Science.gov

Sample records for active metal phase

  1. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis.

    PubMed

    Palomares, R I; Dayman, K J; Landsberger, S; Biegalski, S R; Soderquist, C Z; Casella, A J; Brady Raap, M C; Schwantes, J M

    2015-04-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. PMID:25644079

  2. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  3. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  4. Metal Nanoparticles Catalyzed Selective Carbon-Carbon Bond Activation in the Liquid Phase.

    PubMed

    Ye, Rong; Yuan, Bing; Zhao, Jie; Ralston, Walter T; Wu, Chung-Yeh; Unel Barin, Ebru; Toste, F Dean; Somorjai, Gabor A

    2016-07-13

    Understanding the C-C bond activation mechanism is essential for developing the selective production of hydrocarbons in the petroleum industry and for selective polymer decomposition. In this work, ring-opening reactions of cyclopropane derivatives under hydrogen catalyzed by metal nanoparticles (NPs) in the liquid phase were studied. 40-atom rhodium (Rh) NPs, encapsulated by dendrimer molecules and supported in mesoporous silica, catalyzed the ring opening of cyclopropylbenzene at room temperature under hydrogen in benzene, and the turnover frequency (TOF) was higher than other metals or the Rh homogeneous catalyst counterparts. Comparison of reactants with various substitution groups showed that electron donation on the three-membered ring boosted the TOF of ring opening. The linear products formed with 100% selectivity for ring opening of all reactants catalyzed by the Rh NP. Surface Rh(0) acted as the active site in the NP. The capping agent played an important role in the ring-opening reaction kinetics. Larger particle size tended to show higher TOF and smaller reaction activation energy for Rh NPs encapsulated in either dendrimer or poly(vinylpyrrolidone). The generation/size of dendrimer and surface group also affected the reaction rate and activation energy. PMID:27322570

  5. Measuring the Noble Metal and Iodine Composition of Extracted Noble Metal Phase from Spent Nuclear Fuel Using Instrumental Neutron Activation Analysis

    SciTech Connect

    Palomares, R. I.; Dayman, Kenneth J.; Landsberger, Sheldon; Biegalski, Steven R.; Soderquist, Chuck Z.; Casella, Amanda J.; Brady Raap, Michaele C.; Schwantes, Jon M.

    2015-04-01

    Mass quantities of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis (NAA). Nuclide presence is predicted using fission yield analysis, and mass quantification is derived from standard gamma spectroscopy and radionuclide decay analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. Lastly, the implications of the rapid analytic speed of instrumental NAA are discussed in relation to potential nuclear forensics applications.

  6. Bond Activation by Metal-Carbene Complexes in the Gas Phase.

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-03-15

    "Bare" metal-carbene complexes, when generated in the gas phase and exposed to thermal reactions under (near) single-collision conditions, exhibit rather unique reactivities in addition to the well-known metathesis and cyclopropanation processes. For example, at room temperature the unligated [AuCH2](+) complex brings about efficient C-C coupling with methane to produce C2Hx (x = 4, 6), and the couple [TaCH2](+)/CO2 gives rise to the generation of the acetic acid equivalent CH2═C═O. Entirely unprecedented is the thermal extrusion of a carbon atom from halobenzenes (X = F, Cl, Br, I) by [MCH2](+) (M = La, Hf, Ta, W, Re, Os) and its coupling with the methylene ligand to deliver C2H2 and [M(X)(C5H5)](+). Among the many noteworthy C-N bond-forming processes, the formation of CH3NH2 from [RhCH2](+)/NH3, the generation of CH2═NH2(+) from [MCH2](+)/NH3 (M = Pt, Au), and the production of [PtCH═NH2](+) from [PtCH2](+)/NH3 are of particular interest. The latter species are likely to be involved as intermediates in the platinum-mediated large-scale production of HCN from CH4/NH3 (the DEGUSSA process). In this context, a few examples are presented that point to the operation of co-operative effects even at a molecular level. For instance, in the coupling of CH4 with NH3 by the heteronuclear clusters [MPt](+) (M = coinage metal), platinum is crucial for the activation of methane, while the coinage metal M controls the branching ratio between the C-N bond-forming step and unwanted soot formation. For most of the gas-phase reactions described in this Account, detailed mechanistic insight has been derived from extensive computational work in conjunction with time-honored labeling and advanced mass-spectrometry-based experiments, and often a coherent description of the experimental findings has been achieved. As for some transition metals, in particular those from the third row, the metal-carbene complexes can be formed directly from methane, coupling of the so

  7. Activation of Metal-Organic Precursors by Electron Bombardment in the Gas Phase for Enhanced Deposition of Solid Films.

    PubMed

    Sun, Huaxing; Qin, Xiangdong; Zaera, Francisco

    2012-09-01

    The incorporation of gas-phase electron-impact ionization and activation of metal-organic compounds into atomic layer deposition (ALD) processes is reported as a way to enhance film growth with stable precursors. Specifically, it is shown here that gas-phase activation of methylcyclopentadienylmanganese tricarbonyl, MeCpMn(CO)3, which was accomplished by using a typical nude ion gauge employed in many ultrahigh-vacuum (UHV) studies, enhances its dissociative adsorption on silicon surfaces, affording the design of ALD cycles with more extensive Mn deposition and at lower temperatures. Significantly higher Mn uptakes were demonstrated by X-ray photoelectron spectroscopy (XPS) on both silicon dioxide films and on Si(100) wafers Ar(+)-sputtered to remove their native oxide layer. The effectiveness of this electron-impact activation approach in ALD is explained in terms of the cracking patterns seen in mass spectrometry for the metal-organic precursor used.

  8. Mechanistic Variants in Gas-Phase Metal-Oxide Mediated Activation of Methane at Ambient Conditions.

    PubMed

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut

    2016-09-01

    The C-H bond activation of methane mediated by a prototypical heteronuclear metal-oxide cluster, [Al2Mg2O5](•+), was investigated by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in conjunction with high-level quantum mechanical calculations. Experimentally, hydrogen-atom abstraction from methane by the cluster ion [Al2Mg2O5](•+) takes place at ambient conditions. As to the mechanism, according to our computational findings, both the proton-coupled electron transfer (PCET) and the conventional hydrogen-atom transfer (HAT) are feasible and compete with each other. This is in distinct contrast to the [XYO2](+) (X, Y = Mg, Al, Si) cluster oxide ions which activate methane exclusively via the PCET route (Li, J.; Zhou, S.; Zhang, J.; Schlangen, M.; Weiske, T.; Usharani, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 7973-7981). The electronic origins of the mechanistically rather complex reactivity scenarios of the [Al2Mg2O5](•+)/CH4 couple were elucidated. For the PCET mechanism, in which the Lewis acid-base pair [Al(+)-O(-)] of the cluster acts as the active site, a clear correlation has been established between the nature of the transition state, the corresponding barrier height, the Lewis acidity-basicity of the [M(+)-O(-)] unit, as well as the bond order of the M(+)-O(-) bond. Also addressed is the role of the spin and charge distributions of a terminal oxygen radical site in the direct HAT route. The knowledge of the factors that control the reactivity of PCET and HAT pathways not only deepens our mechanistic understanding of metal-oxide mediated C-H bond activation but may also provide guidance for the rational design of catalysts. PMID:27518766

  9. Mechanistic Variants in Gas-Phase Metal-Oxide Mediated Activation of Methane at Ambient Conditions.

    PubMed

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut

    2016-09-01

    The C-H bond activation of methane mediated by a prototypical heteronuclear metal-oxide cluster, [Al2Mg2O5](•+), was investigated by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in conjunction with high-level quantum mechanical calculations. Experimentally, hydrogen-atom abstraction from methane by the cluster ion [Al2Mg2O5](•+) takes place at ambient conditions. As to the mechanism, according to our computational findings, both the proton-coupled electron transfer (PCET) and the conventional hydrogen-atom transfer (HAT) are feasible and compete with each other. This is in distinct contrast to the [XYO2](+) (X, Y = Mg, Al, Si) cluster oxide ions which activate methane exclusively via the PCET route (Li, J.; Zhou, S.; Zhang, J.; Schlangen, M.; Weiske, T.; Usharani, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 7973-7981). The electronic origins of the mechanistically rather complex reactivity scenarios of the [Al2Mg2O5](•+)/CH4 couple were elucidated. For the PCET mechanism, in which the Lewis acid-base pair [Al(+)-O(-)] of the cluster acts as the active site, a clear correlation has been established between the nature of the transition state, the corresponding barrier height, the Lewis acidity-basicity of the [M(+)-O(-)] unit, as well as the bond order of the M(+)-O(-) bond. Also addressed is the role of the spin and charge distributions of a terminal oxygen radical site in the direct HAT route. The knowledge of the factors that control the reactivity of PCET and HAT pathways not only deepens our mechanistic understanding of metal-oxide mediated C-H bond activation but may also provide guidance for the rational design of catalysts.

  10. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.

    PubMed

    DeRose, C T; Kekatpure, R D; Trotter, D C; Starbuck, A; Wendt, J R; Yaacobi, A; Watts, M R; Chettiar, U; Engheta, N; Davids, P S

    2013-02-25

    An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm. PMID:23482053

  11. Solid phase extraction of metal ions in environmental samples on 1-(2-pyridylazo)-2-naphthol impregnated activated carbon cloth.

    PubMed

    Alothman, Zeid A; Yilmaz, Erkan; Habila, Mohamed; Soylak, Mustafa

    2015-02-01

    1-(2-Pyridylazo)-2-naphthol impregnated activated carbon cloth (PAN-imp-ACC) was prepared as a solid phase sorbent and, for the first time, was used for the simultaneous separation and preconcentration of trace amounts of lead, cadmium and nickel in water, soil and sewage sludge samples prior to determination by flame atomic absorption spectrometry (FAAS). The parameters governing the efficiency of the method were optimized, including the pH, the eluent type and volume, the sample and eluent flow rates, diverse ions effects and the sample volume. A preconcentration factor of 100 was achieved for all the metal ions, with detection limits of 0.1-2.8 µg L(-1) and relative standard deviations below 6.3%. The adsorption capacity of the PAN-imp-ACC for Pb(II), Cd(II) and Ni(II) ions was found to be 45.0 mg g(-1), 45.0 mg g(-1) and 43.2 mg g(-1), respectively. The method was validated by the analysis of the certified reference materials TMDA-64.2 fortified Lake Ontario water and BCR-146R Sewage Sludge Amended Soil (Industrial Origin). The procedure was applied to determine the analytes content in real samples.

  12. Selective solid-phase extraction using oxidized activated carbon modified with triethylenetetramine for preconcentration of metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Chang, Xijun; Li, Zhenhua; He, Qun

    2010-02-01

    A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH 4, quantitative extraction of trace Cr(III), Fe(III) and Pb(II) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 0.5 mol L -1 HCl. The maximum static adsorption capacity of sorbent for Cr(III), Fe(III) and Pb(II) was 34.6, 36.5 and 51.9 mg g -1, respectively. The time of quantitative adsorption was less than 2 min. The detection limits of the method was found to be 0.71, 0.35 and 0.45 ng mL -1 for Cr(III), Fe(III) and Pb(II), and the relative standard deviation (RSD) was 3.7%, 2.2% and 2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(III), Fe(III) and Pb(II) in synthetic samples and a real sample with satisfactory results.

  13. Mixed-metal templated phosphate phases

    SciTech Connect

    Nenoff, T.M.; Jackson, N.B.; Thoma, S.G.; Kohler, S.D.; Harrison, W.T.A.

    1997-08-01

    In an effort to direct the structure formation and subsequently the catalytic properties of novel materials, both organic molecules and transition metals have been systematically incorporated into zinc phosphate materials, and various transition metals in zirconium phosphate materials. The resultant phases in the Zn/P experiments are determined not by the organic template, but by the type and stoichiometric amount of metal incorporated and by the organic template`s anion. Furthermore, only one of the phases, a Ni/Zn/P, shows any acidic catalytic behavior. Similarly, the transition metals incorporated in stoichiometric amounts into the catalytically active novel zirconium phosphate are highly structure directing. Their presence inhibits the formation of the phosphate phase, instead promoting the formation of tetragonal ZrO{sub 2}. The catalytic activity of the products are greatly diminished from the baseline material. The synthesis and characterization methods for each phase will be presented. Characterization techniques employed include single-crystal and powder X-ray diffraction, magnetic susceptibility, thermal analysis, DCP and FTIR.

  14. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase.

    PubMed

    Bohli, Thouraya; Ouederni, Abdelmottaleb

    2016-08-01

    Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O3) and in liquid phase using nitric acid (HNO3). The activated carbon samples were characterized using N2 adsorption-desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m(2)/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich-Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO3), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.

  15. Hydrated metal ions in the gas phase.

    PubMed

    Beyer, Martin K

    2007-01-01

    Studying metal ion solvation, especially hydration, in the gas phase has developed into a field that is dominated by a tight interaction between experiment and theory. Since the studied species carry charge, mass spectrometry is an indispensable tool in all experiments. Whereas gas-phase coordination chemistry and reactions of bare metal ions are reasonably well understood, systems containing a larger number of solvent molecules are still difficult to understand. This review focuses on the rich chemistry of hydrated metal ions in the gas phase, covering coordination chemistry, charge separation in multiply charged systems, as well as intracluster and ion-molecule reactions. Key ideas of metal ion solvation in the gas phase are illustrated with rare-gas solvated metal ions.

  16. Phase front design with metallic pillar arrays.

    PubMed

    Verslegers, Lieven; Catrysse, Peter B; Yu, Zongfu; Shin, Wonseok; Ruan, Zhichao; Fan, Shanhui

    2010-03-15

    We demonstrate numerically, using a three-dimensional finite-difference frequency-domain method, the ability to design a phase front using an array of metallic pillars. We show that in such structures, the local phase delay upon transmission can be tuned by local geometry. We apply this knowledge to demonstrate a metallic microlens. The presented design principles apply to a wider range of wavelength-size integrated photonic components.

  17. The Combustion Phase of Burning Metals

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Wilson, D. B.; Benz, Frank

    1992-01-01

    Glassman's hypothesis and burn ratio are examined for their suitability for predicting the phase of combustion of metals. Neither criterion is validated based on either published property values or experimental evidence. Inconsistencies in published property values and definitions are noted. Computer calculations provide a more appropriate descriptions of the compositions of the combustion products and the adiabatic flame temperature of a burning metal at equilibrium. Dissociation temperatures (and product compositions) for 11 metals are computed using a specified quantity of thermal energy and compared with adiabatic flame temperatures.

  18. Athena: Assessment Phase Activities

    NASA Astrophysics Data System (ADS)

    Lumb, David; Ayre, Mark

    2015-09-01

    The Athena mission concept has been proposed by the community in response to science themes of the Hot and Energetic Universe. Unlike other, competitive, mission selection exercises this "Large" class observatory mission has essentially been pre-selected. Nevertheless it has to be demonstrated that Athena meets the programmatic constraints of 1Bn euro cost cap, and a readiness level appropriate for formal mission adoption by the end 2019. This should be confirmed through a Phase A study conducted with two parallel industry activities. We describe the technical and programmatic content of these and latest progress in space and ground segment definition.

  19. Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Caputo, Gianvito; Hao, Zhendong; Freitas, Vânia T.; Zhang, Jiahua; Longo, Ricardo L.; Malta, Oscar L.; Ferreira, Rute A. S.; Pinna, Nicola

    2014-12-01

    White light-emitting diodes (WLEDs) are candidates to revolutionize the lighting industry towards energy efficient and environmental friendly lighting and displays. The current challenges in WLEDs encompass high luminous efficiency, chromatic stability, high colour-rending index and price competitiveness. Recently, the development of efficient and low-cost downconverting photoluminescent phosphors for ultraviolet/blue to white light conversion was highly investigated. Here we report a simple route to design high-efficient WLEDs by combining a commercial ultraviolet LED chip (InGaAsN, 390 nm) and boehmite (γ-AlOOH) hybrid nanoplates. Unusually high quantum yields (ηyield=38-58%) result from a synergic energy transfer between the boehmite-related states and the triplet states of the benzoate ligands bound to the surface of the nanoplates. The nanoplates with ηyield=38% are able to emit white light with Commission International de l’Eclairage coordinates, colour-rendering index and correlated colour temperature values of (0.32, 0.33), 85.5 and 6,111 K, respectively; overwhelming state-of-the-art single-phase ultraviolet-pumped WLEDs phosphors.

  20. Use of Triton X-114 as a weak capping agent for one-pot aqueous phase synthesis of ultrathin noble metal nanowires and a primary study of their electrocatalytic activity.

    PubMed

    Liu, Rui; Liu, Jing-Fu; Jiang, Gui-Bin

    2010-10-01

    By using Triton X-114 as structure-director and weak binding stabilizer, ultrathin Au, Pd and Pt nanowires are synthesized in seconds by reduction of inorganic metal precursors with KBH(4) in aqueous phase. The nanowires show high catalytic activity and long-term stability toward electrooxidation of alcohols.

  1. Synthesis of Metal Ion-Doped TiO2 Nanoparticles Using Two-Phase Method and Their Photocatalytic Activity Under Visible Light Irradiation.

    PubMed

    Nguyen, Duy-Trinh; Hong, Seong-Soo

    2016-02-01

    In this study, TiO2 and metal ion-doped TiO2 nanoparticles were successfully synthesized by solvothermal reaction of titanium butoxide precursor in the presence of oleic acid, oleylamine and vapor water and they were characterized by XRD, Raman, TEM and DRS. We also investigated the photocatalytic activity of these oxides for the decomposition of Rhodamine B. From XRD and Raman results, doping of the metal ion in the crystal lattice did not change the high crystallinity of the TiO2 structure, and all the metal ions were incorporated into the structures of titania as well as replaced titanium ion or located at interstitial site. The absorption band shifted to a higher wavelength on the metal ion-doped TiO2 samples compared to the pure TiO2 sample. The Ce ion- doped TiO2 catalysts showed the higher photocatalytic activity compared to the pure TiO2 and a commercial P-25 catalysts and 1% Ce-doped TiO2 showed the highest photocatalytic activity.

  2. Synthesis of Metal Ion-Doped TiO2 Nanoparticles Using Two-Phase Method and Their Photocatalytic Activity Under Visible Light Irradiation.

    PubMed

    Nguyen, Duy-Trinh; Hong, Seong-Soo

    2016-02-01

    In this study, TiO2 and metal ion-doped TiO2 nanoparticles were successfully synthesized by solvothermal reaction of titanium butoxide precursor in the presence of oleic acid, oleylamine and vapor water and they were characterized by XRD, Raman, TEM and DRS. We also investigated the photocatalytic activity of these oxides for the decomposition of Rhodamine B. From XRD and Raman results, doping of the metal ion in the crystal lattice did not change the high crystallinity of the TiO2 structure, and all the metal ions were incorporated into the structures of titania as well as replaced titanium ion or located at interstitial site. The absorption band shifted to a higher wavelength on the metal ion-doped TiO2 samples compared to the pure TiO2 sample. The Ce ion- doped TiO2 catalysts showed the higher photocatalytic activity compared to the pure TiO2 and a commercial P-25 catalysts and 1% Ce-doped TiO2 showed the highest photocatalytic activity. PMID:27433699

  3. Actively convected liquid metal divertor

    NASA Astrophysics Data System (ADS)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  4. Metallic resist for phase-change lithography

    PubMed Central

    Zeng, Bi Jian; Huang, Jun Zhu; Ni, Ri Wen; Yu, Nian Nian; Wei, Wei; Hu, Yang Zhi; Li, Zhen; Miao, Xiang Shui

    2014-01-01

    Currently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge2Sb2Te5 films, was developed to overcome these limitations. Here, instead of chalcogenide, we propose a metallic resist composed of Mg58Cu29Y13 alloy films, which exhibits a considerable difference in etching rate between amorphous and crystalline states. Furthermore, the heat distribution in Mg58Cu29Y13 thin film is better and can be more easily controlled than that in Ge2Sb2Te5 during exposure. We succeeded in fabricating both continuous and discrete patterns on Mg58Cu29Y13 thin films via laser irradiation and wet etching. Our results demonstrate that a metallic resist of Mg58Cu29Y13 is suitable for phase change lithography, and this type of resist has potential due to its outstanding characteristics. PMID:24931505

  5. Studying Activity Series of Metals.

    ERIC Educational Resources Information Center

    Hoon, Tien-Ghun; And Others

    1995-01-01

    Presents teaching strategies that illustrate the linking together of numerous chemical concepts involving the activity of metals (quantitative analysis, corrosion, and electrolysis) through the use of deep-level processing strategies. Concludes that making explicit links in the process of teaching chemistry can lead effectively to meaningful…

  6. The transient phase eutectic process for ceramic-metal bonding

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas Richard

    A new method of ceramic-metal bonding using a transient gas-metal eutectic liquid is proposed, confirmed, and investigated using nickel/copper-oxygen/alumina as a model system. A low temperature gas-metal eutectic melt may be made transient (by solidification) through interaction with a more refractory metal component providing a ceramic-metal bond with good wetting, high strength, a broad process window (relative to conventional gas-metal eutectic bonds), high thermal stability, and controlled thermoelastic stress; transport of a more active species to the ceramic interface may further improve adherence. A eutectic between the low-melting component (copper) and a gas (oxygen) forms at the interface between the refractory metal (nickel) and ceramic (alumina). This interfacial liquid wets the surfaces and promotes bonding. Because the entire copper interlayer is melted, the processing window is wider than conventional gas-metal eutectic in terms of temperature, atmosphere, and time. The liquid (Cu-O) dissolves the active, refractory component (Ni) providing transport to the interface where a refractory bond phase (NiAl2O4) forms. Interactions at temperature consume the liquid phase causing isothermal solidification. Diffusional homogenization further increases the solidus temperature of the joint. Multilayer bond structures were produced using both foils and plating. Oxygen additions were investigated using pre-oxidation of each metal and/or oxidation in-situ. The best bonds resulted from foils combining nickel pre-oxidation with a eutectic atmosphere. The oxide layer slows the oxidation kinetics of the nickel which allows eutectic liquid to form providing wetting, reaction, and adherence to the ceramic. The interfacial bond structure consists of a uniform, thin (sub-micron) reaction layer of nickel-aluminate (NiAl2 O4) spinel. Adhesion is comparable to current technologies and can exceed the ceramic strength. Typical peel failure occurs at the metal

  7. Mechanics of Metals with Phase Changes

    SciTech Connect

    Lashley, J.C.

    2001-01-01

    New experimental data is presented on some exotic metals that exhibit phase changes at cryogenic temperatures. The types of phase changes that were detected in the specific heat data range from martensitic (diffusion less) transitions to superconducting transitions. In addition, the charge density wave (CDW) state in uranium metal was detected in the specific heat. Specific-heat measurements were made in zero-magnetic field using an apparatus capable of obtaining temperatures as low as 0.4 K. Calibration performed on this apparatus, using a single-crystal copper sample, show its accuracy to be 0.50%, while the resolution was better than 0.1%. Our measurements demonstrate that similar high precision and accurate specific-heat measurements can be obtained on milligram-scale samples. In Chapters 2 and 3, specific-heat measurements are presented for the B2 (CsCl structure) alloy AuZn and for {alpha}-uranium (orthorhombic symmetry). The AuZn alloy exhibits a continuous transition at 64.75 K and an entropy of transition of ({Delta}S{sub tr}) 2.02 J K{sup {minus}1} mol{sup {minus}1}. Calculation of the Debye temperature, by extrapolating of the high temperature phase elastic constants to T = 0 K yields a value of 207 K ({+-}2 K), in favorable agreement with the calorimetric value of 219 K ({+-}0.50 K), despite the intervening martensitic transition. Reported results for single-crystal {alpha}-U show a low-temperature limiting {Theta}{sub D} of 256 K ({+-}0.50 K) and four low-temperature anomalies: a superconducting transition below 1 K, an electronic transition at 22 K, and two anomalies at 38 K and at 42 K indicative of the CDW state. In order to continue the study of the actinide series of elements, a program was initiated to first purify and then grow single crystals of plutonium. Accordingly, the focus of Chapters 4 through 6 will be a description of plutonium sample preparation. In this program plutonium metal was purified via zone refining, using a levitated molten

  8. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  9. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  10. Gas: A Neglected Phase in Remediation of Metals and Radionuclides

    SciTech Connect

    Denham, Miles E.; Looney, Brian B

    2005-09-28

    The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

  11. Quantum theory of the smectic metal state in stripe phases

    PubMed

    Emery; Fradkin; Kivelson; Lubensky

    2000-09-01

    We present a theory of the electron smectic fixed point of the stripe phases of doped layered Mott insulators. We show that in the presence of a spin gap three phases generally arise: (a) a smectic superconductor, (b) an insulating stripe crystal, and (c) a smectic metal. The latter phase is a stable two-dimensional anisotropic non-Fermi liquid. In the absence of a spin gap there is also a more conventional Fermi-liquid-like phase. The smectic superconductor and smectic metal phases (or glassy versions thereof) may have already been seen in Nd-doped La2-xSrxCuO4.

  12. Pressure-induced phase transitions and metallization in VO2

    NASA Astrophysics Data System (ADS)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  13. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  14. Thermal analysis of metal foam matrix composite phase change material

    NASA Astrophysics Data System (ADS)

    Song, Xiange

    2015-06-01

    In this paper, CPCM (Composite Phase Change Material) was manufactured with metal foam matrix used as filling material. The temperature curves were obtained by experiment. The performance of heat transfer was analyzed. The experimental results show that metal foam matrix can improve temperature uniformity in phase change thermal storage material and enhance heat conduction ability. The thermal performance of CPCM is significantly improved. The efficiency of temperature control can be obviously improved by adding metal foam in phase change material. CPCM is in solid-liquid two-phase region when temperature is close to phase change point of paraffin. An approximate plateau appears. The plateau can be considered as the temperature control zone of CPCM. Heat can be transferred from hot source and be uniformly spread in thermal storage material by using metal foam matrix since thermal storage material has the advantage of strong heat storage capacity and disadvantage of poor heat conduction ability. Natural convection promotes the melting of solid-liquid phase change material. Good thermal conductivity of foam metal accelerates heat conduction of solid-liquid phase change material. The interior temperature difference decreases and the whole temperature becomes more uniform. For the same porosity with a metal foam, melting time of solid-liquid phase change material decreases. Heat conduction is enhanced and natural convection is suppressed when pore size of metal foam is smaller. The thermal storage time decreases and heat absorption rate increases when the pore size of metal foam reduces. The research results can be used to guide fabricating the CPCM.

  15. Characterization of Delta Phase Plutonium Metal

    SciTech Connect

    Rudisill, T.S.

    2000-09-21

    The FB-Line facility has developed the capability to recast plutonium metal using an M-18 reduction furnace with a new casting chamber. Plutonium metal is recast by charging a standard FB-Line magnesia crucible and placing the charge in the casting chamber. The loaded casting chamber is raised into the M-18 reduction furnace and sealed against the furnace head using a copper gasket following the same procedure used for a bomb reduction run. The interior volume of the chamber is evacuated and backfilled with argon gas. The M-18 motor-generator set is used to heat the surface of the casting chamber to nominally 750 Degrees C. Within about 2 hr, the plutonium metal reaches its melting temperature of approximately 640 Degrees C.

  16. Nanoscale electrodeposition of low-dimensional metal phases and clusters

    NASA Astrophysics Data System (ADS)

    Staikov, Georgi

    2016-07-01

    The present status of the problem of electrochemical formation of low-dimensional metal phases is reviewed. The progress in this field achieved in the last two decades is discussed on the basis of experimental results obtained in selected electrochemical systems with well defined single crystal substrates. The influence of crystallographic orientation and surface inhomogeneities of foreign substrates on the mechanism of formation and the atomic structure of two-dimensional (2D) metal phases in the underpotential deposition range is considered. The localized electrodeposition of metal nanoclusters on solid state surfaces applying the STM-tip as a nanoelectrode is demonstrated.

  17. Metal Phases of Ordinary Chondrites: Melting Remnants or Nebular Condensates?

    NASA Astrophysics Data System (ADS)

    Kong, P.; Ebihara, M.

    1995-09-01

    Bulk metals of 10 H, 6 L and 7 LL chondrites were analyzed by INAA. A significant difference in the metallic compositions between EOCs and UOCs is noted for the abundances of three lithophile elements, Cr, Mn and V, and three weakly siderophile elements, W, Mo and Ga. The abundances of W, Mo and Ga are increased and those of Cr, Mn and V are decreased with increase of petrographic type. According to condensation sequence [1], Fe condensed into a metal phase at high temperature. With temperature falling, metallic Fe was partly oxidized into silicates and partly transferred into troilite during equilibrium with the solar nebula. If Fe could equilibrate with the solar nebula, it is not expected that V, Cr and Mn still remain partly in the metal phases since they would be oxidized at higher temperatures than that for oxidizing Fe. Rapid formation of silicates around metal grains might preserve these elements but should keep W and Mo quantitatively present in the metals. Our results show that relative to Ir and Os, W and Mo are both depleted in the UOC metals to some extents, implying that portions of W and Mo are present in the non-metal phases. It is difficult to envision that the "being reduced" V, Cr and Mn can coexist with the "being oxidized" W, Mo and Ga in the metallic fractions if the metallic fractions were nebula condensates. W, Mo and Ga are enriched in the metallic fractions of the EOCs in order of W>Mo>Ga, while in those of the UOCs the order changes to Mo>W>Ga. We believe that the truly equilibrated distributions of W and Mo among different phases are preserved in the equilibrated chondrites, because the redox states of the elements must have been readjusted to reach equilibrium or near to equilibrium during the thermal metamorphism. So, if the UOC metals were equilibrated condensates, the relative distributions of W and Mo in the UOC metals should be similar to those in the EOC metals. However, this is not the case. If the metals were interstellar grains

  18. PDTC, metal chelating compound, induces G1 phase cell cycle arrest in vascular smooth muscle cells through inducing p21Cip1 expression: involvement of p38 mitogen activated protein kinase.

    PubMed

    Moon, Sung-Kwon; Jung, Sun-Young; Choi, Yung-Hyun; Lee, Young-Choon; Patterson, Cam; Kim, Cheorl-Ho

    2004-02-01

    Pyrrolidine dithiocarbamate (PDTC), a metal chelating compound, is known to induce cell death in vascular smooth muscle cells (VSMC). However, the molecular mechanism for PDTC-induced VSMC death is not well understood. Addition of PDTC reduced cell growth and DNA synthesis on VSMC in low density conditions. However, in serum depleted medium, PDTC did not affect the cell viability, suggesting that certain factors in serum may mediate the cytotoxic effect of PDTC. Several metal chelators prevented the cell death induced by PDTC. In a serum-deprived condition, addition of exogenous metals, copper, iron, and zinc, restored the cytotoxic effect of PDTC. These data indicate that metals such as copper, iron, and zinc in serum may mediate the cytotoxic effect of PDTC. At low VSMC density in 10% FBS, treatment of PDTC, which induced a cell-cycle block in G1-phase, induced down-regulation of cyclins and CDKs and up-regulation of the CDK inhibitor p21 expression, whereas up-regulation of p27 or p53 by PDTC was not observed. Finally, we determined PDTC-mediated signaling pathway involved in VSMC death. Among relevant pathways, PDTC induced marked activation of p38MAPK and JNK. Expression of dominant negative p38MAPK and SB203580, a p38MAPK specific inhibitor, blocked PDTC-dependent p38MAPK, growth inhibition, and p21 expression. These data demonstrate that the p38MAPK pathway participates in p21 induction, which consequently leads to decrease of cyclin D1/cdk4 and cyclin E/cdk2 complexes and PDTC-dependent VSMC growth inhibition. In conclusion, an understanding of the molecular mechanisms of PDTC in VSMC provides a theoretical basis for clinical approaches using antioxidant therapies in atherosclerosis. PMID:14603533

  19. Atomic interactions and phase transition in hydrogen metal systems

    SciTech Connect

    Shirley, A.I.

    1985-01-01

    The statistical mechanical behavior of H in pure metals and metal alloys is investigated using elasticity theory and lattice-gas models. The interactions between H atoms are separated into elastic and electronic contributions, and only the elastic contributions are evaluated. Three studies are reported: trapping of H by interstitial and substitutional impurities in bbc metals; modeling of H in impure metals; and modeling of H in concentration metal hydrides. The elastic interactions between H and interstitial and substitutional impurities in bbc metals are calculated using the method of lattice statics. Comparison with experimentally-measured trapping energies indicates that trapping by interstitial impurities is due solely to elastic energy, whereas both elastic and electronic interactions contribute to trapping by substitutional impurities. To include the effect of substitutional trapping on the phase transitions of H in metal alloys, the random-field lattice-gas model is developed. Interactions between H atoms are determined using the effective metal atom approximation. Hydrogen-impurity interactions are treated as a random field, in analogy with the random-field Ising model. Phase diagrams of the Nb/sub .95/Mo/sub .05/-H and Nb/sub .85/Mo/sub .15/-H systems are calculated by Monte Carlo simulation using the random-field model. The model gives qualitatively correct predictions of the phase behavior when the random field is included.

  20. Phase estimation for magnetic resonance imaging near metal prostheses

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; King, Laura J.; Millane, Rick P.

    2015-09-01

    Magnetic resonance imaging (MRI) has the potential to be the best technique for assessing complications in patients with metal orthopedic implants. The presence of fat can obscure definition of the other soft tissues in MRI images, so fat suppression is often required. However, the performance of existing fat suppression techniques is inadequate near implants, due to very significant magnetic field perturbations induced by the metal. The three-point Dixon technique is potentially a method of choice as it is able to suppress fat in the presence of inhomogeneities, but the success of this technique depends on being able to accurately calculate the phase shift. This is generally done using phase unwrapping and/or iterative reconstruction algorithms. Most current phase unwrapping techniques assume that the phase function is slowly varying and phase differences between adjacent points are limited to less than π radians in magnitude. Much greater phase differences can be present near metal implants. We present our experience with two phase unwrapping techniques which have been adapted to use prior knowledge of the implant. The first method identifies phase discontinuities before recovering the phase along paths through the image. The second method employs a transform to find the least squares solution to the unwrapped phase. Simulation results indicate that the methods show promise.

  1. Possible Structural Phase Transitions in Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Durgun, Engin; Sahin, Hasan; Peeters, Francois

    2014-03-01

    Most of the the transition metal dichalcogenides (TMD) have graphene-like hexagonal crystal structure which are composed of metal atom layers (M) sandwiched between layers of chalcogen atoms (X) and these structures have MX2 stoichiometry. Chalcogen layers can be stacked on top of each other in two different forms: H phase made of trigonal prismatic holes for metal atoms and T phase that consists staggered chalcogen layers forming octahedral holes for metals. Among the TMDs that have been reported to be stable, individual layers of MoS2, MoSe2, WS2 and WSe2 have 1H structure in their ground state while dichalcogens of Ti, V and Ta prefer the 1T phase. In our study we investigate the physical mechanisms underlying for the possible phase transitions in TMDs. Our calculations based on first-principles techniques reveal that in addition to H and T phases various distorted H and T phases can be also stabilized by point defects. These new phases have entirely different electronic properties.

  2. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  3. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.

    2002-01-01

    A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

  4. Calculation of Gallium-metal-Arsenic phase diagrams

    NASA Technical Reports Server (NTRS)

    Scofield, J. D.; Davison, J. E.; Ray, A. E.; Smith, S. R.

    1991-01-01

    Electrical contacts and metallization to GaAs solar cells must survive at high temperatures for several minutes under specific mission scenarios. The determination of which metallizations or alloy systems that are able to withstand extreme thermal excursions with minimum degradation to solar cell performance can be predicted by properly calculated temperature constitution phase diagrams. A method for calculating a ternary diagram and its three constituent binary phase diagrams is briefly outlined and ternary phase diagrams for three Ga-As-X alloy systems are presented. Free energy functions of the liquid and solid phase are approximated by the regular solution theory. Phase diagrams calculated using this method are presented for the Ga-As-Ge and Ga-As-Ag systems.

  5. Quantum Theory of the Smectic Metal State in Stripe Phases

    SciTech Connect

    Emery, V. J.; Fradkin, E.; Kivelson, S. A.; Lubensky, T. C.

    2000-09-04

    We present a theory of the electron smectic fixed point of the stripe phases of doped layered Mott insulators. We show that in the presence of a spin gap three phases generally arise: (a) a smectic superconductor, (b) an insulating stripe crystal, and (c) a smectic metal. The latter phase is a stable two-dimensional anisotropic non-Fermi liquid. In the absence of a spin gap there is also a more conventional Fermi-liquid-like phase. The smectic superconductor and smectic metal phases (or glassy versions thereof) may have already been seen in Nd-doped La{sub 2-x}Sr {sub x}CuO{sub 4} . (c) 2000 The American Physical Society.

  6. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase.

    PubMed

    Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-07-28

    The study of gas phase ion-molecule reactions by state-of-the-art mass spectrometric experiments in conjunction with quantum chemistry calculations offers an opportunity to clarify the elementary steps and mechanistic details of bond activation and conversion processes. In the past few decades, a considerable number of publications have been devoted to the ion-molecule reactions of metal clusters, the experimentally and theoretically tractable models for the active phase of condensed phase systems. The focus of this perspective concerns progress on activation and transformation of important inorganic and organic molecules by negatively charged metal clusters. The metal cluster anions cover bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others. The following important issues have been summarized and discussed: (i) dependence of chemical reactivity and selectivity on cluster structures and sizes, metals and metal oxidation states, odd-even electron numbers, etc. and (ii) effects of doping, ligation, and pre-adsorption on the reactivity of metal clusters toward rather inert molecules. PMID:27346242

  7. Solid–solid phase transitions via melting in metals

    PubMed Central

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-01-01

    Observing solid–solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid–solid transition via the formation of a metastable liquid in a ‘real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory. PMID:27103085

  8. Solid-solid phase transitions via melting in metals.

    PubMed

    Pogatscher, S; Leutenegger, D; Schawe, J E K; Uggowitzer, P J; Löffler, J F

    2016-04-22

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a 'real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  9. Solid-solid phase transitions via melting in metals

    NASA Astrophysics Data System (ADS)

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-04-01

    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  10. Transition metals activate TFEB in overexpressing cells.

    PubMed

    Peña, Karina A; Kiselyov, Kirill

    2015-08-15

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  11. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  12. Contactless electromagnetic phase-shift flowmeter for liquid metals

    NASA Astrophysics Data System (ADS)

    Priede, Jānis; Buchenau, Dominique; Gerbeth, Gunter

    2011-05-01

    We present a concept and test results of an eddy-current flowmeter for liquid metals. The flow rate is determined by applying a weak ac magnetic field to a liquid metal flow and measuring the flow-induced phase disturbance in the external electromagnetic field. The phase disturbance is found to be more robust than that of the amplitude used in conventional eddy-current flowmeters. The basic characteristics of this type of flowmeter are analysed using simple theoretical models, where the flow is approximated by a solid body motion. Design of such a flowmeter is presented and its test results are reported.

  13. Diffusion and Phase Transformations of Transition Metals on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Yi.

    The role of surface diffusion and surface phase reaction kinetics of nickel (Ni) and cobalt (Co) on Si(111) and Si(100) are investigated under Ultra High Vacuum (UHV) conditions using Auger Spectroscopy (AES), Reflection High Electron Energy Diffraction (RHEED) and surface X-ray diffraction. The surface segregation phenomenon and the formation conditions for Si(111)-sqrt{19 } x sqrt{19}- rm R+/-23.4^circ phase (hereafter called sqrt{19}) for Ni/Si(111) are studied by RHEED and AES. Quench cooling induces surface segregation which restores the total accumulated dose of Ni to two surfaces of the wafer. The coverage dependence of phases thus produced follows: 7 x 7 to 1 x 1-RC(0.05Ml) to sqrt{19} (0.16Ml) then to B-type NiSi_2. It is found that there are 3 Ni atoms in the sqrt{19 } unit cell. A "race" of bulk diffusion versus surface diffusion for Ni in/on Si(111) is studied by depositing a laterally confined dot of metal on one side of the double side polished and UHV cleaned Si wafer and then measuring the lateral Auger profile on the reverse side following annealing and quenching. Ni reaches the far side of the wafer at temperatures as low as 500C via bulk diffusion with no measurable contribution from the surface paths, which are short-circuited by numerous, fast bulk paths. Similar results are found for Ni and Co on Si(111) and Si(100). The diffusivity and solid solubility calculated from the experiments are close to the bulk values known from the literature. In addition, the thermal stability, phase transformation and different dissolution mechanisms of sqrt {19} and 1 x 1-RC surface phases of Ni/Si(111) are carefully examined. The activation energies of these processes are compared on an Arrhenius plot. These are discussed in terms of the migration and formation mechanisms involved in these phase transformations. An energy level diagram is used to summarize the atomistic kinetics.

  14. Metallic phases in the Luna 24 soil samples

    NASA Technical Reports Server (NTRS)

    Friel, J. J.; Goldstein, J. I.

    1977-01-01

    The metal and sulfide phases in the Luna 24 soil samples were studied with the optical microscope and the electron microprobe. The compositions of the metal particles fall into three groups based on their Ni and Co contents: (1) Samples of meteoritic composition which have undergone metamorphism on the lunar surface. (2) Samples of submeteoritic, low Ni and low Co contents, including most of the metal particles observed. These particles are contained in glass and agglutinate particles and were probably formed by the mixing of meteoritic metal with lunar metal produced by the reduction of silicates during shock-impact. (3) Samples of high-CO content probably formed by mixing of meteoritic material with high-Co metal from the mare basalt or by fractional crystallization from a metal silicate melt. The sulfide minerals were also studied. These are almost pure FeS, and crystallized from a late stage liquid in the mare basalt. Three high-Ni sulfides were also found in the glass phase of agglutinates.

  15. Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides.

    PubMed

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2013-04-01

    An extremely compact Si phase modulator is proposed and validated, which relies on effective modulation of the real part of modal index of horizontal metal-insulator-Si-insulator-metal plasmonic waveguides by a voltage applied between the metal cover and the Si core. Proof-of-concept devices are fabricated on silicon-on-insulator substrates using standard complementary metal-oxide-semiconductor technology using copper as the metal and thermal silicon dioxide as the insulator. A modulator with a 1-μm-long phase shifter inserted in an asymmetric Si Mach-Zehnder interferometer exhibits 9-dB extinction ratio under a 6-V/10-kHz voltage swing. Numerical simulations suggest that high speed and low driving voltage could be achieved by shortening the distance between the Si core and the n(+)-contact and by using a high-κ dielectric as the insulator, respectively.

  16. Full electroresistance modulation in a mixed-phase metallic alloy

    DOE PAGES

    Liu, Zhiqi; Li, L.; Gai, Zheng; Clarkson, J. D.; Hsu, S. L.; Wong, Anthony T.; Fan, L. S.; Lin, Ming -Wei; Rouleau, Christopher M.; Ward, Thomas Zac; et al

    2016-03-03

    We report a giant, ~22%, electroresistance modulation for a metallic alloy above room temperature. It is achieved by a small electric field of 2 kV/cm via piezoelectric strain-mediated magnetoelectric coupling and the resulting magnetic phase transition in epitaxial FeRh/BaTiO3 heterostructures. This work presents detailed experimental evidence for an isothermal magnetic phase transition driven by tetragonality modulation in FeRh thin films, which is in contrast to the large volume expansion in the conventional temperature-driven magnetic phase transition in FeRh. Furthermore, all the experimental results in this work illustrate FeRh as a mixed-phase model system well similar to phase-separated colossal magnetoresistance systemsmore » with phase instability therein.« less

  17. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.

    PubMed

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela C; Calle-Vallejo, Federico; Nørskov, Jens K; Jaramillo, Thomas F; Rossmeisl, Jan

    2012-10-28

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn(2)O(3) and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V and 1.0 V, a potential region between the ORR and the OER relevant conditions. Next, we perform density function theory (DFT) calculations to understand the changes in the MnO(x) surface as a function of potential and to elucidate reaction mechanisms that lead to high activities observed in the experiments. Using DFT, we construct surface Pourbaix and free energy diagrams of three different MnO(x) surfaces and identify 1/2 ML HO* covered Mn(2)O(3) and O* covered MnO(2), as the active surfaces for the ORR and the OER, respectively. Additionally, we find that the ORR occurs through an associative mechanism and that its overpotential is highly dependent on the stabilization of intermediates through hydrogen bonds with water molecules. We also determine that OER occurs through direct recombination mechanism and that its major source of overpotential is the scaling relationship between HOO* and HO* surface intermediates. Using a previously developed Sabatier model we show that the theoretical predictions of catalytic activities match the experimentally determined onset potentials for the ORR and the OER, both qualitatively and quantitatively. Consequently, the combination of first-principles theoretical analysis and experimental methods offers an understanding of manganese oxide oxygen electrocatalysis at the atomic level, achieving fundamental insight that can potentially be

  18. Phase Behavior of Pseudobinary Precious Metal-Carbide Systems

    SciTech Connect

    Gregoire, John M.; Tague, Michele E.; Smith, Eva H.; Dale, Darren; DiSalvo, Francis J.; Abruña, Héctor D.; Hennig, Richard G.; van Dover, R. Bruce

    2010-11-15

    Transition metal carbides exhibit a variety of interesting material properties, including electrochemical stability. When combined with precious metals, Ta and W carbides have shown promise as fuel cell electrode materials; yet, the phase behavior of these precious metal-carbide systems is largely unexplored. We investigated P-M-C phase behavior with P = Pt, Pd, and Ru and M = Ta and W using composition spread thin films. We attained limited control of the deposited carbide phase through variation of the sputter atmosphere and demonstrated decreased corrosion of W-C materials with increasing C content. A high-throughput X-ray diffraction and X-ray fluorescence experiment was employed for thin film characterization, which revealed solubility of Pt, Pd, and Ru in cubic WC. Density functional calculations of the lattice parameter dependence on carbon concentration enabled the determination of carbon concentration from the X-ray data as a function of transition metal stoichiometry. Our measurement of variations in the C stoichiometry and evolution of thin film texture with transition metal composition yielded surprising results. We detail how the combination of the composition spread technique, the high-throughput thin film characterization, and the density functional modeling of ternary carbide alloys provided a deep understanding of the chemical systems.

  19. Intergranular metal phase increases thermal shock resistance of ceramic coating

    NASA Technical Reports Server (NTRS)

    Carpenter, H. W.

    1966-01-01

    Dispersed copper phase increases the thermal shock resistance of a plasma-arc-sprayed coating of zirconia used as a heat barrier on a metal substrate. A small amount of copper is deposited on the granules of the zirconia powder before arc-spraying the resultant powder composite onto the substrate.

  20. Chemical characteristics of metal phases of the Richardton H5 chondrite

    NASA Astrophysics Data System (ADS)

    Kong, Ping; Ebihara, Mitsuru; Nakahara, Hiromichi; Endo, Kazutoyo

    1995-12-01

    The magnetic fraction was separated from the Richardton H5 chondrite with a hand magnet and was leached with concentrated HF at high temperature for different periods. The resulting metallic fractions and the untreated magnetic fraction were analyzed using Mössbauer spectroscopy and instrumental neutron activation analysis (INAA). Leaching in concentrated HF for 1.5-5 min was effective in removing silicates from the magnetic fraction while leaving the metal grains intact. Leaching with increasing time selectively dissolved kamacite, with only little attack of the taenite grains. The Mössbauer spectroscopy shows that martensite (α-phase iron) is present in the Richardton metals and is dissolved in HF less easily than kamacite, but more easily than taenite. The distributions of trace siderophile elements among the different metal phases of Richardton were obtained based on the INAA data. Siderophile elements, except for Co, are enriched in the taenite fraction but with different concentration ratios between taenite and kamacite, suggesting that kamacite and taenite were not formed by either oxidation/reduction of Fe of the Fe sbnd Ni metal, or by condensation from the nebula, or by metal-solid differentiation. A more likely explanation is that kamacite and taenite have equilibrated by low-temperature diffusion. It seems that most trace siderophile elements were once dissolved in the Fe sbnd Ni metal and later distributed among the metal phases by diffusion. However, Ir, Os and Ru may still partly exist as tiny separate grains in the FeNi metal and their distributions among the metal phases are not completely equilibrated.

  1. Surface effects and phase stability in metal oxides nanoparticles under visible irradiation

    SciTech Connect

    Ricci, Pier Carlo Carbonaro, C. M. Corpino, R. Chiriu, D. Stagi, L.

    2014-10-21

    The light induced phase transformation between stable phases of metal oxides nanoparticles is analyzed. The surrounding atmosphere as well as the defect density at the surface play a fundamental role. It has been found that in oxygen poor chamber atmosphere the phase transformation is favored, while the phase transition cannot be achieved if the defects at the surface are properly passivated. The phase transition is activated by intragap irradiation, able to activate the F- center at the surface connected to oxygen vacancies, and promoting the activation of the surface and the nucleation of neighboring crystallites. The phase transition was studied in Titanium oxide (TiO{sub 2}) and in Iron oxide (Fe{sub 2}O{sub 3}): Maghemite is subjected to a phase transformation to α−Fe{sub 2}O{sub 3} (hematite), Anatase nanoparticles converts to Rutile. The general mechanism of the phase transition and, more in general, the possibility to optically control the surface activity of metal oxides is discussed.

  2. Metal and phosphide phases in Luna 24 soil fragments

    NASA Astrophysics Data System (ADS)

    Axon, H. J.; Nasir, M. J.; Knowles, F.

    1980-06-01

    Soil fragments in the 106-150 and 150-250 micron size ranges were selected for metallographic and microprobe examination on the basis of their magnetic properties. Serial sections of the mounted fragments were examined. One fragment proved to be a compositionally zoned crystal of phosphide with no metal phase but partly embedded in glass. Another was a coarse-grained association of silica with ilmenite and fayalite with a 5-micron particle of metallic iron in troilite. One splinter of oxide contained a central spine of metallic iron. The remaining six fragments contained 10-micron particles of iron-nickel-cobalt alloy with compositions in either the 'meteoritic' or the low Ni-low Co sub-meteoritic composition ranges of Ni, Co content. In some fragments separate particles of alloy had different Ni, Co contents. No particles of high Co metal were encountered.

  3. Metal-organic framework MIL-100(Fe) as the stationary phase for both normal-phase and reverse-phase high performance liquid chromatography.

