Science.gov

Sample records for active metal oxide

  1. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  2. Development of structure-activity relationship for metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram

    2013-05-01

    Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were

  3. Characterization and metal sorptive properties of oxidized active carbon.

    PubMed

    Strelko, Vladimir; Malik, Danish J

    2002-06-01

    A commercial activated carbon Chemviron F 400 has been oxidized using nitric acid in order to introduce a variety of acidic surface functional groups. Both unoxidized and oxidized carbon samples were characterized using nitrogen porosimetry, elemental analysis, pH titration, Boehm's titration, and electrophoretic mobility measurements. Results show that oxidation treatment reduced surface area and pore volume. However, the carbon surface acquires an acidic character with carboxylic groups being the dominant surface functional groups. The modified sample displays cation-exchange properties over a wide range of pH values and exhibits polyfunctional nature. Both carbon samples were challenged for the removal of transition metals such as copper(II), nickel(II), cobalt(II), zinc(II), and manganese(II). The affinity series Mn2+Zn2+ has been found to coincide with the general stability sequence of metal complexes (the Irving-Williams series). The higher preference displayed by carbons toward copper(II) is a consequence of the fact that copper(II) often forms distorted and more stable octahedral complexes. PMID:16290653

  4. Catalytic activity of metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide

    SciTech Connect

    Marshneva, V.I.; Mokrinskii, V.V.

    1989-02-01

    Separate investigations have been made of the catalytic activities of a wide range of oxides by groups I-VIII metals in the Claus reaction and oxidation of H/sub 2/S by oxygen. Only 9 of 21 oxides used in the Claus reaction exhibit stable activity. The remaining oxides are deactivated, mainly by absorbing H/sub 2/S and being converted into sulfides. There are similar tendencies in the changes of sulfur formation specific velocities in both processes in the series of stable oxides V/sub 2/O/sub 5/, TiO/sub 2/, Mn/sub 2/O/sub 3/, Al/sub 2/O/sub 3/, MgO, Cr/sub 2/O/sub 3/. Vanadium pentoxide is the most active catalyst in the total and partial oxidations of H/sub 2/S and the Claus reaction.

  5. Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators.

    PubMed

    Moilanen, Johanna; Karonen, Maarit; Tähtinen, Petri; Jacquet, Rémi; Quideau, Stéphane; Salminen, Juha-Pekka

    2016-05-01

    Ellagitannins are a subclass of hydrolysable tannins that have been suggested to function as defensive compounds of plants against herbivores. However, it is known that the conditions in the digestive tracts of different herbivores are variable, so it seems reasonable to anticipate that the reactivities and modes of actions of these ingested defensive compounds would also be different. A previous study on a few ellagitannins has shown that these polyphenolic compounds are highly oxidizable at high pH and that their bioactivity can be attributed to certain structural features. Herein, the activities of 13 ellagitannins using the deoxyribose assay were measured. The results provided information about the anti-oxidant, pro-oxidant and metal chelating properties of ellagitannins. Surprisingly, many of the tested ellagitannins exhibited pro-oxidant activities even at neutral pH and only moderate to low radical scavenging activities, although the metal chelating capacities of all tested ellagitannins were relatively high. PMID:26899362

  6. Physicochemical properties and catalytic activity of metal tetraphenyl porphins in the oxidation of alkylaromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kobotaeva, N. S.; Skorokhodova, T. S.; Kokova, D. A.

    2013-06-01

    We consider the effect of complexing metal in a tetraphenylporphin molecule on its catalytic activity in oxidizing alkylaromatic hydrocarbons by molecular oxygen. The catalytic activity of metal porphyrins (Co, Cu, Zn, Mn, and In TPP) is found to depend on their oxidation potentials and the distribution of electron density in the molecule. The electron-donating compound imidazole is shown to affect the oxidation rate.

  7. Influence of Metal Oxides on Platinum Activity towards Methanol Oxidation in H2 SO4 solution.

    PubMed

    Hameed, R M Abdel; Amin, R S; El-Khatib, K M; Fetohi, Amani E

    2016-04-01

    Pt-CeO2 /C, Pt-TiO2 /C, and Pt-ZrO2 /C electrocatalysts were prepared by using a modified microwave-assisted polyol process. Physical characterization was performed by using XRD, TEM, and EDX analyses. The incorporation of different metal oxides increased the dispersion degree of Pt nanoparticles and reduced their diameter to 2.50 and 2.33 nm when TiO2 and ZrO2 were introduced to Pt/C, respectively. The electrocatalytic activity of various electrocatalysts was examined towards methanol oxidation in H2 SO4 solution by using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Among the studied composites, Pt-ZrO2 /C was selected to be a candidate electrocatalyst for better electrochemical performance in direct methanol fuel cells. PMID:26748621

  8. The chemical origin and catalytic activity of coinage metals: from oxidation to dehydrogenation.

    PubMed

    Syu, Cih-Ying; Yang, Hao-Wen; Hsu, Fu-Hsing; Wang, Jeng-Han

    2014-04-28

    The high oxidation activity of coinage metals (Cu, Ag and Au) has been widely applied in various important reactions, such as oxidation of carbon monoxide, alkenes or alcohols. The catalytic behavior of those inert metals has mostly been attributable to their size effect, the physical effect. In the present study, the chemical effects on their high oxidation activity have been investigated. We mechanistically examine the direct and oxidative dehydrogenation (partial oxidation) reactions of ethanol to acetaldehyde on a series of transition metals (groups 9, 10 and 11) with identical physical characteristics and varied chemical origins using density functional theory (DFT) calculations and electronic structure analyses at the GGA-PW91 level. The energetic results show that coinage metals have much lower activation energies and higher exothermicities for the oxidative dehydrogenation steps although they have higher energy for the direct dehydrogenation reaction. In the electronic structure analyses, coinage metals with saturated d bands can efficiently donate electrons to O* and OH*, or other electronegative adspecies, and better promote their p bands to higher energy levels. The negatively charged O* and OH* with high-lying p bands are responsible for lowering the energies in oxidative steps. The mechanistic understanding well explains the better oxidation activity of coinage metals and provides valuable information on their utilization in other useful applications, for example, the dehydrogenation process. PMID:24626959

  9. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater.

    PubMed

    Walden, Connie; Zhang, Wen

    2016-08-16

    The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released. PMID:27437755

  10. Strong metal-support interaction between mononuclear and polynuclear transition metal complexes and oxide supports which dramatically affects catalytic activity

    SciTech Connect

    Hucul, D.A.; Brenner, A.

    1981-03-05

    The interaction of carbonyl complexes with catalyst supports, primarily ..gamma..-alumina, has been studied by temperature-programmed decomposition. In all cases, including cluster complexes and complexes of noble metals, after heating to 600/sup 0/C in flowing He the catalysts are significantly oxidized due to a redox reaction between surface hydroxyl groups and the initially zero-valent metal. Contrary reports are probably incorrect and likely reflect the insensitivity of the experimental techniques used. For all but the most thermally unstable complexes, the oxidation occurs during the latter stages of decarbonylation indicating that there is no significant accumulation of bare zero-valent metal. Hence, decomposition does not in general provide a direct route to supported metals and, contrary to some claims, molecular cluster complexes cannot necessarily be used as precursors to supported metal clusters. Further, knowledge of this redox reaction is critical for understanding patterns of activity and for the development of improved catalysts.

  11. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  12. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    PubMed Central

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization. PMID:22898143

  13. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  14. Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids

    NASA Astrophysics Data System (ADS)

    Bhanjana, Gaurav; Kumar, Neeraj; Thakur, Rajesh; Dilbaghi, Neeraj; Kumar, Sandeep

    2011-12-01

    Antimicrobial nanotechnology is a recent addition to the fight against disease causing organisms, replacing heavy metals and toxins. In the present work, mixed ligand complexes of metals like zinc, silver etc. and metal oxide have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N-and/O-donor amino acids such as L-serine, L-alanine, glycine, cysteine and histidine as secondary ligands. These complexes were characterized using different spectroscopic techniques. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay.

  15. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    PubMed Central

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W−1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  16. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-05-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W‑1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices.

  17. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors.

    PubMed

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could 'defect-considered' void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85-95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W(-1)) and excellent detectivity (2 × 10(13) Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of 'defect-considered' Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  18. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  19. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    PubMed Central

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  20. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  1. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  2. Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium.

    PubMed

    Zabrieski, Zac; Morrell, Elliot; Hortin, Joshua; Dimkpa, Christian; McLean, Joan; Britt, David; Anderson, Anne

    2015-08-01

    CuO and ZnO nanoparticles (NPs) have antimicrobial effects that could lead to formulations as pesticides for agriculture or medicine. The responses of two soil-borne plant pathogenic Pythium isolates to the NPs were studied to determine the potential of these metal oxide NPs as pesticides. Growth of the P. ultimum isolate was more sensitive to CuO NPs than the P. aphanidermatum isolate. Growth in liquid medium with CuO NPs eliminated culturability whereas exposure to ZnO NPs resulted in stasis with growth resuming on transfer to medium lacking NPs. The citrate in the medium used for the growth assays was involved in enhanced release of the toxic metals from the NPs. Both CuO and ZnO NPs affected processes involved in Fe uptake. The NPs reduced levels of Fe-chelating siderophore-like metabolites produced by Pythium hyphae. CuO NPs inhibited, but ZnO NPs increased, ferric reductase activity detected at the mycelial surface. These findings illustrate that the toxicity of the metal oxide NPs towards Pythium was influenced by the medium, especially by the presence of a metal chelator. Environmental factors are likely to alter the pesticide potential of the metal oxide NPs when formulated for agricultural use in soils. PMID:26076749

  3. Electrical active defects in HfO2 based metal/oxide/metal devices

    NASA Astrophysics Data System (ADS)

    El Kamel, F.

    2016-01-01

    Dielectric as well as thermally stimulated current measurements were performed on metal/HfO2/Pt capacitors in order to study the electrical active defects in hafnia thin films. Two thermally activated relaxation processes have been carried out from both measurements. At low temperatures, the relaxation process can be ascribed to the shallow traps level localized at 0.65 eV and generally evidenced by the second ionization of oxygen vacancies. At high temperatures, the relaxation process arises from the diffusion of positively charged oxygen vacancies by overcoming an energetic barrier of about 1 eV.

  4. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  5. Effects of activated carbon fibre-supported metal oxide characteristics on toluene removal.

    PubMed

    Liu, Zhen-Shu; Peng, Yu-Hui; Li, Wen-Kai

    2014-01-01

    Few studies have investigated the use of activated carbon fibres (ACFs) impregnated with metal oxides for the catalytic oxidation of volatile organic compounds (VOCs). Thus, the effects of the ACF-supported metal oxides on toluene removal are determined in this study. Three catalysts, namely, Ce, Mn, and Cu, two pretreatment solutions NaOH and H2O2, and three reaction temperatures of 250 degrees C, 300 degrees C, and 350 degrees C, were employed to determine toluene removal. The composition and morphology of the catalysts were analysed using Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectrometer (FTIR), and thermo-gravimetric analyser (TGA) to study the effects of the catalyst's characteristics on toluene removal. The results demonstrated that the metal catalysts supported on the ACFs could significantly increase toluene removal. The Mn/ACFs and Cu/ACFs were observed to be most active in toluene removal at a reaction temperature of 250 degrees C with 10% oxygen content. Moreover, the data also indicated that toluene removal was slightly improved after pretreating the ACFs with NaOH and H2O2. The results suggested that surface-metal loading and the surface characteristics of the ACFs were the determinant parameters for toluene removal. Furthermore, the removal of toluene over Mn/ACFs-H202 decreased when the reaction temperature considered was > 300 degrees C. PMID:24701949

  6. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water

    PubMed Central

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P.; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-01-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry. PMID:26286479

  7. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    PubMed

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-01-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry. PMID:26286479

  8. Oxidative stress in the mollusk Echinolittorina peruviana (Gasteropoda: Littorinidae, Lamarck, 1822) and trace metals in coastal sectors with mining activity.

    PubMed

    Jara, C; Gaete, H; Lobos, G; Hidalgo, M E

    2014-08-01

    The aim of the study was to evaluate the effect of coastal waters of sites with mining activity in Echinolittorina peruviana, through oxidative stress biomarkers and heavy metals determination both in water and in tissue. Organisms were collected in the intertidal zone in areas with and without mining activity. Metal concentrations in the water and tissues, and also, the following biomarkers of oxidative stress: antioxidant enzyme activity, superoxide dismutase and catalase, non-enzymatic oxidative capacity (TRAP), oxidative damage to proteins (carbonyls) and TBARS, were measured The concentrations of accumulated metals had the following order Fe > Cu > Cd > Zn > Cr > Mo > As; the highest concentrations of metals in water and tissues were found in Caleta Palito and Chañaral. Results suggest that the coastal waters with mining activity and greatest concentrations of copper and iron induced the greater antioxidant response and oxidative damage to lipids in E. peruviana. PMID:24829115

  9. Process for fabrication of metal oxide films

    SciTech Connect

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  10. Ionic Liquid Activation of Amorphous Metal-Oxide Semiconductors for Flexible Transparent Electronic Devices

    DOE PAGESBeta

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Ovchinnikova, Olga S.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2016-02-09

    To begin this abstract, amorphous metal-oxide semiconductors offer the high carrier mobilities and excellent large-area uniformity required for high performance, transparent, flexible electronic devices; however, a critical bottleneck to their widespread implementation is the need to activate these materials at high temperatures which are not compatible with flexible polymer substrates. The highly controllable activation of amorphous indium gallium zinc oxide semiconductor channels using ionic liquid gating at room temperature is reported. Activation is controlled by electric field-induced oxygen migration across the ionic liquid-semiconductor interface. In addition to activation of unannealed devices, it is shown that threshold voltages of a transistormore » can be linearly tuned between the enhancement and depletion modes. Finally, the first ever example of transparent flexible thin film metal oxide transistor on a polyamide substrate created using this simple technique is demonstrated. Finally, this study demonstrates the potential of field-induced activation as a promising alternative to traditional postdeposition thermal annealing which opens the door to wide scale implementation into flexible electronic applications.« less

  11. Bicarbonate-induced activation of H₂O₂ for metal-free oxidative desulfurization.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2016-03-01

    Efficient oxidative desulfurization (ODS) of model oil containing dibenzothiophene (DBT) and aromatic thiophenic derivatives has been achieved at room temperature using hydrogen peroxide activation by inorganic bicarbonate (HCO3(-)). Using in-situ formation of peroxymonocarbonate as oxidant, the transformation of main model substrate DBT to corresponding DBT-sulfone was easily accomplished in biphasic reaction conditions. In the presence of water-acetonitrile polar phase, increasing the water content upto 50% decreased the extraction capacity more than 3 times, but ∼ 90% DBT oxidation was still achieved. The oxidizing capacity of bicarbonate catalyst was maintained during repeated ODS cycles, but DBT removal efficiency was critically dependent on the extraction capacity of the polar phase. Under heterogeneous reaction conditions, bicarbonate-modified ion-exchange resin achieved similar ODS activity compared to the homogeneous catalytic system. Additionally, the efficient formation of peroxymonocarbonate using gaseous CO2 precursor in alkaline conditions was also utilized for DBT oxidation. The present study proposes the NaHCO3/H2O2 catalytic system as an efficient and cheap metal-free alternative for the oxidative removal of aromatic sulfur compounds from fuel oil. PMID:26561755

  12. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1985-08-16

    A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  13. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    PubMed

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-01

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  14. In vitro antiplasmodial activity of PDDS-coated metal oxide nanoparticles against Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2013-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people and the Plasmodium falciparum develops resistant to well-established antimalarial drugs. The newest antiplasmodial drug from metal oxide nanoparticles helps in addressing this problem. Commercial nanoparticles such as Fe3O4, MgO, ZrO2, Al2O3 and CeO2 coated with PDDS and all the coated and non-coated nanoparticles were screened for antiplasmodial activity against P. falciparum. The Al2O3 nanoparticles (71.42 ± 0.49 μg ml-1) showed minimum level of IC50 value and followed by MgO (72.33 ± 0.37 μg ml-1) and Fe3O4 nanoparticles (77.23 ± 0.42 μg ml-1). The PDDS-Fe3O4 showed minimum level of IC50 value (48.66 ± 0.45 μg ml-1), followed by PDDS-MgO (60.28 ± 0.42 μg ml-1) and PDDS-CeO2 (67.06 ± 0.61 μg ml-1). The PDDS-coated metal oxide nanoparticles showed superior antiplasmodial activity than the non-PDDS-coated metal oxide nanoparticles. Statistical analysis reveals that, significant in vitro antiplasmodial activity ( P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the nanoparticles after 48 h of incubation. It is concluded from the present study that, the PDDS-Fe3O4 showed good antiplasmodial activity and it might be used for the development of antiplasmodial drugs.

  15. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  16. Giant and switchable surface activity of liquid metal via surface oxidation

    PubMed Central

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial tension of a liquid alloy of gallium via electrochemical deposition (or removal) of the oxide layer on its surface. In sharp contrast with conventional surfactants, this method provides unprecedented lowering of surface tension (∼500 mJ/m2 to near zero) using very low voltage, and the change is completely reversible. This dramatic change in the interfacial tension enables a variety of electrohydrodynamic phenomena. The ability to manipulate the interfacial properties of the metal promises rich opportunities in shape-reconfigurable metallic components in electronic, electromagnetic, and microfluidic devices without the use of toxic mercury. This work suggests that the wetting properties of surface oxides—which are ubiquitous on most metals and semiconductors—are intrinsic “surfactants.” The inherent asymmetric nature of the surface coupled with the ability to actively manipulate its energetics is expected to have important applications in electrohydrodynamics, composites, and melt processing of oxide-forming materials. PMID:25228767

  17. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  18. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  19. Soluble porous coordination polymers by mechanochemistry: from metal-containing films/membranes to active catalysts for aerobic oxidation.

    PubMed

    Zhang, Pengfei; Li, Haiying; Veith, Gabriel M; Dai, Sheng

    2015-01-14

    Soluble porous coordination polymers from mechanochemical synthesis are presented through a coordination polymerization between highly contorted, rigid tetraphenol and a broad variety of transition metal ions. These polymers can be easily cast as metal-containing films or freestanding membranes. Importantly, as-made coordination polymers are highly active and stable in the aerobic oxidation of allylic C-H bonds. PMID:25389070

  20. Spin-Cast and Patterned Organophosphonate Self-Assembled Monolayer Dielectrics on Metal-Oxide-Activated Si

    SciTech Connect

    O Acton; D Hutchins; L Arnadottir; T Weidner; N Cernetic; G Ting; T Kim; D Castner; H Ma; A Jen

    2011-12-31

    An efficient process is developed for modifying Si with self-assembled monolayers (SAMs) through in situ metal oxide surface activation and microcontact printing or spin-coating of phosphonic-acid-based molecules. The utility of this process is demonstrated by fabricating self-organized and solution-processed low-voltage organic thin-film transistors enabled by patterned and spin-cast phosphonate SAM/metal oxide hybrid dielectrics.

  1. Mechanistic Variants in Gas-Phase Metal-Oxide Mediated Activation of Methane at Ambient Conditions.

    PubMed

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut

    2016-09-01

    The C-H bond activation of methane mediated by a prototypical heteronuclear metal-oxide cluster, [Al2Mg2O5](•+), was investigated by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in conjunction with high-level quantum mechanical calculations. Experimentally, hydrogen-atom abstraction from methane by the cluster ion [Al2Mg2O5](•+) takes place at ambient conditions. As to the mechanism, according to our computational findings, both the proton-coupled electron transfer (PCET) and the conventional hydrogen-atom transfer (HAT) are feasible and compete with each other. This is in distinct contrast to the [XYO2](+) (X, Y = Mg, Al, Si) cluster oxide ions which activate methane exclusively via the PCET route (Li, J.; Zhou, S.; Zhang, J.; Schlangen, M.; Weiske, T.; Usharani, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 7973-7981). The electronic origins of the mechanistically rather complex reactivity scenarios of the [Al2Mg2O5](•+)/CH4 couple were elucidated. For the PCET mechanism, in which the Lewis acid-base pair [Al(+)-O(-)] of the cluster acts as the active site, a clear correlation has been established between the nature of the transition state, the corresponding barrier height, the Lewis acidity-basicity of the [M(+)-O(-)] unit, as well as the bond order of the M(+)-O(-) bond. Also addressed is the role of the spin and charge distributions of a terminal oxygen radical site in the direct HAT route. The knowledge of the factors that control the reactivity of PCET and HAT pathways not only deepens our mechanistic understanding of metal-oxide mediated C-H bond activation but may also provide guidance for the rational design of catalysts. PMID:27518766

  2. Redox activity and chemical interactions of metal oxide nano- and micro-particles with dithiothreitol (DTT).

    PubMed

    Nicolas, Johny; Jaafar, Malek; Sepetdjian, Elizabeth; Saad, Walid; Sioutas, Constantinos; Shihadeh, Alan; Saliba, Najat A

    2015-11-01

    The wide application and production of nanotechnology have increased the interest in studying the toxicity of nano- and micro-sized particles escaping into air from various aspects of the production process. Metal oxides (MOs) are one particular class of particles that exist abundantly in ambient PM. Studies show an emphasis on biological mechanisms by which inhalation exposure to MOs leads to disease. However, different biological assays provide different redox activity rankings making it difficult to assess the contributions of various MOs to measures of aggregate toxicity in multi-pollutant systems such as ambient PM. Therefore, research to evaluate the chemical interaction between these particles and molecules that are relevant to cellular redox activity can help in establishing indicators of reactivity. In particular, this study assesses the redox activity of six MOs mainly emitted from anthropogenic industrial activities using the dithiothreitol (DTT) assay. DTT is commonly used in acellular assays due to its analogous structure to cellular glutathione. The structural and chemical behaviors between active MOs and DTT were elucidated using FTIR, NMR, and BET methods. The results indicate that the health risk (redox activity) associated with MOs is mainly a function of their surface reactivity demonstrated by the ability of the oxidized (S-H) bond in DTT to form a stable bond with the MO surface. PMID:26406549

  3. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes

    SciTech Connect

    Sheng, WC; Bivens, AP; Myint, M; Zhuang, ZB; Forest, RV; Fang, QR; Chen, JG; Yan, YS

    2014-05-01

    A ternary metallic CoNiMo catalyst is electrochemically deposited on a polycrystalline gold (Au) disk electrode using pulse voltammetry, and characterized for hydrogen oxidation reaction (HOR) activity by temperature-controlled rotating disk electrode measurements in 0.1 M potassium hydroxide (KOH). The catalyst exhibits the highest HOR activity among all non-precious metal catalysts (e.g., 20 fold higher than Ni). At a sufficient loading, the CoNiMo catalyst is expected to outperform Pt and thus provides a promising low cost pathway for alkaline or alkaline membrane fuel cells. Density functional theory (DFT) calculations and parallel H-2-temperature programmed desorption (TPD) experiments on structurally much simpler model alloy systems show a trend that CoNiMo has a hydrogen binding energy (HBE) similar to Pt and much lower than Ni, suggesting that the formation of multi-metallic bonds modifies the HBE of Ni and is likely a significant contributing factor for the enhanced HOR activity.

  4. Effects of Metal Oxides on a Fungal Laccase Activity and Catechol Transformation

    NASA Astrophysics Data System (ADS)

    Ahn, M.; Dec, J.; Bollag, J.

    2003-12-01

    The transformation of naturally occurring phenols to humic polymers is generally catalyzed by various phenoloxidases commonly present in soil. Some poorly crystalline metal oxides and hydroxides may also participate in these reactions. In this study, catechol (0.1 M) was incubated with a fungal laccase (950 unit/mL) in the presence of poorly crystalline minerals (ferrihydrite; 50 mg/mL: birnessite; 1 mg/mL: aluminum hydroxide; 50 mg/mL) to examine the interaction between these soil components under field conditions. Birnessite had an inhibitory effect on the laccase-mediated transformation of catechol (by up to 40%). Enzyme inhibition was possibly caused by the rapid production of humic-like polymers by birnessite. An additional inhibitory effect was caused by Manganese ion released from birnessite as it oxidized catechol (up to 70% loss in enzyme activity). In contrast to birnessite, aluminum hydroxide had an additive effect on the disappearance of catechol despite the rapid adsorption of the enzyme by this mineral (Xm=6.18μ g/mg). Apparently, the adsorbed laccase retained some enzyme activity. Ferrihydrite also had an additive effect on catechol transformation. However, as compared to aluminum hydroxide, ferrihydrite adsorbed less laccase (Xm=0.89μ g/mg) and more humic-like polymers. Unlike birnessite, aluminum hydroxide and ferrihydrite released negligible amounts of metal ions. In conclusion, under field conditions, phenoloxidase activity may be diminished by the presence of birnessite, but the presence of either ferrihydrite or aluminum hydroxide is less likely to inhibit enzyme activity, and may even enhance substrate transformation.

  5. Structure-composition-activity relationships in transition-metal oxide and oxyhydroxide oxygen-evolution electrocatalysts

    NASA Astrophysics Data System (ADS)

    Trotochaud, Lena

    Solar water-splitting is a potentially transformative renewable energy technology. Slow kinetics of the oxygen evolution reaction (OER) limit the efficiency of solar-watersplitting devices, thus constituting a hurdle to widespread implementation of this technology. Catalysts must be stable under highly oxidizing conditions in aqueous electrolyte and minimally absorb light. A grand goal of OER catalysis research is the design of new materials with higher efficiencies enabled by comprehensive understanding of the fundamental chemistry behind catalyst activity. However, little progress has been made towards this goal to date. This dissertation details work addressing major challenges in the field of OER catalysis. Chapter I introduces the current state-of-the-art and challenges in the field. Chapter II highlights work using ultra-thin films as a platform for fundamental study and comparison of catalyst activity. Key results of this work are (1) the identification of a Ni0.9Fe0.1OOH catalyst displaying the highest OER activity in base to date and (2) that in base, many transition-metal oxides transform to layered oxyhydroxide materials which are the active catalysts. The latter result is critical in the context of understanding structure-activity relationships in OER catalysts. Chapter III explores the optical properties of these catalysts, using in situ spectroelectrochemistry to quantify their optical absorption. A new figure-of-merit for catalyst performance is developed which considers both optical and kinetic losses due to the catalyst and describes how these factors together affect the efficiency of composite semiconductor/catalyst photoanodes. In Chapter IV, the fundamental structure-composition-activity relationships in Ni1--xFexOOH catalysts are systematically investigated. This work shows that nearly all previous studies of Ni-based catalysts were likely affected by the presence of Fe impurities, a realization which holds significant weight for future study

  6. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  7. Monolithic metal oxide transistors.

    PubMed

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics. PMID:25777338

  8. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates.

    PubMed

    Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R

    2014-06-01

    Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate. PMID:24619858

  9. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  10. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  11. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  12. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  13. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  14. Fundamentals of metal oxide catalysis

    NASA Astrophysics Data System (ADS)

    Nair, Hari

    The properties of metal oxide catalysts and hence, catalytic activity are highly dependent on the composition and structure of these oxides. This dissertation has 3 parts -- all directed towards understanding relationships between structure, composition and activity in metal oxide catalysts. The first part of this dissertation focuses on supported metal oxide catalysts of tungsten, vanadium and molybdenum. Mechanisms are proposed for ethanol oxidative dehydrogenation which is used to probe the acidity and reducibility of these oxide catalysts. These studies are then used to develop a novel method to quantify active redox sites and determine the nature of the active site on these catalysts -- our results show that the intrinsic redox turn-over frequency is independent of the nature of the metal oxide and its loading and that the actual rate obtained over an oxide is only a function of the number of removable oxygen atoms linking the metal to the support. The extension of Ultraviolet-visible Diffuse Reflectance Spectroscopy (UV-vis DRS) to the study of active oxide domains in binary oxide catalysts is demonstrated for distinguishing between interacting and non-interacting domains in binary MoO x-WOx catalysts on alumina. We show also how the rigorous analysis of pre-edge features, absorption white-line intensity and the full width at half maximum of the white-line in X-ray Absorption Spectra provide determinants for metal atom coordination and domain size in supported metal oxide catalysts. The second part of this work looks at effects of structure variations on the activity of polyoxometalate catalysts that are promising for the production of Methacrylic Acid from Isobutane. The use of these catalysts is limited by structural changes that impact their performance -- an "activation" period is required before the catalysts become active for methacrylic acid production and structural changes also lead to degradation of the catalyst, which are also seen during thermal

  15. Identifying the role of N-heteroatom location in the activity of metal catalysts for alcohol oxidation

    DOE PAGESBeta

    Chan-Thaw, Carine E.; Veith, Gabriel M.; Villa, Alberto; Prati, Laura

    2015-04-02

    Here, this work focuses on understanding how the bonding of nitrogen heteroatoms contained on/in a activated carbon support influence the stability and reactivity of a supported Pd catalyst for the oxidation of alcohols in solution. The results show that simply adding N groups via solution chemistry is insufficient to improve catalytic properties. Instead a strongly bound N moiety is required to activate the catalyst and stabilize the metal particles.

  16. Identifying the Role of N-Heteroatom Location in the Activity of Metal Catalysts for Alcohol Oxidation

    SciTech Connect

    Chan-Thaw, Carine E.; Veith, Gabriel M; Villa, Alberto; Prati, Laura

    2015-01-01

    This work focuses on understanding how the bonding of nitrogen heteroatoms contained on/in a activated carbon support influence the stability and reactivity of a supported Pd catalyst for the oxidation of alcohols in solution. The results show that simply adding N groups via solution chemistry is insufficient to improve catalytic properties. Instead a strongly bound N moiety is required to activate the catalyst and stabilize the metal particles.

  17. Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials.

    PubMed

    Fronzi, Marco; Iwaszuk, Anna; Lucid, Aoife; Nolan, Michael

    2016-02-24

    In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction. PMID:26808905

  18. Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials

    NASA Astrophysics Data System (ADS)

    Fronzi, Marco; Iwaszuk, Anna; Lucid, Aoife; Nolan, Michael

    2016-02-01

    In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction.

  19. High surface area, electrically conductive nanocarbon-supported metal oxide

    SciTech Connect

    Worsley, Marcus A.; Han, Thomas Yong-Jin; Kuntz, Joshua D.; Cervantes, Octavio; Gash, Alexander E.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2015-07-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  20. High surface area, electrically conductive nanocarbon-supported metal oxide

    SciTech Connect

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  1. Temperature dependence of dc electrical conductivity of activated carbon-metal oxide nanocomposites. Some insight into conduction mechanisms

    NASA Astrophysics Data System (ADS)

    Barroso-Bogeat, Adrián; Alexandre-Franco, María; Fernández-González, Carmen; Sánchez-González, José; Gómez-Serrano, Vicente

    2015-12-01

    From a commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites are prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in inert atmosphere. The temperature-dependent dc electrical conductivity of AC and the as-prepared nanocomposites is measured from room temperature up to ca. 200 °C in air atmosphere by the four-probe method. The decrease in conductivity for the hybrid materials as compared to AC is the result of a complex interplay between several factors, including not only the intrinsic conductivity, crystallite size, content and chemical nature of the supported nanoparticles, which ultimately depend on the precursor and heat treatment temperature, but also the adsorption of oxygen and water from the surrounding atmosphere. The conductivity data are discussed in terms of a thermally activated process. In this regard, both AC and the prepared nanocomposites behave as semiconductors, and the temperature-dependent conductivity data have been interpreted on the basis of the classical model proposed by Mott and Davis. Because of its high content of heteroatoms, AC may be considered as a heavily doped semiconductor, so that conduction of thermally excited carriers via acceptor or donor levels is expected to be the dominant mechanism. The activation energies for the hybrid materials suggest that the supported metal oxide nanoparticles strongly modify the electronic band structure of AC by introducing new trap levels in different positions along its band gap. Furthermore, the thermally activated conduction process satisfies the Meyer-Neldel rule, which is likely connected with the shift of the Fermi level due to the introduction of the different metal oxide nanoparticles in the AC matrix.

  2. Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology.

    PubMed

    Graz, Marcin; Jarosz-Wilkołazka, Anna; Pawlikowska-Pawlega, Bozena

    2009-06-01

    The ability of Abortiporus biennis to tolerate and solubilize toxic metal oxides (Cu(2)O, Al(2)O(3), ZnO, CuFe(2)O(4)Zn, CdO, and MnO(2)) incorporated into agar media was investigated and the growth rate, oxalic acid secretion, and mycelial morphology were monitored. Among the tested metal oxides, formation of clear zones underneath the mycelium growing on Cu(2)O- and ZnO-amended plates was observed. ZnO, CdO and Cu(2)O caused the highest rate of fungal growth inhibition. An increased level of oxalic acid concentration was detected as a response of A. biennis to the presence of Cu(2)O, MnO(2), ZnO and CuFe(2)O(4)Zn in growth medium. The oxalate oxidase (OXO) was found to be responsible for oxalic acid degradation in A. biennis cultivated in metal-amended media. An increased level of OXO was observed in media amended with Cu(2)O, ZnO and MnO(2). Confocal microscopy used in this study revealed changes in mycelial morphology which appeared as increased hyphal branching, increased septation and increased spore number. PMID:18985279

  3. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    SciTech Connect

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; Adzic, Radoslav R.

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs). Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.

  4. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGESBeta

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; Bobb-Semple, Dara; Tao, Jing; Tong, Xiao; Wang, Lei; Lewis, Crystal S.; Vuklmirovic, Miomir; Zhu, Yimei; et al

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO3 composite catalyst material.« less

  5. Novel Photocatalytic Metal Oxides

    SciTech Connect

    Smith, Robert W.; Mei, Wai-Ning; Sabirianov, Renat; Wang, Lu

    2012-08-31

    The principal short-term objective is to develop improved solid-state photocatalysts for the decomposition of water into hydrogen gas using ultraviolet and visible solar radiation. We will pursue our objective by modeling candidate metal oxides through computer simulations followed by synthesis of promising candidates. We will characterize samples through standard experimental techniques. The long-term objective is to provide a more efficient source of hydrogen gas for fixed-site hydrogen fuel cells, particularly for energy users in remote locations.

