of MBP on transcription of several estrogen-related genes. The changes of mRNA levels of estrogen receptors alpha and beta, c-fos and insulin-like growth factor 1 in MBP-treated OVX rats were qualitatively similar to those in E2-treated rats. BPA did not show any significant effect on OVX rat in these conditions. This study is the first to demonstrate that MBP, an active metabolite of BPA, has potent in vivo estrogenic activity, being about 500-fold more potent than BPA in OVX rats.

  8. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Zhang, Yingning; Hund, Dana K.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2013-01-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. PMID:23348028

  9. In vitro hepatic biotransformation of aspalathin and nothofagin, dihydrochalcones of rooibos (Aspalathus linearis), and assessment of metabolite antioxidant activity.

    PubMed

    van der Merwe, J Debora; Joubert, Elizabeth; Manley, Marena; de Beer, Dalene; Malherbe, Christiaan J; Gelderblom, Wentzel C A

    2010-02-24

    Aspalathin (2',3,4,4',6'-pentahydroxy-3'-C-beta-d-glucopyranosyldihydrochalcone) is the major flavonoid present in the South African herbal tea rooibos. In vitro metabolism of aspalathin and a structural analogue nothofagin, lacking the A ring catechol group, was investigated by monitoring the formation of glucuronyl and sulfate conjugates using Aroclor 1254 induced and uninduced rat liver microsomal and cytosolic subcellular fractions. Following glucuronidation of both aspalathin and nothofagin, HPLC-DAD, LC-MS, and LC-MS/MS analyses indicated the presence of two metabolites: one major and one minor. Only one aspalathin metabolite was obtained after sulfation, while no metabolites were observed for nothofagin. Two likely sites of conjugation for aspalathin are 4-OH or 3-OH on the A-ring. For nothofagin, the 4-OH (A-ring) and 6'-OH (B-ring) seem to be involved. The glucuronyl conjugates of aspalathin lack any radical scavenging properties in online postcolumn DPPH radical and ABTS radical cation assays. Deconjugation assays utilizing glucuronidase and sulfatase resulted in the disappearance of the metabolites, with the concomitant formation of the unconjugated form in the case of the glucuronidated product. The balance between conjugated and unconjugated forms of aspalathin could have important implications regarding its role in affecting oxidative status in intra- and extracellular environments in vivo.

  10. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain.

    PubMed

    Lewis, Susannah S; Hutchinson, Mark R; Zhang, Yingning; Hund, Dana K; Maier, Steven F; Rice, Kenner C; Watkins, Linda R

    2013-05-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. In vitro fermentation of prebiotics by Lactobacillus plantarum CFR 2194: selectivity, viability and effect of metabolites on β-glucuronidase activity.

    PubMed

    Arenahalli Ningegowda, Madhu; Siddalingaiya Gurudutt, Prapulla

    2012-03-01

    Prebiotic Fructooligosaccharides (FOS) escape metabolism in upper GI tract undergo microbial metabolism in colon and thereby influence the nature, type and number of intestinal microbiota to improve host's health. The present study focuses on the ability of Lactobacillus plantarum CFR 2194 to utilize FOS as a selective carbon and energy source. The effect of fermentative metabolites of L. plantarum on the β-glucuronidase was also investigated. A total of 16 strains of lactobacilli were assessed for their ability to ferment oligosaccharides. L. plantarum CFR 2194, an isolate from kanjika was found to utilize FOS effectively. Lactic acid was the main metabolic end product, followed by acetic acid, butyric acid, formic acid and ethanol. The inhibitory effects of these metabolites have been confirmed through the reduction of β-glucuronidase activity. L. plantarum when co-cultured with β-glucuronidase producing E. coli, in a basal media containing FOS as an energy source, could inhibit the growth of the pathogen during the course of fermentation. The results showed that L. plantarum CFR 2194 has the ability to utilize the prebiotic FOS as a selective carbon and energy source. The organism could inhibit the growth of the pathogen which produces β-glucuronidase and lowered its activity by the metabolites of FOS which indicates the probable use of L. plantarum through dietary intervention in combating colon carcinogenesis.

  12. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats.

    PubMed

    Jimenez, R; Lopez-Sepulveda, R; Romero, M; Toral, M; Cogolludo, A; Perez-Vizcaino, F; Duarte, J

    2015-02-01

    Quercetin, the most abundant dietary flavonol, exerts antioxidant effects reducing vascular superoxide (O2(-)) and improving endothelial function in animal models of cardiovascular disease. Herein we evaluated the effects of quercetin, and its plasma metabolites, on the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity, the main source of O2(-) in the vessel wall, in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Quercetin and its metabolites isorhamnetin and kaempferol inhibited the NADPH-stimulated lucigenin-chemiluminescence signal in VSMCs from both strains. The inhibitory effect of quercetin-3-glucuronide increased after prolonged incubation and was inhibited in the presence of the β-glucuronidase inhibitor saccharolactone. These effects were unrelated to their O2(-) scavenging properties, since they induced only a small inhibition of the rate of pyrogallol autoxidation at high concentrations. All bioflavonoids tested acted as non-competitive inhibitors with respect to NADPH. In conclusion, quercetin and its metabolites inhibit the NADPH oxidase