    PubMed

    Fu, Yan-Yan; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2013-01-25

    Metal-organic framework MIL-100(Fe) was explored as a novel stationary phase for both normal-phase and reverse-phase high performance liquid chromatography. Two groups of analytes (benzene, toluene, ethylbenzene, naphthalene and 1-chloronaphthalene; aniline, acetanilide, 2-nitroaniline and 1-naphthylamine) were used to test the separation performance of MIL-100(Fe) in the reverse-phase mode, while the isomers of chloroaniline or toluidine were employed to evaluate its performance in the normal-phase mode. The MIL-100(Fe) packed column gave a baseline separation of all the tested analytes with good precision. The separation was controlled by negative enthalpy change and entropy change in the reverse-phase mode, but positive enthalpy change and entropy change in the normal-phase mode. The relative standard deviations of retention time, peak area, peak height, and half peak width for eleven replicate separations of the tested analytes were 0.2-0.7%, 0.5-3.6%, 0.6-2.3% and 0.8-1.7%, respectively. The mesoporous cages, accessible windows, excellent chemical and solvent stability, metal active sites and aromatic pore walls make MIL-100(Fe) a good candidate as a novel stationary phase for both normal-phase and reverse-phase high performance liquid chromatography. PMID:23290359

  4. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOEpatents

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  5. Dynamical conductivity at the dirty superconductor-metal quantum phase transition

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Del Maestro, Adrian; Rosenow, Bernd; Vojta, Thomas

    2011-03-01

    We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  6. Vapor phase deposition of transition metal fluoride glasses

    NASA Astrophysics Data System (ADS)

    Boulard, Brigitte; Jacoboni, Charles

    1991-08-01

    Multicomponent fluoride glasses in the PbF2-ZnF2-GaF3 (PZG) vitreous ternary system have been prepared by vapor phase deposition. The thermal stability of the deposited glass was improved by adding stabilizing agents (AlF3, NaF, LiF, InF3). The thin films, deposited on different substrates (fluoride glass, fluoride single crystal, metal, and silica glass) have been characterized by x-ray diffraction. Differential scanning calorimetry (DSC) and secondary ion mass spectroscopy (SIMS). The quality of the film, adherence, and homogeneity was controlled by scanning electronic microscopy (SEM). The optical characteristics of the film and PZG glass are given: the visible-infrared (VIS-IR) window is 0.3-8 micrometers and the refractive index 1.59+/- 0.2 depends on the lead content. Mn2+ doped films (up to 3 mole % MnF2) are optically active: Mn2+ exhibits a broad luminescence band at 560-570 nm (orange). The achieved film thickness varies from 0.5 to 80 micrometers , and the refractive index gradient approaches the required geometry for planar waveguides (doping of the film with lanthanides is in progress).

  7. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    NASA Astrophysics Data System (ADS)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  8. Influence of Filler Metals in Welding Wires on the Phase and Chemical Composition of Weld Metal

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Osetkovskiy, I. V.; Kozyreva, O. A.; Zernin, E. A.; Kartsev, D. S.

    2016-04-01

    The influence of filler metals used in welding wires on the phase and chemical composition of the metal, which is surfaced to mining equipment exposed to abrasive wear, has been investigated. Under a laboratory environment, samples of Mo-V-B and Cr-Mn-Mo-V wires were made. The performed experiments have revealed that fillers of the Cr-Mn-Mo-V system used in powder wire show better wear resistance of the weld metal than that of the Mn-Mo-V-B system; the absence of boron, which promotes grain refinement in the Mn-Mo-V-B system, significantly reduces wear resistance; the Mn-Mo-V-B weld metal has a finer structure than the Cr-Mn-Mo-V weld metal.

  9. Metal removal by thermally activated clay marl.

    PubMed

    Stefanova, R Y

    2001-01-01

    A sorption active product has been obtained from Bulgarian clay marl by thermal activation at 750 degrees C. The modified aluminosilicate material is characterized, as well as its use for the removal of metal ions. The effect of the initial metal ion concentration, the contact time, pH, the solution temperature and the ionic strength on the uptake of lead, copper and zinc ions from aqueous solutions were studied in batch experiments. The kinetics of removal of metal ions on modified clay marl appears dependent on the sorbate/sorbent ratio. At low cation concentrations sorption follows a Langmuir isotherm, while at higher sorbate/sorbent ratios the sorption isotherms of metal ions are described by Freundlich's equation. At the pH region of the sorption edge the removal of metal ions by surface complexation and surface precipitation mechanisms is indistinguishable. It is observed that the influence of temperature on the uptake ability of the clay marl is most considerable up to 40 degrees C. These studies show that the thermally modified clay marl can be successfully used for removal of metal ions from water solutions in a wide range of concentrations.

  10. Partitioning of metals in different binding phases of tropical estuarine sediments: importance of metal chemistry.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Vudamala, Krushna; Sarkar, Arindam; Nath, B Nagender

    2016-02-01

    Distribution of metals in different binding phases of estuarine sediments provides chemically significant description of metal-sediment interactions. This study describes the influences of ligand field stabilization energy (LFSE), Jahn-Teller effect, and water exchange rate (k-w) on metal distribution in different binding phases of estuarine sediments. It was found that Cu had highest affinity for organic binding phases in the studied sediments followed by Ni and Pb. However, Pb showed strong association with Fe/Mn oxide phases followed by Ni and Cu. Faster k-w of Cu (II) (1 × 10(9) s(-1)) increased the rate of complex formation of Cu(2+) ion with ligand in the organic phases. The Cu-ligand (from organic phase) complexes gained extra stability by the Jahn-Teller effect. The combined effects of these two phenomena and high ionic potential increased the association of Cu with the organic phases of the sediments than Ni and Pb. The smaller ionic radii of Ni(2+) (0.72 Å) than Pb(2+) (1.20 Å) increase the stability of Ni-ligand complexes in the organic phase of the sediments. High LFSE of Ni(II) (compared with Pb(2+) ions) also make Ni-organic complexes increasingly stable than Pb. High k-w (7 × 10(9) s(-1)) of Pb did not help it to associate with organic phases in the sediments. The high concentration of Pb in the Fe/Mn oxyhydroxide binding phase was probably due to co-precipitation of Pb(2+) and Fe(3+). High surface area or site availability for Pb(2+) ion on Fe oxyhydroxide phase was probably responsible for the high concentration of Pb in Fe/Mn oxyhydroxide phase. Increasing concentrations of Cu in organic phases with the increasing Cu loading suggest that enough binding sites were available for Cu in the organic binding phases of the sediments. This study also describes the influence of nature of sedimentary organic carbon (terrestrial and marine derived OC) in controlling these metal distribution and speciation in marine sediment.

  11. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  12. Gas-phase synthesis of magnetic metal/polymer nanocomposites.

    PubMed

    Starsich, Fabian H L; Hirt, Ann M; Stark, Wendelin J; Grass, Robert N

    2014-12-19

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields. PMID:25422410

  13. Topological phase transition in layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, Kee Joo

    Despite considerable interests in transition metal dichalcogenides (TMDs), such as MX2 with M = (Mo, W) and X = (S, Se, Te), the physical origin of their topological nature is still in its infancy. The conventional view of topological phase transition (TPT) in TMDs is that the band inversion occurs between the metal d and chalcogen p orbital bands. More precisely, the former is pulled down below the latter. Here we introduce an explicit scheme for analyzing TPT in topological materials and find that the TPT in TMDs is different from the conventional speculation. When the 1T phase undergoes a structural transformation to the 1T' phase in monolayer MX2, the band topology changes from trivial to non-trivial, leading to the TPT. We discuss the exact role of the metal d and chalcogen p orbital bands during the TPT. Our finding would provide clear guidelines for understanding the topological nature not only in TMDs but also in other topological materials yet to be explored.

  14. On the thermodynamics of phase transitions in metal hydrides

    NASA Astrophysics Data System (ADS)

    Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiHx, which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  15. On the thermodynamics of phase transitions in metal hydrides

    NASA Astrophysics Data System (ADS)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  16. Effect of swing phase load on metal-on-metal hip lubrication, friction and wear.

    PubMed

    Williams, Sophie; Jalali-Vahid, Davood; Brockett, Claire; Jin, Zhongmin; Stone, Martin H; Ingham, Eileen; Fisher, John

    2006-01-01

    There is renewed interest in metal-on-metal (MOM) total hip replacements (THRs), however, variable wear rates have been observed clinically. It is hypothesised that changes in soft tissue tensioning during surgery may alter loading of THRs during the swing phase of gait leading to changes in fluid film lubrication, friction and wear. This study aimed to assess the effect of swing phase load on the lubrication, friction and wear of MOM hip replacements. Theoretical lubrication modelling was carried out using elastohydrodynamic theory. All the governing equations were solved numerically for the lubricant film thickness between the articulating surfaces under the transient dynamic conditions with low and high swing phase loads. Friction testing was completed using a single axis pendulum simulator, simplified loading cycles were applied with low and high swing phase loads. MOM hip replacements were tested in a hip simulator, modified to provide different swing phase loading regimes; a low (100 N) and a high load (as per ISO 14242-1; 280 N). Results demonstrated that the performance of MOM bearings is highly dependent on swing phase load. Hence, changes in the tension of the tissues at surgery and variations in muscle forces may increase swing phase load, reduce lubrication, increase friction and accelerate wear. This may explain some of the variations that have been observed with clinical wear rates.

  17. What Coexists with the Ferromagnetic Metallic Phase in Manganites?

    SciTech Connect

    Burkhardt, Mark H.; Hossain, M.A.; Sarkar, S.; Achkar, A.J.; Hawthorn, D.G.; Sutarto, R.; Chuang, 5 Y.-D.; Gonzalez, A.G.Cruz; Choi, Y.J.; Cheong, S.-W.; Durr, H.A.; Stohr, J.

    2012-07-25

    Colossal magnetoresistance, whereby the application of a magnetic field reduces the resistivity of a manganite by orders of magnitude, is generally believed to occur because of coexisting phases. Development of a complete theory to explain the phenomenon requires that the exact nature of these phases be known. We used resonant elastic soft x-ray scattering to examine the superlattice order that exists in La{sub 0.35}Pr{sub 0.275}Ca{sub 0.375}MnO{sub 3} above and below the Curie temperature. By measuring the resonance profile of the scattered x-rays at different values of q, we disentangle the contributions of orbital order and antiferromagnetism to the scattering signal above the Curie temperature. Below the Curie temperature, we see no signal from orbital order, and only antiferromagnetism coexists with the dominant ferromagnetic metallic phase.

  18. Activated metallic gold as an agent for direct methoxycarbonylation.

    PubMed

    Xu, Bingjun; Madix, Robert J; Friend, Cynthia M

    2011-12-21

    We have discovered that metallic gold is a highly effective vehicle for the low-temperature vapor-phase carbonylation of methanol by insertion of CO into the O-H bond to form methoxycarbonyl. This reaction contrasts sharply to the carbonylation pathway well known for homogeneously catalyzed carbonylation reactions, such as the synthesis of acetic acid. The methoxycarbonyl intermediate can be further employed in a variety of methoxycarbonylation reactions, without the use or production of toxic chemicals. More generally we observe facile, selective methoxycarbonylation of alkyl and aryl alcohols and secondary amines on metallic gold well below room temperature. A specific example is the synthesis of dimethyl carbonate, which has extensive use in organic synthesis. This work establishes a unique framework for using oxygen-activated metallic gold as a catalyst for energy-efficient, environmentally benign production of key synthetic chemical agents. PMID:22035206

  19. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  20. Immobilized metal ion affinity partitioning, a method combining metal-protein interaction and partitioning of proteins in aqueous two-phase systems.

    PubMed

    Birkenmeier, G; Vijayalakshmi, M A; Stigbrand, T; Kopperschläger, G

    1991-02-22

    Immobilized metal ions were used for the affinity extraction of proteins in aqueous two-phase systems composed of polyethylene glycol (PEG) and dextran or PEG and salt. Soluble chelating polymers were prepared by covalent attachment of metal-chelating groups to PEG. The effect on the partitioning of proteins of such chelating PEG derivatives coordinated with different metal ions is demonstrated. The proteins studied were alpha 2-macroglobulin, tissue plasminogen activator, superoxide dismutase and monoclonal antibodies. The results indicate that immobilized metal ion affinity partitioning provides excellent potential for the extraction of proteins. PMID:1710621

  1. DHS Phase III activities underway.

    PubMed

    1993-01-01

    Activities and improvements in the third round of the Demographic and Health Surveys (DHS) are described for the first year of the five year DHS-III project during 1992-97. Underway are data quality assessments, identification of data needs, development of a new core questionnaire and modules, and fieldwork survey implementation. Data quality studies are conducted on respondent age, age at first marriage, birth history, knowledge and use of contraception, and health of children aged under 5 years. An analysis of reinterview subsamples for Pakistan and Nigeria will test reliability of data. Emerging data needs for the decade are identified through consultations with data users in the population and health fields. A variety of organizational representatives and recognized experts provide valuable inputs on questionnaire content and module topics. This article also reveals that a shorter questionnaire length will be considered. There will be new questionnaire topics on reliance on breast feeding for contraception, induced abortion and complications, and quality of care. Reductions are made in little used data and retrospective data longer than 3-5 years preceding the survey date. Revisions are made in the Interviewer's and Supervisor's Manuals, the Service Availability Questionnaire, the Male/Husbands Questionnaire, and fifteen modules. Fieldwork is either in progress of completion in Ghana, Kenya, the Philippines, and Turkey. Bangladesh and Bolivia are scheduled for 1993. In 1994 surveys will be administered in Burundi, Central African Republic, Cote d'Ivoire, Guatemala, Haiti, Indonesia, Kazakhstan, Mali, Nigeria, Tanzania, Uganda, and Zimbabwe. PMID:12287320

  2. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Z. Q.; Heron, J. T.; Clarkson, J. D.; Hong, J.; Ko, C.; Biegalski, M. D.; Aschauer, U.; Hsu, S. L.; Nowakowski, M. E.; Wu, J.; Christen, H. M.; Salahuddin, S.; Bokor, J. B.; Spaldin, N. A.; Schlom, D. G.; Ramesh, R.

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ‘giant’ electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  3. Large resistivity modulation in mixed-phase metallic systems.

    PubMed

    Lee, Yeonbae; Liu, Z Q; Heron, J T; Clarkson, J D; Hong, J; Ko, C; Biegalski, M D; Aschauer, U; Hsu, S L; Nowakowski, M E; Wu, J; Christen, H M; Salahuddin, S; Bokor, J B; Spaldin, N A; Schlom, D G; Ramesh, R

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation. PMID:25564764

  4. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites

    SciTech Connect

    Reuter, K.B.; Williams, D.B.; Goldstein, J.I. )

    1988-03-01

    Analytical electron microscopy techniques were used to determine the Ni content and structure of kamacite and decomposed taenite (clear taenite 1 (tetrataenite), the cloudy zone, and clear taenite 2) in the metallic phases of meteorites. Clear taenite 1 contains 51.4-45.6 {plus minus} 1.3 wt% Ni and is ordered FeNi with three variants of the L1{sub 0} superstructure. The structure formed by an order/disorder transformation below 320{degree}C. The cloudy zone formed through spinodal decomposition resulting in a two-phase structure consisting of a globular phase and a surrounding honeycomb phase. The globular phase contains 50.9 {plus minus} 1.4 wt% Ni and is ordered FeNi; the honeycomb contains 11.7 {plus minus} 0.5 wt% Ni and is martensite. Clear taenite 2 contains 25.8 to 28.1 wt% Ni and may be ordered Fe{sub 3}Ni with the L1{sub 2} superstructure. Clear taenite 2 was found in all of the iron meteorite groups studied and in the pallasites, but not in the mesosiderites. Using this chemical and structural information, and a newly determined Fe-Ni phase diagram, a better understanding of the low temperature transformations in the metallic regions of meteorites has been obtained.

  5. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  6. Scaling theory of phase-coherent metallic conductors

    NASA Astrophysics Data System (ADS)

    Macêdo, A. M.

    2002-07-01

    We present a scaling theory for describing the smooth crossover from ballistic to diffusive transport in phase-coherent metallic conductors. The theory confirms a recent conjecture by Beenakker [Rev. Mod. Phys. 69, 731 (1997)], and represents a substantial improvement in the two-terminal version of Nazarov's circuit theory [Phys. Rev. Lett. 73, 134 (1994); 73, 1420 (1994)]. In addition, our approach allows for the explicit inclusion of interfaces of arbitrary transparency, which are described using the supersymmetric nonlinear σ model. The problem of two identical barriers separated by a diffusive conductor is solved exactly, and expressions for both the normal and Andreev conductances are presented.

  7. Phase separation of metallic hydrogen-helium alloys

    NASA Technical Reports Server (NTRS)

    Straus, D. M.; Ashcroft, N. W.; Beck, H.

    1976-01-01

    Calculations are presented for the thermodynamic functions and phase separation boundaries of solid metallic hydrogen helium alloys at temperatures between 0 K and 19,000 K and at pressures between 15 and 90 megabars. Expressions for the band structure energy of a randomly disordered alloy (including third order in the electron ion interaction) are derived and evaluated. Short and long range order are included by the quasi-chemical method, and lattice dynamics in the virtual crystal harmonic approximation. We conclude that at temperatures below 4,000 K there is complete phase separation of hydrogen helium alloys, and that a miscibility gap remains at the highest temperatures and pressures considered. The relevance of these results to models of the deep interior of Jupiter is briefly discussed.

  8. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Zhiqi; Heron, John; Clarkson, James; Hong, Jeongmin; Ko, Changhyun; Biegalski, Michael; Aschauer, Ulrich; Hsu, Shang-Lin; Nowakowski, Mark; Wu, Junqiao; Christen, Hans; Salahuddin, Sayeef; Bokor, Jeffrey; Spaldin, Nicola; Schlom, Darrell; Ramesh, Ramamoorthy

    2015-03-01

    We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ``giant'' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities, and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behavior is reminiscent of colossal magnetoresistance in perovskite manganites, and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  9. Mössbauer Spectroscopic Investigation of the Metallic Phases in the Almahata Sitta Meteorite (Fragment #051)

    NASA Astrophysics Data System (ADS)

    Abdu, Y. A.; Gismelseed, A. M.; Shaddad, M. H.; Attaelmanan, A. G.

    2016-08-01

    Mössbauer spectroscopy identify the phases in the metal particles of fragment #051 ureilite: kamacite, taenite, cohenite, schreibersite, and a Fe-oxide phase. Results discussed relate to the occurrence of these phases in ureilites and other meteorites.

  10. Carrier effects of active carbon for methanol carbonylation with supported transition metal catalysts

    SciTech Connect

    Fujimoto, K.; Omata, K.; Yagita, H.

    1996-10-01

    Transition metals such as nickel or noble metals showed excellent catalytic activities for the vapor phase carbonylation of methanol to acetic acid. Reaction proceeded via the carbonylation of methanol to methyl acetate and its successive carbonylation to acetic acid anhydride followed by the hydrolysis. Under slightly pressurized conditions and at around 250{degrees}C methanol was completely carbonylated to acetic acid with the selectivity of 97% or higher. Also, other group 8 metals including noble metals showed excellent catalytic activity only when they were supported on active carbon, whose activity, ordered by strength of metal-halogen bonding showed a volcano-shape relationship with the peak at Rh. The role of active carbon as the active carrier was clarified by kinetics and catalyst characterization which showed that active carbon promoted the reductive elimination of intermediate for acetic acid formation by donating electron from carbon to nickel species.

  11. Metallic phase change material thermal storage for Dish Stirling

    SciTech Connect

    Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; Coker, E. N.

    2015-06-05

    Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in the area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.

  12. Metallic phase change material thermal storage for Dish Stirling

    DOE PAGES

    Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; Coker, E. N.

    2015-06-05

    Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in themore » area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.« less

  13. Breast milk metal ion levels in a young and active patient with a metal-on-metal hip prosthesis.

    PubMed

    Nelis, Raymond; de Waal Malefijt, Jan; Gosens, Taco

    2013-01-01

    Metal-on-metal resurfacing arthroplasty of the hip has been used increasingly over the last 10 years in younger active patients. The dissolution of the metal wear particles results in measurable increases in cobalt and chromium ions in the serum and urine of patients with a metal-on-metal bearing. We measured the cobalt, chromium, and molybdenum ion levels in urine; serum; and breast milk in a young and active patient with a metal-on-metal hip prosthesis after a pathologic fracture of the femoral neck. Metal-on-metal hip prosthesis leads to increasing levels of molybdenum in breast milk in the short-term follow-up. There are no increasing levels of chromium and cobalt ions in breast milk. Besides the already known elevated concentrations in serum of chromium and cobalt after implantation of a metal-on-metal hip prosthesis, we found no increasing levels of chromium and cobalt in urine. PMID:22868068

  14. Energy and Phase Relaxation in Mesoscopic Metal Wires

    NASA Astrophysics Data System (ADS)

    Birge, Norman

    2003-03-01

    At low temperatures, conduction electrons in disordered metals maintain their phase coherence over times often exceeding one nanosecond -- several orders of magnitude longer than the time between elastic collisions. Phase coherence is broken by inelastic collisions, which also relax the energy distribution of the electrons toward thermal equilibrium. There is currently a controversy concerning the very low temperature behavior of the phase coherence time, τ_φ in weakly-disordered metals. The standard theories of electron-electron and electron-phonon scattering predict that τ_φ should diverge as a power law of temperature in the limit of zero temperature. Many experiments, however, show a saturation of τ_φ at temperatures below 1 K [1]. It is important to ascertain whether those experimental observations reflect a fundamental, intrinsic decoherence mechanism, or an extrinsic, sample-dependent source of decoherence. I will discuss two different experimental approaches to inelastic electron scattering. To determine τ_φ we measure the weak localization contribution to the magnetoresistance of narrow wires or the Aharonov-Bohm resistance oscillations of micron-sized rings [2]. To determine the rate of energy exchange between electrons we measure the shape of the electron energy distribution function when the sample is far from equilibrium [3]. By studying the effects of an applied magnetic field on these two kinds of experiments, we have learned that very dilute magnetic impurities can easily dominate both electron decoherence and energy exchange, even at concentrations of 1 part per million or less. [1] P. Mohanty, E.M.Q. Jariwala, and R.A. Webb, Phys. Rev. Lett. 78, 3366 (1997). [2] F. Pierre and N.O. Birge, Phys. Rev. Lett. 89, 206804 (2002); F. Pierre et al., submitted. [3] H. Pothier et al., Phys. Rev. Lett. 79, 3490 (1997); A. Anthore et al., cond-mat/0109297.

  15. Trace metals partitioning among different sedimentary mineral phases and the deposit-feeding polychaete Armandia brevis.

    PubMed

    Díaz-de-Alba, Margarita; Huerta-Diaz, Miguel Angel; Delgadillo-Hinojosa, Francisco; Hare, Landis; Galindo-Riaño, M Dolores; Siqueiros-Valencia, Arturo

    2016-02-01

    Trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) were determined in two operationally defined fractions (HCl and pyrite) in sediments from Ensenada and El Sauzal harbors (Mexico). The HCl fraction had significantly higher metal concentrations relative to the pyrite fraction in both harbors, underlining the weak tendency of most trace metals to associate with pyrite. Exceptionally, Cu was highly pyritized, with degrees of trace metal pyritization (DTMP) >80% in both harbors. Dissolved Fe flux measurements combined with solid phase Fe sulfide data indicated that 98 mt of Fe are precipitated as iron sulfides every year in Ensenada Harbor. These Fe sulfides (and associated trace metals) will remain preserved in the sediments, unless they are perturbed by dredging or sediment resuspension. Calculations indicate that dredging activities could export to the open ocean 0.20±0.13 to (0.30±0.56)×10(3) mt of Cd and Cu, respectively, creating a potential threat to marine benthic organisms. Degrees of pyritization (DOP) values in Ensenada and El Sauzal harbors were relatively low (<25%) while degrees of sulfidization (DOS) were high (~50%) because of the contribution of acid volatile sulfide. DOP values correlated with DTMP values (p≤0.001), indicating that metals are gradually incorporated into pyrite as this mineral is formed. Significant correlations were also found between DTMP values and -log(Ksp(MeS)/Ksp(pyr)) for both harbors, indicating that incorporation of trace metals into the pyrite phase is a function of the solubility product of the corresponding metal sulfide. The order in which elements were pyritized in both harbors was Zn≈Mnmetal concentrations and metal concentrations measured in Armandia brevis (a deposit-feeding Opheliid polychaete), suggesting that these labile sedimentary metals are preferentially accumulated by the polychaete, making it a

  16. Pressure effects on hydrogen atoms near the metal plane in the HCP phase of rare-earth metal trihydrides

    NASA Astrophysics Data System (ADS)

    Tunghathaithip, N.; Pakornchote, T.; Phaisangittisakul, N.; Bovornratanaraks, T.; Pinsook, U.

    2016-04-01

    Rare-earth metal trihydrides, REH3 (RE=Sc, Y, La), in the hcp phase were investigated under high pressure by the ab initio method. We concentrated on the behavior of hydrogen atoms which is affected by pressure. Two-thirds of the hydrogen atoms near the metal plane (Hm) were found to displace away from the metal plane as pressure increases. The trajectory of these squeezed hydrogen atoms is from a site near the metal plane, and moves past the plane of the tetragonal sites, and heads toward the nearest octahedral site. However, the rate of displacement depends on the local environment. LaH3 exhibits the least impediment on the Hm displacement while YH3 and ScH3 exhibit stronger impediment. Furthermore, our calculated Raman and IR active modes are in general agreement with the experimental data. The displacement of Hm can be used to explain the behavior of the Ov peak in Raman spectra, where it exists at low pressure and disappears at higher pressure in YH3 and ScH3.

  17. Metal-ligand redox reactions in gas-phase quaternary peptide-metal complexes by electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vaisar, T.; Gatlin, C. L.; Turecek, F.

    1997-03-01

    The dipeptides Phe-Leu, Leu-Phe, Leu-Ala, and Ala-Leu form quaternary complexes of the type [Cu(II)(peptide - 2H+M)bpy]+ in the gas phase when electrosprayed in the presence of Cu(II) salts, 2.2'-bipyridyl (bpy), and an alkali hydroxide (MOH). The gas-phase complexes decarboxylate on collisional activation at low ion kinetic energies. The resulting ions undergo unusual eliminations of neutral Na, K, and Rb, which depend on the peptide structure. The ionization energy of the decarboxylated Phe-Leu-Cu-bpy complex was bracketed at 4.2 eV. Other collision-induced dissociations also depend on the alkali metal ion and the peptide structure. Ab initio calculations on a model system are reported and used to discuss the electronic properties of the peptide complexes.

  18. Tailorable chiroptical activity of metallic nanospiral arrays

    NASA Astrophysics Data System (ADS)

    Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng

    2016-02-01

    The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications.The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation

  19. Phase-Field-Crystal Model for Electromigration in Metal Interconnects

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Bevan, Kirk H.; Provatas, Nikolas

    2016-10-01

    We propose an atomistic model of electromigration (EM) in metals based on a recently developed phase-field-crystal (PFC) technique. By coupling the PFC model's atomic density field with an applied electric field through the EM effective charge parameter, EM is successfully captured on diffusive time scales. Our framework reproduces the well-established EM phenomena known as Black's equation and the Blech effect, and also naturally captures commonly observed phenomena such as void nucleation and migration in bulk crystals. A resistivity dipole field arising from electron scattering on void surfaces is shown to contribute significantly to void migration velocity. With an intrinsic time scale set by atomic diffusion rather than atomic oscillations or hopping events, as in conventional atomistic methods, our theoretical approach makes it possible to investigate EM-induced circuit failure at atomic spatial resolution and experimentally relevant time scales.

  20. A 1-dodecanethiol-based phase transfer protocol for the highly efficient extraction of noble metal ions from aqueous phase.

    PubMed

    Chen, Dong; Cui, Penglei; Cao, Hongbin; Yang, Jun

    2015-03-01

    A 1-dodecanethiol-based phase-transfer protocol is developed for the extraction of noble metal ions from aqueous solution to a hydrocarbon phase, which calls for first mixing the aqueous metal ion solution with an ethanolic solution of 1-dodecanethiol, and then extracting the coordination compounds formed between noble metal ions and 1-dodecanethiol into a non-polar organic solvent. A number of characterization techniques, including inductively coupled plasma atomic emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis demonstrate that this protocol could be applied to extract a wide variety of noble metal ions from water to dichloromethane with an efficiency of >96%, and has high selectivity for the separation of the noble metal ions from other transition metals. It is therefore an attractive alternative for the extraction of noble metals from water, soil, or waste printed circuit boards.

  1. Photoinduced insulator-metal phase transition and the metallic phase propagation in VO2 films investigated by time-resolved terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Xue, Xin; Jiang, Meng; Li, Gaofang; Lin, Xian; Ma, Guohong; Jin, Ping

    2013-11-01

    The particle size and film thickness dependence of the photoinduced insulator-metal phase transition in VO2 films has been studied systematically by time-resolved terahertz spectroscopy at room temperature. It is found that the dynamical photoinduced phase transition from insulator to metal consists of two processes: a 1.7 ps fast process and a slow process with a typical time constant of 40 ps. Both of the two processes show particle size independence. The 40 ps slow process is revealed to arise from the longitudinal propagation of the metallic phase from the photoexcited surface to the interior of the VO2 film. A phase boundary propagation speed with a magnitude of ˜2400 m/s is obtained, which is close to the velocity of sound in solid materials and coincides with the prediction of diffusionless phase transformation. Our experimental results clearly establish the entire procedure of photoinduced phase change in the VO2 film.

  2. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). PMID:25898346

  3. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities).

  4. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites

    NASA Astrophysics Data System (ADS)

    Reuter, K. B.; Williams, D. B.; Goldstein, J. I.

    1988-03-01

    The nickel content and the structure of kamacite and decomposed taenite (clear taenite 1, CT-1; the cloudy zone, CZ; and clear taenite 2, CT-2) in the metallic phases of meteorites were determined using X-ray microanalysis techniques in the AEM. The kamacite near the CT-1 interface was found to contain about 4 wt pct Ni. The CT-1 structure contains 51.4-45.6 wt pct Ni; it is ordered FeNi with the L1(0) superstructure. The CZ structure consists of two phases: a globular phase (ordered FeNi containing 50.9 wt pct Ni) and a surrounding honeycomb martensitic phase containing 11.7 wt pct Ni. The CT-2 was found in all of the iron meteorite groups studied and in the pallasites, but not in the mesosiderites. Based on the preliminary evidence, this region is believed to be ordered Fe3Ni. Possible mechanisms for the decomposition of taenite are discussed.

  5. Selective Metal Deposition on a Phase-Separated Polymer Blend Surface

    NASA Astrophysics Data System (ADS)

    Tsujioka, Tsuyoshi; Yamaguchi, Koji

    2013-07-01

    We report selective metal deposition on a phase-separated polymer blend surface. A polymer blend film consisting of polystyrene (PS) and a polystyrene-block-polybutadiene copolymer (PS-BR) was annealed, and a micro-phase-separated film was obtained. Pb was evaporated onto the phase-separated surface without an evaporation mask and was selectively deposited on the PS phase but not on the PS-BR phase. We achieved fine metal patterns corresponding to the microphase separation. This result suggests a novel method of preparing fine metal patterns for electronics and photonics.

  6. Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development

    SciTech Connect

    Ackerman, J.P.; Johnson, T.R.

    1993-10-01

    The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

  7. Liquid-vapor phase diagram of metals using EAM potential

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Chandrani

    2013-02-01

    Pair-wise additive potentials are not adequate to describe the properties of metallic systems since many body effects are completely ignored in that approximation. In this regard, the embedded atom method is more appropriate because, in addition to the pair interaction, the total energy includes an embedding energy which is the energy required to add an impurity atom to the host electron fluid. Thus EAM takes into account the many body effects to some extent. We use the Cai and Ye's EAM potential to predict the liquid vapor phase diagram and critical constants of Aluminum and Copper within a perturbation theory approach. In this method, free energy of a fluid molecule, trapped in a cage formed by its nearest neighbors, is expanded about a hard sphere reference system. The first order correction term is calculated in terms of the zero temperature isotherm of the solid obtained using the EAM potential. Higher order correction terms are added to account for the deviation of the behavior of the real fluid from the reference hard sphere fluid.

  8. Probing the Dynamics of the Metallic-to-Semiconducting Structural Phase Transformation in MoS2 Crystals.

    PubMed

    Guo, Yinsheng; Sun, Dezheng; Ouyang, Bin; Raja, Archana; Song, Jun; Heinz, Tony F; Brus, Louis E

    2015-08-12

    We have investigated the phase transformation of bulk MoS2 crystals from the metastable metallic 1T/1T' phase to the thermodynamically stable semiconducting 2H phase. The metastable 1T/1T' material was prepared by Li intercalation and deintercalation. The thermally driven kinetics of the phase transformation were studied with in situ Raman and optical reflection spectroscopies and yield an activation energy of 400 ± 60 meV (38 ± 6 kJ/mol). We calculate the expected minimum energy pathways for these transformations using DFT methods. The experimental activation energy corresponds approximately to the theoretical barrier for a single formula unit, suggesting that nucleation of the phase transformation is quite local. We also report that femtosecond laser writing converts 1T/1T' to 2H in a single laser pass. The mechanisms for the phase transformation are discussed.

  9. Magnetism and electronic phase transitions in monoclinic transition metal dichalcogenides with transition metal atoms embedded

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun

    2016-08-01

    First-principles calculations have been performed to study the energetic, electronic, and magnetic properties of substitutional 3d transition metal dopants in monoclinic transition metal dichalcogenides (TMDs) as topological insulators ( 1 T ' - MX 2 with M = (Mo, W) and X = (S, Se)). We find various favorite features in these doped systems to introduce magnetism and other desirable electronic properties: (i) The Mn embedded monoclinic TMDs are magnetic, and the doped 1 T ' - MoS 2 still maintains the semiconducting character with high concentration of Mn, while an electronic phase transition occurs in other Mn doped monoclinic TMDs with an increasing concentration of Mn. Two Mn dopants prefer the ferromagnetic coupling except for substitution of the nearest Mo atoms in 1 T ' - MoS 2 , and the strength of exchange interaction shows anisotropic behavior with dopants along one Mo zigzag chain having much stronger coupling. (ii) The substitutional V is a promising hole dopant, which causes little change to the energy dispersion around the conduction and valence band edges in most systems. In contrast, parts of the conduction band drop for the electron dopants Co and Ni due to the large structural distortion. Moreover, closing band gaps of the host materials are observed with increasing carrier concentration. (iii) Single Fe dopant has a magnetic moment, but it also dopes electrons. When two Fe dopants have a small distance, the systems turn into nonmagnetic semiconductors. (iv) The formation energies of all dopants are much lower than those in hexagonal TMDs and are all negative in certain growth conditions, suggesting possible realization of the predicted magnetism, electronic phase transitions as well as carrier doping in 1 T ' - MX 2 based topological devices.

  10. Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes.

    PubMed

    Baier, Florian; Chen, John; Solomonson, Matthew; Strynadka, Natalie C J; Tokuriki, Nobuhiko

    2015-07-17

    Within a superfamily, functionally diverged metalloenzymes often favor different metals as cofactors for catalysis. One hypothesis is that incorporation of alternative metals expands the catalytic repertoire of metalloenzymes and provides evolutionary springboards toward new catalytic functions. However, there is little experimental evidence that incorporation of alternative metals changes the activity profile of metalloenzymes. Here, we systematically investigate how metals alter the activity profiles of five functionally diverged enzymes of the metallo-β-lactamase (MBL) superfamily. Each enzyme was reconstituted in vitro with six different metals, Cd(2+), Co(2+), Fe(2+), Mn(2+), Ni(2+), and Zn(2+), and assayed against eight catalytically distinct hydrolytic reactions (representing native functions of MBL enzymes). We reveal that each enzyme metal isoform has a significantly different activity level for native and promiscuous reactions. Moreover, metal preferences for native versus promiscuous activities are not correlated and, in some cases, are mutually exclusive; only particular metal isoforms disclose cryptic promiscuous activities but often at the expense of the native activity. For example, the L1 B3 β-lactamase displays a 1000-fold catalytic preference for Zn(2+) over Ni(2+) for its native activity but exhibits promiscuous thioester, phosphodiester, phosphotriester, and lactonase activity only with Ni(2+). Furthermore, we find that the five MBL enzymes exist as an ensemble of various metal isoforms in vivo, and this heterogeneity results in an expanded activity profile compared to a single metal isoform. Our study suggests that promiscuous activities of metalloenzymes can stem from an ensemble of metal isoforms in the cell, which could facilitate the functional divergence of metalloenzymes.

  11. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  12. Transition metal bimetallic oxycarbides: Synthesis, characterization, and activity studies

    SciTech Connect

    Oyama, S.T.; Yu, C.C.; Ramanathan, S.

    1999-06-10

    A new family of bimetallic oxycarbide compounds M{sup I}-M{sup II}-O-C (M{sup I} = Mo, W; M{sup II} = V, Nb, Cr, Fe, Co, Ni) has been synthesized by carburizing bimetallic oxide precursors using a temperature-programmed method. The oxide precursors are prepared by conventional solid-state reaction between two appropriate monometallic oxides. The synthesis involves passing a 20 mol% CH{sub 4} in H{sub 2} mixture over the oxide precursors while raising the temperature at a linear rate of 8.3 {times} 10{sup {minus}2} K/s (5 K/min) to a final temperature (T{sub max}) which is held for a period of time (t{sub hold}). The synthesis, chemisorption properties, and reactivation of the materials indicate that the compounds can be divided into two groups of different reducibility (high and low). Their surface activity and surface area are evaluated based on CO chemisorption and N{sub 2} physisorption measurements. It is found that the CO number density correlates with the reducibility of the compounds. The catalysts were evaluated for hydroprocessing in a three-phase trickle-bed reactor operated at 3.1 MPa and 643 K. The feed was a model liquid mixture containing 3000 ppm sulfur (dibenzothiophene), 2000 ppm nitrogen (quinoline), 500 ppm oxygen (benzofuran), 20 wt% aromatics (tetralin), and balance aliphatics (tetradecane). The bimetallic oxycarbides had moderate activity for HDN of quinoline, with Nb-Mo-O-C showing higher HDN than a commercial sulfided Ni-Mo/Al{sub 2}O{sub 3} catalyst tested at the same conditions. X-ray diffraction of the spent catalysts indicated that the oxycarbides of the early transition metals were tolerant of sulfur, while those involving the late transition metals showed bulk sulfide phases.

  13. Pharmacological activity of metal binding agents that alter copper bioavailability

    PubMed Central

    Helsel, Marian E.

    2015-01-01

    Iron, copper and zinc are required nutrients for many organisms but also potent toxins if misappropriated. An overload of any of these metals can be cytotoxic and ultimately lead to organ failure, whereas deficiencies can result in anemia, weakened immune system function, and other medical conditions. Cellular metal imbalances have been implicated in neurodegenerative diseases, cancer and infection. It is therefore critical for living organisms to maintain careful control of both the total levels and subcellular distributions of these metals to maintain healthy function. This perspective explores several strategies envisioned to alter the bioavailability of metal ions by using synthetic metal-binding agents targeted for diseases where misappropriated metal ions are suspected of exacerbating cellular damage. Specifically, we discuss chemical properties that influence the pharmacological outcome of a subset of metal-binding agents known as ionophores, and review several examples that have shown multiple pharmacological activities in metal-related diseases, with a specific focus on copper. PMID:25797044

  14. Process for forming a homogeneous oxide solid phase of catalytically active material

    DOEpatents

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  15. The effect of growth phase on proton and metal adsorption by Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Daughney, Christopher J.; Fowle, David A.; Fortin, Danielle

    2001-04-01

    Several recent studies have applied surface complexation models to quantify metal adsorption by bacterial surfaces. Although these models can account for the effects of many abiotic variables (such as pH and ionic strength), to date, the effects of biotic variables (such as growth phase) have not been investigated. In this study, we quantify the effect of growth phase on surface site concentrations, deprotonation constants, and metal-binding constants by performing acid-base titrations and Cd and Fe(III) batch adsorption experiments using suspensions containing Bacillus subtilis cultured to exponential, stationary, and sporulated phase. For each type of surface site, concentrations and p Ka values describing deprotonation decrease as the cells move from exponential to stationary phase, but remain constant from stationary to sporulated phase. Due to the variations in site concentrations and deprotonation constants, Cd and Fe(III) binding constants are largest for stationary-phase cells and smallest for sporulated cells, even though cells in stationary phase adsorb roughly 5% to 10% less metal (per unit weight) than exponential-phase cells, and roughly 10% to 20% more metal than sporulated cells. These variations in surface complexation model parameters indicate that any attempt to predict proton or metal adsorption by bacteria must consider the growth phase of the population.

  16. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  17. Active limited-angle tomographic phase microscope.

    PubMed

    Kus, Arkadiusz; Krauze, Wojciech; Kujawinska, Malgorzata

    2015-01-01

    We demonstrate an active, holographic tomography system, working with limited angle of projections, realized by optical-only, diffraction-based beam steering. The system created for this purpose is a Mach–Zehnder interferometer modified to serve as a digital holographic microscope with a high numerical aperture illumination module and a spatial light modulator (SLM). Such a solution is fast and robust. Apart from providing an elegant solution to viewing angle shifting, it also adds new capabilities of the holographic microscope system. SLM, being an active optical element, allows wavefront correction in order to improve measurement accuracy. Integrated phase data captured with different illumination scenarios within a highly limited angular range are processed by a new tomographic reconstruction algorithm based on the compressed sensing technique: total variation minimization, which is applied here to reconstruct nonpiecewise constant samples. Finally, the accuracy of full measurement and the proposed processing path is tested for a calibrated three-dimensional micro-object as well as a biological object--C2C12 myoblast cell.

  18. Study on Solidification of Phase Change Material in Fractal Porous Metal Foam

    NASA Astrophysics Data System (ADS)

    Zhang, Chengbin; Wu, Liangyu; Chen, Yongping

    2015-02-01

    The Sierpinski fractal is introduced to construct the porous metal foam. Based on this fractal description, an unsteady heat transfer model accompanied with solidification phase change in fractal porous metal foam embedded with phase change material (PCM) is developed and numerically analyzed. The heat transfer processes associated with solidification of PCM embedded in fractal structure is investigated and compared with that in single-pore structure. The results indicate that, for the solidification of phase change material in fractal porous metal foam, the PCM is dispersedly distributed in metal foam and the existence of porous metal matrix provides a fast heat flow channel both horizontally and vertically, which induces the enhancement of interstitial heat transfer between the solid matrix and PCM. The solidification performance of the PCM, which is represented by liquid fraction and solidification time, in fractal structure is superior to that in single-pore structure.

  19. Reverse-phase HPLC of benzylpropionitrile dithiocarbamate complexes for the determination of priority pollutant metals

    SciTech Connect

    Park, Y.J.

    1990-01-01

    A new dithiocarbamate, benzylpropionitrile dithiocarbamate (BPDTC), has been synthesized for use in metal analysis. The HPLC behavior of metal chelates of BPDTC has been investigated for the simultaneous determination of antimony, cadmium, chromium, copper, mercury, nickel, lead, selenium, thallium, and zinc, all of which are on the Environmental Protection Agency's list of priority pollutant metals. Metals are extracted into dichloromethane as BPDTC chelates, and then separated on a C-18 column. Cobalt is added as an internal standard. The effects of pH and of three organic modifiers (methanol, acetonitrile, tetrahydrofuran) of the mobile phase on retention time have been investigated. Addition of dichloromethane to the mobile phase increases solubility and chelate stability, and improves the separation of metal BPDTC complexes. BPDTC is added to the aqueous mobile phase to reduce on-column dissociation of the complexes. Detection limits at 260 nm are in the range of 0.1 to 3 ppb using a 1 liter sample.

  20. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction.

    PubMed

    Geng, Xiumei; Sun, Weiwei; Wu, Wei; Chen, Benjamin; Al-Hilo, Alaa; Benamara, Mourad; Zhu, Hongli; Watanabe, Fumiya; Cui, Jingbiao; Chen, Tar-Pin

    2016-01-01

    Metallic-phase MoS2 (M-MoS2) is metastable and does not exist in nature. Pure and stable M-MoS2 has not been previously prepared by chemical synthesis, to the best of our knowledge. Here we report a hydrothermal process for synthesizing stable two-dimensional M-MoS2 nanosheets in water. The metal-metal Raman stretching mode at 146 cm(-1) in the M-MoS2 structure, as predicted by theoretical calculations, is experimentally observed. The stability of the M-MoS2 is associated with the adsorption of a monolayer of water molecules on both sides of the nanosheets, which reduce restacking and prevent aggregation in water. The obtained M-MoS2 exhibits excellent stability in water and superior activity for the hydrogen evolution reaction, with a current density of 10 mA cm(-2) at a low potential of -175 mV and a Tafel slope of 41 mV per decade.

  1. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction.

    PubMed

    Geng, Xiumei; Sun, Weiwei; Wu, Wei; Chen, Benjamin; Al-Hilo, Alaa; Benamara, Mourad; Zhu, Hongli; Watanabe, Fumiya; Cui, Jingbiao; Chen, Tar-Pin

    2016-01-01

    Metallic-phase MoS2 (M-MoS2) is metastable and does not exist in nature. Pure and stable M-MoS2 has not been previously prepared by chemical synthesis, to the best of our knowledge. Here we report a hydrothermal process for synthesizing stable two-dimensional M-MoS2 nanosheets in water. The metal-metal Raman stretching mode at 146 cm(-1) in the M-MoS2 structure, as predicted by theoretical calculations, is experimentally observed. The stability of the M-MoS2 is associated with the adsorption of a monolayer of water molecules on both sides of the nanosheets, which reduce restacking and prevent aggregation in water. The obtained M-MoS2 exhibits excellent stability in water and superior activity for the hydrogen evolution reaction, with a current density of 10 mA cm(-2) at a low potential of -175 mV and a Tafel slope of 41 mV per decade. PMID:26861766

  2. Chiral phase transition in lattice QCD as a metal-insulator transition

    SciTech Connect

    Garcia-Garcia, Antonio M.; Osborn, James C.

    2007-02-01

    We investigate the lattice QCD Dirac operator with staggered fermions at temperatures around the chiral phase transition. We present evidence of a metal-insulator transition in the low lying modes of the Dirac operator around the same temperature as the chiral phase transition. This strongly suggests the phenomenon of Anderson localization drives the QCD vacuum to the chirally symmetric phase in a way similar to a metal-insulator transition in a disordered conductor. We also discuss how Anderson localization affects the usual phenomenological treatment of phase transitions a la Ginzburg-Landau.

  3. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-05-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  4. Mineral phases and metals in baghouse dust from secondary aluminum production

    EPA Science Inventory

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78...

  5. Infrared Spectroscopy of Transition Metal-Molecular interactions in the Gas Phase

    SciTech Connect

    Duncan, Michael A.

    2008-11-14

    Transition metal-molecular complexes produced in a molecular beam are mass-selected and studied with infrared laser photodissociation spectroscopy. Metal complexes with carbon monoxide, carbon dioxide, nitrogen, water, acetylene or benzene are studied for a variety of metals. The number and intensity of infrared active bands are compared to the predictions of density functional theory calculations to derive structures, spin states and coordination numbers in these systems. These studied provide new insights into subtle details of metal-molecular interactions important in heterogeneous catalysis, metal-ligand bonding and metal ion solvation.

  6. Magnetohydrodynamic generators using two-phase liquid-metal flows

    NASA Technical Reports Server (NTRS)

    Petrick, M.

    1969-01-01

    Two-phase flow generator cycle of a magnetohydrodynamic /MHD/ generator uses a working fluid which is compressible and treated as an expanding gas. The two-phase mixture passes from the heat source through the MHD generator, where the expansion process takes place and the electrical energy is extracted.

  7. Vapor-phase catalytic oxidesulfurization (ODS) of organosulfur compounds over supported metal oxide catalysts

    NASA Astrophysics Data System (ADS)

    Choi, Sukwon

    Sulfur in transportation fuels remains a leading source of SOx emissions from vehicle engines and is a major source of air pollution. The very low levels of sulfur globally mandated for transportation fuels in the near future cannot be achieved by current practices of hydrodesulfurization (HDS) for sulfur removal, which operate under severe conditions (high T, P) and use valuable H2. Novel vapor-phase catalytic oxidesulfurization (ODS) processes of selectively oxidizing various organosulfur compounds (carbonyl sulfide, carbon disulfide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), thiophene, 2,5-dimenthylthiophene) typically found in various industrial streams (e.g., petroleum refining, pulp and paper) into valuable chemical intermediates (H 2CO, CO, H2, maleic anhydride and concentrated SO2) has been extensively studied. This research has primarily focused on establishing the fundamental kinetics and mechanisms of these selective oxidation reactions over well-defined supported metal oxide catalysts. The selective oxidation reactions of COS + O2 → CO + SO2; 2CS2 + 5O2 → 2CO + 4SO2; CH3SH + 2O 2 → H2CO + SO2 + H2O; C4 H4S + 3O2 → C4H2O 3 + H2O + SO2; were studied. Raman spectroscopy revealed that the supported metal oxide phases were 100% dispersed on the oxide substrate. All the catalysts were highly active and selective for the oxidesulfurization of carbonyl sulfide, carbon disulfide, methanethiol, and thiophene between 290--330°C, 230--270°C, 350--400°C, and 250--400°C, respectively and did not deactivate. The TOFs (turnover frequency, normalized activity per active catalytic site) for all ODS reactions over supported vanadia catalysts, only containing molecularly dispersed surface vanadia species, varied within one order of magnitude and revealed the V-O-Support bridging bond was involved in the critical rate-determining kinetic steps. The surface reaction mechanism for each reaction was revealed by in situ IR (infrared) and

  8. Evidence for Photoinduced Insulator-to-Metal transition in B-phase vanadium dioxide.

    PubMed

    Lourembam, James; Srivastava, Amar; La-O-Vorakiat, Chan; Cheng, Liang; Venkatesan, T; Chia, Elbert E M

    2016-01-01

    Ultrafast optical studies have been performed on epitaxial films of the novel B-phase of vanadium dioxide using temperature-dependent optical pump-probe technique. Signature of temperature-driven metal-to-insulator transition was distinctly observed in the ultrafast dynamics - the insulating phase showed two characteristic electronic relaxation times while the metallic phase showed only one. Beyond a threshold value of the pump fluence, the insulating state collapses into a 'metallic-like' phase which can be further subdivided into two regimes according to the lengths of the fast characteristic time. The first regime can be explained by lattice heating due to the optical pump; the other cannot be accounted by simple lattice heating effects alone, and thus offers evidence for a true photoinduced phase transition.