  6. Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile.

    PubMed

    Gaete Olivares, Hernán; Moyano Lagos, Natalia; Jara Gutierrez, Carlos; Carrasco Kittelsen, Romina; Lobos Valenzuela, Gabriela; Hidalgo Lillo, María Eliana

    2016-01-01

    The aim of this study was to evaluate the effect on seaweeds Scytosiphon lomentaria and Ulva rigida of coastal waters of sites with mining activity, using oxidative stress biomarkers and heavy metal determination both in water and in tissue. The greatest bioaccumulation factors in S. lomentaria and U. rigida were founded for iron and arsenic in Quintay. Bioaccumulation factor in S. lomentaria in descending order was Fe> Cu> Zn> Cd> Cr> As> Mo and in U. rigida, in descending order, was Fe> Cu> Cd> Zn> Cr> Mo> As. Both species had higher antioxidant activity levels in areas with high mining activities. The concentration of metals in waters such as copper and arsenic in S. lomentaria, and iron, arsenic, and cadmium in U. rigida were related with oxidative stress biomarkers measured in both species. The use of both species is proposed to monitor the bioavailability and oxidative damage in coastal areas with mining activity. This work will generate a significant knowledge about the impact of mining wastes on macroalgal community in the area of north-central Chile. PMID:26661961

  7. Abundance, Composition and Activity of Ammonia Oxidizer and Denitrifier Communities in Metal Polluted Rice Paddies from South China

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang

    2014-01-01

    While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg−1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils. PMID:25058658

  8. Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction.

    PubMed

    Chen, Pengzuo; Xu, Kun; Fang, Zhiwei; Tong, Yun; Wu, Junchi; Lu, Xiuli; Peng, Xu; Ding, Hui; Wu, Changzheng; Xie, Yi

    2015-12-01

    Designing highly efficient electrocatalysts for oxygen evolution reaction (OER) plays a key role in the development of various renewable energy storage and conversion devices. In this work, we developed metallic Co4N porous nanowire arrays directly grown on flexible substrates as highly active OER electrocatalysts for the first time. Benefiting from the collaborative advantages of metallic character, 1D porous nanowire arrays, and unique 3D electrode configuration, surface oxidation activated Co4N porous nanowire arrays/carbon cloth achieved an extremely small overpotential of 257 mV at a current density of 10 mA cm(-2), and a low Tafel slope of 44 mV dec(-1) in an alkaline medium, which is the best OER performance among reported Co-based electrocatalysts to date. Moreover, in-depth mechanistic investigations demonstrate the active phases are the metallic Co4N core inside with a thin cobalt oxides/hydroxides shell during the OER process. Our finding introduces a new concept to explore the design of high-efficiency OER electrocatalysts. PMID:26437900

  9. The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides.

    PubMed

    Yao, Koffi P C; Lu, Yi-Chun; Amanchukwu, Chibueze V; Kwabi, David G; Risch, Marcel; Zhou, Jigang; Grimaud, Alexis; Hammond, Paula T; Bardé, Fanny; Shao-Horn, Yang

    2014-02-14

    Reducing the energy loss associated with Li2O2 electrochemical oxidation is paramount to the development of efficient rechargeable lithium-oxygen (Li-O2) batteries for practical use. The influence of a series of perovskites with different eg filling on the kinetics of Li2O2 oxidation was examined using Li2O2-prefilled electrodes. While LaCrO3 is inactive for oxygen evolution upon water oxidation in alkaline solution, it was found to provide the highest specific current towards Li2O2 oxidation among all the perovskites examined. Further exploration of Cr-based catalysts showed that Cr nanoparticles (Cr NP) with an average particle size of 40 nm, having oxidized surfaces, had comparable surface area activities to LaCrO3 but much greater mass activities. Unlike Pt/C and Ru/C that promote electrolyte oxidation in addition to Li2O2 oxidation, no evidence of enhanced electrolyte oxidation was found for Cr NP relative to Vulcan carbon. X-ray absorption spectroscopy at the O K and Cr L edge revealed a redox process of Cr(3+) ↔ Cr(6+) on the surface of Cr NP upon Li2O2 oxidation, which might be responsible for the enhanced oxidation kinetics of Li2O2 and the reduced charging voltages of Li-O2 batteries. PMID:24352578

  10. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  11. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    SciTech Connect

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  12. Application of activated carbon impregnated with metal oxides to the treatment of multi-contaminants.

    PubMed

    Yu, Mok-Ryun; Chang, Yoon-Young; Yang, Jae-Kyu

    2012-01-01

    In this study, as a novel technique for the simultaneous treatment of As(III) and phenol in a single column reactor, different ratios of manganese-impregnated activated carbon (Mn-AC) and iron-impregnated activated carbon (Fe-AC) were applied in a bench-scale column reactor. In this bench-scale test, the column system packed with both Mn-AC and Fe-AC (binary system) was identified as the best system due to the good oxidation efficiency of As(III) to As(V) by Mn-AC, which reasonably controlled the mobility of total arsenic through adsorption of As(V), along with efficient removal of phenol . When the pilot-scale column reactor, packed with equal amounts of Mn-AC and Fe-AC, was applied for the removal of As(III) and phenol, the oxidation of As(III) by 1 g of Mn-AC for up to 110 days and the removal of phenol by total 1 g of Mn-AC and Fe-AC for up to 100 days were 1.81 x 10(-4) g and 8.20 x 10(-4) g, respectively. Based on this work, Fe-AC and Mn-AC can be regarded as a promising filter material in the treatment of wastewater contaminated with organic compounds, such as phenol, and redox-sensitive ions, such as As(III). PMID:22988615

  13. Enhancing the Anti-Enterococci Activity of Different Antibiotics by Combining With Metal Oxide Nanoparticles

    PubMed Central

    Iram, Saira; Akbar Khan, Jawad; Aman, Nargis; Nadhman, Akhtar; Zulfiqar, Zikra; Arfat Yameen, Muhammad

    2016-01-01

    Background Enterococci have emerged as more virulent and multidrug-resistant in community and hospital settings. The emergence of vancomycin resistant enterococci (VRE) in hospitals has posed a serious threat to public health. The widespread use of antibiotics to treat VRE infections has resulted in the development of resistant forms of these organisms. Objectives Present study deals with the efficacy of antibiotic-nanoparticle combination against clinical isolates of VRE. This study has effectively evaluated the anti-enterococcal activity of metallic nanoparticles and their combination with antibiotics with the aim to search for new biocidal combinations. Materials and Methods Initially, the isolates were identified by various biochemical tests and also by PCR, targeting ddl, vanA and vanB genes. Antibiotic susceptibility testing was carried out by disc diffusion method. Minimum inhibitory concentration (MIC) of both antibiotics and metal nanoparticles against VRE was done using broth dilution method. On the basis of MICs, a combination of both antibiotics and nanoparticles was used by physical mixing of antibiotics and different concentrations of nanoparticles. Results The MIC of metal nanoparticles were found in the range of 0.31 - 30 mM. The combination of both antibiotics and nanoparticles has effectively reduced the MICs of ciprofloxacin from 16 - 256 μg/mL to 2 - 16 μg/mL, erythromycin 1024 - 2048 μg/mL to 128 - 512 μg/mL, methicillin 32 - 256 μg/mL to 8 - 64 μg/mL and vancomycin 2 - 512 μg/mL to 0.5 - 64 μg/mL. Conclusions Among the nanoparticles, ZnO was found as a potent metallic nanoparticle which effectively reduced the MIC upon combination with the antibiotics. The combination exhibited enhanced bactericidal activity against multidrug resistant clinical strains of VRE with dose dependency. Further extensive study on this aspect can prove their beneficial clinical use against resistant pathogens to combat increasing resistance to antibiotics

  14. Au/metal oxides for low temperature CO oxidation

    SciTech Connect

    Srinivas, G.; Wright, J.; Bai, C.S.; Cook, R.

    1996-12-31

    Oxidation of carbon monoxide is important for several operations including fuel cells and carbon dioxide lasers. Room temperature CO oxidation has been investigated on a series of Au/metal oxide catalysts at conditions typical of spacecraft atmospheres; CO = 50 ppm, CO{sub 2} = 7,000 ppm, H{sub 2}O = 40% (RH) at 25{degrees}C, balance = air, and gas hourly space velocities of 7,000-60,000 hr{sup -1}. The addition of Au increases the room temperature CO oxidation activity of the metal oxides dramatically. All the Au/metal oxides deactivate during the CO oxidation reaction, especially in the presence of CO{sub 2} in the feed. The stability of the Au/metal oxide catalysts decreases in the following order: TiO{sub 2} > Fe{sub 2}O{sub 3} > NiO > Co{sub 3}O{sub 4}. The stability appears to decrease with an increase in the basicity of the metal oxides. In situ FTIR of CO adsorption on Au/TiO{sub 2} at 25{degrees}C indicates the formation of adsorbed CO, carboxylate, and carbonate species on the catalyst surface.

  15. Active oxide nanophotonics

    NASA Astrophysics Data System (ADS)

    Dicken, Matthew J.

    Materials that can be manipulated electrically or mechanically to induce a change in their intrinsic properties are highly relevant when suitably integrated with current technologies. These "active" materials, such as oxide-based ferroelectrics or materials with easily accessible changes of phase, find extensive use as mechanical resonators, solid-state memories, and optical modulators. Barium titanate, a tetragonal ferroelectric at room temperature, is a prime example of a material both mechanically and optically active. This thesis deals primarily with the deposition of active, oxide-based materials and their integration into device structures where either the mechanical or optical properties are exploited. The technologically interesting paradigms within which these active oxide materials have been investigated are microelectromechanical systems, plasmonics, and metamaterials. Microelectromechanical systems are devices that have been micromachined and rely on an applied voltage to induce a mechanical response. Mechanically active materials, such as piezoelectrics or ferroelectrics, can increase the response of these devices. Plasmonics deals with electromagnetic waves resonantly coupled into free electron oscillations at a metal-dielectric interface or metal nanoparticle. Coupling to these resonant modes allows surface plasmon polaritons to propagate along the metal with a nonlinear dispersion. Metamaterials are ordered, subwavelength, metal inclusions in a dielectric, which respond collectively to electromagnetic radiation. This response can yield a material permittivity or permeability not found in nature. The optical properties of metamaterials lead to effects such as negative index response and super lensing, and can be used to design optical cloaking structures. Here, devices utilizing these effects are investigated with an eye toward tuning or switching their resonant response using optically active oxide thin films. This manuscript follows the evolution

  16. A lead-porphyrin metal-organic framework: gas adsorption properties and electrocatalytic activity for water oxidation.

    PubMed

    Dai, Fangna; Fan, Weidong; Bi, Jiahui; Jiang, Peng; Liu, Dandan; Zhang, Xirui; Lin, Huan; Gong, Chuanfang; Wang, Rongming; Zhang, Liangliang; Sun, Daofeng

    2016-01-01

    A 3D non-interpenetrating porous metal-organic framework [Pb2(H2TCPP)]·4DMF·H2O (Pb-TCPP) (H6TCPP = 5,10,15,20-tetra(carboxyphenyl)porphyrin) was synthesized by employment of a robust porphyrin ligand. Pb-TCPP exhibits a one-dimensional channel possessing fairly good capability of gas sorption for N2, H2, Ar, and CO2 gases, and also features selectivity for CO2 over CH4 at 298 K. Furthermore, Pb-TCPP shows electrocatalytic activity for water oxidation in alkaline solution. It is the first 3D porous Pb-MOF that exhibits both gas adsorption properties and electrocatalytic activity for an oxygen evolution reaction (OER). PMID:26606194

  17. METAL OXIDE NANOPARTICLES

    SciTech Connect

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  18. Integrated process using non-stoichiometric sulfides or oxides of potassium for making less active metals and hydrocarbons

    SciTech Connect

    Swanson, R.

    1984-04-10

    Disclosed is a combinative integrated chemical process using inorganic reactants and yielding, if desired, organic products. The process involves first the production of elemental potassium by the thermal or thermal-reduced pressure decomposition of potassium oxide or potassium sulfide and distillation of the potassium. This elemental potassium is then used to reduce ores or ore concentrates of copper, zinc, lead, magnesium, cadmium, iron, arsenic, antimony or silver to yield one or more of these less active metals in elemental form. Process potassium can also be used to produce hydrogen by reaction with water or potassium hydroxide. This hydrogen is reacted with potassium to produce potassium hydride. Heating the latter with carbon produces potassium acetylide which forms acetylene when treated with water. Acetylene is hydrogenated to ethene or ethane with process hydrogen. Using Wurtz-Fittig reaction conditions, the ethane can be upgraded to a mixture of hydrocarbons boiling in the fuel range.

  19. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  20. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  1. SINTERING METAL OXIDES

    DOEpatents

    Roake, W.E.

    1960-09-13

    A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.

  2. Carbon dioxide activation and reaction induced by electron transfer at an oxide-metal interface.

    PubMed

    Calaza, Florencia; Stiehler, Christian; Fujimori, Yuichi; Sterrer, Martin; Beeg, Sebastian; Ruiz-Oses, Miguel; Nilius, Niklas; Heyde, Markus; Parviainen, Teemu; Honkala, Karoliina; Häkkinen, Hannu; Freund, Hans-Joachim

    2015-10-12

    A model system has been created to shuttle electrons through a metal-insulator-metal (MIM) structure to induce the formation of a CO2 anion radical from adsorbed gas-phase carbon dioxide that subsequently reacts to form an oxalate species. The process is completely reversible, and thus allows the elementary steps involved to be studied at the atomic level. The oxalate species at the MIM interface have been identified locally by scanning tunneling microscopy, chemically by IR spectroscopy, and their formation verified by density functional calculations. PMID:26012347

  3. Catalytic activities of noble metal atoms on WO3 (001): nitric oxide adsorption.

    PubMed

    Ren, Xiaoyan; Zhang, Shuai; Li, Chong; Li, Shunfang; Jia, Yu; Cho, Jun-Hyung

    2015-01-01

    Using first-principles density functional theory calculations within the generalized gradient approximation, we investigate the adsorption of NO molecule on a clean WO3(001) surface as well as on the noble metal atom (Cu, Ag, and Au)-deposited WO3(001) surfaces. We find that on a clean WO3 (001) surface, the NO molecule binds to the W atom with an adsorption energy (E ads) of -0.48 eV. On the Cu- and Ag-deposited WO3(001) surface where such noble metal atoms prefer to adsorb on the hollow site, the NO molecule also binds to the W atom with E ads = -1.69 and -1.41 eV, respectively. This relatively stronger bonding of NO to the W atom is found to be associated with the larger charge transfer of 0.43 e (Cu) and 0.33 e (Ag) from the surface to adsorbed NO. However, unlike the cases of Cu-WO3(001) and Ag-WO3(001), Au atoms prefer to adsorb on the top of W atom. On such an Au-WO3(001) complex, the NO molecule is found to form a bond to the Au atom with E ads = -1.32 eV. Because of a large electronegativity of Au atom, the adsorbed NO molecule captures the less electrons (0.04 e) from the surface compared to the Cu and Ag catalysts. Our findings not only provide useful information about the NO adsorption on a clean WO3(001) surface as well as on the noble metal atoms deposited WO3(001) surfaces but also shed light on a higher sensitive WO3 sensor for NO detection employing noble metal catalysts. PMID:25852357

  4. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  5. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.

    PubMed

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela C; Calle-Vallejo, Federico; Nørskov, Jens K; Jaramillo, Thomas F; Rossmeisl, Jan

    2012-10-28

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn(2)O(3) and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V and 1.0 V, a potential region between the ORR and the OER relevant conditions. Next, we perform density function theory (DFT) calculations to understand the changes in the MnO(x) surface as a function of potential and to elucidate reaction mechanisms that lead to high activities observed in the experiments. Using DFT, we construct surface Pourbaix and free energy diagrams of three different MnO(x) surfaces and identify 1/2 ML HO* covered Mn(2)O(3) and O* covered MnO(2), as the active surfaces for the ORR and the OER, respectively. Additionally, we find that the ORR occurs through an associative mechanism and that its overpotential is highly dependent on the stabilization of intermediates through hydrogen bonds with water molecules. We also determine that OER occurs through direct recombination mechanism and that its major source of overpotential is the scaling relationship between HOO* and HO* surface intermediates. Using a previously developed Sabatier model we show that the theoretical predictions of catalytic activities match the experimentally determined onset potentials for the ORR and the OER, both qualitatively and quantitatively. Consequently, the combination of first-principles theoretical analysis and experimental methods offers an understanding of manganese oxide oxygen electrocatalysis at the atomic level, achieving fundamental insight that can potentially be

  6. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  7. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  8. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOEpatents

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

    2004-07-13

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  9. Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same

    DOEpatents

    Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

    2006-04-04

    Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

  10. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.

    PubMed

    Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge; Reier, Tobias; Dresp, Sören; Paul, Benjamin; Krähnert, Ralph; Dau, Holger; Strasser, Peter

    2016-05-01

    Mixed Ni-Fe oxides are attractive anode catalysts for efficient water splitting in solar fuels reactors. Because of conflicting past reports, the catalytically active metal redox state of the catalyst has remained under debate. Here, we report an in operando quantitative deconvolution of the charge injected into the nanostructured Ni-Fe oxyhydroxide OER catalysts or into reaction product molecules. To achieve this, we explore the oxygen evolution reaction dynamics and the individual faradaic charge efficiencies using operando differential electrochemical mass spectrometry (DEMS). We further use X-ray absorption spectroscopy (XAS) under OER conditions at the Ni and Fe K-edges of the electrocatalysts to evaluate oxidation states and local atomic structure motifs. DEMS and XAS data consistently reveal that up to 75% of the Ni centers increase their oxidation state from +2 to +3, while up to 25% arrive in the +4 state for the NiOOH catalyst under OER catalysis. The Fe centers consistently remain in the +3 state, regardless of potential and composition. For mixed Ni100-xFex catalysts, where x exceeds 9 atomic %, the faradaic efficiency of O2 sharply increases from ∼30% to 90%, suggesting that Ni atoms largely remain in the oxidation state +2 under catalytic conditions. To reconcile the apparent low level of oxidized Ni in mixed Ni-Fe catalysts, we hypothesize that a kinetic competition between the (i) metal oxidation process and the (ii) metal reduction step during O2 release may account for an insignificant accumulation of detectable high-valent metal states if the reaction rate of process (ii) outweighs that of (i). We conclude that a discussion of the superior catalytic OER activity of Ni-FeOOH electrocatalysts in terms of surface catalysis and redox-inactive metal sites likely represents an oversimplification that fails to capture essential aspects of the synergisms at highly active Ni-Fe sites. PMID:27031737

  11. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  12. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  13. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  14. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  15. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    SciTech Connect

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Sadeghi, Seyed M.; Mao, Chuanbin

    2014-09-21

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  16. Activation of Methane and Carbon Dioxide Mediated by Transition-Metal Doped Magnesium Oxide Clusters [MMgO](+/0/-) (M=Sc-Zn).

    PubMed

    Li, Jilai; González-Navarrete, Patricio; Schlangen, Maria; Schwarz, Helmut

    2015-05-18

    Mission: impossible? DFT calculations show that the trends in the thermochemistry are very different for the activation of CO2 and CH4 mediated by transition-metal doped magnesium oxide clusters [MMgO](+/0/-) (M=Sc-Zn). Thus, seeking a "simple" reagent to simultaneously mediate activation and coupling of CH4 and CO2 with high efficiency seems extremely daunting, if not impossible. PMID:25867011

  17. Selective solid-phase extraction using oxidized activated carbon modified with triethylenetetramine for preconcentration of metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Chang, Xijun; Li, Zhenhua; He, Qun

    2010-02-01

    A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH 4, quantitative extraction of trace Cr(III), Fe(III) and Pb(II) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 0.5 mol L -1 HCl. The maximum static adsorption capacity of sorbent for Cr(III), Fe(III) and Pb(II) was 34.6, 36.5 and 51.9 mg g -1, respectively. The time of quantitative adsorption was less than 2 min. The detection limits of the method was found to be 0.71, 0.35 and 0.45 ng mL -1 for Cr(III), Fe(III) and Pb(II), and the relative standard deviation (RSD) was 3.7%, 2.2% and 2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(III), Fe(III) and Pb(II) in synthetic samples and a real sample with satisfactory results.

  18. Active Metal-Insulator-Metal Plasmonic Devices

    NASA Astrophysics Data System (ADS)

    Diest, Kenneth Alexander

    As the field of photonics constantly strives for ever smaller devices, the diffraction limit of light emerges as a fundamental limitation in this pursuit. A growing number of applications for optical "systems on a chip" have inspired new ways of circumventing this issue. One such solution to this problem is active plasmonics. Active plasmonics is an emerging field that enables light compression into nano-structures based on plasmon resonances at a metal-dielectric interface and active modulation of these plasmons with an applied external field. One area of active plasmonics has focused on replacing the dielectric layer in these waveguides with an electro-optic material and designing the resulting structures in such a way that the transmitted light can be modulated. These structures can be utilized to design a wide range of devices including optical logic gates, modulators, and filters. This thesis focuses on replacing the dielectric layer within a metal-insulator-metal plasmonic waveguide with a range of electrically active materials. By applying an electric field between the metal layers, we take advantage of the electro-optic effect in lithium niobate, and modulating the carrier density distribution across the structure in n-type silicon and indium tin oxide. The first part of this thesis looks at fabricating metal-insulator-metal waveguides with ion-implantation induced layer transferred lithium niobate. The process is analyzed from a thermodynamic standpoint and the ion-implantation conditions required for layer transfer are determined. The possible failure mechanisms that can occur during this process are analyzed from a thin-film mechanics standpoint, and a metal-bonding method to improve successful layer transfer is proposed and analyzed. Finally, these devices are shown to naturally filter white light into individual colors based on the interference of the different optical modes within the dielectric layer. Full-field electromagnetic simulations show that

  19. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  20. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  1. Oxidative decomposition of formaldehyde by metal oxides at room temperature

    NASA Astrophysics Data System (ADS)

    Sekine, Yoshika

    Formaldehyde (HCHO) is still a major indoor air pollutant in Japanese air-tight houses and is the subject of numerous complaints regarding health disorders. Authors have developed a passive-type air-cleaning material and an air cleaner using manganese oxide (77% MnO 2) as an active component and successfully reduced indoor HCHO concentrations in newly built multi-family houses. In this study, the reactivity between manganese oxide and HCHO was discussed. We tested the removal efficiencies of several metal oxides for HCHO in a static reaction vessel and found manganese oxide could react with HCHO and release carbon dioxide even at room temperature. The reactivity and mechanisms were discussed for the proposed chemical reactions. A mass balance study proved that a major product through the heterogeneous reaction between manganese oxide and HCHO was carbon dioxide. Harmful by-products (HCOOH and CO) were not found.

  2. Role of metal oxides in chemical evolution

    NASA Astrophysics Data System (ADS)

    Kamaluddin

    2013-06-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Formation of small molecules like amino acids, organic bases, sugar etc. could have occurred in the reducing atmosphere of the primitive Earth. Polymerization of these small molecules could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  3. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  4. A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Godoi, Denis R. M.; Villullas, Hebe M.; Zhu, Fu-Chun; Jiang, Yan-Xia; Sun, Shi-Gang; Guo, Junsong; Sun, Lili; Chen, Rongrong

    2016-04-01

    The effects of interactions of Pt nanoparticles with hybrid supports on reactivity towards ethanol oxidation in alkaline solution are investigated. Studies involve catalysts with identical Pt nanoparticles on six hybrid supports containing carbon powder and transition metal oxides (TiO2, ZrO2, SnO2, CeO2, MoO3 and WO3). In situ X-ray absorption spectroscopy (XAS) results evidence that metal-support interactions produce changes in the Pt 5d band vacancy, which appears to determine the catalytic activity. The highest and lowest activities are observed for Pt nanoparticles on hybrid supports containing TiO2 and CeO2, respectively. Further studies are presented for these two catalysts. In situ FTIR reflection spectroscopy measurements, taken using both multi-stepped FTIR spectroscopy (MS-FTIR) and single potential alteration FTIR spectroscopy (SPA-FTIR), evidence that the main product of ethanol oxidation is acetate, although signals attributed to carbonate and CO2 indicate some differences in CO2 production. Fuel cell performances of these catalysts, tested in a 4.5 cm2 single cell at different temperatures (40-90 °C) show good agreement with data obtained by electrochemical techniques. Results of this comprehensive study point out the possibility of compensating a reduction of noble metal load with an increase in activity promoted by interactions between metallic nanoparticles and a support.

  5. Characterization study of an intensified complementary metal-oxide-semiconductor active pixel sensor

    NASA Astrophysics Data System (ADS)

    Griffiths, J. A.; Chen, D.; Turchetta, R.; Royle, G. J.

    2011-03-01

    An intensified CMOS active pixel sensor (APS) has been constructed for operation in low-light-level applications: a high-gain, fast-light decay image intensifier has been coupled via a fiber optic stud to a prototype "VANILLA" APS, developed by the UK based MI3 consortium. The sensor is capable of high frame rates and sparse readout. This paper presents a study of the performance parameters of the intensified VANILLA APS system over a range of image intensifier gain levels when uniformly illuminated with 520 nm green light. Mean-variance analysis shows the APS saturating around 3050 Digital Units (DU), with the maximum variance increasing with increasing image intensifier gain. The system's quantum efficiency varies in an exponential manner from 260 at an intensifier gain of 7.45 × 103 to 1.6 at a gain of 3.93 × 101. The usable dynamic range of the system is 60 dB for intensifier gains below 1.8 × 103, dropping to around 40 dB at high gains. The conclusion is that the system shows suitability for the desired application.

  6. High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level

    PubMed Central

    Park, Joon B.; Graciani, Jesus; Evans, Jaime; Stacchiola, Dario; Ma, Shuguo; Liu, Ping; Nambu, Akira; Sanz, Javier Fernández; Hrbek, Jan; Rodriguez, José A.

    2009-01-01

    Mixed-metal oxides play a very important role in many areas of chemistry, physics, materials science, and geochemistry. Recently, there has been a strong interest in understanding phenomena associated with the deposition of oxide nanoparticles on the surface of a second (host) oxide. Here, scanning tunneling microscopy, photoemission, and density-functional calculations are used to study the behavior of ceria nanoparticles deposited on a TiO2(110) surface. The titania substrate imposes nontypical coordination modes on the ceria nanoparticles. In the CeOx/TiO2(110) systems, the Ce cations adopt an structural geometry and an oxidation state (+3) that are quite different from those seen in bulk ceria or for ceria nanoparticles deposited on metal substrates. The increase in the stability of the Ce3+ oxidation state leads to an enhancement in the chemical and catalytic activity of the ceria nanoparticles. The codeposition of ceria and gold nanoparticles on a TiO2(110) substrate generates catalysts with an extremely high activity for the production of hydrogen through the water–gas shift reaction (H2O + CO → H2 + CO2) or for the oxidation of carbon monoxide (2CO + O2 → 2CO2). The enhanced stability of the Ce3+ state is an example of structural promotion in catalysis described here on the atomic level. The exploration of mixed-metal oxides at the nanometer level may open avenues for optimizing catalysts through stabilization of unconventional surface structures with special chemical activity. PMID:19276120

  7. Non-redox metal ion promoted oxidative coupling of indoles with olefins by the palladium(ii) acetate catalyst through dioxygen activation: experimental results with DFT calculations.

    PubMed

    Zhang, Sicheng; Chen, Zhuqi; Qin, Shuhao; Lou, Chenlin; Senan, Ahmed M; Liao, Rong-Zhen; Yin, Guochuan

    2016-04-26

    Developing new catalytic technologies through C-H bond activation to synthesize versatile pharmaceuticals has attracted much attention in recent decades. This work introduces a new strategy in catalyst design for Pd(ii)-catalyzed C-H bond activation in which non-redox metal ions serving as Lewis acids play significant roles. In the oxidative coupling of indoles with olefins using dioxygen, it was found that Pd(OAc)2 alone as the catalyst is very sluggish at ambient temperature which provided a low yield of the olefination product, whereas adding non-redox metal ions to Pd(OAc)2 substantially improves its catalytic efficiency. In particular, it provided bis(indolyl)methane derivatives as the dominant product, a category of pharmacological molecules which could not be synthesized by Pd(ii)-catalyzed oxidative coupling previously. Detailed investigations revealed that the reaction proceeds by heterobimetallic Pd(ii)/Sc(iii)-catalyzed oxidative coupling of an indole with an olefin followed by Sc(iii)-catalyzed addition with a second indole molecule. DFT calculations disclosed that the formation of heterobimetallic Pd(ii)/Sc(iii) species substantially decreases the C-H bond activation energy barrier, and shifts the rate determining step from C-H bond activation of indole to the olefination step. This non-redox metal ion promoted Pd(ii)-catalyzed C-H bond activation may offer a new opportunity for catalyst design in organic synthesis, which has not been fully recognized yet. PMID:27075840

  8. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    photocatalytic activity. Another disadvantageous property of semiconductors is that photocorrosion of metal chalcogenides such as CdS occurs. In an attempt to prevent this, these materials were coated with more stable oxides such as Cu2O and TiO2. The photocatalytic activity of these CdS multipods protected by the stable oxides was enhanced in comparison to CdS particles. The third section describes the synthesis and the use of mixed metal oxides for alcohol oxidation. Presently, Pt is the most active and efficient metal catalyst for alcohol oxidation in fuel cells. It is necessary to develop cheaper, earth abundant metals that can replace Pt. Mixed metal oxides based on Mo-V-(Te,Nb)-O were synthesized under hydrothermal conditions. These materials were incorporated into an electrochemical cell and used to oxidize cyclohexanol. At low temperatures of 60°C, cyclohexanol was converted to cyclohexanone, cyclohexene, and adipic acid on Mo-V-O, Mo-V-Te-O, and Mo-V-Te-Nb-O respectively. The present work showed that these interesting materials might potentially be utilized as a catalyst in complex alcohol fuel cell technologies. In the final section, the electrochemical actuation in conducting polymers is studied. Conducting polymers, such as polypyrrole (PPy), and polythiophene (PTh), are often incorporated into actuators, sensors, and energy storage devices such as supercapacitors. The mechanism of the actuation in these polymers due to the insertion/removal of ions was studied. Electrochemical quartz crystal microbalance (EQCM) studies and in situ electrochemical stress measurements were the techniques used to study and to understand the observed actuation mechanism. The bilayer polypyrrole/polythiophene (PPy PTh) polymer film showed potential for enhancing the actuation and capacitance in energy storage devices.

  9. The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-halide-Cr2O3 system fluxes

    NASA Astrophysics Data System (ADS)

    Li, Lian-Fu; Jiang, Mao-Fa; Wang, Wen-Zhong; Chen, Zhao-Ping

    2000-06-01

    The solid electrolyte cell — Mo|Cr + Cr2O3‖ZrO2(MgO)‖{Cu-Cr}alloy + (Cr2O3)fluxes|Mo+ is used at 1673 K to determine Cr2O3 activities in MO-MX 2-Cr2O3 (M = Ca2+, Ba2-, X = F- or Cl-) ternary fluxes, which are in equilibrium with the copper-chromium binary alloy. The ternary isothermal phase diagrams of CaO-CaF2-Cr2O3 and BaO-BaCl2-Cr2O3 system fluxes are inferred on the basis of the experimental results and binary phase diagrams. The results indicate that Cr2O3 activities in all fluxes always decrease with the increase of the X MO /X MX2 ratio. Partial replacement of BaO in BaO-BaF2-Cr2O3 fluxes by CaO is acceptable for economy and efficiency considerations. At the same time, partial substitution of BaO for CaO in CaO-CaF2-Cr2O3 fluxes is advantageous for phosphorus removal and chromium retention as a result of the increased Cr2O3 activities, increased basicities, and widening of the liquid zones. Compared to those in BaO-BaF2-Cr2O3 fluxes, Cr2O3 activities in CaO-CaF2-Cr2O3 fluxes approximately follow the same curve as the former, although the position and the width of the liquid zones are considerably different, and activities in BaO-BaCl2-Cr2O3 fluxes are higher at the lower Cr2O3 content, or vice versa. The activity coefficients of Cr2O3 in the fluxes decrease with the increase of the X MO /X MX 2 ratios.

  10. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay.

    PubMed

    Sawai, J

    2003-08-01

    Antibacterial activities of metallic oxide (ZnO, MgO and CaO) powders against Staphylococcus aureus and Escherichia coli were quantitatively evaluated by measuring the change in electrical conductivity of the growth medium caused by bacterial metabolism (conductimetric assay). The obtained conductivity curves were analyzed using the growth inhibition kinetic model proposed by Takahashi for calorimetric evaluation, and the metallic oxides were determined for the antibacterial efficacy and kinetic parameters. The parameters provide some useful indicators for antimicrobial agents, such as the dependence of antibacterial activity on agent concentration, and the affinity between the agent and the bacterial cells. CaO was the most effective, followed by MgO and ZnO, against E. coli. On the other hand, ZnO was the most effective for S. aureus and was suggested to have a strong affinity to the cells of S. aureus. PMID:12782373

  11. Particle size distribution and morphological changes in activated carbon-metal oxide hybrid catalysts prepared under different heating conditions.

    PubMed

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Gómez-Serrano, V

    2016-03-01

    In catalysis processes, activated carbon (AC) and metal oxides (MOs) are widely used either as catalysts or as catalyst supports because of their unique properties. A combination of AC and a MO in a single hybrid material entails changes not only in the composition, microstructure and texture but also in the morphology, which may largely influence the catalytic behaviour of the resulting product. This work is aimed at investigating the modifications in the morphology and particle size distribution (PSD) for AC-MO hybrid catalysts as a result of their preparation under markedly different heating conditions. From a commercial AC and six MO (Al2 O3 , Fe2 O3 , ZnO, SnO2 , TiO2 and WO3 ) precursors, two series of such catalysts are prepared by wet impregnation, oven-drying at 120ºC, and subsequent heat treatment at 200ºC or 850ºC in inert atmosphere. The resulting samples are characterized in terms of their morphology and PSD by scanning electron microscopy and ImageJ processing program. Obtained results indicate that the morphology, PSD and degree of dispersion of the supported catalysts are strongly dependent both on the MO precursor and the heat treatment temperature. With the temperature rise, trends are towards the improvement of crystallinity, the broadening of the PSD and the increase in the average particle size, thus suggesting the involvement of sintering mechanisms. Such effects are more pronounced for the Fe, Sn and W catalysts due to the reduction of the corresponding MOs by AC during the heat treatment at 850ºC. PMID:26457467

  12. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrorm, EL; Llordes, A; Milliron, DJ

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  13. Heavy metal exposure, in combination with physical activity and aging, is related with oxidative stress in Japanese women from a rural agricultural community.

    PubMed

    Cui, Xiaoyi; Ohtsu, Mayumi; Mise, Nathan; Ikegami, Akihiko; Mizuno, Atsuko; Sakamoto, Takako; Ogawa, Masanori; Machida, Munehito; Kayama, Fujio

    2016-01-01

    This study aimed to evaluate the relationships between oxidative stress and heavy metal exposure (lead [Pb] and cadmium [Cd]), as well as co-factors such as physical activity and age, in Japanese women. This study was conducted with female subjects from a rural agricultural community in Japan. Subjects were asked to complete lifestyle-related questionnaires and undergo a group health examination. Physical activity, alcohol consumption, body mass index, and other demographic information were collected. Blood and urine samples were collected to measure urinary 8-hydroxydeoxyguanosine (8-OHdG) levels and blood and urinary Cd and Pb concentrations. Urine samples were analyzed using high performance liquid chromatography and flameless atomic absorption spectrometry; blood samples were analyzed using inductively coupled plasma-mass spectrometry. Age, physical activity, and blood and urinary Cd and Pb concentrations were included in structural equation modeling analysis. Two latent factors for heavy metal exposure and physical activity were produced to predict the total influence of the variables. The final model was good: CMIN/DF = 0.775, CFI = 1.000, GFI = 0.975, AGFI = 0.954, RMSEA = 0.000. 8-OHdG levels were positively associated with heavy metal exposure, physical activity, and age (standard β of path analysis: 0.33, 0.38, and 0.20, respectively). Therefore, oxidative stress is associated with both, environmental and lifestyle factors, in combination with aging. PMID:27386333

  14. Preparing oxidizer coated metal fuel particles

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Simmons, G. M. (Inventor)

    1974-01-01

    A solid propellant composition of improved efficiency is described which includes an oxidizer containing ammonium perchlorate, and a powered metal fuel, preferably aluminum or beryllium, in the form of a composite. The metal fuel is contained in the crystalline lattice framework of the oxidizer, as well as within the oxidizer particles, and is disposed in the interstices between the oxidizer particles of the composition. The propellant composition is produced by a process comprising the crystallization of ammonium perchlorate in water, in the presence of finely divided aluminum or beryllium. A suitable binder is incorporated in the propellant composition to bind the individual particles of metal with the particles of oxidizer containing occluded metal.

  15. Transition-metal-free C-H oxidative activation: persulfate-promoted selective benzylic mono- and difluorination.

    PubMed

    Ma, Jing-jing; Yi, Wen-bin; Lu, Guo-ping; Cai, Chun

    2015-03-14

    An operationally simple and selective method for the direct conversion of benzylic C-H to C-F to obtain mono- and difluoromethylated arenes using Selectfluor™ as a fluorine source is developed. Persulfate can be used to selectively activate benzylic hydrogen atoms toward C-F bond formation without the aid of transition metal catalysts. PMID:25645405

  16. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  17. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  18. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  19. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  20. Impact of Reducing Shallow Trench Isolation Mechanical Stress on Active Length for 40 nm n-Type Metal-Oxide-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Huang, Yao-Tsung; Wu, San-Lein; Lin, Hau-Yu; Kuo, Cheng-Wen; Chang, Shoou-Jinn; Hong, De-Gong; Wu, Chung-Yi; Huang, Cheng-Tung; Cheng, Osbert

    2011-04-01

    We report an improved densification annealing process for sub atmospheric chemical vapor deposition (SACVD)-based shallow trench isolation (STI) to enhance n-type metal-oxide-semiconductor field-effect transistor (nMOSFET) performance for 40 nm node and beyond. Experimental results show that this improved STI densification process leads to lower compressive stress in the small active area compared with the standard STI process. This is beneficial to electron mobility and leads to an enhancement of on-current (ION). Moreover, comparable drain induced barrier lowering (DIBL) and subthreshold swing (SS) characteristics for both devices indicate that the improved densification process would no significant influences on process variations or dopant diffusions. Hence, the improved STI process can be adopted in 40 nm complementary metal-oxide-semiconductor (CMOS) technology and beyond.

  1. Reactive metal-oxide interfaces: A microscopic view

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-03-01

    Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.

  2. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  3. Metal oxides for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Yu, Xinge; Marks, Tobin J.; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

  4. Metal oxides for optoelectronic applications.

    PubMed

    Yu, Xinge; Marks, Tobin J; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories. PMID:27005918

  5. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  6. Hydrous metal oxide catalysts for oxidation of hydrocarbons

    SciTech Connect

    Miller, J.E.; Dosch, R.G.; McLaughlin, L.I.

    1993-07-01

    This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

  7. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    PubMed

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER. PMID:27034988

  8. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy

    PubMed Central

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-01-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER. PMID:27034988

  9. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECT OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...

  10. Ziram and sodium N,N-dimethyldithiocarbamate inhibit ubiquitin activation through intracellular metal transport and increased oxidative stress in HEK293 cells.

    PubMed

    Dennis, Kathleen E; Valentine, William M

    2015-04-20

    Ubiquitin activating enzyme E1 plays a pivotal role in ubiquitin based protein signaling through regulating the initiating step of the cascade. Previous studies demonstrated that E1 is inhibited by covalent modification of reactive cysteines contained within the ubiquitin-binding groove and by conditions that increase oxidative stress and deplete cellular antioxidants. In this study, we determined the relative contribution of covalent adduction and oxidative stress to E1 inhibition produced by ziram and sodium N,N-dimethyldithiocarbamate (DMDC) in HEK293 cells. Although no dithiocarbamate-derived E1 adducts were identified on E1 using shotgun LC/MS/MS for either ziram or DMDC, both dithiocarbamates significantly decreased E1 activity, with ziram demonstrating greater potency. Ziram increased intracellular levels of zinc and copper, DMDC increased intracellular levels of only copper, and both dithiocarbamates enhanced oxidative injury evidenced by elevated levels of protein carbonyls and expression of heme oxygenase-1. To assess the contribution of intracellular copper transport to E1 inhibition, coincubations were performed with the copper chelator triethylenetetramine hydrochloride (TET). TET significantly protected E1 activity for both of the dithiocarbamates and decreased the associated oxidative injury in HEK293 cells as well as prevented dithiocarbamate-mediated lipid peroxidation assayed using an ethyl aracidonate micelle system. Because TET did not completely ameliorate intracellular transport of copper or zinc for ziram, TET apparently maintained E1 activity through its ability to diminish dithiocarbamate-mediated oxidative stress. Experiments to determine the relative contribution of elevated intracellular zinc and copper were performed using a metal free incubation system and showed that increases in either metal were sufficient to inhibit E1. To evaluate the utility of the HEK293 in vitro system for screening environmental agents, a series of additional

  11. Ziram and Sodium N,N-Dimethyldithiocarbamate Inhibit Ubiquitin Activation through Intracellular Metal Transport and Increased Oxidative Stress in HEK293 Cells

    PubMed Central

    2015-01-01

    Ubiquitin activating enzyme E1 plays a pivotal role in ubiquitin based protein signaling through regulating the initiating step of the cascade. Previous studies demonstrated that E1 is inhibited by covalent modification of reactive cysteines contained within the ubiquitin-binding groove and by conditions that increase oxidative stress and deplete cellular antioxidants. In this study, we determined the relative contribution of covalent adduction and oxidative stress to E1 inhibition produced by ziram and sodium N,N-dimethyldithiocarbamate (DMDC) in HEK293 cells. Although no dithiocarbamate-derived E1 adducts were identified on E1 using shotgun LC/MS/MS for either ziram or DMDC, both dithiocarbamates significantly decreased E1 activity, with ziram demonstrating greater potency. Ziram increased intracellular levels of zinc and copper, DMDC increased intracellular levels of only copper, and both dithiocarbamates enhanced oxidative injury evidenced by elevated levels of protein carbonyls and expression of heme oxygenase-1. To assess the contribution of intracellular copper transport to E1 inhibition, coincubations were performed with the copper chelator triethylenetetramine hydrochloride (TET). TET significantly protected E1 activity for both of the dithiocarbamates and decreased the associated oxidative injury in HEK293 cells as well as prevented dithiocarbamate-mediated lipid peroxidation assayed using an ethyl aracidonate micelle system. Because TET did not completely ameliorate intracellular transport of copper or zinc for ziram, TET apparently maintained E1 activity through its ability to diminish dithiocarbamate-mediated oxidative stress. Experiments to determine the relative contribution of elevated intracellular zinc and copper were performed using a metal free incubation system and showed that increases in either metal were sufficient to inhibit E1. To evaluate the utility of the HEK293 in vitro system for screening environmental agents, a series of additional

  12. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  13. Metal oxide semiconductors for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Thimsen, Elijah James

    The correlation between energy consumption and human development illustrates the importance of this societal resource. We will consume more energy in the future. In light of issues with the status quo, such as climate change, long-term supply and security, solar energy is an attractive source. It is plentiful, virtually inexhaustible, and can provide more than enough energy to power society. However, the issue with producing electricity and fuels from solar energy is that it is expensive, primarily from the materials (silicon) used in building the cells. Metal oxide semiconductors are an attractive class of materials that are extremely low cost and can be produced at the scale needed to meet widespread demand. An industrially attractive thin film synthesis process based on aerosol deposition was developed that relies on self-assembly to afford rational control over critical materials parameters such as film morphology and nanostructure. The film morphology and nanostructure were found to have dramatic effects on the performance of TiO2-based photovoltaic dye-sensitized solar cells. Taking a cue from nature, to overcome the spatial and temporal mismatch between the supply of sunlight and demand for energy consumption, it is desirable to produce solar fuels such as hydrogen from photoelectrochemical water splitting. The source of water is important---seawater is attractive. The fundamental reaction mechanism for TiO2-based cells is discussed in the context of seawater splitting. There are two primary issues with producing hydrogen by photoelectrochemical water splitting using metal-oxide semiconductors: visible light activity and spontaneous activity. To address the light absorption issue, a combined theory-experiment approach was taken to understand the fundamental role of chemical composition in determining the visible light absorption properties of mixed metal-oxide semiconductors. To address the spontaneous activity issue, self-biasing all oxide p/n bulk

  14. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  15. Photodegradation of chlorofluorocarbon alternatives on metal oxide

    SciTech Connect

    Tanaka, K.; Hisanaga, T. )

    1994-05-01

    HCFC and HFC were photodegraded on metal oxides. Degradation rate on several metal oxides was in the order: TiO[sub 2] > ZnO > Fe[sub 2]O[sub 3] > kaolin [ge] SiO[sub 2] [ge] Al[sub 2]O[sub 3]. Principal degradation products were CO[sub 2], Cl[sup [minus

  16. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  17. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  18. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  19. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  20. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    SciTech Connect

    Jo, Jeong-Wan; Park, Sung Kyu E-mail: skpark@cau.ac.kr; Kim, Yong-Hoon E-mail: skpark@cau.ac.kr

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  1. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  2. Development of a regenerable metal oxide CO removal system

    NASA Technical Reports Server (NTRS)

    Cusick, Robert J.

    1990-01-01

    A regenerable metal oxide carbon dioxide (CO2) removal system was developed to replace the current means of a nonreusable chemical, lithium hydroxide, for removing the metabolic CO2 of an astronaut in a space suit. Testing indicates that a viable low-volume metal oxide concept can be used in the portable life support system for CO2 removal during Space Station extravehicular activity (EVA). A canister of nearly the same volume as that used for the Space Shuttle, containing 0.10 cu ft of silver-oxide-based pellets, was tested; test data analysis indicates that 0.18 cu ft of the metal oxide will result in an 8-hour EVA capability. The testing suggests that the metal oxide technology offers a low-volume approach for a reusable CO2 removal concept applicable for at least 40 EVA missions. The development and testing of the breadboard regeneration package is also described.

  3. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  4. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  5. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  6. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  7. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  8. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  9. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  10. Metal Nitrite: A Powerful Oxidizing Reagent

    PubMed Central

    Baidya, Mahiuddin; Yamamoto, Hisashi

    2011-01-01

    An efficient and simple source of nitroso reagents and their oxidation reactions are described. The combination of a Lewis acid and a metal nitrite is applied to the oxidation of silyl enol ethers. Amino acid and peptide derivatives were easily accessed through in situ C-C bond cleavage of fully substituted silyl enol ethers upon oxidation. PMID:21830770

  11. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-01

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers. PMID:23539180

  12. Formation of metal oxides by cathodic arc deposition

    SciTech Connect

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  13. Enhanced photocatalytic activity of Ce-doped Zn-Al multi-metal oxide composites derived from layered double hydroxide precursors.

    PubMed

    Zhu, Jianyao; Zhu, Zhiliang; Zhang, Hua; Lu, Hongtao; Qiu, Yanling; Zhu, Linyan; Küppers, Stephan

    2016-11-01

    In this work, a series of novel Zn-Al-Ce multi-metal oxide (Zn-Al-Ce-MMO) photocatalysts with different Ce doping contents were prepared by calcination of Ce-doped Zn-Al layered double hydroxide (Zn-Al-Ce-LDH) precursors at various temperatures in air atmosphere. The synthesized Zn-Al-Ce-MMO materials were characterized by XRD, FTIR, TGA, BET, SEM, TEM, XPS and UV-vis DRS. The photocatalytic activities of the Zn-Al-Ce-MMO materials were evaluated by the photodegradation of rhodamine B (RhB) dye and paracetamol in aqueous solution under simulated solar light irradiation. The result of photodegradation of RhB showed that the Zn-Al-Ce-MMO samples exhibit much higher photocatalytic activity than that of Zn-Al-MMO, and the optimal Ce doping content is 5% of mole ratio (nCe/n(Zn+Al+Ce)). The enhanced photocatalytic activity of the Zn-Al-Ce-MMO was mainly attributed to the increasing in the separation efficiency of electrons and holes. The effect of calcination temperature was also studied. The photocatalytic activity of Zn-Al-Ce-MMO increased with increasing calcination temperature up to 750°C, which can be ascribed to the formation of well-crystallized metal oxides during calcination. Under experimental conditions, 97.8% degradation efficiency of RhB and 98.9% degradation efficiency of paracetamol were achieved after 240min. Active species trapping and EPR experiments suggested that hole (h(+)), superoxide radical (O2(-)) and hydroxyl radical (OH) played important roles during the RhB photocatalytic process. Moreover, the results indicated that the synthesized Zn-Al-Ce-MMO materials had good stability and reusability. PMID:27474815

  14. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  15. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  16. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECTS OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    EPA Science Inventory

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...

  17. Functional Metal Oxide Nanostructures: Their Synthesis, Characterization, and Energy Applications

    NASA Astrophysics Data System (ADS)

    Iyer, Aparna

    This research focuses on studying metal oxides (MnO 2, Co3O4, MgO, Y2O3) for various applications including water oxidation and photocatalytic oxidation, developing different synthesis methodologies, and presenting detailed characterization studies of these metal oxides. This research consists of three major parts. The first part is studying novel applications and developing a synthesis method for manganese oxide nanomaterials. Manganese oxide materials were studied for renewable energy applications by using them as catalysts for water oxidation reactions. In this study, various crystallographic forms of manganese oxides (amorphous, 2D layered, 1D 2 x 2 tunnel structures) were evaluated for water oxidation catalysis. Amorphous manganese oxides (AMO) were found to be catalytically active for chemical and photochemical water oxidation compared to cryptomelane type tunnel manganese oxides (2 x 2 tunnels; OMS2) or layered birnessite (OL-1) materials. Detailed characterization was done to establish a correlation between the properties of the manganese oxide materials and their catalytic activities in water oxidation. The gas phase photocatalytic oxidation of 2-propanol under visible light was studied using manganese oxide 2 x 2 tunnel structures (OMS-2) as catalysts (Chapter 3). The reaction is 100% selective to acetone. As suggested by the photocatalytic and characterization data, important factors for the design of active OMS-2 photocatalysts are synthesis methodology, morphology, mixed valency and the release of oxygen from the OMS-2 structure. Manganese oxide octahedral molecular sieves (2 x 2 tunnels; OMS-2) with self-assembled dense or hollow sphere morphologies were fabricated via a room temperature ultrasonic atomization assisted synthesis (Chapter 4). The properties and catalytic activities of these newly developed materials were compared with that of OMS-2 synthesized by conventional reflux route. These materials exhibit exceptionally high catalytic activities

  18. Metal-free g-C{sub 3}N{sub 4} photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light

    SciTech Connect

    Zhang, Ligang; Liu, Di; Guan, Jing; Chen, Xiufang; Guo, Xingcui; Zhao, Fuhua; Hou, Tonggang; Mu, Xindong

    2014-11-15

    Highlights: • A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. • The texture, electronic and surface property were tuned by acid modification. • Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. • Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant under visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.

  19. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  20. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  1. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points.

    PubMed

    Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chongmin; Viswanathan, Vilayanur V; Park, Sehkyu; Aksay, Ilhan A; Lin, Yuehe; Wang, Yong; Liu, Jun

    2011-03-01

    Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applications. We first synthesize indium tin oxide (ITO) nanocrystals directly on functionalized graphene sheets, forming an ITO-graphene hybrid. Platinum nanoparticles are then deposited, forming a unique triple-junction structure (Pt-ITO-graphene). Our experimental work and periodic density functional theory (DFT) calculations show that the supported Pt nanoparticles are more stable at the Pt-ITO-graphene triple junctions. Furthermore, DFT calculations suggest that the defects and functional groups on graphene also play an important role in stabilizing the catalysts. These new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity. PMID:21302925

  2. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  3. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  4. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  5. Nanoionic switching in metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Ielmini, Daniele

    2013-03-01

    Ion migration in oxide nanostructures is a key process in information storage technologies, where the logic data are stored as nanoscale conductive filaments. Due to the inherently nanoscale size of the ionic switching location (few cubic nanometers), the local electric field and current density induce extremely high temperatures as a result of Joule heating. To develop and design advanced nanoionic materials and devices with improved performance and reliability, the ion migration phenomena in metal oxides must be carefully understood and modeled. This talk will address the modeling of ionic migration and the consequent switching in HfOx layers of RRAM devices. The model solves drift/diffusion equations for thermally-activated hopping of positive ion, such as oxygen vacancies (VO+)and metal cations (Hf+) , in presence of intense Joule heating and electric field. The impact of the ion distribution on the local conductivity is described physics-based models of defect-assisted electronic conduction in semiconductors. Microscopic parameters, such as the energy barrier for ion hopping, are directly inferred from the experimental switching kinetics at variable voltages. The simulation results picture the filament growth/depletion with time and account for the observed switching characteristics, such as the progressive opening of a depleted gap and the possibility of electrode-to-electrode migration of ions. Finally, new phenomena, such as switching variability at atomic-size filaments and stress-induced symmetric switching, will be discussed.

  6. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  7. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  8. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  9. Infrared Photodissociation Spectroscopy of Metal Oxide Carbonyl Cations.

    NASA Astrophysics Data System (ADS)

    Brathwaite, Antonio D.; Duncan, Michael A.

    2013-06-01

    Mass selected metal oxide-carbonyl cations of the form MO_{m}(CO)_{n}^{+} are studied via infrared laser photodissociation spectroscopy, in the 600-2300cm^{1} region. Insight into the structure and bonding of these complexes is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. Insight into the bonding of CO ligands to metal oxides is obtained and the effect of oxidation on the carbonyl stretching frequency is revealed.

  10. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  11. Method for making monolithic metal oxide aerogels

    SciTech Connect

    Coronado, P.R.

    1999-09-28

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  12. Modifying the catalytic and adsorption properties of metals and oxides

    NASA Astrophysics Data System (ADS)

    Yagodovskii, V. D.

    2015-11-01

    A new approach to interpreting the effect of promoters (inhibitors) of nonmetals and metals added to a host metal (catalyst) is considered. Theoretical calculations are based on a model of an actual two-dimensional electron gas and adsorbate particles. An equation is derived for the isotherm of induced adsorption on metals and semiconductors with respect to small fillings of θ ~ 0.1-0.15. The applicability of this equation is verified experimentally for metals (Ag, Pd, Cu, Fe, and Ni), graphitized ash, and semiconductor oxides Ta2O5, ZnO, and Ni. The applicability of the theoretical model of promotion is verified by the hydrogenation reaction of CO on ultradispersed nickel powder. The use of plasmachemical surface treatments of metals and oxides, accompanied by an increase in activity and variation in selectivity, are investigated based on the dehydrocyclization reactions of n-hexane and the dehydrogenation and dehydration of alcohols. It is established that such treatments for metals (Pt, Cu, Ni, and Co) raise their activity due to the growth of the number of active centers upon an increase in the activation energy. Applying XPES and XRD methods to metallic catalysts, it is shown that the rise in activity is associated with a change in their surface states (variation in the structural characteristics of metal particles and localization of certain forms of carbon in catalytically active centers). It is shown that plasmachemical treatments also alter their surface composition, surface activity, and raise their activity when used with complex phosphate oxides of the NASICON type. It is shown by the example of conversion of butanol-2 that abrupt variations in selectivity (prevalence of dehydration over dehydrogenation and vice versa) occur, depending on the type of plasma. It is concluded that plasmachemical treatments of metals and ZnO and NiO alter the isosteric heats and entropies of adsorption of isopropanol.

  13. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular

  14. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. PMID:26351175

  15. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue.

    PubMed

    Chen, Jie; Feng, Jiangtao; Yan, Wei

    2016-08-01

    In this paper, the pure PPy and PPy/metal oxide composites including PPy/SiO2, PPy/Al2O3, and PPy/Fe3O4 as well as PPy coated commercial SiO2 and Al2O3 (PPy/SiO2(C) and PPy/Al2O3(C)) were successfully synthetized via chemical oxidative polymerization in acid aqueous medium to investigate the influence of metal oxides on adsorption capacity and their adsorption characteristics for Methylene Blue (MB). The composites were characterized by Zeta potential analysis, BET analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The results indicate that the metal oxides have great impact on textural properties, morphology, Zeta potential and PPy polymerization on their surface, further influence the adsorption capacity of their composites. The PPy/Al2O3(C) composite owns the highest specific surface area, rougher surface and most PPy content, and show the highest monolayer adsorption capacity reaching 134.77mg/g. In the adsorption characteristic studies, isotherm investigation shows an affinity order of PPy/metal oxides of PPy/Al2O3(C)>PPy/Al2O3>PPy/SiO2(C)>PPy/SiO2>PPy/Fe3O4>PPy, stating the affinity between PPy and MB was greatly improved by metal oxide, and Al2O3 owns high affinity for MB, followed by SiO2 and Fe3O4. Kinetic data of the composites selected (PPy/SiO2(C), PPy/Al2O3(C) and PPy/Fe3O4) were described more appropriately by the pseudo-second-order model, and the order of K2 is PPy/Al2O3>PPy/SiO2>PPy/Fe3O4, further showing a fast adsorption and good affinity of PPy/Al2O3(C) for MB. The regeneration method by HCl-elution and NaOH-activation was available, and the composites selected still owned good adsorption and desorption efficiency after six adsorption-desorption cycles. PMID:27149689

  16. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  17. The base metal of the oxide-coated cathode

    NASA Astrophysics Data System (ADS)

    Poret, F.; Roquais, J. M.

    2005-09-01

    The oxide-coated cathode has been the most widely used electron emitter in vacuum electronic devices. From one manufacturing company to another the emissive oxide is either a double—Ba, Sr—or a triple—Ba, Sr, Ca—oxide, having always the same respective compositions. Conversely, the base metal composition is very often proprietary because of its importance in the cathode emission performances. The present paper aims at explaining the operation of the base metal through a review. After a brief introduction, the notion of activator is detailed along with their diffusivities and their associated interfacial compounds. Then, the different cathode life models are described prior to few comments on the composition choice of a base metal. Finally, the specificities of the RCA/Thomson "bimetal" base metal are presented with a discussion on the optimized composition choice illustrated by a long-term life-test of five different melts.

  18. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  19. Step-Edge Directed Metal Oxidation.

    PubMed

    Zhu, Qing; Saidi, Wissam A; Yang, Judith C

    2016-07-01

    Metal surface oxidation is governed by surface mass transport processes. Realistic surfaces have many defects such as step edges, which often dictate the oxide growth dynamics and result in novel oxide nanostructures. Here we present a comprehensive and systematic study of the oxidation of stepped (100), (110) and (111) Cu surfaces using a multiscale approach employing density functional theory (DFT) and reactive force field molecular dynamics (MD) simulations. We show that the early stages of oxidation of these stepped surfaces can be qualitatively understood from the potential energy surface of single oxygen adatoms, namely, adsorption energies and Ehrlich-Schwöbel barriers. These DFT predictions are then validated using classical MD simulations with a newly optimized ReaxFF force field. In turn, we show that the DFT results can be explained using a simple bond-counting argument that makes our results general and transferable to other metal surfaces. PMID:27299380

  20. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  1. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  2. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  3. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    PubMed

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-12-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products. PMID:27295259

  4. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  5. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  6. Real time in vivo imaging and measurement of serine protease activity in the mouse hippocampus using a dedicated complementary metal-oxide semiconductor imaging device.

    PubMed

    Ng, David C; Tamura, Hideki; Tokuda, Takashi; Yamamoto, Akio; Matsuo, Masamichi; Nunoshita, Masahiro; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2006-09-30

    The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a biofluorescence imaging device by packaging the CMOS image sensor which enabled on-chip imaging configuration. In this configuration, no optics are required whereby an excitation filter is applied onto the sensor to replace the filter cube block found in conventional fluorescence microscopes. The fully packaged device measures 350 microm thick x 2.7 mm wide, consists of an array of 176 x 144 pixels, and is small enough for measurement inside a single hemisphere of the mouse brain, while still providing sufficient imaging resolution. In the experiment, intraperitoneally injected kainic acid induced upregulation of serine protease activity in the brain. These events were captured in real time by imaging and measuring the fluorescence from a fluorogenic substrate that detected this activity. The entire device, which weighs less than 1% of the body weight of the mouse, holds promise for studying freely moving animals. PMID:16542733

  7. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    SciTech Connect

    Zhang, Tian Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  8. Electronic doping of transition metal oxide perovskites

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James M.

    2016-05-01

    CaFeO3 is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO3. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  9. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  10. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  11. Reduction of metal oxides through mechanochemical processing

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Senkov, Oleg N.

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  12. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation.

    PubMed

    Chen, Wei; Wang, Haotian; Li, Yuzhang; Liu, Yayuan; Sun, Jie; Lee, Sanghan; Lee, Jang-Soo; Cui, Yi

    2015-08-26

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt-nickel-iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm(-2), small Tafel slope of 37.6 mV dec(-1), and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  13. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    PubMed Central

    2015-01-01

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  14. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    SciTech Connect

    Jernigan, G G

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  15. Real-time, multiplexed electrochemical DNA detection using an active complementary metal-oxide-semiconductor biosensor array with integrated sensor electronics.

    PubMed

    Levine, Peter M; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L

    2009-03-15

    Optical biosensing based on fluorescence detection has arguably become the standard technique for quantifying extents of hybridization between surface-immobilized probes and fluorophore-labeled analyte targets in DNA microarrays. However, electrochemical detection techniques are emerging which could eliminate the need for physically bulky optical instrumentation, enabling the design of portable devices for point-of-care applications. Unlike fluorescence detection, which can function well using a passive substrate (one without integrated electronics), multiplexed electrochemical detection requires an electronically active substrate to analyze each array site and benefits from the addition of integrated electronic instrumentation to further reduce platform size and eliminate the electromagnetic interference that can result from bringing non-amplified signals off chip. We report on an active electrochemical biosensor array, constructed with a standard complementary metal-oxide-semiconductor (CMOS) technology, to perform quantitative DNA hybridization detection on chip using targets conjugated with ferrocene redox labels. A 4 x 4 array of gold working electrodes and integrated potentiostat electronics, consisting of control amplifiers and current-input analog-to-digital converters, on a custom-designed 5 mm x 3 mm CMOS chip drive redox reactions using cyclic voltammetry, sense DNA binding, and transmit digital data off chip for analysis. We demonstrate multiplexed and specific detection of DNA targets as well as real-time monitoring of hybridization, a task that is difficult, if not impossible, with traditional fluorescence-based microarrays. PMID:19054661

  16. Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics

    NASA Astrophysics Data System (ADS)

    Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi

    2012-06-01

    Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.

  17. Multi-metal oxide ceramic nanomaterial

    DOEpatents

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  18. Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis

    SciTech Connect

    Boffa, A B

    1994-07-01

    The surface chemistry and catalytic reactivity of transition metal oxides deposited on Rh and Pt substrates has been examined in order to establish the role of oxide-metal interactions in influencing catalytic activity. The oxides investigated included titanium oxide (TiOx), vanadium oxide (VOx), iron oxide (FeOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), and tungsten oxide (WOx). The techniques used to characterize the sample included AES, XPS, LEED, TPD, ISS, and STM. After characterization of the surface in UHV, the sample was enclosed in an atmospheric reaction cell to measure the influence of the oxide deposits on the catalytic activity of the pure metal for CO and CO{sub 2} hydrogenation. The oxide deposits were found to strongly enhance the reactivity of the Rh foil. The rates of methane formation were promoted by up to 15 fold with the maximum in rate enhancement occurring at oxide coverages of approximately 0.5 ML. TiOx TaOx, and NbOx were the most effective promoters and were stable in the highest oxidation states during both reactions (compared to VOx, WOx, and FeOx). The trend in promoter effectiveness was attributed to the direct relationship between oxidation state and Lewis acidity. Bonding at the metal oxide/metal interface between the oxygen end of adsorbed CO and the Lewis acidic oxide was postulated to facilitate C-O bond dissociation and subsequent hydrogenation. 192 refs.

  19. Microbial-mediated method for metal oxide nanoparticle formation

    SciTech Connect

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  20. A green strategy to prepare metal oxide superstructure from metal-organic frameworks.

    PubMed

    Song, Yonghai; Li, Xia; Wei, Changting; Fu, Jinying; Xu, Fugang; Tan, Hongliang; Tang, Juan; Wang, Li

    2015-01-01

    Metal or metal oxides with diverse superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, a novel metal-organic frameworks (MOFs)-directed method to prepare metal or metal oxide superstructure was proposed. In this strategy, nodes (metal ions) in MOFs as precursors to form ordered building blocks which are spatially separated by organic linkers were transformed into metal oxide micro/nanostructure by a green method. Two kinds of Cu-MOFs which could reciprocally transform by changing solvent were prepared as a model to test the method. Two kinds of novel CuO with three-dimensional (3D) urchin-like and 3D rods-like superstructures composed of nanoparticles, nanowires and nanosheets were both obtained by immersing the corresponding Cu-MOFs into a NaOH solution. Based on the as-formed CuO superstructures, a novel and sensitive nonenzymatic glucose sensor was developed. The small size, hierarchical superstructures and large surface area of the resulted CuO superstructures eventually contribute to good electrocatalytic activity of the prepared sensor towards the oxidation of glucose. The proposed method of hierarchical superstructures preparation is simple, efficient, cheap and easy to mass production, which is obviously superior to pyrolysis. It might open up a new way for hierarchical superstructures preparation. PMID:25669731

  1. A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks

    PubMed Central

    Song, Yonghai; Li, Xia; Wei, Changting; Fu, Jinying; Xu, Fugang; Tan, Hongliang; Tang, Juan; Wang, Li

    2015-01-01

    Metal or metal oxides with diverse superstructures have become one of the most promising functional materials in sensor, catalysis, energy conversion, etc. In this work, a novel metal-organic frameworks (MOFs)-directed method to prepare metal or metal oxide superstructure was proposed. In this strategy, nodes (metal ions) in MOFs as precursors to form ordered building blocks which are spatially separated by organic linkers were transformed into metal oxide micro/nanostructure by a green method. Two kinds of Cu-MOFs which could reciprocally transform by changing solvent were prepared as a model to test the method. Two kinds of novel CuO with three-dimensional (3D) urchin-like and 3D rods-like superstructures composed of nanoparticles, nanowires and nanosheets were both obtained by immersing the corresponding Cu-MOFs into a NaOH solution. Based on the as-formed CuO superstructures, a novel and sensitive nonenzymatic glucose sensor was developed. The small size, hierarchical superstructures and large surface area of the resulted CuO superstructures eventually contribute to good electrocatalytic activity of the prepared sensor towards the oxidation of glucose. The proposed method of hierarchical superstructures preparation is simple, efficient, cheap and easy to mass production, which is obviously superior to pyrolysis. It might open up a new way for hierarchical superstructures preparation. PMID:25669731

  2. Complexity in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Dagotto, Elbio; Alvarez, Gonzalo; Moreo, Adriana

    2004-03-01

    Recent computational results in the context of models for manganites and cuprates will be briefly discussed. It is argued that correlations in quenched disorder -- needed to mimic cooperative Jahn-Teller effects -- are important to have colossal magnetoresistance in 3D. A related recently discussed metal-insulator transition induced by disorder in a one-orbital model with cooperative phonons is intuitively explained [1]. In addition, it is argued that colossal effects should be far more common than currently known, and they may appear in cuprate superconductors as well [2]. [1] J. Burgy et al., cond-mat/0308456; C. Sen, G. Alvarez, and E. Dagotto, preprint. [2] See also Adriana Moreo, invited talk, March APS 04; G. Alvarez, M. Mayr et al., preprint.