  9. Evidence for Photoinduced Insulator-to-Metal transition in B-phase vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Lourembam, James; Srivastava, Amar; La-O-Vorakiat, Chan; Cheng, Liang; Venkatesan, T.; Chia, Elbert E. M.

    2016-05-01

    Ultrafast optical studies have been performed on epitaxial films of the novel B-phase of vanadium dioxide using temperature-dependent optical pump-probe technique. Signature of temperature-driven metal-to-insulator transition was distinctly observed in the ultrafast dynamics — the insulating phase showed two characteristic electronic relaxation times while the metallic phase showed only one. Beyond a threshold value of the pump fluence, the insulating state collapses into a ‘metallic-like’ phase which can be further subdivided into two regimes according to the lengths of the fast characteristic time. The first regime can be explained by lattice heating due to the optical pump; the other cannot be accounted by simple lattice heating effects alone, and thus offers evidence for a true photoinduced phase transition.

  10. Evidence for Photoinduced Insulator-to-Metal transition in B-phase vanadium dioxide

    PubMed Central

    Lourembam, James; Srivastava, Amar; La-o-vorakiat, Chan; Cheng, Liang; Venkatesan, T.; Chia, Elbert E. M.

    2016-01-01

    Ultrafast optical studies have been performed on epitaxial films of the novel B-phase of vanadium dioxide using temperature-dependent optical pump-probe technique. Signature of temperature-driven metal-to-insulator transition was distinctly observed in the ultrafast dynamics — the insulating phase showed two characteristic electronic relaxation times while the metallic phase showed only one. Beyond a threshold value of the pump fluence, the insulating state collapses into a ‘metallic-like’ phase which can be further subdivided into two regimes according to the lengths of the fast characteristic time. The first regime can be explained by lattice heating due to the optical pump; the other cannot be accounted by simple lattice heating effects alone, and thus offers evidence for a true photoinduced phase transition. PMID:27157532

  11. Crystal phase competition by addition of a second metal cation in solid solution metal-organic frameworks.

    PubMed

    Castillo-Blas, C; Snejko, N; de la Peña-O'Shea, V A; Gallardo, J; Gutiérrez-Puebla, E; Monge, M A; Gándara, F

    2016-03-14

    Herein we report a synthetic study focused on the preparation of solid-solution metal-organic frameworks, MOFs, with the use of two kinds of linkers. In particular, we have explored the system composed by zinc, cobalt, 1,2,4-triazole and 4,4′-hexafluoroisopropylidenebisbenzoic acid (H2hfipbb). During this study, four new MOFs have been isolated, denoted TMPF-88 [M3(hfipbb)2(triazole)2(H2O)], TMPF-90 [M2(triazole)3(OCH2CH3)], TMPF-91 [M2(hfipbb)(triazole)2(H2O)] and TMPF-95 [M5(hfipbb)4(triazole)2(H2O)] (TMPF = transition metal polymeric framework, M = Zn, Co, or mixture of them). The study demonstrates that the addition of a second metal element during the MOF synthesis has a major effect in the formation of new phases, even at very high Zn/Co metal ratios. Furthermore, we show that during the MOF formation reaction, there is a competition among different crystal phases, where kinetically favoured phases of various compositions crystallize in short reaction times, precluding the formation of the pure solid-solution phases of other energetically more stable MOFs.

  12. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Yi, Ming; Tian, Wei; Bourret-Courchesne, Edith; Birgeneau, Robert J.

    2016-02-01

    The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2 -zSz . We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈1.5 ) , the block AF phase with √{5 }×√{5 } iron vacancy order (y ≈1.6 ) , and the iron vacancy-free phase (y ≈2 ) ; and (ii) the iron vacancy-free superconducting phase (z =0 ) evolves into an iron vacancy-free metallic phase with sulfur substitution (z >1.5 ) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y >1.6 ) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √{5 }×√{5 } iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

  13. The effect of the metal-on-metal hip controversy on Internet search activity.

    PubMed

    Phelan, Nigel; Kelly, John C; Moore, David P; Kenny, Patrick

    2014-10-01

    The recall of the articular surface replacement (ASR) hip prosthesis in 2010 represents one of the most controversial areas in orthopaedic surgery in recent years. The aim of this study was to compare the impact of the metal-on-metal hip controversy on Internet search activity in four different regions and determine whether the number of related news reports affected Internet search activity. The Google Trends, Keywords and News applications were used to record the number of news articles and Internet search activity for the terms "hip recall", "metal-on-metal hip" and "ASR hip" from October 2009 to October 2012 in the USA, the UK, Australia and Ireland. There was a large increase in search activity following the official recall in August 2010 in all countries. There was significantly greater search activity after the recall in Ireland compared with the UK for the search term "hip recall" (P = 0.004). For the term "metal-on-metal hip", the UK had significantly more search activity (P = 0.0009). There was a positive correlation between the number of news stories in UK and Ireland with Internet search activity but not in the USA or Australia. Differences between countries affected by the same recall highlight the complex effects of the media on public awareness. The data demonstrates a window of opportunity prior to the official recall for the development of an awareness campaign to provide patients with accurate information.

  14. Electron-phonon coupling and structural phase transitions in early transition metal oxides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Farley, Katie Elizabeth

    Pronounced nonlinear variation of electrical transport characteristics as a function of applied voltage, temperature, magnetic field, strain, or photo-excitation is usually underpinned by electronic instabilities that originate from the complex interplay of spin, orbital, and lattice degrees of freedom. This dissertation focuses on two canonical materials that show pronounced discontinuities in their temperature-dependent resistivity as a result of electron---phonon and electron---electron correlations: orthorhombic TaS3 and monoclinic VO2. Strong electron-phonon interactions in transition metal oxides and chalcogenides results in interesting structural and electronic phase transitions. The properties of the material can be changed drastically in response to external stimuli such as temperature, voltage, or light. Understanding the influence these interactions have on the electronic structure and ultimately transport characteristics is of utmost importance in order to take these materials from a fundamental aspect to prospective applications such as low-energy interconnects, steep-slope transistors, and synaptic neural networks. This dissertation describes synthetic routes to nanoscale TaS3 and VO2, develops mechanistic understanding of their electronic instabilities, and in the case of the latter system explores modulation of the electronic and structural phase transition via the incorporation of substitutional dopant atoms. We start in chapter 2 with a detailed study of the synthesis and electronic transport properties of TaS3, which undergoes a Peierls' distortion to form a charge density wave. Scaling this material down to the nanometer-sized regime allows for interrogation of single or discrete phase coherent domains. Using electrical transport and broad band noise measurements, the dynamics of pinning/depinning of the charge density wave is investigated. Chapter 3 provides a novel synthetic approach to produce high-edge-density MoS2 nanorods. MoS2 is a

  15. Structural instability and phase co-existence driven non-Gaussian resistance fluctuations in metal nanowires at low temperatures

    NASA Astrophysics Data System (ADS)

    Bid, Aveek; Raychaudhuri, A. K.

    2016-11-01

    We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15–200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ∼30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of 1/f behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy {E}{{a}}∼ 35 meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.

  16. Model of High Temperature Phase Transitions in Metals

    NASA Astrophysics Data System (ADS)

    Filippov, E. S.

    2016-04-01

    On the basis of the assumption of the electron density fluctuation at the band degradation, a calculation parameter (the radius R) of the half-width of the probability distribution over the coordinate R is identified at the level of the maximum electron density fluctuation (at a maximum of the Gaussian function). Based on an analysis of the crystallization process and high polymorphic transformations bcc → fcc, the reasons for the formation of bcc, fcc, hexagonal, and tetragonal structures from the liquid phase, as well as for the high temperature bcc → hcp transition in the solid phase are established using the calculated parameter (the radius R) in the solid and liquid phases.

  17. Phase transition into the metallic state in hypothetical (without molecules) dense atomic hydrogen

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2013-10-15

    A simple physical model of the metal-dielectric (vapor-liquid) phase transition in hypothetical (without molecules) atomic hydrogen is proposed. The reason for such a transition is the quantum collective cohesive energy occurring due to quantum electron-electron exchange similar to the cohesive energy in the liquid-metal phase of alkali metals. It is found that the critical parameters of the transition are P{sub c} ∼ 41000 atm, ρ{sub c} ∼ 0.1 g/cm{sup 3}, and T{sub c} ∼ 9750 K.

  18. How absorbed hydrogen affects the catalytic activity of transition metals.

    PubMed

    Aleksandrov, Hristiyan A; Kozlov, Sergey M; Schauermann, Swetlana; Vayssilov, Georgi N; Neyman, Konstantin M

    2014-12-01

    Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.

  19. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach.

    PubMed

    Aijaz, Arshad; Karkamkar, Abhi; Choi, Young Joon; Tsumori, Nobuko; Rönnebro, Ewa; Autrey, Tom; Shioyama, Hiroshi; Xu, Qiang

    2012-08-29

    Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a "double solvents" method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation. PMID:22888976

  20. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    SciTech Connect

    Marking, G.A.

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf{sub 10}Ta{sub 3}S{sub 3} was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported {open_quotes}stuffed{close_quotes} gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo K{alpha} X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co{sub 2}Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  1. Phase coexistence and Mott metal-insulator transition in the doped Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Moradi Kurdestany, Jamshid; Satpathy, Sashi

    2015-03-01

    Motivated by recent progress in the understanding of the Mott insulators away from half filling [?], often observed in the oxide materials, we study the role of the electron-lattice interaction vis-à-vis the electron correlations by studying the one-band Hubbard-Holstein model using the Gutzwiller variational method. Our theory predicts phase separation for sufficiently strong electron-lattice interaction, which however is frustrated in the solid due to the long-range Coulomb interaction of the dopant atoms, resulting in puddles of metallic phases embedded in the insulating matrix. Metallic state occurs when the volume fraction of the metallic phase exceeds the percolation threshold, as the dopant concentration is increased. Connection is made with the experimentally observed metal-insulator transition in the complex oxides.

  2. Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases

    SciTech Connect

    Wei, Z. Y.; Liu, E. K. Chen, J. H.; Xi, X. K.; Zhang, H. W.; Wang, W. H.; Wu, G. H.; Li, Y.; Liu, G. D.; Luo, H. Z.

    2015-07-13

    Heusler ferromagnetic shape-memory alloys (FSMAs) normally consist of transition-group d-metals and main-group p-elements. Here, we report the realization of FSMAs in Heusler phases that completely consist of d metals. By introducing the d-metal Ti into NiMn alloys, cubic B2-type Heusler phase is obtained and the martensitic transformation temperature is decreased efficiently. Strong ferromagnetism is established by further doping Co atoms into the B2-type antiferromagnetic Ni-Mn-Ti austenite. Based on the magnetic-field-induced martensitic transformations, collective multifunctional properties are observed in Ni(Co)-Mn-Ti alloys. The d metals not only facilitate the formation of B2-type Heusler phases but also establish strong ferromagnetic coupling and offer the possibility to tune the martensitic transformation.

  3. Efficiency of metal activators of accelerated sulfur vulcanization

    SciTech Connect

    Duchacek, V.; Kuta, A.; Pribyl, P. )

    1993-01-20

    The effects of copper, mercury, nickel, zinc, cadmium, indium, magnesium, and calcium stearates on the course of N-cyclohexyl-2-benzthiazylsulphenamide-accelerated sulfur vulcanization of natural rubber have been investigated on the basis of curemeter measurements at 145 C. The differences in the efficiencies of these metal activators of accelerated sulfur vulcanization have been discussed from the points of view of the electron configurations of the metals and their affinities to sulfur. The authors attempted to determine why zinc oxide is generally accepted as the best metal vulcanization activator.

  4. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Bräse, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Müllen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wöll, Christof

    2012-12-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 × 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++)2- carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.

  5. Electroscopy Ionization Photoelectron Spectroscopy: Probing the Electronic Structure of Inorganic Metal Complexes in the Gas Phase

    SciTech Connect

    Waters, Tom; Wang, Xue B.; Wang, Lai S.

    2007-02-01

    The coupling of electrospray to photoelectron spectroscopy has allowed a number of negatively charged solution phase transition metal complexes to be transferred to the gas phase and studied by photoelectron spectroscopy for the first time. Experiments have been performed on a range of species, including classic square-planar and octahedral transition-metal halide complexes, metal-metal bonded species, transition metal bis(dithiolene) centers and a variety of mononuclear and polynuclear iron-sulfur clusters that are related to important bioinorganic centers. The studies have provided detailed information about the electronic structure and molecular orbital energy levels of these species, allowing for direct comparison with theoretical calculations, and providing insight into their intrinsic redox properties in the absence of solvation.

  6. Resonant Metallic Nanostructures for Active Metamaterials and Photovoltaics

    NASA Astrophysics Data System (ADS)

    Pryce, Imogen Mary

    2011-07-01

    Electromagnetic metamaterials are composites consisting of sub-wavelength structures designed to exhibit particular responses to an incident electromagnetic wave. In general, the properties of a metamaterial are fixed at the time of fabrication by the dimensions of each unit cell and the materials used. By incorporating dynamic components to the metamaterial system, a new type of tunable design can be accessed. This thesis describes the design and development of resonant metallic nanostructures for use in active metamaterials. We begin by examining passive systems and introduce concepts that are critical for the design of more complex, tunable structures. We show how a simple metamaterial design, a plasmonic nanoparticle array, can be used to enhance the photocurrent of an ultrathin InGaN quantum well photovoltaic cell. We then explore how more complex resonator shapes can be coupled together in a single unit cell in order to access more complex resonant behavior. In the second half of this thesis, we use several material systems as the basis for the design of active metamaterials. We demonstrate the first tunable metamaterial at optical frequencies using vanadium dioxide, a phase transition material. We exploit this material's transition from a semiconducting to a metallic state and show how a novel fabrication scheme can be used to achieve a frequency tunable resonant response. We then abandon traditional hard and brittle substrates and develop a lithographic transfer process for adhering metallic nanostructures to highly compliant polymeric substrates. Mechanical deformation is then used to distort the resonator shapes and achieve resonant tunability of a full linewidth. This system is exploited to demonstrate interesting resonant hybridization phenomena, such as Fano resonance modulation, and sets the stage for the more elusive goal of driving two resonant nanostructures into contact. Finally, we describe the use of compliant tunable metamaterials as both

  7. Holographic entanglement entropy in metal/superconductor phase transition with exponential nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Yao, Weiping; Jing, Jiliang

    2016-08-01

    We study the holographic entanglement entropy in metal/superconductor phase transition with exponential nonlinear electrodynamics (ENE) in four and five dimensional spacetimes. We find that the holographic entanglement entropy is powerful tool in studying the properties of the holographic phase transition. For the operator , we show that the entanglement entropy in 4-dimensional spacetime decreases in metal phase but changes non-monotonously in superconducting phase with the increase of the ENE parameter. Interestingly, the change of the entanglement entropy in 5-dimensional spacetime for the two phases is monotonous as the ENE factor alters. For the operator , we note that the behavior of entanglement entropy in four and five dimensional spacetimes changes monotonously for the two phases as we tune the strength of the ENE. Furthermore, for both operators, the entanglement entropy in four or five dimensional black hole increases with the increase of the width of the region.

  8. Evidence of a first-order phase transition to metallic hydrogen

    NASA Astrophysics Data System (ADS)

    Zaghoo, Mohamed; Salamat, Ashkan; Silvera, Isaac F.

    2016-04-01

    The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed-matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from the low-temperature limit with the system in the ground state to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbars and up to 2200 K. We present evidence supportive of a first-order phase transition accompanied by changes in transmittance and reflectance, characteristic of a metal. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition.

  9. Topological phases in oxide heterostructures with light and heavy transition metal ions (invited)

    SciTech Connect

    Fiete, Gregory A.; Rüegg, Andreas

    2015-05-07

    Using a combination of density functional theory, tight-binding models, and Hartree-Fock theory, we predict topological phases with and without time-reversal symmetry breaking in oxide heterostructures. We consider both heterostructures containing light transition metal ions and those containing heavy transition metal ions. We find that the (111) growth direction naturally leads to favorable conditions for topological phases in both perovskite structures and pyrochlore structures. For the case of light transition metal elements, Hartree-Fock theory predicts the spin-orbit coupling is effectively enhanced by on-site multiple-orbital interactions and may drive the system through a topological phase transition, while heavy elements with intrinsically large spin-orbit coupling require much weaker or even vanishing electron interactions to bring about a topological phase.

  10. Active impedance metasurface with full 360° reflection phase tuning

    PubMed Central

    Zhu, Bo O.; Zhao, Junming; Feng, Yijun

    2013-01-01

    Impedance metasurface is composed of electrical small scatters in two dimensional plane, of which the surface impedance can be designed to produce desired reflection phase. Tunable reflection phase can be achieved by incorporating active element into the scatters, but the tuning range of the reflection phase is limited. In this paper, an active impedance metasurface with full 360° reflection phase control is presented to remove the phase tuning deficiency in conventional approach. The unit cell of the metasurface is a multiple resonance structure with two resonance poles and one resonance zero, capable of providing 360° reflection phase variation and active tuning within a finite frequency band. Linear reflection phase tuning can also be obtained. Theoretical analysis and simulation are presented and validated by experiment at microwave frequency. The proposed approach can be applied to many cases where fine and full phase tuning is needed, such as beam steering in reflectarray antennas. PMID:24162366

  11. Ignition and combustion characteristics of metallized propellants, phase 2

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, Stephen R.

    1994-01-01

    Secondary atomization and ignition characteristics of aluminum/hydrocarbon gel propellants were investigated. Models of gel droplet shell formation were applied to aluminum/liquid hydrocarbon propellants to examine the effects of solid loading and ultimate particle size on the minimum droplet diameter permitting secondary atomization. A one-dimensional model of a gel-fueled rocket combustion chamber was developed. A model for radiant heat transfer from hot aluminum oxide particles to the chamber walls is included. A two-dimensional, two-phase nozzle code was used to estimate nozzle two-phase losses and overall engine performance.

  12. Biologically active compounds of semi-metals.

    PubMed

    Rezanka, Tomás; Sigler, Karel

    2008-02-01

    Semi-metals (boron, silicon, arsenic and selenium) form organo-metal compounds, some of which are found in nature and affect the physiology of living organisms. They include, e.g., the boron-containing antibiotics aplasmomycin, borophycin, boromycin, and tartrolon or the silicon compounds present in "silicate" bacteria, relatives of the genus Bacillus, which release silicon from aluminosilicates through the secretion of organic acids. Arsenic is incorporated into arsenosugars and arsenobetaines by marine algae and invertebrates, and fungi and bacteria can produce volatile methylated arsenic compounds. Some prokaryotes can use arsenate as a terminal electron acceptor while others can utilize arsenite as an electron donor to generate energy. Selenium is incorporated into selenocysteine that is found in some proteins. Biomethylation of selenide produces methylselenide and dimethylselenide. Selenium analogues of amino acids, antitumor, antibacterial, antifungal, antiviral, anti-infective drugs are often used as analogues of important pharmacological sulfur compounds. Other metalloids, i.e. the rare and toxic tellurium and the radioactive short-lived astatine, have no biological significance. PMID:17991498

  13. Phase diagrams of microemulsions containing reducing agents and metal salts as bases for the synthesis of metallic nanoparticles.

    PubMed

    Najjar, Reza; Stubenrauch, Cosima

    2009-03-01

    We studied the phase diagrams of microemulsions with a view to using these systems for the synthesis of metallic Pt, Pb, and Bi nanoparticles as well as of intermetallic Pt/Pb and Pt/Bi nanoparticles. The microemulsions consisted of H(2)O/salt-n-decane-SDS-1-butanol. The salt was either one metal precursor (H(2)PtCl(6) x 6 H(2)O, Pb(NO(3))(2), or Bi(NO(3))(3) x 5 H(2)O), a mixture of two metal precursors (H(2)PtCl(6) x 6 H(2)O + Pb(NO(3))(2) or H(2)PtCl(6) x 6 H(2)O + Bi(NO(3))(3) x 5 H(2)O), or the reducing agent (NaBH(4)). In addition, other salts needed to be added in order to solubilize the metal precursors, to stabilize the reducing agent, and to adjust the ionic strength. Combining the microemulsion (mu e1) that contains the metal precursor(s) with the microemulsion (mu e2) that contains the reducing agent leads to metallic nanoparticles. To study systematically how the shape and size of the synthesized metallic nanoparticles depend on the size and shape of the respective microemulsion droplets, first of all one has to find those conditions under which mu e1 and mu e2 have the same structure. For that purpose we determined the water emulsification failure boundary (wefb) of each microemulsion as it is at the wefb where the water droplets are known to be spherical. We found that the ionic strength (I) of the aqueous phase as well as the hard acid and hard base properties of the ions are the key tuning parameters for the location of the wefb.

  14. Electrical Properties Of GaN Layers Grown By Metal Organic Vapor Phase Epitaxy (MOVPE)

    NASA Astrophysics Data System (ADS)

    Rangel-Kuoppa, Victor-Tapio; Aguilar, Cesia Guarneros; Sánchez-Reséndiz, Victor

    2011-12-01

    The electrical properties of three un-doped GaN samples grown at low pressure by Metal Organic Vapor Phase Epitaxy (MOVPE) on sapphire substrates are reported. Two different growth temperatures of 900 °C and 950 °C were used, for 90 min. Also, two trimethylgallium flow fluxes were set (5.39 μmole/minute and 8.39 μmole/minute). The temperature dependent Hall (T-Hall) technique was used, between 35 K and 373 K. The resistivity of our samples fluctuated between 3 and 24 mΩ×cm. They were temperature dependent and were explained by two thermally activated processes, with activation energies of 20 and 70 meV. For the two samples grown at 900 °C, the mobilities and the charge carrier densities were temperature independent with values of 10 and 20 cm2 V-1 s-1, and 6×1019 and 5×1019 cm-3, respectively. For the sample grown at 950 °C, the mobility showed temperature dependence to the power of +1/3 and the charge carrier density a thermally activated dependence with an activation energy of 5 meV.

  15. Generation of copper rich metallic phases from waste printed circuit boards

    SciTech Connect

    Cayumil, R.; Khanna, R.; Ikram-Ul-Haq, M.; Rajarao, R.; Hill, A.; Sahajwalla, V.

    2014-10-15

    Highlights: • Recycling and material recovery from waste printed circuit boards is very complex. • Thermoset polymers, ceramics and metals are present simultaneously in waste PCBs. • Heat treatment of PCBs was carried out at 1150 °C under inert conditions. • Various metallic phases could be segregated out as copper based metallic droplets. • Carbon and ceramics residues can be further recycled in a range of applications. - Abstract: The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150 °C under argon gas flowing at 1 L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the

  16. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)

    SciTech Connect

    Zhao, C.Y.; Lu, W.; Tian, Y.

    2010-08-15

    In this paper the experimental investigation on the solid/liquid phase change (melting and solidification) processes have been carried out. Paraffin wax RT58 is used as phase change material (PCM), in which metal foams are embedded to enhance the heat transfer. During the melting process, the test samples are electrically heated on the bottom surface with a constant heat flux. The PCM with metal foams has been heated from the solid state to the pure liquid phase. The temperature differences between the heated wall and PCM have been analysed to examine the effects of heat flux and metal foam structure (pore size and relative density). Compared to the results of the pure PCM sample, the effect of metal foam on solid/liquid phase change heat transfer is very significant, particularly at the solid zone of PCMs. When the PCM starts melting, natural convection can improve the heat transfer performance, thereby reducing the temperature difference between the wall and PCM. The addition of metal foam can increase the overall heat transfer rate by 3-10 times (depending on the metal foam structures and materials) during the melting process (two-phase zone) and the pure liquid zone. The tests for investigating the solidification process under different cooling conditions (e.g. natural convection and forced convection) have been carried out. The results show that the use of metal foams can make the sample solidified much faster than pure PCM samples, evidenced by the solidification time being reduced by more than half. In addition, a two-dimensional numerical analysis has been carried out for heat transfer enhancement in PCMs by using metal foams, and the prediction results agree reasonably well with the experimental data. (author)

  17. A model for understanding the formation energies of nanolamellar phases in transition metal carbides and nitrides

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Guziewski, Matthew; Thompson, Gregory B.; Weinberger, Christopher R.

    2016-06-01

    In this paper we introduce a stacking-fault based model to understand the energetics of formation of the nanolamellar-based metal carbide and nitride structures. The model is able to reproduce the cohesive energies of the stacking fault phases from density functional theory calculations by fitting the energy of different stacking sequences of metal layers. The model demonstrates that the first and second nearest metal-metal neighbor interactions and the nearest metal-carbon/nitrogen interaction are the dominant terms in determining the cohesive energy of these structures. The model further demonstrates that above a metal to non-metal ratio of 75%, there is no energetic favorability for the stacking faults to form a long-range ordered structure. The model’s applicability is demonstrated using the Ta-C system as its case study from which we report that the interfacial energy between ζ-Ta4C3 and TaC or Ta2C is negligible. Our results suggest that the closed packed planes of these phases should be aligned and that precipitated phases should be thin, which is in agreement with experiments.

  18. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction

    PubMed Central

    Geng, Xiumei; Sun, Weiwei; Wu, Wei; Chen, Benjamin; Al-Hilo, Alaa; Benamara, Mourad; Zhu, Hongli; Watanabe, Fumiya; Cui, Jingbiao; Chen, Tar-pin

    2016-01-01

    Metallic-phase MoS2 (M-MoS2) is metastable and does not exist in nature. Pure and stable M-MoS2 has not been previously prepared by chemical synthesis, to the best of our knowledge. Here we report a hydrothermal process for synthesizing stable two-dimensional M-MoS2 nanosheets in water. The metal–metal Raman stretching mode at 146 cm−1 in the M-MoS2 structure, as predicted by theoretical calculations, is experimentally observed. The stability of the M-MoS2 is associated with the adsorption of a monolayer of water molecules on both sides of the nanosheets, which reduce restacking and prevent aggregation in water. The obtained M-MoS2 exhibits excellent stability in water and superior activity for the hydrogen evolution reaction, with a current density of 10 mA cm−2 at a low potential of −175 mV and a Tafel slope of 41 mV per decade. PMID:26861766

  19. Deoxidation of (001) III-V semiconductors in metal-organic vapour phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kaspari, Christian; Pristovsek, Markus; Richter, Wolfgang

    2016-08-01

    We studied the deoxidation of several (001) III-V semiconductors in metal-organic vapour phase epitaxy using in-situ reflectance anisotropy spectroscopy and in-situ spectroscopic ellipsometry. The oxide desorption started as soon as kBT reaches 1/15th of the bond strength of the crystal if there is hydrogen or group V precursor present. The oxide thickness decreases first and afterwards the surface slowly reconstructs. At a constant temperature the oxide thickness decreased according to a second order reaction. We found two processes on InAs and GaAs, but only a single one on InP. The activation energy for the removal of epi-ready oxide under group V flux was 0.64 eV, 1.1 eV, and 1.3 eV on InAs, GaAs, and InP, respectively. The end of oxide desorption is determined by the removal of the last metal rich oxides, at temperatures of 500 °C for InAs/InP and 600 °C for GaAs/GaP.

  20. Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.

    SciTech Connect

    Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

    2013-09-01

    Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0 x 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

  1. Ignition and combustion characteristics of metallized propellants, phase 2

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass

  2. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    PubMed

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  3. Effects of Metal Ion Adduction on the Gas-Phase Conformations of Protein Ions

    PubMed Central

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2013-01-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution, because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca2+, is larger for the holo-form compared to the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution. PMID:23733259

  4. Characterization study of heavy metal-bearing phases in MSW slag.

    PubMed

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro

    2009-05-30

    Slag products derived from the pyrolysis/melting and plasma/melting treatment of municipal solid waste (MSW) in Japan were examined for the characterization study of heavy metal-bearing phases using petrographic techniques. Detailed microscopic observations revealed that the shapes of heavy metal-rich inclusions are generally spherical to semi-spherical and their sizes range from submicron to scarcely large size spheres (over 100 microm). The experiments (both optical microscopy and electron probe microanalysis) indicated that Fe and Cu participate in mutual substitution and different proportions, and form mainly two-phase Fe-Cu alloys that bound in the silicate glass. This alloy characterizes the composition of more than 80% of the metal-rich inclusions. Other metals and non-metals (such as Pb, Ni, Sb, Sn, P, Si, Al and S) with variable amounts and uneven distributions are also incorporated in the Fe-Cu alloy. In average, the bulk concentration of heavy metals in samples from pyrolysis/melting type is almost six times greater than samples treated under plasma/arc processing. The observations also confirmed that slag from pyrolysis origin contains remarkably higher concentration of metallic inclusions than slag from plasma treatment. In the latter, the metallic compounds are separately tapped from molten slag during the melting treatment that might lead to the generation of safer slag product for end users from environmental viewpoint. PMID:18926624

  5. Superconducting phases of monolayer transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Sosenko, Evan; Aji, Vivek

    Layered group-VI dichalcogenides, e.g., MoS2, are two dimensional materials that engender novel coupled spin and valley physics. Characterized by strong spin-orbit coupling and inversion symmetry breaking, they give rise to novel phenomena such as the spin Hall and valley Hall effect. In this talk, I focus on the intrinsic and substrate induced superconducting phases expected in this new class of materials. We will discuss the nature of the quasiparticles resulting from valley discriminating, pair breaking processes, and the effect of the BCS phase on the nature of opto-electronic coupling and nontrivial Berry curvature associated with the bands near each valley. We would like to acknowledge support from ARO W911NF1510079.

  6. High resolution Hall measurements across the VO2 metal-insulator transition reveal impact of spatial phase separation

    PubMed Central

    Yamin, Tony; Strelniker, Yakov M.; Sharoni, Amos

    2016-01-01

    Many strongly correlated transition metal oxides exhibit a metal-insulator transition (MIT), the manipulation of which is essential for their application as active device elements. However, such manipulation is hindered by lack of microscopic understanding of mechanisms involved in these transitions. A prototypical example is VO2, where previous studies indicated that the MIT resistance change correlate with changes in carrier density and mobility. We studied the MIT using Hall measurements with unprecedented resolution and accuracy, simultaneously with resistance measurements. Contrast to prior reports, we find that the MIT is not correlated with a change in mobility, but rather, is a macroscopic manifestation of the spatial phase separation which accompanies the MIT. Our results demonstrate that, surprisingly, properties of the nano-scale spatially-separated metallic and semiconducting domains actually retain their bulk properties. This study highlights the importance of taking into account local fluctuations and correlations when interpreting transport measurements in highly correlated systems. PMID:26783076

  7. High resolution Hall measurements across the VO2 metal-insulator transition reveal impact of spatial phase separation

    NASA Astrophysics Data System (ADS)

    Yamin, Tony; Strelniker, Yakov M.; Sharoni, Amos

    2016-01-01

    Many strongly correlated transition metal oxides exhibit a metal-insulator transition (MIT), the manipulation of which is essential for their application as active device elements. However, such manipulation is hindered by lack of microscopic understanding of mechanisms involved in these transitions. A prototypical example is VO2, where previous studies indicated that the MIT resistance change correlate with changes in carrier density and mobility. We studied the MIT using Hall measurements with unprecedented resolution and accuracy, simultaneously with resistance measurements. Contrast to prior reports, we find that the MIT is not correlated with a change in mobility, but rather, is a macroscopic manifestation of the spatial phase separation which accompanies the MIT. Our results demonstrate that, surprisingly, properties of the nano-scale spatially-separated metallic and semiconducting domains actually retain their bulk properties. This study highlights the importance of taking into account local fluctuations and correlations when interpreting transport measurements in highly correlated systems.

  8. High resolution Hall measurements across the VO2 metal-insulator transition reveal impact of spatial phase separation.

    PubMed

    Yamin, Tony; Strelniker, Yakov M; Sharoni, Amos

    2016-01-01

    Many strongly correlated transition metal oxides exhibit a metal-insulator transition (MIT), the manipulation of which is essential for their application as active device elements. However, such manipulation is hindered by lack of microscopic understanding of mechanisms involved in these transitions. A prototypical example is VO2, where previous studies indicated that the MIT resistance change correlate with changes in carrier density and mobility. We studied the MIT using Hall measurements with unprecedented resolution and accuracy, simultaneously with resistance measurements. Contrast to prior reports, we find that the MIT is not correlated with a change in mobility, but rather, is a macroscopic manifestation of the spatial phase separation which accompanies the MIT. Our results demonstrate that, surprisingly, properties of the nano-scale spatially-separated metallic and semiconducting domains actually retain their bulk properties. This study highlights the importance of taking into account local fluctuations and correlations when interpreting transport measurements in highly correlated systems. PMID:26783076

  9. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    SciTech Connect

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; Fowlkes, Jason D.; Kondic, Lou; Vincenti, Maria A.; de Ceglia, Domenico; Rack, Philip D.

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, as an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.

  10. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays

    DOE PAGES

    Wu, Yueying; Dong, Nanyi; Fu, Shaofang; Fowlkes, Jason D.; Kondic, Lou; Vincenti, Maria A.; de Ceglia, Domenico; Rack, Philip D.

    2014-04-01

    Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less

  11. Insulating or metallic: coexistence of different electronic phases in zinc clusters.

    PubMed

    Aguado, Andrés; Vega, Andrés; Lebon, Alexandre; von Issendorff, Bernd

    2015-02-01

    How many of the several attributes of the bulk metallic state persist in a nanoparticle containing a finite number of atoms of a metallic element? Do all those attributes emerge suddenly at a well-defined cluster size or do they rather evolve at different rates and in a broad size range? These fundamental questions have been addressed through a conjoint experimental/theoretical investigation of zinc clusters. We report the observation of novel coexistence phenomena involving different electronic phases: for some sizes, metallic and insulating electronic states coexist within a single, Janus-like, nanoparticle; for the rest of sizes, we report the coexistence of two weakly interacting metallic phases with different dimensionalities, localized at the shell and the core of the nanoparticle. These fascinating features are due to an anomalously long core-shell separation that equips the shell and core regions with largely independent structural, vibrational, and thermal properties.

  12. Partitioning of metals between the aqueous phase and suspended insoluble material in fog droplets.

    PubMed

    Mancinelli, Valeriana; Decesari, Stefano; Facchini, Maria Cristina; Fuzzi, Sandro; Mangani, Filippo

    2005-05-01

    This paper discusses the partitioning of metals (K, Na, Ca, Mg, Al, Cu, Fe, Pb and Zn) between the aqueous phase and the suspended insoluble material in fog samples collected in the Po Valley during two extensive fields campaigns. Metals represent on average 11% of the mass of suspended insoluble matter, while the main component is carbon (both organic carbon, OC = 35%, and black carbon, BC = 8%). The unaccounted suspended matter mass is very high, on average 46%, and is attributable to non metallic species, such as O and N and of Si. The principal metals in the insoluble suspended fraction are Fe and Al (2-5%), while the contributions of other metals (Na, Mg, Cu, Pb and Zn) are lower than 1%. Ca and K exhibited high blank values and could not be detected above blank detection limit threshold. The main components in the aqueous phase are NO3- (34%), WSOC (23%), SO4(2-) (18%) and NH4+ (19%), while trace metals and remaining cations and anions accounted for less than 1% of solute mass. The main dissolved trace metals in fog droplets are Zn, Al and Fe, while the main metallic cations are Na and Ca. Fe and Al are the only metals preferentially distributed in the suspended insoluble matter of fog droplets (partitioning ratio respectively 37% and 33%). All other metals are mostly dissolved in the aqueous phase (mean partitioning ratios of Mg, Pb, Zn, Cu and Na are 69%, 70%, 77%, 81% and 87%). These findings are in agreement with literature data on metal speciation in cloud and rain samples. The dependence of partitioning ratios on pH is investigated for the different metals, with only Al showing a clear partitioning ratio decrease with increasing pH. Conversely, the other metals show no dependence or a complex and highly variable behaviour. The partitioning ratio of iron (mean 37%) observed in the Po Valley fog samples is much higher than the water extractable iron in aerosol particles (typically 1-2 %): this fact can be explained by differences in the aerosol sources

  13. 29 CFR 96.52 - Pre-resolution phase activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... respects with the report submission requirements of 29 CFR part 99. Failure to submit a complete audit... 29 Labor 1 2010-07-01 2010-07-01 true Pre-resolution phase activities. 96.52 Section 96.52 Labor... Resolution § 96.52 Pre-resolution phase activities. (a) Submission of reports. Recipients and...

  14. Method and apparatus for selective capture of gas phase analytes using metal .beta.-diketonate polymers

    DOEpatents

    Harvey, Scott D [Kennewick, WA

    2011-06-21

    A process and sensor device are disclosed that employ metal .beta.-diketonate polymers to selectively capture gas-phase explosives and weaponized chemical agents in a sampling area or volume. The metal .beta.-diketonate polymers can be applied to surfaces in various analytical formats for detection of: improvised explosive devices, unexploded ordinance, munitions hidden in cargo holds, explosives, and chemical weapons in public areas.

  15. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity

    PubMed Central

    Harper-Leatherman, Amanda S.; Pacer, Elizabeth R.; Kosciuszek, Nina D.

    2016-01-01

    Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol–gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development. PMID:26967257

  16. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity.

    PubMed

    Harper-Leatherman, Amanda S; Pacer, Elizabeth R; Kosciuszek, Nina D

    2016-01-01

    Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol-gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development. PMID:26967257

  17. Antischistosomal Activity of Oxindolimine-Metal Complexes

    PubMed Central

    Dario, Bruno S.; Couto, Ricardo A. A.; Pinto, Pedro L. S.; da Costa Ferreira, Ana M.

    2015-01-01

    In recent years, a class of oxindole-copper and -zinc complex derivatives have been reported as compounds with efficient proapoptotic activity toward different tumor cells (e.g., neuroblastomas, melanomas, monocytes). Here we assessed the efficacy of synthesized oxindole-copper(II), -zinc(II), and -vanadyl (VO2+) complexes against adult Schistosoma mansoni worms. The copper(II) complexes (50% inhibitory concentrations of 30 to 45 μM) demonstrated greater antischistosomal properties than the analogous zinc and vanadyl complexes regarding lethality, reduction of motor activity, and oviposition. PMID:26239976

  18. Active phase locking of thirty fiber channels using multilevel phase dithering method.

    PubMed

    Huang, Zhimeng; Tang, Xuan; Luo, Yongquan; Liu, Cangli; Li, Jianfeng; Zhang, Dayong; Wang, Xiaojun; Chen, Tunan; Han, Mei

    2016-03-01

    An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels is achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams. PMID:27036760

  19. Metal-Hydrogen Phase Diagrams in the Vicinity of Melting Temperatures

    SciTech Connect

    Shapovalov, V.I.

    1999-01-06

    Hydrogen-metal interaction phenomena belong to the most exciting challenges of today's physical metallurgy and physics of solids due to the uncommon behavior of hydrogen in condensed media and to the need for understanding hydrogen's strong negative impact on properties of some high-strength steels and.alloys. The paper cites and summarizes research data on fundamental thermodynamic characteristics of hydrogen in some metals that absorb it endothermally at elevated temperatures. For a number of metal-hydrogen systems, information on some phase diagrams previously not available to the English-speaking scientific community is presented.

  20. Composition of the metal phases in ordinary chondrites - Implications regarding classification and metamorphism

    NASA Astrophysics Data System (ADS)

    Afiattalab, F.; Wasson, J. T.

    1980-03-01

    The paper examines the composition of metal phases and metamorphism in ordinary chondrites. It is shown that below 550 C increasing Co decreases the equilibrium kamacite Ni concentration of an alpha to gamma system, and that the equilibrated L chondrites have kamacite and taenite Co concentrations in the L-group range. Metal-phase studies of petrologic type-3 ordinary chondrites with highly unequilibrated silicates showed a wide range in the degree of matrix kamacite equilibration; in the three most unequilibrated chondrites most taenite is clear, and the high Ni content shows that metamorphic temperatures were lower than 400 C in these meteorites.

  1. Metal organic chemical vapor deposition of phase change Ge1Sb2Te4 nanowires.

    PubMed

    Longo, Massimo; Fallica, Roberto; Wiemer, Claudia; Salicio, Olivier; Fanciulli, Marco; Rotunno, Enzo; Lazzarini, Laura

    2012-03-14

    The self-assembly of Ge(1)Sb(2)Te(4) nanowires (NWs) for phase change memories application was achieved by metal organic chemical vapor deposition, catalyzed by Au nanoislands in a narrow range of temperatures and deposition pressures. In the optimized conditions of 400 °C, 50 mbar, the NWs are Ge(1)Sb(2)Te(4) single hexagonal crystals. Phase change memory switching was reversibly induced by nanosecond current pulses through metal-contacted NWs with threshold voltage of about 1.35 V.

  2. Composition of the metal phases in ordinary chondrites - Implications regarding classification and metamorphism

    NASA Technical Reports Server (NTRS)

    Afiattalab, F.; Wasson, J. T.

    1980-01-01

    The paper examines the composition of metal phases and metamorphism in ordinary chondrites. It is shown that below 550 C increasing Co decreases the equilibrium kamacite Ni concentration of an alpha to gamma system, and that the equilibrated L chondrites have kamacite and taenite Co concentrations in the L-group range. Metal-phase studies of petrologic type-3 ordinary chondrites with highly unequilibrated silicates showed a wide range in the degree of matrix kamacite equilibration; in the three most unequilibrated chondrites most taenite is clear, and the high Ni content shows that metamorphic temperatures were lower than 400 C in these meteorites.

  3. Fabrication of submicron metallic grids with interference and phase-mask holography

    SciTech Connect

    Park, Joong-Mok; Kim, Tae-Geun; Constant, Kristen; Ho, Kai-Ming

    2011-01-25

    Complex, submicron Cu metallic mesh nanostructures are made by electrochemical deposition using polymer templates made from photoresist. The polymer templates are fabricated with photoresist using two-beam interference holography and phase mask holography with three diffracted beams. Freestanding metallic mesh structures are made in two separate electrodepositions with perpendicular photoresist grating templates. Cu mesh square nanostructures having large (52.6%) open areas are also made by single electrodeposition with a photoresist template made with a phase mask. These structures have potential as electrodes in photonic devices.

  4. Ultrafast electronic disorder in heat-induced structural deformations and phase transitions in metals

    NASA Astrophysics Data System (ADS)

    Guo, Chunlei; Taylor, Antoinette J.

    2000-09-01

    Heat-induced structural deformations and phase transitions of gold and silver are studied using 1.55-eV, 120-fs ultrashort laser pulses. The dynamics of the heating process is monitored by measuring the time evolution of the dielectric constants following optical excitation. Intensity-dependent dielectric constants in silver and gold show similarities with the photon-energy-dependent dielectric constants, which is shown to indirectly map out the degree of heat-induced electronic disorder in these noble metals. This observation strongly suggests that the heat-induced structural deformations and phase transitions in metals are tied to the electronic disorder and band-structure collapse.

  5. Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study.

    PubMed

    Guan, Jie; Zhu, Zhen; Tománek, David

    2014-07-25

    Based on ab initio density functional calculations, we propose γ-P and δ-P as two additional stable structural phases of layered phosphorus besides the layered α-P (black) and β-P (blue) phosphorus allotropes. Monolayers of some of these allotropes have a wide band gap, whereas others, including γ-P, show a metal-insulator transition caused by in-layer strain or changing the number of layers. An unforeseen benefit is the possibility to connect different structural phases at no energy cost. This becomes particularly valuable in assembling heterostructures with well-defined metallic and semiconducting regions in one contiguous layer.

  6. The effect of ICRF antenna phasing on metal impurities in TFTR

    SciTech Connect

    Stevens, J.E.; Bush, C.; Colestock, P.L.; Greene, G.J.; Hill, K.W.; Hosea, J.C.; Phillips, C.K.; Stratton, B.; von Goeler, S.; Wilson, J.R.; Gardner, W.; Hoffman, D.; Lysojvan, A.

    1989-07-01

    ICRF power levels of up to 2.8 MW were achieved during the 1988 experimental run on TFTR. Metal impurity concentrations (Ti, Cr, Fe, Ni) and Z/sub eff/ were monitored during ICRF heating by x-ray pulse height analysis and uv spectroscopy. Antenna phasing was the key variable affecting ICRF performance. No increase in metallic impurities was observed for P/sub rf//approx lt/ 2.8 MW with the antenna straps 0-/Pi/, while a measurable increase in titanium (Faraday screen material) was observed for P/sub rf/ /approx gt/ 1.0 MW with 0-0 phasing. 18 refs., 8 figs.

  7. The metallic Zintl phase Ba 3Sn 4As 6

    NASA Astrophysics Data System (ADS)

    Lam, Robert; Mar, Arthur

    2001-05-01

    The ternary Zintl compound barium tin arsenide, Ba 3Sn 4As 6, has been synthesized at 950 °C, and its structure has been determined by single-crystal X-ray diffraction methods. It crystallizes in the monoclinic space group C2 h5- P2 1/ n with a=8.6374(10) Å, b=18.3536(13) Å, c=9.7209(11) Å, β=90.05(2)°, and Z=4 at 22 °C. The structure of Ba 3Sn 4As 6 can be regarded as an intermediate between the hypothetical limiting structures "Ba 4Sn 2As 6", containing one-dimensional corner-sharing chains of Sn-centered tetrahedra and "Ba 2Sn 6As 6", containing two-dimensional corrugated layers with pentagonal channels. The Ba 2+ cations separate these chains or layers. Resistivity measurements indicate weakly metallic behaviour for Ba 3Sn 4As 6 with a room-temperature resistivity of 2.7×10 -4Ω cm.

  8. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  9. Basic Chad Arabic: The Active Phase.

    ERIC Educational Resources Information Center

    Absi, Samir Abu; Sinaud, Andre

    This third volume in the course on Chad Arabic emphasizes the active development of speaking skills in the target language. The active participation of the student requires imitation and induction of linguistic structures to a large extent. Some 45 units present grammatical material on gender, parts of speech, and verbs. Each unit contains a…

  10. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    SciTech Connect

    Lichtenberger, D.L.

    1992-01-01

    Purpose of this research program is to obtain experimental information on the different fundamental ways metals bond and activate organic molecules. Our approach has been to directly probe the electronic interactions between metals and molecules through a wide variety of ionization spectroscopies and other techniques, and to investigate the relationships with bonding modes, structures, and chemical behavior. During this period, we have (1) characterized the electronic features of diphosphines and monophosphines in their coordination to metals, (2) carried out theoretical and experimental investigations of the bonding capabilities of C[sub 60] to transition metals, (3) developed techniques for the imaging of single molecules on gold substrates that emphasizes the electronic backbonding from the metal to the molecule, (4) obtained the high resolution photoelectron spectrum of pure C[sub 70] in the gas phase, (5) compared the bonding of [eta][sup 3]- acetylide ligands to the bonding of other small organic molecules with metals, and (6) reported the photoelectron spectra and bonding of [eta][sup 3]-cyclopropenyl groups to metals.

  11. Consequences of abnormal CDK activity in S phase.

    PubMed

    Anda, Silje; Rothe, Christiane; Boye, Erik; Grallert, Beáta

    2016-01-01

    Cyclin Dependent Kinases (CDKs) are important regulators of DNA replication. In this work we have investigated the consequences of increasing or decreasing the CDK activity in S phase. To this end we identified S-phase regulators of the fission yeast CDK, Cdc2, and used appropriate mutants to modulate Cdc2 activity. In fission yeast Mik1 has been thought to be the main regulator of Cdc2 activity in S phase. However, we find that Wee1 has a major function in S phase and thus we used wee1 mutants to investigate the consequences of increased Cdc2 activity. These wee1 mutants display increased replication stress and, particularly in the absence of the S-phase checkpoint, accumulate DNA damage. Notably, more cells incorporate EdU in a wee1(-) strain as compared to wildtype, suggesting altered regulation of DNA replication. In addition, a higher number of cells contain chromatin-bound Cdc45, an indicator of active replication forks. In addition, we found that Cdc25 is required to activate Cdc2 in S phase and used a cdc25 mutant to explore a situation where Cdc2 activity is reduced. Interestingly, a cdc25 mutant has a higher tolerance for replication stress than wild-type cells, suggesting that reduced CDK activity in S phase confers resistance to at least some forms of replication stress. PMID:26918805

  12. Promoter activity dynamics in the lag phase of Escherichia coli

    PubMed Central

    2013-01-01

    Background Lag phase is a period of time with no growth that occurs when stationary phase bacteria are transferred to a fresh medium. Bacteria in lag phase seem inert: their biomass does not increase. The low number of cells and low metabolic activity make it difficult to study this phase. As a consequence, it has not been studied as thoroughly as other bacterial growth phases. However, lag phase has important implications for bacterial infections and food safety. We asked which, if any, genes are expressed in the lag phase of Escherichia coli, and what is their dynamic expression pattern. Results We developed an assay based on imaging flow cytometry of fluorescent reporter cells that overcomes the challenges inherent in studying lag phase. We distinguish between lag1 phase- in which there is no biomass growth, and lag2 phase- in which there is biomass growth but no cell division. We find that in lag1 phase, most promoters are not active, except for the enzymes that utilize the specific carbon source in the medium. These genes show promoter activities that increase exponentially with time, despite the fact that the cells do not measurably increase in size. An oxidative stress promoter, katG, is also active. When cells enter lag2 and begin to grow in size, they switch to a full growth program of promoter activity including ribosomal and metabolic genes. Conclusions The observed exponential increase in enzymes for the specific carbon source followed by an abrupt switch to production of general growth genes is a solution of an optimal control model, known as bang-bang control. The present approach contributes to the understanding of lag phase, the least studied of bacterial growth phases. PMID:24378036

  13. Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite

    SciTech Connect

    Li, Yuelin; Walko, Daonld A.; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephen; Zheng, Hong; Mitchell, J. F.

    2015-11-17

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases.

  14. Evidence of photo-induced dynamic competition of metallic and insulating phase in a layered manganite

    DOE PAGES

    Li, Yuelin; Walko, Daonld A.; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephen; Zheng, Hong; Mitchell, J. F.

    2015-11-17

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitationmore » modulates the local competition between the metallic and the insulating phases.« less

  15. Evidence of Photo-induced Dynamic Competition of Metallic and Insulating Phase in a Layered Manganite.

    SciTech Connect

    Li, Yuelin; Walko, Donald A.; Li, Qing'an; Liu, Yaohua; Rosenkranz, Stephan; Zheng, Hong; Mitchell, J. F.

    2015-12-16

    We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time- dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the laser excitation modulates the local competition between the metallic and the insulating phases.