  3. Metal-Organic Frameworks as Catalysts for Oxidation Reactions.

    PubMed

    Dhakshinamoorthy, Amarajothi; Asiri, Abdullah M; Garcia, Hermenegildo

    2016-06-01

    This Concept is aimed at describing the current state of the art in metal-organic frameworks (MOFs) as heterogeneous catalysts for liquid-phase oxidations, focusing on three important substrates, namely, alkenes, alkanes and alcohols. Emphases are on the nature of active sites that have been incorporated within MOFs and on future targets to be set in this area. Thus, selective alkene epoxidation with peroxides or oxygen catalyzed by constitutional metal nodes of MOFs as active sites are still to be developed. Moreover, no noble metal-free MOF has been reported to date that can act as a general catalyst for the aerobic oxidation of primary and secondary aliphatic alcohols. In contrast, in the case of alkanes, a target should be to tune the polarity of MOF internal pores to control the outcome of the autooxidation process, resulting in the selective formation of alcohol/ketone mixtures at high conversion. PMID:27113486

  4. Method for producing nanostructured metal-oxides

    DOEpatents

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  5. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  6. Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium-Air Batteries.

    PubMed

    Jeong, Yo Sub; Park, Jin-Bum; Jung, Hun-Gi; Kim, Jooho; Luo, Xiangyi; Lu, Jun; Curtiss, Larry; Amine, Khalil; Sun, Yang-Kook; Scrosati, Bruno; Lee, Yun Jung

    2015-07-01

    Among many challenges present in Li-air batteries, one of the main reasons of low efficiency is the high charge overpotential due to the slow oxygen evolution reaction (OER). Here, we present systematic evaluation of Pt, Pd, and Ru nanoparticles supported on rGO as OER electrocatalysts in Li-air cell cathodes with LiCF3SO3-tetra(ethylene glycol) dimethyl ether (TEGDME) salt-electrolyte system. All of the noble metals explored could lower the charge overpotentials, and among them, Ru-rGO hybrids exhibited the most stable cycling performance and the lowest charge overpotentials. Role of Ru nanoparticles in boosting oxidation kinetics of the discharge products were investigated. Apparent behavior of Ru nanoparticles was different from the conventional electrocatalysts that lower activation barrier through electron transfer, because the major contribution of Ru nanoparticles in lowering charge overpotential is to control the nature of the discharge products. Ru nanoparticles facilitated thin film-like or nanoparticulate Li2O2 formation during oxygen reduction reaction (ORR), which decomposes at lower potentials during charge, although the conventional role as electrocatalysts during OER cannot be ruled out. Pt-and Pd-rGO hybrids showed fluctuating potential profiles during the cycling. Although Pt- and Pd-rGO decomposed the electrolyte after electrochemical cycling, no electrolyte instability was observed with Ru-rGO hybrids. This study provides the possibility of screening selective electrocatalysts for Li-air cells while maintaining electrolyte stability. PMID:26115340

  7. A molecular catalyst for water oxidation that binds to metal oxide surfaces

    PubMed Central

    Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich; Crabtree, Robert H.; Brudvig, Gary W.; Schmuttenmaer, Charles A.

    2015-01-01

    Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this heterogenized molecular catalyst oxidizes water with low overpotential, high turnover frequency and minimal degradation. Spectroscopic and electrochemical studies show that it does not decompose into iridium oxide, thus preserving its molecular identity, and that it is capable of sustaining high activity towards water oxidation with stability comparable to state-of-the-art bulk metal oxide catalysts. PMID:25757425

  8. Studies on characterization and removal of methylene blue with Delonix regia plant litters activated carbon encapsulated nano metal oxide.

    PubMed

    Daniel, S; Syed Shabudeen, P S; Basker, A

    2015-07-01

    An advanced adsorbent material prepared by encapsulating nano-metaloxide on an activated carbon of Delonix regia plant litters was tested for its efficiency and superiority as an improved, advanced activated carbon material. It was subjected to modern instrumental techniques to evolve its morphology and its structure by FTIR, SEM, TEM, XRD, EDAX and BET studies. The size of MgO particles was in the range of 20 nm-25 nm. The surface area of nano composite was 632 m2 g(-1). Experimental results, based on batch mode of experiments, indicated that the adsorbent could remove 90% dye for the adsorbent dosage of 100 mg, at pH 7.0 and contact time of 120 min. The adsorption equilibrium data were well correlated for both, Langmuir and Freundlich isotherms. The monolayer adsorption capacity Qo was found to be 14.425 mg g(-1) for the composite. The kinetic adsorption data fitted the pseudo first order modeled by Lagergren and also intra particle diffusion. Removal efficiency of the composite adsorbent was higher than the uncoated adsorbents. Regeneration of exhausted adsorbent showed considerable improved variation in comparison to normal activated carbon materials. PMID:26364472

  9. Polymorphism Control in Nanostructured Metal Oxides

    NASA Astrophysics Data System (ADS)

    Sood, Shantanu

    Polymorphic phase transformations are common to all nanocrystalline binary metal oxides. The polymorphic nature of such metal oxides makes available a large number of phases with differing crystal structures, each stable under certain conditions of temperature, pressure, and/or particle size. These different crystal structures translate to unique physical and chemical properties for each structural class of polymorphs. Thus predicting when polymorphic phase transitions are likely to occur becomes important to the synthesis of stable functional materials with desired properties. Theoretical calculations using a heuristic approach have resulted in an accurate estimation of the critical particle size predicting metastable to stable phase transitions. This formula is applied to different case studies: for anatase to rutile titania; gamma-Alumina to alpha-Alumina; and tetragonal to monoclinic zirconia. The theoretical values calculated have been seen to be very close to the experimental results from the literature. Manifestation of the effect of phase transitions in nanostructured metal oxides was provided in the study of metastable to stable phase transitions in WO3. Nanowires of tungsten trioxide have been synthesized in-situ inside an electron microscope. Such structure of tungsten trioxide result due to a metastable to stable phase transformation, from the cubic to the monoclinic phase. The transformation is massive and complete. The structures formed are unique one-dimensional nanowires. Such a method can be scaled inside any equipment equipped with an electron gun, for example lithography systems either using STEM or E-beam lithography. Another study on nanowire formation in binary metal oxides involved the synthesis of stable orthorhombic MoO3 by means of blend electrospinning. Both a traditional single jet electrospinning set up and a novel high-throughput process to get high aspect ratio nanowires. The latter is a jet-controlled and flow controlled

  10. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  11. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  12. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  13. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  14. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  15. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  16. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  17. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  18. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  19. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  20. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  1. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  2. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  3. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  4. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  5. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  6. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  7. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  8. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  9. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  10. Enhancement of photoelectrochemical activity of SnS thin-film photoelectrodes using TiO2, Nb2O5, and Ta2O5 metal oxide layers

    NASA Astrophysics Data System (ADS)

    Vequizo, Junie Jhon M.; Yokoyama, Masanori; Ichimura, Masaya; Yamakata, Akira

    2016-06-01

    Tin sulfide (SnS) fine photoelectrodes fabricated by three-step pulsed electrodeposition were active for H2 evolution. The incident-photon-conversion-efficiency increases from 900 nm and offers a good fit with the absorption spectrum. The activity was enhanced by 3.4, 3.0, and 1.8 times compared to bare SnS by loading Nb2O5, TiO2, and Ta2O5, respectively. Nb2O5 was most efficient because its conduction band is low enough to facilitate effective electron transfer from SnS; it also has sufficiently high potential for H2 evolution. The overall activity is determined by the competitive interfacial electron transfer between SnS/metal-oxide and metal-oxide/water. Therefore, constructing appropriate heterojunctions is necessary for further improving photoelectrochemical systems.

  11. Reactor vessel using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  12. Bioavailability, Intracellular Mobilization of Nickel, and HIF-1α Activation in Human Lung Epithelial Cells Exposed to Metallic Nickel and Nickel Oxide Nanoparticles

    PubMed Central

    Liu, Xinyuan; Smith, Ashley; McNeil, Kevin; Weston, Paula; Zhitkovich, Anatoly; Hurt, Robert; Kane, Agnes B.

    2011-01-01

    Micron-sized particles of poorly soluble nickel compounds, but not metallic nickel, are established human and rodent carcinogens. In contrast, little is known about the toxic effects of a growing number of Ni-containing materials in the nano-sized range. Here, we performed physicochemical characterization of NiO and metallic Ni nanoparticles and examined their metal ion bioavailability and toxicological properties in human lung epithelial cells. Cellular uptake of metallic Ni and NiO nanoparticles, but not metallic Ni microparticles, was associated with the release of Ni(II) ions after 24–48 h as determined by Newport Green fluorescence. Similar to soluble NiCl2, NiO nanoparticles induced stabilization and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) transcription factor followed by upregulation of its target NRDG1 (Cap43). In contrast to no response to metallic Ni microparticles, nickel nanoparticles caused a rapid and prolonged activation of the HIF-1α pathway that was stronger than that induced by soluble Ni (II). Soluble NiCl2 and NiO nanoparticles were equally toxic to H460 human lung epithelial cells and primary human bronchial epithelial cells; metallic Ni nanoparticles showed lower toxicity and Ni microparticles were nontoxic. Cytotoxicity induced by all forms of Ni occurred concomitant with activation of an apoptotic response, as determined by dose- and time-dependent cleavage of caspases and poly (ADP-ribose) polymerase. Our results show that metallic Ni nanoparticles, in contrast to micron-sized Ni particles, activate a toxicity pathway characteristic of carcinogenic Ni compounds. Moderate cytotoxicity and sustained activation of the HIF-1α pathway by metallic Ni nanoparticles could promote cell transformation and tumor progression. PMID:21828359

  13. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    PubMed Central

    Wan, Rong; Mo, Yiqun; Zhang, Xing; Chien, Sufan; Tollerud, David J.; Zhang, Qunwei

    2009-01-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO2 to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO2 and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO2, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression.. Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO2. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2 (TIMP-2) in U937 cells after

  14. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    SciTech Connect

    Wan Rong; Mo Yiqun; Zhang Xing; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2008-12-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO{sub 2} to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO{sub 2} and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression{sub ..} Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2

  15. INVESTIGATION ON DURABILITY AND REACTIVITY OF PROMISING METAL OXIDE SORBENTS DURING SULFIDATION AND REGENERATION. QUARTERLY AND FINAL REPORT

    SciTech Connect

    K.C. KWON

    1998-08-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Experiments on removal reaction of H{sub 2}S from coal gas mixtures with formulated metal oxide sorbents were conducted in a batch reactor or a differential reactor. The objectives of this research project are to formulate promising metal oxide sorbents for removal of sulfur from coal gas mixtures, to find initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of hydrogen, nitrogen and moisture on dynamic absorption and equilibrium absorption at various absorption temperatures. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders, and calcining these powder mixtures. The Research Triangle Institute (RTI), a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide, and review experimental results.

  16. Metal oxide nanoparticles with low toxicity.

    PubMed

    Ng, Alan Man Ching; Guo, Mu Yao; Leung, Yu Hang; Chan, Charis M N; Wong, Stella W Y; Yung, Mana M N; Ma, Angel P Y; Djurišić, Aleksandra B; Leung, Frederick C C; Leung, Kenneth M Y; Chan, Wai Kin; Lee, Hung Kay

    2015-10-01

    A number of different nanomaterials produced and incorporated into various products are rising. However, their environmental hazards are frequently unknown. Here we consider three different metal oxide compounds (SnO2, In2O3, and Al2O3), which have not been extensively studied and are expected to have low toxicity. This study aimed to comprehensively characterize the physicochemical properties of these nanomaterials and investigate their toxicity on bacteria (Escherichia coli) under UV illumination and in the dark, as well as on a marine diatom (Skeletonema costatum) under ambient illumination/dark (16-8h) cycles. The material properties responsible for their low toxicity have been identified based on comprehensive experimental characterizations and comparison to a metal oxide exhibiting significant toxicity under illumination (anatase TiO2). The metal oxide materials investigated exhibited significant difference in surface properties and interaction with the living organisms. In order for a material to exhibit significant toxicity, it needs to be able to both form a stable suspension in the culture medium and to interact with the cell walls of the test organism. Our results indicated that the observed low toxicities of the three nanomaterials could be attributed to the limited interaction between the nanoparticles and cell walls of the test organisms. This could occur either due to the lack of significant attachment between nanoparticles and cell walls, or due to their tendency to aggregate in solution. PMID:26143160

  17. Antiviral activity of oxidized polyamines.

    PubMed

    Bachrach, U

    2007-08-01

    Polyamines, oxidized by serum amine oxidase, yield aminoaldehydes and hydrogen peroxide. Acrolein may be formed from the aminoaldehydes by a spontaneous beta-elimination process. These oxidation products "oxidized polyamines" inhibit bacterial growth and exhibit anticancer activity. The antimicrobial activity of oxidized polyamines is not limited to bacteria; and the inactivation of bacterial viruses, plant viruses and animal viruses, was also reported. Bacteriophages of the T-odd series are permeable and were inactivated by oxidized polyamines. The inactive phages absorb to their bacterial host and injected their DNA, which formed a stable inactive complex with the aminoaldehydes. Aminoaldehydes, synthesized chemically, also inactivated viruses. The growth of the plant viruses: Tobacco mosaic virus, Potato virus X and Alfalfa mosaic virus was also inhibited by oxidized polyamines. The animal viruses, which were inactivated by oxidized polyamines included Myxoviruses (influenza and Newcastle disease viruses), West Nile, vaccinia and Sindbis viruses. These findings may have practical implications. PMID:17429570

  18. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  19. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, Thomas M.; Poco, John F.; Hrubesh, Lawrence W.; Thomas, Ian M.

    1995-01-01

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  20. Removal of Metallic Iron on Oxide Slags

    NASA Astrophysics Data System (ADS)

    Shannon, George N.; Fruehan, R. J.; Sridhar, Seetharaman

    2009-10-01

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere ({p_{O2}} of approximately 10-4 atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400 °C and in 160 seconds at 1600 °C.

  1. Removal of metallic iron on oxide slags

    SciTech Connect

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  2. One-Step Fabrication of Microchannels Lined with a Metal Oxide Coating.

    PubMed

    Patil, Sandip; Ranjan, Amit; Maitra, Tanmoy; Sharma, Ashutosh

    2016-04-27

    We demonstrate a simple, single-step method for metal/metal oxide coating on interior walls of microchannels in an elastomeric material like PDMS, which is the mainstay of microfluidic devices. The fabrication process involves electrodeposition of cuprous oxide on a metallic wire or a sheet, embedding it inside a PDMS matrix along with the cross-linker, curing and then swelling the PDMS elastomer, and finally pulling out the template metal wire or the metal sheet from the PDMS matrix. Stronger attachment of the metal oxide layer to PDMS allows the transfer of the metal oxide coating originally present on the template surface (wire or sheet) to the channel wall resulting in a microchannel/microslit lined with the metal/metal oxide layer. In view of the catalytic activity associated with transition metal oxides, this simple method offers a cost-effective and versatile technique to fabricate microfluidic and lab-on-a-chip devices which can be utilized as microcatalytic reactors or chemical filters. As a proof of concept, we have successfully tested the metal oxide coated microchannels and microslits as active sites for adsorption of iodide ions. PMID:27035524

  3. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  4. Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials

    SciTech Connect

    Singh, Ranjan; Xiong, Jie; Azad, Md A.; Yang, Hao; Trugman, Stuart A.; Jia, Quanxi; Taylor, Antoinette; Chen, Houtong

    2012-07-13

    The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

  5. Leukocytic oxygen activation and microbicidal oxidative toxins.

    PubMed

    Hurst, J K; Barrette, W C

    1989-01-01

    Following a brief introduction of cellular response to stimulation comprising leukocyte activation, three major areas are discussed: (1) the neutrophil oxidase; (2) myeloperoxidase (MPO)-dependent oxidative microbicidal reactions; and (3) MPO-independent oxidative reactions. Topics included in section (A) are current views on the activation mechanism, redox composition, structural and topographic organization of the oxidase, and its respiratory products. In section (B), emphasis is placed on recent research on cidal mechanisms of HOCl, including the oxidative biochemistry of active chlorine compounds, identification of sites of lesions in bacteria, and attendant metabolic consequences. In section (C), we review the (bio)chemistry of H2O2 and .OH microbicidal reactions, with particular attention being given to addressing the controversial issue of probe methods to identify .OH radical and critical assessment of the recent proposal that MPO-independent killing arises from site-specific metal-catalyzed Fenton-type chemistry. PMID:2548810

  6. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  7. Graphene oxide-based flexible metal-insulator-metal capacitors

    NASA Astrophysics Data System (ADS)

    Bag, A.; Hota, M. K.; Mallik, S.; Maiti, C. K.

    2013-05-01

    This work explores the fabrication of graphene oxide (GO)-based metal-insulator-metal (MIM) capacitors on flexible polyethylene terephthalate (PET) substrates. Electrical properties are studied in detail. A high capacitance density of ˜4 fF µm-2 measured at 1 MHz and permittivity of ˜6 have been obtained. A low voltage coefficient of capacitance, VCC-α, and a low dielectric loss tangent indicate the potential of GO-based MIM capacitors for RF applications. The constant voltage stressing study has shown a high reliability against degradation up to a projected period of 10 years. Degradation in capacitance of the devices on flexible substrates has been studied by bending radius down to 1 cm even up to 6000 times of repeated bending.

  8. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis.

    PubMed

    Pal, Jaya; Pal, Tarasankar

    2015-09-14

    The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis. PMID:26255749

  9. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis

    NASA Astrophysics Data System (ADS)

    Pal, Jaya; Pal, Tarasankar

    2015-08-01

    The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis.

  10. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-01

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga2O3, In2O3, and SnO2 on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga2O, In2O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO2, somewhat lower for In2O3, and the lowest for Ga2O3. Our findings can be generalized to further oxides that possess related sub-oxides.

  11. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    SciTech Connect

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-23

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  12. Sorption mechanisms of metals to graphene oxide

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Duster, Thomas A.; Szymanowski, Jennifer E. S.; Na, Chongzheng; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    Environmental toxic metal contamination remediation and prevention is an ongoing issue. Graphene oxide is highly sorptive for many heavy metals over a wide pH range under different ionic strength conditions. We present x-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Pb(II), Cd(II) and U(VI) ions onto multi-layered graphene oxide (MLGO). Analysis indicates that the dominant sorption mechanism of Pb to MLGO changes as a function of pH, with increasing inner sphere contribution as pH increases. In contrast, the sorption mechanism of Cd to MLGO remains constant under the studied pH range. This adsorption mechanism is an electrostatic attraction between the hydrated Cd+2 ion and the MLGO surface. The U(VI), present as the uranyl ion, changes only subtly as a function of pH and is bound to the surface via an inner sphere bond. Knowledge of the binding mechanism for each metal is necessary to help in optimizing environmental remediation or prevention in filtration systems.

  13. AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions.

    PubMed

    Gao, Chao; Yu, Xin-Yao; Xu, Ren-Xia; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-09-26

    This work described the preparation, characterization, and electrochemical behavior toward heavy metal ions of the AlOOH-reduced graphene oxide nanocomposites. This new material was synthesized through a green one-pot hydrothermal method. The morphologic and structure of the nanocomposites were characterized using atomic force microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoemission spectroscopy, Fourier transform-infrared spectroscopy, and transmission electron microscopy. Electrochemical properties were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The chemical and electrochemical parameters that have influence on deposition and stripping of metal ions, such as pH value, deposition potential, and deposition time, were also studied. Due to the strong affinity of AlOOH to heavy metal ions and the fast electron-transfer kinetics of graphene, the combination of solid-phase extraction and stripping voltammetric analysis allowed fast and sensitive determination of Cd(II) and Pb(II) in drinking water, making these new nanocomposites promising candidates for practical applications in the fields of detecting heavy metal ions. Most importantly, these new nanocomposites may possess many unknown properties waiting to be explored. PMID:22924704

  14. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  15. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles

  16. Thermally stable crystalline mesoporous metal oxides with substantially uniform pores

    SciTech Connect

    Wiesner, Ulrich; Orilall, Mahendra Christopher; Lee, Jinwoo; DiSalvo, Jr., Francis J

    2015-01-27

    Highly crystalline metal oxide-carbon composites, as precursors to thermally stable mesoporous metal oxides, are coated with a layer of amorphous carbon. Using a `one-pot` method, highly crystalline metal oxide-carbon composites are converted to thermally stable mesoporous metal oxides, having highly crystalline mesopore walls, without causing the concomitant collapse of the mesostructure. The `one-pot` method uses block copolymers with an sp or sp 2 hybridized carbon containing hydrophobic block as structure directing agents which converts to a sturdy, amorphous carbon material under appropriate heating conditions, providing an in-situ rigid support which maintains the pores of the oxides intact while crystallizing at temperatures as high as 1000 deg C. A highly crystalline metal oxide-carbon composite can be heated to produce a thermally stable mesoporous metal oxide consisting of a single polymorph.

  17. ROLE OF IRON AND MANGANESE OXIDES IN BIOSOLIDS AND BIOSOLIDS-AMENDED SOILS ON METAL BINDING

    EPA Science Inventory

    Biosolids contain high levels of Fe, Mn, and Al. Surfaces of freshly precipitated metal oxides, especially Fe and Mn, are known to be highly active sites for most dissolved metal ion species. We nw have metal sorption/desorption data that illustrate the importance of Fe and Mn fr...

  18. Process for Producing Metal Compounds From Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be fiber processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  19. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  20. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  1. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  2. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    PubMed

    Liu, Hongfei; Moré, René; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La(1-x)Sr(x)BO3 perovskites and La(2-x)Sr(x)BO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts. PMID:26771537

  3. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan; Jia, Quanxi

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  4. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  5. Synthesis and electronic applications of oxide-metal eutectic composites

    SciTech Connect

    Holder, J.D.; Cochran, J.K.; Hill, D.N.; Chapman, A.T.; Clark, G.W.

    1980-01-01

    A review is given of important developments in the synthesis of oxide-metal eutectic composites and the composite application in the continuing development of field emitters. Known metal oxide-metal binary and ternary eutectic systems are listed. The synthesis, electrical conductivity, thermodynamics, and applications are discussed. (FS)

  6. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  7. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  8. Preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  9. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  10. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  11. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGESBeta

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; Naalla, Mahesh

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  12. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, April--June 1995

    SciTech Connect

    Kwon, K.C.

    1995-07-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbents for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes. The Research Triangle Institute, a sub-contractor of this research project, will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide sorbents as well as regeneration of sulfur-loaded metal oxide sorbents, and review experimental results.

  13. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.

    PubMed

    Runnerstrom, Evan L; Bergerud, Amy; Agrawal, Ankit; Johns, Robert W; Dahlman, Clayton J; Singh, Ajay; Selbach, Sverre M; Milliron, Delia J

    2016-05-11

    Defects may tend to make crystals interesting but they do not always improve performance. In doped metal oxide nanocrystals with localized surface plasmon resonance (LSPR), aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons. Such electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near-field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, we report the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3). Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm(2)V(-1) s(-1) are measured optically, well above the optical mobility for tin-doped indium oxide (ITO) nanocrystals. We investigate the microscopic mechanisms underlying this enhanced mobility with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. From the absorption spectra of single Ce:In2O3 nanocrystals, we determine the dielectric function and by simulation predict strong near-field enhancement of mid-IR light, especially around the vertices of our synthesized nanocubes. PMID:27111427

  14. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-18

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF. PMID:26587567

  15. Metal accumulation and oxidative stress biomarkers in octopus (Octopus vulgaris) from Northwest Atlantic.

    PubMed

    Semedo, Miguel; Reis-Henriques, Maria Armanda; Rey-Salgueiro, Ledicia; Oliveira, Marta; Delerue-Matos, Cristina; Morais, Simone; Ferreira, Marta

    2012-09-01

    Metals are ubiquitous in the environment and accumulate in aquatic organisms and are known for their ability to enhance the production of reactive oxygen species (ROS). In aquatic species, oxidative stress mechanisms have been studied by measuring antioxidant enzyme activities and oxidative damages in tissues. The aim of this study was to apply and validate a set of oxidative stress biomarkers and correlate responses with metal contents in tissues of common octopus (Octopus vulgaris). Antioxidant enzyme activity (catalase--CAT, superoxide dismutase--SOD and glutathione S-transferases--GST), oxidative damages (lipid peroxidation--LPO and protein carbonyl content--PCO) and metal content (Cu, Zn, Pb, Cd and As) in the digestive gland and arm of octopus, collected in the NW Portuguese coast in different periods, were assessed after capture and after 14 days in captivity. CAT and SOD activities were highly responsive to fluctuations in metal concentrations and able to reduce oxidative damage, LPO and PCO in the digestive gland. CAT activity was also positively correlated with SOD and GST activities, which emphasizes that the three enzymes respond in a coordinated way to metal induced oxidative stress. Our results validate the use of oxidative stress biomarkers to assess metal pollution effects in this ecological and commercial relevant species. Moreover, octopus seems to have the ability to control oxidative damage by triggering an antioxidant enzyme coordinated response in the digestive gland. PMID:22796413

  16. Oxidation catalysts comprising metal exchanged hexaaluminate wherein the metal is Sr, Pd, La, and/or Mn

    SciTech Connect

    Wickham, David; Cook, Ronald

    2008-10-28

    The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).

  17. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  18. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yuwen, Lihui; Xu, Fei; Xue, Bing; Luo, Zhimin; Zhang, Qi; Bao, Biqing; Su, Shao; Weng, Lixing; Huang, Wei; Wang, Lianhui

    2014-05-01

    A general and facile method for water-dispersed noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets (NM-MoS2 NSs) has been developed. By using sodium carboxymethyl cellulose as a stabilizer, well-dispersed NM-MoS2 NSs with homogeneously deposited noble metal nanocrystals (NM NCs) can be synthesized in aqueous solutions. Due to the transition from the semiconducting 2H phase to the metallic 1T phase, the chemically exfoliated MoS2 (ce-MoS2) NSs have improved electrochemical activity. The partially metallic nature of the ce-MoS2 NSs and the catalytic activity of the NM NCs synergistically make NM-MoS2 NSs a potential electrochemical catalyst. For the first time, Pd-MoS2 NSs were used as an electrocatalyst for methanol oxidation in alkaline media. The results showed that Pd-MoS2 NSs have enhanced catalytic activity with 2.8-fold anodic peak current mass density compared to a commercial Pd/C catalyst, suggesting potential for application in direct methanol fuel cells (DMFCs).A general and facile method for water-dispersed noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets (NM-MoS2 NSs) has been developed. By using sodium carboxymethyl cellulose as a stabilizer, well-dispersed NM-MoS2 NSs with homogeneously deposited noble metal nanocrystals (NM NCs) can be synthesized in aqueous solutions. Due to the transition from the semiconducting 2H phase to the metallic 1T phase, the chemically exfoliated MoS2 (ce-MoS2) NSs have improved electrochemical activity. The partially metallic nature of the ce-MoS2 NSs and the catalytic activity of the NM NCs synergistically make NM-MoS2 NSs a potential electrochemical catalyst. For the first time, Pd-MoS2 NSs were used as an electrocatalyst for methanol oxidation in alkaline media. The results showed that Pd-MoS2 NSs have enhanced catalytic activity with 2.8-fold anodic peak current mass density compared to a commercial Pd/C catalyst, suggesting potential for application in direct methanol fuel cells (DMFCs

  19. Reaction of ethanol on oxidized and metallic cobalt surfaces

    NASA Astrophysics Data System (ADS)

    Hyman, Matthew P.; Vohs, John M.

    2011-02-01

    The reaction of ethanol on metallic and oxidized cobalt surfaces was studied using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) in order to determine the dependence of the reaction pathways on the cobalt oxidation state. The primary reaction for ethoxide species on metallic cobalt surfaces was decarbonylation producing CO, H 2 and carbon. This reaction was facile and occurred below 400 K. In contrast, CoO x surfaces which predominantly contained Co 2+ were selective for the dehydrogenation of ethoxide groups to produce acetaldehyde at 400 K. A fraction of the acetaldehyde molecules produced by this pathway were further oxidized to acetate which decomposed to produce CO 2 at 495 K. More highly oxidized Co surfaces that contained both CO 2+ and Co 3+ were active for the complete oxidation of ethanol producing CO, CO 2, and H 2O as the primary products. The insights that these results provide for understanding the mechanism of the steam reforming of ethanol on cobalt catalysts is discussed.

  20. Effects of Reduction Temperature and Metal-support Interactions on the Catalytic Activity of Pt/γ-Al2O3 and Pt/TiO2 for the Oxidation of CO in the Presence and Absence of H2

    SciTech Connect

    Alexeev, Oleg S.; Chin, Soo Yin; Engelhard, Mark H.; Ortiz-Soto, Lorna; Amiridis, Michael D.

    2005-12-15

    TiO2- and ?-Al2O3-supported Pt catalysts were characterized by HRTEM, XPS, EXAFS, and in-situ FTIR after activation at various conditions and their catalytic properties were examined for the oxidation of CO in the absence and presence of H2 (PROX). When ?-Al2O3 was used as the support, the catalytic, electronic, and structural properties of the Pt particles formed were not affected substantially by the pretreatment conditions. In contrast, the surface properties and catalytic activity of Pt/TiO2 were strongly influenced by the pretreatment conditions. In this case, an increase in the reduction temperature led to higher electron density on Pt, altering its chemisorptive properties, weakening the Pt-CO bonds, and increasing its activity for the oxidation of CO. The in-situ FTIR data suggest that both the terminal and bridging CO species adsorbed on fully reduced Pt are active for this reaction. The high activity of Pt/TiO2 for the oxidation of CO can also be attributed to the ability of TiO2 to provide or stabilize highly reactive oxygen species at the metal-support interface. However, such species appear to be more reactive towards H2 than CO. Consequently, Pt/TiO2 shows substantially lower selectivities towards CO oxidation under PROX conditions than Pt/?-Al2O3.

  1. Effects of Reduction Temperature and Metal-Support Interactions on the Catalytic Activity of Pt/g-Al2O3 and Pt/TiO2 for the Oxidation of CO in the Presence and Absence of H2.

    SciTech Connect

    Alexeev,O.; Chin, S.; Engelhard, M.; Ortiz-Soto, L.; Amiridis, M.

    2005-01-01

    TiO2- and -Al2O3-supported Pt catalysts were characterized by HRTEM, XPS, EXAFS, and in situ FTIR spectroscopy after activation at various conditions, and their catalytic properties were examined for the oxidation of CO in the absence and presence of H2 (PROX). When {gamma}-Al{sub 2}O{sub 3} was used as the support, the catalytic, electronic, and structural properties of the Pt particles formed were not affected substantially by the pretreatment conditions. In contrast, the surface properties and catalytic activity of Pt/TiO2 were strongly influenced by the pretreatment conditions. In this case, an increase in the reduction temperature led to higher electron density on Pt, altering its chemisorptive properties, weakening the Pt-CO bonds, and increasing its activity for the oxidation of CO. The in situ FTIR data suggest that both the terminal and bridging CO species adsorbed on fully reduced Pt are active for this reaction. The high activity of Pt/TiO2 for the oxidation of CO can also be attributed to the ability of TiO2 to provide or stabilize highly reactive oxygen species at the metal-support interface. However, such species appear to be more reactive toward H{sub 2} than CO. Consequently, Pt/TiO{sub 2} shows substantially lower selectivities toward CO oxidation under PROX conditions than Pt/{gamma}-Al{sub 2}O{sub 3}.

  2. Effects of reduction temperature and metal-support interactions on the catalytic activity of Pt/gamma-Al2O3 and Pt/TiO2 for the oxidation of CO in the presence and absence of H2.

    PubMed

    Alexeev, Oleg S; Chin, Soo Yin; Engelhard, Mark H; Ortiz-Soto, Lorna; Amiridis, Michael D

    2005-12-15

    TiO2- and gamma-Al2O3-supported Pt catalysts were characterized by HRTEM, XPS, EXAFS, and in situ FTIR spectroscopy after activation at various conditions, and their catalytic properties were examined for the oxidation of CO in the absence and presence of H2 (PROX). When gamma-Al2O3 was used as the support, the catalytic, electronic, and structural properties of the Pt particles formed were not affected substantially by the pretreatment conditions. In contrast, the surface properties and catalytic activity of Pt/TiO2 were strongly influenced by the pretreatment conditions. In this case, an increase in the reduction temperature led to higher electron density on Pt, altering its chemisorptive properties, weakening the Pt-CO bonds, and increasing its activity for the oxidation of CO. The in situ FTIR data suggest that both the terminal and bridging CO species adsorbed on fully reduced Pt are active for this reaction. The high activity of Pt/TiO2 for the oxidation of CO can also be attributed to the ability of TiO2 to provide or stabilize highly reactive oxygen species at the metal-support interface. However, such species appear to be more reactive toward H2 than CO. Consequently, Pt/TiO2 shows substantially lower selectivities toward CO oxidation under PROX conditions than Pt/gamma-Al2O3. PMID:16375316

  3. Method of making controlled morphology metal-oxides

    DOEpatents

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor to metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.

  4. Phenomenological theory of bulk diffusion in metal oxides

    NASA Astrophysics Data System (ADS)

    Chuvil'deev, V. N.; Smirnova, E. S.

    2016-07-01

    Phenomenological description of bulk diffusion in oxide ceramics has been proposed. Variants of vacancy and vacancy-free diffusion models have been considered. In the vacancy models, ion migration is described as a fluctuation with the formation of a "liquid corridor," along which the diffusion ion transport in a "melt" is performed, or, as a fluctuation with the formation of an "empty corridor," in which the ion motion proceeds without activation. The vacancy-free model considers a fluctuation with the formation of a spherical liquid region whose sizes correspond to the first coordination sphere. It has been shown that both the vacancy models work in cubic metal oxides and the vacancy-free model is effective for describing diffusion in oxides having a noncubic structure. Detailed comparison of the models developed has been performed. It has been shown that the values of the activation energies for diffusion of metal and oxygen ions agree with the published data on bulk diffusion in stoichiometric oxide ceramics.

  5. Studying Activity Series of Metals.

    ERIC Educational Resources Information Center

    Hoon, Tien-Ghun; And Others

    1995-01-01

    Presents teaching strategies that illustrate the linking together of numerous chemical concepts involving the activity of metals (quantitative analysis, corrosion, and electrolysis) through the use of deep-level processing strategies. Concludes that making explicit links in the process of teaching chemistry can lead effectively to meaningful…

  6. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication. PMID:26350735

  7. Catalytic activity of noble metals for metal-assisted chemical etching of silicon

    NASA Astrophysics Data System (ADS)

    Yae, Shinji; Morii, Yuma; Fukumuro, Naoki; Matsuda, Hitoshi

    2012-06-01

    Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum, and rhodium.

  8. Catalytic activity of noble metals for metal-assisted chemical etching of silicon

    PubMed Central

    2012-01-01

    Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum, and rhodium. PMID:22738277

  9. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  10. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation.

    PubMed

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  11. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-03-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation.

  12. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    PubMed Central

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  13. Noble metal (Ru{sup III}, Pd{sup II}, Pt{sup II}) substituted {open_quotes}sandwich{close_quotes} type polyoxometalates: Preparation, characterization, and catalytic activity in oxidations of alkanes and alkenes by peroxides

    SciTech Connect

    Neumann, R.; Khenkin, A.M.

    1995-11-08

    The polyoxometalates substituted with noble metals, Pd(II), Pt(II) and Ru(III), K{sub 12}([WZnPd{sup II}{sub 2}(H{sub 2}O){sub 2}](ZnW{sub 9}O{sub 34}){sub 2}){center_dot}38H{sub 2}O, K{sub 12}[WZnPt{sup II}{sub 2}(H{sub 2}O){sub 2}][(ZnW{sub 9}O{sub 34}){sub 2}]{center_dot}36H{sub 2}O, and Na{sub 11}[WZnRu{sup III}{sub 2}(OH)(H{sub 2}O)][(ZnW{sub 9}O{sub 34}){sub 2}]{center_dot}42H{sub 2}O, were prepared by exchange of labile zinc atoms with noble metal atoms from the isostructural starting material, N{sub 12}-[WZn{sub 3}(H{sub 2}O){sub 2}][(ZnW{sub 9}O{sub 34}){sub 2}]{center_dot}46H{sub 2}O. Magnetic susceptibility studies as a function of temperature provide convincing evidence of two ruthenium (III) centers with no magnetic interaction between them. The catalytic activity of these compounds was tested for the oxidation of alkenes and alkanes using aqueous 30% hydrogen peroxide and 70% tert-butyl hydroperoxide as oxidants. The alkene oxidation proceeded in high reactivity and moderate selectivity to the epoxide product using 30% H{sub 2}O{sub 2}. Kinetic profiles as well as UV-vis and IR spectra before, during and after the reaction indicate that the catalysts are stable throughout the reaction. Formation of epoxides rather than ketonization in the reaction of terminal alkenes as well as low reactivity with iodosobenzene indicates that the reaction is tungsten centered and not noble metal centered. Oxidation of alkenes with tert-butyl hydroperoxide gave mostly allylic oxidation and/or addition of tert-butyl alcohol to the double bond. Oxidation of cyclic alkanes such as cyclohexane and adamantane was successful with tert-butyl hydroperoxide with catalytic activity 10 times higher than previously found for transition metal substituted Keggin compounds. Ratios of hydroxylation of adamantane at tertiary vs secondary positions indicates different active species in the palladium-, platinum-, and ruthenium substituted-polyoxometalates.

  14. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  15. Coronal Metallicities of Active Binaries

    NASA Astrophysics Data System (ADS)

    Kashyap, V.; Drake, J. J.; Pease, D. O.; Schmitt, J. H. M. M.

    1998-09-01

    We analyze EUV and X-ray data on a sample of X-ray active binary stars to determine coronal abundances. EUVE spectrometer data are used to obtain line fluxes, which are then used to determine Differential Emission Measures (DEMs). The continuum emission predicted for these DEMs (constrained at high temperatures by measurements in the X-ray regime where available) are then compared with EUVE/DS counts to derive coronal metallicities. These measurements indicate whether the coronae on these stars are metal deficient (the ``MAD Syndrome'') or subject to the FIP-effect (low First Ionization Potential elements have enhanced abundances relative to the photospheres).

  16. Laser Processing of Metal Oxides for Plasmonic Applications

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Breckenfeld, Eric; Charipar, Nicholas; Pique, Alberto

    Noble metals such as Au and Ag have been used traditionally for plasmonic devices. However, conventional metals are not suitable for near infrared (IR) plasmonic applications due to their relatively large optical losses at these wavelengths. Metal oxides, on the other hand, have been considered for low loss metallic components in the near IR because they can provide a tunable carrier density by doping. The zero-cross-over permittivity values of these metal oxides, for example, can easily be tuned from 1.0 µm to 3 µm by adjusting doping levels. Optical losses in devices made from these metal oxide materials are generally found to be much lower than those obtained with conventional metals. We have investigated various laser processing techniques for synthesizing several types of metal oxides. First, pulsed laser deposition was used to grow metal oxide thin films such as, Al-doped ZnO, Sn-doped In2O3 and VO2. Second, a laser sintering technique was used to improve the properties of solution-processed VO2 coatings. Third, a laser printing technique was used to produce metal oxide films. We will present details on the use of laser processing techniques for synthesizing these metal oxides along with their electrical, optical, and structural properties. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  17. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  18. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  19. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-03-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg-1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents.

  20. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    PubMed Central

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-01-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg−1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents. PMID:25761448

  1. Prediction of electron energies in metal oxides.

    PubMed

    Walsh, Aron; Butler, Keith T

    2014-02-18

    The ability to predict energy levels in metal oxides is paramount to developinguseful materials, such as in the development of water photolysis catalysts and efficient photovoltaic cells. The binding energy of electrons in materials encompasses a wealth of information concerning their physicochemistry. The energies control the optical and electrical properties, dictating for which kinds of chemistry and physics a particular material is useful. Scientists have developed theories and models for electron energies in a variety of chemical systems over the past century. However, the prediction of quantitative energy levels in new materials remains a major challenge. This issue is of particular importance in metal oxide research, where novel chemistries have opened the possibility of a wide range of tailored systems with applications in important fields including light-emitting diodes, energy efficient glasses, and solar cells. In this Account, we discuss the application of atomistic modeling techniques, covering the spectrum from classical to quantum descriptions, to explore the alignment of electron energies between materials. We present a number of paradigmatic examples, including a series of oxides (ZnO, In2O3, and Cu2O). Such calculations allow the determination of a "band alignment diagram" between different materials and can facilitate the prediction of the optimal chemical composition of an oxide for use in a given application. Throughout this Account, we consider direct computational solutions in the context of heuristic models, which are used to relate the fundamental theory to experimental observations. We review a number of techniques that have been commonly applied in the study of electron energies in solids. These models have arisen from different answers to the same basic question, coming from solid-state chemistry and physics perspectives. We highlight common factors, as well as providing a critical appraisal of the strengths and weaknesses of each

  2. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt3M (M=Pt, Ru, Sn, Re, Rh, and Pd)

    PubMed Central

    Xu, Zhen-Feng; Wang, Yixuan

    2011-01-01

    The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt3Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol. PMID:22102920

  3. Effects of Alloyed Metal on the Catalysis Activity of Pt for Ethanol Partial Oxidation: Adsorption and Dehydrogenation on Pt(3)M (M=Pt, Ru, Sn, Re, Rh, and Pd).

    PubMed

    Xu, Zhen-Feng; Wang, Yixuan

    2011-10-27

    The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt(3)M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt(3)Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol. PMID:22102920

  4. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation

    PubMed Central

    2015-01-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx. PMID:24661269

  5. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation.

    PubMed

    Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M; Jaramillo, Thomas F

    2014-04-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO(x), a promising OER catalyst. We conclusively demonstrate that adding Au to MnO(x) significantly enhances OER activity relative to MnO(x) in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO(x) catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO(x) that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO(x). PMID:24661269

  6. Task-specific ionic liquid for solubilizing metal oxides.

    PubMed

    Nockemann, Peter; Thijs, Ben; Pittois, Stijn; Thoen, Jan; Glorieux, Christ; Van Hecke, Kristof; Van Meervelt, Luc; Kirchner, Barbara; Binnemans, Koen

    2006-10-26

    Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations. PMID:17048916

  7. PCDD/F catalysis by metal chlorides and oxides.

    PubMed

    Zhang, Mengmei; Yang, Jie; Buekens, Alfons; Olie, Kees; Li, Xiaodong

    2016-09-01

    Model fly ash (MFA) samples were composed of silica, sodium chloride, and activated carbon, and doped with metal (0.1 wt% Cu, Cr, Ni, Zn and Cd) chloride or oxide. Each sample was de novo tested at 350 °C for 1 h, in a flow of gas (N2, N2 + 10% O2, +21% O2 or +10% H2) to investigate the effect of metal catalyst and gas composition on PCDD/F formation. Total PCDD/F yield rises rapidly with oxygen content, while the addition of hydrogen inhibits the formation and chlorination of PCDD/F. The amount of PCDD on average rises linearly with the oxygen concentration, while that of PCDF follows a reaction order of about 1/2; thus the PCDF to PCDD ratio drops when more oxygen becomes available. Some samples do not follow this trend. Chlorides are much more active than oxides, yet there are marked differences between individual metals. Principal component analysis (PCA) was applied to study the signatures from all samples, showing their unique specificity and diversity. Each catalyst shows a different signature within its individual homologue groups, demonstrating that these signatures are not thermodynamically controlled. Average congener patterns do not vary considerably with oxygen content changing from oxidising (air) to reducing (nitrogen, hydrogen). PMID:27341157

  8. Miniaturized metal oxide pH sensors for bacteria detection.

    PubMed

    Uria, Naroa; Abramova, Natalia; Bratov, Andrey; Muñoz-Pascual, Francesc-Xavier; Baldrich, Eva

    2016-01-15

    It is well known that the metabolic activity of some microorganisms results in changes of pH of the culture medium, a phenomenon that can be used for detection and quantification of bacteria. However, conventional glass electrodes that are commonly used for pH measurements are bulky, fragile and expensive, which hinders their application in miniaturized systems and encouraged to the search for alternatives. In this work, two types of metal oxide pH sensors have been tested to detect the metabolic activity of the bacterium Escherichia coli (E. coli). These pH sensors were produced on silicon chips with platinum metal contacts, onto which thin layers of IrOx or Ta2O5 were incorporated by two different methods (electrodeposition and e-beam sputtering, respectively). In order to facilitate measurement in small sample volumes, an Ag/AgCl pseudo-reference was also screen-printed in the chip and was assayed in parallel to an external Ag/AgCl reference electrode. As it is shown, the developed sensors generated results indistinguishable from those provided by a conventional glass pH-electrode but could be operated in significantly smaller sample volumes. After optimization of the detection conditions, the metal oxide sensors are successfully applied for detection of increasing concentrations of viable E. coli, with detection of less than 10(3)cfu mL(-1) in undiluted culture medium in just 5h. PMID:26592620

  9. Activation of the C-H bond by metal complexes

    NASA Astrophysics Data System (ADS)

    Shilov, Aleksandr E.; Shul'pin, Georgiy B.

    1990-09-01

    Reactions involving the cleavage of C-H bonds by metal complexes in saturated and aromatic hydrocarbons and also in other compounds are examined. Some of these processes occur with formation of a carbon-metal bond, whilst in others the interaction of the complexes with the hydrocarbon takes place without direct contact between the metal atom and the C-H bonds. Metal compounds are widely used as initiators of the liquid-phase oxidation of hydrocarbons at relatively low temperatures. There is a prospect of creating new technologies for the chemical processing of petroleum and gas hydrocarbons, whereby they can be converted into valuable products, for example, into alcohols, ketones, and carboxylic acids, on the basis of processes involving metal complexes. The study of the metal complex activation of the C-H bond also makes it possible to understand and model the metalloenzyme-catalysed hydrocarbon oxidation reactions in the living cell. The bibliography includes 340 references.

  10. Enhanced electrochemical supercapacitance of binder-free nanoporous ternary metal oxides/metal electrode.

    PubMed

    Gao, J J; Qiu, H-J; Wen, Y R; Chiang, F-K; Wang, Y

    2016-07-15

    Free-standing nanoporous Ni-Cu-Mn mixed metal oxides on metal with a high surface area was fabricated by chemically dealloying a Ni8Cu12Mn80 single-phase precursor, followed by electrochemical oxidation in an alkaline solution. Electrochemical analysis shows that first Cu and Mn-based metal oxides formed by the electrochemical oxidation. Ni-based oxides grow later with the increase of electrochemical CV cycles and mix with the Cu/Mn oxides, forming a relatively stable mixed metal oxides thin film on metal ligament network. Due to the different electrochemical properties of each metal and the synergetic effect between them, the mixed ternary metal oxides formed on metal nano-ligament can operate stably between a wide potential window (1.5V) in 1.0M KOH aqueous solution when tested as a free-standing supercapacitor electrode. Due to the high volumetric surface area, wide operating potential window and excellent conductivity, the nanoporous metal oxides@metal composite exhibits a high volumetric capacitance (∼500Fcm(-3)), high energy density (∼38mWhcm(-3)) and good cycling stability. PMID:27089016

  11. Polarization-Mediated Thermal Stability of Metal/Oxide Heterointerface.

    PubMed

    Zhang, Qintong; You, Lu; Shen, Xi; Wan, Caihua; Yuan, Zhonghui; Zhang, Xuan; Huang, Li; Kong, Wenjie; Wu, Hao; Yu, Richeng; Wang, Junling; Han, Xiufeng

    2015-11-18

    A polarization-mediated heterointerface is designed to research the thermal stability of magnetic metal/oxide interfaces. Using polarization engineering, the thermal stability of the interface between BiFeO3 and CoFeB can be improved by about 100°C. This finding provides new insight into the chemistry of the metal/oxide heterointerface. PMID:26421975

  12. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  13. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  14. Oxidation and electrical conductivity of metal chain dioximes

    NASA Astrophysics Data System (ADS)

    Oza, A. T.

    1993-08-01

    Metal chain dioximes having uninterrupted metal chain systems were prepared and oxidized with halogens. Resistivities were found to be lowered because of oxidation. Two new complexes, phenathra-quinone-dioxime and ClS2 substituted Ni(Hdmg)2 [Ni(dad)2], were also prepared. A.c. resistivities were also measured.

  15. Laser-assisted formation of metallic oxide microtubes

    SciTech Connect

    Nanai, L.; George, T.F.

    1997-01-01

    The fabrication of metallic oxide microtubes is possible directly, without any support structure, by continuous wave infrared laser-assisted oxidation of the metal in air. The particular case presented is the growth of tube-like vanadium pentoxide microcrystals grown in our laboratories. {copyright} {ital 1997 Materials Research Society.}

  16. Transtion metal oxides for solar water splitting devices

    NASA Astrophysics Data System (ADS)

    Smith, Adam M.

    Although the terrestrial flux of solar energy is enough to support human endeavors, storage of solar energy remains a significant challenge to large-scale implementation of solar energy production. One route to energy storage involves the capture and conversion of sunlight to chemical species such as molecular hydrogen and oxygen via water splitting devices. The oxygen evolution half-reaction particularly suffers from large kinetic overpotentials. Additionally, a photoactive material that exhibits stability in oxidizing conditions present during oxygen evolution represents a unique challenge for devices. These concerns can be potentially addressed with a metal oxide photoanode coupled with efficient water oxidation electrocatalysts. Despite decades of research, structure-composition to property relationships are still needed for the design of metal oxide oxygen evolution materials. This dissertation investigates transition metal oxide materials for the oxygen evolution portion of water splitting devices. Chapter I introduces key challenges for solar driven water splitting. Chapter II elucidates the growth mechanism of tungsten oxide (WOX) nanowires (NWs), a proposed photoanode material for water splitting. Key findings include (1) a planar defect-driven pseudo-one-dimensional growth mechanism and (2) morphological control through the supersaturation of vapor precursors. Result 1 is significant as it illustrates that common vapor-phase syntheses of WOX NWs depend on the formation of planar defects through NWs, which necessitates reconsideration of WOX as a photoanode. Chapter III presents work towards (1) single crystal WOX synthesis and characterization and (2) WOX NW device fabrication. Chapter IV makes use of the key result that WOX NWs are defect rich and therefore conductive in order to utilize them as a catalyst scaffold for oxygen evolution in acidic media. Work towards utilizing NW scaffolds include key results such as stability under anodic potentials and

  17. Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization.

    PubMed

    Bai, Yu; Zhang, Wenhua; Zhang, Zhenhua; Zhou, Jie; Wang, Xijun; Wang, Chengming; Huang, Weixin; Jiang, Jun; Xiong, Yujie

    2014-10-22

    Heterogeneous catalysis often involves charge transfer from catalyst surface to adsorbed molecules, whose activity thus depends on the surface charge density of catalysts. Here, we demonstrate a unique solution-phase approach to achieve controllable interfacial lengths in oxide-metal hybrid structures. Resulting from their different work functions, surface polarization is induced by the Ag-CuO interface and acts to tailor the surface charge state of CuO. As a result, the designed hybrid catalysts exhibit enhanced intrinsic activities in catalyzing CO oxidation in terms of apparent activation energy, as compared with their counterparts. Moreover, the CO conversion rate can be enhanced by maximizing the Ag-CuO interfacial length and thus the number of active sites on the CuO. This work provides a new strategy for tuning catalytic performance by controlling interface in hybrid catalysts. PMID:25296380

  18. Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis.

    PubMed

    Weng, Zhe; Liu, Wen; Yin, Li-Chang; Fang, Ruopian; Li, Min; Altman, Eric I; Fan, Qi; Li, Feng; Cheng, Hui-Ming; Wang, Hailiang

    2015-11-11

    Strong metal/oxide interactions have been acknowledged to play prominent roles in chemical catalysis in the gas phase, but remain as an unexplored area in electrocatalysis in the liquid phase. Utilization of metal/oxide interface structures could generate high performance electrocatalysts for clean energy storage and conversion. However, building highly dispersed nanoscale metal/oxide interfaces on conductive scaffolds remains a significant challenge. Here, we report a novel strategy to create metal/oxide interface nanostructures by growing mixed metal oxide nanoparticles on carbon nanotubes (CNTs) and then selectively promoting migration of one of the metal ions to the surface of the oxide nanoparticles and simultaneous reduction to metal. Employing this strategy, we have synthesized Ni/CeO2 nanointerfaces coupled with CNTs. The Ni/CeO2 interface promotes hydrogen evolution catalysis by facilitating water dissociation and modifying the hydrogen binding energy. The Ni/CeO2-CNT hybrid material exhibits superior activity for hydrogen evolution as a result of synergistic effects including strong metal/oxide interactions, inorganic/carbon coupling, and particle size control. PMID:26509583

  19. Laboratory studies of refractory metal oxide smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Nelson, R. N.; Donn, Bertram

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs.

  20. Reactivity of Metal Oxide Sorbents for Removal of H{sub 2}S

    SciTech Connect

    Kwon, K.C.; Crowe, E.R.

    1996-12-31

    Removal of hydrogen sulfide contained in hot coal gases produced from integrated gasification combined cycle power generation systems is required to protect downstream combustion turbines from being corroded with sulfur compounds. Removal of sulfur compounds from hot coal gas products is investigated by using various metal oxide sorbents and membrane separation methods. The main requirements of these metal oxide sorbents are durability and high sulfur loading capacity during absorption-regeneration cycles. In this research, durable metal oxide sorbents were formulated. Reactivity of the formulated metal oxide sorbents with simulated coal gas mixtures was examined to search for an ideal sorbent formulation with a high-sulfur loading capacity suitable for removal of hydrogen sulfide from coal gases. The main objectives of this research are to formulate durable metal oxide sorbents with high-sulfur loading capacity by a physical mixing method, to investigate reaction kinetics on the removal of sulfur compounds from coal gases at high temperature and pressure, to study reaction kinetics on the regeneration of sulfided sorbents, to identify effects of hydrogen partial pressures and moisture on equilibrium/dynamic absorption of hydrogen sulfide into formulated metal oxide sorbents as well as initial reaction rates of H{sub 2}S with formulated metal oxide sorbents, and to evaluate intraparticular diffusivity of H{sub 2}S into formulated sorbents at various reaction conditions. The metal oxide sorbents such as TU-1, TU-19, TU-24, TU-25 and TU-28 were formulated with zinc oxide powder as an active sorbent ingredient, bentonite as a binding material and titanium oxide as a supporting metal oxide.

  1. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  2. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  3. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  4. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    PubMed

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-01

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. PMID:27061763

  5. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  6. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  7. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  8. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, October--December 1994

    SciTech Connect

    Kwon, K.C.

    1995-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this research project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, oxygen, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbent for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur-absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes.

  9. Exciton-Plasmon Coupling Enhancement via Metal Oxidation.

    PubMed

    Todisco, Francesco; D'Agostino, Stefania; Esposito, Marco; Fernández-Domínguez, Antonio I; De Giorgi, Milena; Ballarini, Dario; Dominici, Lorenzo; Tarantini, Iolena; Cuscuná, Massimo; Della Sala, Fabio; Gigli, Giuseppe; Sanvitto, Daniele

    2015-10-27

    In this paper, we report on the effect of metal oxidation on strong coupling interactions between silver nanostructures and a J-aggregated cyanine dye. We show that metal oxidation can sensibly affect the plexcitonic system, inducing a change in the coupling strength. In particular, we demonstrate that the presence of oxide prevents the appearance of Rabi splitting in the extinction spectra for thick spacers. In contrast, below a threshold percentage, the oxide layer results in an higher coupling strength between the plasmon and the Frenkel exciton. Contrary to common belief, a thin oxide layer seems thus to act, under certain conditions, as a coupling mediator between an emitter and a localized surface plasmon excited in a metallic nanostructure. This suggests that metal oxidation can be exploited as a means to enhance light-matter interactions in strong coupling applications. PMID:26378956

  10. Ionically-mediated electromechanical hysteresis in transition metal oxides

    SciTech Connect

    Kim, Yunseok; Kumar, Amit; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    Electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 are observed. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Ginsburg Landau Devonshire (GLD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically-induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order GLD expansion coefficient, rendering material effectively ferroelectric. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

  11. A simple and generic approach for synthesizing colloidal metal and metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Cloud, Jacqueline E.; Yoder, Tara S.; Harvey, Nathan K.; Snow, Kyle; Yang, Yongan

    2013-07-01

    A simple and generic approach--alternating voltage induced electrochemical synthesis (AVIES)--has been reported for synthesizing highly dispersed colloidal metal (Au, Pt, Sn, and Pt-Pd) and metal oxide (ZnO and TiO2) nanocrystals. The respective nanocrystals are produced when a zero-offset alternating voltage at 60 Hz is applied to a pair of identical metal wires, which are inserted in an electrolyte solution containing capping ligands. In the case of Au, the obtained nanocrystals are highly crystalline nano-icosahedra of 14 +/- 2 nm in diameter, the smallest Au icosahedra synthesized in aqueous solutions via green chemistry. Their catalytic activity has been demonstrated through facilitating the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride. This AVIES approach is an environmentally benign process and can be adopted by any research lab.

  12. Popping of graphite oxide: application in preparing metal nanoparticle catalysts.

    PubMed

    Gao, Yongjun; Chen, Xi; Zhang, Jiaguang; Asakura, Hiroyuki; Tanaka, Tsunehiro; Teramura, Kentaro; Ma, Ding; Yan, Ning

    2015-08-26

    A popcorn-like transformation of graphite oxide (GO) is reported and used to synthesize metal nanoparticle catalysts. The popping step is unique and essential, not only generating a high-surface-area support but also partially decomposing the metal precursors to form well-separated metal oxide nuclei, which would further evolve into highly dispersed and uniform-sized nanoparticles in the subsequent reduction. PMID:26179983

  13. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  14. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  15. Metal-oxide-semiconductor photocapacitor for sensing surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Khalilzade-Rezaie, Farnood; Peale, Robert E.; Panjwani, Deep; Smith, Christian W.; Nath, Janardan; Lodge, Michael; Ishigami, Masa; Nader, Nima; Vangala, Shiva; Yannuzzi, Mark; Cleary, Justin W.

    2015-09-01

    An electronic detector of surface plasmon polaritons (SPP) is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-semiconductor capacitor. Semitransparent metal and graphene gates function similarly. We report the dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing.

  16. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  17. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    SciTech Connect

    Wayne, David M.

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  18. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A.

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  19. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  20. Activating Nonreducible Oxides via Doping.

    PubMed

    Nilius, Niklas; Freund, Hans-Joachim

    2015-05-19

    Nonreducible oxides are characterized by large band gaps and are therefore unable to exchange electrons or to form bonds with surface species, explaining their chemical inertness. The insertion of aliovalent dopants alters this situation, as new electronic states become available in the gap that may be involved in charge-transfer processes. Consequently, the adsorption and reactivity pattern of doped oxides changes with respect to their nondoped counterparts. This Account describes scanning tunneling microscopy (STM) and photoelectron spectroscopy (XPS) experiments that demonstrate the impact of dopants on the physical and chemical properties of well-defined crystalline oxide films. For this purpose, MgO and CaO as archetypical rocksalt oxides have been loaded either with high-valence (Mo, Cr) or low-valence dopants (Li). While the former generate filled states in the oxide band gap and serve as electron donors, the latter produce valence-band holes and give rise to an acceptor response. The dopant-related electronic states and their polarization effect on the surrounding host material are explored with XPS and STM spectroscopy on nonlocal and local scales. Moreover, charge-compensating defects were found to develop in the oxide lattice, such as Ca and O vacancies in Mo- and Li-doped CaO films, respectively. These native defects are able to trap the excess charges of the impurities and therefore diminish the desired doping effect. If noncompensated dopants reside in the host lattice, electron exchange with surface species is observed. Mo ions in CaO, for example, were found to donate electrons to surface Au atoms. The anionic Au strongly binds to the CaO surface and nucleates in the form of monolayer islands, in contrast to the 3D growth prevailing on pristine oxides. Charge transfer is also revealed for surface O2 that traps one Mo electron by forming a superoxo-species. The activated oxygen is characterized by a reinforced binding to the surface, an elongated O

  1. Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5-Ta system.

    PubMed

    Gao, Shuang; Zeng, Fei; Wang, Minjuan; Wang, Guangyue; Song, Cheng; Pan, Feng

    2015-05-21

    The common nonpolar switching behavior of binary oxide-based resistive random access memory devices (RRAMs) has several drawbacks in future application, such as the requirements for a high forming voltage, a large reset current, and an additional access device to settle the sneak-path issue. Herein, we propose the tuning of the switching behavior of binary oxide-based RRAMs by inserting an ultra-thin chemically active metal nanolayer, and a case study on Ta2O5-Ta systems is provided. The devices are designed to be Pt/Ta2O5(5 - x/2)/Ta(x)/Ta2O5(5 - x/2)/Pt with x = 0, 2, or 4 nm. The reference devices without the Ta nanolayer exhibit an expected nonpolar switching behavior with a high forming voltage of ∼-4.5 V and a large reset current of >10 mA. In contrast, a self-compliance bipolar switching behavior with a low forming voltage of ∼-2 V and a small reset current of <1 mA is observed after inserting a 2 nm Ta nanolayer. When the Ta nanolayer is increased to 4 nm, a complementary resistive switching (CRS) behavior is found, which can effectively settle the sneak-path issue. The appearance of CRS behavior suggests that a thin Ta nanolayer of 4 nm is robust enough to act as an inner electrode. Besides, the behind switching mechanisms are thoroughly discussed with the help of a transmission electron microscope and temperature-dependent electrical measurements. All these results demonstrate the feasibility of tuning switching behavior of binary oxide-based RRAMs by inserting an ultra-thin chemically active metal nanolayer and might help to advance the commercialization of binary oxide-based RRAMs. PMID:25907552

  2. Electrochemical metallization switching with a platinum group metal in different oxides

    NASA Astrophysics Data System (ADS)

    Wang, Zhongrui; Jiang, Hao; Hyung Jang, Moon; Lin, Peng; Ribbe, Alexander; Xia, Qiangfei; Yang, J. Joshua

    2016-07-01

    In a normal electrochemical metallization (ECM) switch, electrochemically active metals, such as Ag and Cu are used to provide mobile ions for the conducting filament. In both ECM and valence change memory (VCM) devices, platinum group metals, such as Pt and Pd, are typically used as the counter electrode and assumed to be chemically and physically inert. In this study, we explore whether the so-called inert metal itself can form a conducting filament and result in repeatable resistance switching. Pd and different oxide host matrices are used for this purpose. We have observed that the transport of oxygen anions dominates over Pd metal cations in ALD deposited AlOx and HfOx. However, in sputtered SiOx, Pd cation transport was revealed, accompanied by the formation of nano-crystalline Pd filament(s) in the junctions. Based on these observations, memristors with reversible and repeatable switching were obtained by using Pd doped SiOx as the switching material.In a normal electrochemical metallization (ECM) switch, electrochemically active metals, such as Ag and Cu are used to provide mobile ions for the conducting filament. In both ECM and valence change memory (VCM) devices, platinum group metals, such as Pt and Pd, are typically used as the counter electrode and assumed to be chemically and physically inert. In this study, we explore whether the so-called inert metal itself can form a conducting filament and result in repeatable resistance switching. Pd and different oxide host matrices are used for this purpose. We have observed that the transport of oxygen anions dominates over Pd metal cations in ALD deposited AlOx and HfOx. However, in sputtered SiOx, Pd cation transport was revealed, accompanied by the formation of nano-crystalline Pd filament(s) in the junctions. Based on these observations, memristors with reversible and repeatable switching were obtained by using Pd doped SiOx as the switching material. Electronic supplementary information (ESI) available

  3. Biomimetic metal oxides for the extraction of nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-03-01

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications.Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial

  4. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  5. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    EPA Science Inventory

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  6. Composite anodes based on nanotube titanium oxide from electro-oxidation of Ti metal substrate

    NASA Astrophysics Data System (ADS)

    Pozio, A.; Carewska, M.; Mura, F.; D'Amato, R.; Falconieri, M.; De Francesco, M.; Appetecchi, G. B.

    2014-02-01

    In this manuscript is reported an investigation on lithium-ion battery composite anodes based on nanotube titanium oxide active material obtained from electrochemical oxidation of titanium metal substrates. Nanotube TiO2 showed a good nominal capacity, particularly taking into account that no electronic conductive additive as well as no binder was incorporated into the TiO2 material. The performance of nanotube titanium oxide anode tapes was compared with that of electrodes based on TiO2 both commercially available and obtained from laser pyrolysis. Cycling tests have indicated that the anodes based on electrosynthesized nanotube TiO2 exhibit the best performance in terms of capacity values and rate capability in combination with very good capacity retention and coulombic efficiency leveling 100% even at high rates.

  7. Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces.

    PubMed

    Pacchioni, Gianfranco

    2013-02-14

    Understanding the interaction of small metal clusters and isolated atoms with oxide surfaces is crucial in order to rationalize the properties of heterogeneous catalysts composed of sub-nanometer metal particles dispersed on an oxide support. The interaction with the oxide surface can significantly alter the original properties of the metal deposit. In particular, the occurrence and the direction of charge transfer at the metal/oxide interface determine the chemical activity of the supported catalyst. The charge transfer depends on a number of factors like the nature of the oxide (reducible or non-reducible), the surface exposed, the presence of defects, the nature of the supported metal, etc. In this article we describe the most important conceptual aspects of the electronic metal-support interaction, a phenomenon related to the direct modification of the metal nano-particle determined by the formation of chemical bonds at the interface with the oxide. For metal nano-particles with a size of about 1 nm or below these effects become dominant although difficult to identify experimentally. PMID:23287900

  8. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed. PMID:26549729

  9. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    SciTech Connect

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  10. A Study of Different Doped Metal Cations on the Physicochemical Properties and Catalytic Activities of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) Composite Oxides for Nitric Oxide Reduction by Carbon Monoxide.