  16. Metals in the active site of native protein phosphatase-1.

    PubMed

    Heroes, Ewald; Rip, Jens; Beullens, Monique; Van Meervelt, Luc; De Gendt, Stefan; Bollen, Mathieu

    2015-08-01

    Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone. PMID:25890482

  17. Electrolysis-induced protonation of VO2 thin film transistor for the metal-insulator phase modulation

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi

    2016-02-01

    Compared to state-of-the-art modulation techniques, protonation is the most ideal to control the electrical and optical properties of transition metal oxides (TMOs) due to its intrinsic non-volatile operation. However, the protonation of TMOs is not typically utilized for solid-state devices because of imperative high-temperature annealing treatment in hydrogen source. Although one solution for room temperature (RT) protonation of TMOs is liquid-phase electrochemistry, it is unsuited for practical purposes due to liquid-leakage problem. Herein we demonstrate solid-state RT-protonation of vanadium dioxide (VO2), which is a well-known thermochromic TMO. We fabricated the three terminal thin-film-transistor structure on an insulating VO2 film using a water-infiltrated nanoporous glass, which serves as a solid electrolyte. For gate voltage application, water electrolysis and protonation/deprotonation of VO2 film surface occurred, leading to reversible metal-insulator phase conversion of ~11-nm-thick VO2 layer. The protonation was clearly accompanied by the structural change from an insulating monoclinic to a metallic tetragonal phase. Present results offer a new route for the development of electro-optically active solid-state devices with TMO materials by engineering RT protonation.

  18. Active Nematics Are Intrinsically Phase Separated

    NASA Astrophysics Data System (ADS)

    Mishra, Shradha; Ramaswamy, Sriram

    2006-09-01

    Two-dimensional nonequilibrium nematic steady states, as found in agitated granular-rod monolayers or films of orientable amoeboid cells, were predicted [Europhys. Lett. 62, 196 (2003)EULEEJ0295-507510.1209/epl/i2003-00346-7] to have giant number fluctuations, with the standard deviation proportional to the mean. We show numerically that the steady state of such systems is macroscopically phase separated, yet dominated by fluctuations, as in the Das-Barma model [Phys. Rev. Lett. 85, 1602 (2000)PRLTAO0031-900710.1103/PhysRevLett.85.1602]. We suggest experimental tests of our findings in granular and living-cell systems.

  19. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination

    NASA Astrophysics Data System (ADS)

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-06-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation.

  20. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination.

    PubMed

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-06-10

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation.

  1. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination.

    PubMed

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-01-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation. PMID:26059552

  2. Nonergodic metallic and insulating phases of Josephson junction chains.

    PubMed

    Pino, Manuel; Ioffe, Lev B; Altshuler, Boris L

    2016-01-19

    Strictly speaking, the laws of the conventional statistical physics, based on the equipartition postulate [Gibbs J W (1902) Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics] and ergodicity hypothesis [Boltzmann L (1964) Lectures on Gas Theory], apply only in the presence of a heat bath. Until recently this restriction was believed to be not important for real physical systems because a weak coupling to the bath was assumed to be sufficient. However, this belief was not examined seriously until recently when the progress in both quantum gases and solid-state coherent quantum devices allowed one to study the systems with dramatically reduced coupling to the bath. To describe such systems properly one should revisit the very foundations of statistical mechanics. We examine this general problem for the case of the Josephson junction chain that can be implemented in the laboratory and show that it displays a novel high-temperature nonergodic phase with finite resistance. With further increase of the temperature the system undergoes a transition to the fully localized state characterized by infinite resistance and exponentially long relaxation.

  3. Nonergodic metallic and insulating phases of Josephson junction chains.

    PubMed

    Pino, Manuel; Ioffe, Lev B; Altshuler, Boris L

    2016-01-19

    Strictly speaking, the laws of the conventional statistical physics, based on the equipartition postulate [Gibbs J W (1902) Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics] and ergodicity hypothesis [Boltzmann L (1964) Lectures on Gas Theory], apply only in the presence of a heat bath. Until recently this restriction was believed to be not important for real physical systems because a weak coupling to the bath was assumed to be sufficient. However, this belief was not examined seriously until recently when the progress in both quantum gases and solid-state coherent quantum devices allowed one to study the systems with dramatically reduced coupling to the bath. To describe such systems properly one should revisit the very foundations of statistical mechanics. We examine this general problem for the case of the Josephson junction chain that can be implemented in the laboratory and show that it displays a novel high-temperature nonergodic phase with finite resistance. With further increase of the temperature the system undergoes a transition to the fully localized state characterized by infinite resistance and exponentially long relaxation. PMID:26719416

  4. Non-Fermi liquid phase in metallic Skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Parameswaran, Siddharth; Raghu, Srinivas; Vishwanath, Ashvin

    2014-03-01

    Motivated by reports of a non-Fermi liquid state in MnSi, we examine the effect of coupling phonons of an incommensurate skyrmion crystal (SkX) to conduction electrons. We find that non-Fermi liquid behavior emerges in both two and three dimensions over the entire phase, due to an anomalous electron-phonon coupling that is linked to the net skyrmion density. A small parameter, the spiral wave vector in lattice units, allows us to exercise analytic control and ignore Landau damping of phonons over a wide energy range. At the lowest energy scales the problem is similar to electrons coupled to a gauge field. The best prospects for realizing these effects is in short period skyrmion lattice systems such as MnGe or epitaxial MnSi films. We also compare our results with the unusual T 3 / 2 scaling of temperature dependent resistivity seen in high pressure experiments on MnSi. We acknowledge support from the NSF via Grant DMR-0645691, the DOE Office of Basic Energy Sciences via contract DE-AC02-76SF00515, and the Simons, Templeton, and Alfred P. Sloan Foundations.

  5. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A.; Woolman, Joseph N.; Petrovic, John J.

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  6. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites

    PubMed Central

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-01-01

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn2+, hyperthermophilic TETs prefers Co2+. Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites. PMID:26853450

  7. ALLOYING-DRIVEN PHASE STABILITY IN GROUP-VB TRANSITION METALS UNDER COMPRESSION

    SciTech Connect

    Landa, A; Soderlind, P

    2011-04-11

    The change in phase stability of Group-VB (V, Nb, and Ta) transition metals due to pressure and alloying is explored by means of first-principles electronic-structure calculations. It is shown that under compression stabilization or destabilization of the ground-state body-centered cubic (bcc) phase of the metal is mainly dictated by the band-structure energy that correlates well with the position of the Kohn anomaly in the transverse acoustic phonon mode. The predicted position of the Kohn anomaly in V, Nb, and Ta is found to be in a good agreement with data from the inelastic x-ray or neutron scattering measurements. In the case of alloying the change in phase stability is defined by the interplay between the band-structure and Madelung energies. We show that band-structure effects determine phase stability when a particular Group-VB metal is alloyed with its nearest neighbors within the same d-transition series: the neighbor with less and more d electrons destabilize and stabilize the bcc phase, respectively. When V is alloyed with neighbors of a higher (4d- or 5d-) transition series, both electrostatic Madelung and band-structure energies stabilize the body-centered-cubic phase. The opposite effect (destabilization) happens when Nb or Ta is alloyed with neighbors of the 3d-transition series.

  8. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    SciTech Connect

    Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian

    2015-11-09

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX{sub 2} (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated.

  9. Theoretical confirmation of a high-pressure rhombohedral phase in vanadium metal

    SciTech Connect

    Lee, B; Rudd, R E; Klepeis, J; Soderlind, P; Landa, A

    2007-02-27

    Recent diamond-anvil-cell (DAC) experiments revealed a new phase in vanadium metal at high pressure. Here we present results from first-principles electronic-structure calculations confirming the existence of such phase. The new phase is due to a rhombohedral distortion of the body-centered-cubic (bcc) ambient-pressure phase. The calculated transition pressure of 0.84 Mbar and density compare favorably with the measured data. Interestingly, a re-entrant bcc phase is discovered at an ultra high pressure, close to the limit of DAC experimental capabilities, of about 2.8 Mbar. We show, extending prior work, that the phase transitions in vanadium are driven by subtle electronic-structure effects.

  10. Active longitudes, nonaxisymmetric dynamos and phase mixing

    NASA Astrophysics Data System (ADS)

    Berdyugina, S. V.; Moss, D.; Sokoloff, D.; Usoskin, I. G.

    2006-01-01

    We discuss the problem of solar active longitudes from the viewpoint of dynamo theory. We start from a recent observational analysis of the problem undertaken by Berdyugina & Usoskin (2003, A&A, 405, 1121) and Usoskin et al. (2005, A&A, 441, 347) who demonstrated from a study of sunspot data that solar active longitudes rotate differentially, with a small but significant asynchrony between northern and southern hemispheres. We suggest two concepts by which the underlying magnetic structure could lead to the observed phenomenology - the true differential rotation of a nonaxisymmetric magnetic structure and a stroboscopic effect. In the latter case, a solid body rotation of nonaxisymmetric magnetic structure is illuminated by an activity wave propagating from middle latitudes to the solar equator, and so mimics a differential rotation. We then discuss several mechanisms which could in principle lead to the excitation of active longitudes. In particular, we consider dynamo excitation of nonaxisymmetric magnetic modes, nonaxisymmetric structures as a manifestation of a relic magnetic field in the solar core, nonaxisymmetric solar hydrodynamics and nonlinear instabilities that lack axial symmetry. We conclude that these mechanisms all provide ways to explain the phenomenology, provided the stroboscopic interpretation is accepted. Of course, a quantitative explanation in the framework of any scenario requires ultimately a detailed numerical simulation. The interpretation of the available observations as a true differential rotation appears to provide a much more severe challenge for theorists. We are unable to suggest a plausible mechanism of this kind; however we can not exclude in principle such an explanation. We relate the phenomenon of solar active longitudes to the information available concerning stellar active longitudes, and also consider evidence from other tracers of solar activity.

  11. Metallic phases and siderophile elements in main group ureilites: Implications for ureilite petrogenesis

    NASA Astrophysics Data System (ADS)

    Goodrich, Cyrena A.; Ash, Richard D.; Van Orman, James A.; Domanik, Kenneth; McDonough, William F.

    2013-07-01

    Metallic phases and siderophile elements are critical to understanding the petrogenesis of the enigmatic ureilite meteorites. We obtained petrographic, major and minor element, and the first in situ trace element data for metallic phases (metal, sulfides, phosphide, carbide) in 24 main group ureilites of various petrographic types with Fo ˜75-95. The most abundant type of metal (˜1-3 vol.%) occurs as ˜10-40 μm-wide strips along silicate grain boundaries. Ni contents of this metal range from ˜0 to 7.3 wt.% and are correlated with Co among all samples (Ni/Co = 0.64 × CI). A less abundant type of metal occurs as ˜5-150 μm diameter metallic spherules, consisting of cohenite (Fe3C), metal, phosphide and sulfide, enclosed in silicates (preferentially low-Ca pyroxene). Most samples contain 2 types of sulfide: (1) low-Cr (<0.1 wt.%) troilite, and (2) lamellar intergrowths of daubreelite (FeCr2S4) and troilite. Abundances of 17 (mostly siderophile) elements were measured by LA-ICP-MS in grain boundary metal, spherules, graphite, sulfides and silicates. Average compositions of grain boundary metal in 10 samples show decreasing CI-normalized abundance with increasing volatility, interrupted by depletions in W, Mo, Ni and Zn, and enrichments in Au, As, Ga and Ge. CI-normalized Os abundances range from ˜2 to 65, and are correlated with increasing Os/Pt, Os/Ni and Os/Pd ratios. CI-normalized Pt/Os ratios range from ˜0.3 to 1. Bulk cohenite-bearing spherules have siderophile element abundances indistinguishable from those of grain boundary metal in the same sample. CI-normalized patterns of most siderophile elements in the metal are, within error, identical to those of the bulk rock (at 25-40× higher abundances) in each sample. There are no correlations between siderophile element abundances and Fo. We infer that at T ⩾ 1200 °C ureilites contained immiscible Fe-C (3-4 wt.% C) and Fe-S melts, small samples of which were trapped as the spherules within silicates. The

  12. Solid-phase heavy-metal separation under unfavorable background conditions by composite membranes

    SciTech Connect

    Sengupta, S.; Sengupta, A.K.

    1995-12-31

    Disposal of sludges or treatment of soil contaminated with minor fraction (often less than 5%) of heavy metals in the solid phase in an otherwise innocuous background is a widespread problem. Selective and targeted removal of the heavy metals from the background solid phase would constitute an efficient treatment process as it would be able to reduce the volume of hazardous sludge considerably and also may make it possible for the heavy metals to be concentrated and recycled/reused. A new class of sorptive/desorptive ion-exchange composite membranes available commercially is extremely suitable for heavy metal decontamination from sludges/slurries. In this material, fine spherical beads (<100 {micro} in dia) of heavy-metal selective chelating ion-exchangers are physically enmeshed or trapped in thin sheets ({approx}0.5 mm thick) of highly porous polytetrafluoroethylene (PTFE). These composite membranes, because of their thin-sheet like physical configuration, can be easily introduced into and withdrawn from any reactor containing sludge/slurry and the target solutes can be adsorbed onto the microbeads. These membranes are not fouled by high concentration of suspended solids but retain the retain the original properties of the chelating exchangers even after use for a number of cycles. This paper explores the efficacy of the composite membrane for heavy metal decontamination under unfavorable conditions.

  13. New Insights into Hard Phases of CoCrMo Metal-on-Metal Hip Replacements

    PubMed Central

    Liao, Y.; Pourzal, R.; Stemmer, P.; Wimmer, M.A.; Jacobs, J.J.; Fischer, A.; Marks, L. D.

    2012-01-01

    The microstructural and mechanical properties of the hard phases in CoCrMo prosthetic alloys in both cast and wrought conditions were examined using transmission electron microscopy and nanoindentation. Besides the known carbides of M23C6-type (M=Cr, Mo, Co) and M6C-type which are formed by either eutectic solidification or precipitation, a new mixed-phase hard constituent has been found in the cast alloys, which is composed of ~100 nm fine grains. The nanosized grains were identified to be mostly of M23C6 type using nano-beam precession electron diffraction, and the chemical composition varied from grain to grain being either Cr- or Co-rich. In contrast, the carbides within the wrought alloy having the same M23C6 structure were homogeneous, which can be attributed to the repeated heating and deformation steps. Nanoindentation measurements showed that the hardness of the hard phase mixture in the cast specimen was ~15.7 GPa, while the M23C6 carbides in the wrought alloy were twice as hard (~30.7 GPa). The origin of the nanostructured hard phase mixture was found to be related to slow cooling during casting. Mixed hard phases were produced at a cooling rate of 0.2 °C/s, whereas single phase carbides were formed at a cooling rate of 50 °C/s. This is consistent with sluggish kinetics and rationalizes different and partly conflicting microstructural results in the literature, and could be a source of variations in the performance of prosthetic devices in-vivo. PMID:22659365

  14. Generation of copper rich metallic phases from waste printed circuit boards.

    PubMed

    Cayumil, R; Khanna, R; Ikram-Ul-Haq, M; Rajarao, R; Hill, A; Sahajwalla, V

    2014-10-01

    The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150°C under argon gas flowing at 1L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally

  15. Generation of copper rich metallic phases from waste printed circuit boards.

    PubMed

    Cayumil, R; Khanna, R; Ikram-Ul-Haq, M; Rajarao, R; Hill, A; Sahajwalla, V

    2014-10-01

    The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150°C under argon gas flowing at 1L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally

  16. Ferromagnetic resonance studies of thermal effects on lunar metallic Fe phases

    NASA Technical Reports Server (NTRS)

    Tsay, F.-D.; Live, D. H.

    1974-01-01

    Ferromagnetic resonance results of annealing experiments are discussed which illustrate the thermal effects on lunar metallic iron phases already present in a lunar fines sample. Spectral features of ferromagnetic resonance produced in the sample by heat treatments at temperatures between 600 and 1025 C are described which resemble those detected in lunar breccias and crystalline rocks. A correlation is shown to exist between these features and the degree of thermal metamorphism. It is noted that this correlation can be used as a built-in geothermometer or probe to investigate the thermal history and degree of metamorphism of a lunar sample containing metallic iron phases. The thermal history of a metaclastic rock is analyzed in this way, and it is shown that thermal metamorphism is an effective process for increasing relaxation times or the stability of the natural remanent magnetization carried by single-domain metallic iron particles.

  17. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases.

    PubMed

    Perim, Eric; Lee, Dongwoo; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W Neal; Levy, Ohad; Vlassak, Joost J; Schroers, Jan; Curtarolo, Stefano

    2016-01-01

    Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic 'confusion' obstructs crystalline growth, and demonstrate its validity by experiments on two well-known glass-forming alloy systems. We then develop a robust model for predicting glass formation ability based on the geometrical and energetic features of crystalline phases calculated ab initio in the AFLOW framework. Our findings indicate that the formation of metallic glass phases could be much more common than currently thought, with more than 17% of binary alloy systems potential glass formers. Our approach pinpoints favourable compositions and demonstrates that smart descriptors, based solely on alloy properties available in online repositories, offer the sought-after key for accelerated discovery of metallic glasses. PMID:27480126

  18. Laser opto-acoustic study of phase transitions in metals confined by transparent dielectric

    NASA Astrophysics Data System (ADS)

    Ivochkin, A. Yu.; Kaptilniy, A. G.; Karabutov, A. A.; Ksenofontov, D. M.

    2012-07-01

    First-order phase transitions in metal induced by nanosecond laser pulse are studied here. The metal surface is irradiated through a layer of transparent dielectric—an optical glass. Such confinement considerably increases the efficiency of pressure generation at the metal surface. This technique allows to obtain near-critical states of metals—with temperatures ˜104 K and pressures ˜104 atm with table-top equipment. At the same time the glass prevents the ablation plume formation—so the surface temperature can be measured using thermal radiation data. An experimental setup for simultaneous measurements of pressure, temperature and reflectivity was assembled based on the elaborated method of experimental research. The processes of melting of lead and boiling of mercury were studied. The onset of the phase transition process led to a considerable tightening of the pressure pulse. A substantial drop of surface reflectivity due to increase of temperature and decrease of density was observed.

  19. Ultrafast Electronic Disorder in Heat-induced Structural Phase Transitions in Metal

    NASA Astrophysics Data System (ADS)

    Taylor, Antoinette; Guo, Chunlei

    2000-03-01

    Heat-induced structural phase transitions of noble metals silver and gold are studied using 1.5 eV, 120 fs ultrashort laser pulses. The dynamics of heating process is monitored by measuring the time evolution of the dielectric constants following optical excitation, which shows behavior consistent with that reported previously. Fluence-dependent dielectric constants in silver and gold show similarities with the photon-energy-dependent dielectric constants, which in fact indirectly map out the degree of the heat-induced electronic disorder in noble metals. The results demonstrate, for the first time, that the heat-induced structural phase transition in metal is in fact tied to the electronic disorder and band structure collapse.

  20. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    NASA Astrophysics Data System (ADS)

    Perim, Eric; Lee, Dongwoo; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W. Neal; Levy, Ohad; Vlassak, Joost J.; Schroers, Jan; Curtarolo, Stefano

    2016-08-01

    Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic `confusion' obstructs crystalline growth, and demonstrate its validity by experiments on two well-known glass-forming alloy systems. We then develop a robust model for predicting glass formation ability based on the geometrical and energetic features of crystalline phases calculated ab initio in the AFLOW framework. Our findings indicate that the formation of metallic glass phases could be much more common than currently thought, with more than 17% of binary alloy systems potential glass formers. Our approach pinpoints favourable compositions and demonstrates that smart descriptors, based solely on alloy properties available in online repositories, offer the sought-after key for accelerated discovery of metallic glasses.

  1. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    PubMed Central

    Perim, Eric; Lee, Dongwoo; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W. Neal; Levy, Ohad; Vlassak, Joost J.; Schroers, Jan; Curtarolo, Stefano

    2016-01-01

    Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic ‘confusion' obstructs crystalline growth, and demonstrate its validity by experiments on two well-known glass-forming alloy systems. We then develop a robust model for predicting glass formation ability based on the geometrical and energetic features of crystalline phases calculated ab initio in the AFLOW framework. Our findings indicate that the formation of metallic glass phases could be much more common than currently thought, with more than 17% of binary alloy systems potential glass formers. Our approach pinpoints favourable compositions and demonstrates that smart descriptors, based solely on alloy properties available in online repositories, offer the sought-after key for accelerated discovery of metallic glasses. PMID:27480126

  2. Homochiral metal-organic framework used as a stationary phase for high-performance liquid chromatography.

    PubMed

    Kong, Jiao; Zhang, Mei; Duan, Ai-Hong; Zhang, Jun-Hui; Yang, Rui; Yuan, Li-Ming

    2015-02-01

    Metal-organic frameworks are promising porous materials. Chiral metal-organic frameworks have attracted considerable attention in controlling enantioselectivity. In this study, a homochiral metal-organic framework [Co(2) (D-cam)(2) (TMDPy)] (D-cam = D-camphorates, TMDPy = 4,4'-trimethylenedipyridine) with a non-interpenetrating primitive cubic net has been used as a chiral stationary phase in high-performance liquid chromatography. It has allowed the successful separation of six positional isomers and six chiral compounds. The good selectivity and baseline separation, or at least 60% valley separation, confirmed its excellent molecular recognition characteristics. The relative standard deviations for the retention time of run-to-run and column-to-column were less than 1.8 and 3.1%, respectively. These results demonstrate that [Co(2) (D-cam)(2) (TMDPy)] may represent a promising chiral stationary phase for use in high-performance liquid chromatography.

  3. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    PubMed Central

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  4. An active metallic nanomatryushka with two similar super-resonances

    NASA Astrophysics Data System (ADS)

    Wu, D. J.; Cheng, Y.; Wu, X. W.; Liu, X. J.

    2014-07-01

    The optical properties of a simple metallic nanomatryushka (nanosphere-in-a-nanoshell) with gain have been investigated theoretically. The spaser (surface plasmon amplification by stimulated emission of radiation) phenomena can be observed at two critical wavelengths in the active metallic nanomatryushkas. With increasing the gain coefficient of the middle layer, a similar super surface plasmon (SP) resonance is first found at the ω-+|1 mode of the active nanoparticles and then breaks down. With further increasing the gain coefficient, another similar super-resonance occurs at the ω--|1 mode. The near-field enhancements in the active nanomatryushkas also have been greatly amplified at the critical wavelengths for ω-+|1 and ω--|1 modes. It is further found that the amplifications of SPs in the active Ag-SiO2-Au nanoshell are strongest in four kinds of nanoshells and hence the largest near fields. The giant near-field enhancement can greatly enhance the Raman excitation and emission.

  5. Hydrogen and Carbon Effects on Al2O3 Surface Phases and Metal Deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Smith, John

    2005-03-01

    Effects of H and C impurities on α-Al2O3 (0001) surface stability and metal wetting behavior are determined from first principles[1]. The ab initio surface phase diagram for H and C on the alumina surface reveals six distinct surface phases. These different surface phases exhibit a variety of adhesion strengths with Cu and Co, and correspondingly different wetting behaviors. These results are consistent with the varied wetting characteristics observed experimentally. [1] Xiao-Gang Wang and John R. Smith, Phys. Rev. B70, Rapid communications, 081401 (2004).

  6. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels.

    PubMed

    Zhang, Bingxing; Zhang, Jianling; Liu, Chengcheng; Peng, Li; Sang, Xinxin; Han, Buxing; Ma, Xue; Luo, Tian; Tan, Xiuniang; Yang, Guanying

    2016-01-01

    To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm(-3) was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures. PMID:26892258

  7. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels

    PubMed Central

    Zhang, Bingxing; Zhang, Jianling; Liu, Chengcheng; Peng, Li; Sang, Xinxin; Han, Buxing; Ma, Xue; Luo, Tian; Tan, Xiuniang; Yang, Guanying

    2016-01-01

    To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm−3 was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures. PMID:26892258

  8. Formation of optically-active, metal silicides using ion implantation and/or oxidation

    NASA Astrophysics Data System (ADS)

    Mitchell, L. J.; Holland, O. W.; Hossain, K.; Smith, E. B.; Golden, T. D.; Duggan, J. L.; McDaniel, F. D.

    2005-12-01

    While Si-based integrated circuits dominate the microelectronics marketplace, they cannot be fabricated with optical functionality since Si is indirect. Alternative materials have been used in such applications but the ability to integrate an optically active material directly onto a silicon substrate to co-opt the advances in Si technology and processing capabilities is the better solution. Many of the transition metals form silicides that are direct band gap semiconductors and, as such, may be integrated with Si to achieve the desired optical properties. Ion implantation of the transition metal into Si was used to form the desired silicide phase by reaction of the metal with the Si substrate. Depending upon the fluence the resulting implanted layer can consist of a two-phase region in which the silicide phase forms as isolated precipitates randomly oriented within a heavily dislocated Si matrix. Rutherford backscattering/ion channeling spectrometry was used to monitor this process as a function of temperature and time. A unique method for orienting the silicide precipitates to align them crystallographically with the Si substrate and eliminate the ion-induced dislocations that form during the initial implant is discussed. This method involves oxidation of the implanted region to segregate the silicide phase at the oxide interface. Initial results of Os- ions implanted into Si(1 0 0) are presented.

  9. A general phase transfer protocol for synthesizing alkylamine-stabilized nanoparticles of noble metals.

    PubMed

    Yang, J; Lee, Jim Yang; Too, Heng-Phon

    2007-04-01

    The ethanol-mediated phase transfer protocol was extended herein to prepare alkylamine-stabilized nanoparticles of several noble metals by transferring them from aqueous environment into toluene. This method relies on the use of ethanol as a mediator to provide and maintain adequate contact between dodecylamine and metal nanoparticles during the transfer process and involves first mixing the metal hydrosols and an ethanol solution of dodecylamine and then extracting the dodecylamine-stabilized metal nanoparticles into toluene. Alkylamine-stabilized Ag, Pd, Rh, Ir and Os nanoparticles with 7.09, 3.45, 6.89, 2.42 and 4.52 nm in diameter, respectively, could be prepared this way. The self-assembly of dodecylamine-stabilized Ag and Rh nanoparticles was also detected by transmission electron microscopy (TEM).

  10. Evidence for a magnetic metallic R phase in Vanadium dioxide VO2

    NASA Astrophysics Data System (ADS)

    Xing, Hui; Taheri, Payam; Zhang, Peihong; Zeng, Hao

    2015-03-01

    Vanadium dioxide VO2 has garnered extensive research interests for over decades due to its metal-insulator transition (MIT) around 340 K (Ref. 1). Much is known for the physics behind the MIT (including a correlated structural transition and the involvement of several intermediate states). On the other hand, the magnetic property across the MIT is much less known. Although there are no fundamental arguments against the possibility of forming local magnetic moments in VO2. So far, only the M2 phase has been confirmed to possess local magnetic moments. However, our temperature-dependent magnetic susceptibility measurements of VO2 show a sudden jump at the MIT that cannot be attributed to a simple Pauli susceptibility from conducting electrons. In a recent paper2, we pointed out local magnetic moments may form in the metallic R phase. The formation of local moment would naturally explain the extremely high magnetic susceptibility of VO2 above the phase transition temperature. We further discuss the magnetoresistance (MR) measured across the MIT, which shows different magnitude and field dependence in M1 and R phase, including the MR in the metallic phase suppressed to lower temperature in a VO2 electric double layer transistor device using ionic liquid as gate dielectrics. 1. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959). 2. Xun Yuan et al., Phys. Rev. B 86, 235103 (2012).

  11. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  12. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    DOE PAGES

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; et al

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less

  13. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    SciTech Connect

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.

  14. Analysis of phase shift of surface plasmon polaritons at metallic subwavelength hole arrays

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Yan; Qiu, Kang-Sheng; Ma, Hai-Qiang

    2014-10-01

    We present the transmission spectra of light transmitting a metallic thin film perforated with differently shaped subwavelength hole arrays, which are calculated by a plane-wave-based transfer matrix method. We analyze the transmission peak positions and the phase-shift angles of different surface plasmon polariton (SPP) modes by using the microscopic theoretical model proposed by Haitao Liu and Philippe Lalanne [Liu Haitao and Lalanne Philippe 2008 Nature 452 728], in which the phase shift properties of the SPPs scattered by the subwavelength hole arrays are considered. The results show that the transmission peak position and the minus phase shift angle of the SPP increase as the hole size increases. On the other hand, the effective dielectric constant of the metallic film can be deduced by the microscopic theoretical model.

  15. Diagnostics of metal inert gas and metal active gas welding processes

    NASA Astrophysics Data System (ADS)

    Uhrlandt, D.

    2016-08-01

    The paper gives a review on studies on metal inert gas (MIG) and metal active gas (MAG) welding processes with the focus on diagnostics of the arc, the material transfer, and the temporal process behaviour in welding experiments. Recent findings with respect to an improved understanding of the main mechanisms in the welding arc and the welding process are summarized. This is linked to actual developments in welding arc and welding process modelling where measurements are indispensable for validation. Challenges of forthcoming studies are illustrated by means of methods under development for welding process control as well as remaining open questions with respect to arc-surface interaction and arc power balance.

  16. Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material

    NASA Astrophysics Data System (ADS)

    Li, H.; Pei, J.; Shi, L. P.

    2016-10-01

    Fe doped phase change material GexSbyTez has shown experimentally the ability to alter its magnetic properties by phase change. This engineered spin degree of freedom into the phase change material offers the possibility of logic devices or spintronic devices where they may enable fast manipulation of ferromagnetism by a phase change mechanism. The electronic structures and spin configurations of isolated transition metal dopant in phase change material (iTM-PCM) is important to understand the interaction between localized metal d states and the unique delocalized host states of phase change material. Identifying an impurity center that has, in isolation, a nonvanishing magnetic moment is the first step to study the collective magnetic ordering, which originates from the interaction among close enough individual impurities. Theoretical description of iTM-PCM is challenging. In this work, we use a screened exchange hybrid functional to study the single 3d transition metal impurity in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over-delocalization of the 3d states, we find that Fe on the Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different from the previously predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. Interpretive orbital interaction pictures are presented for understanding the local and total magnetic moments.

  17. Electronic Structure and Spin Configuration Trends of Single Transition Metal Impurity in Phase Change Material

    NASA Astrophysics Data System (ADS)

    Li, H.; Pei, J.; Shi, L. P.

    2016-06-01

    Fe doped phase change material GexSbyTez has shown experimentally the ability to alter its magnetic properties by phase change. This engineered spin degree of freedom into the phase change material offers the possibility of logic devices or spintronic devices where they may enable fast manipulation of ferromagnetism by a phase change mechanism. The electronic structures and spin configurations of isolated transition metal dopant in phase change material (iTM-PCM) is important to understand the interaction between localized metal d states and the unique delocalized host states of phase change material. Identifying an impurity center that has, in isolation, a nonvanishing magnetic moment is the first step to study the collective magnetic ordering, which originates from the interaction among close enough individual impurities. Theoretical description of iTM-PCM is challenging. In this work, we use a screened exchange hybrid functional to study the single 3d transition metal impurity in crystalline GeTe and GeSb2Te4. By curing the problem of local density functional (LDA) such as over-delocalization of the 3d states, we find that Fe on the Ge/Sb site has its majority d states fully occupied while its minority d states are empty, which is different from the previously predicted electronic configuration by LDA. From early transition metal Cr to heavier Ni, the majority 3d states are gradually populated until fully occupied and then the minority 3d states begin to be filled. Interpretive orbital interaction pictures are presented for understanding the local and total magnetic moments.

  18. Evidence for electronic gap-driven metal-semiconductor transition in phase-change materials

    PubMed Central

    Shakhvorostov, Dmitry; Nistor, Razvan A.; Krusin-Elbaum, Lia; Martyna, Glenn J.; Newns, Dennis M.; Elmegreen, Bruce G.; Liu, Xiao-hu; Hughes, Zak E.; Paul, Sujata; Cabral, Cyril; Raoux, Simone; Shrekenhamer, David B.; Basov, Dimitri N.; Song, Young; Müser, Martin H.

    2009-01-01

    Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin. Correlations between conductivity, total system energy, and local atomic coordination revealed by experiments and long time ab initio simulations show that the structural reorganization into the amorphous state is driven by opening of an energy gap in the electronic density of states. The electronic driving force behind the phase change has the potential to change the interconversion paradigm in this material class. PMID:19549858

  19. Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: an archetype for studying lattice strain and composition effects in electrocatalysis.

    PubMed

    Sneed, Brian T; Brodsky, Casey N; Kuo, Chun-Hong; Lamontagne, Leo K; Jiang, Ying; Wang, Yong; Tao, Franklin Feng; Huang, Weixin; Tsung, Chia-Kuang

    2013-10-01

    Developing syntheses of more sophisticated nanostructures comprising late transition metals broadens the tools to rationally design suitable heterogeneous catalysts for chemical transformations. Herein, we report a synthesis of Pd-Rh nanoboxes by controlling the migration of metals in a core-shell nanoparticle. The Pd-Rh nanobox structure is a grid-like arrangement of two distinct metal phases, and the surfaces of these boxes are {100} dominant Pd and Rh. The catalytic behaviors of the particles were examined in electrochemistry to investigate strain effects arising from this structure. It was found that the trends in activity of model fuel cell reactions cannot be explained solely by the surface composition. The lattice strain emerging from the nanoscale separation of metal phases at the surface also plays an important role.

  20. Metal partitioning between colloidal and dissolved phases and its relation with bioavailability to American oysters.

    PubMed

    Guo, Laodong; Santschi, Peter H; Ray, Sammy M

    2002-01-01

    Kinetics and the extent of metal partitioning between colloidal and dissolved phases and coagulation of metals associated with colloids were examined to determine their effects on the bioavailability of selected metals (Cd, Co, Hg, Ag, Fe, and Zn) to American oysters (Crassostrea virginica) using radiotracer and short term exposure experiments. After dispersion of radiolabeled colloids into low molecular weight (LMW, < 1 kDa) seawater, metal partitioning between dissolved (<1 kDa) and colloidal (1 kDa-0.2 microm) phases resulted in a consistent pattern, with a relatively constant percentage in the colloidal phase for each metal. On average, about 90% of Hg and Fe, approximately 60% of Ag and approximately 40% of Zn, Co, and Cd were measured in the colloidal fraction during a short term exposure experiment, consistent with their partitioning in natural waters. Controlled laboratory experiments carried out in parallel using radioactively tagged colloids showed that coagulation of colloidal species, quantified as the fraction retained by a 0.2 microm filter, was insignificant for most metals under the conditions and time periods of the uptake experiments. The bioavailability of colloidally complexed metals, measured in terms of dry weight concentration factor (DCF, ml g(-1)) and uptake rate constant (ml g(-1) h(-1)), was somewhat depressed compared with their counterpart in the LMW treatment, but could be well predicted from the results of the LMW treatment and metal partitioning. Both DCF values and uptake rate constants were higher in the LMW treatment than in the colloidal treatment. In addition, B-type metals, such as Ag, Hg, and Zn, all had higher values of DCF and uptake rate constants, regardless of treatments, except for Cd which had a lower DCF and uptake rate constant. In contrast, Co and Fe had significantly lower DCF values and uptake rate constants. Most of Hg and Ag (60-80%) were measured in the soft tissue of oysters in both LMW and colloidal treatments

  1. Twelve Year Study of Underground Corrosion of Activated Metals

    SciTech Connect

    M. Kay Adler Flitton; Timothy S. Yoder

    2012-03-01

    The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

  2. Anticancer activity of Arkeshwara Rasa - A herbo-metallic preparation

    PubMed Central

    Nafiujjaman, Md; Nurunnabi, Md; Saha, Samir Kumar; Jahan, Rownak; Lee, Yong-kyu; Rahmatullah, Mohammed

    2015-01-01

    Introduction: Though metal based drugs have been prescribed in Ayurveda for centuries to treat various diseases, such as rheumatoid arthritis and cancer, toxicity of these drugs containing heavy metal is a great drawback for practical application. So, proper scientific validation of herbo-metallic drugs like Arkeshwara Rasa (AR) have become one of the focused research arena of new drugs against cancers. Aim: To investigate the in vitro anticancer effects of AR. Materials and Methods: Anticancer activity of AR was investigated on two human cancer cell lines, which represent two different tissues (pancreas and skin). Lactate dehydrogenase (LDH) assay for enzyme activity and trypan blue assay for cell morphology were performed for further confirmation. Results: AR showed potent activity against pancreatic cancer cells (MIA-PaCa-2). LDH activity confirmed that AR was active against pancreatic cancer cells. Finally, it was observed that AR exhibited significant effects on cancer cells due to synergistic effects of different compounds of AR. Conclusion: The study strongly suggests that AR has the potential to be an anticancer drug against pancreatic cancer. PMID:27313425

  3. H18 Carbon: A New Metallic Phase with sp2-sp3 Hybridized Bonding Network.

    PubMed

    Zhao, Chun-Xiang; Niu, Chun-Yao; Qin, Zhi-Jie; Ren, Xiao Yan; Wang, Jian-Tao; Cho, Jun-Hyung; Jia, Yu

    2016-01-01

    Design and synthesis of three-dimensional metallic carbons are currently one of the hot issues in contemporary condensed matter physics because of their fascinating properties. Here, based on first-principles calculations, we discover a novel stable metallic carbon allotrope (termed H18 carbon) in () symmetry with a mixed sp(2)-sp(3) hybridized bonding network. The dynamical stability of H18 carbon is verified by phonon mode analysis and molecular dynamics simulations, and its mechanical stability is analyzed by elastic constants, bulk modulus, and shear modulus. By simulating the x-ray diffraction patterns, we propose that H18 carbon would be one of the unidentified carbon phases observed in recent detonation experiments. The analysis of the band structure and density of states reveal that this new carbon phase has a metallic feature mainly due to the C atoms with sp(2) hybridization. This novel 3D metallic carbon phase is anticipated to be useful for practical applications such as electronic and mechanical devices. PMID:26903234

  4. H18 Carbon: A New Metallic Phase with sp2-sp3 Hybridized Bonding Network

    PubMed Central

    Zhao, Chun-Xiang; Niu, Chun-Yao; Qin, Zhi-Jie; Ren, Xiao Yan; Wang, Jian-Tao; Cho, Jun-Hyung; Jia, Yu

    2016-01-01

    Design and synthesis of three-dimensional metallic carbons are currently one of the hot issues in contemporary condensed matter physics because of their fascinating properties. Here, based on first-principles calculations, we discover a novel stable metallic carbon allotrope (termed H18 carbon) in () symmetry with a mixed sp2-sp3 hybridized bonding network. The dynamical stability of H18 carbon is verified by phonon mode analysis and molecular dynamics simulations, and its mechanical stability is analyzed by elastic constants, bulk modulus, and shear modulus. By simulating the x-ray diffraction patterns, we propose that H18 carbon would be one of the unidentified carbon phases observed in recent detonation experiments. The analysis of the band structure and density of states reveal that this new carbon phase has a metallic feature mainly due to the C atoms with sp2 hybridization. This novel 3D metallic carbon phase is anticipated to be useful for practical applications such as electronic and mechanical devices. PMID:26903234

  5. Metallic monoclinic phase in VO2 induced by electrochemical gating: In situ Raman study

    NASA Astrophysics Data System (ADS)

    Nath Gupta, Satyendra; Pal, Anand; Muthu, D. V. S.; Kumar, P. S. Anil; Sood, A. K.

    2016-07-01

    We report in situ Raman scattering studies of electrochemically top gated VO2 thin film to address metal-insulator transition (MIT) under gating. The room temperature monoclinic insulating phase goes to metallic state at a gate voltage of 2.6 V. However, the number of Raman modes do not change with electrolyte gating showing that the metallic phase is still monoclinic. The high-frequency Raman mode A g (7) near 616 cm-1 ascribed to V-O vibration of bond length 2.06 Å in VO6 octahedra hardens with increasing gate voltage and the B g (3) mode near 654 cm-1 softens. This shows that the distortion of the VO6 octahedra in the monoclinic phase decreases with gating. The time-dependent Raman data at fixed gate voltages of 1 V (for 50 minutes, showing enhancement of conductivity by a factor of 50) and 2 V (for 130 minutes, showing further increase in conductivity by a factor of 5) show similar changes in high-frequency Raman modes A g (7) and B g (3) as observed in gating. This slow change in conductance together with Raman frequency changes show that the governing mechanism for metalization is more likely due to the diffusion-controlled oxygen vacancy formation due to the applied electric field.

  6. Automatic In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic Metal-Organic Frameworks.

    PubMed

    Maya, Fernando; Palomino Cabello, Carlos; Estela, Jose Manuel; Cerdà, Víctor; Turnes Palomino, Gemma

    2015-08-01

    A novel automatic strategy for the use of micro- and nanomaterials as sorbents for dispersive microsolid phase extraction (D-μ-SPE) based on the lab-in-syringe concept is reported. Using the developed technique, the implementation of magnetic metal-organic framework (MOF) materials for automatic solid-phase extraction has been achieved for the first time. A hybrid material based on submicrometric MOF crystals containing Fe3O4 nanoparticles was prepared and retained in the surface of a miniature magnetic bar. The magnetic bar was placed inside the syringe of an automatic bidirectional syringe pump, enabling dispersion and subsequent magnetic retrieval of the MOF hybrid material by automatic activation/deactivation of magnetic stirring. Using malachite green (MG) as a model adsorption analyte, a limit of detection of 0.012 mg/L and a linear working range of 0.04-2 mg/L were obtained for a sample volume equal to the syringe volume (5 mL). MG preconcentration was linear up to a volume of 40 mL, obtaining an enrichment factor of 120. The analysis throughput is 18 h(-1), and up to 3000 extractions/g of material can be performed. Recoveries ranging between 95 and 107% were obtained for the analysis of MG in different types of water and trout fish samples. The developed automatic D-μ-SPE technique is a safe alternative for the use of small-sized materials for sample preparation and is readily implementable to other magnetic materials independent of their size and shape and can be easily hyphenated to the majority of detectors and separation techniques. PMID:26138320

  7. Automatic In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic Metal-Organic Frameworks.

    PubMed

    Maya, Fernando; Palomino Cabello, Carlos; Estela, Jose Manuel; Cerdà, Víctor; Turnes Palomino, Gemma

    2015-08-01

    A novel automatic strategy for the use of micro- and nanomaterials as sorbents for dispersive microsolid phase extraction (D-μ-SPE) based on the lab-in-syringe concept is reported. Using the developed technique, the implementation of magnetic metal-organic framework (MOF) materials for automatic solid-phase extraction has been achieved for the first time. A hybrid material based on submicrometric MOF crystals containing Fe3O4 nanoparticles was prepared and retained in the surface of a miniature magnetic bar. The magnetic bar was placed inside the syringe of an automatic bidirectional syringe pump, enabling dispersion and subsequent magnetic retrieval of the MOF hybrid material by automatic activation/deactivation of magnetic stirring. Using malachite green (MG) as a model adsorption analyte, a limit of detection of 0.012 mg/L and a linear working range of 0.04-2 mg/L were obtained for a sample volume equal to the syringe volume (5 mL). MG preconcentration was linear up to a volume of 40 mL, obtaining an enrichment factor of 120. The analysis throughput is 18 h(-1), and up to 3000 extractions/g of material can be performed. Recoveries ranging between 95 and 107% were obtained for the analysis of MG in different types of water and trout fish samples. The developed automatic D-μ-SPE technique is a safe alternative for the use of small-sized materials for sample preparation and is readily implementable to other magnetic materials independent of their size and shape and can be easily hyphenated to the majority of detectors and separation techniques.

  8. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy

    PubMed Central

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Bräse, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Müllen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wöll, Christof

    2012-01-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 × 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++)2- carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process. PMID:23213357

  9. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  10. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for selective oxidation.

    PubMed

    Chizari, Kambiz; Deneuve, Adrien; Ersen, Ovidiu; Florea, Ileana; Liu, Yu; Edouard, David; Janowska, Izabela; Begin, Dominique; Pham-Huu, Cuong

    2012-01-01

    Catalytic reactions are generally carried out on supported metals or oxides, which act as an active phase and require impregnation and thermal treatment steps. During tests, the metal or oxide nanoparticles could be further sintered, which would induces deactivation. Direct incorporation of the active phase into the matrix of a support could be an elegant alternative to prevent catalyst deactivation. Here, we report that nitrogen-doped carbon nanotubes (N-CNTs) can be efficiently employed as a metal-free catalyst for oxidative reactions that allow the selective transformation of the harmful, gaseous H(2)S into solid sulfur. The catalyst exhibits a high stability during the test at high space velocity. The macroscopic shaping of the catalyst on the silicon carbide foam also increases its catalytic activity by improving the contact between the reactants and the catalyst. Such macroscopic shaping allows the avoidance of problems linked with transport and handling of nanoscopic materials and also reduces the pressure drop across the catalyst bed to a large extent.

  11. Active Optical Metasurfaces Based on Defect-Engineered Phase-Transition Materials.

    PubMed

    Rensberg, Jura; Zhang, Shuyan; Zhou, You; McLeod, Alexander S; Schwarz, Christian; Goldflam, Michael; Liu, Mengkun; Kerbusch, Jochen; Nawrodt, Ronny; Ramanathan, Shriram; Basov, D N; Capasso, Federico; Ronning, Carsten; Kats, Mikhail A

    2016-02-10

    Active, widely tunable optical materials have enabled rapid advances in photonics and optoelectronics, especially in the emerging field of meta-devices. Here, we demonstrate that spatially selective defect engineering on the nanometer scale can transform phase-transition materials into optical metasurfaces. Using ion irradiation through nanometer-scale masks, we selectively defect-engineered the insulator-metal transition of vanadium dioxide, a prototypical correlated phase-transition material whose optical properties change dramatically depending on its state. Using this robust technique, we demonstrated several optical metasurfaces, including tunable absorbers with artificially induced phase coexistence and tunable polarizers based on thermally triggered dichroism. Spatially selective nanoscale defect engineering represents a new paradigm for active photonic structures and devices.

  12. A New Process for Hot Metal Production at Low Fuel Rate - Phase 1 Feasibility Study

    SciTech Connect

    Dr. Wei-Kao Lu

    2006-02-01

    The project is part of the continuing effort by the North American steel industry to develop a coal-based, cokeless process for hot metal production. The objective of Phase 1 is to determine the feasibility of designing and constructing a pilot scale facility with the capacity of 42,000 mtpy of direct reduced iron (DRI) with 95% metallization. The primary effort is performed by Bricmont, Inc., an international engineering firm, under the supervision of McMaster University. The study focused on the Paired Straight Hearth furnace concept developed previously by McMaster University, The American Iron and Steel Institute and the US Department of Energy.

  13. A Transition to Metallic Hydrogen: Evidence of the Plasma Phase Transition

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T =0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K in a diamond anvil cell using pulsed laser heating of the sample. We present evidence in two forms: a plateau in the heating curves (average laser power vs temperature) characteristic of a first-order phase transition with latent heat, and changes in transmittance and reflectance characteristic of a metal for temperatures above the plateau temperature. For thick films the reflectance saturates at ~0.5. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition. The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.

  14. Fermi-liquid breakdown in the paramagnetic phase of a pure metal.

    PubMed

    Doiron-Leyraud, N; Walker, I R; Taillefer, L; Steiner, M J; Julian, S R; Lonzarich, G G

    2003-10-01

    Fermi-liquid theory (the standard model of metals) has been challenged by the discovery of anomalous properties in an increasingly large number of metals. The anomalies often occur near a quantum critical point--a continuous phase transition in the limit of absolute zero, typically between magnetically ordered and paramagnetic phases. Although not understood in detail, unusual behaviour in the vicinity of such quantum critical points was anticipated nearly three decades ago by theories going beyond the standard model. Here we report electrical resistivity measurements of the 3d metal MnSi, indicating an unexpected breakdown of the Fermi-liquid model--not in a narrow crossover region close to a quantum critical point where it is normally expected to fail, but over a wide region of the phase diagram near a first-order magnetic transition. In this regime, corrections to the Fermi-liquid model are expected to be small. The range in pressure, temperature and applied magnetic field over which we observe an anomalous temperature dependence of the electrical resistivity in MnSi is not consistent with the crossover behaviour widely seen in quantum critical systems. This may suggest the emergence of a well defined but enigmatic quantum phase of matter.

  15. Atomistic Modeling of Diffusion and Phase Transformations in Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Purja Pun, Ganga Prasad

    Dissertation consists of multiple works. The first part is devoted to self-diffusion along dislocation cores in aluminum followed by the development of embedded atom method potentials for Co, NiAl, CoAl and CoNi systems. The last part focuses on martensitic phase transformation (MPT) in Ni xAl1--x and Al xCoyNi1-- x--y alloys. New calculation methods were developed to predict diffusion coefficients in metal as functions of temperature. Self-diffusion along screw and edge dislocations in aluminum was studied by molecular dynamic (MD) simulations. Three types of simulations were performed with and without (intrinsic) pre-existing vacancies and interstitials in the dislocation core. We found that the diffusion along the screw dislocation was dominated by the intrinsic mechanism, whereas the diffusion along the edge dislocation was dominated by the vacancy mechanism. The diffusion along the screw dislocation was found to be significantly faster than the diffusion along the edge dislocation, and the both diffusivities were in reasonable agreement with experimental data. The intrinsic diffusion mechanism can be associated with the formation of dynamic Frenkel pairs, possibly activated by thermal jogs and/or kinks. The simulations show that at high temperatures the dislocation core becomes an effective source/sink of point defects and the effect of pre-existing defects on the core diffusivity diminishes. First and the foremost ingredient needed in all atomistic computer simulations is the description of interaction between atoms. Interatomic potentials for Co, NiAl, CoAl and CoNi systems were developed within the Embedded Atom Method (EAM) formalism. The binary potentials were based on previously developed accurate potentials for pure Ni and pure Al and pure Co developed in this work. The binaries constitute a version of EAM potential of AlCoNi ternary system. The NiAl potential accurately reproduces a variety of physical properties of the B2-NiAl and L12--Ni3Al phases

  16. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  17. A theoretical study of the omega-phase transformation in metals

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi

    I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.