    PubMed

    Deng, Changshun; Li, Min; Qian, Junning; Hu, Qun; Huang, Meina; Lin, Qingjin; Ruan, Yongshun; Dong, Lihui; Li, Bin; Fan, Minguang

    2016-08-01

    This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X-ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction by hydrogen and by oxygen (H2 -TPR and O2 -TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of M(x+) into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent. In this regard, increases in the oxygen vacancies, reduction properties, and chemisorbed O2 (-) (and/or O(-) ) species of these Ce20 M1 Ox composite oxides (M refers to variable valence metals) play significant roles in this reaction. Among the samples, Ce20 Cr1 Ox exhibited the best catalytic performance, mainly because it has the best reducibility and more chemisorbed oxygen, and significant reasons for these attributes may be closely related to favorable synergistic interactions of the vacancies and near-surface Ce(3+) and Cr(3+) . Finally, a possible reaction mechanism was tentatively proposed to understand the reactions. PMID:27435470

  11. Preparation, Functionality, and Application of Metal Oxide-coated Noble Metal Nanoparticles.

    PubMed

    Liu, Shuhua; Regulacio, Michelle D; Tee, Si Yin; Khin, Yin Win; Teng, Choon Peng; Koh, Leng Duei; Guan, Guijian; Han, Ming-Yong

    2016-08-01

    With their remarkable properties and wide-ranging applications, nanostructures of noble metals and metal oxides have been receiving significantly increased attention in recent years. The desire to combine the properties of these two functional materials for specific applications has naturally prompted research in the design and synthesis of novel nanocomposites, consisting of both noble metal and metal-oxide components. In this review, particular attention is given to core-shell type metal oxide-coated noble metal nanostructures (i.e., metal@oxide), which display potential utility in applications, including photothermal therapy, catalytic conversions, photocatalysis, molecular sensing, and photovoltaics. Emerging research directions and areas are envisioned at the end to solicit more attention and work in this regard. PMID:27291595

  12. Interaction of nanostructured metal overlayers with oxide surfaces

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Wagner, Thomas

    2007-11-01

    Interactions between metals and oxides are key factors to determine the performance of metal/oxide heterojunctions, particularly in nanotechnology, where the miniaturization of devices down to the nanoregime leads to an enormous increase in the density of interfaces. One central issue of concern in engineering metal/oxide interfaces is to understand and control the interactions which consist of two fundamental aspects: (i) interfacial charge redistribution — electronic interaction, and (ii) interfacial atom transport — chemical interaction. The present paper focuses on recent advances in both electronic and atomic level understanding of the metal-oxide interactions at temperatures below 1000 ∘C, with special emphasis on model systems like ultrathin metal overlayers or metal nanoclusters supported on well-defined oxide surfaces. The important factors determining the metal-oxide interactions are provided. Guidelines are given in order to predict the interactions in such systems, and methods to desirably tune them are suggested. The review starts with a brief summary of the physics and chemistry of heterophase interface contacts. Basic concepts for quantifying the electronic interaction at metal/oxide interfaces are compared to well-developed contact theories and calculation methods. The chemical interaction between metals and oxides, i.e., the interface chemical reaction, is described in terms of its thermodynamics and kinetics. We review the different chemical driving forces and the influence of kinetics on interface reactions, proposing a strong interplay between the chemical interaction and electronic interaction, which is decisive for the final interfacial reactivity. In addition, a brief review of solid-gas interface reactions (oxidation of metal surfaces and etching of semiconductor surfaces) is given, in addition to a comparison of a similar mechanism dominating in solid-solid and solid-gas interface reactions. The main body of the paper reviews

  13. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  14. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  15. Improving Metal-Oxide-Metal (MOM) Diode Performance Via the Optimization of the Oxide Layer

    NASA Astrophysics Data System (ADS)

    Dodd, Linzi E.; Shenton, Samantha A.; Gallant, Andrew J.; Wood, David

    2015-05-01

    Small area metal-oxide-metal (MOM) diodes are being investigated in many research groups for the detection of THz frequency radiation. In order to create a high-speed rectifying device, the central oxide layer of the MOM structure must be thin and have known physical characteristics. The thickness, structure and uniformity of the oxide can be controlled during the fabrication process. In the work presented here, the effects of both oxygen plasma concentration and annealing temperature during fabrication of MOM diodes have been explored. It has been found that, by reducing the oxygen gas concentration from previous work, the layer can be more repeatable and uniform. Furthermore, for an anneal temperature up to a threshold temperature in the to range, the performance of the diodes is excellent, with a value of zero-bias curvature coefficient (CCZB) that can be up to . For higher temperature treatments, the value of CCZB decreases to a maximum of . Similar trends in AC tests can be seen for voltage and current responsivity values.

  16. Reactive sputter deposition of metal oxide nanolaminates

    NASA Astrophysics Data System (ADS)

    Rubin Aita, Carolyn

    2008-07-01

    We discuss the reactive sputter deposition of metal oxide nanolaminates on unheated substrates using four archetypical examples: ZrO2 Al2O3, HfO2 Al2O3, ZrO2 Y2O3, and ZrO2 TiO2. The pseudobinary bulk phase diagrams corresponding to these nanolaminates represent three types of interfaces. I. Complete immiscibility (ZrO2 Al2O3 and HfO2 Al2O3). II. Complete miscibility (ZrO2 Y2O3). III. Limited miscibility without a common end-member lattice (ZrO2 TiO2). We found that, although reactive sputter deposition is a far-from-equilibrium process, thermodynamic considerations strongly influence both phase formation within layers and at interfaces. We show that pseudobinary phase diagrams can be used to predict interfacial cation mixing in the nanolaminates. However, size effects must be considered to predict specific structures. In the absence of pseudoepitaxy, size effects play a significant role in determining the nanocrystalline phases that form within a layer (e.g. tetragonal ZrO2, tetragonal HfO2, and orthorhombic HfO2) and at interfaces (e.g. monoclinic (Zr,Ti)O2). These phases are not bulk standard temperature and pressure phases. Their formation is understood in terms of self-assembly into the lowest energy structure in individual critical nuclei.

  17. Electrocatalytic reduction of carbon dioxide on post-transition metal and metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    White, James L.

    The electroreduction of carbon dioxide to liquid products is an important component in the utilization of CO2 and in the high-density storage of intermittent renewable energy in the form of chemical bonds. Materials based on indium and tin, which yield predominantly formic acid, have been investigated in order to gain a greater understanding of the electrochemically active species and the mechanism of CO2 reduction on these heavy post-transition metals, since prior studies on the bulk metals did not provide thermodynamically sensible reaction pathways. Nanoparticles of the oxides and hydroxides of tin and indium have been prepared and characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and various electrochemical methods in order to obtain structural information and analyze the role of various surface species on the CO2 reduction pathway. On both indium and tin, metastable surface-bound hydroxides bound CO2 and formed metal carbonates, which can then be reduced electrochemically. The relevant oxidation state of tin was suggested to be SnII rather than SnIV, necessitating a pre reduction to generate the CO2-binding species. Metallic indium nanoparticles partially oxidized in air and became highly efficient CO2 reduction electrocatalysts. Unit Faradaic efficiencies for formate, much higher than on bulk indium, were achieved with only 300 mV of overpotential on these particles, which possessed an oxyhydroxide shell surrounding a conductive metallic core. Alloys and mixed-metal oxide and hydroxide particles of tin and indium have also been studied for their carbon dioxide electrocatalytic capabilities, especially in comparison to the pure metal species. Additionally, a solar-driven indium-based CO2 electrolyzer was developed to investigate the overall efficiency for intermittent energy storage. The three flow cells were powered by a commercial photovoltaic array and had a maximum conversion efficiency of incident

  18. Anchoring and promotion effects of metal oxides on silica supported catalytic gold nanoparticles.

    PubMed

    Luo, Jingjie; Ersen, Ovidiu; Chu, Wei; Dintzer, Thierry; Petit, Pierre; Petit, Corinne

    2016-11-15

    The understanding of the interactions between the different components of supported metal doped gold catalysts is of crucial importance for selecting and designing efficient gold catalysts for reactions such as CO oxidation. To progress in this direction, a unique supported nano gold catalyst Au/SS was prepared, and three doped samples (Au/SS@M) were elaborated. The samples before and after test were characterized by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). It is found that the doping metal species prefer to be located on the surface of gold nanoparticles and that a small amount of additional reductive metal leads to more efficient reaction. During the catalytic test, the nano-structure of the metal species transforms depending on its chemical nature. This study allows one to identify and address the contribution of each metal on the CO reaction in regard to oxidative species of gold, silica and dopants. Metal doping leads to different exposure of interface sites between Au and metal oxide, which is one of the key factors for the change of the catalytic activity. The metal oxides help the activation of oxygen by two actions: mobility inside the metal bulk and transfer of water species onto of gold nanoparticles. PMID:27501036

  19. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  20. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  1. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  2. Efficiency of metal activators of accelerated sulfur vulcanization

    SciTech Connect

    Duchacek, V.; Kuta, A.; Pribyl, P. )

    1993-01-20

    The effects of copper, mercury, nickel, zinc, cadmium, indium, magnesium, and calcium stearates on the course of N-cyclohexyl-2-benzthiazylsulphenamide-accelerated sulfur vulcanization of natural rubber have been investigated on the basis of curemeter measurements at 145 C. The differences in the efficiencies of these metal activators of accelerated sulfur vulcanization have been discussed from the points of view of the electron configurations of the metals and their affinities to sulfur. The authors attempted to determine why zinc oxide is generally accepted as the best metal vulcanization activator.

  3. CO oxidation on gold-supported iron oxides: New insights into strong oxide–metal interactions

    DOE PAGESBeta

    Yu, Liang; Liu, Yun; Yang, Fan; Evans, Jaime; Rodriguez, José A.; Liu, Ping

    2015-07-14

    Very active FeOx–Au catalysts for CO oxidation are obtained after depositing nanoparticles of FeO, Fe3O4, and Fe2O3 on a Au(111) substrate. Neither FeO nor Fe2O3 is stable under the reaction conditions. Under an environment of CO/O2, they undergo oxidation (FeO) or reduction (Fe2O3) to yield nanoparticles of Fe3O4 that are not formed in a bulk phase. Using a combined experimental and theoretical approach, we show a strong oxide–metal interaction (SOMI) between Fe3O4 nanostructures and Au(111), which gives the oxide special properties, allows the formation of an active phase, and provides a unique interface to facilitate a catalytic reaction. This workmore » highlights the important role that the SOMI can play in enhancing the catalytic performance of the oxide component in metal–oxide catalysts.« less

  4. CO oxidation on gold-supported iron oxides: New insights into strong oxide–metal interactions

    SciTech Connect

    Yu, Liang; Liu, Yun; Yang, Fan; Evans, Jaime; Rodriguez, José A.; Liu, Ping

    2015-07-14

    Very active FeOx–Au catalysts for CO oxidation are obtained after depositing nanoparticles of FeO, Fe3O4, and Fe2O3 on a Au(111) substrate. Neither FeO nor Fe2O3 is stable under the reaction conditions. Under an environment of CO/O2, they undergo oxidation (FeO) or reduction (Fe2O3) to yield nanoparticles of Fe3O4 that are not formed in a bulk phase. Using a combined experimental and theoretical approach, we show a strong oxide–metal interaction (SOMI) between Fe3O4 nanostructures and Au(111), which gives the oxide special properties, allows the formation of an active phase, and provides a unique interface to facilitate a catalytic reaction. This work highlights the important role that the SOMI can play in enhancing the catalytic performance of the oxide component in metal–oxide catalysts.

  5. Glutathione Is a Key Player in Metal-Induced Oxidative Stress Defenses

    PubMed Central

    Jozefczak, Marijke; Remans, Tony; Vangronsveld, Jaco; Cuypers, Ann

    2012-01-01

    Since the industrial revolution, the production, and consequently the emission of metals, has increased exponentially, overwhelming the natural cycles of metals in many ecosystems. Metals display a diverse array of physico-chemical properties such as essential versus non-essential and redox-active versus non-redox-active. In general, all metals can lead to toxicity and oxidative stress when taken up in excessive amounts, imposing a serious threat to the environment and human health. In order to cope with different kinds of metals, plants possess defense strategies in which glutathione (GSH; γ-glu-cys-gly) plays a central role as chelating agent, antioxidant and signaling component. Therefore, this review highlights the role of GSH in: (1) metal homeostasis; (2) antioxidative defense; and (3) signal transduction under metal stress. The diverse functions of GSH originate from the sulfhydryl group in cysteine, enabling GSH to chelate metals and participate in redox cycling. PMID:22489146

  6. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  7. Tailoring metal-oxide interfaces of inverse catalysts of TiO2/nanoporous-Au under hydrogen oxidation.

    PubMed

    Qadir, Kamran; Quynh, Bui Thi Phuong; Lee, Hyosun; Moon, Song Yi; Kim, Sang Hoon; Park, Jeong Young

    2015-06-14

    Engineering metal-oxide interfaces in TiO2/nanoporous (np) Au inverse catalysts results in enhancement of H2 oxidation activity. While the intrinsic activity of the novel np-Au prepared from a Au-Si alloy is low, the activity increased as the weight fraction of the TTIP (amount of TiO2) was increased to 0.5 weight%. We correlate the change in activity with the active sites at the perimeter interface between the TiO2 and np-Au. PMID:25959456

  8. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L. Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  9. Multiscale model of metal alloy oxidation at grain boundaries.

    PubMed

    Sushko, Maria L; Alexandrov, Vitaly; Schreiber, Daniel K; Rosso, Kevin M; Bruemmer, Stephen M

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  10. Multiscale model of metal alloy oxidation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  11. Electromagnetic modes of the asymmetric metal-oxide-metal tunnel junction

    NASA Technical Reports Server (NTRS)

    Kurdi, B. N.; Hall, D. G.

    1984-01-01

    The characteristics of the modes of an Al-Al2O3-Ag tunnel junction are analyzed, and the way in which the field profiles, the propagation constant, and the attenuation depend on the thickness of the oxide layer is described. The significance of these results for investigations of light emission from metal-oxide-metal tunnel junctions is discussed.

  12. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  13. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  14. Metal complex-catalyzed epoxidation of olefins by dioxygen with co-oxidation of aldehydes: A mechanistic study

    SciTech Connect

    Nam, W.; Kim, H.J.; Kim, S.H.

    1996-02-14

    Mechanistic studies of the oxidation of olefins by dioxygen plus aldehyde in the presence of metal complexes such as metalloporphyrins and metal cyclam complexes have been carried out. Epoxides were the predominant products, with trace amounts of allylic oxidation products. cis-Stilbene was oxidized to a mixture of cis- and trans-stilbene oxides. It is concluded from this study that the principal role of the metal complexes is to aid in the initiation step for the free radical autoxidation of the aldehyde and that acylperoxy radicals generated in the autoxidation reaction (or metal complexes formed by complexation of the acylperoxy radicals) are the active epoxidizing agents.

  15. An in situ oxidation route to fabricate graphene nanoplate-metal oxide composites

    SciTech Connect

    Chen Sheng; Zhu Junwu; Wang Xin

    2011-06-15

    We report our studies on an improved soft chemical route to directly fabricate graphene nanoplate-metal oxide (Ag{sub 2}O, Co{sub 3}O{sub 4}, Cu{sub 2}O and ZnO) composites from the in situ oxidation of graphene nanoplates. By virtue of H{sup +} from hydrolysis of the metal nitrate aqueous solution and NO{sub 3}{sup -}, only a small amount of functional groups were introduced, acting as anchor sites and consequently forming the graphene nanoplate-metal oxide composites. The main advantages of this approach are that it does not require cumbersome oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree. The microstructures of as-obtained metal oxides on graphene nanoplates can be dramatically controlled by changing the reaction parameters, opening up the possibility for processing the optical and electrochemical properties of the graphene-based nanocomposites. - graphical abstract: An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites is reported from the in situ oxidation of graphene nanoplates. Highlights: > An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites. > The microstructures can be controlled by changing the reaction parameters. > It does not require oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree.

  16. Metal oxide semiconductor structure using oxygen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Chicot, G.; Maréchal, A.; Motte, R.; Muret, P.; Gheeraert, E.; Pernot, J.

    2013-06-01

    Metal-oxide-semiconductor structures with aluminum oxide as insulator and p-type (100) mono-crystalline diamond as semiconductor have been fabricated and investigated by capacitance versus voltage and current versus voltage measurements. The aluminum oxide dielectric was deposited using low temperature atomic layer deposition on an oxygenated diamond surface. The capacitance voltage measurements demonstrate that accumulation, depletion, and deep depletion regimes can be controlled by the bias voltage, opening the route for diamond metal-oxide-semiconductor field effect transistor. A band diagram is proposed and discussed.

  17. Negative bias-and-temperature stress-assisted activation of oxygen-vacancy hole traps in 4H-silicon carbide metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ettisserry, D. P.; Goldsman, N.; Akturk, A.; Lelis, A. J.

    2015-07-01

    We use hybrid-functional density functional theory-based Charge Transition Levels (CTLs) to study the electrical activity of near-interfacial oxygen vacancies located in the oxide side of 4H-Silicon Carbide (4H-SiC) power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). Based on the "amorphousness" of their local atomic environment, oxygen vacancies are shown to introduce their CTLs either within (permanently electrically active) or outside of (electrically inactive) the 4H-SiC bandgap. The "permanently electrically active" centers are likely to cause threshold voltage (Vth) instability at room temperature. On the other hand, we show that the "electrically inactive" defects could be transformed into various "electrically active" configurations under simultaneous application of negative bias and high temperature stresses. Based on this observation, we present a model for plausible oxygen vacancy defects that could be responsible for the recently observed excessive worsening of Vth instability in 4H-SiC power MOSFETs under high temperature-and-gate bias stress. This model could also explain the recent electrically detected magnetic resonance observations in 4H-SiC MOSFETs.

  18. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  19. Gadolinium doped cerium oxide for soot oxidation: Influence of interfacial metal-support interactions

    NASA Astrophysics Data System (ADS)

    Durgasri, D. Naga; Vinodkumar, T.; Lin, Fangjian; Alxneit, Ivo; Reddy, Benjaram M.

    2014-09-01

    The aim of the present investigation was to ascertain the role of Al2O3, SiO2, and TiO2 supports in modulating the catalytic performance of ceria-based solid solutions. In this study, we prepared nanosized Ce-Gd/Al2O3, Ce-Gd/SiO2, and Ce-Gd/TiO2 catalysts by a deposition coprecipitation method and evaluated for soot oxidation. The synthesized catalysts were calcined at two different temperatures to assess their thermal stability and extensively characterized by various techniques, namely, XRD, Raman, BET surface area, TEM, H2-TPR, and UV-vis DRS. XRD and TEM results indicate that Ce-Gd-oxide nanoparticles are in highly dispersed form on the surface of the supports. Raman results show a prominent sharp peak and a broad peak corresponding to the F2g mode of ceria and the presence of oxygen vacancies, respectively. The presence of a significant number of oxygen vacancies in all samples is also confirmed from UV-vis DRS measurements. The H2-TPR results suggest that Gd-doping facilitates the reduction of the materials and decreases the onset temperature of reduction. Among the prepared samples, Ce-Gd/TiO2 catalyst exhibited the highest activity, suggesting the existence of strong interfacial metal support interaction between the active metal oxide and the support.

  20. Electrochemical metallization switching with a platinum group metal in different oxides.

    PubMed

    Wang, Zhongrui; Jiang, Hao; Hyung Jang, Moon; Lin, Peng; Ribbe, Alexander; Xia, Qiangfei; Yang, J Joshua

    2016-08-01

    In a normal electrochemical metallization (ECM) switch, electrochemically active metals, such as Ag and Cu are used to provide mobile ions for the conducting filament. In both ECM and valence change memory (VCM) devices, platinum group metals, such as Pt and Pd, are typically used as the counter electrode and assumed to be chemically and physically inert. In this study, we explore whether the so-called inert metal itself can form a conducting filament and result in repeatable resistance switching. Pd and different oxide host matrices are used for this purpose. We have observed that the transport of oxygen anions dominates over Pd metal cations in ALD deposited AlOx and HfOx. However, in sputtered SiOx, Pd cation transport was revealed, accompanied by the formation of nano-crystalline Pd filament(s) in the junctions. Based on these observations, memristors with reversible and repeatable switching were obtained by using Pd doped SiOx as the switching material. PMID:27166623

  1. Surface Stabilization Mechanisms in Metal Oxides

    NASA Astrophysics Data System (ADS)

    Becerra Toledo, Andres Enrique

    2011-07-01

    Metal oxide surfaces play a central role in modern applications, ranging from heterogeneous catalysis to electronic devices, yet little is known about the processes determining their structural stabilization. Several such stabilization mechanisms are explored via a combination of theoretical and experimental methods. The processes of periodic reconstruction, adsorption and segregation are studied through case studies of model material systems. The evaluation of structural models of periodic SrTiO3(001) reconstructions via bonding analysis and simulated scanning tunneling microscopy images supports the family of "DL" models terminating in two consecutive layers of TiO2 composition, and discards alternative proposals such as the models based on periodic Sr adatoms. Experimental and simulated scanning tunneling microscopy images and complementary spectroscopic data are used to determine the structure of linear Ti-rich SrTiO 3(001) nanostructures. The structural solution exemplifies the recurrence of locally stable motifs across numerous surfaces. In particular, the arrangement of edge-sharing TiO5 surface polyhedra is a trait is shared by (001) nanostructures and DL reconstructions. This is a flexible framework which allows for optimal bonding in surface atoms. Modeling of water adsorption on reconstructed SrTiO3(001) surfaces reveals that water plays two major roles in the stabilization of oxide surfaces: it may mediate the formation of certain ordered structures, or it may be part of the ultimately stable structures themselves. This can be understood in terms of the inevitable presence of chemisorbed water on defective surfaces. Since the surface mobility of cationic species is relatively low, the kinetics associated to water diffusion and desorption dominate the surface ordering process. High-temperature annealing of SrLaAlO4 single crystals leads to the segregation of SrO to the surfaces, in the form of islands. This process is in fact a bulk stabilization

  2. Effect of bioturbation on metal-sulfide oxidation in surficial freshwater sediments

    SciTech Connect

    Peterson, G.S.; Ankley, G.T.; Leonard, E.N.

    1996-12-01

    Recent studies have demonstrated the role of acid-volatile sulfide (AVS) in controlling the bioavailability of several cationic metals in anoxic sediments. However, metal-sulfide complexes can be relatively labile with respect to oxidation associated with factors such as seasonal changes in rates of oxidation/production of AVS. Another potentially important mechanism of AVS oxidation in surficial sediments is bioturbation. The authors used different densities of the burrowing oligochaete Lumbriculus variegatus in a series of laboratory experiments to evaluate the effect of bioturbation on oxidation of AVS and subsequent bioavailability of cadmium and zinc spiked into freshwater sediments. Metal bioavailability was determined directly by bioaccumulation in the test organisms and indirectly through analysis of interstitial (pore) water metal concentrations. In the studies, horizon-specific sediment analyses were conducted to assess spatial differences in AVS and pore-water metal concentrations specifically related to organism activity. Burrowing activity of the oligochaete significantly reduced AVS concentrations in surficial sediments in a density-dependent manner and resulted in elevated interstitial water concentrations of cadmium but not zinc. Concentrations of cadmium in pore water from deeper horizons were consistently lower than those in the surficial sediments. The bioaccumulation of cadmium, but not zinc, but the oligochaetes. Overall, the results indicate that bioturbation can enhance the bioavailability of some cationic metals in surficial sediments, via oxidation of AVS, and demonstrate the importance of analyzing surficial sediments when assessing bioavailability of metals in sediments.

  3. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  4. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  5. Mitochondrial dysfunction, impaired oxidative-reduction activity, degeneration, and death in human neuronal and fetal cells induced by low-level exposure to thimerosal and other metal compounds

    PubMed Central

    Geier, D.A.; King, P.G.; Geier, M.R.

    2009-01-01

    Thimerosal (ethylmercurithiosalicylic acid), an ethylmercury (EtHg)-releasing compound (49.55% mercury (Hg)), was used in a range of medical products for more than 70 years. Of particular recent concern, routine administering of Thimerosal-containing biologics/childhood vaccines have become significant sources of Hg exposure for some fetuses/infants. This study was undertaken to investigate cellular damage among in vitro human neuronal (SH-SY-5Y neuroblastoma and 1321N1 astrocytoma) and fetal (nontransformed) model systems using cell vitality assays and microscope-based digital image capture techniques to assess potential damage induced by Thimerosal and other metal compounds (aluminum (Al) sulfate, lead (Pb)(II) acetate, methylmercury (MeHg) hydroxide, and mercury (Hg)(II) chloride) where the cation was reported to exert adverse effects on developing cells. Thimerosal-associated cellular damage was also evaluated for similarity to pathophysiological findings observed in patients diagnosed with autistic disorders (ADs). Thimerosal-induced cellular damage as evidenced by concentration- and time-dependent mitochondrial damage, reduced oxidative–reduction activity, cellular degeneration, and cell death in the in vitro human neuronal and fetal model systems studied. Thimerosal at low nanomolar (nM) concentrations induced significant cellular toxicity in human neuronal and fetal cells. Thimerosal-induced cytoxicity is similar to that observed in AD pathophysiologic studies. Thimerosal was found to be significantly more toxic than the other metal compounds examined. Future studies need to be conducted to evaluate additional mechanisms underlying Thimerosal-induced cellular damage and assess potential co-exposures to other compounds that may increase or decrease Thimerosal-mediated toxicity. PMID:24532866

  6. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes.

    PubMed

    Jiang, Hao; Ma, Jan; Li, Chunzhong

    2012-08-01

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. PMID:23030034

  7. Electrolytic separation of crystals of transition-metal oxides

    NASA Technical Reports Server (NTRS)

    Arnott, R. J.; Feretti, A.; Kunnamann, W.

    1969-01-01

    Versatile flux system grows large, well-formed, stoichiometric single crystals of mixed oxides of the transition-metal elements. These crystals have important uses in the microwave field, and applications as lasers and masers in communications.

  8. Fabrication and characterization of metal oxide nanowire sensors.

    PubMed

    Shen, Guozhen

    2008-01-01

    Trace detection of chemicals and biological species like industrial gases, proteins, drug molecules, and chemical warfare agents, is an important issue to human health and safety. Central to this issue is the development of high sensitivity, high selectivity, high stability and rapid detection chemical and bio-sensors. With special geometry and chemical and physical properties, one-dimensional (1-D) metal oxide nanostructures have become the promising candidates for chemical and biosensing applications in recent years. Here, we intend to provide an overview on this interesting and important field. In the first part, the patents for rational synthesis of 1-D metal oxide nanostructures on a large scale will be introduced. The patents on chemical and biosensors built on 1-D metal oxide nanostructures are then introduced in the second part. Finally, we provide a review of the recent development of electronic nose systems using 1-D metal oxide nanostructures, which show great potential for the improvement of sensing abilities. PMID:19076050

  9. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  10. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices

    PubMed Central

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  11. Integration of metal oxide nanowires in flexible gas sensing devices.

    PubMed

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  12. Cryochemical method for forming spherical metal oxide particles from metal salt solutions

    DOEpatents

    Tinkle, M.C.

    1973-12-01

    A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)

  13. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOEpatents

    Morrell; Jonathan S. , Ripley; Edward B.

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  14. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    PubMed Central

    2015-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide–metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp2-derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network. PMID:25152800

  15. Investigation on durability and reactivity of promising metal oxide sorbents during sulfidation and regeneration. Quarterly report, July 1 - September 30, 1995

    SciTech Connect

    1995-12-31

    Hot-gas desulfurization for the integrated gasification combined cycle process has been investigated by many to remove effectively hydrogen sulfide with various metal oxide sorbents at high pressures and high temperatures. Metal oxides such as zinc titanate oxides, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide, were found to be promising sorbents in comparison with other removal methods such as membrane separations and reactive membrane separations. Some metal oxide sorbents exhibited the quite favorable performance in terms of attrition resistance and sulfur capacity. Removal reaction of H{sub 2}S from coal gas mixtures with ZT-4 or other promising sorbents of fine solid particles, and regeneration reaction of sulfur-loaded sorbents will be carried on in a batch reactor or a continuous differential reactor. The objectives of this project are to find intrinsic initial reaction kinetics for the metal oxide-hydrogen sulfide heterogeneous reaction system, to obtain effects of concentrations of coal gas components such as hydrogen, carbon monoxide, carbon dioxide, nitrogen and moisture on equilibrium reaction rate constants of the reaction system at various reaction temperatures and pressures, to identify regeneration kinetics of sulfur-loaded metal oxide sorbents, and to formulate promising metal oxide sorbents for the removal of sulfur from coal gas mixtures. Promising durable metal oxide sorbents of high-sulfur- absorbing capacity will be formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures, or impregnating active metal oxide sorbents on supporting metal oxide matrixes. The Research Triangle Institute will also prepare promising metal oxide sorbents for this research project, plan experiments on removal of sulfur compounds from coal gases with metal oxide sorbents as well as regeneration of sulfur-loaded metal oxide sorbents, and review experimental results. 1 ref., 10 figs., 11 tabs.

  16. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status.

    PubMed

    Khan, Shams Tabrez; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-10-01

    One fourth of the global mortalities is still caused by microbial infections largely due to the development of resistance against conventional antibiotics among pathogens, the resurgence of old infectious diseases and the emergence of hundreds of new infectious diseases. The lack of funds and resources for the discovery of new antibiotics necessitates the search for economic and effective alternative antimicrobial agents. Metal and metal oxide nanoparticles including silver and zinc oxide exhibit remarkable antimicrobial activities against pathogens and hence are one of the most propitious alternative antimicrobial agents. These engineered nanomaterials are approved by regulatory agencies such as USFDA and Korea's FITI, for use as antimicrobial agents, supplementary antimicrobials, food packaging, skin care products, oral hygiene, and for fortifying devices prone to microbial infections. Nevertheless, detailed studies, on molecular and biochemical mechanisms underlying their antimicrobial activity are missing. To take the full advantage of this emerging technology selective antimicrobial activity of these nanoparticles against pathogens should be studied. Optimization of these nanomaterials through functionalization to increase their efficacy and biocompatibility is also required. Urgent in vivo studies on the toxicity of nanomaterials at realistic doses are also needed before their clinical translation. PMID:27259161

  17. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  18. Plutonium metal and oxide container weld development and qualification

    SciTech Connect

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  19. Hydrogenated - Metal Oxide Nanohybrids: AN Inventiveness Plinth for Sensing Devices

    NASA Astrophysics Data System (ADS)

    Baraneedharan, P.; Ramaprabhu, S.

    Graphene- a two dimensional sheet of sp2 hybridized carbon atoms has been considered as promising materials in sensor design for detection of target molecule. Charge carriers in graphene obey linear dispersion relation and it behaves like mass less relativistic particles which act as base for enhanced electron transport. Thus the electrons move ballistically without scattering giving higher mobility even at room temperature. Further, the presence of oxygen containing functional group and crystal defects assisted via hydrogenation process take vital part in electrochemical adsorption of electro active species and catalyses the same. Though issues with selectivity, stability and sensitivity are limited for several nanostructured metal oxides sensing, the hybrid system started its effective role in design of sensing platform. Thus considering the potential important of hydrogenated graphene -metal oxide systems, a nanohybrid system is developed and its structural, morphological and optical properties were understood using respective characterization tool. Further, the prepared hybrid nanosystem used as a platform for bimolecule detection, where the sensor exhibits higher range of sensitivity and selectivity.

  20. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  1. Heavy metal removal from water/wastewater by nanosized metal oxides: a review.

    PubMed

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-04-15

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs' preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance. PMID:22018872

  2. Synthesis, characterization and catalytic application of nanoscale metal and metal oxide heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xue

    Nanoscale metals or metal oxides with high surface area to volume ratios have been widely used as catalysts for various chemical reactions. A major challenge to utilize metal nanocatalysts commercially is their tendency to sinter under working reaction conditions. To overcome this, much research is being done to anchor metal nanocatalysts on various supports to prevent their agglomeration. Mesoporous silica, SBA-15 is an attractive support material candidate because of its high surface area, stable structure and chemical inertness. Scientists have anchored metal nanocatalysts onto the pore of SBA-15 and observed some improvement in the stability. However, the interactions between the nanocatalysts and SBA-15 are relatively weak and sintering still occurs resulting in a loss of activity. In order to impart enhanced robustness, a new type of stable metal/SBA-15 nanocomposite has been prepared by intercalating metal nanoparticles into the walls of mesoporous silica SBA-15 by a unique synthetic strategy using metal coordinating agents such as bis[3-(triethoxysilyl) propyl]-tetrasulfide (TESPTS). In this dissertation, systemic research on the preparation parameters and extension to other metals will be presented. The structure changes caused by addition of TESPTS to the preparation of mesoporous silica were investigated. The relationship between increasing amounts of TESPTS and the structural change was obtained. Afterwards, a new type of PdMS catalyst with Pd intercalated in the walls of SBA-15 was synthesized for the first time using a modified preparation pathway. These materials were characterized by N2 physisorption, X-ray diffraction, transmission electron microscopy and inductively coupled plasma. The PdMS system was utilized as an active and robust catalyst for Heck reactions. Notably, after the catalytic reaction, the PdMS catalysts maintained its reactivity and size without undergoing any agglomeration due to the stable nanocomposite structure. Carbon

  3. Particulate oxidative burden associated with firework activity.

    PubMed

    Godri, Krystal J; Green, David C; Fuller, Gary W; Dall'Osto, Manuel; Beddows, David C; Kelly, Frank J; Harrison, Roy M; Mudway, Ian S

    2010-11-01

    Firework events are capable of inducing particulate matter (PM) episodes that lead to exceedances of regulatory limit values. As short-term peaks in ambient PM concentration have been associated with negative impacts on respiratory and cardiovascular health, we performed a detailed study of the consequences of firework events in London on ambient air quality and PM composition. These changes were further related to the oxidative activity of daily PM samples by assessing their capacity to drive the oxidation of physiologically important lung antioxidants including ascorbate, glutathione and urate (oxidative potential, OP). Twenty-four hour ambient PM samples were collected at the Marylebone Road sampling site in Central London over a three week period, including two major festivals celebrated with pyrotechnic events: Guy Fawkes Night and Diwali. Pyrotechnic combustion events were characterized by increased gas phase pollutants levels (NO(x) and SO(2)), elevated PM mass concentrations, and trace metal concentrations (specifically Sr, Mg, K, Ba, and Pb). Relationships between NO(x), benzene, and PM(10) were used to apportion firework and traffic source fractions. A positive significant relationship was found between PM oxidative burden and individual trace metals associated with each of these apportioned source fractions. The level of exposure to each source fraction was significantly associated with the total OP. The firework contribution to PM total OP, on a unit mass basis, was greater than that associated with traffic sources: a 1 μg elevation in firework and traffic PM fraction concentration was associated with a 6.5 ± 1.5 OP(T) μg(-1) and 5.2 ± 1.4 OP(T) μg(-1) increase, respectively. In the case of glutathione depletion, firework particulate OP (3.5 ± 0.8 OP(GSH) μg(-1)) considerably exceeded that due to traffic particles (2.2 ± 0.8 OP(GSH) μg(-1)). Therefore, in light of the elevated PM concentrations caused by firework activity and the increased

  4. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L.; Alexandrov, Vitali Y.; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model at experimentally relevant length scales is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2 - 1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  5. Thermochemical analyses of the oxidative vaporization of metals and oxides by oxygen molecules and atoms

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Leisz, D. M.; Fryburg, G. C.; Stearns, C. A.

    1977-01-01

    Equilibrium thermochemical analyses are employed to describe the vaporization processes of metals and metal oxides upon exposure to molecular and atomic oxygen. Specific analytic results for the chromium-, platinum-, aluminum-, and silicon-oxygen systems are presented. Maximum rates of oxidative vaporization predicted from the thermochemical considerations are compared with experimental results for chromium and platinum. The oxidative vaporization rates of chromium and platinum are considerably enhanced by oxygen atoms.

  6. Surface effects and phase stability in metal oxides nanoparticles under visible irradiation

    NASA Astrophysics Data System (ADS)

    Ricci, Pier Carlo; Carbonaro, C. M.; Corpino, R.; Chiriu, D.; Stagi, L.

    2014-10-01

    The light induced phase transformation between stable phases of metal oxides nanoparticles is analyzed. The surrounding atmosphere as well as the defect density at the surface play a fundamental role. It has been found that in oxygen poor chamber atmosphere the phase transformation is favored, while the phase transition cannot be achieved if the defects at the surface are properly passivated. The phase transition is activated by intragap irradiation, able to activate the F- center at the surface connected to oxygen vacancies, and promoting the activation of the surface and the nucleation of neighboring crystallites. The phase transition was studied in Titanium oxide (TiO2) and in Iron oxide (Fe2O3): Maghemite is subjected to a phase transformation to α-Fe2O3 (hematite), Anatase nanoparticles converts to Rutile. The general mechanism of the phase transition and, more in general, the possibility to optically control the surface activity of metal oxides is discussed.

  7. Selective Growth of Noble Gases at Metal/Oxide Interface.

    PubMed

    Takahashi, Keisuke; Oka, Hiroshi; Ohnuki, Somei

    2016-02-17

    The locations and roles of noble gases at an oxide/metal interface in oxide dispersed metal are theoretically and experimentally investigated. Oxide dispersed metal consisting of FCC Fe and Y2Hf2O7 (Y2Ti2O7) is synthesized by mechanical alloying under a saturated Ar gas environment. Transmission electron microscopy and density functional theory observes the strain field at the interface of FCC Fe {111} and Y2Hf2O7 {111} whose physical origin emerges from surface reconstruction due to charge transfer. Noble gases are experimentally observed at the oxide (Y2Ti2O7) site and calculations reveal that the noble gases segregate the interface and grow toward the oxide site. In general, the interface is defined as the trapping site for noble gases; however, transmission electron microscopy and density functional theory found evidence which shows that noble gases grow toward the oxide, contrary to the generally held idea that the interface is the final trapping site for noble gases. Furthermore, calculations show that the inclusion of He/Ar hardens the oxide, suggesting that material fractures could begin from the noble gas bubble within the oxides. Thus, experimental and theoretical results demonstrate that noble gases grow from the interface toward the oxide and that oxides behave as a trapping site for noble gases. PMID:26840881

  8. Sol-gel metal oxide and metal oxide/polymer multilayers applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1993-10-01

    We are developing a meniscus coating process for manufacturing large-aperture dielectric multilayer high reflectors (HR`s) at ambient conditions from liquid suspensions. Using a lab-scale coater capable of coating 150 mm square substrates, we have produced several HR`s which give 99% + reflection with 24 layers and with edge effects confined to about 10 mm. In calendar 1993 we are taking delivery of an automated meniscus coating machine capable of coating substrates up to 400 mm wide and 600 mm long. The laser-damage threshold and failure stress of sol-gel thin films can be substantially increased through the use of soluble polymers which act as binders for the metal oxide particles comprising the deposited film. Refractive index control of the film is also possible through varying the polymer/oxide ratio. Much of our present effort present is in optimizing oxide particle/binder/solvent formulations for the high-index material. Films from colloidal zirconia strengthened with polyvinylpyrollidone (PVP) have given best results to date. An increase in the laser damage threshold (LDT) for single layers has been shown to significantly increase with increased polymer loading, but as yet the LDT for multilayer stacks remains low.

  9. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  10. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall L.; Hrubesh, Lawrence W.

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  11. Integrated photo-responsive metal oxide semiconductor circuit

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban D. (Inventor); Dargo, David R. (Inventor); Lyons, John C. (Inventor)

    1987-01-01

    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation.

  12. Generation of singlet oxygen on the surface of metal oxides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Burchinov, A. N.

    2016-04-01

    Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron-hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

  13. Electronic communication across diamagnetic metal bridges: a homoleptic gallium(III) complex of a redox-active diarylamido-based ligand and its oxidized derivatives

    PubMed Central

    Liddle, Brendan J.; Wanniarachchi, Sarath; Hewage, Jeewantha S.; Lindeman, Sergey V.; Bennett, Brian; Gardinier, James R.

    2012-01-01

    Complexes with cations of the type [Ga(L)2]n+ where L = bis(4-methyl-2-(1H-pyrazol-1-yl)phenyl)amido and n = 1, 2, 3 have been prepared and structurally characterized. The electronic properties of each were probed by electrochemical and spectroscopic means and were interpreted with the aid of DFT calculations. The dication, best described as [Ga(L−)(L0)]2+, and is a Robin-Day class II mixed-valence species. As such, a broad, weak, solvent-dependent intervalence charge transfer (IVCT) band was found in the NIR spectrum in the range 6390 to 6925 cm−1, depending on solvent. Band shape analyses and the use of Hush and Marcus relations revealed a modest electronic coupling, Hab of about 200 cm−1, and a large rate constant for electron transfer, ket, on the order of 1010 s−1 between redox active ligands. The di-oxidized complex [Ga(L0)2]3+ shows a half-field ΔMs = 2 transition in its solid-state X-Band EPR spectrum at 5 K which indicates that the triplet state is thermally populated. DFT calculations (M06/Def2-SV(P)) suggest that the singlet state is 21.7 cm−1 lower in energy than the triplet state. PMID:23163736

  14. FUNCTIONALIZED METAL OXIDE NANOPARTICLES: ENVIRONMENTAL TRANSFORMATIONS AND ECOTOXICITY

    EPA Science Inventory

    This study will provide fundamental information on alterations in the surface chemistry of commercially important functionalized metal oxide NPs under environmentally relevant oxidative and reductive conditions, as well as needed data on the inherent and photo-enhanced toxicit...

  15. Reductive mobilization of oxide-bound metals

    SciTech Connect

    Stone, A.T.

    1991-01-01

    We have completed a large number of experiments which examine the release of MnO{sub 2}-bound Co, Ni, and Cu. Our work has focused upon the following areas: (1) competitive adsorption among the three toxic metals and Mn(II); (2) toxic metal release upon addition of low MW organic reductants and complexants; and (3) toxic metal release upon addition of natural organic matter-rich surface waters and IHSS organic matter reference material.

  16. Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements

    PubMed Central

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-01-01

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices. PMID:24841244

  17. Metal-oxide-metal point contact junction detectors. [detection mechanism and mechanical stability

    NASA Technical Reports Server (NTRS)

    Baird, J.; Havemann, R. H.; Fults, R. D.

    1973-01-01

    The detection mechanism(s) and design of a mechanically stable metal-oxide-metal point contact junction detector are considered. A prototype for a mechanically stable device has been constructed and tested. A technique has been developed which accurately predicts microwave video detector and heterodyne mixer SIM (semiconductor-insulator-metal) diode performance from low dc frequency volt-ampere curves. The difference in contact potential between the two metals and geometrically induced rectification constitute the detection mechanisms.

  18. Field-assisted nanopatterning of metals, metal oxides and metal salts.

    PubMed

    Liu, Jun-Fu; Miller, Glen P

    2009-02-01

    The tip-based nanofabrication method called field-assisted nanopatterning or FAN has now been extended to the transfer of metals, metal oxides and metal salts onto various receiving substrates including highly ordered pyrolytic graphite, passivated gold and indium-tin oxide. Standard atomic force microscope tips were first dip-coated using suspensions of inorganic compounds in solvent. The films prepared in this manner were non-uniform and contained inorganic nanoparticles. Tip-based nanopatterning on chosen substrates was conducted under high electric field conditions. The same tip was used for both nanofabrication and imaging. Arbitrary patterns were formed with dimensions that ranged from tens of microns to sub-20 nm and were controlled by tuning the tip bias during fabrication. Most tip-based nanopatterning techniques are limited in terms of the type of species that can be deposited and the type of substrates onto which the deposition occurs. With the successful deposition of inorganic species reported here, FAN is demonstrated to be a truly versatile tip-based nanofabrication technique that is useful for the deposition of a wide variety of both organic and inorganic species including small molecules, large molecules and polymers. PMID:19417344

  19. Porous desulfurization sorbent pellets containing a reactive metal oxide and an inert zirconium compound

    SciTech Connect

    Gardner, Todd H.; Gasper-Galvin, Lee D.

    1996-12-01

    Sorbent pellets for removing hydrogen sulfide from coal gas are prepared by combining a reactive oxide, in particular zinc oxide, with a zirconium compound such as an oxide, silicate, or aluminate of zirconium, and an inorganic binder and pelletizing and calcining the mixture. Alternately, the zinc oxide may be replaced by copper oxide or a combination of copper, molybdenum, and manganese oxides. The pellet components may be mixed in dry form, moistened to produce a paste, and converted to pellets by forming an aqueous slurry of the components and spray drying the slurry, or the reactive oxide may be formed on existing zirconium-containing catalyst-carrier pellets by infusing a solution of a salt of the active metal onto the existing pellets and firing at a high temperature to produce the oxide. Pellets made according to this invention show a high reactivity with hydrogen sulfide and durability such as to be useful over repeated cycles of sorption and regeneration.

  20. Surface structures of polar and non-polar metal oxides

    NASA Astrophysics Data System (ADS)

    Chamberlin, Sara E.

    Metal oxides have long been a challenge to surface science since many traditional surface techniques are often affected by their insulating nature. In particular, high current electron beams can cause charging effects in addition to potentially desorbing surface species and damaging the surface. The development of a low current, low energy electron diffraction (LEED) system has allowed us to investigate metal oxide surfaces while significantly limiting the above mentioned complications. This low current LEED system has been used to perform a structural LEED-IV study of the reconstructed TiO2(011)-(2x1) surface. This surface is known to experience significant oxygen desorption when exposed to high current electron beams. The low current LEED system was crucial to maintain confidence in the structure found, which generally agreed with recently published models, but did not confirm one key feature. The oxygen atoms at the surface were not found to be asymmetrically bonded, which has been thought to be the cause of this surface's enhanced photocatalytic activity. We have also used the low current LEED system to investigate the polar oxide surfaces of ZnO(000 1¯) and MgO(111)-(✓3x✓3)R30°. For Zn0(000 1¯) LEED-IV structural study was combined with Density Functional Theory (DFT) calculations to investigate the impact of hydrogen on the surface. Our results support a disordered, fractional coverage of hydrogen terminating the surface. MgO(111)-(✓3x✓3)R30° has proven to be a challenging reconstructed surface. Both LEED-IV and surface x-ray diffraction (SXRD) find that previously proposed models for the surface are not a good fit to the data, so other models have been explored. The SXRD data in particular suggest that the reconstruction is more than one atomic layer deep.

  1. Synthesis of supported metal oxide nanoparticles with narrow size distribution

    NASA Astrophysics Data System (ADS)

    Salem, Diana; Smolyakov, Georgiy; Schosseler, François; Petit, Pierre

    2012-06-01

    We report a versatile synthetic route allowing the formation of transition metal oxide nanoparticles supported on solid surfaces. Basically, the method lies on the complexation of metal cations with both anionic surfactant and hydroxilated surfaces, which results in the formation of small aggregates onto the surface. At thermodynamical equilibrium, the resulting balance between the loss of entropy due to the aggregation and the gain in enthalpy due to hydrophobic interactions between the alkyl chains of the surfactant governs the size of these aggregates. After calcination in air, metal oxide nanoparticles with very narrow size distribution are obtained.

  2. Impurity diffusion in transition-metal oxides

    SciTech Connect

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe/sub 3/O/sub 4/. Tracer impurity diffusion in these materials and TiO/sub 2/, together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO/sub 2/ whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures.

  3. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    PubMed Central

    Simmons, Steven O; Fan, Chun-Yang; Yeoman, Kim; Wakefield, John; Ramabhadran, Ram

    2011-01-01

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this study, we describe the development of an Nrf2-specific reporter gene assay that can be used to study the oxidative stress response in multiple cell types. Using five different cell lines, the Nrf2-activating potency of twenty metals was assessed across a range of concentrations. While ten of the metals tested (cadmium, cobalt, copper, gold, iron, lead, mercury, silver, sodium arsenite and zinc) stimulated Nrf2-dependent transcriptional activity in at least three of the engineered cell lines, only three (cadmium, copper and sodium arsenite) were active in all five cell lines. A comparison of metal-induced Nrf2 transcriptional activation revealed significant differences in the absolute magnitude of activation as well as the relative potencies between the cell lines tested. However, there was no direct correlation between activity and potency. Taken together, these results show that the capacity to stimulate Nrf2 activity and relative potencies of these test compounds are highly dependent on the cell type tested. Since oxidative stress is thought to be involved in the mode of action of many toxicological studies, this observation may inform the design of paradigms for toxicity testing for toxicant prioritization and characterization. PMID:21643505

  4. Can we judge an oxide by its cover? The case of the metal/oxide interface from first principles

    NASA Astrophysics Data System (ADS)

    Caspary Toroker, Maytal

    Metal/metal-oxide interfaces appear in a wide variety of disciplines including electronics, corrosion, electrochemistry, and catalysis. Specifically, covering a metal-oxide with a metal is often thought to enhance solar energy absorption and to improve photocatalytic activity. For example, the platinum/hematite (Pt/ α-Fe2O3) interface has demonstrated improved functionality. In order to advance our understanding of how metal coverage over an oxide helps performance, we characterize the geometry and electronic structure of the Pt/ α-Fe2O3 interface. We investigate the interface using density functional theory +U, and find a stable crystallographic orientation relationship that agrees with experiment. Furthermore, there are significant changes in the electronic structure of α-Fe2O3 as a result of Pt coverage. We therefore suggest the concept of ``judging'' the electronic properties of an oxide only with its cover. Specifically, covering Fe2O3 with Pt reduces carrier effective mass and creates a continuum of states in the band gap. The former could be beneficial for catalytic activity, while the latter may cause surface recombination. In order to circumvent this problem, we suggest putting metal coverage behind the oxide and far from the electrolyte in a photoelectrochemical device in order to quickly collect electron carriers and avoid recombination with vulnerable holes accumulating as a result of catalysis at the surface. Reference: O. Neufeld and M. Caspary Toroker, ``Can we judge an oxide by its cover? The case of platinum over alpha-Fe2O3 from first principles'', Phys. Chem. Chem. Phys. 17, 24129 (2015). This research was supported by the Morantz Energy Research Fund, the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science Foundation (Grant No. 152/11).

  5. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    SciTech Connect

    Glen R. Longhurst

    2008-08-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results.

  6. Interactions of hydrogen isotopes and oxides with metal tubes

    SciTech Connect

    Longhurst, G. R.; Cleaver, J.

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  7. Development of new transition metal oxide catalysts for the destruction of PCDD/Fs.

    PubMed

    Yu, Ming-Feng; Li, Wen-Wei; Li, Xiao-Dong; Lin, Xiao-Qing; Chen, Tong; Yan, Jian-Hua

    2016-08-01

    Various transition metal oxide and vanadium-containing multi-metallic oxide catalysts were developed for the destruction of PCDD/Fs (polychlorinated dibenzo-p-dioxins and furans). A stable PCDD/Fs generating system was installed to support the catalytic destruction tests in this study. Nano-titania supported vanadium catalyst (VOx/TiO2) showed the highest activity, followed by CeOx, MnOx, WOx and finally MoOx. Multi-metallic oxide catalysts, prepared by doping WOx, MoOx, MnOx and CeOx into VOx/TiO2 catalysts, showed different activities on the decomposition of PCDD/Fs. The highest destruction efficiency of 92.5% was observed from the destruction test over VOxCeOx/TiO2 catalyst. However, the addition of WOx and MoOx even played a negative role in multi-metallic VOx/TiO2 catalysts. Characterizations of transition metal oxides and multi-metallic VOx/TiO2 catalysts were also investigated with XRD and TPR. After the catalysts were used, the conversion from high valent metals to low valence states was observed by XPS. PMID:27186687

  8. Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy

    DOEpatents

    Chambers, Scott A.

    2006-02-21

    A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.

  9. Negative bias-and-temperature stress-assisted activation of oxygen-vacancy hole traps in 4H-silicon carbide metal-oxide-semiconductor field-effect transistors

    SciTech Connect

    Ettisserry, D. P. E-mail: neil@umd.edu; Goldsman, N. E-mail: neil@umd.edu; Akturk, A.; Lelis, A. J.

    2015-07-28

    We use hybrid-functional density functional theory-based Charge Transition Levels (CTLs) to study the electrical activity of near-interfacial oxygen vacancies located in the oxide side of 4H-Silicon Carbide (4H-SiC) power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). Based on the “amorphousness” of their local atomic environment, oxygen vacancies are shown to introduce their CTLs either within (permanently electrically active) or outside of (electrically inactive) the 4H-SiC bandgap. The “permanently electrically active” centers are likely to cause threshold voltage (V{sub th}) instability at room temperature. On the other hand, we show that the “electrically inactive” defects could be transformed into various “electrically active” configurations under simultaneous application of negative bias and high temperature stresses. Based on this observation, we present a model for plausible oxygen vacancy defects that could be responsible for the recently observed excessive worsening of V{sub th} instability in 4H-SiC power MOSFETs under high temperature-and-gate bias stress. This model could also explain the recent electrically detected magnetic resonance observations in 4H-SiC MOSFETs.

  10. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  11. Particulate Matter Oxidative Potential from Waste Transfer Station Activity

    PubMed Central

    Godri, Krystal J.; Duggan, Sean T.; Fuller, Gary W.; Baker, Tim; Green, David; Kelly, Frank J.; Mudway, Ian S.

    2010-01-01

    Background Adverse cardiorespiratory health is associated with exposure to ambient particulate matter (PM). The highest PM concentrations in London occur in proximity to waste transfer stations (WTS), sites that experience high numbers of dust-laden, heavy-duty diesel vehicles transporting industrial and household waste. Objective Our goal was to quantify the contribution of WTS emissions to ambient PM mass concentrations and oxidative potential. Methods PM with a diameter < 10 μm (PM10) samples were collected daily close to a WTS. PM10 mass concentrations measurements were source apportioned to estimate local versus background sources. PM oxidative potential was assessed using the extent of antioxidant depletion from a respiratory tract lining fluid model. Total trace metal and bioavailable iron concentrations were measured to determine their contribution to PM oxidative potential. Results Elevated diurnal PM10 mass concentrations were observed on all days with WTS activity (Monday–Saturday). Variable PM oxidative potential, bioavailable iron, and total metal concentrations were observed on these days. The contribution of WTS emissions to PM at the sampling site, as predicted by microscale wind direction measurements, was correlated with ascorbate (r = 0.80; p = 0.030) and glutathione depletion (r = 0.76; p = 0.046). Increased PM oxidative potential was associated with aluminum, lead, and iron content. Conclusions PM arising from WTS activity has elevated trace metal concentrations and, as a consequence, increased oxidative potential. PM released by WTS activity should be considered a potential health risk to the nearby residential community. PMID:20368130

  12. Emerging Applications of Liquid Metals Featuring Surface Oxides

    PubMed Central

    2014-01-01

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide “skin” enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  13. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces. PMID:26423076

  14. Internal zone growth method for producing metal oxide metal eutectic composites

    DOEpatents

    Clark, Grady W.; Holder, John D.; Pasto, Arvid E.

    1980-01-01

    An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.

  15. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  16. Metal oxide nanostructures and their gas sensing properties: a review.

    PubMed

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  17. Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden

    SciTech Connect

    Berglund, A.M.M. Sturve, J.; Foerlin, L.; Nyholm, N.E.I.

    2007-11-15

    Metals have been shown to induce oxidative stress in animals. One of the most metal polluted terrestrial environments in Sweden is the surroundings of a sulfide ore smelter plant located in the northern part of the country. Pied flycatcher nestlings (Ficedula hypoleuca) that grew up close to the industry had accumulated amounts of arsenic, cadmium, mercury, lead, iron and zinc in their liver tissue. The aim of this study was to investigate if pied flycatcher nestlings in the pollution gradient of the industry were affected by oxidative stress using antioxidant molecules and enzyme activities. The antioxidant assays were also evaluated in search for useful biomarkers in pied flycatchers. This study indicated that nestlings in metal contaminated areas showed signs of oxidative stress evidenced by up regulated hepatic antioxidant defense given as increased glutathione reductase (GR) and catalase (CAT) activities and slightly but not significantly elevated lipid peroxidation and glutathione-S-transferase (GST) activities. Stepwise linear regression indicated that lipid peroxidation and CAT activities were influenced mostly by iron, but iron and lead influenced the CAT activity to a higher degree. Positive relationships were found between GST and lead as well as GR activities and cadmium. We conclude that GR, CAT, GST activities and lipid peroxidation levels may function as useful biomarkers for oxidative stress in free-living pied flycatcher nestlings exposed to metal contaminated environments.

  18. Metal Inhibition of Growth and Manganese Oxidation in Pseudomonas putida GB-1

    NASA Astrophysics Data System (ADS)

    Pena, J.; Sposito, G.

    2009-12-01

    Biogenic manganese oxides (MnO2) are ubiquitous nanoparticulate minerals that contribute to the adsorption of nutrient and toxicant metals, the oxidative degradation of various organic compounds, and the respiration of metal-reducing bacteria in aquatic and terrestrial environments. The formation of these minerals is catalyzed by a diverse and widely-distributed group of bacteria and fungi, often through the enzymatic oxidation of aqueous Mn(II) to Mn(IV). In metal-impacted ecosystems, toxicant metals may alter the viability and metabolic activity of Mn-oxidizing organisms, thereby limiting the conditions under which biogenic MnO2 can form and diminishing their potential as adsorbent materials. Pseudomonas putida GB-1 (P. putida GB-1) is a model Mn-oxidizing laboratory culture representative of freshwater and soil biofilm-forming bacteria. Manganese oxidation in P. putida GB-1 occurs via two single-electron-transfer reactions, involving a multicopper oxidase enzyme found on the bacterial outer membrane surface. Near the onset of the stationary phase of growth, dark brown MnO2 particles are deposited in a matrix of bacterial cells and extracellular polymeric substances, thus forming heterogeneous biomineral assemblages. In this study, we assessed the influence of various transition metals on microbial growth and manganese oxidation capacity in a P. putida GB-1 culture propagated in a nutrient-rich growth medium. The concentration-response behavior of actively growing P. putida GB-1 cells was investigated for Fe, Co, Ni, Cu and Zn at pH ≈ 6 in the presence and absence of 1 mM Mn. Toxicity parameters such as EC0, EC50 and Hillslope, and EC100 were obtained from the sigmoidal concentration-response curves. The extent of MnO2 formation in the presence of the various metal cations was documented 24, 50, 74 and 104 h after the metal-amended medium was inoculated. Toxicity values were compared to twelve physicochemical properties of the metals tested. Significant

  19. Metal-oxide Nanowires for Toxic Gas Detection

    SciTech Connect

    Devineni, D. P.; Stormo, S.; Kempf, W.; Schenkel, J.; Behanan, R.; Lea, Alan S.; Galipeau, David W.

    2007-01-02

    The feasibility of using Electric field enhanced oxidation (EFEO) to fabricate metal-oxide nanowires for sensing toxic gases was investigated. The effects of fabrication parameters such as film thickness, ambient relative humidity, atomic force microscope (AFM) tip bias voltage, force, scan speed and number of scans on the growth of nanowires were determined. The chemical composition of indium-oxide nanowires was verified using Auger electron spectroscopy. It was found that oxygen to indium ration was 1.69, 1.72, 1.71 and 1.84 at depths of 0, 1.3, 2.5, and 3.8 nm, which was near the 1.5:1 expected for stoichiometric indium-oxide film. Future work will include characterizing the electrical and gas sensing properties of the metal-oxide nanowires.

  20. Surface oxidability of pure liquid metals and alloys

    NASA Astrophysics Data System (ADS)

    Arato, E.; Bernardi, M.; Giuranno, D.; Ricci, E.

    2012-01-01

    The analysis of the oxygen-liquid metal interaction is a topic of particular technological interest. A deep knowledge of the kinetics and transport mechanisms involved in the oxidation phenomena is necessary: the effect of oxidation reactions taking place in the gas phase and the evaporation of oxides must be considered. This paper aims to review our works in order to provide a systematic analysis of the oxidation of pure metals and determine the most likely to keeping oxygen-free the surface in a binary alloy. In addition, the upgrading of this theoretical approach, here briefly described, is addressed to give a contribution to a better understanding of the evolution of oxidation phenomena close to the solid-liquid-gas interfaces.

  1. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    Nanoporous metal-based solids are of particular interest because they combine a large quantity of surface metal sites, interconnected porous networks, and nanosized crystalline walls, thus exhibiting unique physical and chemical properties compared to other nanostructures and bulk counterparts. Among all of the synthetic approaches, nanocasting has proven to be a highly effective method for the syntheses of metal oxides with three-dimensionally ordered porous structures and crystalline walls. A typical procedure involves a thermal annealing process of a porous silica template filled with an inorganic precursor (often a metal nitrate salt), which converts the precursor into a desired phase within the silica pores. The final step is the selective removal of the silica template in either a strong base or a hydrofluoric acid solution. In the past decade, nanocasting has become a popular synthetic approach and has enabled the syntheses of a variety of nanoporous metal oxides. However, there is still a lack of synthetic methods to fabricate nanoporous materials beyond simple metal oxides. Therefore, the development of new synthetic strategies beyond nanocasting has become an important direction. This Account describes new progress in the preparation of novel nanoporous metal-based solids for heterogeneous catalysis. The discussion begins with a method called dealloying, an effective method to synthesize nanoporous metals. The starting material is a metallic alloy containing two or more elements followed by a selective chemical or electrochemical leaching process that removes one of the preferential elements, resulting in a highly porous structure. Nanoporous metals, such as Cu, Ag, and CuTi, exhibit remarkable electrocatalytic properties in carbon dioxide reduction, oxygen reduction, and hydrogen evolution reactions. In addition, the syntheses of metal oxides with hierarchical porous structures are also discussed. On the basis of the choice of hard template, nanoporous

  2. Electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices

    NASA Astrophysics Data System (ADS)

    He, Zhen

    The focus of this dissertation is the electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices. The electrochemical reduction of metal oxides to metals has been studied for decades as an alternative to pyrometallurgical processes for the metallurgy industry. However, the previous work was conducted on bulk polycrystalline metal oxides. Paper I in this dissertation shows that epitaxial face-centered cubic magnetite (Fe3O4 ) thin films can be electrochemically reduced to epitaxial body-centered cubic iron (Fe) thin films in aqueous solution on single-crystalline Au substrates at room temperature. This technique opens new possibilities to produce special epitaxial metal/metal oxide heterojunctions and a wide range of epitaxial metallic alloy films from the corresponding mixed metal oxides. Electrodeposition, like biomineralization, is a soft solution processing method which can produce functional materials with special properties onto conducting or semiconducting solid surfaces. Paper II in this dissertation presents the electrodeposition of cobalt-substituted magnetite (CoxFe3-xO4, 0 of cobalt-substituted magnetite (CoxFe3-xO4, 0oxide (Co3O4) thin films on stainless steel and Au single-crystalline substrates. The crystalline Co3O4 thin films exhibit high catalytic activity towards the oxygen evolution reaction in an alkaline solution. A possible application of the electrodeposited Co 3O4 is the fabrication of highly active and low-cost photoanodes for photoelectrochemical water-splitting cells.

  3. Sustainable synthesis, characterization, and applications of metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Tiano, Amanda Lyn

    Nanomaterials have attracted significant research focus due to their advantageous and unique properties (i.e. electronic, magnetic, optical, and mechanical) as compared with the bulk. Metal oxide nanostructures are of particular interest, as they are very robust and display high chemical and thermal stability, while offering a diverse array of fascinating properties. By reliably controlling the size, morphology, composition, and crystallinity of these nanostructures, their properties can be tuned for a specific purpose. These advantageous tailorable properties render them as ideal candidates for many applications such as catalysis, sensing, electronics, optoelectronics, energy storage, and even medicine. Driven by their increased popularity and potential applications, efforts to synthesize nanomaterials have moved toward environmentally-friendly methodologies, such as wet-chemical, molten-salt, hydrothermal, and sol-gel methods. We will discuss the green synthesis of strontium ruthenate (SrRuO 3), the yttrium manganese oxides (YMnO3 and YMn2O 5), and the magnetic spinel ferrites (MFe2O4 where 'M' is Mg, Fe, Co, Ni, Cu, and Zn) and our ability to reliably tune their properties for various applications. The effects of the molten salt parameters on the resulting particle size and morphology were explored for SrRuO 3 and the yttrium manganese oxides. For example, rapid cooling rates and the use of surfactants allowed us to produced faceted octahedra of SrRuO 3, which resulted in a 4-fold enhancement of their activity towards methanol oxidation with respect to smooth rounded particles. Similarly, using the hydrothermal method, we generated ferrite nanoparticles of different compositions and sizes. We investigated their potential as contrast agents for magnetic resonance imaging (MRI) and as photocatalysts, and observed significant differences as a function of both size and composition. Similarly, we will also examine surface and structural effects upon the electronic

  4. Formation of metallic and metal hydrous oxide dispersions

    NASA Technical Reports Server (NTRS)

    Matijevic, E.; Sapieszko, R. S.

    1979-01-01

    The formation, via hydrothermally induced precipitation from homogeneous solution, of a variety of well-defined dispersions of metallic and hydrous metal in the conditions under which the particles are produced (e.g., pH and composition of the growth medium, aging temperature, rate of heating, or degree of agitation) can be readily discerned by following changes in the mass, composition, and morphology of the final solid phase. The generation of colloidal dispersions in the absence of gravity convection or sedimentation effects may result in the appearance of morphological modifications not previously observed in terrestrially formed hydrosols.

  5. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines.

    PubMed

    Priyadharshini, Ramaramesh Indra; Prasannaraj, Govindaraj; Geetha, Natesan; Venkatachalam, Perumal

    2014-12-01

    A rapid and novel microwave-mediated protocol was established for extracellular synthesis of metallic silver (Ag) and zinc oxide (ZnO) nanoparticles using the extracts of macro-algae Gracilaria edulis (GE) and also examined its anticancer activity against human prostate cancer cell lines (PC3). The formation of silver nanoparticles (GEAgNPs) and zinc oxide nanoparticles (GEZnONPs) in the reaction mixture was determined by ultraviolet-visible spectroscopy. The synthesized Ag and ZnO nanoparticles were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, energy dispersive X-ray, and field emission scanning electron microscopy. The silver and zinc oxide nanoparticles were spherical and rod-shaped, respectively. Cell viability assays were carried out to determine the cytotoxic effects of AgNPs and ZnONPs against PC3 and normal African monkey kidney (VERO) cell line. The inhibitory concentration values were found to be 39.60, 28.55, 53.99 μg/mL and 68.49, 88.05, 71.98 μg/mL against PC3 cells and Vero cells for AgNPs, ZnONPs, and aqueous G. edulis extracts, respectively, at 48 h incubation period. As evidenced by acridine orange/ethidium bromide staining, the percentage of the apoptotic bodies was found to be 62 and 70 % for AgNPs and ZnONPs, respectively. The present results strongly suggest that the synthesized ZnONPs showed an effective anticancer activity against PC3 cell lines than AgNPs. PMID:25380639

  6. Metal-Catalyzed Oxidation and Photo-oxidation of Glucagon.

    PubMed

    Zhang, Jian

    2016-08-01

    The oxidation of glucagon by the H2O2/Cu(2+) system and by simulated sunlight was studied using HPLC-MS methodologies. It was found that copper ion-catalyzed oxidation is much faster in the residue 1-12 region than in photo-oxidation, but it is slower than photo-oxidation in the residue 18-29 region. This difference is due to the unique feature of the primary sequence of glucagon. The residue 1-12 region contains His-1 and Asp-9 that can bind to Cu(2+) ions and catalyze the oxidation of His-1 and Tyr-10, while the residue 18-29 region lacks these charged residues near the liable Met-27 and Trp-25 and hence no catalysis by the neighboring groups occurs. Fragment (residue 13-17) was more stable than the other regions of the peptide toward photo-oxidation because it contains only one oxidizable residue, Tyr-13. These findings may help explain the mechanism of action of glucagon and provide some hints for the development of effective anti-diabetic drug molecules and stable glucagon formulations. PMID:27435200

  7. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  8. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  9. Biomimetic metal oxides for the extraction of nanoparticles from water.

    PubMed

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-04-21

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications. PMID:23471156

  10. Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production

    PubMed Central

    Michalsky, Ronald; Botu, Venkatesh; Hargus, Cory M; Peterson, Andrew A; Steinfeld, Aldo

    2015-01-01

    The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO2 and H2O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO2, Ti2O3, Cu2O, ZnO, ZrO2, MoO3, Ag2O, CeO2, yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity. PMID:26855639

  11. The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells

    PubMed Central

    Teske, Sondra S.; Detweiler, Corrella S.

    2015-01-01

    Humans are increasingly exposed to nanoparticles (NPs) in medicine and in industrial settings, where significant concentrations of NPs are common. However, NP interactions with and effects on biomolecules and organisms have only recently been addressed. Within we review the literature regarding proposed modes of action for metal and metal-oxide NPs, two of the most prevalent types manufactured. Iron-oxide NPs, for instance, are used as tracers for magnetic resonance imaging of oncological tumors and as vehicles for therapeutic drug delivery. Factors and theories that determine the physicochemical and biokinetic behaviors of NPs are discussed, along with the observed toxicological effects of NPs on cells. Key thermodynamic and kinetic models that explain the sources of energy transfer from NPs to biological targets are summarized, in addition to quantitative structural activity relationship (QSAR) modeling efforts. Future challenges for nanotoxicological research are discussed. We conclude that NP studies based on cell culture are often inconsistent and underestimate the toxicity of NPs. Thus, the effect of NPs needs to be examined in whole animal systems. PMID:25648173

  12. A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors

    PubMed Central

    Zhai, Tianyou; Fang, Xiaosheng; Liao, Meiyong; Xu, Xijin; Zeng, Haibo; Yoshio, Bando; Golberg, Dmitri

    2009-01-01

    One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area. PMID:22454597

  13. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    SciTech Connect

    Ding, L.; Boccard, Matthieu; Holman, Zachary; Bertoni, M.