  18. Chiral magnetic effect and natural optical activity in (Weyl) metals

    NASA Astrophysics Data System (ADS)

    Pesin, Dmytro; Ma, Jing

    We consider the phenomenon of natural optical activity, and related chiral magnetic effect in metals with low carrier concentration. To reveal the correspondence between the two phenomena, we compute the optical conductivity of a noncentrosymmetric metal to linear order in the wave vector of the light wave, specializing to the low-frequency regime. We show that it is the orbital magnetic moment of quasiparticles that is responsible for the natural optical activity, and thus the chiral magnetic effect. While for purely static magnetic fields the chiral magnetic effect is known to have a topological origin and to be related to the presence of Berry curvature monopoles (Weyl points) in the band structure, we show that the existence of Berry monopoles is not required for the dynamic chiral magnetic effect to appear; the latter is thus not unique to Weyl metals. The magnitude of the dynamic chiral magnetic effect in a material is related to the trace of its gyrotropic tensor. We discuss the conditions under which this trace is non-zero; in noncentrosymmetric Weyl metals it is found to be proportional to the energy-space dipole moment of Berry curvature monopoles. The calculations are done within both the semiclassical kinetic equation, and Kubo linear response formalisms. This work was supported by NSF Grant No. DMR-1409089.

  19. Anaerobic bioleaching of metals from waste activated sludge.

    PubMed

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E; Lens, Piet N L

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g(-1) of copper, 487 μg g(-1) of lead, 793 μg g(-1) of zinc, 27 μg g(-1) of nickel and 2.3 μg g(-1) of cadmium. During the anaerobic acidification of 3 gdry weight L(-1) waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  20. Biologically active metal-independent superoxide dismutase mimics

    SciTech Connect

    Mitchell, J.B.; Samuni, A.; Krishna, M.C.; DeGraff, W.G.; Ahn, M.S.; Samuni, U.; Russo, A. )

    1990-03-20

    Superoxide dismutase (SOD) is an enzyme that detoxifies superoxide (O2.-), a potentially toxic oxygen-derived species. Attempts to increase intracellular concentrations of SOD by direct application are complicated because SOD, being a relatively large molecule, does not readily cross cell membranes. We have identified a set of stable nitroxides that possess SOD-like activity, have the advantage of being low molecular weight, membrane permeable, and metal independent, and at pH 7.0 have reaction rate constants with O2.- ranging from 1.1 x 10(3) to 1.3 x 10(6) M-1 s-1. These SOD mimics protect mammalian cells from damage induced by hypoxanthine/xanthine oxidase and H{sub 2}O{sub 2}, although they exhibit no catalase-like activity. In addition, the nitroxide SOD mimics rapidly oxidize DNA-FeII and thus may interrupt the Fenton reaction and prevent formation of deleterious OH radicals and/or higher oxidation states of metal ions. Whether by SOD-like activity and/or interception of an electron from redox-active metal ions they protect cells from oxidative stress and may have use in basic and applied biological studies.

  1. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    PubMed

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin

    2014-10-01

    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat.

  2. Phase response curves in the characterization of epileptiform activity

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, J. L.; Galán, R. F.; Dominguez, L. Garcia; Leshchenko, Y.; Lo, S.; Belkas, J.; Erra, R. Guevara

    2007-12-01

    Coordinated cellular activity is a major characteristic of nervous system function. Coupled oscillator theory offers unique avenues to address cellular coordination phenomena. In this study, we focus on the characterization of the dynamics of epileptiform activity, based on some seizures that manifest themselves with very periodic rhythmic activity, termed absence seizures. Our approach consists in obtaining experimentally the phase response curves (PRCs) in the neocortex and thalamus, and incorporating these PRCs into a model of coupled oscillators. Phase preferences of the stationary states and their stability are determined, and these results from the model are compared with the experimental recordings, and interpreted in physiological terms.

  3. Bilateral Limb Phase Relationship and Its Potential to Alter Muscle Activity Phasing During Locomotion

    PubMed Central

    López-Ortiz, Citlali; Walter, Charles B.; Brown, David A.

    2009-01-01

    It is well established that the sensorimotor state of one limb can influence another limb and therefore bilateral somatosensory inputs make an important contribution to interlimb coordination patterns. However, the relative contribution of interlimb pathways for modifying muscle activation patterns in terms of phasing is less clear. Here we studied adaptation of muscle activity phasing to the relative angular positions of limbs using a split-crank ergometer, where the cranks could be decoupled to allow different spatial angular position relationships. Twenty neurologically healthy individuals performed the specified pedaling tasks at different relative angular positions while surface electromyographic (EMG) signals were recorded bilaterally from eight lower extremity muscles. During each experiment, the relative angular crank positions were altered by increasing or decreasing their difference by randomly ordered increments of 30° over the complete cycle [0° (in phase pedaling); 30, 60, 90, 120, 150, and 180° (standard pedaling); and 210, 240, 270, 300, and 330° out of phase pedaling]. We found that manipulating the relative angular positions of limbs in a pedaling task caused muscle activity phasing changes that were either delayed or advanced, dependent on the relative spatial position of the two cranks and this relationship is well-explained by a sine curve. Further, we observed that the magnitude of phasing changes in biarticular muscles (like rectus femoris) was significantly greater than those of uniarticular muscles (like vastus medialis). These results are important because they provide new evidence that muscle phasing can be systematically influenced by interlimb pathways. PMID:19741107

  4. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances.

  5. The metal-insulator phase transition in the strained GdBiTe3

    NASA Astrophysics Data System (ADS)

    Van Quang, Tran; Kim, Miyoung

    2013-05-01

    In this work, we investigated the electronic structures and magnetic properties of the GdBiTe3 alloy employing a first-principles all-electron density-functional approach, aiming to understand the magnetic phase stability and electronic structure dependences on the exchange correlation potential and the strain. The results show that the ferromagnetic phase is energetically more stable over the paramagnetic phase and the metal-insulator phase transition occurs upon the lattice distortion via the strain along the perpendicular c direction, which is not influenced by the strength of correlation energy introduced to describe the localized f orbitals. Thermoelectric transport properties are also investigated to reveal that the compressive strain markedly enhances the Seebeck coefficient, which is reduced in comparison with the Bismuth telluride due to the Gd doping.

  6. Phase-contrast x-ray imaging with a liquid-metal-jet-anode microfocus source

    SciTech Connect

    Tuohimaa, T.; Otendal, M.; Hertz, H. M.

    2007-08-13

    Phase-contrast methods increase contrast, detail, and selectivity in x-ray imaging. Present compact x-ray sources do not provide the necessary spatial coherence with sufficient power to allow the laboratory-scale high-resolution phase-contrast imaging with adequate exposure times. In this letter, the authors demonstrate phase-contrast imaging with few-micron detail employing a compact {approx}6.5 {mu}m spot liquid-metal-jet-anode high-brightness microfocus source. The 40 W source is operated at more than ten times higher electron-beam power density than present microfocus sources and is shown to provide sufficient spatial coherence as well as scalability to high power, thereby enabling the application of phase-contrast x-ray imaging with short exposure times in clinics and laboratories.

  7. Two-phase flow bubbly mixing for liquid metal magnetohydrodynamic energy conversion

    NASA Technical Reports Server (NTRS)

    Fabris, G.; Kwack, E.; Harstad, K.; Back, L. H.

    1990-01-01

    Experiments aimed at improving mixer design and investigating the effects of surfactants on the two-phase mixture in two-phase liquid metal MHD (LMMHD) energy conversion systems are described. In addition to conventional photography, flash X-ray imaging was used as a diagnostic tool. It was demonstrated that a high void fraction (0.8) and low velocity slip ratio (1.2) two-phase homogeneous bubbly mixture can be created. It is expected that such a two-phase mixture can be further expanded in a LMMHD generator while maintaining low velocity slip. In such a way, high generator and overall system efficiency would be achieved, making LMMHD systems competitive for a number of commercial applications.

  8. Phase equilibrium modeling for high temperature metallization on GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Chung, M. A.; Davison, J. E.; Smith, S. R.

    1991-01-01

    Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.

  9. Role of sediment resuspension in the remobilization of particulate-phase metals from coastal sediments

    USGS Publications Warehouse

    Kalnejais, Linda H.; Martin, William R.; Signell, Richard P.; Bothner, Michael H.

    2007-01-01

    The release of particulate-phase trace metals due to sediment resuspension has been investigated by combining erosion chamber experiments that apply a range of shear stresses typically encountered in coastal environments with a shear stress record simulated by a hydrodynamic model. Two sites with contrasting sediment chemistry were investigated. Sediment particles enriched in silver, copper, and lead, 4−50 times greater than the bulk surface-sediment content, were the first particles to be eroded. As the shear-stress level was increased in the chamber, the total mass eroded increased, but the enrichment of these trace metals fell, approaching the bulk-sediment content. From the temporal distribution of shear stress generated by the hydrodynamic model for a site in Boston Harbor, resuspension fluxes were estimated. The erosion threshold of this site is exceeded during spring tides, releasing the particles enriched in trace metals into the water column. Due to the higher trace metal content and the regularity of resuspension, low-energy resuspension events (up to a shear stress of 0.2 N/m2) contribute up to 60% of the resuspension metal flux in an average year. The estimated annual quantity of copper and lead resuspended into the water column is higher than estimates of the total riverine flux for these metals. These results indicate that sediment resuspension is a very important mechanism for releasing metals into the water column and provide new insight into the chemical and physical processes controlling the long-term fate of trace metals in contaminated sediments.

  10. On the Existence of Our Metals-Based Civilization: I. Phase Space Analysis

    SciTech Connect

    D.D. Macdonald

    2005-06-22

    The stability of the barrier layers of bilayer passive films that form on metal and alloy surfaces, when in contact with oxidizing aqueous environments, is explored within the framework of the Point Defect Model (PDM) using phase-space analysis (PSA), in which the rate of growth of the barrier layer into the metal, (dL{sup +}/dt), and the barrier layer dissolution rate, (dL{sup -}/dt), are plotted simultaneously against the barrier layer thickness. A point of intersection of dL{sup -}/dt with dL{sup +}/dt indicates the existence of a metastable barrier layer with a steady state thickness greater than zero. If dL{sup -}/dt > (dL{sup +}/dt){sub L=0}, where the latter quantity is the barrier layer growth rate at zero barrier layer thickness, the barrier layer cannot exist, even as a metastable phase, as the resulting thickness would be negative. Under these conditions, the surface is depassivated and the metal may corrode at a rapid rate. Depassivation may result from a change in the oxidation state of the cation upon dissolution of the barrier layer, such that the dissolution rate becomes highly potential dependent (as in the case of transpassive dissolution of chromium-containing alloys, for example, in which the reaction Cr{sub 2}O{sub 3} + 5H{sub 2}O {yields} 2CrO{sub 4}{sup 2-} + 10H {sup +} + 6e{sup -} results in the destruction of the film), or by the action of some solution-phase species (e.g., H{sup +}, Cl{sup -}) that enhances the dissolution rate to the extent that dL{sup -}/dt > (dL{sup +}/dt){sub L=0}. The boundaries for depassivation may be plotted in potential-pH space to develop Kinetic Stability Diagrams (KSDs) as alternatives to the classical Pourbaix diagrams for describing the conditions under which metals or alloys exist in contact with an aqueous environment. The advantage of KSDs is that they provide kinetic descriptions of the state of a metal or alloy that is in much closer concert with the kinetic phenomenon of passivity and depassivation

  11. Characterization of Solid State Phase Transformation in Continuously Heated and Cooled Ferritic Weld Metal

    SciTech Connect

    Narayana, B; Mills, Michael J.; Specht, Eliot D; Santella, Michael L; Babu, Sudarsanam Suresh

    2010-12-01

    Arc welding processes involve cooling rates that vary over a wide range (1-100 K/s). The final microstructire is thus a product of the heating and cooling cycles experienced by the weld in addition to the weld composition. It has been shown that the first phase to form under weld cooling conditions may not be that predicted by equilibrium calculations. The partitioning of different interstitial/substitutional alloying elements at high temperatures can dramatically affect the subsequent phase transformations. In order to understand the effect of alloying on phase transformation temperatures and final microstructures time-resolved X-ray diffraction technique has been successfully used for characterization. The work by Jacot and Rappaz on pearlitic steels provided insight into austenitization of hypoeutectic steels using a finite volume model. However there is very little work done on the effect of heating and cooling rates on the phase transformation paths in bainitic/martensitic steels and weld metals. Previous work on a weld with higher aluminum content, deposited with a FCAW-S process indicated that even at aluminum levels where the primary phase to solidify from liquid should be delta ferrite, non-equilibrium austenite was observed. The presence of inhomogeneity in composition of the parent microstructure has been attributed to differences in transformation modes, temperatures and microstructures in dual-phase, TRIP steels and ferritic welds. The objectives of the work included the identification of the stability regions of different phases during heating and cooling, differences in the effect of weld heating and cooling rates on the phase transformation temperatures, and the variation in phase fractions of austenite and ferrite in the two phase regions as a function of temperature. The base composition used for the present work is a Fe-1%Al-2%Mn-1%Ni-0.04%C weld metal. A pseudo-binary phase diagram shows the expected solidification path under equilibrium

  12. Nano-optical investigations of the metal-insulator phase behavior of individual VO(2) microcrystals.

    PubMed

    Jones, Andrew C; Berweger, Samuel; Wei, Jiang; Cobden, David; Raschke, Markus B

    2010-05-12

    Despite the relatively simple stoichiometry and structure of VO(2), many questions regarding the nature of its famous metal-insulator transition (MIT) remain unresolved. This is in part due to the prevailing use of polycrystalline film samples and the limited spatial resolution in most studies, hindering access to and control of the complex phase behavior and its inevitable spatial inhomogeneities. Here, we investigate the MIT and associated nanodomain formation in individual VO(2) microcrystals subject to substrate stress. We employ symmetry-selective polarization Raman spectroscopy to identify crystals that are strain-stabilized in either the monoclinic M1 or M2 insulating phase at room-temperature. Raman measurements are further used to characterize the phase dependence on temperature, identifying the appearance of the M2 phase during the MIT. The associated formation and spatial evolution of rutile (R) metallic domains is studied with nanometer-scale spatial resolution using infrared scattering-scanning near-field optical microscopy (s-SNOM). We deduce that even for small crystals of VO(2), the MIT is influenced by the competition between the R, M1, and M2 crystal phases with their different lattice constants subjected to the external substrate-induced stress. The results have important implications for the interpretation of the investigations of conventional polycrystalline thin films where the mutual interaction of constituent crystallites may affect the nature of the MIT in VO(2).

  13. Structural phase stability in group IV metals under static high pressure

    SciTech Connect

    Velisavljevic, Nenad; Chesnut, Garry N; Dattelbaum, Dana M; Vohra, Yogesh K; Stemshorn, Andrew

    2009-01-01

    In group IV metals (Ti, Zr, and Hf) room temperature compression leads to a martensitic transformation from a ductile {alpha} to a brittle {omega} phase. {alpha} {yields} {omega} phase boundary decreases to lower pressure at high temperature and can limit the use of group IV metals in industrial applications. There is a large discrepancy in the transition pressure reported in literature, with some of the variation attributed to experimental conditions (i.e. hydrostatic vs. non-hydrostatic). Shear deformation in non-hydrostatic experiments drives {alpha} {yields} {omega} transition and decreases transition pressure. Impurities can also aid or suppress {alpha} {yields} {omega} transition. By performing x-ray diffraction experiments on samples in a diamond anvil cell we show that interstitial impurities, such as C, N, and O can obstruct {alpha} {yields} {omega} transition and stabilize {alpha} phase to higher pressure. We also show that reduction in grain size can also influence {alpha} {yields} {omega} phase boundary and help stabilize {alpha} phase to higher pressure under non-hydrostatic conditions.

  14. Phase field crystal modelling of the order-to-disordered atomistic structure transition of metallic glasses

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Mi, J.

    2016-03-01

    Bulk metallic glass composites are a new class of metallic alloy systems that have very high tensile strength, ductility and fracture toughness. This unique combination of mechanical properties is largely determined by the presence of crystalline phases uniformly distributed within the glassy matrix. However, there have been very limited reports on how the crystalline phases are nucleated in the super-cooled liquid and their growth dynamics, especially lack of information on the order-to-disordered atomistic structure transition across the crystalline-amorphous interface. In this paper, we use phase field crystal (PFC) method to study the nucleation and growth of the crystalline phases and the glass formation of the super cooled liquid of a binary alloy. The study is focused on understanding the order-to-disordered transition of atomistic configuration across the interface between the crystalline phases and amorphous matrix of different chemical compositions at different thermal conditions. The capability of using PFC to simulate the order-to-disorder atomistic transition in the bulk material or across the interface is discussed in details.

  15. Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions).

    PubMed

    Huš, Sebastjan; Kolar, Mitja; Krajnc, Peter

    2016-03-11

    Removal of silver, lead and cadmium ions from both model solutions and real contaminated water was achieved, in a flow through manner, by using highly porous functionalized poly(glycidyl methacrylate) materials, prepared by the polymerisation of high internal phase emulsions (polyHIPE), with significant sorption differences between metals allowing for selective removal. PolyHIPEs, initially prepared from glycidyl methacrylate as a functional monomer, were functionalized with pentaerythritol tetrakis(3-mercaptopropionate), 1,9-nonanedithiol and 2-aminobenzenethiol via the epoxy ring opening on the polymer supports and applied in a flow-through manner via encasements into dedicated disk holders. Capacity of 21.7mg Ag per gram of polymer was found for 1,9-nonanedithiol functionalized polymers, while the capacity was decreasing with the decreasing ionic radius of the metal; the dynamics of sorption also depended on metal ion size and furthermore on the thiol used for the polymer functionalization.

  16. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented.

  17. Optical Properties of Vanadium Dioxide Film during Semiconductive-Metallic Phase Transition

    NASA Astrophysics Data System (ADS)

    Kakiuchida, Hiroshi; Jin, Ping; Nakao, Setsuo; Tazawa, Masato

    2007-02-01

    The optical constants of vanadium dioxide (VO2) films were determined at visible and near-infrared wavelengths at various temperatures during a semiconductive-metallic phase transition by ellipsometric analysis with Lorentz-oscillator formulae. The reversible changes in optical constants against temperature due to thermochromism were observed at around 70 °C. The wavelength dispersions of the optical constants were well expressed by the sum of three oscillators and their oscillating energies were attributed to photon-excited transitions. The variation in band structure during the phase transition was monitored, and the relationship between the band structure and optical properties was discussed.

  18. Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles.

    PubMed

    Elias, Joseph S; Risch, Marcel; Giordano, Livia; Mansour, Azzam N; Shao-Horn, Yang

    2014-12-10

    We present a simple and generalizable synthetic route toward phase-pure, monodisperse transition-metal-substituted ceria nanoparticles (M0.1Ce0.9O2-x, M = Mn, Fe, Co, Ni, Cu). The solution-based pyrolysis of a series of heterobimetallic Schiff base complexes ensures a rigorous control of the size, morphology and composition of 3 nm M0.1Ce0.9O2-x crystallites for CO oxidation catalysis and other applications. X-ray absorption spectroscopy confirms the dispersion of aliovalent (M(3+) and M(2+)) transition metal ions into the ceria matrix without the formation of any bulk transition metal oxide phases, while steady-state CO oxidation catalysis reveals an order of magnitude increase in catalytic activity with copper substitution. Density functional calculations of model slabs of these compounds confirm the stabilization of M(3+) and M(2+) in the lattice of CeO2. These results highlight the role of the host CeO2 lattice in stabilizing high oxidation states of aliovalent transition metal dopants that ordinarily would be intractable, such as Cu(3+), as well as demonstrating a rational approach to catalyst design. The current work demonstrates, for the first time, a generalizable approach for the preparation of transition-metal-substituted CeO2 for a broad range of transition metals with unparalleled synthetic control and illustrates that Cu(3+) is implicated in the mechanism for CO oxidation on CuO-CeO2 catalysts. PMID:25406101

  19. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Chunyu; Ke, Feng; Hu, Qingyang; Yu, Zhenhai; Zhao, Jinggeng; Chen, Zhiqiang; Yan, Hao

    2016-04-01

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr2S3) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr2S3 near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7-15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr2S3 based applications under extreme conditions.

  20. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism.

    PubMed

    Manchanda, Priyanka; Skomski, Ralph

    2016-02-17

    Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1-x V x Se2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior.

  1. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism

    NASA Astrophysics Data System (ADS)

    Manchanda, Priyanka; Skomski, Ralph

    2016-02-01

    Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1-x V x Se2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior.

  2. Metallic phase of the quantum Hall effect in four-dimensional space

    NASA Astrophysics Data System (ADS)

    Edge, Jonathan; Tworzydlo, Jakub; Beenakker, Carlo

    2013-03-01

    We study the phase diagram of the quantum Hall effect in four-dimensional (4D) space. Unlike in 2D, in 4D there exists a metallic as well as an insulating phase, depending on the disorder strength. The critical exponent ν ~ 1 . 2 of the diverging localization length at the quantum Hall insulator-to-metal transition differs from the semiclassical value ν = 1 of 4D Anderson transitions in the presence of time-reversal symmetry. Our numerical analysis is based on a mapping of the 4D Hamiltonian onto a 1D dynamical system, providing a route towards the experimental realization of the 4D quantum Hall effect. NanoCTM, FOM/NWO, ERC

  3. Phase transition and metallization of FeO at high pressures and temperatures

    SciTech Connect

    Fischer, Rebecca A.; Campbell, Andrew J.; Lord, Oliver T.; Shofner, Gregory A.; Dera, Przemyslaw; Prakapenka, Vitali B.

    2012-05-10

    Wuestite, Fe{sub 1-x}O, is an important component in the mineralogy of Earth's lower mantle and may also be a component of the core. Therefore its high pressure-temperature behavior, including its electronic structure, is essential to understanding the nature and evolution of Earth's deep interior. We performed X-ray diffraction and radiometric measurements on wuestite in a laser-heated diamond anvil cell, finding an insulator-metal transition at high pressures and temperatures. Our data show a negative slope for this apparently isostructural phase boundary, which is characterized by a volume decrease and emissivity increase. The metallic phase of FeO is stable at conditions of the lower mantle and core, which has implications for the high P-T character of Fe-O bonds, magnetic field propagation, and lower mantle conductivity.

  4. Surface modes in "photonic cholesteric liquid crystal-phase plate-metal" structure.

    PubMed

    Vetrov, S Ya; Pyatnov, M V; Timofeev, I V

    2014-05-01

    The light transmission spectrum has been calculated for a "cholesteric liquid crystal-phase plate-metal" structure. It is shown that the system can have an isolated waveguide surface mode with characteristics efficiently controllable by external fields acting on the cholesteric. The degree of localization of surface modes and the transmission coefficients have been found to differ considerably for the light of different polarizations. PMID:24784092

  5. On the melting temperatures of low-temperature phases of polymorphic metals

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1992-01-01

    An improved analytical formula for determining the melting temperatures of the low-temperature phases of polymorphic metals is proposed which uses the specific heat differences at the equilibrium transition temperatures. The formula is solved by an iterative method, with no more than one iteration necessary to converge. The results obtained using the formula proposed here are generally in good agreement with the analytical solution.

  6. Thermal effect in phase-periodic electron transport in disordered mesoscopic normal metal/superconductor structures

    NASA Astrophysics Data System (ADS)

    Petrashov, V. T.; Shaikhaidarov, R. Sh.; Sosnin, I. A.

    1996-04-01

    We report measurements of the temperature dependence of the amplitude of phase-periodic conductance oscillations in disordered normal metal (Ag) structures, attached to a superconducting (Al) wire at two points. The amplitude of oscillations reaches its maximum at temperature T *, when the Thouless energy is of the order of k B T. The results are in agreement with recent calculations by Nazarov and Stoof [Phys. Rev. Lett. 76 (1996) 823].

  7. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    SciTech Connect

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  8. Electrical active defects in HfO2 based metal/oxide/metal devices

    NASA Astrophysics Data System (ADS)

    El Kamel, F.

    2016-01-01

    Dielectric as well as thermally stimulated current measurements were performed on metal/HfO2/Pt capacitors in order to study the electrical active defects in hafnia thin films. Two thermally activated relaxation processes have been carried out from both measurements. At low temperatures, the relaxation process can be ascribed to the shallow traps level localized at 0.65 eV and generally evidenced by the second ionization of oxygen vacancies. At high temperatures, the relaxation process arises from the diffusion of positively charged oxygen vacancies by overcoming an energetic barrier of about 1 eV.

  9. Correlation between the spin Hall angle and the structural phases of early 5d transition metals

    SciTech Connect

    Liu, Jun; Ohkubo, Tadakatsu; Mitani, Seiji; Hono, Kazuhiro; Hayashi, Masamitsu

    2015-12-07

    We have studied the relationship between the structure and the spin Hall angle of the early 5d transition metals in X/CoFeB/MgO (X = Hf, Ta, W, and Re) heterostructures. Spin Hall magnetoresistance (SMR) is used to characterize the spin Hall angle of the heavy metals. Transmission electron microscopy images show that all underlayers are amorphous-like when their thicknesses are small, however, crystalline phases emerge as the thickness is increased for certain elements. We find that the heavy metal layer thickness dependence of the SMR reflects these changes in structure. The largest spin Hall angle |θ{sub SH}| of Hf, Ta, W, and Re (∼0.11, 0.10, 0.23, and 0.07, respectively) is found when the dominant phase is amorphous-like. We find that the amorphous-like phase not only possesses large resistivity but also exhibits sizeable spin Hall conductivity, which both contribute to the emergence of the large spin Hall angle.

  10. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Blaby-Haas, Crysten E; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K; Merchant, Sabeeha S; Crespo, José L

    2015-09-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis.

  11. Activation of Autophagy by Metals in Chlamydomonas reinhardtii

    PubMed Central

    Pérez-Martín, Marta; Blaby-Haas, Crysten E.; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K.; Merchant, Sabeeha S.

    2015-01-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis. PMID:26163317

  12. SEQUESTERING AGENTS FOR ACTIVE CAPS - REMEDIATION OF METALS AND ORGANICS

    SciTech Connect

    Knox, A; Michael Paller, M; Danny D. Reible, D; Xingmao Ma, X; Ioana G. Petrisor, I

    2007-05-10

    This research evaluated organoclays, zeolites, phosphates, and a biopolymer as sequestering agents for inorganic and organic contaminants. Batch experiments were conducted to identify amendments and mixtures of amendments for metal and organic contaminants removal and retention. Contaminant removal was evaluated by calculating partitioning coefficients. Metal retention was evaluated by desorption studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays, and the biopolymer, chitosan, were very effective sequestering agents for metals in fresh and salt water. Organoclays were very effective sorbents for phenanthrene, pyrene, and benzo(a)pyrene. Partitioning coefficients for the organoclays were 3000-3500 ml g{sup -1} for benzo(a)pyrene, 400-450 ml g{sup -1} for pyrene, and 50-70 ml g{sup -1} for phenanthrene. Remediation of sites with a mixture of contaminants is more difficult than sites with a single contaminant because metals and organic contaminants have different fate and transport mechanisms in sediment and water. Mixtures of amendments (e.g., organoclay and rock phosphate) have high potential for remediating both organic and inorganic contaminants under a broad range of environmental conditions, and have promise as components in active caps for sediment remediation.

  13. Activation of Autophagy by Metals in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Blaby-Haas, Crysten E; Pérez-Pérez, María Esther; Andrés-Garrido, Ascensión; Blaby, Ian K; Merchant, Sabeeha S; Crespo, José L

    2015-09-01

    Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis. PMID:26163317

  14. Finite temperature topological phase transitions and emergence of Dirac semi-metallic phases in a Kondo lattice

    NASA Astrophysics Data System (ADS)

    Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Lee, Ting-Kuo; Mou, Chung-Yu

    The energy gap in Dirac materials controls the topology and critical behaviors of the quantum phase transition associated with the critical point when the gap vanishes. However, it is often difficult to access the critical point as it requires tunablity of electronic structures. Here by exploiting the many-body screening interaction of localized spins and conduction electrons in a Kondo lattice, we demonstrate that the electronic band structures in a Kondo lattice are tunable in temperature. When spin-orbit interactions are included, we find that below the Kondo temperature, the Kondo lattice is a strong topological insulator at low temperature and undergoes a topological transition to a weak topological insulator at a higher temperature TD. At TD, Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our results indicate that the topological phase transition though a Dirac semi-metallic phase at finite temperatures also manifests profound physics and results in critical-like behavior both in magnetic and transport properties near TD. We acknowledge support from NCTS and Ministry of Science and Technology (MoST), Taiwan.

  15. Gas-phase Oxygen Abundances and Radial Metallicity Gradients in the Two nearby Spiral Galaxies NGC 7793 and NGC 4945

    NASA Astrophysics Data System (ADS)

    Stanghellini, Letizia; Magrini, Laura; Casasola, Viviana

    2015-10-01

    Gas-phase abundances in H ii regions of two spiral galaxies, NGC 7793 and NGC 4945, have been studied to determine their radial metallicity gradients. We used the strong-line method to derive oxygen abundances from spectra acquired with GMOS-S, the multi-object spectrograph on the 8 m Gemini South telescope. We found that NGC 7793 has a well-defined gas-phase radial oxygen gradient of -0.321 ± 0.112 dex {R}25-1 (or -0.054 ± 0.019 dex kpc-1) in the galactocentric range 0.17 < RG/R25 < 0.82, not dissimilar from gradients calculated with direct abundance methods in galaxies of similar mass and morphology. We also determined a shallow radial oxygen gradient in NGC 4945, -0.253 ± 0.149 dex {R}25-1 (or -0.019 ± 0.011 dex kpc-1) for 0.04 < RG/R25 < 0.51, where the larger relative uncertainty derives mostly from the larger inclination of this galaxy. NGC 7793 and NGC 4945 have been selected for this study because they are similar, in mass and morphology, to M33 and the Milky Way, respectively. Since at zeroth order we expect the radial metallicity gradients to depend on mass and galaxy type, we compared our galaxies in the framework of radial metallicity models best suited for M33 and the Galaxy. We found a good agreement between M33 and NGC 7793, pointing toward similar evolution for the two galaxies. We notice instead differences between NGC 4945 and the radial metallicity gradient model that best fits the Milky Way. We found that these differences are likely related to the presence of an active galactic nucleus combined with a bar in the central regions of NGC 4945, and to its interacting environment.

  16. Metal and Sulphide Phases in Interstitial Veins in "Dimict" Ureilites - Insights into the History and Petrogenesis of the Ureilite Parent Body

    NASA Astrophysics Data System (ADS)

    Smith, C. L.; Downes, H.; Jones, A. P.

    2008-03-01

    Unusual metal and sulfide phases occur in veins in dimict ureilites FRO 90168, 90228 and 93008. We have identified for the first time in an asteroidal meteorite the mineral hapkeite and found another unusual high-Si metal phase.

  17. Solid-liquid interface free energies of pure bcc metals and B2 phases

    SciTech Connect

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  18. Solid-liquid interface free energies of pure bcc metals and B2 phases

    DOE PAGES

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-07

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm3¯m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic “Na” potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observedmore » in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of “Na” potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Thus, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.« less

  19. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts.

    PubMed

    Santos, Vera P; Wezendonk, Tim A; Jaén, Juan José Delgado; Dugulan, A Iulian; Nasalevich, Maxim A; Islam, Husn-Ubayda; Chojecki, Adam; Sartipi, Sina; Sun, Xiaohui; Hakeem, Abrar A; Koeken, Ard C J; Ruitenbeek, Matthijs; Davidian, Thomas; Meima, Garry R; Sankar, Gopinathan; Kapteijn, Freek; Makkee, Michiel; Gascon, Jorge

    2015-03-05

    Depletion of crude oil resources and environmental concerns have driven a worldwide research on alternative processes for the production of commodity chemicals. Fischer-Tropsch synthesis is a process for flexible production of key chemicals from synthesis gas originating from non-petroleum-based sources. Although the use of iron-based catalysts would be preferred over the widely used cobalt, manufacturing methods that prevent their fast deactivation because of sintering, carbon deposition and phase changes have proven challenging. Here we present a strategy to produce highly dispersed iron carbides embedded in a matrix of porous carbon. Very high iron loadings (>40 wt %) are achieved while maintaining an optimal dispersion of the active iron carbide phase when a metal organic framework is used as catalyst precursor. The unique iron spatial confinement and the absence of large iron particles in the obtained solids minimize catalyst deactivation, resulting in high active and stable operation.

  20. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts

    NASA Astrophysics Data System (ADS)

    Santos, Vera P.; Wezendonk, Tim A.; Jaén, Juan José Delgado; Dugulan, A. Iulian; Nasalevich, Maxim A.; Islam, Husn-Ubayda; Chojecki, Adam; Sartipi, Sina; Sun, Xiaohui; Hakeem, Abrar A.; Koeken, Ard C. J.; Ruitenbeek, Matthijs; Davidian, Thomas; Meima, Garry R.; Sankar, Gopinathan; Kapteijn, Freek; Makkee, Michiel; Gascon, Jorge

    2015-03-01

    Depletion of crude oil resources and environmental concerns have driven a worldwide research on alternative processes for the production of commodity chemicals. Fischer-Tropsch synthesis is a process for flexible production of key chemicals from synthesis gas originating from non-petroleum-based sources. Although the use of iron-based catalysts would be preferred over the widely used cobalt, manufacturing methods that prevent their fast deactivation because of sintering, carbon deposition and phase changes have proven challenging. Here we present a strategy to produce highly dispersed iron carbides embedded in a matrix of porous carbon. Very high iron loadings (>40 wt %) are achieved while maintaining an optimal dispersion of the active iron carbide phase when a metal organic framework is used as catalyst precursor. The unique iron spatial confinement and the absence of large iron particles in the obtained solids minimize catalyst deactivation, resulting in high active and stable operation.

  1. Laser beam active brazing of metal ceramic joints

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Bach, Friedrich W.; von Alvensleben, Ferdinand; Kreutzburg, K.

    1996-04-01

    The use of engineering ceramics is becoming more and more important. Reasons for this are the specific properties of these materials, such as high strength, corrosion resistance and wear resistance. To apply the advantages of ceramics, joining techniques of metal ceramic parts are required. In this paper, joining of metal ceramic joints by laser beam brazing is presented. This joining technique is characterized by local heat input, and the minimal thermal stress of the brazed components. During the investigations, an Nd:YAG laser and a vacuum chamber were applied. The advantages of Nd:YAG lasers are the simple mechanical construction, and laser beam guidance via quartz glass fibers, which leads to high handling flexibility. In addition, most of the materials show a high absorption rate for this kind of radiation. As materials, ceramic Al2O3 with a purity of 99.4% and metals such as X5CrNi189 and Fe54Ni29Co17 were used. As a filler material, commercially available silver and silver- copper brazes with chemically active elements like titanium were employed. During this study, the brazing wetting behavior and the formation of diffusion layers in dependence on processing parameters were investigated. The results have shown that high brazing qualities can be achieved by means of the laser beam brazing process. Crack-free joining of metal ceramic parts is currently only possible by the use of metals such as Fe54Ni29Co17 because of its low thermal expansion coefficient, which reduces thermal stresses within the joining zone.

  2. Observation of Dirac-like semi-metallic phase in NdSb

    NASA Astrophysics Data System (ADS)

    Neupane, Madhab; Mofazzel Hosen, M.; Belopolski, Ilya; Wakeham, Nicholas; Dimitri, Klauss; Dhakal, Nagendra; Zhu, Jian-Xin; Zahid Hasan, M.; Bauer, Eric D.; Ronning, Filip

    2016-06-01

    The search of new topological phases of matter is one of the new directions in condensed matter physics. Recent experimental realizations of Dirac semimetal phases pave the way to look for other exotic phases of matter in real materials. Here we present a systematic angle-resolved photoemission spectroscopy (ARPES) study of NdSb, a potential candidate for hosting a Dirac semi-metal phase. Our studies reveal two hole-like Fermi surface pockets present at the zone center (Γ ) point as well as two elliptical electron-pockets present in the zone corner (X) point of the Brillouin zone (BZ). Interestingly, Dirac-like linearly dispersive states are observed about the zone corner (X) point in NdSb. Our first-principles calculations agree with the experimentally observed bands at the Γ point. Moreover, the Dirac-like state observed in NdSb may be a novel correlated state, not yet predicted in calculations. Our study opens a new direction to look for Dirac semi-metal states in other members of the rare earth monopnictide family.

  3. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Technical Monitor); Kelton, K. F.; Gangopadhyay, A.; Lee, G. W.; Hyers, R. W.; Rathz, R. J.; Rogers, J.; Schenk, T.; Simonet, V.; Holland-Moritz, D.

    2003-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si, for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.

  4. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.; Holland-Moritz, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si(3), for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron X-ray and high flux neutron facilities.

  5. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation Behavior of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.

    2003-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si[3], for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.

  6. Metal concentration and antioxidant activity of edible mushrooms from Turkey.

    PubMed

    Sarikurkcu, Cengiz; Tepe, Bektas; Kocak, Mehmet Sefa; Uren, Mehmet Cemil

    2015-05-15

    This study presents information on the antioxidant activity and heavy metal concentrations of Polyporus sulphureus, Macrolepiota procera, Lycoperdon perlatum and Gomphus clavatus mushrooms collected from the province of Mugla in the South-Aegean Region of Turkey. Antioxidant activities of mushroom samples were evaluated by four complementary tests. All tests showed L. perlatum and G. clavatus to possess extremely high antioxidant potential. Antioxidant activity of the samples was strongly correlated with total phenolic-flavonoid content. In terms of heavy metal content, L. perlatum exceeded the legal limits for daily intake of Pb, Fe, Mn, Cr, Ni and Co contents (0.461, 738.00, 14.52, 1.27, 1.65, 0.417 mg/day, respectively) by a 60-kg consumer. Co contents of M. procera (0.026 mg/day) and P. sulphureus (0.030 mg/day) and Cd contents of G. clavatus (0.071 mg/day) were also above the legal limits. According to these results, L. perlatum should not be consumed, despite the potentially beneficial antioxidant activity. Additionally, M. procera and G. clavatus should not be consumed daily due to their high levels of Cd and Co.

  7. An active metallic nanomatryushka with two similar super-resonances

    SciTech Connect

    Wu, D. J.; Cheng, Y.; Wu, X. W.; Liu, X. J.

    2014-07-07

    The optical properties of a simple metallic nanomatryushka (nanosphere-in-a-nanoshell) with gain have been investigated theoretically. The spaser (surface plasmon amplification by stimulated emission of radiation) phenomena can be observed at two critical wavelengths in the active metallic nanomatryushkas. With increasing the gain coefficient of the middle layer, a similar super surface plasmon (SP) resonance is first found at the ω₋⁺|₁ mode of the active nanoparticles and then breaks down. With further increasing the gain coefficient, another similar super-resonance occurs at the ω₋⁻|₁ mode. The near-field enhancements in the active nanomatryushkas also have been greatly amplified at the critical wavelengths for ω₋⁺|₊ and ω₋⁻|₁ modes. It is further found that the amplifications of SPs in the active Ag–SiO₂–Au nanoshell are strongest in four kinds of nanoshells and hence the largest near fields. The giant near-field enhancement can greatly enhance the Raman excitation and emission.

  8. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    SciTech Connect

    Read, Douglas; Sillerud, Colin Halliday

    2016-01-01

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  9. Ion-Image Interactions and Phase Transition at Electrolyte-Metal Interfaces.

    PubMed

    Lee, Alpha A; Perkin, Susan

    2016-07-21

    The arrangement of ions near a metallic electrode is crucial to energy storage in electrical double-layer capacitors. Classic Poisson-Boltzmann theory predicts that the charge stored in the double layer is a continuous function of applied voltage. However, recent experiments and simulations strongly suggest the presence of a voltage-induced first-order phase transition in the electrical double layer, leading to a hysteretic response: the capacitance-voltage relation is dependent on whether the voltage is increasing or decreasing. By developing a simple analytical model, we show that ion-image interaction could explain this phase transition. Moreover, our model shows that the presence of phase transition depends on the bulk energy of the ionic liquid. Our results justify mixing ionic liquids with solvents as a way to achieve large capacitance and avoid hysteresis. PMID:27383455

  10. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Astrophysics Data System (ADS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-03-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  11. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  12. A latchable thermally activated phase change actuator for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.

    2016-03-01

    Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.

  13. Hydrogen Sulfide Induced Carbon Dioxide Activation by Metal-Free Dual Catalysis.

    PubMed

    Kumar, Manoj; Francisco, Joseph S

    2016-03-18

    The role of metal free dual catalysis in the hydrogen sulfide (H2S)-induced activation of carbon dioxide (CO2) and subsequent decomposition of resulting monothiolcarbonic acid in the gas phase has been explored. The results suggest that substituted amines and monocarboxylic type organic or inorganic acids via dual activation mechanisms promote both activation and decomposition reactions, implying that the judicious selection of a dual catalyst is crucial to the efficient C-S bond formation via CO2 activation. Considering that our results also suggest a new mechanism for the formation of carbonyl sulfide from CO2 and H2S, these new insights may help in better understanding the coupling between the carbon and sulfur cycles in the atmospheres of Earth and Venus.

  14. Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt3

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Nevidomskyy, Andriy H.

    2015-12-01

    The recent phase-sensitive measurements in the superconducting B phase of UPt3 provide strong evidence for the triplet, chiral kz(kx±i ky) 2 pairing symmetries, which endow the Cooper pairs with orbital angular momentum projections Lz=±2 along the c axis. In the absence of disorder such pairing can support both line and point nodes, and both types of nodal quasiparticles exhibit nontrivial topology in the momentum space. The point nodes, located at the intersections of the closed Fermi surfaces with the c axis, act as the double monopoles and the antimonopoles of the Berry curvature, and generalize the notion of Weyl quasiparticles. Consequently, the B phase should support an anomalous thermal Hall effect, the polar Kerr effect, in addition to the protected Fermi arcs on the (1 ,0 ,0 ) and the (0 ,1 ,0 ) surfaces. The line node at the Fermi surface equator acts as a vortex loop in the momentum space and gives rise to the zero-energy, dispersionless Andreev bound states on the (0 ,0 ,1 ) surface. At the transition from the B phase to the A phase, the time-reversal symmetry is restored, and only the line node survives inside the A phase. As both line and double-Weyl point nodes possess linearly vanishing density of states, we show that weak disorder acts as a marginally relevant perturbation. Consequently, an infinitesimal amount of disorder destroys the ballistic quasiparticle pole, while giving rise to a diffusive phase with a finite density of states at the zero energy. The resulting diffusive phase exhibits T -linear specific heat, and an anomalous thermal Hall effect. We predict that the low-temperature thermodynamic and transport properties display a crossover between a ballistic thermal Hall semimetal and a diffusive thermal Hall metal. By contrast, the diffusive phase obtained from a time-reversal-invariant pairing exhibits only the T -linear specific heat without any anomalous thermal Hall effect.

  15. Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides

    DOE PAGES

    Sulmonetti, Taylor P.; Pang, Simon H.; Claure, Micaela Taborga; Lee, Sungsik; Cullen, David A.; Agrawal, Pradeep K.; Jones, Christopher W.

    2016-03-09

    The hydrogenation of furfural is investigated over various reduced nickel mixed metal oxides derived from layered double hydroxides (LDHs) containing Ni-Mg-Al and Ni-Co-Al. Upon reduction, relatively large Ni(0) domains develop in the Ni-Mg-Al catalysts, whereas in the Ni-Co-Al catalysts smaller metal particles of Ni(0) and Co(0), potentially as alloys, are formed, as evidenced by XAS, XPS, STEM and EELS. All the reduced Ni catalysts display similar selectivities towards major hydrogenation products (furfuryl alcohol and tetrahydrofurfuryl alcohol), though the side products varied with the catalyst composition. The 1.1Ni-0.8Co-Al catalyst showed the greatest activity per titrated site when compared to the othermore » catalysts, with promising activity compared to related catalysts in the literature. In conclusion, the use of base metal catalysts for hydrogenation of furanic compounds may be a promising alternative to the well-studied precious metal catalysts for making biomass-derived chemicals if catalyst selectivity can be improved in future work by alloying or tuning metal-oxide support interactions.« less

  16. Thermodynamics of phase formation in the quantum critical metal Sr3Ru2O7

    PubMed Central

    Rost, A. W.; Grigera, S. A.; Bruin, J. A. N.; Perry, R. S.; Tian, D.; Raghu, S.; Kivelson, Steven Allan; Mackenzie, A. P.

    2011-01-01

    The behavior of matter near zero temperature continuous phase transitions, or “quantum critical points” is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the quantum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical “soup.” Here, we report a study of the specific heat across the phase diagram of the model system Sr3Ru2O7, which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above Tc. The associated quantum critical point, which is “concealed” by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces. PMID:21933961

  17. Thermodynamics of phase formation in the quantum critical metal Sr3Ru2O7.

    PubMed

    Rost, A W; Grigera, S A; Bruin, J A N; Perry, R S; Tian, D; Raghu, S; Kivelson, Steven Allan; Mackenzie, A P

    2011-10-01

    The behavior of matter near zero temperature continuous phase transitions, or "quantum critical points" is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the quantum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical "soup." Here, we report a study of the specific heat across the phase diagram of the model system Sr(3)Ru(2)O(7), which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above T(c). The associated quantum critical point, which is "concealed" by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces.

  18. Active phase compensation system for fiber optic holography

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1988-01-01

    Fiber optic delivery systems promise to extend the application of holography to severe environments by simplifying test configurations and permitting the laser to be remotely placed in a more benign location. However, the introduction of optical fiber leads to phase stability problems. Environmental effects cause the pathlengths of the fibers to change randomly, preventing the formation of stationary interference patterns which are required for holography. An active phase control system has been designed and used with an all-fiber optical system to stabilize the phase difference between light emitted from two fibers, and to step the phase difference by 90 deg without applying any constraints on the placement of the fibers. The accuracy of the phase steps is shown to be better than 0.02 deg., and a stable phase difference can be maintained for 30 min. This system can be applied to both conventional and electro-optic holography, as well as to any system where the maintenance of an accurate phase difference between two coherent beams is required.

  19. Mineral phases and mobility of trace metals in white aluminum precipitates found in acid mine drainage.

    PubMed

    Kim, Yeongkyoo

    2015-01-01

    The white aluminum precipitates (S1,S2,S4-1,S4-2) collected at three different locations affected by acid mine and rock drainage were studied to characterize the mineral phases and mobility of trace metals. Chemical analysis, XRD, SEM, NMR, and sequential extraction method were mainly used. XRD data showed that most white aluminum precipitates are amorphous with small amount of gypsum, which was also confirmed by SEM. The (27)Al MAS NMR spectra provide more detailed information on the local environments of aluminum in those samples. The samples collected at two locations (S3, and S4-1 and S4-2) contain 4-coordinated aluminum, suggesting that the samples contain a significant amount of amorphous phase from Al13-tridecamer. Chemical data of calcium and sulfur with (27)Al MAS NMR spectra suggest that the relative amounts of amorphous phase from Al13-tridecamer, hydrobasaluminite, aluminum hydroxide, and gypsum are different for each sample. Different amount of amorphous phase from Al13-tridecamer in those samples are probably caused by the different geochemical conditions and hydrolysis by aging in water. Sequential extraction results show that water soluble fraction and sorbed and exchangeable fraction of trace metals in sample collected as suspended particles (S1) are higher than other samples, and can affect the ecological system in waters by releasing aluminum and trace metals. These results suggest that careful characterization of white aluminum precipitates is needed to estimate the environmental effects of those precipitates in acid mine drainage. PMID:25213794

  20. Stellar and Gas Phase Metallicity of Low Surface Brighness Galaxies: Implication on Star Formation Process within Young Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon

    2015-08-01

    Low surface brightness (LSB) galaxies, whose central surface brightness, μB, is fainter than 23 mag/arcsec2 in the B-band, have been one of the most intriguing galaxy populations. Their unique characteristics, such as blue colors in optical and near-infrared light, low metallicity, low stellar and gas surface densities, low dust content, and high gas mass fraction (up to 90%), resemble physical conditions of young galaxies of the early Universe whose interstellar medium (ISM) has not been enriched before major star formation activities initiated and should provide a testbed for star formation process at the exremly low surface density regime. Given that their star formation histories are still poorly constrained, LSB galaxies are known to have large specific star formation rates (sSFRs) with large gas fractions. There is also a correlation between their sSFRs and gas fractions. One of plausible scenarios is that the star formation efficiency may be an increasing funtion of time, perhaps due in part to the slow build up of metals and dust. Moreover, it is suspected that, being located in low number density area in terms of galaxy environment, LSB galaxies may receive additional gas to fuel their star formation activity via sporadic cold gas accretion, especially toward their outskirt regions analogous to extended ultraviolet disks. Due to their relatively isolated nature without having endured much interactions, LSB galaxies can mimic star formation processes of disk galaxies of the early Universe within their interstellar media (ISM). We present preliminary results based on stellar and gas phase metallicity of LSB galaxies along with their environment parameters to show how star-forming ISM of young disk galaxies before metal enrichment.

  1. Does Nanoparticle Activity Depend upon Size and Crystal Phase?

    PubMed Central

    Jiang, Jingkun; Oberdörster, Günter; Elder, Alison; Gelein, Robert; Mercer, Pamela; Biswas, Pratim

    2010-01-01

    A method to investigate the dependence of the physicochemical properties of nanoparticles (e.g. size, surface area and crystal phase) on their oxidant generating capacity is proposed and demonstrated for TiO2 nanoparticles. Gas phase synthesis methods that allow for strict control of size and crystal phase were used to prepare TiO2 nanoparticles. The reactive oxygen species (ROS) generating capacity of these particles was then measured. The size dependent ROS activity was established using TiO2 nanoparticles of 9 different sizes (4 – 195 nm) but the same crystal phase. For a fixed total surface area, an S-shaped curve for ROS generation per unit surface area was observed as a function of particle size. The highest ROS activity per unit area was observed for 30 nm particles, and observed to be constant above 30 nm. There was a decrease in activity per unit area as size decreased from 30 nm to 10 nm; and again constant for particles smaller than 10 nm. The correlation between crystal phase and oxidant capacity was established using TiO2 nanoparticles of 11 different crystal phase combinations but similar size. The ability of different crystal phases of TiO2 nanoparticles to generate ROS was highest for amorphous, followed by anatase, and then anatase/rutile mixtures, and lowest for rutile samples. Based on evaluation of the entire dataset, important dose metrics for ROS generation are established. Their implications of these ROS studies on biological and toxicological studies using nanomaterials are discussed. PMID:20827377

  2. Selective removal of alkali metal cations from multiply-charged ions via gas-phase ion/ion reactions using weakly coordinating anions.

    PubMed

    Luongo, Carl A; Bu, Jiexun; Burke, Nicole L; Gilbert, Joshua D; Prentice, Boone M; Cummings, Steven; Reed, Christopher A; McLuckey, Scott A

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 (-)), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 (-)). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations. PMID:25560986

  3. Selective Removal of Alkali Metal Cations from Multiply-Charged Ions via Gas-Phase Ion/Ion Reactions Using Weakly Coordinating Anions

    NASA Astrophysics Data System (ADS)

    Luongo, Carl A.; Bu, Jiexun; Burke, Nicole L.; Gilbert, Joshua D.; Prentice, Boone M.; Cummings, Steven; Reed, Christopher A.; McLuckey, Scott A.

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 -), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 -). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations.

  4. Microstructure and Performance of Kovar/Alumina Joints Made with Silver-Copper Base Active Metal Braze Alloys

    SciTech Connect

    STEPHENS, JOHN J.; VIANCO,PAUL T.; HLAVA,PAUL F.; WALKER,CHARLES A.

    1999-12-15

    Poor hermeticity performance was observed for Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3} ceramic-ceramic joints having a Kovar{trademark} alloy interlayer. The active Ag-Cu-Ti filler metal was used to braze the substrates together. The Ti active element was scavenged from the filler metal by the formation of a (Fe, Ni, Co){sub x}Ti phase (x= 2-3) that prevented development of a continuous Ti{sub x}O{sub y} layer at the filler metal/Al{sub 2}O{sub 3} interface. Altering the process parameters did not circumvent the scavenging of Ti. Molybdenum barrier layers 1000, 2500, or 5000 {angstrom} thick on the Kovar{trademark} surfaces successfully allowed Ti{sub x}O{sub y} formation at the filler metal/Al{sub 2}O{sub 3} interface and hermetic joints. The problems with the Ag-Cu-Ti filler metal for Kovar{trademark}/Al{sub 2}O{sub 3} braze joints led to the evaluation of a Ag-Cu-Zr filler metal. The Zr (active element) in Ag-Cu-Zr filler metal was not susceptible to the scavenging problem.

  5. Freestyle Writing: A Three-Phase Expressive Writing Activity.

    ERIC Educational Resources Information Center

    Macciomei, Nancy R.

    1992-01-01

    A teacher describes use of a three-phase freestyle writing activity to encourage students with disabilities to develop independent expressive written language. Students develop their skills by writing for brief periods, first whatever comes to mind, then a self-selected topic, and subsequently a teacher-selected topic. (DB)

  6. Exploring Systematic Effects in the Relation Between Stellar Mass, Gas Phase Metallicity, and Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.; Conroy, Charlie

    2016-08-01

    There is evidence that the well-established mass-metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ˜130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%-55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.

  7. Precipitation of sigma and chi phases in δ-ferrite of Type 316FR weld metals

    SciTech Connect

    Chun, Eun Joon; Baba, Hayato; Nishimoto, Kazutoshi; Saida, Kazuyoshi

    2013-12-15

    The decomposition behavior and kinetics of δ-ferrite are examined using aging treatments between 873 and 1073 K for Type 316FR stainless steel weld metals with different solidification modes (316FR AF, 316FR FA). The dominant precipitates are sigma, chi, and secondary austenite nucleated at δ-ferrite/austenite interfaces or in the interior of the ferrite grains. These precipitates consume all the ferrite during isothermal aging in both 316FR AF and FA weld metals. Differences in the precipitation behavior (precipitation initiation time and precipitation speed) between weld metals can be explained by i) the degree of Cr and Mo microsegregation within δ-ferrite or austenite near ferrite and ii) the nucleation sites induced due to the solidification mode (AF or FA), such as the ferrite amount. For both weld materials, a Johnson–Mehl-type equation can express the precipitation behavior of the sigma + chi phases and quantitatively predict the behavior at the service-exposure temperatures of a fast breed reactor. - Highlights: • Precipitation of σ and χ phase in Type 316FR welds (two solidification modes) • Different precipitation behaviors: precipitation initiation time and growth speed • Johnson-Mehl–type equation is the most applicable to the precipitation behaviors • Precipitation behaviors are predicted under service conditions of FBRs.

  8. Ultrathin phase-change coatings on metals for electrothermally tunable colors

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Ayas, Sencer; Saidzoda, Tohir; Celebi, Kemal; Dana, Aykutlu

    2016-08-01

    Metal surfaces coated with ultrathin lossy dielectrics enable color generation through strong interferences in the visible spectrum. Using a phase-change thin film as the coating layer offers tuning the generated color by crystallization or re-amorphization. Here, we study the optical response of surfaces consisting of thin (5-40 nm) phase-changing Ge2Sb2Te5 (GST) films on metal, primarily Al, layers. A color scale ranging from yellow to red to blue that is obtained using different thicknesses of as-deposited amorphous GST layers turns dim gray upon annealing-induced crystallization of the GST. Moreover, when a relatively thick (>100 nm) and lossless dielectric film is introduced between the GST and Al layers, optical cavity modes are observed, offering a rich color gamut at the expense of the angle independent optical response. Finally, a color pixel structure is proposed for ultrahigh resolution (pixel size: 5 × 5 μm2), non-volatile displays, where the metal layer acting like a mirror is used as a heater element. The electrothermal simulations of such a pixel structure suggest that crystallization and re-amorphization of the GST layer using electrical pulses are possible for electrothermal color tuning.

  9. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-01

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency. PMID:26431263

  10. Interaction of metallic clusters with biologically active curcumin molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  11. Immunologically active metallic ion-containing polysaccharides of Achyrocline satureioides.

    PubMed

    Puhlmann, J; Knaus, U; Tubaro, L; Schaefer, W; Wagner, H

    1992-08-01

    Two homogeneous, metallic ion-containing pectic polysaccharides with mean M(r)s of 7600 and 15,000 were isolated from dried aerial parts of Achyrocline satureioides by anion exchange column chromatography on DEAE-Sepharose CL-6B and gel filtration column chromatography on Fractogel TSK HW-50 (S). The structures, as determined by methylation analysis, carboxyl reduction, and partial acid hydrolysis, were shown to be rhamnogalacturonans. Both pectins show a pronounced anticomplementary effect in vitro. The larger carbohydrate AS 4 of higher M(r) exerts anti-inflammatory activity and a strong enhancement of phagocytosis in vivo.

  12. Development of structure-activity relationship for metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Zhang, Hai Yuan; Ji, Zhao Xia; Rallo, Robert; Xia, Tian; Chang, Chong Hyun; Nel, Andre; Cohen, Yoram

    2013-05-01

    Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were evaluated, based on an initial pool of thirty NP descriptors. The conduction band energy and ionic index (often correlated with the hydration enthalpy) were identified as suitable NP descriptors that are consistent with suggested toxicity mechanisms for metal oxide NPs and metal ions. The best performing nano-SAR with the above two descriptors, built with support vector machine (SVM) model and of validated robustness, had a balanced classification accuracy of ~94%. An applicability domain for the present data was established with a reasonable confidence level of 80%. Given the potential role of nano-SARs in decision making, regarding the environmental impact of NPs, the class probabilities provided by the SVM nano-SAR enabled the construction of decision boundaries with respect to toxicity classification under different acceptance levels of false negative relative to false positive predictions.Nanomaterial structure-activity relationships (nano-SARs) for metal oxide nanoparticles (NPs) toxicity were investigated using metrics based on dose-response analysis and consensus self-organizing map clustering. The NP cellular toxicity dataset included toxicity profiles consisting of seven different assays for human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cells, over a concentration range of 0.39-100 mg L-1 and exposure time up to 24 h, for twenty-four different metal oxide NPs. Various nano-SAR building models were

  13. Phase, microstructure and hydrogen storage properties of Mg-Ni materials synthesized from metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Shao, Huaiyu; Chen, Chunguang; Liu, Tong; Li, Xingguo

    2014-04-01

    After Mg and Ni nanoparticles were fabricated by hydrogen plasma metal reaction, Mg-rich MgxNi100-x(75 < x < 90) materials were synthesized from these metal nanoparticles to study the synergistic effects for hydrogen storage in these samples to show both good kinetics and high capacity. These MgxNi100-x materials may absorb hydrogen with a capacity of around 3.3-5.1 wt% in 1 min at 573 K. The Mg90Ni10 sample shows a hydrogen capacity of 6.1 wt%. The significant kinetic enhancement is thought to be due to the unique nanostructure from the special synthesis route, the catalytic effect of the Mg2Ni nano phase, and the synergistic effects between the Mg2Ni and Mg phases in the materials. An interesting phenomenon which has never been reported before was observed during pressure composition isotherm (PCT) measurements. One steep step in the absorption process and two obviously separated steps in the desorption process during PCT measurements of Mg80Ni20 and Mg90Ni10 samples were observed and a possible reason from the kinetic performance of the Mg2Ni and Mg phases in absorption and desorption processes was explained. These MgxNi100-x materials synthesized from Mg and Ni nanoparticles show high capacity and good kinetics, which makes these materials very promising candidates for thermal storage or energy storage and utilization for renewable power.

  14. Correlation between structural heterogeneity and plastic deformation for phase separating FeCu metallic glasses

    PubMed Central

    Peng, Chuan-Xiao; Song, Kai-Kai; Wang, Li; Şopu, Daniel; Pauly, Simon; Eckert, Jürgen

    2016-01-01

    Unlike crystalline metals, the plastic deformation of metallic glasses (MGs) involves a competition between disordering and structural relaxation ordering, which is not well understood, yet. Molecular dynamics (MD) simulations were performed to investigate the evolutions of strain localizations, short-range order (SRO) as well as the free volume in the glass during compressive deformation of Fe50Cu50 MGs with different degrees of phase separation. Our findings indicate that the free volume in the phase separating MGs decreases while the shear strain localizations increase with increasing degree of phase separation. Cu-centered clusters show higher potential energies and Voronoi volumes, and bear larger local shear strains. On the other hand, Fe-centered pentagon-rich clusters in Cu-rich regions seem to play an important role to resist the shear transformation. The dilatation or annihilation of Voronoi volumes is due to the competition between ordering via structural relaxation and shear stress-induced deformation. The present study could provide a better understanding of the relationship between the structural inhomogeneity and the deformation of MGs. PMID:27681052

  15. Directing carbon nanotubes from aqueous phase to o/w interface for heavy metal uptaking.

    PubMed

    Gao, Lili; Yin, Huayi; Mao, Xuhui; Zhu, Hua; Xiao, Wei; Wang, Dihua

    2015-09-01

    Separation and reuse of dispersed nanoparticles are major obstacles to the extensive application of nano-sized absorbents in wastewater treatment. Herein, we demonstrate the capability of directing acid-oxidized carbon nanotubes (CNTs) as the transfer vehicles of heavy metal ions from simulated wastewater. The heavy metal-loaded CNTs can be readily separated from the aqueous phase via the aggregation process at an oil/water (o/w) interface. The minimum surfactant amount to achieve 99 % transfer ratio (Tr) of 100 mg/L CNTs from water phase to o/w interface was ∼0.01 mM. The adsorption experiments showed that the removal efficiency of the divalent lead ions increased with an increase in CNT mass, and the subsequent addition of cetyltrimethylammonium bromide (CTAB) surfactant did not negatively impact the removal of soluble divalent lead species (Pb(II)). In a wide region of pH and ionic strength, both the decontamination of Pb(II) and the transfer of CNTs from water phase to o/w interface can be accomplished successively. The method presented in this study may be developed as a generic one for collecting or recycling the pollutant-loaded nano-sized absorbents.

  16. Phase, microstructure and hydrogen storage properties of Mg-Ni materials synthesized from metal nanoparticles.

    PubMed

    Shao, Huaiyu; Chen, Chunguang; Liu, Tong; Li, Xingguo

    2014-04-01

    After Mg and Ni nanoparticles were fabricated by hydrogen plasma metal reaction, Mg-rich MgxNi₁₀₀₋x(75 < x < 90) materials were synthesized from these metal nanoparticles to study the synergistic effects for hydrogen storage in these samples to show both good kinetics and high capacity. These MgxNi₁₀₀₋x materials may absorb hydrogen with a capacity of around 3.3-5.1 wt% in 1 min at 573 K. The Mg₉₀Ni₁₀ sample shows a hydrogen capacity of 6.1 wt%. The significant kinetic enhancement is thought to be due to the unique nanostructure from the special synthesis route, the catalytic effect of the Mg₂Ni nano phase, and the synergistic effects between the Mg₂Ni and Mg phases in the materials. An interesting phenomenon which has never been reported before was observed during pressure composition isotherm (PCT) measurements. One steep step in the absorption process and two obviously separated steps in the desorption process during PCT measurements of Mg₈₀Ni₂₀ and Mg₉₀Ni₁₀ samples were observed and a possible reason from the kinetic performance of the Mg₂Ni and Mg phases in absorption and desorption processes was explained. These MgxNi₁₀₀₋x materials synthesized from Mg and Ni nanoparticles show high capacity and good kinetics, which makes these materials very promising candidates for thermal storage or energy storage and utilization for renewable power.

  17. Control of in vivo (cellular) phleomycin sensitivity by nuclear genotype, growth phase, and metal ions

    SciTech Connect

    Moore, C.W.

    1982-03-01

    Nuclear genotype, growth phase, and the presence of metal ions all proved to be important in controlling the lethal effects of phleomycin in eukaryotic Saccharomyces cerevisiae. Among 120 normal and radiation-sensitive strains compared for their sensitivities to lethal effects of phleomycin, all mutant strains exhibiting enhanced sensitivities to phleomycin killing were also sensitive to killing by ionizing radiation. Mutants exhibiting sensitivities to phleomycin similar to normal strains of the same ploidy were sensitive to ultraviolet radiation. We conclude that cellular recovery from phleomycin-induced damage in yeast depends upon the function of some or all of 13 independent genes and upon at least some of the same steps in cellular pathways for the biological repair of damage by ionizing radiation. In this respect, the action of phleomycin is similar to the action of its structurally similar analog, bleomycin, even though phleomycin was substantially more cytotoxic. Stationary-phase haploid yeast cells were more sensitive than exponentially growing cells to killing by phleomycin. Survival of stationary-phase yeast was reduced to 0.3 +/- 0.07% (S.E.) after 20-min exposures to phleomycin (1 microgram/ml; approximately 6.7 x 10(-7) M), but lethal effects of phleomycin were completely eradicated (98% survival) by the presence of 0.05 M ethylenediaminetetraacetate during the treatment period. The inactivation indicates an important role for one or more metal ion(s) in the in vivo toxicity of the phleomycin-bleomycin group of anticancer antibiotics.

  18. Correlation between structural heterogeneity and plastic deformation for phase separating FeCu metallic glasses

    NASA Astrophysics Data System (ADS)

    Peng, Chuan-Xiao; Song, Kai-Kai; Wang, Li; Şopu, Daniel; Pauly, Simon; Eckert, Jürgen

    2016-09-01

    Unlike crystalline metals, the plastic deformation of metallic glasses (MGs) involves a competition between disordering and structural relaxation ordering, which is not well understood, yet. Molecular dynamics (MD) simulations were performed to investigate the evolutions of strain localizations, short-range order (SRO) as well as the free volume in the glass during compressive deformation of Fe50Cu50 MGs with different degrees of phase separation. Our findings indicate that the free volume in the phase separating MGs decreases while the shear strain localizations increase with increasing degree of phase separation. Cu-centered clusters show higher potential energies and Voronoi volumes, and bear larger local shear strains. On the other hand, Fe-centered pentagon-rich clusters in Cu-rich regions seem to play an important role to resist the shear transformation. The dilatation or annihilation of Voronoi volumes is due to the competition between ordering via structural relaxation and shear stress-induced deformation. The present study could provide a better understanding of the relationship between the structural inhomogeneity and the deformation of MGs.

  19. Directing carbon nanotubes from aqueous phase to o/w interface for heavy metal uptaking.

    PubMed

    Gao, Lili; Yin, Huayi; Mao, Xuhui; Zhu, Hua; Xiao, Wei; Wang, Dihua

    2015-09-01

    Separation and reuse of dispersed nanoparticles are major obstacles to the extensive application of nano-sized absorbents in wastewater treatment. Herein, we demonstrate the capability of directing acid-oxidized carbon nanotubes (CNTs) as the transfer vehicles of heavy metal ions from simulated wastewater. The heavy metal-loaded CNTs can be readily separated from the aqueous phase via the aggregation process at an oil/water (o/w) interface. The minimum surfactant amount to achieve 99 % transfer ratio (Tr) of 100 mg/L CNTs from water phase to o/w interface was ∼0.01 mM. The adsorption experiments showed that the removal efficiency of the divalent lead ions increased with an increase in CNT mass, and the subsequent addition of cetyltrimethylammonium bromide (CTAB) surfactant did not negatively impact the removal of soluble divalent lead species (Pb(II)). In a wide region of pH and ionic strength, both the decontamination of Pb(II) and the transfer of CNTs from water phase to o/w interface can be accomplished successively. The method presented in this study may be developed as a generic one for collecting or recycling the pollutant-loaded nano-sized absorbents. PMID:25966885

  20. Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors

    PubMed Central

    2012-01-01

    Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 − ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 − xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons. PMID:23092248

  1. Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes

    NASA Astrophysics Data System (ADS)

    Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.

    2004-08-01

    We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.

  2. Computational studies of adsorption in metal organic frameworks and interaction of nanoparticles in condensed phases

    SciTech Connect

    Annapureddy, HVR; Motkuri, RK; Nguyen, PTM; Truong, TB; Thallapally, PK; McGrail, BP; Dang, LX

    2014-02-05

    In this review, we describe recent efforts to systematically study nano-structured metal organic frameworks (MOFs), also known as metal organic heat carriers, with particular emphasis on their application in heating and cooling processes. We used both molecular dynamics and grand canonical Monte Carlo simulation techniques to gain a molecular-level understanding of the adsorption mechanism of gases in these porous materials. We investigated the uptake of various gases such as refrigerants R12 and R143a. We also evaluated the effects of temperature and pressure on the uptake mechanism. Our computed results compared reasonably well with available measurements from experiments, thus validating our potential models and approaches. In addition, we investigated the structural, diffusive and adsorption properties of different hydrocarbons in Ni-2(dhtp). Finally, to elucidate the mechanism of nanoparticle dispersion in condensed phases, we studied the interactions among nanoparticles in various liquids, such as n-hexane, water and methanol.

  3. Selective Gas-Phase Capture of Explosives on Metal Beta-diketonate Polymers

    SciTech Connect

    Harvey, Scott D.; Wenzel, Thomas J.

    2008-05-30

    A variety of metal beta-diketonate polymers were assessed for gas-phase selective retention of nitro aromatic, nitrate ester, and peroxide explosives. La(dihed) showed 13-42 times the retention for the nitro aromatics compared to a control column (identical column but lacking the 5% loading of the metal beta-diketonate polymer). Nitrate esters, the peroxide explosive TATP, and the taggant DMDNB were too strongly retained to elute from the La(dihed) column; however, these compounds could be eluted from the less retentive Cu(dihed) or Zn(dihed) columns. A Kovats index of 2124 for TNT the on the La(dihed) column compared to 1662 on the control illustrates the excellent discrimination against non-polar hydrocarbons, the principal matrix interference expected in air samples. A proof-of-principle experiment demonstrated analysis of an extrapolated 47 part-per trillion(v/v) of TNT in an air extract concentrate.

  4. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    PubMed

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented. PMID:27428852

  5. Existence of a metallic phase in a 1D Holstein Hubbard model at half filling

    NASA Astrophysics Data System (ADS)

    Krishna, Phani Murali; Chatterjee, Ashok

    2007-06-01

    The one-dimensional half-filled Holstein-Hubbard model is studied using a series of canonical transformations including phonon coherence effect that partly depends on the electron density and is partly independent and also incorporating the on-site and the nearest-neighbour phonon correlations and the exact Bethe-ansatz solution of Lieb and Wu. It is shown that choosing a better variational phonon state makes the polarons more mobile and widens the intermediate metallic region at the charge-density-wave-spin-density-wave crossover recently predicted by Takada and Chatterjee. The presence of this metallic phase is indeed a favourable situation from the point of view of high temperature superconductivity.

  6. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    PubMed

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented.

  7. Accumulation of fossil fuels and metallic minerals in active and ancient rift lakes

    USGS Publications Warehouse

    Robbins, E.I.

    1983-01-01

    A study of active and ancient rift systems around the world suggests that accumulations of fossil fuels and metallic minerals are related to the interactions of processes that form rift valleys with those that take place in and around rift lakes. The deposition of the precursors of petroleum, gas, oil shale, coal, phosphate, barite, Cu-Pb-Zn sulfides, and uranium begins with erosion of uplifted areas, and the consequent input of abundant nutrients and solute loads into swamps and tectonic lakes. Hot springs and volcanism add other nutrients and solutes. The resulting high biological productivity creates oxidized/reduced interfaces, and anoxic and H2S-rich bottom waters which preserves metal-bearing organic tissues and horizons. In the depositional phases, the fine-grained lake deposits are in contact with coarse-grained beach, delta, river, talus, and alluvial fan deposits. Earthquake-induced turbidites also are common coarse-grained deposits of rift lakes. Postdepositional processes in rifts include high heat flow and a resulting concentration of the organic and metallic components that were dispersed throughout the lakebeds. Postdepositional faulting brings organic- and metal-rich sourcebeds in contact with coarse-grained host and reservoir rocks. A suite of potentially economic deposits is therefore a characteristic of rift valleys. ?? 1983.

  8. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING

    SciTech Connect

    LICHTENBERGER, DENNIS L.

    2002-03-26

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems.

  9. Pontine respiratory activity involved in inspiratory/expiratory phase transition

    PubMed Central

    Mörschel, Michael; Dutschmann, Mathias

    2009-01-01

    Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can habituate in vivo. Thus, habituation reduces sensory feedback, so the role of the pons, and specifically the KF, for IE phase transition may increase dramatically. Pontine-mediated control of the IE phase transition is not completely understood. In the present review, we discuss existing models for ponto-medullary interaction that may be involved in the control of inspiratory duration and IE transition. We also present intracellular recordings of pontine respiratory units derived from an in situ intra-arterially perfused brainstem preparation of rats. With the absence of lung inflation, this preparation generates a normal respiratory pattern and many of the recorded pontine units demonstrated phasic respiratory-related activity. The analysis of changes in membrane potentials of pontine respiratory neurons has allowed us to propose a number of pontine-medullary interactions not considered before. The involvement of these putative interactions in pontine-mediated control of IE phase transitions is discussed. PMID:19651653

  10. Gamma power is phase-locked to posterior alpha activity.

    PubMed

    Osipova, Daria; Hermes, Dora; Jensen, Ole

    2008-01-01

    Neuronal oscillations in various frequency bands have been reported in numerous studies in both humans and animals. While it is obvious that these oscillations play an important role in cognitive processing, it remains unclear how oscillations in various frequency bands interact. In this study we have investigated phase to power locking in MEG activity of healthy human subjects at rest with their eyes closed. To examine cross-frequency coupling, we have computed coherence between the time course of the power in a given frequency band and the signal itself within every channel. The time-course of the power was calculated using a sliding tapered time window followed by a Fourier transform. Our findings show that high-frequency gamma power (30-70 Hz) is phase-locked to alpha oscillations (8-13 Hz) in the ongoing MEG signals. The topography of the coupling was similar to the topography of the alpha power and was strongest over occipital areas. Interestingly, gamma activity per se was not evident in the power spectra and only became detectable when studied in relation to the alpha phase. Intracranial data from an epileptic subject confirmed these findings albeit there was slowing in both the alpha and gamma band. A tentative explanation for this phenomenon is that the visual system is inhibited during most of the alpha cycle whereas a burst of gamma activity at a specific alpha phase (e.g. at troughs) reflects a window of excitability. PMID:19098986

  11. Matrix-assisted laser desorption mass spectrometry of gas-phase peptide-metal complexes

    NASA Astrophysics Data System (ADS)

    Hortal, Ana R.; Hurtado, Paola; Martínez-Haya, Bruno

    2008-12-01

    Cation attachment to a model peptide has been investigated in matrix-assisted laser desorption experiments. Angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) is chosen as a system for study, and Cu2+ and K+ salts are used as cationizing agents. Three fundamentally different types of samples are investigated: (1) a crystalline sample of Ang I, metal salt and MALDI matrix, prepared with the conventional dried droplet method; (2) a solvent-free fine powder mixture of the same three compounds, and (3) a solution of the angiotensin and the metal salt in an ionic liquid matrix (a molten organic salt that acts as a MALDI active solvent). Effective protonation and cationization of the peptide are achieved with the three methods. The transition metal systematically provides more efficient cationization than the alkali metal. At sufficiently high concentration of the salt, the attachment of up to four copper cations to the angiotensin is observed in the MALDI spectrum. In contrast, only one K+ cation is efficiently bound to the peptide. For a given salt concentration, the highest degree of cationization is obtained in the laser desorption from the ionic liquid matrix. This is attributed to the efficient transfer of free metal cations to the desorption plume, where the complexation takes place.

  12. Fluorous-assisted metal chelate affinity extraction technique for analysis of protein kinase activity.

    PubMed

    Hayama, Tadashi; Kiyokawa, Ena; Yoshida, Hideyuki; Imakyure, Osamu; Yamaguchi, Masatoshi; Nohta, Hitoshi

    2016-08-15

    We have developed a fluorous affinity-based extraction method for measurement of protein kinase activity. In this method, a fluorescent peptide substrate was phosphorylated by a protein kinase, and the obtained phosphopeptide was selectively captured with Fe(III)-immobilized perfluoroalkyliminodiacetic acid reagent via a metal chelate affinity technique. Next, the captured phosphopeptide was selectively extracted into a fluorous solvent mixture, tetradecafluorohexane and 1H,1H,2H,2H-tridecafluoro-1-n-octanol (3:1, v/v), using the specificity of fluorous affinity (fluorophilicity). In contrast, the remained substrate peptide in the aqueous (non-fluorous) phase was easily measured fluorimetrically. Finally, the enzyme activity could be assayed by measuring the decrease in fluorescence. The feasibility of this method was demonstrated by applying the method for measurement of the activity of cAMP-dependent protein kinase (PKA) using its substrate peptide (kemptide) pre-labeled with carboxytetramethylrhodamine (TAMRA).

  13. Note: Void effects on eddy current distortion in two-phase liquid metal.

    PubMed

    Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M

    2015-10-01

    A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf. PMID:26521001

  14. Method for preparing surfaces of metal composites having a brittle phase for plating. [Patent application

    DOEpatents

    Coates, C.W.; Wilson, T.J.

    1982-05-19

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composite are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  15. PHASE-FIELD SIMULATION OF IRRADIATED METALS: PART II: GAS BUBBLE KINETICS

    SciTech Connect

    Paul C Millett; Anter El-Azab

    2011-01-01

    We present a phase-field model for inert gas bubble formation and evolution in irradiated metals. The model evolves vacancy, self-interstitial, and fission gas atoms through a coupled set of Cahn-Hilliard and Allen-Cahn equations, capturing the processes of defect generation, recombination, annihilation at GB sinks, as well as intragranular and intergranular bubble nucleation and growth in polycrystalline microstructures. Illustrative results are presented that characterize bubble growth and shrinkage, as well as the bubble density, size and nucleation rate as a function of varying irradiation conditions. Finally, intergranular bubble characteristics such as shape, pinning energy on GB motion, and bubble density are investigated.

  16. Influence of phase transformation on stress evolution during growth of metal thin films on silicon.

    PubMed

    Fillon, A; Abadias, G; Michel, A; Jaouen, C; Villechaise, P

    2010-03-01

    In situ stress measurements during two-dimensional growth of low mobility metal films on amorphous Si were used to demonstrate the impact of interface reactivity and phase transformation on stress evolution. Using Mo1-xSix films as examples, the results show that the tensile stress rise, which develops after the film has become crystalline, is correlated with an increase in lateral grain size. The origin of the tensile stress is attributed to the volume change resulting from the alloy crystallization, which occurs at a concentration-dependent critical thickness. PMID:20366996

  17. Optimization of Phase Change Memory with Thin Metal Inserted Layer on Material Properties

    NASA Astrophysics Data System (ADS)

    Harnsoongnoen, Sanchai; Sa-Ngiamsak, Chiranut; Siritaratiwat, Apirat

    This works reports, for the first time, the thorough study and optimisation of Phase Change Memory (PCM) structure with thin metal inserted chalcogenide via electrical resistivity (ρ) using finite element modeling. PCM is one of the best candidates for next generation non-volatile memory. It has received much attention recently due to its fast write speed, non-destructive readout, superb scalability, and great compatibility with current silicon-based mass fabrication. The setback of PCM is a high reset current typically higher than 1mA based on 180nm lithography. To reduce the reset current and to solve the over-programming failure, PCM with thin metal inserted chalcogenide (bottom chalcogenide/metal inserted/top chalcogenide) structure has been proposed. Nevertheless, reports on optimisation of the electrical resistivity using the finite element method for this new PCM structure have never been published. This work aims to minimize the reset current of this PCM structure by optimizing the level of the electrical resistivity of the PCM profile using the finite element approach. This work clearly shows that PCM characteristics are strongly affected by the electrical resistivity. The 2-D simulation results reveal clearly that the best thermal transfer of and self-joule-heating at the bottom chalcogenide layer can be achieved under conditions; ρ_bottom chalcogenide > ρ_metal inserted > ρ_top chalcogenide More specifically, the optimized electrical resistivity of PCMTMI is attained with ρ_top chalcogenide: ρ_metal inserted: ρ_bottom chalcogenide ratio of 1:6:16 when ρ_top chalcogenide is 10-3 Ωm. In conclusion, high energy efficiency can be obtained with the reset current as low as 0.3mA and with high speed operation of less than 30ns.

  18. On the bad metallicity and phase diagrams of Fe1+δX (X =Te, Se, S, solid solutions): an electrical resistivity study

    NASA Astrophysics Data System (ADS)

    El Massalami, M.; Deguchi, K.; Machida, T.; Takeya, H.; Takano, Y.

    2014-12-01

    Based on a systematic analysis of the thermal evolution of the resistivities of Fe-based chalcogenides Fe1+δTe1-xXx (X = Se, S), it is inferred that their often observed nonmetallic resistivities are related to a presence of two resistive channels: one is a high- temperature thermally-activated process while the other is a low-temperature log-in-T process. On lowering temperature, there are often two metal-to-nonmetall crossover events: one from the high-T thermally-activated nonmetallic regime into a metal-like phase and the other from the log-in-T regime into a second metal-like phase. Based on these events, together with the magnetic and superconducting transitions, a phase diagram is constructed for each series. We discuss the origin of both processes as well as the associated crossover events. We also discuss how these resistive processes are being influenced by pressure, intercalation, disorder, doping, or sample condition and, in turn, how these modifications are shaping the associated phase diagrams.

  19. Metal-Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials.

    PubMed

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-01-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.

  20. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    PubMed Central

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-01-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows. PMID:27033314

  1. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review.

    PubMed

    Tang, Malcolm S Y; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Show, Pau Loke

    2016-08-19

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology. PMID:27396920

  2. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review

    NASA Astrophysics Data System (ADS)

    Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau

    2016-08-01

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.

  3. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    NASA Astrophysics Data System (ADS)

    Sun, Y. F.; Wei, B. C.; Wang, Y. R.; Li, W. H.; Cheung, T. L.; Shek, C. H.

    2005-08-01

    Zr48.5Cu46.5Al5 bulk metallic glass matrix composites with diameters of 3 and 4mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr2Cu and plate-like Cu10Zr7 compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  4. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-04-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.

  5. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    SciTech Connect

    Sun, Y.F.; Wei, B.C.; Wang, Y.R.; Li, W.H.; Cheung, T.L.; Shek, C.H.

    2005-08-01

    Zr{sub 48.5}Cu{sub 46.5}Al{sub 5} bulk metallic glass matrix composites with diameters of 3 and 4 mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr{sub 2}Cu and plate-like Cu{sub 10}Zr{sub 7} compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  6. Generation, detection and characterization of gas-phase transition metal aggregates and compounds. Final technical report, September 15, 1991--July 14, 1994

    SciTech Connect

    Steimle, T.C.

    1994-11-12

    The goal of this research project has been to identify and characterize small gas-phase metal containing molecules and relate these properties to proposed reaction mechanisms. Of particular emphasis has been the elucidation of the mechanism for activation of C-H, N-H, S-H, and C-C bonds in CH{sub 4}, HCCH, H{sub 2}S and NH{sub 3} by platinum, titanium, molybdenum, and niobium.

  7. Therapeutic inhibition of the early phase of complement activation.

    PubMed

    Roos, Anja; Ramwadhdoebé, Tamara H; Nauta, Alma J; Hack, C Erik; Daha, Mohamed R

    2002-09-01

    The complement system is a key component of innate immunity against invading pathogens. However, undesired activation of complement is involved in inflammation and associated tissue damage in a number of pathological conditions, such as ischemia/reperfusion injury, autoimmune diseases, and rejection of allo- and xenografts. During recent years, various therapeutically active complement inhibitors have been developed. In vivo studies using these inhibitors underscored the value of complement inhibition in the prevention of tissue damage. The currently available complement inhibitors mainly target the effector phase of the complement system that is common to all three activation pathways. Such a complete block of complement activation breaks the innate anti-microbial barrier, thereby increasing the risk for infection. Therefore, the development of potent complement inhibitors that interfere in the recognition phase of a specific complement activation pathway will generate important novel possibilities for treatment. The present review is focused on molecules that are able to inhibit the function of C1q and MBL, the recognition units of the classical pathway and the lectin pathway of complement, respectively. The potential value of these molecules for the development of therapeutically active complement inhibitors is discussed.

  8. Anomalous large electrical capacitance of planar microstructures with vanadium dioxide films near the insulator-metal phase transition

    SciTech Connect

    Aliev, V. Sh. Bortnikov, S. G.; Badmaeva, I. A.

    2014-03-31

    The temperature dependence of electrical capacitance of planar microstructures with vanadium dioxide (VO{sub 2}) film near the insulator-metal phase transition has been investigated at the frequency of 1 MHz. Electrical capacitance measurements of the microstructures were performed by the technique based on the using of a two-terminal resistor-capacitor module simulating the VO{sub 2} layer behavior at the insulator-metal phase transition. At temperatures 325–342 K, the anomalous increase in microstructures capacitance was observed. Calculation of electric field in the microstructure showed that VO{sub 2} relative permittivity (ε) reaches ∼10{sup 8} at the percolation threshold. The high value of ε can be explained by the fractal nature of the interface between metal and insulator clusters formed near the insulator-metal phase transition.

  9. Phase Segregation of Passive Advective Particles in an Active Medium

    NASA Astrophysics Data System (ADS)

    Das, Amit; Polley, Anirban; Rao, Madan

    2016-02-01

    Localized contractile configurations or asters spontaneously appear and disappear as emergent structures in the collective stochastic dynamics of active polar actomyosin filaments. Passive particles which (un)bind to the active filaments get advected into the asters, forming transient clusters. We study the phase segregation of such passive advective scalars in a medium of dynamic asters, as a function of the aster density and the ratio of the rates of aster remodeling to particle diffusion. The dynamics of coarsening shows a violation of Porod behavior; the growing domains have diffuse interfaces and low interfacial tension. The phase-segregated steady state shows strong macroscopic fluctuations characterized by multiscaling and intermittency, signifying rapid reorganization of macroscopic structures. We expect these unique nonequilibrium features to manifest in the actin-dependent molecular clustering at the cell surface.

  10. A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications

    NASA Astrophysics Data System (ADS)

    Sharma, Anesh K.; Gautam, Ashu K.; Farinelli, Paola; Dutta, Asudeb; Singh, S. G.

    2015-03-01

    The design, fabrication and measurement of a 5 bit Ku band MEMS phase shifter in different configurations, i.e. a coplanar waveguide and microstrip, are presented in this work. The development architecture is based on the hybrid approach of switched and loaded line topologies. All the switches are monolithically manufactured on a 200 µm high resistivity silicon substrate using 4 inch diameter wafers. The first three bits (180°, 90° and 45°) are realized using switched microstrip lines and series ohmic MEMS switches whereas the fourth and fifth bits (22.5° and 11.25°) consist of microstrip line sections loaded by shunt ohmic MEMS devices. Individual bits are fabricated and evaluated for performance and the monolithic device is a 5 bit Ku band (16-18 GHz) phase shifter with very low average insertion loss of the order of 3.3 dB and a return loss better than 15 dB over the 32 states with a chip area of 44 mm2. A total phase shift of 348.75° with phase accuracy within 3° is achieved over all of the states. The performance of individual bits has been optimized in order to achieve an integrated performance so that they can be implemented into active electronically steerable antennas for phased array applications.

  11. Strain-dependent ultrafast dynamics of insulator-to-metal phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Lysenko, Sergiy; Rua, Armando; Figueroa, Jose; Fernandez, Felix

    Much attention has been devoted recently to visualize and understand the strain effects in phase transition dynamics of vanadium oxide materials. In this study, using femtosecond angle-resolved light scattering technique we show strong influence of internal misfit strain in epitaxial VO2(M1) films on insulator-to-metal phase transition within less than 1 ps. Anisotropic strain in twinned domains and in domains of different size results mostly in antiphase oscillatory dynamics of coherent phonons. Depending on domain pattern and type of the substrate, this dynamics was found to be dependent on azimuthal angle and/or on spatial frequency of surface roughness. The origin of observed photoinduced antiphase oscillations is associated with compressive and tensile strain in VO2 domains which alters the initial phase of the oscillations. In contrast to pure VO2(M1), the Cr-doped VO2(M2) shows strong phonon scattering signatures with noticeable random component in the phase of coherent phonons. This material is based upon work supported by the U. S. Army Research Laboratory and the U. S. Army Research Office under Contract Number W911NF-15-1-0448.

  12. Pressure induced magnetic and semiconductor–metal phase transitions in Cr2MoO6

    NASA Astrophysics Data System (ADS)

    San-Dong, Guo

    2016-05-01

    We investigate magnetic ordering and electronic structures of Cr2MoO6 under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electronic structures of Cr2MoO6. The insulating nature at the experimental crystal structure is produced, with a band gap of 1.04 eV, and the magnetic moment of the Cr atom is 2.50 μ B, compared to an experimental value of about 2.47 μ B. The calculated results show that an antiferromagnetic inter-bilayer coupling–ferromagnetic intra-bilayer coupling to a ferromagnetic inter-bilayer coupling–antiferromagnetic intra-bilayer coupling phase transition is produced with the pressure increasing. The magnetic phase transition is simultaneously accompanied by a semiconductor–metal phase transition. The magnetic phase transition can be explained by the Mo–O hybridization strength, and ferromagnetic coupling between two Cr atoms can be understood by empty Mo-d bands perturbing the nearest O-p orbital. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS073).

  13. Pressure induced magnetic and semiconductor-metal phase transitions in Cr2MoO6

    NASA Astrophysics Data System (ADS)

    San-Dong, Guo

    2016-05-01

    We investigate magnetic ordering and electronic structures of Cr2MoO6 under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electronic structures of Cr2MoO6. The insulating nature at the experimental crystal structure is produced, with a band gap of 1.04 eV, and the magnetic moment of the Cr atom is 2.50 μ B, compared to an experimental value of about 2.47 μ B. The calculated results show that an antiferromagnetic inter-bilayer coupling-ferromagnetic intra-bilayer coupling to a ferromagnetic inter-bilayer coupling-antiferromagnetic intra-bilayer coupling phase transition is produced with the pressure increasing. The magnetic phase transition is simultaneously accompanied by a semiconductor-metal phase transition. The magnetic phase transition can be explained by the Mo-O hybridization strength, and ferromagnetic coupling between two Cr atoms can be understood by empty Mo-d bands perturbing the nearest O-p orbital. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS073).

  14. The Influence of MSI (Metal-Support Interactions) and the Solvent in Liquid-Phase Reactions

    SciTech Connect

    Vannice, M. A.

    2003-05-30

    Results were repeatedly obtained that were consistent with a hypothesis proposed at the beginning of this program, i.e., due to Metal-Support Interactions (MSI), unique active sites can be created in the metal-support interfacial region to enhance activity and improve selectivity in certain types of reactions, especially those involving the hydrogenation of carbonyl and unsaturated C=C bonds. Higher turnover frequencies (TOF-molecule/s/site) and increased selectivity for C=O bond versus C=C bond hydrogenation was established in the hydrogenation reactions of: acetone, crotonaldehyde, acetophenone, phenylethanol, acetylcyclohexane, benzaldehyde, benzyl alcohol, phenylacetaldehyde and citral over Pt/TiO{sub 2} MSI catalysts. Higher rates of hydrogenation benzene, toluene and xylene could be obtained over certain supported Pt and Pd catalysts. Au/TiO{sub 2} catalysts were developed that were active for CO hydrogenation at subambient temperatures. The influence of support and metal crystallite size were established for the adsorption of H{sub 2}, CO and O{sub 2} on families of Pt and Pd catalysts.

  15. Active-Site-Accessible, Porphyrinic Metal;#8722;Organic Framework Materials

    SciTech Connect

    Farha, Omar K.; Shultz, Abraham M.; Sarjeant, Amy A.; Nguyen, SonBinh T.; Hupp, Joseph T.

    2012-02-06

    On account of their structural similarity to cofactors found in many metallo-enzymes, metalloporphyrins are obvious potential building blocks for catalytically active, metal-organic framework (MOF) materials. While numerous porphyrin-based MOFs have already been described, versions featuring highly accessible active sites and permanent microporosity are remarkably scarce. Indeed, of the more than 70 previously reported porphyrinic MOFs, only one has been shown to be both permanently microporous and contain internally accessible active sites for chemical catalysis. Attempts to generalize the design approach used in this single successful case have failed. Reported here, however, is the synthesis of an extended family of MOFs that directly incorporate a variety of metalloporphyrins (specifically Al{sup 3+}, Zn{sup 2+}, Pd{sup 2+}, Mn{sup 3+}, and Fe{sup 3+} complexes). These robust porphyrinic materials (RPMs) feature large channels and readily accessible active sites. As an illustrative example, one of the manganese-containing RPMs is shown to be catalytically competent for the oxidation of alkenes and alkanes.

  16. Phytochelatin synthase activity as a marker of metal pollution.

    PubMed

    Zitka, Ondrej; Krystofova, Olga; Sobrova, Pavlina; Adam, Vojtech; Zehnalek, Josef; Beklova, Miroslava; Kizek, Rene

    2011-08-30

    The synthesis of phytochelatins is catalyzed by γ-Glu-Cys dipeptidyl transpeptidase called phytochelatin synthase (PCS). Aim of this study was to suggest a new tool for determination of phytochelatin synthase activity in the tobacco BY-2 cells treated with different concentrations of the Cd(II). After the optimization steps, an experiment on BY-2 cells exposed to different concentrations of Cd(NO(3))(2) for 3 days was performed. At the end of the experiment, cells were harvested and homogenized. Reduced glutathione and cadmium (II) ions were added to the cell suspension supernatant. These mixtures were incubated at 35°C for 30min and analysed using high performance liquid chromatography coupled with electrochemical detector (HPLC-ED). The results revealed that PCS activity rises markedly with increasing concentration of cadmium (II) ions. The lowest concentration of the toxic metal ions caused almost three fold increase in PCS activity as compared to control samples. The activity of PCS (270fkat) in treated cells was more than seven times higher in comparison to control ones. K(m) for PCS was estimated as 2.3mM. PMID:21715087

  17. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite.

    PubMed

    Hrenovic, Jasna; Milenkovic, Jelena; Daneu, Nina; Kepcija, Renata Matonickin; Rajic, Nevenka

    2012-08-01

    The antimicrobial activity of Cu(2)O, ZnO and NiO nanoparticles supported onto natural clinoptilolite was investigated in the secondary effluent under dark conditions. After 24h of contact the Cu(2)O and ZnO nanoparticles reduced the numbers of viable bacterial cells of Escherichia coli and Staphylococcus aureus in pure culture for four to six orders of magnitude and showed consistent 100% of antibacterial activity against native E. coli after 1h of contact during 48 exposures. The antibacterial activity of NiO nanoparticles was less efficient. The Cu(2)O and NiO nanoparticles showed 100% of antiprotozoan activity against Paramecium caudatum and Euplotes affinis after 1h of contact, while ZnO nanoparticles were less efficient. The morphology and crystallinity of the nanoparticles were not affected by microorganisms. The metal oxide nanoparticles could find a novel application in the disinfection of secondary effluent and removal of pathogenic microorganisms in the tertiary stage of wastewater treatment.

  18. Solidification microstructures and phase transformations in Al-Ti-Si-Mn deoxidized steel weld metals

    NASA Astrophysics Data System (ADS)

    Kluken, A. O.; Grong, Ø.; Rørvik, G.

    1990-07-01

    The present investigation is concerned with basic studies of solidification mechanisms in Al-Ti-Si-Mn deoxidized steel weld metals. Assessment of the weld metal solidification micro-structures was done on the basis of optical microscopy in combination with secondary ion mass spectrometry (SIMS), while both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for characterization of indigenous oxide inclusions. It is shown that nonmetallic inclusions play a critical role in the development of the weld metal columnar grain structure by acting as inert substrates for nucleation of delta ferrite ahead of the advancing interface. The nucleation potency of the oxides increases in the order SiO2-MnO, Al2O3-Ti2O3-SiO2-MnO, A12O3, reflecting a corresponding increase in the inclusion/liquid interfacial energy. Moreover, a shift in the peritectic reaction (which facilitates growth of the austenite grains across the phosphorus-rich boundaries of the primary delta ferrite phase) has been observed in the presence of A12O3 inclusions. Indications are that the resulting decrease in the local phosphorus concentrations at the austenite grain boundaries will strongly alter the kinetics of the subsequent solid-state transformation reactions by promoting growth of grain boundary ferrite sideplates at the expense of intragranularly nucleated acicular ferrite.

  19. SOLID PHASE MICROEXTRACTION SAMPLING OF FIRE DEBRIS RESIDUES IN THE PRESENCE OF RADIONUCLIDE SURROGATE METALS

    SciTech Connect

    Duff, M; Keisha Martin, K; S Crump, S

    2007-03-23

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating highly radioactive fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of FD residue from radionuclide metals involves using solid phase microextraction (SPME) fibers to remove the residues of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most (radioactive) metals. The focus of this research was to develop an examination protocol that was applicable to safe work in facilities where high radiation doses are shielded from the workers (as in radioactive shielded cells or ''hot cells''). We also examined the affinity of stable radionuclide surrogate metals (Co, Ir, Re, Ni, Ba, Cs, Nb, Zr and Nd) for sorption by the SPME fibers. This was done under exposure conditions that favor the uptake of FD residues under conditions that will provide little contact between the SPME and the FD material (such as charred carpet or wood that contains commonly-used accelerants). Our results from mass spectrometric analyses indicate that SPME fibers show promise for use in the room temperature head space uptake of organic FD residue (namely, diesel fuel oil, kerosene, gasoline and paint thinner) with subsequent analysis by gas chromatography (GC) with mass spectrometric (MS) detection. No inorganic forms of ignitable fluids were included in this study.

  20. Pressure induced structural phase transition in IB transition metal nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  1. Abnormal correlation between phase transformation and cooling rate for pure metals.

    PubMed

    Han, J J; Wang, C P; Liu, X J; Wang, Y; Liu, Z-K; Zhang, T-Y; Jiang, J Z

    2016-01-01

    This work aims to achieve deep insight into the phenomenon of phase transformation upon rapid cooling in metal systems and reveal the physical meaning of scatter in the time taken to reach crystallization. The total number of pure metals considered in this work accounts for 14. Taking pure copper as an example, the correlation between phase selection of crystal or glass and cooling rate was investigated using molecular dynamic simulations. The obtained results demonstrate that there exists a cooling rate region of 6.3 × 10(11)-16.6 × 10(11) K/s, in which crystalline fractions largely fluctuate along with cooling rates. Glass transformation in this cooling rate region is determined by atomic structure fluctuation, which is controlled by thermodynamic factors. According to the feature of bond-orientation order at different cooling rates, we propose two mechanisms of glass formation: (i) kinetic retardation of atom rearrangement or structural relaxation at a high cooling rate; and (ii) competition of icosahedral order against crystal order near the critical cooling rate. PMID:26939584

  2. Abnormal correlation between phase transformation and cooling rate for pure metals

    PubMed Central

    Han, J. J.; Wang, C. P.; Liu, X. J.; Wang, Y.; Liu, Z.-K.; Zhang, T.-Y.; Jiang, J. Z.

    2016-01-01

    This work aims to achieve deep insight into the phenomenon of phase transformation upon rapid cooling in metal systems and reveal the physical meaning of scatter in the time taken to reach crystallization. The total number of pure metals considered in this work accounts for 14. Taking pure copper as an example, the correlation between phase selection of crystal or glass and cooling rate was investigated using molecular dynamic simulations. The obtained results demonstrate that there exists a cooling rate region of 6.3 × 1011–16.6 × 1011 K/s, in which crystalline fractions largely fluctuate along with cooling rates. Glass transformation in this cooling rate region is determined by atomic structure fluctuation, which is controlled by thermodynamic factors. According to the feature of bond-orientation order at different cooling rates, we propose two mechanisms of glass formation: (i) kinetic retardation of atom rearrangement or structural relaxation at a high cooling rate; and (ii) competition of icosahedral order against crystal order near the critical cooling rate. PMID:26939584

  3. Abnormal correlation between phase transformation and cooling rate for pure metals

    NASA Astrophysics Data System (ADS)

    Han, J. J.; Wang, C. P.; Liu, X. J.; Wang, Y.; Liu, Z.-K.; Zhang, T.-Y.; Jiang, J. Z.

    2016-03-01

    This work aims to achieve deep insight into the phenomenon of phase transformation upon rapid cooling in metal systems and reveal the physical meaning of scatter in the time taken to reach crystallization. The total number of pure metals considered in this work accounts for 14. Taking pure copper as an example, the correlation between phase selection of crystal or glass and cooling rate was investigated using molecular dynamic simulations. The obtained results demonstrate that there exists a cooling rate region of 6.3 × 1011–16.6 × 1011 K/s, in which crystalline fractions largely fluctuate along with cooling rates. Glass transformation in this cooling rate region is determined by atomic structure fluctuation, which is controlled by thermodynamic factors. According to the feature of bond-orientation order at different cooling rates, we propose two mechanisms of glass formation: (i) kinetic retardation of atom rearrangement or structural relaxation at a high cooling rate; and (ii) competition of icosahedral order against crystal order near the critical cooling rate.