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical band alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface

  14. STEM characterization of metal clusters in/on oxides

    NASA Astrophysics Data System (ADS)

    Mehraeen, Shareghe

    Dispersed metal clusters in or on a support matrix are key phenomenons in many technological fields. Two widely used examples of them which are investigated in this thesis are supported-metal clusters in heterogeneous catalysis and transition metal clusters in diluted magnetic semiconductors (DMS) applied in spintronics. The catalytic activity and selectivity of catalysts often depend sensitively on structure parameters, such as particles size and shape. With the same analogy, the magnetic properties of DMS oxides are sensitively related to the crystal defects of the host material as a consequence of doping the transition metal. Therefore it is essential to develop and understand the correlation between nanostructure and function of these materials. STEM Z-contrast imaging is the best candidate for this type of study because of a high degree of resolution it provides and the unique ability it offers to detect and differentiate between the clusters and oxide matrix due to the large difference between their atomic numbers. Moreover the technique development in the STEM field fosters the conjugation of electron energy Loss Spectroscopy (EELS) and Z-contrast imaging and their widespread use for nearly atomic level chemical analysis at interface, second phases, and isolated defects. The advanced preparation method of supported clusters catalysts which is by carbonyl ligands offers a controlled cluster size and shape. MgO-supported Os clusters and SiO2-supported Ta clusters prepared by this method are adsorbed on oxide to convert into single-sized supported metal aggregates. The last step of preparation method is by removal of the ligands (decarbonylation) which is very important because it determines the final size distribution and shape of such clusters. Reaching carbonylated decaosmium clusters with the size of theoretically 0.295 nm and the tetrahedral-shape geometry are the aim of the preparation method. The size distribution measurements of sub-nanoclusters of

  15. Ligand-Assisted Co-Assembly Approach toward Mesoporous Hybrid Catalysts of Transition-Metal Oxides and Noble Metals: Photochemical Water Splitting.

    PubMed

    Liu, Ben; Kuo, Chung-Hao; Chen, Jiejie; Luo, Zhu; Thanneeru, Srinivas; Li, Weikun; Song, Wenqiao; Biswas, Sourav; Suib, Steven L; He, Jie

    2015-07-27

    A bottom-up synthetic approach was developed for the preparation of mesoporous transition-metal-oxide/noble-metal hybrid catalysts through ligand-assisted co-assembly of amphiphilic block-copolymer micelles and polymer-tethered noble-metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble-metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble-metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble-metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems. PMID:26073465

  16. Metal ion adsorption to complexes of humic acid and metal oxides: Deviations from the additivity rule

    SciTech Connect

    Vermeer, A.W.P.; McCulloch, J.K.; Van Riemsdijk, W.H.; Koopal, L.K.

    1999-11-01

    The adsorption of cadmium ions to a mixture of Aldrich humic acid and hematite is investigated. The actual adsorption to the humic acid-hematite complex is compared with the sum of the cadmium ion adsorptivities to each of the isolated components. It is shown that the sum of the cadmium ion adsorptivities is not equal to the adsorption to the complex. In general, the adsorption of a specific metal ion to the complex can be understood and qualitatively predicted using the adsorptivities to each of the pure components and taking into account the effect of the pH on the interaction between humic acid and iron oxide on the metal ion adsorption. Due to the interaction between the negatively charged humic acid and the positively charged iron oxide, the adsorption of metal ions on the mineral oxide in the complex will increase as compared to that on the isolated oxide, whereas the adsorption to the humic acid will decrease as compared to that on the isolated humic acid. As a result, the overall adsorption of a specific metal ion to the complex will be smaller than predicted by the additivity rule when this metal ion has a more pronounced affinity for the humic acid than for the mineral oxide, whereas it will be larger than predicted by the additivity rule when the metal ion has a higher affinity for the oxide than for the humic acid.

  17. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    NASA Astrophysics Data System (ADS)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  18. Biomedical Detection via Macro- and Nano-Sensors Fabricated with Metallic and Semiconducting Oxides

    PubMed Central

    Hahm, Jong-In

    2013-01-01

    Originally developed as gas sensors, the benefits of metallic and semiconducting oxide materials are now being realized in other areas of sensing, such as chemical, environmental, and biomedical monitoring and detection. Metallic and semiconducting oxides have continuously expanded their roles to date, and have also established their significance in biosensing by utilizing a variety of modes for signal generation and detection mechanism. These sensors are typically based either on their optical, electrochemical, electrical, gravimetric, acoustic, and magnetic properties for signal transduction. This article reviews such biosensors that employ metallic and semiconducting oxides as active sensing elements to detect nucleic acids, proteins, cells, and a variety of important biomarkers, both in thin film and one-dimensional forms. Specific oxide materials (Mx Oy ) examined comprehensively in this article include M = Fe, Cu, Si, Zn, Sn, In. The derivatives of these oxide materials resulting from incorporation of dopants are examined as well. The crystalline structures and unique properties that may be exploited for various biosensing applications are discussed, and recent efforts investigating the feasibility of using these oxide materials in biosensor technology are described. Key biosensor characteristics resulting from reduced dimensionality are overviewed under the motif of planar and one-dimensional sensors. This article also provides insight into current challenges facing biosensor applications for metallic and semiconducting oxides. In addition, future outlook in this particular field as well as different impacts on biology and medicine are addressed. PMID:23627064

  19. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    SciTech Connect

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  20. On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides.

    PubMed

    Vojvodic, A; Calle-Vallejo, F; Guo, W; Wang, S; Toftelund, A; Studt, F; Martínez, J I; Shen, J; Man, I C; Rossmeisl, J; Bligaard, T; Noørskov, J K; Abild-Pedersen, F

    2011-06-28

    Versatile Brønsted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site, and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a "cyclic" behavior in the transition state characteristics upon change of the active transition metal of the oxide. PMID:21721645

  1. The Role of Metal Regulatory Proteins in Brain Oxidative Stress: A Tutorial

    PubMed Central

    2012-01-01

    The proteins that regulate the metabolism of a metal must also play a role in regulating the redox activity of the metal. Metals are intrinsic to a substantial number of biological processes and the proteins that regulate those activities are also considerable in number. The role these proteins play in a wide range of physiological processes involves them directly and indirectly in a variety of disease processes. Similarly, it may be therapeutically advantageous to pharmacologically alter the activity of these metal containing proteins to influence disease processes. This paper will introduce the reader to a number of important proteins in both metal metabolism and oxidative stress, with an emphasis on the brain. Potential pharmacological targets will be considered. PMID:23304261

  2. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  3. Fabrication of Metal and Metal Oxide Nanoparticles by Algae and their Toxic Effects.

    PubMed

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-12-01

    Of all the aquatic organisms, algae are a good source of biomolecules. Since algae contain pigments, proteins, carbohydrates, fats, nucleic acids and secondary metabolites such as alkaloids, some aromatic compounds, macrolides, peptides and terpenes, they act as reducing agents to produce nanoparticles from metal salts without producing any toxic by-product. Once the algal biomolecules are identified, the nanoparticles of desired shape or size may be fabricated. The metal and metal oxide nanoparticles thus synthesized have been investigated for their antimicrobial activity against several gram-positive and gram-negative bacterial strains and fungi. Their dimension is controlled by temperature, incubation time, pH and concentration of the solution. In this review, we have attempted to update the procedure of nanoparticle synthesis from algae, their characterization by UV-vis, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, dynamic light scattering and application in cutting-edge areas. PMID:27530743

  4. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  5. Anaerobic Nitrate-Dependent Metal Bio-Oxidation

    NASA Astrophysics Data System (ADS)

    Weber, K.; Knox, T.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Direct biological oxidation of reduced metals (Fe(II) and U(IV)) coupled to nitrate reduction at circumneutral pH under anaerobic conditions has been recognized in several environments as well as pure culture. Several phylogentically diverse mesophilic bacteria have been described as capable of anaerobic, nitrate-dependent Fe(II) oxidation (NFOx). Our recent identification of a freshwater mesophilic, lithoautotroph, Ferrutens nitratireducens strain 2002, capable of growth through NFOx presents an opportunity to further study metal bio- oxidation. Continuing physiological studies revealed that in addition to Fe(II) oxidation, strain 2002 is capable of oxidizing U(IV) (4 μM) in washed cell suspensions with nitrate serving as the electron acceptor. Pasteurized cultures exhibited abiotic oxidation of 2 μM U(IV). Under growth conditions, strain 2002 catalyzed the oxidation of 12 μM U(IV) within a two week period. Cultures amended with sodium azide, an electron transport inhibitor, demonstrated limited oxidation (7 μM) similar to pasteurized cultures, supporting the direct role of electron transport in U(IV) bio-oxidation. The oxidation of U(IV) coupled denitrification at circumneutral pH would yield enough energy to support anaerobic microbial growth (ΔG°'= -460.36 kJ/mole). It is currently unknown whether or not strain 2002 can couple this metabolism to growth. The growth of F. nitratireducens strain 2002 utilizing Fe(II) as the sole electron donor was previously demonstrated. The amount of U(IV) (~12 μM) that strain 2002 oxidized under similar autotrophic growth conditions yields 0.0019 kJ, enough energy for the generation of ATP (5.3 x 10-20 kJ ATP-1), but not enough energy for cell replication as calculated for nitrate-dependent Fe(II) oxidizing conditions (0.096 kJ) assuming a similar metabolism. In addition to F. nitratireducens strain 2002, a nitrate-dependent Fe(II) oxidizing bacterium isolated from U contaminated groundwater, Diaphorobacter sp. strain

  6. The mechanism of electroforming of metal oxide memristive switches.

    PubMed

    Joshua Yang, J; Miao, Feng; Pickett, Matthew D; Ohlberg, Douglas A A; Stewart, Duncan R; Lau, Chun Ning; Williams, R Stanley

    2009-05-27

    Metal and semiconductor oxides are ubiquitous electronic materials. Normally insulating, oxides can change behavior under high electric fields--through 'electroforming' or 'breakdown'--critically affecting CMOS (complementary metal-oxide-semiconductor) logic, DRAM (dynamic random access memory) and flash memory, and tunnel barrier oxides. An initial irreversible electroforming process has been invariably required for obtaining metal oxide resistance switches, which may open urgently needed new avenues for advanced computer memory and logic circuits including ultra-dense non-volatile random access memory (NVRAM) and adaptive neuromorphic logic circuits. This electrical switching arises from the coupled motion of electrons and ions within the oxide material, as one of the first recognized examples of a memristor (memory-resistor) device, the fourth fundamental passive circuit element originally predicted in 1971 by Chua. A lack of device repeatability has limited technological implementation of oxide switches, however. Here we explain the nature of the oxide electroforming as an electro-reduction and vacancy creation process caused by high electric fields and enhanced by electrical Joule heating with direct experimental evidence. Oxygen vacancies are created and drift towards the cathode, forming localized conducting channels in the oxide. Simultaneously, O(2-) ions drift towards the anode where they evolve O(2) gas, causing physical deformation of the junction. The problematic gas eruption and physical deformation are mitigated by shrinking to the nanoscale and controlling the electroforming voltage polarity. Better yet, electroforming problems can be largely eliminated by engineering the device structure to remove 'bulk' oxide effects in favor of interface-controlled electronic switching. PMID:19423925

  7. Lipidic nanovesicles stabilize suspensions of metal oxide nanoparticles.

    PubMed

    Jiménez-Rojo, Noemi; Lete, Marta G; Rojas, Elena; Gil, David; Valle, Mikel; Alonso, Alicia; Moya, Sergio E; Goñi, Félix M

    2015-10-01

    We have studied the effect of adding lipid nanovesicles (liposomes) on the aggregation of commercial titanium oxide (TiO2), zinc oxide (ZnO), or cerium oxide (CeO2) nanoparticles (NPs) suspensions in Hepes buffer. Liposomes were prepared with pure phospholipids or mixtures of phospholipids and/or cholesterol. Changes in turbidity were recorded as a function of time, either of metal nanoparticles alone, or for a mixture of nanoparticles and lipidic nanovesicles. Lipid nanovesicles markedly decrease the NPs tendency to sediment irrespective of size or lipid compositions, thus keeping the metal oxide NPs in suspension. Cryo-electron microscopy, fluorescence anisotropy of TMA-DPH and general polarization of laurdan failed to reveal any major effect of the NPs on the lipid bilayer structure or phase state of the lipids. The above data may help in developing studies of the interaction of inhaled particles with lung surfactant lipids and alveolar macrophages. PMID:26301898

  8. Metal current collect protected by oxide film

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2004-05-25

    Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.

  9. The Strength of the Metal. Aluminum Oxide Interface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1984-01-01

    The strength of the interface between metals and aluminum oxide is an important factor in the successful operation of devices found throughout modern technology. One finds the interface in machine tools, jet engines, and microelectronic integrated circuits. The strength of the interface, however, should be strong or weak depending on the application. The diverse technological demands have led to some general ideas concerning the origin of the interfacial strength, and have stimulated fundamental research on the problem. Present status of our understanding of the source of the strength of the metal - aluminum oxide interface in terms of interatomic bonds are reviewed. Some future directions for research are suggested.

  10. Method for continuous synthesis of metal oxide powders

    SciTech Connect

    Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.

    2015-09-08

    A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.

  11. Large Lateral Photovoltaic Effect in Metal-(Oxide-) Semiconductor Structures

    PubMed Central

    Yu, Chongqi; Wang, Hui

    2010-01-01

    The lateral photovoltaic effect (LPE) can be used in position-sensitive detectors to detect very small displacements due to its output of lateral photovoltage changing linearly with light spot position. In this review, we will summarize some of our recent works regarding LPE in metal-semiconductor and metal-oxide-semiconductor structures, and give a theoretical model of LPE in these two structures. PMID:22163463

  12. Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support.

    PubMed

    Strayer, Megan E; Senftle, Thomas P; Winterstein, Jonathan P; Vargas-Barbosa, Nella M; Sharma, Renu; Rioux, Robert M; Janik, Michael J; Mallouk, Thomas E

    2015-12-30

    Interfacial interactions between late transition metal/metal oxide nanoparticles and oxide supports impact catalytic activity and stability. Here, we report the use of isothermal titration calorimetry (ITC), electron microscopy and density functional theory (DFT) to explore periodic trends in the heats of nanoparticle-support interactions for late transition metal and metal oxide nanoparticles on layered niobate and silicate supports. Data for Co(OH)2, hydroxyiridate-capped IrOx·nH2O, Ni(OH)2, CuO, and Ag2O nanoparticles were added to previously reported data for Rh(OH)3 grown on nanosheets of TBA0.24H0.76Ca2Nb3O10 and a layered silicate. ITC measurements showed stronger bonding energies in the order Ag < Cu ≈ Ni ≈ Co < Rh < Ir on the niobate support, as expected from trends in M-O bond energies. Nanoparticles with exothermic heats of interaction were stabilized against sintering. In contrast, ITC measurements showed endothermic interactions of Cu, Ni, and Rh oxide/hydroxide nanoparticles with the silicate and poor resistance to sintering. These trends in interfacial energies were corroborated by DFT calculations using single-atom and four-atom cluster models of metal/metal oxide nanoparticles. Density of states and charge density difference calculations reveal that strongly bonded metals (Rh, Ir) transfer d-electron density from the adsorbed cluster to niobium atoms in the support; this mixing is absent in weakly binding metals, such as Ag and Au, and in all metals on the layered silicate support. The large differences between the behavior of nanoparticles on niobate and silicate supports highlight the importance of d-orbital interactions between the nanoparticle and support in controlling the nanoparticles' stability. PMID:26651875

  13. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  14. Galvanic Exchange in Colloidal Metal/Metal-Oxide Core/Shell Nanocrystals

    PubMed Central

    2016-01-01

    While galvanic exchange is commonly applied to metallic nanoparticles, recently its applicability was expanded to metal-oxides. Here the galvanic exchange is studied in metal/metal-oxide core/shell nanocrystals. In particular Sn/SnO2 is treated by Ag+, Pt2+, Pt4+, and Pd2+. The conversion dynamics is monitored by in situ synchrotron X-ray diffraction. The Ag+ treatment converts the Sn cores to the intermetallic AgxSn (x ∼ 4) phase, by changing the core’s crystal structure. For the analogous treatment by Pt2+, Pt4+, and Pd2+, such a galvanic exchange is not observed. This different behavior is caused by the semipermeability of the naturally formed SnO2 shell, which allows diffusion of Ag+ but protects the nanocrystal cores from oxidation by Pt and Pd ions.

  15. Dextran templating for the synthesis of metallic and metal oxide sponges

    NASA Astrophysics Data System (ADS)

    Walsh, Dominic; Arcelli, Laura; Ikoma, Toshiyuki; Tanaka, Junzo; Mann, Stephen

    2003-06-01

    Silver or gold-containing porous frameworks have been used extensively in catalysis, electrochemistry, heat dissipation and biofiltration. These materials are often prepared by thermal reduction of metal-ion-impregnated porous insoluble supports (such as alumina and pumice), and have surface areas of about 1 m2 g-1, which is typically higher than that obtained for pure metal powders or foils prepared electrolytically or by infiltration and thermal decomposition of insoluble cellulose supports. Starch gels have been used in association with zeolite nanoparticles to produce porous inorganic materials with structural hierarchy, but the use of soft sacrificial templates in the synthesis of metallic sponges has not been investigated. Here we demonstrate that self-supporting macroporous frameworks of silver, gold and copper oxide, as well as composites of silver/copper oxide or silver/titania can be routinely prepared by heating metal-salt-containing pastes of the polysaccharide, dextran, to temperatures between 500 and 900 °C. Magnetic sponges were similarly prepared by replacing the metal salt precursor with preformed iron oxide (magnetite) nanoparticles. The use of dextran as a sacrificial template for the fabrication of metallic and metal oxide sponges should have significant benefits over existing technologies because the method is facile, inexpensive, environmentally benign, and amenable to scale-up and processing.

  16. Container Prevents Oxidation Of Metal Powder

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Power, Christopher A.; Mckechnie, Timothy N.; Burns, David H.

    1992-01-01

    Sealed high-vacuum container holds metal powder required free of contamination by oxygen from point of manufacture to point of use at vacuum-plasma-spraying machine. Container protects powder from air during filling, storage, and loading of spraying machine. Eliminates unnecessary handling and transfer of powder from one container to another. Stainless-steel container sits on powder feeder of vacuum-plasma-spraying machine.

  17. Synthesis and photocatalytic property of porous metal oxides nanowires based on carbon nanofiber template

    NASA Astrophysics Data System (ADS)

    Fan, Weiqiang; Li, Meng; Xu, Jinfu; Bai, Hongye; Zhang, Rongxian; Chen, Chao

    2015-11-01

    A series of porous metal oxides nanowires (Fe2O3, Co3O4, NiO and CuO) have been successfully synthesized, where commercial carbon nanofibers were used as the template. The obtained samples were systematically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis diffuse reflectance (UV-Vis DR) spectra and transmission electron microscope (TEM). According to the photodegradation data, the porous metal oxides nanowires exhibit significantly photocatalytic activity for degrading tetracycline (TC). Furthermore, the porous Fe2O3 nanowires show the best photocatalytic performance among all the samples.

  18. Ionic liquid-modified metal sulfides/graphene oxide nanocomposites for photoelectric conversion

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Yù; Pei, Qi; Feng, Ting; Mao, Hui; Zhang, Wei; Wu, Shuyao; Liu, Daliang; Wang, Hongyu; Song, Xi-Ming

    2015-08-01

    Ionic liquid-modified metal sulfides/graphene oxide nanocomposites are prepared via a facile electrostatic adsorption. Ionic liquid (IL) is firstly used as surface modifier and structure-directing agent of metal sulfide (MS) crystallization process, obtaining ionic liquid modified-MS (IL-MS) nanoparticles with positive charges on surface. IL-MS/GO is obtained by electrostatic adherence between positively charged IL-MS and negatively charged graphene oxide (GO). The as-prepared sample shows enhanced photocurrent and highly efficient photocatalytic activity under visible light irradiation, indicating IL-MS/GO nanocomposites greatly promoted the separation of photogenerated electron-hole pairs.

  19. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    SciTech Connect

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  20. Ultralight Interconnected Metal Oxide Nanotube Networks.

    PubMed

    Stano, Kelly L; Faraji, Shaghayegh; Hodges, Ryan; Yildiz, Ozkan; Wells, Brian; Akyildiz, Halil I; Zhao, Junjie; Jur, Jesse; Bradford, Philip D

    2016-05-01

    Record-breaking ultralow density aluminum oxide structures are prepared using a novel templating technique. The alumina structures are unique in that they are comprised by highly aligned and interconnected nanotubes yielding anisotropic behavior. Large-scale network structures with complex form-factors can easily be made using this technique. The application of the low density networks as humidity sensing materials as well as thermal insulation is demonstrated. PMID:26969860

  1. CHEMISTRY OF SO{sub 2} ON MODEL METAL AND OXIDE CATALYSTS: PHOTOEMISSION AND XANES STUDIES

    SciTech Connect

    RODRIGUEZ,J.A.; JIRSAK,T.; CHATURVEDI,S.; HRBEK,J.; FREITAG,A.; LARESE,J.Z.

    2000-07-09

    High-resolution synchrotron based photoemission and x-ray absorption spectroscopy have been used to study the interaction of SO{sub 2} with a series of metals and oxides. The chemistry of SO{sub 2} on metal surfaces is rich. At low coverages, the molecule fully decomposes into atomic S and O. At large coverages, the formation of SO{sub 3} and SO{sub 4} takes place. The following sequence was found for the reactivity of the metals towards SO{sub 2}: Pt {approx} Rh < Ru < Mo << Zn, Sn, Cs. Alloying can be useful for reducing the chemical affinity of a metal for SO{sub 2} and controlling S poisoning. Pd atoms bonded to Rh and Pt atoms bonded to Sn interact weakly with SO{sub 2}. In general, SO{sub 2} mainly reacts with the O centers of metal oxides. SO{sub 4} is formed on CeO{sub 2} and SO{sub 3} on ZnO. On these systems there is no decomposition of SO{sub 2}. Dissociation of the molecule is observed after introducing a large amount of Ce{sup 3+} sites in ceria, or after depositing Cu or alkali metals on the oxide surfaces. These promote the catalytic activity of the oxides during the destruction of SO{sub 2}.

  2. Laboratory SIP signatures associated with oxidation of disseminated metal sulfides.

    PubMed

    Placencia-Gómez, Edmundo; Slater, Lee; Ntarlagiannis, Dimitrios; Binley, Andrew

    2013-05-01

    Oxidation of metal sulfide minerals is responsible for the generation of acidic waters rich in sulfate and metals. When associated with the oxidation of sulfide ore mine waste deposits the resulting pore water is called acid mine drainage (AMD); AMD is a known environmental problem that affects surface and ground waters. Characterization of oxidation processes in-situ is challenging, particularly at the field scale. Geophysical techniques, spectral induced polarization (SIP) in particular, may provide a means of such investigation. We performed laboratory experiments to assess the sensitivity of the SIP method to the oxidation mechanisms of common sulfide minerals found in mine waste deposits, i.e., pyrite and pyrrhotite, when the primary oxidant agent is dissolved oxygen. We found that SIP parameters, e.g., phase shift, the imaginary component of electrical conductivity and total chargeability, decrease as the time of exposure to oxidation and oxidation degree increase. This observation suggests that dissolution-depletion of the mineral surface reduces the capacitive properties and polarizability of the sulfide minerals. However, small increases in the phase shift and imaginary conductivity do occur during oxidation. These transient increases appear to correlate with increases of soluble oxidizing products, e.g., Fe(2+) and Fe(3+) in solution; precipitation of secondary minerals and the formation of a passivating layer to oxidation coating the mineral surface may also contribute to these increases. In contrast, the real component of electrical conductivity associated with electrolytic, electronic and interfacial conductance is sensitive to changes in the pore fluid chemistry as a result of the soluble oxidation products released (Fe(2+) and Fe(3+)), particularly for the case of pyrrhotite minerals. PMID:23531431

  3. All-alkoxide synthesis of strontium-containing metal oxides

    DOEpatents

    Boyle, Timothy J.

    2001-01-01

    A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.

  4. Oxidation of phenol by hydrogen peroxide catalyzed by metal-containing poly(amidoxime) grafted starch.

    PubMed

    El-Hamshary, Hany; El-Newehy, Mohamed H; Al-Deyab, Salem S

    2011-01-01

    Polyamidoxime chelating resin was obtained from polyacrylonitrile (PAN) grafted starch. The nitrile groups of the starch-grafted polyacrylonitrile (St-g-PAN) were converted into amidoximes by reaction with hydroxylamine under basic conditions. The synthesized graft copolymer and polyamidoxime were characterized by FTIR, TGA and elemental microanalysis. Metal chelation of the polyamidoxime resin with iron, copper and zinc has been studied. The produced metal-polyamidoxime polymer complexes were used as catalysts for the oxidation of phenol using H(2)O(2) as oxidizing agent. The oxidation of phenol depends on the central metal ion present in the polyamidoxime complex. Reuse of M-polyamidoxime catalyst/H(2)O(2) system showed a slight decrease in catalytic activities for all M-polyamidoxime catalysts. PMID:22127293

  5. In vitro study of drug loading on polymer-free oxide films of metallic implants.

    PubMed

    Shih, Chun-Ming; Shih, Chun-Che; Su, Yea-Yang; Chang, Nen-Chung; Lin, Shing-Jong

    2005-12-01

    Traditionally, a drug that is loaded onto a metallic surface has to use various polymer bondings as its platform. Unfortunately, polymer coatings on a metallic surface cause numerous problems after implantation, such as late thrombosis, inflammation, and restenosis. This research was conducted to investigate whether an oxide layer can be used as a polymer-free platform for drug loading, especially for cardiovascular stents. The interaction and loading of heparin onto different oxide films on 316LVM stainless steel wire was confirmed in vitro by experimental studies using linear voltammetry, electrochemical impedance spectroscopy, and electron spectroscopy for chemical analysis. The eluting of heparin from heparinized surface was studied by using high-performance liquid chromatography, and activated clotting time in addition to linear voltammetry and electron spectroscopy for chemical analysis analyses. Experimental results show that amorphous oxide could be a potential substitute for the polymer coating of drug-loaded stents for minimizing metallic corrosion, inflammation, late thrombosis, and restenosis. PMID:16082699

  6. Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses

    PubMed Central

    Zhang, Weipeng; Wang, Yong; Lee, On On; Tian, Renmao; Cao, Huiluo; Gao, Zhaoming; Li, Yongxin; Yu, Li; Xu, Ying; Qian, Pei-Yuan

    2013-01-01

    Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses. PMID:24212283

  7. Heterogeneous catalytic oxidation of As(III) on nonferrous metal oxides in the presence of H2O2.

    PubMed

    Kim, Dong-hyo; Bokare, Alok D; Koo, Min suk; Choi, Wonyong

    2015-03-17

    The oxidation of As(III) (arsenite) to As(V) (arsenate), a critical pretreatment process for total arsenic removal, is easily achieved using chemical oxidation methods. Hydrogen peroxide (H2O2) is widely used as an environmentally benign oxidant but its practical use for the arsenite oxidation is limited by the strong pH dependence and slow oxidation kinetics. This study demonstrated that H2O2-induced oxidation of As(III) can be markedly enhanced in the presence of nonferrous metal oxides (e.g., WO3, TiO2, ZrO2) as a heterogeneous catalyst working over a wide pH range in ambient reaction conditions. In particular, TiO2 is an ideal catalyst because it is not only active and stable but also easily available and inexpensive. Although the photocatalytic oxidation of As(III) on TiO2 was intensively studied, the thermal catalytic activities of TiO2 and other nonferrous metal oxides for the arsenic oxidation have been little investigated. The heterogeneous oxidation rate increased with increasing the TiO2 surface area and [H2O2] and weakly depended on pH whereas the homogeneous oxidation by H2O2 alone was favored only at alkaline condition. The oxidation rate in the TiO2/H2O2 system was not reduced at all in the absence of dioxygen. It was not retarded at all by OH radical scavengers but markedly inhibited by hydroperoxyl radical scavengers. It is proposed that the surface complexation of H2O2 on TiO2 induces the generation of the surface hydroperoxyl radical through an inner-sphere electron transfer, which subsequently reacts with As(III). The catalytic activity of TiO2 was maintained without showing any sign of deactivation. The heterogeneous catalytic oxidation is proposed as a viable method for the preoxidation treatment of As(III)-contaminated water under ambient conditions. PMID:25695481

  8. Dissolution of metal and metal oxide nanoparticles in aqueous media.

    PubMed

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-08-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. PMID:24832924

  9. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  10. Extended Frenkel pairs and band alignment at metal-oxide interfaces

    NASA Astrophysics Data System (ADS)

    Sharia, O.; Tse, K.; Robertson, J.; Demkov, Alexander A.

    2009-03-01

    We show how oxygen vacancies in metal oxides next to high-work-function metals are stabilized by an oxygen exchange reaction with the metal, and by a charge transfer from the vacancy energy level to the metal Fermi level. The results help explain some of the Fermi-level pinning problems in high- k dielectric gate stacks in complimentary metal oxide semiconductor technology and also explain the driving force behind the strong metal-support interaction in oxide-supported catalysts.

  11. Tuning carrier density at complex oxide interface with metallic overlayer

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Shi, Y. J.; Jiang, S. W.; Yue, F. J.; Wang, P.; Ding, H. F.; Wu, D.

    2016-06-01

    We have systematically investigated the electronic transport properties of the LaAlO3/SrTiO3 interfaces with several different metal capping layers. The sheet carrier density can be tuned in a wide range by the metallic overlayer without changing the carrier mobility. The sheet carrier density variation is found to be linearly dependent on the size of metal work function. This behavior is explained by the mechanism of the charge transfer between the oxide interface and the metal overlayer across the LaAlO3 layer. Our results confirm the existence of a built-in electric field in LaAlO3 film with an estimated value of 67.7 eV/Å. Since the metallic overlayer is essential for devices, the present phenomena must be considered for future applications.

  12. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    SciTech Connect

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  13. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide

    PubMed Central

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  14. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    PubMed

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-01-01

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants. PMID:26681104

  15. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    NASA Astrophysics Data System (ADS)

    Squires, Leah N.; Lessing, Paul

    2016-04-01

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can be easily removed upon cooling. The direct reduction technique consistently produces high purity (98%-99% pure) neptunium metal.

  16. Exoemissive noise activity of different metallic materials

    NASA Astrophysics Data System (ADS)

    Bichevin, V.; Käämbre, H.; Sammelselg, V.; Kelle, H.; Asari, E.; Saks, O.

    1996-11-01

    A method is proposed for testing the exoemission activity of different metals, used as materials in high sensitivity electrometry (attoammetry). The presented test results allow us to select materials with weaker exoelectron spurious currents.

  17. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  18. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.

    PubMed

    Widmann, D; Behm, R J

    2014-03-18

    Although highly dispersed Au catalysts with Au nanoparticles (NPs) of a few nanometers in diameter are well-known for their high catalytic activity for several oxidation and reduction reactions already at rather low temperatures for almost 30 years, central aspects of the reaction mechanism are still unresolved. While most studies focused on the active site, the active Au species, and the effect of the support material, the most crucial step during oxidation reactions, the activation of molecular oxygen and the nature of the resulting active oxygen species (Oact), received more attention just recently. This is topic of this Account, which focuses on the formation, location, and nature of the Oact species present on metal oxide supported Au catalysts under typical reaction conditions, at room temperature and above. It is mainly based on quantitative temporal analysis of products (TAP) reactor measurements, which different from most spectroscopic techniques are able to detect and quantify these species even at the extremely low concentrations present under realistic reaction conditions. Different types of pulse experiments were performed, during which the highly dispersed, realistic powder catalysts are exposed to very low amounts of reactants, CO and/or O2, in order to form and reactively remove Oact species and gain information on their formation, nature, and the active site for Oact formation. Our investigations have shown that the active oxygen species for CO oxidation on Au/TiO2 for reaction at 80 °C and higher is a highly stable atomic species, which at 80 °C is formed only at the perimeter of the Au-oxide interface and whose reactive removal by CO is activated, but not its formation. From these findings, it is concluded that surface lattice oxygen represents the Oact species for the CO oxidation. Accordingly, the CO oxidation proceeds via a Au-assisted Mars-van Krevelen mechanism, during which surface lattice oxygen close to the Au NPs is removed by reaction

  19. Metal-accelerated oxidation in plant cell death

    SciTech Connect

    Czuba, M. )

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  20. Fundamentals of electrochromism in metal oxide bronzes

    SciTech Connect

    Haas, T.E.; Goldner, R.B.

    1990-12-31

    The phenomenon of electrochromism as described here is clearly a property to be associated with a material. The material must be capable of reversible oxidation and reduction, and have an accompanying spectral change. However, since it requires a chemical change of oxidation state to occur, there must be a corresponding second material to serve as the source/sink of electrons and charge compensating ions. In short, electrochromism is observable only in a device, not in an isolated material. In its essence an electrochromic device is simply a reversible electrochemical cell, consisting of electronic conductors (the wires for an external electronic pathway), two electrodes at which the electron transfer, the oxidation and reduction, takes place, and an ion conducting and electron blocking electrolyte separating the electrode materials. There are numerous ways to combine these fundamental components and the phenomenon of electrochromism into practical devices, several of which will be described in this book. The structure of the so-called smart window has the components of the electrochemical cell assembled in the form of thin films on a transparent substrate, and is intended to be viewed in transmission. The electronic conductors in this case must be transparent, thus are labeled TC (transparent conductor). The electrochromic layer, EC, consists of a material which undergoes the color change giving rise to the electrochromic designation. The ionic conductor, IC, serves as the electrolyte to allow ion transfer and block electron transfer, preventing shorting out of the device and permitting the memory feature of retaining the coloration state upon opening the external circuit of the device. The counterelectrode layer may be either optically passive or may behave in a complementary fashion to the EC layer, e.g., be anodically coloring to the EC layer that cathodically colors. The authors study WO{sub 3} as the electrochromatic material in a smart window application.