  4. Pressure induced structural phase transition in IB transition metal nitrides compounds

    SciTech Connect

    Soni, Shubhangi; Kaurav, Netram Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  5. Evolution of Insulator-Metal Phase Transitions in Epitaxial Tungsten Oxide Films during Electrolyte-Gating.

    PubMed

    Nishihaya, Shinichi; Uchida, Masaki; Kozuka, Yusuke; Iwasa, Yoshihiro; Kawasaki, Masashi; Nishihaya, S; Uchida, M; Kozuka, Y; Iwasa, Y; Kawasaki, M; Iwasa, Y; Kawasaki, M

    2016-08-31

    An interface between an oxide and an electrolyte gives rise to various processes as exemplified by electrostatic charge accumulation/depletion and electrochemical reactions such as intercalation/decalation under electric field. Here we directly compare typical device operations of those in electric double layer transistor geometry by adopting A-site vacant perovskite WO3 epitaxial thin films as a channel material and two different electrolytes as gating agent. In situ measurements of X-ray diffraction and channel resistance performed during the gating revealed that in both the cases WO3 thin film reaches a new metallic state through multiple phase transitions, accompanied by the change in out-of-plane lattice constant. Electrons are electrostatically accumulated from the interface side with an ionic liquid, while alkaline metal ions are more uniformly intercalated into the film with a polymer electrolyte. We systematically demonstrate this difference in the electrostatic and electrochemical processes, by comparing doped carrier density, lattice deformation behavior, and time constant of the phase transitions. PMID:27502546

  6. Characterization and metal sorptive properties of oxidized active carbon.

    PubMed

    Strelko, Vladimir; Malik, Danish J

    2002-06-01

    A commercial activated carbon Chemviron F 400 has been oxidized using nitric acid in order to introduce a variety of acidic surface functional groups. Both unoxidized and oxidized carbon samples were characterized using nitrogen porosimetry, elemental analysis, pH titration, Boehm's titration, and electrophoretic mobility measurements. Results show that oxidation treatment reduced surface area and pore volume. However, the carbon surface acquires an acidic character with carboxylic groups being the dominant surface functional groups. The modified sample displays cation-exchange properties over a wide range of pH values and exhibits polyfunctional nature. Both carbon samples were challenged for the removal of transition metals such as copper(II), nickel(II), cobalt(II), zinc(II), and manganese(II). The affinity series Mn2+Zn2+ has been found to coincide with the general stability sequence of metal complexes (the Irving-Williams series). The higher preference displayed by carbons toward copper(II) is a consequence of the fact that copper(II) often forms distorted and more stable octahedral complexes. PMID:16290653

  7. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    DOE PAGES

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highlymore » active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).« less

  8. The carburization of transition metal molybdates (MxMoO₄, M= Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO₂ hydrogenation

    SciTech Connect

    Rodriguez, Jose A.; Xu, Wenqian; Ramirez, Pedro J.; Stachiola, Dario; Brito, Joaquin L.

    2015-05-06

    A new approach has been tested for the preparation of metal/Mo₂C catalysts using mixed-metal oxide molybdates as precursors. Synchrotron-based in situ time-resolved X-ray diffraction was used to study the reduction and carburization processes of Cu₃(MoO₄)₂(OH)₂, a-NiMoO₄ and CoMoO₄•nH₂O by thermal treatment under mixtures of hydrogen and methane. In all cases, the final product was β-Mo₂C and a metal phase (Cu, Ni, or Co), but the transition sequence varied with the different metals, and it could be related to the reduction potential of the Cu²⁺, Ni²⁺ and Co²⁺ cations inside each molybdate. The synthesized Cu/Mo₂C, Ni/Mo₂C and Co/Mo₂C catalysts were highly active for the hydrogenation of CO₂. The metal/Mo₂C systems exhibited large variations in the selectivity towards methanol, methane and CnH₂n₊₂ (n > 2) hydrocarbons depending on the nature of the supported metal and its ability to cleave C-O bonds. Cu/Mo₂C displayed a high selectivity for CO and methanol production. Ni/Mo₂C and Co/Mo₂C were the most active catalysts for the activation and full decomposition of CO₂, showing high selectivity for the production of methane (Ni case) and CnH₂n₊₂ (n > 2) hydrocarbons (Co case).

  9. Reactions of metal ions and their clusters in the gas phase using laser ionization: Fourier transform mass spectrometry. Progress report, February 1, 1993--January 31, 1994

    SciTech Connect

    Freiser, B.S.

    1993-09-01

    This report focuses on progress in seven areas: (1) Gas-Phase Reactions of Fe(Benzyne){sup +} with Simple Alkyl Halides; (2) Photodissociation and Collision-Induced Dissociation of Molecular Ions From Methylphenol and Chloromethylphenol; (3) Isotopomer Differentiation Using Metal Ion Chemical Ionization Reagents; (4) Multiple Excitation Collisional Activation (MECA) in Fourier Transform Mass Spectrometry; (5) Chemistry of Fe{sup +}-Arene Ions with Halobenzenes; (6) Gas-Phase Photodissociaton Study of Ag(Benzene){sup +} and Ag(Toluene){sup +}; and (7) Reactivity of Ti{sup 2+} and V{sup 2+} with Small Alkanes.

  10. Electrical conductivity of activated carbon-metal oxide nanocomposites under compression: a comparison study.

    PubMed

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Macías-García, A; Gómez-Serrano, V

    2014-12-01

    From a granular commercial activated carbon (AC) and six metal oxide (Al2O3, Fe2O3, SnO2, TiO2, WO3 and ZnO) precursors, two series of AC-metal oxide nanocomposites were prepared by wet impregnation, oven-drying at 120 °C, and subsequent heat treatment at 200 or 850 °C in an inert atmosphere. Here, the electrical conductivity of the resulting products was studied under moderate compression. The influence of the applied pressure, sample volume, mechanical work, and density of the hybrid materials was thoroughly investigated. The DC electrical conductivity of the compressed samples was measured at room temperature by the four-probe method. Compaction assays suggest that the mechanical properties of the nanocomposites are largely determined by the carbon matrix. Both the decrease in volume and the increase in density were relatively small and only significant at pressures lower than 100 kPa for AC and most nanocomposites. In contrast, the bulk electrical conductivity of the hybrid materials was strongly influenced by the intrinsic conductivity, mean crystallite size, content and chemical nature of the supported phases, which ultimately depend on the metal oxide precursor and heat treatment temperature. The supported nanoparticles may be considered to act as electrical switches either hindering or favouring the effective electron transport between the AC cores of neighbouring composite particles in contact under compression. Conductivity values as a rule were lower for the nanocomposites than for the raw AC, all of them falling in the range of semiconductor materials. With the increase in heat treatment temperature, the trend is toward the improvement of conductivity due to the increase in the crystallite size and, in some cases, to the formation of metals in the elemental state and even metal carbides. The patterns of variation of the electrical conductivity with pressure and mechanical work were slightly similar, thus suggesting the predominance of the pressure

  11. Metal phases in ordinary chondrites: Magnetic hysteresis properties and implications for thermal history

    NASA Astrophysics Data System (ADS)

    Gattacceca, J.; Suavet, C.; Rochette, P.; Weiss, B. P.; Winklhofer, M.; Uehara, M.; Friedrich, Jon M.

    2014-04-01

    Magnetic properties are sensitive proxies to characterize FeNi metal phases in meteorites. We present a data set of magnetic hysteresis properties of 91 ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite that dominates the induced magnetism and tetrataenite (both in the cloudy zone as single-domain grains, and as larger multidomain grains in plessite and in the rim of zoned taenite) dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. The bulk metal contents derived from magnetic measurements are in agreement with those estimated previously from chemical analyses. We evidence a decreasing metal content with increasing petrologic type in ordinary chondrites, compatible with oxidation of metal during thermal metamorphism. Types 5 and 6 ordinary chondrites have higher tetrataenite content than type 4 chondrites. This is compatible with lower cooling rates in the 650-450 °C interval for higher petrographic types (consistent with an onion-shell model), but is more likely the result of the oxidation of ordinary chondrites with increasing metamorphism. In equilibrated chondrites, shock-related transient heating events above approximately 500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism and high cooling rates (e.g., following shock reheating or excavation after thermal metamorphism). Our data strengthen the view that the poor magnetic recording properties of multidomain kamacite and the secondary origin of tetrataenite make equilibrated ordinary chondrites challenging

  12. Metal Fluxes from Porewaters and Labile Sediment Phases for Predicting Metal Exposure and Bioaccumulation in Benthic Invertebrates.

    PubMed

    Amato, Elvio D; Simpson, Stuart L; Belzunce-Segarra, Maria J; Jarolimek, Chad V; Jolley, Dianne F

    2015-12-15

    The use of diffusive gradients in thin films (DGT) for predicting metal bioavailability was investigated by exposing the bivalve Tellina deltoidalis to an identical series of metal-contaminated sediments deployed simultaneously in the field and laboratory. To understand the differences in metal exposure occurring between laboratory- and field-based bioassays, we investigated changes in metal fluxes to DGT probes in sediments and in metal concentrations and partitioning to porewaters and overlying waters. DGT-metal fluxes (Cu, Pb, and Zn) were lower in the overlying waters of most field bioassays compared to the laboratory, causing differences in Pb and Zn bioaccumulation between bivalves exposed to laboratory and field conditions. Overall, DGT-metal fluxes provided predictions of metal bioaccumulation similar to those obtained using dilute-acid extractable metal measurements. This study demonstrates that, irrespective of the physicochemical properties of the sediment and type of exposure (laboratory or field), sediments pose a significant risk of bioaccumulation by T. deltoidalis when the Cu, Pb, and Zn DGT flux exceeds 3.5, 1.3, and 156 μg/h/m(2), respectively. The results presented here support the use of the DGT technique for sediment quality assessment and the hypothesis that DGT-metal fluxes may potentially be useful surrogates for the lability of metals for all exposure routes.

  13. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  14. Frustrated Lewis pairs: metal-free hydrogen activation and more.

    PubMed

    Stephan, Douglas W; Erker, Gerhard

    2010-01-01

    Sterically encumbered Lewis acid and Lewis base combinations do not undergo the ubiquitous neutralization reaction to form "classical" Lewis acid/Lewis base adducts. Rather, both the unquenched Lewis acidity and basicity of such sterically "frustrated Lewis pairs (FLPs)" is available to carry out unusual reactions. Typical examples of frustrated Lewis pairs are inter- or intramolecular combinations of bulky phosphines or amines with strongly electrophilic RB(C(6)F(5))(2) components. Many examples of such frustrated Lewis pairs are able to cleave dihydrogen heterolytically. The resulting H(+)/H(-) pairs (stabilized for example, in the form of the respective phosphonium cation/hydridoborate anion salts) serve as active metal-free catalysts for the hydrogenation of, for example, bulky imines, enamines, or enol ethers. Frustrated Lewis pairs also react with alkenes, aldehydes, and a variety of other small molecules, including carbon dioxide, in cooperative three-component reactions, offering new strategies for synthetic chemistry. PMID:20025001

  15. Influence of the preparation method on the surface characteristics and activity of boron-nitride-supported noble metal catalysts.

    PubMed

    Postole, Georgeta; Gervasini, Antonella; Guimon, Claude; Auroux, Aline; Bonnetot, Bernard

    2006-06-29

    In this article, we report how variations in the preparation method of boron-nitride-supported noble metal catalysts may influence the surface characteristics of the active phase and consequently the potential applications as catalysts for oxidation reactions. The deposition and the dispersion of the active phase are strongly influenced by the preparation process and in particular by the protic or aprotic solvent used as the dispersing phase; in this study, benzene, glyme, water, tetrahydrofuran, diglyme, 2-propanol, and glycol have been investigated. Characterization techniques, such as Brunauer-Emmett-Teller, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, have been used to study the influence of the choice of a solvent phase on the particle size and dispersion of the metal deposited on the BN support. The modifications undergone by the support during the deposition of palladium in different solvents have also been studied. Through the use of the same deposition procedure, different noble metal coatings (Pt, Pd, Au, and Ag) have been prepared. The acidic and redox characteristics of the resulting samples were characterized by temperature-programmed reduction and adsorption microcalorimetry. The catalytic performances of these materials were tested in the total oxidation of methane in lean conditions (excess oxygen and presence of water). PMID:16800586

  16. Cupryphans, metal-binding, redox-active, redesigned conopeptides

    PubMed Central

    Barba, Marco; Sobolev, Anatoli P; Romeo, Cristina; Schininà, M Eugenia; Pietraforte, Donatella; Mannina, Luisa; Musci, Giovanni; Polticelli, Fabio

    2009-01-01

    Contryphans are bioactive peptides, isolated from the venom of marine snails of the genus Conus, which are characterized by the short length of the polypeptide chain and the high degree of unusual post-translational modifications. The cyclization of the polypeptide chain through a single disulphide bond, the presence of two conserved Pro residues, and the epimerization of a Trp/Leu residue confer to Contryphans a stable and well-defined structure in solution, conserved in all members of the family, and tolerant to multiple substitutions. The potential of Contryphans as scaffolds for the design of redox-active (macro)molecules was tested by engineering a copper-binding site on two different variants of the natural peptide Contryphan-Vn. The binding site was designed by computational modeling, and the redesigned peptides were synthesized and characterized by optical, fluorescence, electron spin resonance, and nuclear magnetic resonance spectroscopy. The novel peptides, named Cupryphan and Arg–Cupryphan, bind Cu2+ ions with a 1:1 stoichiometry and a Kd in the 100 nM range. Other divalent metals (e.g., Zn2+ and Mg2+) are bound with much lower affinity. In addition, Cupryphans catalyze the dismutation of superoxide anions with an activity comparable to other nonpeptidic superoxide dismutase mimics. We conclude that the Contryphan motif represents a natural robust scaffold which can be engineered to perform different functions, providing additional means for the design of catalytically active mini metalloproteins. PMID:19241383

  17. Structures of the dehydrogenation products of methane activation by 5d transition metal cations.

    PubMed

    Lapoutre, V J F; Redlich, B; van der Meer, A F G; Oomens, J; Bakker, J M; Sweeney, A; Mookherjee, A; Armentrout, P B

    2013-05-23

    The activation of methane by gas-phase transition metal cations (M(+)) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H](+) and H2. However, the structure of the dehydrogenation product has not been established unambiguously. Two types of structures have been considered: a carbene structure where an intact CH2 fragment is bound to the metal (M(+)-CH2) and a carbyne (hydrido-methylidyne) structure with both a CH and a hydrogen bound to the metal separately (H-M(+)-CH). For metal ions with empty d-orbitals, an agostic interaction can occur that could influence the competition between carbene and carbyne structures. In this work, the gas phase [M,C,2H](+) (M = Ta, W, Ir, Pt) products are investigated by infrared multiple-photon dissociation (IR-MPD) spectroscopy using the Free-Electron Laser for IntraCavity Experiments (FELICE). Metal cations are formed in a laser ablation source and react with methane pulsed into a reaction channel downstream. IR-MPD spectra of the [M,C,2H](+) species are measured in the 300-3500 cm(-1) spectral range by monitoring the loss of H (2H in the case of [Ir,C,2H](+)). For each system, the experimental spectrum closely resembles the calculated spectrum of the lowest energy structure calculated using DFT: for Pt, a classic C(2v) carbene structure; for Ta and W, carbene structures that are distorted by agostic interactions; and a carbyne structure for the Ir complex. The Ir carbyne structure was not considered previously. To obtain this agreement, the calculated harmonic frequencies are scaled with a scaling factor of 0.939, which is fairly low and can be attributed to the strong redshift induced by the IR multiple-photon excitation process of these small molecules. These four-atomic species are among the smallest systems studied by IR-FEL based IR-MPD spectroscopy, and their spectra demonstrate the power of IR

  18. Phase separation of biphasic mixture of active Janus colloids

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Han, Ming; Luijten, Erik; Granick, Steve

    2014-03-01

    Recently there is a surge of interest in the phase behavior of active matter in which building blocks display self-propelling motion. Although much has been known from theory and simulation, experimental examples are very rare. Specifically, the epitomic problem of a binary mixture of active matter defies any experiment or theory so far. Here we present an experimental realization of binary mixture of particles, which only acquires activity when they collisionally interact with the opposite kind. We used a system in which the only difference in the two particles is the phase in their cyclic motion, precluding any artifact due to difference in interparticle potential. We observe phenomena strikingly similar to spinodal decomposition of molecular system, in addition to new features due to the nonequilibrium nature of the system. We derived a general, effective Flory-Huggins theory for spinodal decomposition of bicomponent active system, and rationalized the 1/3 power law growth of the domain size in regions where thermodynamic analogy is valid. The system also presents a plethora of nonequilibrium phenomena such as critical fluctuation, lane formation, and dynamic absorbing state in different parameter space.

  19. A two-phase restricted equilibrium model for combustion of metalized solid propellants

    NASA Technical Reports Server (NTRS)

    Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.

    1992-01-01

    An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.

  20. Oxygen reduction and evolution at single-metal active sites: Comparison between functionalized graphitic materials and protoporphyrins

    NASA Astrophysics Data System (ADS)

    Calle-Vallejo, F.; Martínez, J. I.; García-Lastra, J. M.; Abad, E.; Koper, M. T. M.

    2013-01-01

    A worldwide spread of clean technologies such as low-temperature fuel cells and electrolyzers depends strictly on their technical reliability and economic affordability. Currently, both conditions are hardly fulfilled mainly due to the same reason: the oxygen electrode, which has large overpotentials and is made of precious materials. A possible solution is the use of non-noble electrocatalysts with single-metal active sites. Here, on the basis of DFT calculations of adsorbed intermediates and a thermodynamic analysis, we compare the oxygen reduction (ORR) and evolution (OER) activities of functionalized graphitic materials and gas-phase porphyrins with late transition metals. We find that both kinds of materials follow approximately the same activity trends, and active sites with transition metals from groups 7 to 9 may be good ORR and OER electrocatalysts. However, spin analyses show more flexibility in the possible oxidation states of the metal atoms in solid electrocatalysts, while in porphyrins they must be + 2. These observations reveal that the catalytic activity of these materials is mainly due to nearest-neighbor interactions. Based on this, we propose that this class of electrocatalysts may be improved by careful selections of the support and the ligand properties close to the active sites and/or the ramifications near them, so that charge is transferred back and forth during adsorption and selective hydrogen bonds are formed.

  1. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.

    PubMed

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2015-11-01

    This work is focussed on the processing of cathodic active material of spent lithium ion batteries (LIBs) to ensure resource recovery and minimize environmental degradation. The sulfuric acid leaching of metals was carried out for the recovery of all the valuable metals including nickel and manganese along with the frequently targeted metals like lithium and cobalt. The process parameters such as acid concentration, pulp density, time and temperature for the leaching of metals from the cathode powder containing 35.8% Co, 6.5% Li, 11.6% Mn and 10.06% Ni, were optimized. Results show the optimized leach recovery of 93.4% Li, 66.2% Co, 96.3% Ni and 50.2% Mn when the material was leached in 1M H2SO4 at 368 K and 50 g/L pulp density for 240 min. The need of a reductant for improved recovery of cobalt and manganese has been explained by the thermodynamic analysis (Eh-pH diagram) for these metals. Leaching of the valuable metals was found to follow the logarithmic rate law controlled by surface layer diffusion of the lixiviant reacting with the particles. The mode of leaching of the metals from the spent LIBs was further examined by chemical analysis of the samples at various stage of processing which was further corroborated by characterizing the untreated sample and the leach residues by XRD phase identification and the SEM-EDS studies.

  2. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.

    PubMed

    Meshram, Pratima; Pandey, B D; Mankhand, T R

    2015-11-01

    This work is focussed on the processing of cathodic active material of spent lithium ion batteries (LIBs) to ensure resource recovery and minimize environmental degradation. The sulfuric acid leaching of metals was carried out for the recovery of all the valuable metals including nickel and manganese along with the frequently targeted metals like lithium and cobalt. The process parameters such as acid concentration, pulp density, time and temperature for the leaching of metals from the cathode powder containing 35.8% Co, 6.5% Li, 11.6% Mn and 10.06% Ni, were optimized. Results show the optimized leach recovery of 93.4% Li, 66.2% Co, 96.3% Ni and 50.2% Mn when the material was leached in 1M H2SO4 at 368 K and 50 g/L pulp density for 240 min. The need of a reductant for improved recovery of cobalt and manganese has been explained by the thermodynamic analysis (Eh-pH diagram) for these metals. Leaching of the valuable metals was found to follow the logarithmic rate law controlled by surface layer diffusion of the lixiviant reacting with the particles. The mode of leaching of the metals from the spent LIBs was further examined by chemical analysis of the samples at various stage of processing which was further corroborated by characterizing the untreated sample and the leach residues by XRD phase identification and the SEM-EDS studies. PMID:26087645

  3. HPLC method for the determination of phytochelatin synthase activity specific for soft metal ion chelators.

    PubMed

    Ogawa, Shinya; Yoshidomi, Takahiro; Shirabe, Tomoo; Yoshimura, Etsuro

    2010-04-01

    Phytochelatins (PCs) are nonprotein peptides with the general structure (gamma-Glu-Cys)(n)-Gly (PC(n)), where n is greater than or equal to 2. They are synthesized through a reaction catalyzed by phytochelatin synthase (PCS) in the presence of metal cations and using the tripeptide glutathione (gamma-Glu-Cys-Gly) and/or previously synthesized PC(n) as the substrate. Here, a highly sensitive assay for PCS activity was devised, in which the dequenching of Cu(I)-bathocuproinedisulfonate complexes was used in the detection system of a reversed-phase high-performance liquid chromatograph. Using recombinant PCS from the higher plant Arabidopsis thaliana (rAtPCS1), this assay system was capable of determining PCS activity based on an amount of the enzyme preparation that was 100-fold less than that required for the 5,5'-dithiobis(2-nitrobenzoic acid) assay method. Although adsorption of the enzyme onto the reaction vessel hindered accurate activity determination, the inclusion of bovine serum albumin successfully resolved this issue. This method is a powerful tool for investigating PCS enzyme mechanisms with respect to the roles of metal ions. PMID:20074807

  4. Self-Catalyzed Growth of Vertically Aligned InN Nanorods by Metal-Organic Vapor Phase Epitaxy.

    PubMed

    Tessarek, C; Fladischer, S; Dieker, C; Sarau, G; Hoffmann, B; Bashouti, M; Göbelt, M; Heilmann, M; Latzel, M; Butzen, E; Figge, S; Gust, A; Höflich, K; Feichtner, T; Büchele, M; Schwarzburg, K; Spiecker, E; Christiansen, S

    2016-06-01

    Vertically aligned hexagonal InN nanorods were grown mask-free by conventional metal-organic vapor phase epitaxy without any foreign catalyst. The In droplets on top of the nanorods indicate a self-catalytic vapor-liquid-solid growth mode. A systematic study on important growth parameters has been carried out for the optimization of nanorod morphology. The nanorod N-polarity, induced by high temperature nitridation of the sapphire substrate, is necessary to achieve vertical growth. Hydrogen, usually inapplicable during InN growth due to formation of metallic indium, and silane are needed to enhance the aspect ratio and to reduce parasitic deposition beside the nanorods on the sapphire surface. The results reveal many similarities between InN and GaN nanorod growth showing that the process despite the large difference in growth temperature is similar. Transmission electron microscopy, spatially resolved energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been performed to analyze the structural properties. Spatially resolved cathodoluminescence investigations are carried out to verify the optical activity of the InN nanorods. The InN nanorods are expected to be the material of choice for high-efficiency hot carrier solar cells. PMID:27187840

  5. Pressure-induced phase transitions in Pa metal from first-principles theory

    SciTech Connect

    Soederlind, P.; Eriksson, O.

    1997-11-01

    Protactinium metal is shown to undergo a phase transition to the {alpha}-U orthorhombic structure below 1 Mbar pressure. At higher pressures, the bct phase reenters in the phase diagram and at the highest pressures, an ideal hcp structure becomes stable. Hence, Pa undergoes a sequence of transitions; bct{r_arrow}{alpha}-U{r_arrow}bct{r_arrow}hcp, with the first transition taking place at 0.25 Mbar and the subsequent ones above 1 Mbar. The bct{r_arrow}{alpha}-U transition is triggered by the pressure-induced promotion of the spd valence states to 5f states. In this regard, Pa approaches uranium which at ambient conditions has one more 5f electron than Pa at similar conditions. At higher compression of Pa, the 5f band broadens and electrostatic interactions in combination with Born-Mayer repulsion become increasingly important and this drives Pa to gradually more close-packed structures. At ultrahigh pressures, the balance between electrostatic energy, Born-Mayer repulsion, and one-electron band energy stabilizes the hcp (ideal packing) structure. The electrostatic energy and Born-Mayer repulsion rule out open crystal structures under these conditions in Pa and between the close-packed structures, the hcp structure is shown to be stabilized by filling of the 5f band. {copyright} {ital 1997} {ital The American Physical Society}

  6. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  7. Atomic structures of a liquid-phase bonded metal/nitride heterointerface

    PubMed Central

    Kumamoto, Akihito; Shibata, Naoya; Nayuki, Kei-ichiro; Tohei, Tetsuya; Terasaki, Nobuyuki; Nagatomo, Yoshiyuki; Nagase, Toshiyuki; Akiyama, Kazuhiro; Kuromitsu, Yoshirou; Ikuhara, Yuichi

    2016-01-01

    Liquid-phase bonding is a technologically important method to fabricate high-performance metal/ceramic heterostructures used for power electronic devices. However, the atomic-scale mechanisms of how these two dissimilar crystals specifically bond at the interfaces are still not well understood. Here we analyse the atomically-resolved structure of a liquid-phase bonded heterointerface between Al alloy and AlN single crystal using aberration corrected scanning transmission electron microscopy (STEM). In addition, energy-dispersive X-ray microanalysis, using dual silicon drift X-ray detectors in STEM, was performed to analyze the local chemistry of the interface. We find that a monolayer of MgO is spontaneously formed on the AlN substrate surface and that a polarity-inverted monolayer of AlN is grown on top of it. Thus, the Al alloy is bonded with the polarity-inverted AlN monolayer, creating a complex atomic-scale layered structure, facilitating the bonding between the two dissimilar crystals during liquid-phase bonding processes. Density-functional-theory calculations confirm that the bonding stability is strongly dependent on the polarity and stacking of AlN and MgO monolayers. Understanding the spontaneous formation of layered transition structures at the heterointerface will be key in fabricating very stable Al alloy/AlN heterointerface required for high reliability power electronic devices. PMID:26961157

  8. Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Rehbein, Marcus; Epple, Matthias; Fischer, R. Dieter

    2000-06-01

    Organometallic coordination polymers of the super-Prussian blue type [(Me 3Sn) nM(CN) 6] (Me=CH 3; n=3, 4; M=Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe 2O 3/SnO 2 (crystalline and nanocrystalline), Co 2SnO 4 and RuO 2. In argon and in hydrogen, the intermetallic phases FeSn 2, CoSn 2, Ru 3Sn 7 and Fe 3SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me 3SnCN and (CN) 2 are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature.

  9. Persistent Paramagnons Deep in the Metallic Phase of Sr2 -xLaxIrO4

    NASA Astrophysics Data System (ADS)

    Gretarsson, H.; Sung, N. H.; Porras, J.; Bertinshaw, J.; Dietl, C.; Bruin, Jan A. N.; Bangura, A. F.; Kim, Y. K.; Dinnebier, R.; Kim, Jungho; Al-Zein, A.; Moretti Sala, M.; Krisch, M.; Le Tacon, M.; Keimer, B.; Kim, B. J.

    2016-09-01

    We have studied the magnetic excitations of electron-doped Sr2 -xLax IrO4 (0 ≤x ≤0.10 ) using resonant inelastic x-ray scattering at the Ir L3 edge. The long-range magnetic order is rapidly lost with increasing x , but two-dimensional short-range order (SRO) and dispersive magnon excitations with nearly undiminished spectral weight persist well into the metallic part of the phase diagram. The magnons in the SRO phase are heavily damped and exhibit anisotropic softening. Their dispersions are well described by a pseudospin-1 /2 Heisenberg model with exchange interactions whose spatial range increases with doping. We also find a doping-independent high-energy magnetic continuum, which is not described by this model. The spin-orbit excitons arising from the pseudospin-3 /2 manifold of the Ir ions broaden substantially in the SRO phase, but remain largely separated from the low-energy magnons. Pseudospin-1 /2 models are therefore a good starting point for the theoretical description of the low-energy magnetic dynamics of doped iridates.

  10. Collective versus hub activation of epidemic phases on networks

    NASA Astrophysics Data System (ADS)

    Ferreira, Silvio C.; Sander, Renan S.; Pastor-Satorras, Romualdo

    2016-03-01

    We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF) networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process, corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with finite threshold in scale-free networks with large degree exponent, at odds with canonical theoretical approaches.

  11. Catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.

    1999-01-01

    The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  12. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    DOEpatents

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  13. Thermally Induced Deformation in Metallic Glass: the Activations and Relaxations

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2015-03-01

    Thermally induced deformation in metallic glasses was investigated by sampling the potential energy landscape (PEL) and probing the changes in the atomic properties (e.g. energy, displacement, stress). The complete deformation processes consist of two stages: the activation (i.e. trigger, from initial minima to nearby saddle states on PEL), and relaxation (i.e. from saddle states to final minima on PEL). We show that the activation stages are triggered by local rearrangements of a small number of atoms, typically 5 atoms in average. Surprisingly, the individual triggers are invariant of the cooling history or elastic structure of the system. However, the organizations between different trigger centers can be varied and are related to the overall stability of the system. On the other hand, relaxation stages consist of two branches, a localized branch, and a cascade branch. While the localized branch is insensitive to the cooling history the system, the cascade branch is highly related with the processing conditions. In particular, for a faster quenched system, the cascade relaxation is found more prominent than in a slowly quenched system. The work is supported by Department of Energy.

  14. Metal-dithiocarbamate complexes: chemistry and biological activity.

    PubMed

    Hogarth, Graeme

    2012-10-01

    Dithiocarbamates are highly versatile mono-anionic chelating ligands which form stable complexes with all the transition elements and also the majority of main group, lanthanide and actinide elements. They are easily prepared from primary or secondary amines and depending upon the nature of the cation can show good solubility in water or organic solvents. They are related to the thiuram disulfides by a one-electron redox process (followed by dimerisation via sulfur-sulfur bond formation) which is easily carried out upon addition of iodide or ferric salts. Dithiocarbamates are lipophilic and generally bind to metals in a symmetrical chelate fashion but examples of other coordination modes are known, the monodentate and anisobidentate modes being most prevalent. They are planar sterically non-demanding ligands which can be electronically tuned by judicious choice of substituents. They stabilize metals in a wide range of oxidation states, this being attributed to the existence of soft dithiocarbamate and hard thioureide resonance forms, the latter formally resulting from delocalization of the nitrogen lone pair onto the sulfurs, and consequently their complexes tend to have a rich electrochemistry. Tetraethyl thiuramdisulfide (disulfiram or antabuse) has been used as a drug since the 1950s but it is only recently that dithiocarbamate complexes have been explored within the medicinal domain. Over the past two decades anti-cancer activity has been noted for gold and copper complexes, technetium and copper complexes have been used in PET-imaging, dithiocarbamates have been used to treat acute cadmium poisoning and copper complexes also have been investigated as SOD inhibitors.

  15. Metal-dithiocarbamate complexes: chemistry and biological activity.

    PubMed

    Hogarth, Graeme

    2012-10-01

    Dithiocarbamates are highly versatile mono-anionic chelating ligands which form stable complexes with all the transition elements and also the majority of main group, lanthanide and actinide elements. They are easily prepared from primary or secondary amines and depending upon the nature of the cation can show good solubility in water or organic solvents. They are related to the thiuram disulfides by a one-electron redox process (followed by dimerisation via sulfur-sulfur bond formation) which is easily carried out upon addition of iodide or ferric salts. Dithiocarbamates are lipophilic and generally bind to metals in a symmetrical chelate fashion but examples of other coordination modes are known, the monodentate and anisobidentate modes being most prevalent. They are planar sterically non-demanding ligands which can be electronically tuned by judicious choice of substituents. They stabilize metals in a wide range of oxidation states, this being attributed to the existence of soft dithiocarbamate and hard thioureide resonance forms, the latter formally resulting from delocalization of the nitrogen lone pair onto the sulfurs, and consequently their complexes tend to have a rich electrochemistry. Tetraethyl thiuramdisulfide (disulfiram or antabuse) has been used as a drug since the 1950s but it is only recently that dithiocarbamate complexes have been explored within the medicinal domain. Over the past two decades anti-cancer activity has been noted for gold and copper complexes, technetium and copper complexes have been used in PET-imaging, dithiocarbamates have been used to treat acute cadmium poisoning and copper complexes also have been investigated as SOD inhibitors. PMID:22931592

  16. Phase 1 immobilized low-activity waste operational source term

    SciTech Connect

    Burbank, D.A.

    1998-03-06

    This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study.

  17. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    PubMed

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium. PMID:27207229

  18. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    PubMed

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  19. Vapor phase ketonization of acetic acid on ceria based metal oxides

    SciTech Connect

    Liu, Changjun; Karim, Ayman M.; Lebarbier, Vanessa MC; Mei, Donghai; Wang, Yong

    2013-12-01

    The activities of CeO2, Mn2O3-CeO2 and ZrO2-CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3-CeO2 was the most active catalyst at 350 oC, while ZrO2 - CeO2 was the most active catalyst at 450 oC. Under high CO2 and steam concentration in the reactants, Mn2O3-CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3-CeO2 to steam and CO2.

  20. Electrical Switching Phenomena in a Phase Change Material in Contact with Metallic Nanowires

    NASA Astrophysics Data System (ADS)

    Tanaka, Hideyuki; Nishihara, Takashi; Ohtsuka, Takashi; Morimoto, Kiyoshi; Yamada, Noboru; Morita, Kiyoyuki

    2002-12-01

    We observed electrical switching phenomena in a phase change material (Ge2Sb2Te5) in contact with metallic nanowires of 100 nmφ, which were embedded in a track-etched polycarbonate membrane by electroplating. While the electrical resistance of the system did not change when applied voltage was 0-1 V, switching occurred from a high-resistance state (HS) to a low-resistance state (LS) when voltage was increased from 0 V to 5 V and then decreased to 0 V. The maximum current was 100 nA. LS was 10 times more conductive than HS. A reset operation from LS to HS was realized using a 20 ns pulse of 5 V. Switchings from HS to LS and from LS to HS were confirmed several times, demonstrating that the device is rewriteable.

  1. Emergence of a Metallic Quantum Solid Phase in a Rydberg-Dressed Fermi Gas

    NASA Astrophysics Data System (ADS)

    Li, Wei-Han; Hsieh, Tzu-Chi; Mou, Chung-Yu; Wang, Daw-Wei

    2016-07-01

    We examine possible low-temperature phases of a repulsively Rydberg-dressed Fermi gas in a three-dimensional free space. It is shown that the collective density excitations develop a roton minimum, which is softened at a wave vector smaller than the Fermi wave vector when the particle density is above a critical value. The mean field calculation shows that, unlike the insulating density wave states often observed in conventional condensed matters, a self-assembled metallic density wave state emerges at low temperatures. In particular, the density wave state supports a Fermi surface and a body-centered-cubic crystal order at the same time with the estimated critical temperature being about one tenth of the noninteracting Fermi energy. Our results suggest the emergence of a fermionic quantum solid that should be observable in the current experimental setup.

  2. Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material

    DOE PAGES

    Withey, Elizabeth Ann; Kruizenga, Alan Michael; Andraka, Charles E.; Gibbs, Paul J.

    2016-01-01

    In this study, the performance of Y2O3-stabilized ZrO2 (YSZ), Y2O3, and Al2O3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al2O3 coating performed well while the YSZ and Y2O3 coating showed clear areas of attack. These results are attributed to the evolution of gaseous Mg atmore » 820 °C leading to the formation of MgO and MgAl2O4.« less

  3. Method for preparing surfaces of metal composites having a brittle phase for plating

    DOEpatents

    Coates, Cameron W.; Wilson, Thomas J.

    1984-01-01

    The present invention is directed to a method for preparing surfaces of two-phase metal composites having relatively brittle and malleable components for plating with corrosion-resistant material. In practice of the present invention, the surfaces of the composites are etched to remove a major portion or fraction of the brittle component. The etched surface is then peened with particulates for breaking the brittle component from the surfaces and for spreading or smearing the malleable component over the surfaces. The peened surface is then chemically cleaned of residual traces of the brittle component so as to provide a surface of essentially the malleable component to which the corrosion-resistant material may be plated thereon in an adherent manner.

  4. PHASE-FIELD SIMULATION OF IRRADIATED METALS PART i: VOID KINETICS

    SciTech Connect

    Paul C Millett; Anter El-Azab; Srujan Rokkam; Michael Tonks; Dieter Wolf

    2011-01-01

    We present a phase-field model of void formation and evolution in irradiated metals by spatially and temporally evolving vacancy and self-interstitial concentration fields. By incorporating a coupled set of Cahn-Hilliard and Allen-Cahn equations, the model captures the processes of point defect generation and recombination, annihilation of defects at sinks, as well as void nucleation and growth in the presence of grain boundaries.. Illustrative results are presented that characterize the rate of void growth or shrinkage due to supersaturated vacancy or interstitial concentrations, void nucleation and growth kinetics due to cascade-induced defect production, as well as void denuded and peak zones adjacent to grain boundaries.

  5. Phase-field simulation of irradiated metals Part 1: Void kinetics.

    SciTech Connect

    Millett, P. C.; El-Azab, A.; Rokkam, S.; Tonks, M.; Wolf, D.

    2011-01-01

    We present a phase-field model of void formation and evolution in irradiated metals by spatially and temporally evolving vacancy and self-interstitial concentration fields. By incorporating a coupled set of Cahn-Hilliard and Allen-Cahn equations, the model captures the processes of point defect generation and recombination, annihilation of defects at sinks, as well as void nucleation and growth in the presence of grain boundaries. Illustrative results are presented that characterize the rate of void growth or shrinkage due to supersaturated vacancy or interstitial concentrations, void nucleation and growth kinetics due to cascade-induced defect production, as well as void denuded and peak zones adjacent to grain boundaries.

  6. Phased array ultrasonic testing of dissimilar metal welds using geometric based referencing delay law technique

    NASA Astrophysics Data System (ADS)

    Han, Taeyoung; Schubert, Frank; Hillmann, Susanne; Meyendorf, Norbert

    2015-03-01

    Phased array ultrasonic testing (PAUT) techniques are widely used for the non-destructive testing (NDT) of austenitic welds to find defects like cracks. However, the propagation of ultrasound waves through the austenitic material is intricate due to its inhomogeneous and anisotropic nature. Such a characteristic leads beam path distorted which causes the signal to be misinterpreted. By employing a reference block which is cutout from the mockup of which the structure is a dissimilar metal weld (DMW), a new method of PAUT named as Referencing Delay Law Technique (RDLT) is introduced. With the RDLT, full matrix capture (FMC) was used for data acquisition. To reconstruct the images, total focusing method (TFM) was used. After the focal laws were calculated, PAUT was then performed. As a result, the flaws are more precisely positioned with significantly increased signal-to-noise ratio (SNR).

  7. Emergence of a Metallic Quantum Solid Phase in a Rydberg-Dressed Fermi Gas.

    PubMed

    Li, Wei-Han; Hsieh, Tzu-Chi; Mou, Chung-Yu; Wang, Daw-Wei

    2016-07-15

    We examine possible low-temperature phases of a repulsively Rydberg-dressed Fermi gas in a three-dimensional free space. It is shown that the collective density excitations develop a roton minimum, which is softened at a wave vector smaller than the Fermi wave vector when the particle density is above a critical value. The mean field calculation shows that, unlike the insulating density wave states often observed in conventional condensed matters, a self-assembled metallic density wave state emerges at low temperatures. In particular, the density wave state supports a Fermi surface and a body-centered-cubic crystal order at the same time with the estimated critical temperature being about one tenth of the noninteracting Fermi energy. Our results suggest the emergence of a fermionic quantum solid that should be observable in the current experimental setup. PMID:27472121

  8. Supersaturation in nucleus and spiral growth of GaN in metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Akasaka, Tetsuya; Kobayashi, Yasuyuki; Kasu, Makoto

    2010-10-01

    Nucleus and spiral growth mechanisms of GaN were experimentally studied by varying the degree of supersaturation, σ, in selective-area metal organic vapor phase epitaxy. The spiral growth rate of GaN increased proportionally to σ2 in the σ range from 0.0632 to 0.230. The nucleus growth rate of GaN was much smaller than the spiral one in the σ range. The nucleation rate was almost zero at σ lower than 0.130, suddenly increased at higher σ values, and reached ˜107 cm-2 s-1 at σ of 0.230. These results are consistent with a theoretical analysis [W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951)].

  9. Metallic Fe phases in Apollo 16 fines - Their origin and characteristics as revealed by electron spin resonance studies

    NASA Technical Reports Server (NTRS)

    Tsay, F.-D.; Manatt, S. L.; Live, D. H.; Chan, S. I.

    1973-01-01

    The intense electron spin resonance (ESR) signals detected in the Apollo 16 fines from three sites (61141,4, Station 1; 64501,22, South Ray Crater; 67601,20, North Ray Crater) are found to be essentially similar in g-value, in lineshape asymmetry and in temperature dependence to those previously observed for the Apollo 11-15 fines. On the basis of these similarities, it is concluded that these ESR signals like those detected in the Apollo 11-15 fines are principally ferromagnetic in nature arising from metallic Fe phases having the body-centered cubic structure, and not from hematite, magnetite, or any other ferric oxides. It is shown that a quantitative correlation exists between the ESR linewidth observed for the Apollo 11-16 fines and their average Ni contents in the metallic Fe phases as determined by other means. A common source of meteoritic origin is indicated for the metallic Fe phases of these samples.

  10. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems.

    PubMed

    Ramanathan, Rajesh; Field, Matthew R; O'Mullane, Anthony P; Smooker, Peter M; Bhargava, Suresh K; Bansal, Vipul

    2013-03-21

    We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu(2+) ions provides new insights into the mechanistic aspect of Cu(2+) ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms.

  11. Transition metal complexes of a salen-fullerene diad: redox and catalytically active nanostructures for delivery of metals in nanotubes.

    PubMed

    Lebedeva, Maria A; Chamberlain, Thomas W; Davies, E Stephen; Mancel, Dorothée; Thomas, Bradley E; Suyetin, Mikhail; Bichoutskaia, Elena; Schröder, Martin; Khlobystov, Andrei N

    2013-09-01

    A covalently-linked salen-C60 (H2L) assembly binds a range of transition metal cations in close proximity to the fullerene cage to give complexes [M(L)] (M=Mn, Co, Ni, Cu, Zn, Pd), [MCl(L)] (M=Cr, Fe) and [V(O)L]. Attaching salen covalently to the C60 cage only marginally slows down metal binding at the salen functionality compared to metal binding to free salen. Coordination of metal cations to salen-C60 introduces to these fullerene derivatives strong absorption bands across the visible spectrum from 400 to 630 nm, the optical features of which are controlled by the nature of the transition metal. The redox properties of the metal-salen-C60 complexes are determined both by the fullerene and by the nature of the transition metal, enabling the generation of a wide range of fullerene-containing charged species, some of which possess two or more unpaired electrons. The presence of the fullerene cage enhances the affinity of these complexes for carbon nanostructures, such as single-, double- and multiwalled carbon nanotubes and graphitised carbon nanofibres, without detrimental effects on the catalytic activity of the metal centre, as demonstrated in styrene oxidation catalysed by [Cu(L)]. This approach shows promise for applications of salen-C60 complexes in heterogeneous catalysis.

  12. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

    NASA Astrophysics Data System (ADS)

    Wang, Dacheng; Zhang, Lingchao; Gu, Yinghong; Mehmood, M. Q.; Gong, Yandong; Srivastava, Amar; Jian, Linke; Venkatesan, T.; Qiu, Cheng-Wei; Hong, Minghui

    2015-10-01

    Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices.

  13. Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface

    PubMed Central

    Wang, Dacheng; Zhang, Lingchao; Gu, Yinghong; Mehmood, M. Q.; Gong, Yandong; Srivastava, Amar; Jian, Linke; Venkatesan, T.; Qiu, Cheng-Wei; Hong, Minghui

    2015-01-01

    Metamaterials open up various exotic means to control electromagnetic waves and among them polarization manipulations with metamaterials have attracted intense attention. As of today, static responses of resonators in metamaterials lead to a narrow-band and single-function operation. Extension of the working frequency relies on multilayer metamaterials or different unit cells, which hinder the development of ultra-compact optical systems. In this work, we demonstrate a switchable ultrathin terahertz quarter-wave plate by hybridizing a phase change material, vanadium dioxide (VO2), with a metasurface. Before the phase transition, VO2 behaves as a semiconductor and the metasurface operates as a quarter-wave plate at 0.468 THz. After the transition to metal phase, the quarter-wave plate operates at 0.502 THz. At the corresponding operating frequencies, the metasurface converts a linearly polarized light into a circularly polarized light. This work reveals the feasibility to realize tunable/active and extremely low-profile polarization manipulation devices in the terahertz regime through the incorporation of such phase-change metasurfaces, enabling novel applications of ultrathin terahertz meta-devices. PMID:26442614

  14. Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids

    NASA Astrophysics Data System (ADS)

    Bhanjana, Gaurav; Kumar, Neeraj; Thakur, Rajesh; Dilbaghi, Neeraj; Kumar, Sandeep

    2011-12-01

    Antimicrobial nanotechnology is a recent addition to the fight against disease causing organisms, replacing heavy metals and toxins. In the present work, mixed ligand complexes of metals like zinc, silver etc. and metal oxide have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N-and/O-donor amino acids such as L-serine, L-alanine, glycine, cysteine and histidine as secondary ligands. These complexes were characterized using different spectroscopic techniques. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay.

  15. Thermodynamics and kinetics of phase formation of thin-film metal on gallium arsenide

    SciTech Connect

    Chang, Y.A.

    1988-01-01

    Objectives are to study the thermodynamics and kinetics of reactions between selected metals and GaAs in the bulk and thin-film forms. Even though micro-electronics devices are made of thin-films, their reactions cannot be rationalized without an understanding of the bulk phenomena. In fact, it is our belief that if we understand the thermodynamics and kinetics of the bulk reactions, we can forecast what may happen in thin-films, with perhaps the exception of epitaxial formations. In order to understand the bulk reactions between metals and GaAs, we need to know (1) the ternary phase diagram of Ga-As-M, (2) the diffusion path of GaAs/M in the bulk form and (3) reaction sequence between GaAs and M. Results obtained for items (2) and (3) in the bulk form are correlated with the results obtained for thin films. This paper summarizes the results obtained for several GaAs/M systems.

  16. Solution-Phase Epitaxial Growth of Quasi-Monocrystalline Cuprous Oxide on Metal Nanowires

    PubMed Central

    2014-01-01

    The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here we report the synthesis and characterization of metal–semiconductor core–shell nanowires. We demonstrate a solution-phase route to obtain stable core–shell metal–Cu2O nanowires with outstanding control over the resulting structure, in which the noble metal nanowire is used as the nucleation site for epitaxial growth of quasi-monocrystalline Cu2O shells at room temperature in aqueous solution. We use X-ray and electron diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence spectroscopy, and absorption spectroscopy, as well as density functional theory calculations, to characterize the core–shell nanowires and verify their structure. Metal–semiconductor core–shell nanowires offer several potential advantages over thin film and traditional nanowire architectures as building blocks for photovoltaics, including efficient carrier collection in radial nanowire junctions and strong optical resonances that can be tuned to maximize absorption. PMID:25233392

  17. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems

    NASA Astrophysics Data System (ADS)

    Ramanathan, Rajesh; Field, Matthew R.; O'Mullane, Anthony P.; Smooker, Peter M.; Bhargava, Suresh K.; Bansal, Vipul

    2013-02-01

    We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms.We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms. Electronic supplementary information (ESI) available: Sequence similarity analysis of proteins involved in the silver and copper resistance machinery of bacteria. See DOI: 10.1039/c2nr32887a

  18. Calculation of metallic and insulating phases of V{sub 2}O{sub 3} by hybrid density functionals

    SciTech Connect

    Guo, Yuzheng; Robertson, John; Clark, Stewart J.

    2014-02-07

    The electronic structure of vanadium sesquioxide V{sub 2}O{sub 3} in its different phases has been calculated using the screened exchange hybrid density functional. The hybrid functional accurately reproduces the experimental electronic properties of all three phases, the paramagnetic metal (PM) phase, the anti-ferromagnetic insulating phase, and the Cr-doped paramagnetic insulating (PI) phase. We find that a fully relaxed supercell model of the Cr-doped PI phase based on the corundum structure has a monoclinic-like local strain around the substitutional Cr atoms. This is found to drive the PI-PM transition, consistent with a Peierls-Mott transition. The PI phase has a calculated band gap of 0.15 eV, in good agreement with experiment.

  19. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  20. Devitrification kinetics and phase selection mechanisms in copper-zirconium metallic glasses

    NASA Astrophysics Data System (ADS)

    Kalay, Ilkay

    Metallic glasses have been a promising class of materials since their discovery in the 1960s. Indeed, remarkable chemical, mechanical and physical properties have attracted considerable attention, and several excellent reviews are available. Moreover, the special group of glass forming alloys known as the bulk metallic glasses (BMG) become amorphous solids even at relatively low cooling rates, allowing them to be cast in large cross sections, opening the scope of potential applications to include bulk forms and net shape structural applications. Recent studies have been reported for new bulk metallic glasses produced with lower cooling rates, from 0.1 to several hundred K/s. Some of the application products of BMGs include sporting goods, high performance springs and medical devices. Several rapid solidification techniques, including melt-spinning, atomization and surface melting have been developed to produce amorphous alloys. The aim of all these methods is to solidify the liquid phase rapidly enough to suppress the nucleation and growth of crystalline phases. Furthermore, the production of amorphous/crystalline composite (ACC) materials by partial crystallization of amorphous precursor has recently given rise to materials that provide better mechanical and magnetic properties than the monolithic amorphous or crystalline alloys. In addition, these advances illustrate the broad untapped potential of using the glassy state as an intermediate stage in the processing of new materials and nanostructures. These advances underlie the necessity of investigations on prediction and control of phase stability and microstructural dynamics during both solidification and devitrification processes. This research presented in this dissertation is mainly focused on Cu-Zr and Cu-Zr-Al alloy systems. The Cu-Zr binary system has high glass forming ability in a wide compositional range (35-70 at.% Cu). Thereby, Cu-Zr based alloys have attracted much attention according to fundamental

  1. EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY

    SciTech Connect

    Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J.

    2010-11-20

    First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 {mu}m and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H{sub 2}O clouds at 2 AU, and have both NH{sub 3} and H{sub 2}O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = {lambda}/{Delta}{lambda} {approx} 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on

  2. Devitrification kinetics and phase selection mechanisms in Cu-Zr metallic glasses

    SciTech Connect

    Kalay, Ilkay

    2010-01-01

    Metallic glasses have been a promising class of materials since their discovery in the 1960s. Indeed, remarkable chemical, mechanical and physical properties have attracted considerable attention, and several excellent reviews are available. Moreover, the special group of glass forming alloys known as the bulk metallic glasses (BMG) become amorphous solids even at relatively low cooling rates, allowing them to be cast in large cross sections, opening the scope of potential applications to include bulk forms and net shape structural applications. Recent studies have been reported for new bulk metallic glasses produced with lower cooling rates, from 0.1 to several hundred K/s. Some of the application products of BMGs include sporting goods, high performance springs and medical devices. Several rapid solidification techniques, including melt-spinning, atomization and surface melting have been developed to produce amorphous alloys. The aim of all these methods is to solidify the liquid phase rapidly enough to suppress the nucleation and growth of crystalline phases. Furthermore, the production of amorphous/crystalline composite (ACC) materials by partial crystallization of amorphous precursor has recently given rise to materials that provide better mechanical and magnetic properties than the monolithic amorphous or crystalline alloys. In addition, these advances illustrate the broad untapped potential of using the glassy state as an intermediate stage in the processing of new materials and nanostructures. These advances underlie the necessity of investigations on prediction and control of phase stability and microstructural dynamics during both solidification and devitrification processes. This research presented in this dissertation is mainly focused on Cu-Zr and Cu-Zr-Al alloy systems. The Cu-Zr binary system has high glass forming ability in a wide compositional range (35-70 at.% Cu). Thereby, Cu-Zr based alloys have attracted much attention according to fundamental

  3. Active Phase and Amplitude Fluctuations of Flagellar Beating

    NASA Astrophysics Data System (ADS)

    Ma, Rui; Klindt, Gary S.; Riedel-Kruse, Ingmar H.; Jülicher, Frank; Friedrich, Benjamin M.

    2014-07-01

    The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have physiological implications for synchronization in collections of flagella as well as for hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality factor of flagellar oscillations Q =38.0±16.7 (mean±s.e.). Our analysis shows that flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active small-number fluctuations in motor-cytoskeleton systems.

  4. Active phase and amplitude fluctuations of flagellar beating.

    PubMed

    Ma, Rui; Klindt, Gary S; Riedel-Kruse, Ingmar H; Jülicher, Frank; Friedrich, Benjamin M

    2014-07-25

    The eukaryotic flagellum beats periodically, driven by the oscillatory dynamics of molecular motors, to propel cells and pump fluids. Small but perceivable fluctuations in the beat of individual flagella have physiological implications for synchronization in collections of flagella as well as for hydrodynamic interactions between flagellated swimmers. Here, we characterize phase and amplitude fluctuations of flagellar bending waves using shape mode analysis and limit-cycle reconstruction. We report a quality factor of flagellar oscillations Q = 38.0 ± 16.7 (mean ± s.e.). Our analysis shows that flagellar fluctuations are dominantly of active origin. Using a minimal model of collective motor oscillations, we demonstrate how the stochastic dynamics of individual motors can give rise to active small-number fluctuations in motor-cytoskeleton systems.

  5. Enhanced Antimicrobial Activity Of Antibiotics Mixed With Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Kumar, Neeraj; Bhanjana, Gaurav; Thakur, Rajesh; Dilbaghi, Neeraj

    2011-12-01

    Current producers of antimicrobial technology have a long lasting, environmentally safe, non-leaching, water soluble solution that will eventually replace all poisons and heavy metals. The transition metal ions inevitably exist as metal complexes in biological systems by interaction with the numerous molecules possessing groupings capable of complexation or chelation. Nanoparticles of metal oxides offer a wide variety of potential applications in medicine due to the unprecedented advances in nanobiotechnology research. the bacterial action of antibiotics like penicillin, erythryomycin, ampicillin, streptomycin, kanamycin etc. and that of a mixture of antibiotics and metal and metal oxide nanoparticles like zinc oxide, zirconium, silver and gold on microbes was examined by the agar-well-diffusion method, enumeration of colony-forming units (CFU) and turbidimetry.

  6. Electronic and thermal effects in the insulator-metal phase transition in VO{sub 2} nano-gap junctions

    SciTech Connect

    Joushaghani, Arash; Jeong, Junho; Stewart Aitchison, J.; Poon, Joyce K. S.; Paradis, Suzanne; Alain, David

    2014-12-08

    By controlling the thermal transport of VO{sub 2} nano-gap junctions using device geometry, contact material, and applied voltage waveforms, the electronically induced insulator-metal phase transition is investigated in the adiabatic heating and transient carrier injection regimes. With a gradual ramping of an applied voltage on a microsecond time scale, the transition electric field threshold can be directly reduced by the Joule heating. With an abrupt applied voltage, the transition threshold is initiated by carriers injected within the first tens of nanoseconds, but the complete insulator-metal phase transition is limited by thermal redistribution times to hundreds of nanoseconds.

  7. Enhanced x-ray imaging for a thin film cochlear implant with metal artefacts using phase retrieval tomography

    NASA Astrophysics Data System (ADS)

    Arhatari, B. D.; Harris, A. R.; Paolini, A. G.; Peele, A. G.

    2012-06-01

    Phase retrieval tomography has been successfully used to enhance imaging in systems that exhibit poor absorption contrast. However, when highly absorbing regions are present in a sample, so-called metal artefacts can appear in the tomographic reconstruction. We demonstrate that straightforward approaches for metal artefact reconstruction, developed in absorption contrast tomography, can be applied when using phase retrieval. Using a prototype thin film cochlear implant that has high and low absorption components made from iridium (or platinum) and plastic, respectively, we show that segmentation of the various components is possible and hence measurement of the electrode geometry and relative location to other regions of interest can be achieved.

  8. Feedback-induced phase transitions in active heterogeneous conductors.

    PubMed

    Ocko, Samuel A; Mahadevan, L

    2015-04-01

    An active conducting medium is one where the resistance (conductance) of the medium is modified by the current (flow) and in turn modifies the flow, so that the classical linear laws relating current and resistance, e.g., Ohm's law or Darcy's law, are modified over time as the system itself evolves. We consider a minimal model for this feedback coupling in terms of two parameters that characterize the way in which addition or removal of matter follows a simple local (or nonlocal) feedback rule corresponding to either flow-seeking or flow-avoiding behavior. Using numerical simulations and a continuum mean field theory, we show that flow-avoiding feedback causes an initially uniform system to become strongly heterogeneous via a tunneling (channel-building) phase separation; flow-seeking feedback leads to an immuring (wall-building) phase separation. Our results provide a qualitative explanation for the patterning of active conducting media in natural systems, while suggesting ways to realize complex architectures using simple rules in engineered systems.

  9. Nonlinear active materials: an illustration of controllable phase matchability.

    PubMed

    Lu, Hongcheng; Gautier, Romain; Donakowski, Martin D; Tran, T Thao; Edwards, Bryce W; Nino, Juan C; Halasyamani, P Shiv; Liu, Zhengtang; Poeppelmeier, Kenneth R

    2013-08-14

    For a crystal to exhibit nonlinear optical (NLO) activity such as second-harmonic generation (SHG), it must belong to a noncentrosymmetric (NCS) space group. Moreover, for these nonlinear optical (NLO) materials to be suitable for practical uses, the synthesized crystals should be phase-matchable (PM). Previous synthetic research into SHG-active crystals has centered on (i) how to create NCS compounds and/or (ii) how to obtain NCS compounds with high SHG efficiencies. With these tactics, one can synthesize a material with a high SHG efficiency, but the material could be unusable if the material was nonphase-matchable (non-PM). To probe the origin of phase matchability of NCS structures, we present two new chemically similar hybrid compounds within one composition space: (I) [Hdpa]2NbOF5·2H2O and (II) HdpaNbOF4 (dpa = 2,2'-dipyridylamine). Both compounds are NCS and chemically similar, but (I) is non-PM while (II) is PM. Our results indicate--consistent with organic crystallography--the arrangement of the organic molecule within hybrid materials dictates whether the material is PM or non-PM.

  10. Feedback-Induced Phase Transitions in Active Heterogeneous Conductors

    NASA Astrophysics Data System (ADS)

    Ocko, Samuel A.; Mahadevan, L.

    2015-04-01

    An active conducting medium is one where the resistance (conductance) of the medium is modified by the current (flow) and in turn modifies the flow, so that the classical linear laws relating current and resistance, e.g., Ohm's law or Darcy's law, are modified over time as the system itself evolves. We consider a minimal model for this feedback coupling in terms of two parameters that characterize the way in which addition or removal of matter follows a simple local (or nonlocal) feedback rule corresponding to either flow-seeking or flow-avoiding behavior. Using numerical simulations and a continuum mean field theory, we show that flow-avoiding feedback causes an initially uniform system to become strongly heterogeneous via a tunneling (channel-building) phase separation; flow-seeking feedback leads to an immuring (wall-building) phase separation. Our results provide a qualitative explanation for the patterning of active conducting media in natural systems, while suggesting ways to realize complex architectures using simple rules in engineered systems.

  11. Composition induced metal-insulator quantum phase transition in the Heusler type Fe2VAl

    NASA Astrophysics Data System (ADS)

    Naka, Takashi; Nikitin, Artem M.; Pan, Yu; de Visser, Anne; Nakane, Takayuki; Ishikawa, Fumihiro; Yamada, Yuh; Imai, Motoharu; Matsushita, Akiyuki

    2016-07-01

    We report the magnetism and transport properties of the Heusler compound Fe2+x V1-x Al at  -0.10  ⩽  x  ⩽  0.20 under pressure and a magnetic field. A metal-insulator quantum phase transition occurred at x  ≈  -0.05. Application of pressure or a magnetic field facilitated the emergence of finite zero-temperature conductivity σ 0 around the critical point, which scaled approximately according to the power law (P  -  P c ) γ . At x  ⩽  -0.05, a localized paramagnetic spin appeared, whereas above the ferromagnetic quantum critical point at x  ≈  0.05, itinerant ferromagnetism was established. At the quantum critical points at x  =  -0.05 and 0.05, the resistivity and specific heat exhibited singularities characteristic of a Griffiths phase appearing as an inhomogeneous electronic state.

  12. Composition induced metal-insulator quantum phase transition in the Heusler type Fe2VAl.

    PubMed

    Naka, Takashi; Nikitin, Artem M; Pan, Yu; de Visser, Anne; Nakane, Takayuki; Ishikawa, Fumihiro; Yamada, Yuh; Imai, Motoharu; Matsushita, Akiyuki

    2016-07-20

    We report the magnetism and transport properties of the Heusler compound Fe2+x V1-x Al at  -0.10  ⩽  x  ⩽  0.20 under pressure and a magnetic field. A metal-insulator quantum phase transition occurred at x  ≈  -0.05. Application of pressure or a magnetic field facilitated the emergence of finite zero-temperature conductivity σ 0 around the critical point, which scaled approximately according to the power law (P  -  P c ) (γ) . At x  ⩽  -0.05, a localized paramagnetic spin appeared, whereas above the ferromagnetic quantum critical point at x  ≈  0.05, itinerant ferromagnetism was established. At the quantum critical points at x  =  -0.05 and 0.05, the resistivity and specific heat exhibited singularities characteristic of a Griffiths phase appearing as an inhomogeneous electronic state.

  13. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  14. The phonon entropy of transition metals and alloys: Effects of impurities and of a martensitic phase transition

    NASA Astrophysics Data System (ADS)

    Delaire, Olivier

    For a fixed configuration of ions on a given crystalline lattice, low energy excitations around the static average configuration can be thermally activated and will contribute to the entropy of the system. As such, phonons, spin-waves or electronic excitations have their own entropic contribution. This thesis investigates the entropic effects of lattice vibrations in transition metal alloys, both from experimental and computational points of view. Using inelastic neutron scattering, it is shown that a few percent of substitutional impurities from the transition metal series strongly affect the phonon density of states (DOS) of pure vanadium. Alloying with 6% Pt solutes produces a strong stiffening of the phonon DOS, inducing a large and negative vibrational entropy of mixing, which overcomes the increase in configurational entropy. A systematic study of chemical trends for different transition metal impurities was conducted. A previously unknown correlation is established between the vibrational entropy of alloying and the difference in electronegativity of the solute and the host. Density-functional theory calculations were conducted and confirmed the occurrence of systematic charge-transfers correlating with the electronegativity, which affect the interatomic force-constants and the phonons. The effect of impurities on the anomalous temperature-dependence of phonons in vanadium is investigated. It is found that the solutes which affect the phonon density of states most strongly at room temperature also suppress the anomalous temperature behavior. Electron-phonon and phonon-phonon couplings are examined as potential sources of this effect, through a careful accounting of their contributions to the heat capacity, based on inelastic neutron scattering experiments, calorimetry measurements and electronic structure calculations. Finally, the changes in the phonon DOS and the vibrational entropy across the low-temperature martensitic phase transformation in Fe71Ni 29

  15. Association of metals and proteasome activity in erythrocytes of prostate cancer patients and controls.

    PubMed

    Neslund-Dudas, Christine; Mitra, Bharati; Kandegedara, Ashoka; Chen, Di; Schmitt, Sara; Shen, Min; Cui, Qiuzhi; Rybicki, Benjamin A; Dou, Q Ping

    2012-10-01

    Information is lacking on the effects toxic environmental metals may have on the 26S proteasome. The proteasome is a primary vehicle for selective degradation of damaged proteins in a cell and due to its role in cell proliferation, inhibition of the proteasome has become a target for cancer therapy. Metals are essential to the proteasome's normal function and have been used within proteasome-inhibiting complexes for cancer therapy. This study evaluated the association of erythrocyte metal levels and proteasome chymotrypsin-like (CT-like) activity in age- and race-matched prostate cancer cases (n=61) and controls (n=61). Erythrocyte metals were measured by inductively coupled plasma mass spectrometry (ICP-MS). CT-like activity was measured by proteasome activity assay using a fluorogenic peptide substrate. Among cases, significant correlations between individual toxic metals were observed (r(arsenic-cadmium)=0.49, p<0.001; r(arsenic-lead)=0.26, p=0.04, r(cadmium-lead) 0.53, p<0.001), but there were no significant associations between metals and CT-like activity. In contrast, within controls there were no significant associations between metals, however, copper and lead levels were significantly associated with CT-like activity. The associations between copper and lead and proteasome activity (r(copper-CT-like)=-0.28, p=0.002 ; r(lead-CT-like)=0.23, p=0.011) remained significant in multivariable models that included all of the metals. These findings suggest that biologically essential metals and toxic metals may affect proteasome activity in healthy controls and, further, show that prostate cancer cases and controls differ in associations between metals and proteasome activity in erythrocytes. More research on toxic metals and the proteasome in prostate cancer is warranted.

  16. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts.

    PubMed

    Varnell, Jason A; Tse, Edmund C M; Schulz, Charles E; Fister, Tim T; Haasch, Richard T; Timoshenko, Janis; Frenkel, Anatoly I; Gewirth, Andrew A

    2016-01-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites.

  17. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts

    NASA Astrophysics Data System (ADS)

    Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.

    2016-08-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites.

  18. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts

    PubMed Central

    Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.

    2016-01-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720

  19. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts.

    PubMed

    Varnell, Jason A; Tse, Edmund C M; Schulz, Charles E; Fister, Tim T; Haasch, Richard T; Timoshenko, Janis; Frenkel, Anatoly I; Gewirth, Andrew A

    2016-01-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720

  20. Label-Free Direct Visual Analysis of Hydrolytic Enzyme Activity Using Aqueous Two-Phase System Droplet Phase Transitions

    PubMed Central

    2015-01-01

    Dextran hydrolysis-mediated conversion of polyethylene glycol (PEG)-dextran (DEX) aqueous two-phase system droplets to a single phase was used to directly visualize Dextranase activity. DEX droplets were formed either by manual micropipetting or within a continuous PEG phase by computer controlled actuation of an orifice connecting rounded channels formed by backside diffused light lithography. The time required for the two-phase to one-phase transition was dependent on the Dextranase concentration, pH of the medium, and temperature. The apparent Michaelis constants for Dextranase were estimated based on previously reported catalytic constants, the binodal polymer concentration curves for PEG-DEX phase transition for each temperature, and pH condition. The combination of a microfluidic droplet system and phase transition observation provides a new method for label-free direct measurement of enzyme activity. PMID:24654925

  1. Real-Time Structural and Electrical Characterization of Metal-Insulator Transition in Strain-Modulated Single-Phase VO2 Wires with Controlled Diameters.

    PubMed

    Kim, Min-Woo; Ha, Sung-Soo; Seo, Okkyun; Noh, Do Young; Kim, Bong-Joong

    2016-07-13

    Single-crystal VO2 wires have gained tremendous popularity for enabling the study of the fundamental properties of the metal-insulator transition (MIT); however, it remains tricky to precisely measure the intrinsic properties of the transitional phases with controlled wire-growth properties, such as diameter. Here, we report a facile method for growing VO2 wires with controlled diameters by separating the formation of the liquidus V2O5 seed droplets from the evolution of the VO2 wire using oxygen gas. The kinetic analyses suggest that the growth proceeds via the VS (vapor-solid) mechanism, whereas the droplet determines the size and the location of the wire. In situ Raman spectroscopy combined with analyses of the electrical properties of an individual wire allowed us to construct a diameter-temperature phase diagram from three initial phases (i.e., M1, T, and M2), which were created by misfit stress from the substrate and were preserved at room temperature. We also correlated this relation with resistivity-diameter and activation energy-diameter relations supported by theoretical modeling. These carefully designed approaches enabled us to elucidate the details of the phase transitions over a wide range of stress conditions, offering an opportunity to quantify relevant thermodynamic and electronic parameters (including resistivities, activation energies, and energy barriers of the key insulating phases) and to explain the intriguing behaviors of the T phase during the MIT.

  2. Real-Time Structural and Electrical Characterization of Metal-Insulator Transition in Strain-Modulated Single-Phase VO2 Wires with Controlled Diameters.

    PubMed

    Kim, Min-Woo; Ha, Sung-Soo; Seo, Okkyun; Noh, Do Young; Kim, Bong-Joong

    2016-07-13

    Single-crystal VO2 wires have gained tremendous popularity for enabling the study of the fundamental properties of the metal-insulator transition (MIT); however, it remains tricky to precisely measure the intrinsic properties of the transitional phases with controlled wire-growth properties, such as diameter. Here, we report a facile method for growing VO2 wires with controlled diameters by separating the formation of the liquidus V2O5 seed droplets from the evolution of the VO2 wire using oxygen gas. The kinetic analyses suggest that the growth proceeds via the VS (vapor-solid) mechanism, whereas the droplet determines the size and the location of the wire. In situ Raman spectroscopy combined with analyses of the electrical properties of an individual wire allowed us to construct a diameter-temperature phase diagram from three initial phases (i.e., M1, T, and M2), which were created by misfit stress from the substrate and were preserved at room temperature. We also correlated this relation with resistivity-diameter and activation energy-diameter relations supported by theoretical modeling. These carefully designed approaches enabled us to elucidate the details of the phase transitions over a wide range of stress conditions, offering an opportunity to quantify relevant thermodynamic and electronic parameters (including resistivities, activation energies, and energy barriers of the key insulating phases) and to explain the intriguing behaviors of the T phase during the MIT. PMID:27253750

  3. Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment

    NASA Astrophysics Data System (ADS)

    Li, J. F.; Agyakwa, P. A.; Johnson, C. M.

    2014-04-01

    Real Si insulated gate bipolar transistors with conventional Ni/Ag metallization and dummy Si chips with thickened Ni/Ag metallization have both been bonded, at 250°C for 0 min, 40 min, and 640 min, to Ag foil electroplated with 2.7 µm and 6.8 µm thick Sn as an interlayer. On the basis of characterization of the microstructure of the resulting joints, suitable thicknesses are suggested for the Ag base metal and the Sn interlayer for Ag/Sn/Ag transient liquid-phase (TLP) joints used for power die attachment. The diffusivities of Ag and Sn in the ξAg phase were also obtained. In combination with the kinetic constants of Ag3Sn growth and diffusivities of Ag and Sn in Ag reported in the literature, the diffusivities of Ag and Sn in the ξAg phase were also used to simulate and predict diffusion-controlled growth and evolution of the phases in Ag/Sn/Ag TLP joints during extended bonding and in service.

  4. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    PubMed

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-02-23

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current.

  5. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current

    PubMed Central

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-01-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm2), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593

  6. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    PubMed

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-01-01

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593

  7. A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO{sub 2} doped with transition metal cations

    SciTech Connect

    Kernazhitsky, L.; Shymanovska, V.; Gavrilko, T.; Naumov, V.; Kshnyakin, V.; Khalyavka, T.

    2013-02-15

    The effect of nanocrystalline TiO{sub 2} doping with transition metal cations (Cu{sup 2+}, Fe{sup 3+}, Co{sup 2+}, Cr{sup 3+}) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO{sub 2} samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: Aactivity of rutile samples decreases upon doping in the series R>R/Co>R/Cu>R/Fe>R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV. - Graphical abstract: A red shift of the absorption edge of nanocrystalline single-phase anatase after doping with transition metal cations. Highlights: Black-Right-Pointing-Pointer Single-phase anatase and rutile powders surface-doped with transition metal cations. Black-Right-Pointing-Pointer Absorption edge and band gap of rutile do not change with surface doping. Black-Right-Pointing-Pointer Band gap of surface-doped anatase reduces being the lowest for A/Fe. Black-Right-Pointing-Pointer The surface-doping improves photocatalytic activity of anatase. Black-Right-Pointing-Pointer The surface-doping inhibits photocatalytic activity of rutile.

  8. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  9. New chelating reagents for preconcentration, separation, determination of metal complexes by high performance liquid chromatography and solid phase extraction

    SciTech Connect

    Qian, Yan wen.

    1991-12-03

    A general scheme is outlined for rapid determination of metal cations by complexation and subsequent HPLC separation. The synthesis and general properties are described for several new thiohydrazone chelating reagents. Solubility considerations suggest that the metal complexes have a positive charge. Excellent chromatographic separations are obtained for mixtures of up to seven metal complexes. Addition of a positively charged additive to the eluent is shown to have a significant effect on both the retention times and sharpness of the chromatographic peaks. Separation of the metal complexes on resins with a permanent charge is also shown to be feasible. Two new hydrazone reagents have been synthesized and characterized. Trace metal ions in aqueous solution are complexed by one of the hydrazones and the resulting metal complexes are solid phase extracted onto a mini cation-exchange or polymeric column. The uptake of metal complexes is complete and the elution step is fast and complete. The quantitative recoveries of metal ions determined by both spectrophotometric method and ICP-MS are very satisfactory and agree with each other.

  10. Bicarbonate-induced activation of H₂O₂ for metal-free oxidative desulfurization.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2016-03-01

    Efficient oxidative desulfurization (ODS) of model oil containing dibenzothiophene (DBT) and aromatic thiophenic derivatives has been achieved at room temperature using hydrogen peroxide activation by inorganic bicarbonate (HCO3(-)). Using in-situ formation of peroxymonocarbonate as oxidant, the transformation of main model substrate DBT to corresponding DBT-sulfone was easily accomplished in biphasic reaction conditions. In the presence of water-acetonitrile polar phase, increasing the water content upto 50% decreased the extraction capacity more than 3 times, but ∼ 90% DBT oxidation was still achieved. The oxidizing capacity of bicarbonate catalyst was maintained during repeated ODS cycles, but DBT removal efficiency was critically dependent on the extraction capacity of the polar phase. Under heterogeneous reaction conditions, bicarbonate-modified ion-exchange resin achieved similar ODS activity compared to the homogeneous catalytic system. Additionally, the efficient formation of peroxymonocarbonate using gaseous CO2 precursor in alkaline conditions was also utilized for DBT oxidation. The present study proposes the NaHCO3/H2O2 catalytic system as an efficient and cheap metal-free alternative for the oxidative removal of aromatic sulfur compounds from fuel oil. PMID:26561755

  11. Plasmon-induced transparency in metamaterials: Active near field coupling between bright superconducting and dark metallic mode resonators

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Singh, Ranjan; Zhang, Caihong; Han, Jiaguang; Tonouchi, Masayoshi; Zhang, Weili

    2013-09-01

    Structured plasmonic metamaterial devices offer the design flexibility to be size scaled for operation across the electromagnetic spectrum and are extremely attractive for generating electromagnetically induced transparency and slow-light behaviors via coupling of bright and dark subwavelength resonators. Here, we experimentally demonstrate a thermally active superconductor-metal coupled resonator based hybrid terahertz metamaterial on a sapphire substrate that shows tunable transparency and slow light behavior as the metamaterial chip is cooled below the high-temperature superconducting phase transition temperature. This hybrid metamaterial opens up the avenues for designing micro-sized active circuitry with switching, modulation, and "slowing down terahertz light" capabilities.

  12. Coordination sphere of the third metal site is essential to the activity and metal selectivity of alkaline phosphatases.

    PubMed

    Koutsioulis, Dimitris; Lyskowski, Andrzej; Mäki, Seija; Guthrie, Ellen; Feller, Georges; Bouriotis, Vassilis; Heikinheimo, Pirkko

    2010-01-01

    Alkaline phosphatases (APs) are commercially applied enzymes that catalyze the hydrolysis of phosphate monoesters by a reaction involving three active site metal ions. We have previously identified H135 as the key residue for controlling activity of the psychrophilic TAB5 AP (TAP). In this article, we describe three X-ray crystallographic structures on TAP variants H135E and H135D in complex with a variety of metal ions. The structural analysis is supported by thermodynamic and kinetic data. The AP catalysis essentially requires octahedral coordination in the M3 site, but stability is adjusted with the conformational freedom of the metal ion. Comparison with the mesophilic Escherichia coli, AP shows differences in the charge transfer network in providing the chemically optimal metal combination for catalysis. Our results provide explanation why the TAB5 and E. coli APs respond in an opposite way to mutagenesis in their active sites. They provide a lesson on chemical fine tuning and the importance of the second coordination sphere in defining metal specificity in enzymes. Understanding the framework of AP catalysis is essential in the efforts to design even more powerful tools for modern biotechnology. PMID:19916164

  13. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    SciTech Connect

    Steimle, Timothy

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  14. Active retrodirective arrays for SPS beam pointing. [phase conjugation

    NASA Technical Reports Server (NTRS)

    Chernoff, R.

    1980-01-01

    The basic requirement of the SPS beam pointing system is that it deliver a certain amount of S-band (lambda = 12.5 cm) power to a 9.6 km diameter receiving rectenna on the ground. The power is transmitted from a 1.0 km diameter antenna array on the SPS, which is, for a rectenna at about plus or minus 40 deg. latitude, some 37.5x10 to the 6th power km distant. At the present time ARA's appear to be the best bet to realize this very stringent beam pointing requirement. An active retrodirective array (ARA) transmits a beam towards the apparent source of an illuminating signal called the pilot. The array produces, not merely reflects, RF power. Retrodirectivity is achieved by retransmitting from each element of the array a signal whose phase is the "conjugate" of that received by the element. Phase conjugate circuits and pointing errors in ARA's are described. Results obtained using a 2-element X-band ARA and an 8-element S-band ARA are included.

  15. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  16. Quantum Phase Transition in Germanene and Stanene Bilayer: From Normal Metal to Topological Insulator.

    PubMed

    Huang, Chengxi; Zhou, Jian; Wu, Haiping; Deng, Kaiming; Jena, Puru; Kan, Erjun

    2016-05-19

    Two-dimensional (2D) topological insulators (TIs) that exhibit quantum spin Hall effects are a new class of materials with conducting edge and insulating bulk. The conducting edge bands are spin-polarized, free of back scattering, and protected by time-reversal symmetry with potential for high-efficiency applications in spintronics. On the basis of first-principles calculations, we show that under external pressure recently synthesized stanene and germanene buckled bilayers can automatically convert into a new dynamically stable phase with flat honeycomb meshes. In contrast with the active surfaces of buckled bilayer of stanene or germanene, the above new phase is chemically inert. Furthermore, we demonstrate that these flat bilayers are 2D TIs with sizable topologically nontrivial band gaps of ∼0.1 eV, which makes them viable for room-temperature applications. Our results suggest some new design principles for searching stable large-gap 2D TIs. PMID:27149183

  17. Metal hydride/chemical heat-pump development project. Phase I. Final report

    SciTech Connect

    Argabright, T.A.

    1982-02-01

    The metal hydride/chemical heat pump (MHHP) is a chemical heat pump containing two hydrides for the storage and/or recovery of thermal energy. It utilizes the heat of reaction of hydrogen with specific metal alloys. The MHHP design can be tailored to provide heating and/or cooling or temperature upgrading over a wide range of input and ambient temperatures. The system can thus be used with a variety of heat sources including waste heat, solar energy or a fossil fuel. The conceptual design of the MHHP was developed. A national market survey including a study of applications and market sectors was conducted. The technical tasks including conceptual development, thermal and mechanical design, laboratory verification of design and material performance, cost analysis and the detailed design of the Engineering Development Test Unit (EDTU) were performed. As a result of the market study, the temperature upgrade cycle of the MHHP was chosen for development. Operating temperature ranges for the upgrader were selected to be from 70 to 110/sup 0/C (160 to 230/sup 0/F) for the source heat and 140 to 190/sup 0/C (280 to 375/sup 0/F) for the product heat. These ranges are applicable to many processes in industries such as food, textile, paper and pulp, and chemical. The hydride pair well suited for these temperatures is LaNi/sub 5//LaNi/sub 4/ /sub 5/Al/sub 0/ /sub 5/. The EDTU was designed for the upgrade cycle. It is a compact finned tube arrangement enclosed in a pressure vessel. This design incorporates high heat transfer and low thermal mass in a system which maximizes the coefficient of performance (COP). It will be constructed in Phase II. Continuation of this effort is recommended.

  18. The Relationship Between Glass Formability and the Properties of the Bcc Phase in TITANIUM-3D Metal Alloys

    NASA Astrophysics Data System (ADS)

    Sinkler, Wharton

    The present study concerns glass formation and the beta (bcc) phase in Ti-3d metal systems. beta phase stability is related to amorphization, because the formability and stability of metallic glasses depends on the relative thermodynamic instability of chemically disordered crystalline solid solution phases (Johnson 1986). Correlations are found in this series of alloys which support a connection between electronic characteristics of the bcc phase and the tendency for glass formation. Electron irradiation-induced amorphization in Ti-3d metal systems is investigated as a function of temperature and DeltaN, the group number difference between Ti and the solute. DeltaN is made continuous by using a series of pseudobinary Laves compounds Ti(M1_{x}M2 _{(1-x)}_2. For DeltaN <= 2.2 (between TiCr_2 and TiMn _2) low temperature irradiation damage induces oriented precipitation of the beta (bcc) solid solution phase from the damaged compound. For DeltaN > 2.2 amorphization occurs. beta-phase precipitation under irradiation suggests that beta phase stability is continuously enhanced as Delta N decreases. Diffuse omega scattering in the quenched Ti-Cr beta phase is investigated using electron diffraction and low temperature electron irradiation. A new model of the short range ordered atomic displacements causing the diffuse scattering is developed. Based on this model, it is proposed that the structure reflects chemical short range order. This is supported by irradiation results on the beta phase. A correlation is found between the diffuse scattering and the valence electron concentration. The explanation proposed for this correlation is that the chemical ordering in the beta phase is driven by Fermi surface nesting. Results of annealing of quenched beta Ti-Cr are presented, and are compared with reports of annealing-induced amorphization of this phase (Blatter et al. 1988; Yan et al. 1993). Amorphization is not reproduced. A metastable compound phase beta ^{''} precipitates

  19. On-site solid-phase extraction and application to in situ preconcentration of heavy metals in surface water.

    PubMed

    Jiao, Fang; Gao, Hong-Wen

    2013-01-01

    An on-site solid-phase extraction, consisting of the sorption, the separation and the elution function units, was designed for in situ preconcentration of heavy metals ions. The D401 resin powder was employed as sorbent to capture Pb(2+), Cu(2+), Zn(2+), Cd(2+), Co(2+), and Ni(2+), and then they desorbed with 2 mol/L nitric acid as eluent. Under the optimized conditions, these heavy metals ions in West Lake, Taihu Lake, and Yangtze River of China were captured and then determined by ICP-OES with the recovery of 92.5% to 111.5%. The on-site solid-phase extraction achieved a quick preconcentration of heavy metals to avoid the transport and storage of a large volume water sample. It is suitable for in situ monitoring of water quality in mountains, tablelands or other remote areas. PMID:22286838

  20. C-H Bond Activation by Early Transition Metal Carbide Cluster Anion MoC3 (-).

    PubMed

    Li, Zi-Yu; Hu, Lianrui; Liu, Qing-Yu; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui; Yao, Jiannian

    2015-12-01

    Although early transition metal (ETM) carbides can activate CH bonds in condensed-phase systems, the electronic-level mechanism is unclear. Atomic clusters are ideal model systems for understanding the mechanisms of bond activation. For the first time, CH activation of a simple alkane (ethane) by an ETM carbide cluster anion (MoC3 (-) ) under thermal-collision conditions has been identified by using high-resolution mass spectrometry, photoelectron imaging spectroscopy, and high-level quantum chemical calculations. Dehydrogenation and ethene elimination were observed in the reaction of MoC3 (-) with C2 H6 . The CH activation follows a mechanism of oxidative addition that is much more favorable in the carbon-stabilized low-spin ground electronic state than in the high-spin excited state. The reaction efficiency between the MoC3 (-) anion and C2 H6 is low (0.23±0.05) %. A comparison between the anionic and a highly efficient cationic reaction system (Pt(+) +C2 H6 ) was made. It turned out that the potential-energy surfaces for the entrance channels of the anionic and cationic reaction systems can be very different. PMID:26490554

  1. An Examination of Strong-line Metallicity Diagnostics with Direct Gas-Phase Metallicities at Higher Redshifts

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Rigby, Jane R.; Malkan, Matthew Arnold; Malhotra, Sangeeta

    2016-01-01

    The [OIII]λ4363 nebular emission line, which provides the most reliable determination of the gas metallicity by measuring the electron temperature of the gas, is intrinsically weak. As such, most metallicity studies at both low and high redshifts have utilized "strong-line" metallicity calibrations, such as [NII]λ6583/Hα or R23 = ([OII]+[OIII])/Hβ. However, there are growing concerns that these diagnostics may not be used for evolutionary studies due to differences in the physical conditions (e.g., density, ionization, abundance ratios) of the interstellar gas in galaxies. A clear demonstration for this concern is the offset on the Baldwin-Phillips-Terlevich diagnostic diagram ([OIII]λ5007/Hβ vs. [NII]λ6583/Hα) for high-z star-forming galaxies from local star-forming galaxies.To examine this issue, we investigate the accuracy that commonly-used strong-line diagnostics can explain the direct oxygen abundances. Here, we use a sample of ~100 low-mass galaxies at z=0.07 to 1.0 with detections of the [OIII]λ4363 emission line from Keck and MMT optical spectroscopy. These galaxies are pre-selected for their strong nebular emission lines from the Subaru Deep Field and the DEEP2 Survey. Utilizing the optical emission lines, we argue that "R23" is not a reliable diagnostic and that discrepancies from [OIII]λ4363-based metallicity cannot be explained simply by higher gas densities or higher ionization parameter. We do find that the [NII]-based metallicity diagnostics of Pettini & Pagel (2004) are in agreement with [OIII]λ4363-based metallicity at z~0.5. There is, however, a sub-population (25%) where [NII]-based estimates are overestimating the oxygen metallicities. We argue that enhanced nitrogen abundances, relative to oxygen, is responsible for this significant (~0.5 dex) offset in metallicity. We present preliminary results for a revised metallicity calibration that considers the N/O abundance ratio.

  2. Magnetic observations during the recent declining phase of solar activity

    NASA Astrophysics Data System (ADS)

    Smith, E. J.

    Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker

  3. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    NASA Astrophysics Data System (ADS)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    of these proposed eutectic alloys are too high for currently available DSG solar fields, for instance the Mg49-Zn51 alloy melts at 342°C requiring saturated steam pressures above 160 bar to charge the TES unit. Being aware of this, novel eutectic metallic alloys have been designed reducing the Tms to the range between 285°C and 330°C (79bar and 145bar of charging steam pressure respectively) with ΔHfs between 150 and 170 J/g, and thus achieving metallic Phase Change Materials (PCM) suitable for the available DSG technologies.

  4. Thermodynamics of the ferromagnetic phase transition in nearly half metallic CoS2 at high pressures

    SciTech Connect

    Elkin, F. S.; Zibrov, I. P.; Novikov, A. P.; Khasanov, S. S.; Sidorov, V. A.; Petrova, A. E.; Lograsso, Thomas A.; Thompson, J. D.; Stishov, S. M.

    2013-12-06

    The volume change and heat capacity at the ferromagnetic phase transition in COS2 were measured at high pressures using X-rays generated by the Argonne synchrotron light source and by ac-calorimetry, respectively. The transition entropy, calculated on the basis of these experimental data, drops along the transition line due to quantum degradation, as required by Nernst's law. The volume change increases strongly along the transition line, which is explained by specifics of the compressibility difference of coexisting phases that results from nearly half metallic nature of the ferromagnetic phase of COS2. (C) 2013 Elsevier Ltd. All rights reserved.

  5. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  6. Metal Catalyzed Fusion: Nuclear Active Environment vs. Process

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot

    2009-03-01

    To achieve radiationless dd fusion and/or other LENR reactions via chemistry: some focus on environment of interior or altered near-surface volume of bulk metal; some on environment inside metal nanocrystals or on their surface; some on the interface between nanometal crystals and ionic crystals; some on a momentum shock-stimulation reaction process. Experiment says there is also a spontaneous reaction process.

  7. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation.

    PubMed

    Rolfe, Matthew D; Rice, Christopher J; Lucchini, Sacha; Pin, Carmen; Thompson, Arthur; Cameron, Andrew D S; Alston, Mark; Stringer, Michael F; Betts, Roy P; Baranyi, József; Peck, Michael W; Hinton, Jay C D

    2012-02-01

    Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not "poised" upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments.

  8. Lag Phase Is a Distinct Growth Phase That Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation

    PubMed Central

    Rolfe, Matthew D.; Rice, Christopher J.; Lucchini, Sacha; Pin, Carmen; Thompson, Arthur; Cameron, Andrew D. S.; Alston, Mark; Stringer, Michael F.; Betts, Roy P.; Baranyi, József; Peck, Michael W.

    2012-01-01

    Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not “poised” upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments. PMID:22139505

  9. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. PMID:26067934

  10. A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction.

    PubMed

    Bagheri, Habib; Javanmardi, Hasan; Abbasi, Alireza; Banihashemi, Solmaz

    2016-01-29

    A metal organic framework-polyaniline (MOF/PANI) nanocomposite was electrodeposited on a stainless steel wire and used as a solid phase microextraction (SPME) fiber coating. The electropolymerization process was carried out under a constant deposition potential and applied to the corresponding aqueous electrolyte containing aniline and MOF particles. The employment of MOFs with their large and small cages and 3-D structures in synthesizing a nanocomposite was assumed to be efficient constitutes to induce more non-smooth and porous structures, approved by scanning electron microscopy (SEM) images. Three different MOFs were incorporated to synthesize the desired nanocomposites and the preliminary experiments showed that all of them, particularly the one containing MOF2, have higher extraction performances in compared with PANI. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some chlorobenzenes (CBs) from aqueous samples. Influencing parameters on the synthesize and extraction processes including the electrodeposition voltage and its duration time, the weight ratio of PANI and MOF, the ionic strength, desorption temperature and time, and extraction time and temperature were optimized. The developed method was validated by analyzing the spiked distilled water and gas chromatography-mass spectrometry (GC-MS). Under optimum condition, the relative standard deviation (RSD%) values for a double distilled water spiked with the selected CBs at 20ngL(-1) were 5-8% (n=3) and the detection limits were below 0.2ngL(-1). The linear dynamic range (LDR) of the method was in the concentration range of 0.5-1000ngL(-1) (R(2)>0.9994). The fiber-to-fiber reproducibility was found to be in the range of 4-7%. Eventually, various real-water samples were analyzed by the MOF/PANI-based HS-SPME and GC-MS and the relative recovery values were found to be in the range of 92-98%.

  11. Improved ductility of Cu64Zr36 metallic glass/Cu nanocomposites via phase and grain boundaries

    NASA Astrophysics Data System (ADS)

    Jian, W. R.; Wang, L.; Li, B.; Yao, X. H.; Luo, S. N.

    2016-04-01

    We investigate tensile deformation of metallic glass/crystalline interpenetrating phase nanocomposites as regards the effects of specific area of amorphous/crystalline phase interfaces, and grain boundaries. As an illustrative case, large-scale molecular dynamics simulations are performed on Cu64Zr36 metallic glass/Cu nanocomposites with different specific interface areas and grain boundary characteristics. Plastic deformation is achieved via shear bands, shear transformation zones, and crystal plasticity. Three-dimensional amorphous/crystalline interfaces serve as effective barriers to the propagation of shear transformation zones and shear bands if formed, diffuse strain localizations, and give rise to improved ductility. Ductility increases with increasing specific interface area. In addition, introducing grain boundaries into the second phase facilitates crystal plasticity, which helps reduce or eliminate mature shear bands in the glass matrix.

  12. Co-Cu Nanoparticles: Synthesis by Galvanic Replacement and Phase Rearrangement during Catalytic Activation.

    PubMed

    Nafria, Raquel; Genç, Aziz; Ibáñez, Maria; Arbiol, Jordi; de la Piscina, Pilar Ramírez; Homs, Narcís; Cabot, Andreu

    2016-03-01

    The control of the phase distribution in multicomponent nanomaterials is critical to optimize their catalytic performance. In this direction, while impressive advances have been achieved in the past decade in the synthesis of multicomponent nanoparticles and nanocomposites, element rearrangement during catalyst activation has been frequently overseen. Here, we present a facile galvanic replacement-based procedure to synthesize Co@Cu nanoparticles with narrow size and composition distributions. We further characterize their phase arrangement before and after catalytic activation. When oxidized at 350 °C in air to remove organics, Co@Cu core-shell nanostructures oxidize to polycrystalline CuO-Co3O4 nanoparticles with randomly distributed CuO and Co3O4 crystallites. During a posterior reduction treatment in H2 atmosphere, Cu precipitates in a metallic core and Co migrates to the nanoparticle surface to form Cu@Co core-shell nanostructures. The catalytic behavior of such Cu@Co nanoparticles supported on mesoporous silica was further analyzed toward CO2 hydrogenation in real working conditions. PMID:26878153

  13. [Reseach on THz Time Domain Spectrum of Photo-Induced Insulator-Metal Phase Transition of VO₂ Films].

    PubMed

    Wang, Chang-lei; Wu, Shuai; Li, Yan-feng; Liu, Bo-wen; Hu, Ming-lie; Chai, Lu; Xing, Qi-rong; Wang, Qing-yue

    2015-11-01

    Vanadium dioxide (VO₂) film will be phase-transitioned from insulator into metal, accompanied with dramatic change on conductivity, which is named as photo-induced insulator-metal phase transition. Such phase transition of VO₂ film has important application potentials in modulators or other functional devices for terahertz waves. In this paper, the transmission spectrum variations before and after the photo-induced insulator-metal phase transition of vanadium dioxide film are investigated, and the phase transition properties in terahertz(THz) region are analyzed. In the experiment, the phase transition of the VO₂ film was induced by a continuous wave (CW) laser source and a femtosecond (fs) laser source, respectively. Obvious changes on the THz waveforms were observed for the both mentioned means of excitation, and the amplitude attenuation, as well as the signal distortion, was intensified with the increase of the impinging optical power. The fast Fourier transform (FFT) spectra of the transmitted THz time-domain signals were analyzed and it was found that the amplitude of the transmitted spectrum decreased synchronously with the increase of the optical power, accompanied with deformation of the spectrum line shape at the same time. The reason was that the macroscopic dielectric properties of the VO₂ film approached gradually to that of a metal as laser power was increased. A parameter, transmission modulation function, was defined in the paper as the amplitude difference between the transmission spectra of the VO₂ film before and after the laser excitation, to describe the dispersivity of the photo-induced phase transition more clearly. From the curve of the transmission modulation function, strong frequency-dependent properties at THz frequencies were found to vary regularly with the incident light power. After furthermore comparison, it was found that, though the insulator-metal phase transition could be trigged by both CW laser source and fs laser

  14. Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide

    SciTech Connect

    Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.

    2009-02-28

    The catalytic activity of cobalt in the production of hydrogen via ethanol steam reforming has been investigated in its relation to the crystalline structure of metallic cobalt. At a reaction temperature of 350 8C, the specific hydrogen production rates show that hexagonal close-packed (hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. However, at typical reaction temperatures (400– 500 8C) for ethanol steam reforming, hcp cobalt is transformed to less active fcc cobalt, as confirmed by in situ X-ray diffractometry (XRD). The addition of CeO2 promoter (10 wt.%) stabilizes the hcp cobalt structure at reforming temperatures up to 600 8C. Moreover, during the pre-reduction process, CeO2 promoter prevents sintering during the transformation of Co3O4 to hcp cobalt. Both reforming experiments and in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the surface reactions were modified by CeO2 promoter on 10% Ce–Co (hcp) to give a lower CO selectivity and a higher H2 yield as compared with the unpromoted hcp Co.

  15. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  16. Metal and associated phases in Bishunpur, a highly unequilibrated ordinary chondrite

    NASA Astrophysics Data System (ADS)

    Rambaldi, E. R.; Wasson, J. T.

    1981-07-01

    Bishunpur is one of the most unequilibrated ordinary chondrites, and preserves a relatively unaltered record of solar nebular processes. A survey of three polished thin sections of Bishunpur revealed that metal occurs in three textural domains: (1) in the matrix, (2) within chondrules and (3) in coatings on chondrules. A table provides a textural classification of the various metal types found in Bishunpur and their composition. Electron-microprobe analyses are discussed, and similarities between Bishunpur metal and opaques and those in carbonaceous chondrites are considered. Attention is given to low-Ni kamacite grains in chondrule olivine, Si-bearing chondrule metal, spheroidal metal in chondrules, metal and sulfide-bearing rims, coarse matrix metal, and fine matrix metal formation.

  17. Plasma sprayed coatings for containment of Cu-Mg-Si metallic phase change material

    SciTech Connect

    Withey, Elizabeth Ann; Kruizenga, Alan Michael; Andraka, Charles E.; Gibbs, Paul J.

    2016-01-01

    In this study, the performance of Y2O3-stabilized ZrO2 (YSZ), Y2O3, and Al2O3 plasma sprayed coatings are investigated for their ability to prevent attack of Haynes 230 by a near-eutectic Cu-Mg-Si metallic phase change material (PCM) in a closed environment at 820 °C. Areas where coatings failed were identified with optical and scanning electron microscopy, while chemical interactions were clarified through elemental mapping using electron microprobe analysis. Despite its susceptibility to reduction by Mg, the Al2O3 coating performed well while the YSZ and Y2O3 coating showed clear areas of attack. These results are attributed to the evolution of gaseous Mg at 820 °C leading to the formation of MgO and MgAl2O4.

  18. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.

    PubMed

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  19. Metallic and Insulating Phases of Interacting Fermions in a 3D Optical Lattice

    NASA Astrophysics Data System (ADS)

    Hackermueller, Lucia

    2010-03-01

    Ultracold fermions in optical lattices are a promising tool to simulate solid state physics, since they represent an ideal and highly tunable implementation of the Hubbard Hamiltonian. A proof of principle is to demonstrate a Mott insulating state, where repulsive interactions between the atoms lead to an insulating behavior in a half-filled conduction band. In our experiments we study repulsively and attractively interacting ^40K atoms within the combination of a red-detuned dipole trap and a blue detuned lattice. This setup allows us to gradually transform the system from metallic to Mott-insulating and band insulating states. We measure the phase of the system by analyzing the system size and the number of doubly occupied sites and compare our findings to DMFT theory. In addition we investigate the dynamical behavior of interacting fermionic mixtures. We prepare a band insulating system and suddenly release it into a homogenous lattice. We detect a symmetric behavior from a ballistic expansion for non-interacting clouds to a strongly suppressed expansion due to the formation of attractively or repulsively bound pairs. This experiment allows us to study transport properties of the Hubbard model. This work was done together with U.Schneider, S. Will, Th. Best, S. Braun, I. Bloch and with theoretical support from T.A. Costi, R.W. Helmes, D. Rasch, A.Rosch, B. Paredes, M. Moreno-Cardoner, T. Kitagawa, E.Demler.

  20. Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals

    NASA Astrophysics Data System (ADS)

    Liu, Haiting; Shen, Yao; Ma, Jiawei; Zheng, Pengfei; Zhang, Lei

    2016-07-01

    We studied the dependence of uniform elongation on grain size in the range of submicron to millimeter for single-phase FCC/BCC metals by reviewing recent experimental results and applying crystal plasticity finite element method simulation. In the order of increasing grain size, uniform elongation can be divided into three stages, namely low elongation stage, nearly constant elongation stage, and decreased elongation with large scatters stage. Low elongation stage features a dramatic increase near the critical grain size at the end of the stage, which is primarily attributed to the emergence of dislocation cell size transition from ultrafine to mid-size grain. Other factors can be neglected due to their negligible influence on overall variation trend. In nearly constant elongation stage, uniform elongation remains unchanged at a high level in general. As grain size keeps growing, uniform elongation starts decreasing and becomes scattered upon a certain grain size, indicating the initiation of decreased elongation with large scatters stage. It is shown that the increase is not linear or smooth but rather sharp at the end of low elongation stage, leading to a wider range in nearly constant elongation stage. The grain size dependence of uniform elongation can serve as a guiding principle for designing small uniaxial tensile specimens for mechanical testing, where size effect matters in most cases.